2009年中考数学试题答案

合集下载

2009年四川省达州市中考数学试题及答案(word版)

2009年四川省达州市中考数学试题及答案(word版)

达州市2009年高中阶段教育学校招生统一考试数 学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至10页.考试时间100分钟,满分100分.第Ⅰ卷 (选择题 共24分)1.答第Ⅰ卷前,考生务必将姓名、准考证号、考试科目按要求填涂在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题号的答案标号涂黑,不能将答案答在试题卷上. 3.考试结束,将本试卷和答题卡一并交回.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本题8小题,每小题3分,共24分) 1.下列各数中,最小的数是A.-1B. -2C.0D.12.下列计算正确的是A.a +2a=3a 2B. 3a -2a=aC. a 2∙a 3=a 6D.6a 2÷2a 2=3a 23则该组学生成绩的中位数是 A .70B. 75C. 80D. 854. 如图1,在等腰梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O ,以下四个结论:①DCB ABC ∠=∠ ,②OA=OD ,③BDC BCD ∠=∠,④S AOB ∆=S DOC ∆,其中正确的是A. ①②B.①④C.②③④D.①②④5. 函数b kx y +=的图象如图2所示,则当y <0时,x 的取值范围是 A. x <-2 B. x >-2 C. x <-1 D. x >-16. 在平面直角坐标系中,设点P 到原点O 的距离为ρ,OP 与x 轴正方向的夹角为α,则用][αρ,表示点P 的极坐标,显然,点P 的极坐标与它的坐标存在一一对应关系.例如:点P 的坐标为(1,1),则其极坐标为[]︒45,2.若点Q 的极坐标为[]︒60,4,则点Q 的坐标为 A.()32,2 B.()32,2- C.(23,2) D.(2,2)7.图3是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是A 、13B 、26C 、47D 、948. 跟我学剪五角星:如图4,先将一张长方形纸片按图①的虚线对折,得到图②,然后将图②沿虚线折叠得到图③,再将图③沿虚线BC 剪下△ABC ,展开即可得到一个五角星.若想得到一个正五角星(如图④,正五角星的5个角都是36︒),则在图③中应沿什么角度剪?即∠ABC 的度数为A 、126︒B 、108︒C 、90︒D 、72︒达州市2009年高中阶段教育学校招生统一考试数 学注意事项:1. 用蓝黑色钢笔或圆珠笔直接答在试题卷上.2. 答卷前将密封线内各项目填写清楚.第Ⅱ卷 (非选择题 共76分)二、填空题:把最后答案直接填在题中的横线上(本题7小题,每小题3分,共21分).9、分解因式:mn 2-m =_______________________.10、如图5,△ABC 中,AB =AC ,与∠BAC 相邻的外角为80°,则∠B =____________. 11、若a -b =1,ab=-2,则(a +1)(b -1)=___________________.12、将一种浓度为15℅的溶液30㎏,配制成浓度不低于20℅的同种溶液,则至少需要浓度为35℅的该种溶液____________㎏.13、长度为2㎝、3㎝、4㎝、5㎝的四条线段,从中任取三条线段能组成三角形的概率是______________.14、达成铁路扩能改造工程将于今年6月底完工,届时达州至成都运营长度约为350千米,若一列火车以170千米/时的平均速度从达州开往成都,则火车距成都的路程y (千米)与行驶时间(时)之间的函数关系式为__________________. 15、如图6,在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝(结果不取近似值).三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(55分)(一)(本题2小题,共13分)16.(8分)(1)(4分)计算:(-1)3+(2009-2)0-21-(2)(4分)解不等式组⎩⎨⎧≥--1232x x x ,并把解集在数轴上表示出来.不等式组的解集在数轴上表示如下:17.(6分)在我市实施“城乡环境综合治理”期间,某校组织学生开展“走出校门,服务社会”的公益活动.八年级一班王浩根据本班同学参加这次活动的情况,制作了如下的统计图表:该班学生参加各项服务的频数、频率统计表请根据上面的统计图表,解答下列问题:(1)该班参加这次公益活动的学生共有____________名;(2)请补全频数、频率统计表和频数分布直方图;(3)若八年级共有900名学生报名参加了这次公益活动,试估计参加文明劝导的学生人数.(二)(本题2小题,共11分)18.(5分)如图7,在△ABC 中,AB =2BC ,点D 、点E 分别为AB 、AC 的中点,连结DE ,将△ADE 绕点E 旋转180︒得到△CFE.试判断四边形BCFD 的形状,并说明理由.19.(6分)如图8,直线b kx y +=与反比例函数xk y '=(x <0)的图象相交于点A 、点B ,与x 轴交于点C ,其中点A 的坐标为(-2,4),点B 的横坐标为-4.(1)试确定反比例函数的关系式; (2)求△AOC 的面积.(三)(本题2小题,共13分)20.(6分)阳光明媚的一天,数学兴趣小组的同学去操场上测量旗杆的高度,他们带了以下测量工具:皮具、三角尺、标杆、小平面镜等.首先,小明说:“我们用皮尺和三角尺(含30︒角)来测量”.于是大家一起动手,测得小明与旗杆的距离AC 为15㎝,小明的眼睛与地面的距离为1.6㎝,如图9(甲)所示.然后,小红和小强提出了自己的想法. 小红说:“我用皮尺和标杆能测出旗杆的高度.” 小强说:“我用皮尺和小平面镜也能测出旗杆的高度!” 根据以上情景,解答下列问题:(1)利用图9(甲),请你帮助小明求出旗杆AB 的高度(结果保留整数.参考数据:5.030sin =︒,87.030cos ≈︒,58.030tan ≈︒,73.130cot ≈︒);(2)你认为小红和小强提出的方案可行吗?如果可行,请选择一中..方案在图9(乙)中画出测量示意图,并简述..测量步骤.21、(7分)某学生食堂存煤45吨,用了5天后,由于改进设备,平均每天耗煤量降低为原来的一半,结果多烧了10天.(1)求改进设备后平均每天耗煤多少吨?(2)试将该题内容改编为与我们日常生活、学习有关的问题,使所列的方程相同或相似(不必求解).22.(8分)如图10,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点H,DO及延长线分别交AC、BC于点G、F.(1)求证:DF垂直平分AC;(2)求证:FC=CE;(3)若弦AD =5㎝,AC =8㎝,求⊙O 的半径.23、(9分)如图11,抛物线)1)(3(-+=x x a y 与x 轴相交于A 、B 两点(点A 在点B 右侧),过点A 的直线交抛物线于另一点C ,点C的坐标为(-2,6).(1)求a 的值及直线AC 的函数关系式; (2)P 是线段AC 上一动点,过点P 作y 轴的平行线,交抛物线于点M ,交x 轴于点N.①求线段PM 长度的最大值;②在抛物线上是否存在这样的点M ,使得△CMP 与△APN 相似?如果存在,请直接写出所有满足条件的点M的坐标(不必写解答过程);如果不存在,请说明理由.达州市2009年高中阶段教育学校招生统一考试数学试题参考答案一、选择题(本题8小题. 每小题3分,共24分)1.B2.B3.C4.D5.B6.A7.C8.A二、填空题(本题7小题. 每小题3分,共21分)9. m(n+1)(n-1)10.40°11.-412.1013.3414.y=350-170x(可以不写自变量取值范围)15.(5+1)三、解答题(共55分)(一)(本题2小题,共14分)16.(1)计算:(-1)3+(2009-2)0--12=-1+1-123分=-124分(2)解:由①解得x>-31分由②解得x≤12分∴不等式组的解集为-3<x≤13分不等式组的解集在数轴上表示如下:4分17.(1)501分(2)环境小卫士的频数为162分文明劝导员的频率为023分补全频率分布直方图4分(3)180人6分数学答案第2页(共4页)(二)(本题2小题,共11分)18.解:四边形BCFD是菱形,理由如下:∵点D、点E分别是AB、AC的中点∴DE∥=12BC1分又∵△CFE是由△ADE旋转而得∴DE=EF∴DF∥=BC∴四边形BCFD是平行四边形3分又∵AB=2BC,且点D为AB的中点∴BD=BC∴BCFD是菱形5分(说明:只判断没写出理由给1分)19.解:(1)∵点A(-2,4)在反比例函数图象上∴4=k′-2∴k′=-81分∴反比例函数解析式为y=-8x2分(2)∵B点的横坐标为-4,∴y=-8-4∴y=2∴B(-4,2)3分∵点A(-2,4)、点B(-4,2)在直线y=kx+b上∴4=-2k+b2=-4k+b解得k=1b=6∴直线AB为y=x+64分与x轴的交点坐标C(-6,0)∴S△AOC=12CO·yA=12×6×4=126分数学答案第3页(共4页)(三)(本题2小题,共13分)20.解:(1)过点D作DE⊥AB于点E,1分在Rt△BDE中,DE=AC=15m,∠BDE=30°∴BE=DE·tan30°≈15×058=870(m)2分∴AB=BE+AE=870m+16m=103m≈10m3分(2)小红和小强提出的方案都是可行的小红的方案:利用皮尺和标杆:(1)测量旗杆的影长AG(2)测量标杆EF的长度(3)测量同一时刻标杆影长FH6分小强的方案:把小平面镜放在适当的位置(如图点P处),使得小强可以在镜中看到旗杆AB的顶端步骤:(1)测出AP的长度(2)测出NP的长度(3)测出小强眼睛离地面的高度MN6分21.解:(1)设改进设备后平均每天耗煤x吨,根据题意,得:452x+10=45-10xx+52分解得x=153分经检验,x=15符合题意且使分式方程有意义答:改进设备后平均每天耗煤15吨4分(2)略(只要所编应用题的方程与原题的方程相同或相似均可得分)7分(四)(本题2小题,共17分)22.证明:(1)∵DE是⊙O的切线,且DF过圆心O∴DF⊥DE又∵AC∥DE∴DF⊥AC∴DF垂直平分AC2分(2)由(1)知:AG=GC又∵AD∥BC∴∠DAG=∠FCG又∵∠AGD=∠CGF∴△AGD≌△CGF(ASA)4分∴AD=FC∵AD∥BC且AC∥DE∴四边形ACED是平行四边形∴AD=CE∴FC=CE5分(3)连结AO;∵AG=GC,AC=8cm,∴AG=4cm在Rt△AGD中,由勾股定理得GD=AD2-AG2=52-42=3cm6分设圆的半径为r,则AO=r,OG=r-3在Rt△AOG中,由勾股定理得AO2=OG2+AG2有:r2=(r-3)2+42解得r=2568分∴⊙O的半径为256cm.23.解:(1)由题意得6=a(-2+3)(-2-1)∴a=-21分∴抛物线的函数解析式为y=-2(x+3)(x-1)与x轴交于B(-3,0)、A(1,0)设直线AC为y=kx+b,则有0=k+b6=-2k+b解得k=-2b=2∴直线AC为y=-2x+23分(2)①设P的横坐标为a(-2≤a≤1),则P(a,-2a+2),M(a,-2a2-4a+6)4分∴PM=-2a2-4a+6-(-2a+2)=-2a2-2a+4=-2a2+a+14+92=-2a+122+92∴当a=-12时,PM的最大值为926分②M1(0,6)7分M2-14,6789分。

2009年江苏省中考数学试卷(附答案)

2009年江苏省中考数学试卷(附答案)

江苏省2009年中考数学试卷说明: 1.本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分.本卷满分150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,考生务必将本人的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角填写好座位号. 3.所有的试题都必须在专用的“答题卡”上作答,选择题用2B铅笔作答、非选择题在指定位置用0.5毫米黑色水笔作答.在试卷或草稿纸上答题无效. 4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置.......上) 1.2-的相反数是( )A .2B .2-C .12D .12- 2.计算23()a 的结果是( ) A .5a B .6a C .8a D .23a3.如图,数轴上A B 、两点分别对应实数a b 、则下列结论正确的是( )10 a b (第3题)A .0a b +>B .0ab >C .0a b ->D .||||0a b ->4.下面四个几何体中,左视图是四边形的几何体共有( )A .1个B .2个C .3个D .4个5.如图,在55⨯移方法中,正确的是( ) A .先向下平移3格,再向右平移1格 B .先向下平移2格,再向右平移1格 C .先向下平移2格,再向右平移2格 D .先向下平移3格,再向右平移2格6.某商场试销一种新款衬衫,一周内销售情况如下表所示: 商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( )A .平均数B .众数C .中位数D .方差 7.如图,给出下列四组条件: ①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;圆柱 圆锥 球 正方(第5题)图图AC BDFE(第7题)④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( ) A .1组 B .2组 C .3组 D .4组 8.下面是按一定规律排列的一列数: 第1个数:11122-⎛⎫-+⎪⎝⎭; 第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; ……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭. 那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( )A .第10个数B .第11个数C .第12个数D .第13个数二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位......置.上) 9.计算2(3)-= .10x 的取值范围是 .11.江苏省的面积约为102 600km 2,这个数据用科学记数法可表示为 km 2.12.反比例函数1y x=-的图象在第 象限.13.某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x ,则可列方程 . 14.若2320a a --=,则2526a a +-= . 15.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为P (奇数),则P (偶数) P (奇数)(填“>”“<”或“=”).16.如图,AB 是O ⊙的直径,弦C D A B ∥.若65ABD ∠=°,则A D C ∠= .17.已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留π).18是梯形ABCD 的中位线,DEF△的面积为24cm ,则梯形ABCD 的面积为 cm 2. 三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)计算: (1)0|2|(1--++(2)2121a a a a a -+⎛⎫-÷ ⎪⎝⎭.(第15AD E BCF (第16(第17(第1820.(本题满分8分)某市对九年级学生进行了一次学业水平测试,成绩评定分A、B、C、D四个等第.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2 000名学生的数学成绩进行统计分析,相应数据的统计图表如下:21.(本题满分8的机会相同,那么这多少?22.(本题满分8分)一辆汽车从A地驶往B地,前路段为普通公3路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组.......解决的问题,并写出解答过程.23.(本题满分10分)如图,在梯形ABCD中,∥,∥,∥,、两点在边BC上,且四边形AEFD是A D B C A B D E A F D平行四边形.(1)AD与BC有何等量关系?请说明理由;A DCBFE(2)当AB DC =时,求证:ABCD 是矩形.24.(本题满分10分)如图,已知二次函数221y x x =--的图象的顶点为A .二次函数2y ax bx =+的图象与x 轴交于原点O 及另一点C ,它的顶点B 在函数221y x x =--的图象的对称轴上. (1)求点A 与点C 的坐标;(2)当四边形AOBC 为菱形时,求函数2y ax bx =+25.(本题满分10分)如图,在航线l点A 到航线l 的距离为2km ,点B 位于点A 北偏东距10km 处.现有一艘轮船从位于点B 南偏西76该航线自西向东航行,5min 后该轮船行至点A 的正北方向的D 处. (1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度(结果精确到0.1km/h ).(参考数据:1.73,sin760.97°≈,cos760.24°≈,tan76 4.01°≈)26.(本题满分10分) (1)观察与发现小明将三角形纸片()ABC AB AC >AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到AEF △(如图②).小明认为AEF △是等腰三角形,你同意吗?请说明理由.(2)实践与运用AACDB图A CDB图F E将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D '处,折痕为E G (如图④);再展平纸片(如图⑤).求图⑤中α∠的大小.27.(本题满分12分)某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量x 为多少时,销售利润为4万元; (2)分别求出线段AB 与BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在O A 、AB 、BC 三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)28.(本题满分DE 与x 轴和y 轴分别交于点(30)D ,和点(04)E ,.以1个单位长度/秒的速度沿x 轴向左作匀速运动,与此同时,动点P 从点D 出发,也以1个单位长度ED C F B A图③ E D C AB F G ADEC B F G 图④ 图⑤1日:有库存6万升,成本价4元/升,售价5元/升. 13日:售价调整为5.5元/升.15日:进油4万升,成本价4.5元/升.31日:本月共销售10万升.五月份销售记录(万升)/秒的速度沿射线DE 的方向作匀速运动.设运动时间为t 秒. (1)请用含t 的代数式分别表示出点C 与点P 的坐标;(2)以点C 为圆心、12t 个单位长度为半径的C ⊙与x 轴交于A 、B 两点(点A 在点B 的左侧),连接PA 、PB .二、填空题(本大题共有10小题,每小题3分,共30分)9.9 10.1x ≥ 11.51.02610⨯ 12.二、四 13.27800(1)9100x +=14.1 15.< 16.25 17.2π 18.16 三、解答题(本大题共有10小题,共96分.解答必须写出必要的文字说明、推理步骤或证明过程)19.解:(1)原式2123=-+=. ··········· (4分)(2)原式2221(1)(1)(1)1(1)1a a a a a a a a a a a --+-+=÷=⨯=--. (8分) 20.解:(1)280,48,180. ············ (3分)(2)抽取的学生中,成绩不合格的人数共有(804848)176++=,所以成绩合格以上的人数为20001761824-=,估计该市成绩合格以上的人数为182460000547202000⨯=. 答:估计该市成绩合格以上的人数约为54720人. ··· (8分) 21.解:用树状图分析如下:P (1个男婴,2个女婴)38=.答:出现1个男婴,2个女婴的概率是38. ······· (8分) 22.解:本题答案不惟一,下列解法供参考.解法一??????问题:普通公路和高速公路各为多少千米? (3分) 解:设普通公路长为x km ,高度公路长为y km .根据题意,得2 2.2.60100x y x y =⎧⎪⎨+=⎪⎩,解得60120x y =⎧⎨=⎩,. ········ (7分) 答:普通公路长为60km ,高速公路长为120km . ···· (8分) 解法二 问题:汽车在普通公路和高速公路上各行驶了多少小时? ························· (3分) 解:设汽车在普通公路上行驶了x h ,高速公路上行驶了y h .根据题意,得 2.2602100.x y x y +=⎧⎨⨯=⎩,解得11.2.x y =⎧⎨=⎩,········ (7分)答:汽车在普通公路上行驶了1h ,高速公路上行驶了1.2h .(8分)(男男男) (男男女) 女 男(男女男) (男女女)女 女(女男男) (女男女)女 男(女女男)(女女女) 女 女男女 开始第一个第二个 第三个 所有结果23.(1)解:13AD BC =. ·············· (1分) 理由如下:AD BC AB DE AF DC ∥,∥,∥,∴四边形ABED 和四边形AFCD 都是平行四边形.AD BE AD FC ==,.又四边形AEFD 是平行四边形,AD EF ∴=.AD BE EF FC ∴===.13AD BC ∴=. ··················· (5分)(2)证明:四边形ABED 和四边形AFCD 都是平行四边形,DE AB AF DC ∴==,. AB DC DE AF =∴=,.又四边形AEFD 是平行四边形,∴四边形AEFD 是矩形. (10分) 24.解:(1)2221(1)2y x x x =--=--,所以顶点A 的坐标为(12)-,. ······ (3分)因为二次函数2y ax bx =+的图象经过原点,且它的顶点在二次函数221y x x =--图象的对称轴l 上,所以点C 和点O 关于直线l 对称,所以点C 的坐标为(20),. ······ (6分)(2)因为四边形AOBC 是菱形,所以点B 和点A 关于直线OC 对称,因此,点B 的坐标为(12),.因为二次函数2y ax bx =+的图象经过点B (12),,(20)C ,,所以2420.a b a b +=-⎧⎨+=⎩,解得24a b =-⎧⎨=⎩,.所以二次函数2y ax bx =+的关系式为224y x x =-+. ···· (10分)25.解:(1)设AB 与l 交于点O .在Rt AOD △中,6024cos60AD OAD AD OA ∠====°,,°. 又106AB OB AB OA =∴=-=,.在Rt BOE △中,60cos603OBE OAD BE OB ∠=∠=∴==°,°(km ). ∴观测点B 到航线l 的距离为3km . ·········· (4分) (2)在Rt AOD △中,tan 60OD AD ==°.在Rt BOE △中,tan 60OE BE ==°DE OD OE ∴=+=.在Rt CBE △中,763tan 3tan76CBE BE CE BE CBE ∠==∴=∠=°,,°.3tan 76 3.38CD CE DE ∴=-=-°.15min h 12=,1212 3.3840.6112CD CD ∴==⨯≈(km/h ). 答:该轮船航行的速度约为40.6km/h . ······· (10分)26.解:(1)同意.如图,设AD 与EF 交于点G .由折叠知,AD 平分BAC ∠,所以BAD CAD ∠=∠.又由折叠知,90AGE DGE ∠=∠=°,所以90AGE AGF ∠=∠=°,所以AEF AFE ∠=∠.所以AE AF =,即AEF △为等腰三角形. ······ (5分)(2)由折叠知,四边形ABFE 是正方形,45AEB ∠=°,所以A CD B FE G135BED ∠=°.又由折叠知,BEG DEG ∠=∠,所以67.5DEG ∠=°. 从而9067.522.5α∠=-=°°°. ············· (10分)27.解法一:(1)根据题意,当销售利润为4万元,销售量为4(54)4÷-=(万升).答:销售量x 为4万升时销售利润为4万元. ····· (3分)(2)点A 的坐标为(44),,从13日到15日利润为5.54 1.5-=(万元), 所以销售量为1.5(5.54)1÷-=(万升),所以点B 的坐标为(55.5),. 设线段AB 所对应的函数关系式为y kx b =+,则445.55.k b k b =+⎧⎨=+⎩,解得 1.52.k b =⎧⎨=-⎩, ∴线段AB 所对应的函数关系式为 1.52(45)y x x =-≤≤. ·· (6分) 从15日到31日销售5万升,利润为1 1.54(5.5 4.5) 5.5⨯+⨯-=(万元). ∴本月销售该油品的利润为5.5 5.511+=(万元),所以点C 的坐标为(1011),.设线段BC 所对应的函数关系式为y mx n =+,则 5.551110.m n m n =+⎧⎨=+⎩,解得1.10.m n =⎧⎨=⎩, 所以线段BC 所对应的函数关系式为 1.1(510)y x x =≤≤. · (9分)(3)线段AB . ·················· (12分) 解法二:(1)根据题意,线段OA 所对应的函数关系式为(54)y x =-,即(04)y x x =≤≤.当4y =时,4x =.答:销售量为4万升时,销售利润为4万元. ····· (3分)(2)根据题意,线段AB 对应的函数关系式为14(5.54)(4)y x =⨯+-⨯-,即 1.52(45)y x x =-≤≤. ··············· (6分) 把 5.5y =代入 1.52y x =-,得5x =,所以点B 的坐标为(55.5),. 截止到15日进油时的库存量为651-=(万升). 当销售量大于5万升时,即线段BC 所对应的销售关系中, 每升油的成本价144 4.5 4.45⨯+⨯==(元). 所以,线段BC 所对应的函数关系为y =(1.552)(5.5 4.4)(5) 1.1(510)x x x ⨯-+--=≤≤.······ (9分) (3)线段AB . ·················· (12分)28.解:(1)(50)C t -,,34355P t t ⎛⎫- ⎪⎝⎭,. ········· (2分) (2)①当C ⊙的圆心C 由点()50M ,向左运动,使点A 到点D 并随C ⊙继续向左运动时, 有3532t -≤,即43t ≥.当点C 在点D 左侧时,过点C 作CF ⊥射线DE ,垂足为F ,则由CDF EDO∠=∠, 得CDF EDO △∽△,则3(5)45CF t --=.解得485t CF -=. 由12CF ≤t ,即48152t t -≤,解得163t ≤. ∴当C ⊙与射线DE 有公共点时,t 的取值范围为41633t ≤≤. (5分) ②当PA AB =时,过P 作PQ x ⊥轴,垂足为Q ,有222PA PQ AQ =+ 221633532525t t t ⎛⎫=+--+ ⎪⎝⎭. 2229184205t t t ∴-+=,即2972800t t -+=. 解得1242033t t ==,. ······ (7分)当PA PB =时,有PC AB ⊥, 3535t t ∴-=-.解得35t =. ··· (9分) 当PB AB =时,有222221613532525PB PQ BQ t t t ⎛⎫=+=+--+ ⎪⎝⎭.221324205t t t ∴++=,即278800t t --=. 解得452047t t ==-,(不合题意,舍去). ········ (11分) ∴当PAB △是等腰三角形时,43t =,或4t =,或5t =,或203t =.(12分)。

2009年中考答案中考数学试卷真题(附答案解析)

2009年中考答案中考数学试卷真题(附答案解析)

G (第23题图(1))
∴CD=20-x …………………………………5 分
A
∵ tan ACD AD ,即 tan 30 x
…6 分
M
DC
20 x
B
D
C

x
20 1
tan tan
30 30
20 10 3 1
3 1 7.3 (米) …7 分
N G
(第23题图(2))
答:路灯 A 离地面的高度 AD 约是 7.3 米.
∴∠OCD=90° ………………………3 分
∴∠OCB+∠DCF=90°
∵∠D+∠DCF=90°
∴∠OCB=∠D ………………………4 分
∵OB=OC
D
∴∠OCB=∠B
∵∠B=∠AEC
∴∠D=∠AEC ………………………5 分
(3)在 Rt△OCF 中,OC=5,CF=4
A C
O F E
B (第25题图 )
…………………………2 分
所以,抛物线的关系式为 y=(x-2)2-1=x2-4 x+3 ……3 分
(2)∵点 M(x,y1),N(x+1,y2)都在该抛物线上 ∴y1-y2=(x2-4 x+3)-[(x+1)2-4(x+1)+3]=3-2 x …………4 分

3-2
x>0,即
x
3 2
时,y1>y2
F
E (第22题图 )
C B
23.解:(1)见参考图 ……………………………3 分
A
(不用尺规作图,一律不给分。对图(1)画出弧 EF 给 1 分,
画出交点 G 给 1 分,连 AG 给 1 分;对图(2),画出弧 AMG
D
给 1 分,画出弧 ANG 给 1 分,连 AG 给 1 分)

2009年天津中考数学试题及答案

2009年天津中考数学试题及答案

2009年天津市初中毕业生学业考试试卷第Ⅰ卷(选择题共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2sin30°的值等于()A.1BCD.22.在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有()A.B.3个C.4个D.5个3.若x y,为实数,且20x+=,则2009xy⎛⎫⎪⎝⎭的值为()A.1 B.1-C.2 D.2-4.边长为a的正六边形的内切圆的半径为()A.2a B.a C D.12a5.右上图是一根钢管的直观图,则它的三视图为()A.B.C.D.6.为参加2009年“天津市初中毕业生升学体育考试”,小刚同学进行了刻苦的练习,在投掷实心球时,测得5次投掷的成绩(单位:m)为:8,8.5,9,8.5,9.2.这组数据的众数、中位数依次是()A.8.5,8.5B.8.5,9C.8.5,8.75D.8.64,97.在ABC△和DEF△中,22AB DE AC DF A D==∠=∠,,,如果ABC△的周长是16,面积是12,那么DEF△的周长、面积依次为()A.8,3B.8,6C.4,3D.4,68.在平面直角坐标系中,已知线段AB的两个端点分别是()()41A B--,,1,1,将线段AB平移后得到线段A B'',若点A'的坐标为()22-,,则点B'的坐标为()A.()43,B.()34,C.()12--,D.()21--,9.如图,ABC△内接于O⊙,若28OAB∠=°,则C∠的大小为()A.28°B.56°C.60°D.62°10.在平面直角坐标系中,先将抛物线22y x x=+-关于x轴作轴对称变换,再将所得的抛物线关于y轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为()A.22y x x=--+B.22y x x=-+-H I N A第(9)题C .22y x x =-++D .22y x x =++2009年天津市初中毕业生学业考试试卷第Ⅱ卷(非选择题 共90分)二、填空题:本大题共8小题,每小题3分,共24分,请将答案直接填在题中横线上. 11= .12.若分式22221x x x x --++的值为0,则x 的值等于 .13.我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.若一个四边形ABCD 的中点四边形是一个矩形,则四边形ABCD 可以是 . 14.已知一次函数的图象过点()35,与()49--,,则该函数的图象与y 轴交点的坐标为__________ _. 15.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折.设一次购书数量为x 本,付款金额为y 元,请填写下表:16.为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到下面的条形图,观察该图,可知共抽查了________株黄瓜,并可估计出这个新品种黄瓜平均每株结________根黄瓜.17.如图,是由12个边长相等的正三角形镶嵌而成的平面图形,则图中的平行四边形共有_______个.18.如图,有一个边长为5的正方形纸片ABCD ,要将其剪拼成边长分别为a b ,的两个小正方形,使得2225a b +=.①a b ,的值可以是________(写出一组即可);②请你设计一种具有一般性的裁剪方法,在图中画出裁剪线,并拼接成两个小正方形,同时说明该裁剪方法具有一般性: __________________________________________ _________________________________________ _________________________________________三、解答题:本大题共8小题,共66分.解答应写出文字说明、演算步骤或证明过程. 19.(本小题6分)解不等式组5125431x x x x ->+⎧⎨-<+⎩,.黄瓜根数/株 第(16)题 第(18)题20.(本小题8分)已知图中的曲线是反比例函数5m y x-=(m 为常数)图象的一支. (Ⅰ) 这个反比例函数图象的另一支在第几象限?常数m 的取值范围是什么?(Ⅱ)若该函数的图象与正比例函数2y x =的图象在第一象内限的交点为A ,过A 点作x 轴的垂线,垂足为B ,当OAB △的面积为4时,求点A 的坐标及反比例函数的解析式.21.(本小题8分)有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果; (Ⅱ)求摸出的两个球号码之和等于5的概率. 22.(本小题8分)如图,已知AB 为O ⊙的直径,PA PC ,是O ⊙的切线,A C ,为切点,30BAC ∠=° (Ⅰ)求P ∠的大小;(Ⅱ)若2AB =,求PA 的长(结果保留根号).23.(本小题8分)在一次课外实践活动中,同学们要测量某公园人工湖两侧A B ,两个凉亭之间的距离.现测得30AC =m,P C AO70BC =m ,120CAB ∠=°,请计算A B ,两个凉亭之间的距离.24.(本小题8分)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路填空,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填空,只需按照解答题的一般要求,进行解答即可.如图①,要设计一幅宽20cm ,长30cm 的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2∶3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?分析:由横、竖彩条的宽度比为2∶3,可设每个横彩条的宽为2x ,则每个竖彩条的宽为3x .为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形ABCD . 结合以上分析完成填空:如图②,用含x 的代数式表示: AB =____________________________cm ; AD =____________________________cm ; 矩形ABCD 的面积为_____________cm 2;列出方程并完成本题解答. 25.(本小题10分)已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D . (Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;图② 图①(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.26.(本小题10分)已知函数212y x y x bx c αβ==++,,,为方程120y y -=的两个根,点()1M T ,在函数2y 的图象上.(Ⅰ)若1132αβ==,,求函数2y 的解析式; (Ⅱ)在(Ⅰ)的条件下,若函数1y 与2y 的图象的两个交点为A B ,,当ABM △的面积为112时,求t 的值; (Ⅲ)若01αβ<<<,当01t <<时,试确定T αβ,,三者之间的大小关系,并说明理由.。

2009年北京市中考数学试题与答案

2009年北京市中考数学试题与答案

一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.1.7的相反数是()1 717A.B.7 C.-D.-72.改革开放以来,我国国内生产总值由1978年的3645亿元增长到2008年的300 670亿元.将300670用科学记数法表示应为()A.0.30067×106B.3.006 7×105C.3.006 7×104 D.30.067×1043.若右图是某几何体的三视图,则这个几何体是()第3题图A.圆柱B.正方体C.球D.圆锥4.若一个正多边形的一个外角是40°,则这个正多边形的边数是() A.10 B.9 C.8 D.65.某班共有41名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字.老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是()1 41241A.0 B.C.D.16.某班派9名同学参加拔河比赛,他们的体重分别是(单位:千克):67,59,61,59,63,57,70,59,65,这组数据的众数和中位数分别是()A.59,63 B.59,61 C.59,59 D.57,617.把x3-2x2y+xy2分解因式,结果正确的是()A.x(x+y)(x-y) B.x(x2-2xy+y2)C.x(x+y)2D.x(x-y)28.如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D、E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G.当点C在AB上运动时,设AF=x,DE=y,下列图象中,能表示y与x的函数关系的图象大致是()第8题图二、填空题(本题共16分,每小题4分)9.不等式3x+2≥5的解集是________.10.如图,AB为⊙O的直径,弦CD⊥AB,E为上一点,若∠CEA=28°,则∠ABD=________°.第10题图第12题图11.若把代数式x2-2x-3化为(x-m )2+k 的形式,其中m 、k 为常数,则m +k =________.12.如图,正方形纸片ABCD 的边长为1,M 、N 分别是AD 、BC 边上的点,将纸片的一角沿过点B 的直线折叠,使点A 落在MN 上,落点记为A′,折痕交AD 于点E .若M 、N 分别是AD 、BC 边的中点,则A′N =________;若M 、N 分别是AD 、BC 边上距DC 最近的n 等分点(n ≥2,且n 为整数),则A′N =________(用含有n 的式子表示). 三、解答题(本题共30分,每小题5分) (16)−1−20090+|−2√5|−√2013.计算:.x x−2+6x+2=114.解分式方程.15.已知:如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过E 点作AC 的垂线,交CD 的延长线于点F . 求证:AB =FC .第15题图16.已知x 2-5x =14,求(x -1)(2x -1)-(x +1)2+1的值.y =mx 17.如图,A 、B 两点在函数(x >0)的图象上.(1)求m 的值及直线AB 的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.第17题图18.列方程或方程组解应用题:北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日至2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?四、解答题(本题共20分,第19题5分,第20题5分,第21题6分,第22题4分)19.如图,在梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,E为AB中点,EF∥DC交BC于点F,求EF的长.第19题图20.已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,时,求⊙O的半径.cos C=13第20题图21.在每年年初召开的市人代会上,北京市财政局都要报告上一年度市财政预算执行情况和当年预算情况.以下是根据2004—2008年报告中的有关数据制作的市财政教育预算与实际投入统计图表的一部分.第21题图表1 2004—2008年北京市财政教育实际投入与预算的差值统计表(单位:亿元)年份2004 2005 2006 2007 2008 教育实际投入与预算的差值 6.7 5.7 14.6 7.3请根据以上信息解答下列问题:(1)请在表1的空格内填入2004年市财政教育实际投入与预算的差值;(2)求2004—2008年北京市财政教育实际投入与预算差值的平均数;(3)已知2009年北京市财政教育预算是141.7亿元,在此基础上,如果2009年北京市财政教育实际投入按照(2)中求出的平均数增长,估计它的金额可能达到多少亿元?22.阅读下列材料:小明遇到一个问题:5个同样大小的正方形纸片排列形式如图①所示,将它们分割后拼接成一个新的正方形.他的做法是:按图②所示的方法分割后,将三角形纸片①绕AB的中点O旋转至三角形纸片②处,依此方法继续操作,即可拼接成一个新的正方形DEFG.第22题图请你参考小明的做法解决下列问题:(1)现有5个形状、大小相同的矩形纸片,排列形式如图③所示.请将其分割后拼接成一个平行四边形.要求:在图③中画出并指明拼接成的平行四边形(画出一个..符合条件的平行四边形即可);(2)如图④,在面积为2的平行四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,分别连结AF、BG、CH、DE得到一个新的平行四边形MNPQ.请在图④中探究平行四边形MNPQ面积的大小(画图..并直接写出结果).五、解答题(本题共22分,第23题7分,第24题8分,第25题7分)23.已知关于x的一元二次方程2x2+4x+k-1=0有实数根,k为正整数.(1)求k的值;(2)当此方程有两个非零的整数根时,将关于x的二次函数y=2x2+4x+k-1的图象向下平移8个单位长度,求平移后的图象的解析式;y=12x+b(3)在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线(b<k)与此图象有两个公共点时,b的取值范围.第23题图24.在□ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF(如图①).(1)在图①中画图探究:①当P1为射线CD上任意一点(P1不与C点重合)时,连结EP1,将线段EP1绕点E逆时针旋转90°得到线段EG1.判断直线FG1与直线CD的位置关系并加以证明;②当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E逆时针旋转90°得到线段EG2.判断直线G1G2与直线CD的位置关系,画出图形并直接写出你的结论.tan B=43SΔP1FG1(2)若AD=6,,AE=1,在①的条件下,设CP1=x,=y,求y与x之间的函数关系式,并写出自变量x的取值范围.第24题图√3CD=1AC25.如2图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(-6,0),B(6,0),C(0,4),延长AC到点D,使,过D点作DE∥AB交BC的延长线于点E.(1)求D点的坐标;(2)作C点关于直线DE的对称点F,分别连结DF、EF,若过B点的直线y=kx+b将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;(3)设G为y轴上一点,点P从直线y=kx+b与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点.若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短.(要求:简述确定G点位置的方法,但不要求证明)第25题图答 案1.2009年北京市中考数学试卷(课标卷)一、选择题1.D 2.B 3.A 4.B 5.C 6.B 7.D 8.A 二、填空题√32√2n−1n 9.x ≥1 10.28 11.-3 12.(n ≥2,且n 为整数)三、解答题 (16)−1−20090+|−2√5|−√2013.解:√5√5=6-1+2-2=5.14.解:去分母,得x (x +2)+6(x -2)=(x -2)(x +2).解得x =1.经检验,x =1是原方程的解. ∴原方程的解是x =1.15.证明:∵FE ⊥AC 于点E ,∠ACB =90°,∴∠FEC =∠ACB =90°. ∴∠F +∠ECF =90°. 又∵CD ⊥AB 于点D , ∴∠A +∠ECF =90°. ∴∠A =∠F .在△ABC 和△FCE 中,{∠A =∠F,|{∠ACB=∠FEC ,|∴△ABC ≌△FCE .∴AB =FC .第15题答图16.解: (x -1)(2x -1)-(x +1)2+1=2x 2-x -2x +1-(x 2+2x +1)+1 =2x 2-x -2x +1-x 2-2x -1+1 =x 2-5x +1. 当x 2-5x =14时,原式=(x 2-5x )+1=14+1=15.y =mx 17.解:(1)由图象可知,函数(x >0)的图象经过点A (1,6),可得m =6.设直线AB 的解析式为y =kx +b .∵A (1,6),B (6,1)两点在函数y =kx +b 的图象上,∴{k +b =6,6k +b =1.{k =−1,b =7.解得 ∴直线AB 的解析式为y =-x +7.(2)图中阴影部分(不包括边界)所含格点的个数是 3 .第17题答图18.解法一:设轨道交通日均客运量为x 万人次,则地面公交日均客运量为(4x -69)万人次.依题意,得x +(4x -69)=1696. 解得x =353.4x -69=4×353-69=1343.答:轨道交通日均客运量为353万人次,地面公交日均客运量为1343万人次. 解法二:设轨道交通日均客运量为x 万人次,地面公交日均客运量为y 万人次. {x +y =1696,y =4x −69.依题意,得 {x =353,y =1343.解得 答:轨道交通日均客运量为353万人次,地面公交日均客运量为1343万人次. 四、解答题19.解法一:如图①,过点D 作DG ⊥BC 于点G .∵AD ∥BC ,∠B =90°,∴∠A =90°. 可得四边形ABGD 为矩形. ∴BG =AD =1,AB =DG . ∵BC =4,∴GC =3.∵∠DGC =90°,∠C =45°,∴∠CDG =45°. ∴DG =GC =3.∴AB =3.BE =12AB =32又∵E 为AB 中点,∴. ∵EF ∥DC ,∴∠EFB =45°.∴EF =.BEsin45∘=32√2在△BEF 中,∠B =90°,.第19题答图解法二:如图②,延长FE 交DA 的延长线于点G .∵AD ∥BC ,EF ∥DC ,∴四边形GFCD 为平行四边形,∠G =∠1.∴GD =FC .∵EA =EB ,∠2=∠3,∴△GAE ≌△FBE .∴AG =BF .∵AD =1,BC =4,设AG =x ,则BF =x ,CF =4-x ,GD =x +1.x =32∴x +1=4-x .解得.∵∠C =45°,∴∠1=45°.∴EF =BFcos45∘=32√2在△BEF 中,∠B =90°,. 20.(1)证明:连结OM ,则OM =OB . ∴∠1=∠2.∵BM 平分∠ABC , ∴∠1=∠3.∴∠2=∠3.∴OM∥BC.∴∠AMO=∠AEB.在△ABC中AB=AC,AE是角平分线,∴AE⊥BC.∴∠AEB=90°.∴∠AMO=90°.∴OM⊥AE.∴AE与⊙O相切.第20题答图(2)解:在△ABC中,AB=AC,AE是角平分线,∴BE=12BC,∠ABC=∠C.cos C=13cos∠ABC=13∵BC=4,,∴BE=2,.AB=BEcos∠ABC=6在△ABE中,∠AEB=90°,∴.设⊙O的半径为r,则AO=6-r.∴OMBE =AOAB∴r2=6−r6r=32∵OM∥BC,∴△AOM∽△ABE...解得.32∴⊙O的半径为.21.解:(1)表1 2004—200 8年北京市财政教育实际投入与预算的差值统计表(单位:亿元)年份2004 2005 2006 2007 2008教育实际投入与预算的差值8 6.7 5.7 14.6 7.38+6.7+5.7+14.6+7.35=42.35=8.46(2)(亿元).所以2004—2008年市财政教育实际投入与预算差值的平均数是8.46亿元.(3)141.7+8.46=150.16(亿元).估计2009年市财政教育实际投入可能达到150.16亿元.22.解:第22题答图(1)拼接成的平行四边形是□ABCD(如图①).(2)正确画出图形如图②.25平行四边形MNPQ的面积为.五、解答题23.解:(1)由题意得,Δ=16-8(k-1)≥0.∴k≤3.∵k为正整数,∴k=1,2,3.(2)当k=1时,方程2x2+4x+k-1=0有一个根为零;当k=2时,方程2x2+4x+k-1=0无整数根;当k=3时,方程2x2+4x+k-1=0有两个非零的整数根.综上所述,k=1和k=2不合题意,舍去;k=3符合题意.当k=3时,二次函数为y=2x2+4x+2,把它的图象向下平移8个单位长度得到的图象的解析式为y =2x2+4x-6.(3)设二次函数y=2x2+4x-6的图象与x轴交于A、B两点,则A(-3,0),B(1,0).依题意翻折后的图象如图所示.第23题答图y=12x+bb=32当直线经过A点时,可得;y=12x+bb=−12当直线经过B点时,可得.−12<b<32由图象可知,符合题意的b(b<3)的取值范围为.24.解:(1)①直线FG1与直线CD的位置关系为互相垂直.证明:如图①,设直线FG1与直线CD的交点为H.∵线段EC、EP1分别绕点E逆时针旋转90°依次得到线段EF、EG1,∴∠P1EG1=∠CEF=90°,EG1=EP1,EF=EC.∵∠G1EF=90°-∠P1EF,∠P1EC=90°-∠P1EF,∴∠G1EF=∠P1EC.∴△G1EF≌△P1EC.∴∠G1FE=∠P1CE.∵EC⊥CD,∴∠P1CE=90°.∴∠G1FE=90°.∴∠EFH=90°.∴∠FHC=90°.∴FG1⊥CD.①②按题目要求所画图形见图①,直线G1G2与直线CD的位置关系为互相垂直.(2)∵四边形ABCD是平行四边形,∴∠B=∠ADC.tan B=43∵AD=6,AE=1,,tan∠EDC=tan B=43∴DE=5,.可得CE=4.由(1)可得四边形FECH为正方形.∴CH=CE=4.②①如图②,当P1点在线段CH的延长线上时,∵FG1=CP1=x,P1H=x-4,∴SΔP1FG1=12×FG1×P1H=x(x−4)2.∴y=12x2−2x(x>4).②如图③,当P1点在线段CH上(不与C、H两点重合)时,∵FG1=CP1=x,P1H=4-x,∴SΔP1FG1=12×FG1×P1H=x(4−x)2.∴y=−12x2+2x(0<x<4).③当P1点与H点重合时,即x=4时,△P1FG1不存在.y=12x2−2x(x>4)y=−12x2+2x(0<x<4)综上所述,y与x之间的函数关系式及自变量x的取值范围是或.③第24题答图√3√325.解:(1)∵A(-6,0),C(0,4),∴OA=6,OC=4.设DE与y轴交于点M.由DE∥AB可得△DMC∽△AOC.CD=12AC∴MDOA=CMCO=CDCA=12又,.√3∴CM=2,MD=3.√3同理可得EM=3.∴OM=6.√3∴D点的坐标为(3,6).√3(2)由(1)可得点M的坐标为(0,6).由DE∥AB,EM=MD,可得y轴所在直线是线段ED的垂直平分线.∴点C关于直线DE的对称点F在y轴上.∴ED与CF互相垂直平分.∴CD=DF=FE=EC.∴四边形CDFE为菱形,且点M为其对称中心.作直线BM.设BM与CD、EF分别交于点S、点T.可证△FTM≌△CSM.∴FT=CS.∵FE=CD,∴TE=SD.∵EC=DF,∴TE+EC+CS+ST=SD+DF+FT+TS.∴直线BM将四边形CDFE分成周长相等的两个四边形.√3由点B(6,0),点M(0,6)在直线y=kx+b上,√3√3可得直线BM的解析式为y=-x+6.第25题答图(3)确定G点位置的方法:过A点作AH⊥BM于点H,则AH与y轴的交点为所求的G点.√3由OB=6,OM=6,可得∠OBM=60°.∴∠BAH=30°.√3在Rt△OAG中,OG=AO·tan∠BAH=2.√3∴G点的坐标为(0,2).(或G点的位置为线段OC的中点)。

2009年中考数学试卷及答案

2009年中考数学试卷及答案

2009年来宾市初中毕业升学统一考试试题数学(考试时间:120分钟;满分:120分)第Ⅰ卷说明:1.本试卷分第Ⅰ卷(填空题和选择题)和第Ⅱ卷(答卷,含解答题)两部分.第Ⅰ卷共2页,第Ⅱ卷共6页.考试结束后,将第Ⅰ卷和第Ⅱ卷一并收回,并将第Ⅱ卷按规定装订密封.2.请考生将填空题和选择题的正确答案填写在第Ⅱ卷中规定的位置,否则不得分.一、填空题:本大题共10小题,每小题3分,共30分.请将答案填写在第Ⅱ卷相应题号后的横线上.1.如果将收入500元记作500元,那么支出237元记作__________元.2.已知AB 、CD 分别是梯形ABCD 的上、下底,且AB =8,CD =12,EF 是梯形的中位线,则EF =__________.3.分解因式:x 2-4=____________________.4.化简:823+=__________.5.二元一次方程组⎩⎨⎧=-=+2332y x y x 的解是__________.6.如果反比例函数的图象过点(2,-1),那么这个函数的关系式是__________.7.用四舍五入法,并保留3个有效数字对129 551取近似数所得的结果是__________.8.如图,已知AB ∥CD ,CE 平分∠ACD ,∠A =50°,则∠ACE =__________°.9.已知关于x 的方程x 2+mx +n =0的两个根分别是1和-3,则m =__________. 10.请写出一个对任意实数都有意义.........的分式.你所写的分式是_____________.(第8题图)A C E DB二、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,请将正确答案前的字母填写在第Ⅱ卷相应题号下的空格中.11.下列图形中,不是..正方体表面展开图的是(第11题图)D C BA12.如图,在⊙O 中,∠BOC =100°,则∠A 等于A .100°B .50°C .40°D .25°13.已知一个多边形的内角和是900°,则这个多边形是A .五边形B .六边形C .七边形D .八边形14.已知下列运算:①()4222y x xy =-;②224x x x =÷;③()c b a c b a --=--; ④43722=-x x .其中正确的有A .①②③④B .①②③C .①②④D .①② 15.不等式组⎩⎨⎧≤->+0603x x 的解集是A .-3<x ≤6B .3<x ≤6C .-3<x <6D .x >-3 16.若圆锥的底面周长是10π,侧面展开后所得的扇形的圆心角为90°,则该圆锥的侧面积是A .25πB .50πC .100πD .200π17.如图,正方形的四个顶点在直径为4的大圆圆周上,四条边与小圆都相切,AB 、CD 过圆心O ,且AB ⊥CD ,则图中阴影部分的面积是A .4πB .2πC .πD .2π 18.小明要给刚结识的朋友小林打电话,他只记住了电话号码的前4位的顺序,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是A .121B .61C .41D . 31 B (第17题图)(第12题图)。

2009年中考数学及答案

2009年中考数学及答案

2009年上海市初中毕业统一学业考试数 学 卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.计算32()a 的结果是(B ) A .5aB .6aC .8aD .9a2.不等式组1021x x +>⎧⎨-<⎩,的解集是( C )A .1x >-B .3x <C .13x -<<D .31x -<<3.用换元法解分式方程13101x x x x --+=-时,如果设1x y x-=,将原方程化为关于y 的整式方程,那么这个整式方程是( A ) A .230y y +-= B .2310y y -+=C .2310y y -+=D .2310y y --=4.抛物线22()y x m n =++(m n ,是常数)的顶点坐标是( B ) A .()m n ,B .()m n -,C .()m n -,D .()m n --,5.下列正多边形中,中心角等于内角的是( C )A .正六边形B .正五边形C .正四边形 C .正三边形 6.如图1,已知AB CD EF ∥∥,那么下列结论正确的是(A )A .AD BCDF CE = B .BC DFCE AD =C .CD BCEF BE= D .CD ADEF AF= 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直线填入答题纸的相应位置】A B D C E F图1781=的根是 x=2 .9.如果关于x 的方程20x x k -+=(k 为常数)有两个相等的实数根,那么k =.10.已知函数1()1f x x =-,那么(3)f = —1/2 .11.反比例函数2y x=图像的两支分别在第 I III 象限.12.将抛物线2y x =向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是 .13.如果从小明等6名学生中任选1名作为“世博会”志愿者,那么小明被选中的概率是 1/6 .14.某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是m ,那么该商品现在的价格是100*(1—m)^2 元(结果用含m 的代数式表示).15.如图2,在ABC △中,AD 是边BC 上的中线,设向量 , 如果用向量a ,b 表示向量AD ,那么AD =a +(b/2).16.在圆O 中,弦AB 的长为6,它所对应的弦心距为4,那么半径OA = 5 .17.在四边形ABCD 中,对角线AC 与BD 互相平分,交点为O .在不添加任何辅助线的前提下,要使四边形ABCD 成为矩形,还需添加一个条件,这个条件可以是AC=BD 或者有个内角等于90度 .18.在Rt ABC △中,903BAC AB M ∠==°,,为边BC 上的点,联结AM (如图3所示).如果将ABM △沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是 2 .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:22221(1)121a a a a a a +-÷+---+. = —120.(本题满分10分)解方程组:21220y x x xy -=⎧⎨--=⎩,①.②(X=2 y=3 ) (x=-1 y=0)图2A 图3B M C=142y x =5AB a =21.(本题满分10分,每小题满分各5分)如图4,在梯形ABCD 中,86012AD BC AB DC B BC ==∠==∥,,°,,联结AC .(1)求tan ACB ∠的值;(2)若M N 、分别是AB DC 、的中点,联结MN ,求线段MN 的长. (1) 二分之根号3(2)822.(本题满分10分,第(1)小题满分2分,第(2)小题满分3分,第(3)小题满分2分,第(4)小题满分3分)为了了解某校初中男生的身体素质状况,在该校六年级至九年级共四个年级的男生中,分别抽取部分学生进行“引体向上”测试.所有被测试者的“引体向上”次数情况如表一所示;各年级的被测试人数占所有被测试人数的百分率如图5所示(其中六年级相关数据未标出).表一根据上述信息,回答下列问题(直接写出结果):(1)六年级的被测试人数占所有被测试人数的百分率是 20% ;(2)在所有被测试者中,九年级的人数是 6 ;(3)在所有被测试者中,“引体向上”次数不小于6的人数所占的百分率是 35% ; (4)在所有被测试者的“引体向上”次数中,众数是 5 .23.(本题满分12分,每小题满分各6分)已知线段AC 与BD 相交于点O ,联结AB DC 、,E 为OB的中点,F 为OC 的中点,联结EF (如图6所示).(1)添加条件A D ∠=∠,OEF OFE ∠=∠,求证:AB DC =. 证明:由已知条件得:2OE=2OC OB=OC 又 A D ∠=∠角AOB=角DOC 所以三角形ABO 全等于三角形DOC 所以AB DC =(2)分别将“A D ∠=∠”记为①,“OEF OFE ∠=∠”记为②,“AB DC =”记为③,添加条件①、③,以②为结论构成命题1,添加条件②、③,以①为结论构成命题2.命题1是 真 命题,命题2是 假 命题(选择“真”或“假”填入空格). 24.(本题满分12分,每小题满分各4分)A DC图4 B 九年级八年级 七年级六年级25%30% 25% 图5图6 O D CAB E F在直角坐标平面内,O 为原点,点A 的坐标为(10),,点C 的坐标为(04),,直线CM x ∥轴(如图7所示).点B 与点A 关于原点对称,直线y x b =+(b 为常数)经过点B ,且与直线CM 相交于点D ,联结OD .(1)求b 的值和点D 的坐标;(2)设点P 在x 轴的正半轴上,若POD △是等腰三角形,求点P 的坐标;(3)在(2)的条件下,如果以PD 为半径的圆P 与圆O 外切,求圆O 的半径.解:(1)点B (—1,0),代入得到 b=1 直线BD :y=x+1Y=4代入 x=3 点D (3,1)(2)1、PO=OD=5 则P (5,0)2、PD=OD=5 则PO=2*3=6 则点P (6,0)3、PD=PO 设P (x ,0) D (3,4)则由勾股定理 解得 x=25/6 则点P (25/6,0)(3)由P ,D 两点坐标可以算出:1、r=5—2、PD=5 r=13、PD=25/6 r=025.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知9023ABC AB BC AD BC P ∠===°,,,∥,为线段BD 上的动点,点Q 在射线AB 上,且满足PQ AD PC AB=(如图8所示). (1)当2AD =,且点Q 与点B 重合时(如图9所示),求线段PC 的长; (2)在图8中,联结AP .当32AD =,且点Q 在线段AB 上时,设点B Q 、之间的距离为x ,APQ PBCS y S =△△,其中APQ S △表示APQ △的面积,PBC S △表示PBC △的面积,求y 关于x 的函数解析式,并写出函数定义域;(3)当AD AB <,且点Q 在线段AB 的延长线上时(如图10所示),求QPC ∠的大小.ADPCBQ 图8DAPCB(Q ) 图9图10CADPBQxb解:(1)AD=2,且Q 点与B 点重合,根据题意,∠PBC=∠PDA ,因为∠A=90。

河南省2009年中考数学试题(含答案)

河南省2009年中考数学试题(含答案)

2009年河南省初中学业水平暨高级中等学校招生考试试卷数学注意事项:1.本试卷共8页,三大题,满分120分,考试时间100分钟。

请用钢笔或圆珠笔直接答在试卷上。

2.答卷前将密封线内的项目填写清楚。

一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内。

1.﹣5的相反数是【】(A)15(B )﹣15(C)﹣5(D)52.不等式﹣2x <4的解集是【】(A)x >﹣2(B )x <﹣2(C)x >2(D)x <23.下列调查适合普查的是【】(A)调查2009年6月份市场上某品牌饮料的质量(B )了解中央电视台直播北京奥运会开幕式的全国收视率情况(C)环保部门调查5月份黄河某段水域的水质量情况(D)了解全班同学本周末参加社区活动的时间4.方程2x =x 的解是【】(A)x =1(B )x =0(C)x 1=1x 2=0(D)x 1=﹣1x 2=05.如图所示,在平面直角坐标系中,点A 、B 的坐标分别为(﹣2,0)和(2,0).月牙①绕点B 顺时针旋转900得到月牙②,则点A 的对应点A’的坐标为【】(A)(2,2)(B )(2,4)(C)(4,2)(D)(1,2)6.一个几何体由一些大小相同的小正方体组成,如图是它的主视图和俯视图,那么组成该几何体所需小正方体的个数最少为【】(A)3(B )4(C)5(D)6得分评卷人二、填空题(每小题3分,共27分)7.16的平方根是.8.如图,AB//CD,C E平分∠ACD,若∠1=250,那么∠2的度数是.9.下图是一个简单的运算程序.若输入x的值为﹣2,则输出的数值为.10.如图,在ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是.11.如图,AB为半圆O的直径,延长AB到点P,使BP=12AB,PC切半圆O于点C,点D是AC上和点C不重合的一点,则D∠的度数为.12.点A(2,1)在反比例函数ykx=的图像上,当1﹤x﹤4时,y的取值范围是.13.在一个不透明的袋子中有2个黑球、3个白球,它们除颜色外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出1个球,那么两个球都是黑球的概率为.14.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A’处,折痕为PQ,当点A’在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A’在BC边上可移动的最大距离为.15.如图,在半径为450的扇形AOB内部作一个正方形CDEF,使点C在OA上,点D、E在OB上,点F在AB上,则阴影部分的面积为(结果保留π).得分评卷人三、解答题(本大题8个小题,共75分)16.(8分)先化简211()1122x x x x −÷−+−,然后从,1−中选取一个你认为合适..的数作为x 的值代入求值.17.(9分)如图所示,∠BAC =∠ABD ,AC =BD ,点O 是AD 、BC 的交点,点E 是AB 的中点.试判断OE 和AB 的位置关系,并给出证明.得分评卷人得分评卷人18.(9分)2008年北京奥运会后,同学们参与体育锻炼的热情高涨.为了解他们平均每周的锻炼时间,小明同学在校内随机调查了50名同学,统计并制作了如下的频数分布表和扇形统计图.根据上述信息解答下列问题:(1)m =______,n =_________;(2)在扇形统计图中,D 组所占圆心角的度数为_____________;(3)全校共有3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有多少名?l9.(9分)暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内余油量y (升)是行驶路程x (千米)的一次函数,求y 与x 的函数关系式;(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.得分评卷人组别锻炼时间(时/周)频数A 1.5≤t <3l B3≤t <4.52C 4.5≤t <6mD 6≤t <7.520E 7.5≤t <915Ft ≥9n得分评卷人得分评卷人20.(9分)如图所示,电工李师傅借助梯子安装天花板上距地面2.90m的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m.矩形面与地面所成的角α为78°.李师傅的身高为l.78m,当他攀升到头顶距天花板0.05~0.20m时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?(参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70.)21.(10分)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点0是AC的中点,过点0的直线l从与AC重合的位置开始,绕点0作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.(1)①当α=________度时,四边形EDBC是等腰梯形,此时AD的长为_________;②当α=________度时,四边形EDBC是直角梯形,此时AD的长为_________;(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.22.(10分)某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共l5台.三种家电的进价和售价如下表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下.如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?23.(11分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.2009年河南省初中学业水平暨高暨中等学校招生考试数学试题参考答案及评分标准说明:1.如果考试的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分的多少,但原则上不超过后继部分应得分数之半.3.评分标准中,如无特殊说明,均为累计给分.4.评分过程中,只给整数分数.一、选择题(每小题3分,共18分)题号123456答案D A D C B D二、填空题(每小题3分,共27分)7、±48、5009、610、211、30012、12<y<213、11014、215、5182π−三、解答题16.原式=12-1+1 -1+1x xx x x⋅……………………4分=4x.……………………………………………………………6分当x时,原式=.…………………………………8分(注:如果x取1活-1,扣2分.)17.OE⊥AB.…………………………………………1分证明:在△BA C和△ABD中,AC=BD,∠BA C=∠ABD,AB=BA.∴△BA C≌△ABD.………………………………………………………5分∴∠OBA=∠OAB,∴OA=OB.………………………………………………………7分又∵AE=BE,∴OE⊥AB.………………………………………………………9分(注:若开始未给出判断“OE⊥AB”,但证明过程正确,不扣分)18.(1)8,4;………………………………………………………2分(2)1440;………………………………………………………5分(3)估计该校平均每周体育锻炼时间不少于6小时的学生约有:3000×2015450++=3000×3950=2340(人).……………………………9分19.(1)设y=kx+b,当x=0时,y=45,当x=150时,y=30.b=45∴150k+b=30………………………………………………4分k=110−解得b=45………………………………………………5分∴y=110−x+45.………………………………………………6分(2)当x=400时,y=110−×400+45=5>3.∴他们能在汽车报警前回到家.…………………………………9分20.过点A作AE⊥BC于点E,过点D作DF⊥BC于点F.…………………………1分∵AB=AC,∴CE=12BC=0.5.……………………2分在Rt△ABC和Rt△DFC中,∵tan780=AE EC,∴AE=EC×tan780≈0.5×4.70=2.35.…………………4分又∵sinα=AE AC =DF DC,DF =DC AC ·AE =37×AE ≈1.007.………7分李师傅站在第三级踏板上时,头顶距地面高度约为:1.007+1.78=2.787.头顶与天花板的距离约为:2.90-2.787≈0.11.∵0.05<0.11<0.20,∴它安装比较方便.……………………9分21.(1)①30,1;②60,1.5;……………………4分(2)当∠α=900时,四边形EDBC 是菱形.∵∠α=∠ACB=900,∴BC //ED .∵CE //AB ,∴四边形EDBC 是平行四边形.……………………6分在Rt△ABC 中,∠ACB =900,∠B =600,BC =2,∴∠A =300.∴AB =4,AC .∴AO =12AC =.……………………8分在Rt△AOD 中,∠A =300,∴AD =2.∴BD =2.∴BD =BC .又∵四边形EDBC 是平行四边形,∴四边形EDBC 是菱形……………………10分22.设购进电视机、冰箱各x 台,则洗衣机为(15-2x )台…………………1分15-2x ≤12x ,依题意得:2000x +2400x +1600(15-2x )≤32400…………………5分解这个不等式组,得6≤x ≤7∵x 为正整数,∴x =6或7…………………7分方案1:购进电视机和冰箱各6台,洗衣机3台;方案2:购进电视机和冰箱各7台,洗衣机1台…………………8分(2)方案1需补贴:(6×2100+6×2500+1×1700)×13%=4251(元);方案2需补贴:(7×2100+7×2500+1×1700)×13%=4407(元);∴国家的财政收入最多需补贴农民4407元.…………………10分23.(1)点A 的坐标为(4,8)…………………1分将A (4,8)、C (8,0)两点坐标分别代入y=ax 2+bx8=16a +4b得0=64a +8b解得a =-12,b =4∴抛物线的解析式为:y =-12x 2+4x …………………3分(2)①在Rt△APE 和Rt△ABC 中,tan∠PAE =PE AP =BC AB ,即PE AP =48∴PE =12AP =12t .PB=8-t .∴点E的坐标为(4+12t ,8-t ).∴点G 的纵坐标为:-12(4+12t )2+4(4+12t )=-18t 2+8.…………………5分∴EG=-18t 2+8-(8-t )=-18t 2+t .∵-18<0,∴当t =4时,线段EG 最长为2.…………………7分②共有三个时刻.…………………8分t 1=163,t 2=4013,t 3=.…………………11分。

2009年黑龙江省哈尔滨市中考数学试卷及答案(word)

2009年黑龙江省哈尔滨市中考数学试卷及答案(word)

哈尔滨市2009 年初中升学考试数学试卷本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,满分30分.第Ⅱ卷为填空题和解答题,满分90分.本试卷共28道试题,满分120分,考试时间为120分钟.八区各学校的考生,请按照《哈尔滨市2009年初中升学考试选择题答题卡》上的要求做选择题(1~10小题,每小题只有一个正确答案).每小题选出正确答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,否则无效.填空题第16小题和第*16小题为考生根据所学内容任选其一作答题.县(市)学校的考生,请把选择题(1~10 小题,每小题只有一个正确答案)中各题表示正确答案的字母填在题后相应的括号内.填空题第16小题和第*16小题为考生根据所学内容任选其一作答题.第Ⅰ卷 选择题(共30分)(涂卡) 一、选择题(每小题 3分,共计 30分) 1.-2的相反数是( ). (A )2 (B )一2 (C )21 (D )一212.下列运算正确的是( ).(A )3a 2-a 2=3 (B )(a 2)3=a 5 (C )a 3.A 6=a 9 (D )(2a )2=2a 2 3.下列图形中,既是轴对称图形,又是中心对称图形的是().4.36的算术平方根是( ).(A )6 (B )±6 (C )6 (D )±6 5.点P (1,3)在反比例函数y =xk(k ≠0)的图象上,则k 的值是( ). (A )31 (B )3 (C )一31(D )一3 6.右图是某一几何体的三视图,则这个几何体是( ).(A )长方体 (B )圆锥(C )圆枉 (D )正三棱柱7.小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.则向上的一面的点数大于4的概率为( ). (A )61 (B )31 (C )21 (D )328.圆锥的底面半径为8,母线长为9,则该圆锥的侧面积为( ).(A )36л (B )48л (C )72л (D )144л 9.如图,梯形ABCD 中,AD ∥BC ,DC ⊥BC ,将梯形沿对角线BD 折叠,点A 恰好落在DC 边上的点A ´处,若∠A ´BC =20°,则∠A ´B D 的度数为( ). (A )15° (B )20° (C ) 25° (D )30°10.明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的 路程s(单位:千米)与时间t(单位:分)之间的函数关系如图所示。

2009中考数学试卷及答案

2009中考数学试卷及答案

衡阳市2009中考考试试卷数 学第一题、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、 函数2-=x y 中自变量的取值范围是( C )A .0≥xB .2≤xC .2≥xD .2<x2、 已知空气的单位体积质量为31024.1-⨯克/厘米3,31024.1-⨯用小数表示为( D )A .0.000124B .0.0124C .-0.00124D .0.001243、 下面计算正确的是( B )A . 3333=+B .3327=÷ C . 532=⋅ D .24±=4、 一个直角三角形的两直角边长分别为y x ,,其面积为2,则y 与x 之间的关系用图象表示大致为( C )5、 如图1所示几何体的左视图是( D )6、 如图2所示,A 、B 、C 分别表示三个村庄,AB=1000米,BC=600米, AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个 文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( A ) A .AB 中点 B .BC 中点 C .AC 中点 D .∠C 的平分线与AB 的交点7、 已知33-=-y x ,则y x 35+-的值是( D )A .0B .2C .5D .88、 两圆的圆心距为3,两圆的半径分别是方程0342=+-x x 的两个根,则两圆的位置关系是 ( A ) A .相交B .外离C .内含D .外切A B C DA BC DCB图29、 如图3,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,54A cos =,则下列结论中正确 的个数为( A )①DE=3cm ; ②EB=1cm ; ③2ABCD 15S cm =菱形.A .3个B .2个C .1个D .0个10、如图4,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( C ) A .1B .34C .23D .2第二题、填空题(本大题共6个小题,每小题3分,满分18分.) 11、分解因式:x x 44x -23+= x(x-2)2 .12、某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为52米,则这个破面的坡度为 1:2 . 13、某果农2006年的年收入为5万元,由于党的惠农政策的落实,2008年年收入增加到7.2万元,则平均每年的增长率是 20% .14、点A 的坐标为(2,0),把点A 绕着坐标原点顺时针旋转135º到点B ,那么点B 的坐标是 (1,-1) .15、如图5,四边形OABC 是边长为1的正方形,反比例函数xky =的图象过点B ,则k 的值为 -1 .16、如图6,直线AB 切⊙O 于C 点,D 是⊙O 上一点,∠EDC=30º,弦EF ∥AB ,连结OC 交EF 于H 点,连结CF ,且CF=2,则HE 的长为 3 .第三题、解答题(本大题共10个小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17、(本小题满分6分)解下列不等式组,并把解集在数轴上表示出来.图5OCABDEFH图6B C图3 G B CA图4⎩⎨⎧≥+-<- x x x )2(33)1(2)1(02 解:由(1)得:2<x由(2)得:11 3322≤-≥-≥+- x x x x∴原不等式组的解集是21<≤x .18、(本小题满分6分)先化简,再求值:212)14(-÷-+-a a a a a ,其中31=a . 解:原式12214-⋅-+-=a a a a a a --=14 13-=a 把31=a 代入得:原式0111313=-=-⨯=19、(本小题满分6分)甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如图7所示.1 2 3 4 5 (次)(次)甲 乙1 2 3 4 5 -1 0123(2)从平均数和方差相结合看,分析谁的成绩好些.解:甲、乙两人射靶成绩的平均数都是6,但甲比乙的方差要小,说明甲的成绩较为稳定,所以甲的成绩比乙的成绩要好些.20、(本小题满分6分) 已知二次函数的图象过坐标原点,它的顶点坐标是(1,-2),求这个二次函数的关系式. 解:设这个二次函数的关系式为2)1(2--=x a y 得: 2)10(02--=a解得:2=a∴这个二次函数的关系式是2)1(22--=x y ,即x x y 422-=21、(本小题满分7分) 一个不透明口袋中装有红球6个,黄球9个,绿球3个,这些球除颜色处没有任何其他区别现.从中任意摸出一个球.(1)计算摸到的是绿球的概率. (2)如果要使摸到绿球的概率为41,需要在这个口袋中再放入多少个绿球? 解:(1)P (摸到绿球)61183==.(2) 设需要在这个口袋中再放入x 个绿球,得:41183=++x x解得:2=x ∴需要在这个口袋中再放入2个绿球. 22、(本小题满分7分)如图8,圆心角都是90º的扇形OAB 与扇形OCD 叠放在一起,连结AC ,BD .(1)求证:AC=BD ;(2)若图中阴影部分的面积是2 43cm π,OA=2cm ,求OC 的长.解:(1)证明:BDAC BOD AOC DO CO BO AB BOD AOC AODBOD AOD AOC COD AOB =⇒∆≅∆⇒⎪⎭⎪⎬⎫==∠=∠⇒∠+∠=∠+∠⇒∠∠ 900== (2)根据题意得:360)(9036090360902222OC OA OC OA S -=-=πππ阴影;∴360)2(904322OC -=ππ解得:OC =1cm .23、(本小题满分8分) 如图9,△ABC 中,AB=AC ,AD 、AE 分别是∠BAC 和∠BAC 和外角的平分线,BE图8⊥AE . (1)求证:DA ⊥AE ; (2)试判断AB 与DE 是否相等?并证明你的结论. 解:(1)证明:AEDA DAE BAF BAC ⊥⇒︒=∠⇒︒=︒⨯=∠+∠∠+∠⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫︒=∠+∠∠∠⇒∠∠∠⇒∠909018021)(21BAE BAD 180BAF BAC BAF 21BAE BAF AE BAC 21BAD BAC AD ==平分=平分(2)AB =DE ,理由是:DE AB D AE DAE AEB AE BE ADB BC AD BAC AD ACAB =⇒⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫︒=∠︒=∠⇒⊥︒=∠⇒⊥⇒⎭⎬⎫∠=是矩形四边形平分B 90 90 90 24、(本小题满分8分)在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km),图10中的折线分别表示S 1、S 2与t 之间的函数关系.(1)甲、乙两地之间的距离为 8 km ,乙、丙两地之间的距离为 2 km ; (2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少? (3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围. 解:(2)第二组由甲地出发首次到达乙地所用的时间为:[]0.81082)28(28=÷=÷+⨯÷(小时)第二组由乙地到达丙地所用的时间为:[]0.21022)28(22=÷=÷+⨯÷(小时)(3)根据题意得A 、B 的坐标分别为(0.8,0)和(1,2),设线段AB 的函数关系式为:b kt S +=2,根据题意得: ⎩⎨⎧+=+=28.00b k bk 解得:⎩⎨⎧==-810b k∴图中线段AB 所表示的S 2与t 间的函数关系式为:8102-t S =,自变量t 的取值范围是:10.8≤≤t .25、(本小题满分9分)图9A B CD EF如图11,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.解:(1)∵AB 是⊙O 的直径(已知) ∴∠ACB =90º(直径所对的圆周角是直角) ∵∠ABC =60º(已知) ∴∠BAC =180º-∠ACB -∠ABC = 30º(三角形的内角和等于180º) ∴AB =2BC =4cm (直角三角形中,30º锐角所对的直角边等于斜边的一半) 即⊙O 的直径为4cm .(2)如图10(1)CD 切⊙O 于点C ,连结OC ,则OC =OB =1/2·AB =2cm .∴CD ⊥CO (圆的切线垂直于经过切点的半径) ∴∠OCD =90º(垂直的定义)∵∠BAC = 30º(已求) ∴∠COD =2∠BAC = 60º(在同圆或等圆中一条弧所对的圆周角等于它所对的圆心角的一半)∴∠D =180º-∠COD -∠OCD = 30º(三角形的内角和等于180º) ∴OD =2OC =4cm (直角三角形中,30º锐角所对的直角边等于斜边的一半) ∴BD =OD -OB =4-2=2(cm ) ∴当BD 长为2cm ,CD 与⊙O 相切. (3)根据题意得:BE =(4-2t )cm ,BF =tcm ;如图10(2)当EF ⊥BC 时,△BEF 为直角三角形,此时△BEF ∽△BAC ∴BE :BA =BF :BC 即:(4-2t ):4=t :2 解得:t =1如图10(3)当EF ⊥BA 时,△BEF 为直角三角形,此时△BEF ∽△BCA ∴BE :BC =BF :BA 即:(4-2t ):2=t :4 解得:t =1.6∴当t =1s 或t =1.6s 时,△BEF 为直角三角形.26、(本小题满分9分)图10(3)B图10(1)B图10(2)如图12,直线4+-=x y 与两坐标轴分别相交于A 、B 点,点M 是线段AB 上任意一点(A 、B 两点除外),过M 分别作MC ⊥OA 于点C ,MD ⊥OB 于D . (1)当点M 在AB 上运动时,你认为四边形OCMD 的周长是否发生变化?并说明理由; (2)当点M 运动到什么位置时,四边形OCMD 的面积有最大值?最大值是多少?(3)当四边形OCMD 为正方形时,将四边形OCMD 沿着x 轴的正方向移动,设平移的距离为)40<<a a (,正方形OCMD 与△AOB 重叠部分的面积为S .试求S 与a 的函数关系式并画出该函数的图象.解:(1)设点M 的横坐标为x ,则点M 的纵坐标为-x+4(0<x<4,x>0,-x+4>0); 则:MC =∣-x+4∣=-x+4,MD =∣x ∣=x ;∴C 四边形OCMD =2(MC+MD )=2(-x+4+x )=8∴当点M 在AB 上运动时,四边形OCMD 的周长不发生变化,总是等于8; (2)根据题意得:S 四边形OCMD =MC ·MD =(-x+4)· x =-x 2+4x =-(x-2)2+4∴四边形OCMD 的面积是关于点M 的横坐标x (0<x<4)的二次函数,并且当x =2,即当点M 运动到线段AB 的中点时,四边形OCMD 的面积最大且最大面积为4; (3)如图10(2),当20≤<a 时,42121422+-=-=a a S ; 如图10(3),当42<≤a 时,22)4(21)4(21-=-=a a S ;∴S 与a 的函数的图象如下图所示:))4<≤a图12(1)图12(2)图12(3)。

2009福建福州中考数学试题及答案(含答案)

2009福建福州中考数学试题及答案(含答案)

二○○九年福州市课改实验区初中毕业会考、高级中等学校招生考试数 学 试 卷(全卷共 4 页,三大题,共 22 小题;满分 150 分;考试时间 120 分钟)友情提示:所有答案都必须填涂在答题卡上,答在本试卷上无效.毕业学校 姓名 考生号一、选择题(共 10 小题,每题 4 分,满分 40 分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.2009 的相反数是 A .-2009B .2009C . -2.用科学记数法表示 660 000 的结果是120091D .2009A .66×104B .6.6×105C .0.66×106D .6.6×106 3.已知∠1=30°,则∠1 的余角度数是 A .160° B .150° C .70° D .60°⎧x + y = 2, 4.二元一次方程组 ⎨⎩ x - y = 0 的解是⎧ x = 0, A . ⎨⎩ y = 2.⎧x = 2, B . ⎨⎩ y = 0.⎧ x = 1, C . ⎨⎩ y = 1.⎧ x = -1, D . ⎨⎩ y = -1.5. 图 1 所示的几何体的主视图是A BCD6.下列运算中,正确的是A.x+x=2xB. 2x -x=1C.(x 3)3=x 6D. x 8÷x 2=x 4 27.若分式有意义,则 x 的取值范围是 x -1A .x ≠1B .x>1C . x=1D.x<1B图 28.如图 2,正五边形 FGHMN 是由正五边形 ABCDE 经过位似变换得到的,若 AB:FG=2:3,则下列结论正确的是A .2DE=3MN ,B .3DE=2MN ,C . 3∠A=2∠FD .2∠A=3∠F 9.将 1、2、3 三个数字随机生成的点的坐标,列成下表。

如果每个点出现的可能性相等,那么从中任意 取一点,则这个点在函数 y=x 图象上的概率是2 A .0.3 B .0.5 C . D .3 33P为 2 510.如图 3, 是以等边三角形 ABC 一边 AB 为半径的四分之一圆周, 上任意一点,若 AC=5,则四边形 ACBP 周长的最大值是A . 15B . 20C .15+ 5D .15+ 5 二、填空题(共 5 小题,每题 4 分,满分 20 分.请将 答案填入答题卡的相应位置)11.分解因式: x 2- 2x =12.请写出一个比 小的整数13. 已知 x 2 = 2 ,则 x 2+ 3 的值是14. 如图 4,AB 是⊙O 的直径,点 C 在⊙O 上 ,OD ∥AC ,若 BD=1,则 BC 的长为15.已知, A 、B 、C 、D 、E 是反比例函数 y = 16 x(x>0)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如 图 5 所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是 (用含π的代数式表示)三、解答题(满分 90 分.请将答案填入答题卡的相应位置)16.(每小题 7 分,共 14 分)1 (1)计算:22-5× + - 25(2)化简:(x -y )(x+y )+(x -y )+(x+y ) 17.(每小题 8 分,共 16 分)(1)解不等式: 3x > x + 2 ,并在数轴上表示解集. (2)整理一批图书,如果由一个人单独做要花 60 小时。

2009中考数学题及答案

2009中考数学题及答案

2009年大连市中考数学试题与参考答案注意事项:1.请将答案写在答题卡上,写在试卷上无效. 2.本试卷满分150分,考试时间120分钟.一、选择题(在每小题给出的四个选项中,只有一个正确答案.本大题共有8小题,每小题3分,共24分) 1.|-3|等于 ( )A .3B .-3C .31D .-31 2.下列运算正确的是 ( )A .523x x x =+ B .x x x =-23C .623x x x =⋅ D .x x x =÷233.函数2-=x y 中,自变量x 的取值范围是 ( )A .x < 2B .x ≤2C .x > 2D .x ≥24.将一张等边三角形纸片按图1-①所示的方式对折,再按图1-②所示 的虚线剪去一个小三角形,将余下纸片展开得到的图案是 ( )5.下列的调查中,选取的样本具有代表性的有 ( )A .为了解某地区居民的防火意识,对该地区的初中生进行调查B .为了解某校1200名学生的视力情况,随机抽取该校120名学生进行调查C .为了解某商场的平均晶营业额,选在周末进行调查D .为了解全校学生课外小组的活动情况,对该校的男生进行调查6.如图,等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,∠AEB =60°, AB = AD = 2cm ,则梯形ABCD 的周长为 ( ) A .6cm B .8cm C .10cm D .12cm 7.下列四个点中,有三个点在同一反比例函数xky =的图象上,则不在这个函数图象上的点是 ( ) A .(5,1) B .(-1,5) C .(35,3) D .(-3,35-)8.图3是一个几何体的三视图,其中主视图、左视图都是腰为13cm ,底为10cm 的等腰三角形,则这个几何的侧面积是 ( )A .60πcm 2B .65πcm 2C .70πcm 2D .75πcm 2图1②①DCBA 图2俯视图左视图主视图图3DC BA二、填空题(本题共有9小题,每小题3分,共27分)9.某天最低气温是-5℃,最高气温比最低气温高8℃,则这天的最高气温是_________℃. 10.计算)13)(13(-+=___________.11.如图4,直线a ∥b ,∠1 = 70°,则∠2 = __________.12.如图5,某游乐场内滑梯的滑板与地面所成的角∠A = 35°,滑梯的高度BC = 2米,则滑板AB 的长约为_________米(精确到0.1).13.在某智力竞赛中,小明对一道四选一的选择题所涉及的知识完全不懂,只能靠猜测得出结果,则他答对这道题的概率是_______________.14.若⊙O 1和⊙O 2外切,O 1O 2 = 10cm ,⊙O 1半径为3cm ,则⊙O 2半径为___________cm .15.图6是某班为贫困地区捐书情况的条形统计图,则这个班平均每名学生捐书_____________册. 16.图7是一次函数b kx y +=的图象,则关于x 的不等式0>+b kx 的解集为_________________.17.如图8,原点O 是△ABC 和△A ′B ′C ′的位似中心,点A (1,0)与点A ′(-2,0)是对应点,△ABC 的面积是23,则△A ′B ′C ′的面积是________________. 三、解答题(本题共有3小题,18题、19题、20题各12分,共36分) 18.如图9,在△ABC 和△DEF 中,AB = DE ,BE = CF ,∠B =∠1. 求证:AC = DF (要求:写出证明过程中的重要依据)21c b a 图 4CBA 图 5 491017201510554320人数册数图 6 O y x -24图 7 A C B A′123-1-2-3-4-3-2-14321O y x 图 8 1F E DCBA19.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图10所示的统计表,根据统计图提供的信息解决下列问题:⑴这种树苗成活的频率稳定在_________,成活的概率估计值为_______________. ⑵该地区已经移植这种树苗5万棵. ①估计这种树苗成活___________万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?20.甲、乙两车间生产同一种零件,乙车间比甲车间平均每小时多生产30个,甲车间生产600个零件与乙车间生产900个零件所用时间相等,设甲车间平均每小时生产x 个零件,请按要求解决下列问题: ⑴根据题意,填写下表: 车间 零件总个数平均每小时生产零件个数所用时间甲车间 600xx600乙车间900________⑵甲、乙两车间平均每小时各生产多少个零件?四、解答题(本题3小题,其中21、22题各9分,23题10分,共28分) 21.如图11,在⊙O 中,AB 是直径,AD 是弦,∠ADE = 60°, ∠C = 30°.⑴判断直线CD 是否是⊙O 的切线,并说明理由; ⑵若CD = 33 ,求BC 的长.图 10 0成活的概率移植数量/千棵10.90.8108642E DCBA O图 1122.如图12,直线2--=x y 交x 轴于点A ,交y 轴于点B ,抛物线c bx ax y ++=2的顶点为A ,且经过点B . ⑴求该抛物线的解析式; ⑵若点C(m ,29-)在抛物线上,求m 的值.23.A 、B 两地的路程为16千米,往返于两地的公交车单程运行40分钟.某日甲车比乙车早20分钟从A 地出发,到达B 地后立即返回,乙车出发20分钟后因故停车10分钟,随后按原速继续行驶,并与返回途中的甲车相遇.图13是乙车距A 地的路程y (千米)与所用时间x (分)的函数图象的一部分(假设两车都匀速行驶). ⑴请在图13中画出甲车在这次往返中,距A 地的路程y (千米)与时间x (分)的函数图象; ⑵乙车出发多长时间两车相遇?五、解答题(本题共有3小题,其中24题11分,25、26题各12分,共25分)24.如图14,矩形ABCD 中,AB = 6cm ,AD = 3cm ,点E 在边DC 上,且DE = 4cm .动点P 从点A 开始沿着A →B →C →E 的路线以2cm/s 的速度移动,动点Q 从点A 开始沿着AE 以1cm/s 的速度移动,当点Q 移动到点E 时,点P 停止移动.若点P 、Q 同时从点A 同时出发,设点Q 移动时间为t (s),P 、Q 两点运动路线与线段PQ 围成的图形面积为S (cm2),求S 与t 的函数关系式.25.如图15,在△ABC 和△PQD 中,AC = k BC ,DP = k DQ ,∠C =∠PDQ ,D 、E 分别是AB 、AC 的中点,点P 在直线BC 上,连结EQ 交PC 于点H .PQE D CB A 图 14 y/千米16O -2080604020x/分图 13 yx O B A 图 12猜想线段EH 与AC 的数量关系,并证明你的猜想.26.如图18,抛物线F :c bx ax y ++=2的顶点为P ,抛物线:与y 轴交于点A ,与直线OP 交于点B .过点P 作PD ⊥x 轴于点D ,平移抛物线F 使其经过点A 、D 得到抛物线F ′:'+'+'=c x b x a y 2,抛物线F ′与x 轴的另一个交点为C .⑴当a = 1,b =-2,c = 3时,求点C 的坐标(直接写出答案); ⑵若a 、b 、c 满足了ac b 22=①求b :b ′的值;②探究四边形OABC 的形状,并说明理由.Q(H)EDCQAB CDEPH H Q P ED CB A B(P)A图 15 图 16图 17yxO P DC BA图 18大连市2009年初中升学考试评分标准与参考答案一、选择题1. A 2.D 3.D 4.A 5.B 6.C 7.B 8.B 二、填空题9.3 10.2 11.110° 12.3.5 13.4114.7 15.3 16.2->x 17.6 三、解答题18.证明:∵BE=CF , ∴BE+EC=CF+EC ,即 B C =E F . ………………………………………………………………………………2分 在△ABC 和△DEF 中,314AB DE B BC EF =⎧⎪∠=∠⎨⎪=⎩,分,分. ∴△A B C ≌△D E F …………………………………………………………………………6分 (S A S ) . ……………………………………………………………………………………8分 ∴A C =D F …………………………………………………………………………………10分 (全等三角形对应边相等) . ……………………………………………………………12分 19.解:(1)0.9,……………………………………………………………………………2分 0.9; ………………………………………………………………………………………5分 (2) ①4.5;…………………………………………………………………………………8分 ②方法1:18÷0.9-5 …………………………………………………………………………………10分 =15.…………………………………………………………………………………………11分方法2:设还需移植这种树苗x 万棵.根据题意,得189.0)5(=⨯+x ,…………………………………………………………10分 解得15=x . ………………………………………………………………………………11分 答:该地区需移植这种树苗约15万棵. ………………………………………………12分 20. 解:(1) 30+x , ……………………………………………………………………2分 3900+x ;………………………………………………………………………………………4分 (2)根据题意,得30900600+=x x ,..................................................................7分 解得 60=x . (9)分 9030=+x . …………………………………………………………………10分 经检验60=x 是原方程的解,且都符合题意.………………………………………11分 答:甲车间每小时生产60个零件,乙车间每小时生产90个零件.…………………12分 21.(1)C D 是⊙O 的切线. …………………………………………………………………1分 证明:连接OD .∵∠A D E =60°,∠C =30°,∴∠A =30°. ............................................................2分 ∵O A =O D ,∴∠O D A =∠A =30°. (3)分∴∠O D E =∠O D A +∠A D E =30°+60°=90°,∴O D ⊥C D .…………………………………4分 ∴C D 是⊙O 的切线. ……………………………………………………………………5分 (2)解:在Rt △ODC 中,∠ODC =90°, ∠C =30°, CD =33.∵t a n C =CDOD, …………………………………………………………………………6分 ∴O D =C D ·t a n C =33×33=3. (7)分 ∴O C =2O D =6.…………………………………………………………………………8分 ∵O B =O D =3,∴B C =O C -O B =6-3=3.………………………………………………9分22. 解:(1)直线2--=x y .令2,0-==y x 则,∴点B 坐标为(0,-2).………………………………………………1分 令2,0-==x y 则 ∴点A 坐标为(-2,0). ………………………………………………2分 设抛物线解析式为k h x a y +-=2)(. ∵抛物线顶点为A ,且经过点B ,∴2)2(+=x a y ,………………………………………………………………………4分∴-2=4a ,∴21-=a .…………………………………………………………………5分 ∴抛物线解析式为2)2(21+-=x y ,…………………………………………………5分∴22212---=x x y .………………………………………………………………6分(2)方法1:∵点C (m ,29-)在抛物线2)2(21+-=x y 上,∴29)2(212-=+-m ,9)2(2=+m ,………………………………………………7分解得11=m ,52-=m .……………………………………………………………9分 方法2:∵点C (m ,29-)在抛物线22212---=x x y 上,∴22212---m m 29-=,∴,0542=-+m m (7)分解得11=m ,52-=m .……………………………………………………………9分 23.解:(1)画出点P 、M 、N (每点得1分)……………………………………3分 (2)方法1.设直线EF 的解析式为11b x k y +=. 根据题意知,E (30,8),F (50,16),⎪⎩⎪⎨⎧+=+=分分5.1150164,11308 b k b k 解得⎪⎩⎪⎨⎧-==.4,5211b k ∴452-=x y .①……………………………………………………………6分设直线MN 的解析式为22b x k y +=. 根据题意知,M (20,16),N (60,0),∴⎩⎨⎧+=+=分分8.6007,20162222 b k b k 解得⎪⎩⎪⎨⎧=-=.24,5222b k ∴2452+-=x y .②………………………………………………………9分由①、②得方程452-x 2452+-=x ,解得x =35. ……………………………………(10分) 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法2.公交车的速度为16÷40=52(千米/分). …………………………………………………4分设乙车出发x 分钟两车相遇. ……………………………………………………………5分根据题意,得32)20(52)10(52=++-x x ,………………………………………………8分解得x =35. …………………………………………………………………………………9分 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法3.公交车的速度为16÷40=52(千米/分). …………………………………………………4分设乙车出发x 分钟两车相遇. ……………………………………………………………5分根据题意,得16)20(52)10(52=-+-x x ,………………………………………………8分解得x =35. …………………………………………………………………………………9分 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法4.由题意知:M (20,16),F (50,16),C (10,0),∵△DMF ∽△DNC ,∴DHDICN MF =∴DHDH -=165030,∴DH =10; ∵△CDH ∽△CFG ,∴CGCH FG DH =,∴25164010=⨯=CH ; ∴OH =OC +CH =10+25=35.答:乙车出发35分钟两车相遇. …………………………………………………………10分24.解:在R t △A D E 中,.5432222=+=+=DE AD AE …………………………1分当0<t ≤3时,如图1. ……………………………………………………………………2分过点Q 作QM ⊥AB 于M ,连接QP . ∵AB ∥CD , ∴∠QAM =∠DEA ,又∵∠AMQ =∠D =90°, ∴△AQM ∽△EAD .∴AEAQAD QM =,∴t AE AQ AD QM 53=⋅=.……………………………………………………3分 .5353221212t t t QM AP S =⨯⨯=⋅= (4)分 当3<t ≤29时,如图2. (5)分方法1 :在Rt △ADE 中,.5432222=+=+=DE AD AE过点Q 作QM ⊥AB 于M , QN ⊥BC 于N , 连接QB . ∵AB ∥CD , ∴∠QAM =∠DEA , 又∵∠AMQ =∠ADE =90°, ∴△AQM ∽△EAD . ∴AE AQ AD QM =, AEAQ DE AM =, ∴t AE AQ AD QM 53=⋅=.………………………………………………………………………6分t AE AQ DE AM 54=⋅=,∴Q N =t AM BM 5466-=-=.…………………………………7分∴QAB S ∆,595362121t t QM AB =⨯⨯=⋅=QBP S ∆.1854254)546)(62(21212-+-=--=⋅=t t t t QN BP∴QBP QAB S S S ∆∆+=t 59=+(18542542-+-t t ).18551542-+-=t t ……………………8分方法2 :过点Q 作QM ⊥AB 于M , QN ⊥BC 于N ,连接QB . ∵AB ∥BC , ∴∠QAM =∠DEA , 又∵∠AMQ =∠ADE =90°,∴△AQM ∽△EAD . ∴AE AQ AD QM =, AEAQ DE AM =, ∴t AE AQ AD QM 53=⋅=.………………………………………………………………………6分t AE AQ DE AM 54=⋅=,∴Q N =t AM BM 5466-=-=.…………………………………7分∴.256535421212t t t QM AM S AMQ =⨯⨯=⋅=∆.185512526)546)(5362(21)(212-+-=-+-=⋅+=t t t t t BM QM BP S BPQM 梯∴BPQM AMQ S S S 梯+=∆2256t =+(1855125262-+-t t ).18551542-+-=t t ……………8分 当29<t ≤5时. 方法1 :过点Q 作QH ⊥CD 于H . 如图3.由题意得QH ∥AD ,∴△EHQ ∽△EDA ,∴,AEQEAD QH = ∴).5(53t AE QE AD QH -=⋅=…………………………………………………………………10分 ∴,123)62(21)(21=⨯+=⋅+=BC AB EC S ABCE 梯,233106353)5(53)211(21212+-=-⨯-=⋅=∆t t t t QH EP S EQP∴EQP ABCE S S S ∆-=梯12=2331063532-+-t t .291063532-+-=t t ………………………11分方法2:连接QB 、QC ,过点Q 分别作QH ⊥DC 于H ,QM ⊥AB 于M ,QN ⊥BC 于N . 如图4.由题意得QH ∥AD ,∴△EHQ ∽△EDA ,∴,AEQEAD QH =∴).5(53t AE QE AD QH -=⋅=…………………………………………………………………10分∴.595362121t t QN AB S QAB =⨯⨯=⋅=∆.569)546(32121t t QN BC S QBC -=-⨯=⋅=∆.227105753)533)(92(21212-+-=--=⋅=∆t t t t QH PC S QCP∴QCP QBC QAB S S S S ∆∆∆++=t 59=)569(t -+)227105753(2-+-+t t .291063532-+-=t t ………………………………11分 25.结论:E H =21A C . (1)分 证明:取B C 边中点F ,连接D E 、D F . ……………………………………………………2分∵D 、E 、F 分别是边AB 、AC 、BC 的中点.∴DE ∥BC 且DE =21BC ,D F ∥A C 且D F =21A C , (4)分EC =21AC ∴四边形DFCE 是平行四边形.∴∠EDF=∠C .∵∠C =∠P D Q ,∴∠P D Q =∠E D F , ∴∠P D F =∠Q D E .…………………………6分又∵AC=kBC ,∴DF=kDE . ∵D P =k D Q ,∴k DEDFDQ DP ==.……………………………………………………………7分 ∴△PDF ∽△QDE . …………………………………………………………………………8分∴∠D E Q =∠D F P . ……………………………………………………………………………9分 又∵DE ∥BC ,DF ∥AC , ∴∠DEQ=∠EHC ,∠DFP=∠C .∴∠C =∠E H C . ……………………………………………………………………………10分∴E H =E C . (11)分 ∴E H =21A C . (12)分 选图16.结论:E H =21A C . (1)分 证明:取B C 边中点F ,连接D E 、D F . ……………………………………………2分∵D 、E 、F 分别是边AB 、AC 、BC 的中点,∴D E ∥B C 且D E =21B C , D F ∥A C 且D F =21A C , (4)分EC=21AC ,∴四边形DFCE 是平行四边形.∴∠EDF=∠C .∵∠C =∠P D Q ,∴∠P D Q =∠E D F , ∴∠P D F =∠Q D E . ……………………………6分 又∵A C =B C , ∴D E =D F ,∵P D =Q D ,∴△P D F ≌△Q D E . ……………………………7分∴∠DEQ=∠DFP .∵DE ∥BC ,DF ∥AC , ∴∠DEQ=∠EHC ,∠DFP=∠C .∴∠C =∠E H C .............................................................................................8分 ∴E H =E C . (9)分 ∴E H =21A C . (10)分 选图17. 结论: E H =21A C . (1)分证明:连接A H . ………………………………………………………………………………2分 ∵D 是AB 中点,∴DA=DB .又∵DB=DQ ,∴DQ=DP=AD .∴∠DBQ=∠DQB ,.∵∠DBQ+∠DQB+∠DQA+∠DAQ ,=180°,∴∠AQB=90°,∴AH ⊥BC .……………………………………………………………………………………4分又∵E 是A C 中点,∴H E =21A C . ……………………………………………………6分 26.解:(1) C (3,0);……………………………………………………………………3分(2)①抛物线c bx ax y ++=2,令x =0,则y =c , ∴A 点坐标(0,c ).∵ac b 22=,∴ 242424442ca ac a ac ac ab ac ==-=-,∴点P 的坐标为(2,2ca b -). ……………………………………………………4分∵P D ⊥x 轴于D ,∴点D 的坐标为(0,2ab-). ……………………………………5分根据题意,得a=a ′,c= c ′,∴抛物线F ′的解析式为c x b ax y ++='2.又∵抛物线F ′经过点D (0,2a b-),∴c a b b ab a +-+⨯=)2('4022.……………6分∴ac bb b 4'202+-=.又∵ac b 22=,∴'2302bb b -=.∴b :b ′=32.…………………………………………………………………………………7分 ②由①得,抛物线F ′为c bx ax y ++=232.令y =0,则0232=++c bx ax .………………………………………………………………8分∴abx a b x -=-=21,2.∵点D 的横坐标为,2a b -∴点C 的坐标为(0,ab-). ……………………………………9分设直线OP 的解析式为kx y =.∵点P 的坐标为(2,2ca b -), ∴k a b c 22-=,∴22222b b b b ac b ac k -=-=-=-=,∴x b y 2-=.………………………10分 ∵点B 是抛物线F 与直线OP 的交点,∴x bc bx ax 22-=++.∴abx a b x -=-=21,2.∵点P 的横坐标为a b 2-,∴点B 的横坐标为ab-.把a b x -=代入x b y 2-=,得c a aca b a b b y ===--=222)(22.∴点B 的坐标为),(c ab-.…………………………………………………………………11分∴BC ∥OA ,AB ∥OC .(或BC ∥OA ,BC =OA ), ∴四边形OABC 是平行四边形. 又∵∠AOC =90°,∴四边形OABC 是矩形. ………………………………………………12分。

2009安徽省中考数学试卷及答案解析

2009安徽省中考数学试卷及答案解析

2009年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1. (-3)2的值是( )A. 9B. -9C. 6D. -62. 如图,直线l 1∥l 2,则∠α为( )A. 150°B. 140°C. 130°D. 120°第2题图 第5题图3. 下列运算正确的是( )A. a 2·a 3=a 6B. (-a )4=a 4C. a 2+a 3=a 5D. (a 2)3=a 54. 甲志愿者计划用若干个工作日完成社区的某项工作.从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )A. 8B. 7C. 6D. 55. 一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底面边长分别为( )A. 3,2 2B. 2,2 2C. 3,2D. 2,36.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )A. 45B. 35C. 25D.157. 某市2008年国内生产总值(GDP )比2007年增长了12%,由于受到国际金融危机的影响,预计今年比2008年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是( )A. 12%+7%=x %B. (1+12%)(1+7%)=2(1+x %)C. 12%+7%=2·x %D. (1+12%)(1+7%)=(1+x %)28. 已知函数y =kx +b 的图象如图,则y =2kx +b 的图象可能是( )9. 如图,弦CD 垂直于⊙O 的直径AB ,垂足为H ,且CD =22,BD =3,则AB 的长为( )A. 2B. 3C. 4D. 5第9题图10. △ABC 中,AB =AC ,∠A 为锐角,CD 为AB 边上的高,I 为△ACD 的内切圆圆心,则∠AIB 的度数是( )A. 120°B. 125°C. 135°D. 150°二、填空题(本大题共4小题,每小题5分,满分20分)11. 如图,将小王某月手机费中各项费用的情况制成扇形统计图,则表示短信费的扇形圆心角的度数为________.第11题图 第13题图12. 因式分解:a 2-b 2-2b -1=________________.13. 长为4 m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了________m.14. 已知二次函数的图象经过原点及点(-12,-14),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为________________.三、(本大题共2小题,每小题8分,满分16分)15. 计算:|-2|+2sin30°-(-3)2+(tan45°)-1.16. 如图,MP 切⊙O 于点M ,直线PO 交⊙O 于点A 、B ,弦AC ∥MP ,求证:MO ∥BC .第16题图四、(本大题共2小题,每小题8分,满分16分)17. 观察下列等式:1×12=1-12,2×23=2-23,3×34=3-34,… (1)猜想并写出第n 个等式;(2)证明你写出的等式的正确性.18. 如图,在对Rt △OAB 依次进行位似、轴对称和平移变换后得到Rt △O ′A ′B ′.(1)在坐标纸上画出这几次变换相应的图形;(2)设P (x ,y )为△OAB 边上任一点,依次写出这几次变换后点P 对应点的坐标.第18题图五、(本大题共2小题,每小题10分,满分20分)19. 学校植物园沿路护栏的纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加d cm ,如图所示.已知每个菱形图案的边长为10 3 cm ,其一个内角为60°.(1)若d =26,则该纹饰要用231个菱形图案,求纹饰的长度L ;(2)当d =20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案?第19题图20. 如图,将正方形沿图中虚线(其中x <y )剪成①②③④四块图形,用这四块图形恰能..拼成一个....矩形(非正方形). (1)画出拼成的矩形的简图;(2)求x y的值.第20题图21. 某校九年级学生共900人,为了解这个年级学生的体能,从中随机抽取部分学生进行1 min的跳绳测试,并指定甲、乙、丙、丁四名同学对这次测试结果的数据作出整理.下面是这四名同学提供的部分信息:甲:将全体测试数据分成6组绘成直方图(如图);乙:跳绳次数不少于105次的同学占96%;丙:第①、②两组频率之和为0.12,且第②组与第⑥组频数都是12;丁:第②、③、④组的频数之比为4∶17∶15.根据这四名同学提供的材料,请解答如下问题:(1)这次跳绳测试共抽取多少名学生?各组有多少人?(2)如果跳绳次数不少于135次为优秀,根据这次抽查的结果,估计全年级达到跳绳优秀的人数为多少?(3)以每组的组中值(每组的中点对应的数据)作为这组跳绳次数的代表,估计这批学生1 min跳绳次数的平均值.第21题图七、(本题满分12分)22. 如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM 交AC于F,ME交BC于G.(1)写出图中两对相似三角形,并证明其中的一对;(2)请连接FG,如果α=45°,AB=42,AF=3,求FG的长.第22题图23. 已知某种水果的批发单价与批发量的函数关系如图①所示.(1)请说明图中①、②两段函数图象的实际意义.第23题图①(2)写出批发该种水果的资金金额w(元)与批发量n(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图②所示.该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.第23题图②2009年安徽省中考数学试卷参考答案与试题解析1. A 【解析】求一个负数的平方要注意结果是正数.(-3)2=(-3)×(-3)=9.2. D 【解析】α=70°+(180°-130°)=120°.3. B 【解析】互为相反数的两个数的偶次幂相等.4. A 【解析】设甲志愿者计划完成此项工作的天数为x 天,依题意得1x ×2+(1x +1x)(x -2-3)=1, 解得x =8.5. C 【解析】依据三视图画法特点:“主俯长对正,俯左宽相等,左主高平齐”.意思是说,主视图和俯视图的长与几何体的长相等,俯视图和左视图的宽与几何体的宽相等,左视图和主视图的高与几何体的高相等,由此可想象长方体的高与主视图中矩形的长相等,底面正方形的对角线长为22,由此求得底面正方形边长为2,故选C .6. B 【解析】通过列表知,从三名男生和两名女生中任选两人,共有10种选法,其中一男一女的选法共有6种,则选取一男一女的概率为610=35. 7. D 【解析】设2007年国内生产总值为a ,依题意得a (1+12%)×(1+7%)=a (1+x %)2,即(1+12%)(1+7%)=(1+x %)2.8. C 【解析】由已知一次函数经过(0,1),可求得k >0,b =1,∴2k >0,b =1,倾斜度增加,则画出图象草图,故选C .9. B 【解析】由垂径定理可得DH =2,所以BH =BD 2-DH 2=1,又可得△DHB ∽△ADB ,所以有BD 2=BH ·BA ,(3)2=1×BA ,AB =3.10. C 【解析】由CD 为腰上的高,I 为△ACD 的内心,则∠IAC +∠ICA =12(∠DAC +∠DCA )=12(180°-∠ADC )=12(180°-90°)=45°,所以∠AIC =180°-(∠IAC +∠ICA )=180°-45°=135°.又可证△AIB ≌△AIC ,得∠AIB =∠AIC =135°.11. 72° 【解析】360°×(1-45%-31%-4%)=72°.12. (a +b +1)(a -b -1) 【解析】a 2-b 2-2b -1=a 2-(b 2+2b +1)=a 2-(b +1)2=(a +b +1)(a -b -1).13. 2(3-2) 【解析】开始时梯子顶端离地面距离为4×sin45°=4×22=22,移动后梯子顶端离地面距离为4×sin60°=4×32=23,故梯子顶端沿墙面升高了 23-22=2(3-2)m.14. y =x 2+x 或y =-13x 2+13x 【解析】依题意,所求函数有可能经过(-1,0),(-12,-14) 或(1,0),(-12,-14) .设所求函数解析式为y =ax 2+bx +c ,图象经过原点,则c =0,当图象经过(-1,0),(-12,-14)时,代入可求得a =b =1,即所求解析式为y =x 2+x ; 当图象经过(1,0),(-12,-14)时,代入可求得a =-13,b =13,即所求解析式为y =-13x 2+13x .综上所述,所求函数的解析式为y =x 2+x 或y =-13x 2+13x . 15. 解:原式=2+1-3+1 ...................... (6分)=1. ...................... (8分)16. 证明:∵AB 是⊙O 的直径,∴∠ACB =90°,∵MP 为⊙O 的切线,∴∠PMO =90°,∵MP ∥AC ,∴∠P =∠CAB ,∴∠MOP =∠B , ...................... (6分)故MO ∥BC . ...................... (8分)17. (1)解:猜想:n ×n n +1=n -n n +1. ...................... (3分) (2)证明:右边=n (n +1)-n n +1=n 2n +1=左边, 即n ×n n +1=n -n n +1. ...................... (8分) 18. 解:(1)变换后的图形如解图所示; ...................... (4分)第18题解图(2)设坐标纸中方格边长为单位1.则P (x ,y )――→以O 为位似中心放大为原来的2倍(2x ,2y )――→沿y 轴翻折(-2x ,2y )――→向右平移4个单位(-2x +4,2y )――→向上平移5个单位(-2x +4,2y +5). ...................... (8分)说明:如果以其他点为位似中心进行变换,或两次平移合并,或未设单位长,或(2)中直接写出各项变换对应点的坐标,只要正确就相应给分.19. 解:(1)菱形图案水平方向的对角线长为: 103×cos30°×2=30 cm.按题意,L =30+26×(231-1)=6010 cm. ...................... (5分)(2)当d =20 cm 时,设需x 个菱形图案,则有:30+20×(x -1)=6010. ...............(8分)解得x =300,即需300个这样的菱形图案. ...................... (10分)20.解:(1)拼成的矩形的简图如解图所示:第20题解图说明:其他正确拼法可相应得分. ...................... (5分)(2)解法一:由拼图前后的面积相等得[(x +y )+y ]y =(x +y )2, ...................... (8分)因为y ≠0,整理得(x y )2+x y-1=0, 解得x y =5-12(x y =-5-12<0,舍去). ...................... (10分) 解法二:由拼成的矩形可知:x +y (x +y )+y =x y. ...................... (8分) 以下同解法一. ...................... (10分)21. 解:(1)第①组频率为1-96%=0.04.∴第②组频率为0.12-0.04=0.08,从而,总人数为12÷0.08=150人.又②③④组的频数之比为4∶17∶15,可算得第①~⑥组的人数分别为6、12、51、45、24、12. ...................... (6分)(2)第⑤、⑥两组的频率之和为0.16+0.08=0.24.由样本是随机抽取的,估计全年级有900×0.24=216人达到优秀. ...................... (9分)(3)x =100×6+110×12+120×51+130×45+140×24+150×12150=127(次). .... (12分) 22. 解:(1)△AMF ∽△BGM ,△DMG ∽△DBM ,△EMF ∽△EAM 等.(写出两对即可) ..............................(2分)以下证明△AMF ∽△BGM .由题知∠A =∠B =∠DME =α,而∠AFM =∠DME +∠E ,∠BMG =∠A +∠E ,∴∠AFM =∠BMG ,∴△AMF ∽△BGM . ...................... (6分)(2)当α=45°时,可得AC ⊥BC 且AC =BC ,∵M 为AB 中点,∴AM =BM =2 2. ...................... (7分)由△AMF ∽△BGM 得,AF ·BG =AM ·BM ,∴BG =83. ...................... (9分) 又AC =BC =42cos45°=4,∴CG =4-83=43,CF =4-3=1, ∴FG =(43)2+12=53. ...................... (12分) 23. 解:(1)题图①中的①表示批发量不少于20 kg 且不多于60 kg 的该种水果,可按5元/kg 批发;题图①中的②表示批发量高于60 kg 的该种水果,可按4元/kg 批发. ...................... (3分)(2)由题意得w =⎩⎪⎨⎪⎧5n (20≤n ≤60)4n (n >60),第23题解图图象如解图所示.由解图可知,资金金额满足240<w≤300时,以同样的资金可批发到较多数量的该种水果. ...................... (8分)(3)解法一:设当日零售价为x元,由题图②可得日最高销量n为零售价x之间的函数关系为:n=320-40x,当n>60时,x<6.5.由题意得,销售利润为y=(x-4)(320-40x)=40(x-4)(8-x)=40[-(x-6)2+4]. ...................... (12分)从而x=6时,y最大=160,此时n=80.即经销商应批发80 kg该种水果,日零售价定为6元/kg,当日可得最大利润160元. ...................... (14分)解法二:设日最高销量为x kg(x>60).则由题图②可得日零售价p满足x=320-40p.于是p=320-x40,销售利润y=x(320-x40-4)=140x(160-x)=-140(x-80)2+160. ...................... (12分)从而x=80时,y最大=160.此时,p=6,即经销商应批发80 kg 该种水果,日零售价定为6元/kg,当日可得最大利润160元. ...................... (14分)。

数学中考分类试题(含答案)

数学中考分类试题(含答案)

1有理数一、选择题1.(2009年福建省泉州市)计算:=-0)5(( ).A .1B .0C .-1D .-5【答案】A2.(2009年梅州市)12-的倒数为( ) A .12B .2C .2-D .1-【答案】C3.(2009年抚顺市)某市在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为( )A .72.5810⨯元 B .70.25810⨯元 C .62.5810⨯元 D .625.810⨯元 【答案】C4.(2009年抚顺市)2-的相反数是( ) A .2 B .12-C .2-D .12【答案】A5.(2009年绵阳市)2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是 A .0.156×10-5 B .0.156×105 C .1.56×10-6 D .1.56×106 【答案】C 6.(2009年绵阳市)如果向东走80 m 记为80 m ,那么向西走60 m 记为 A .-60 m B .︱-60︱m C .-(-60)m D .601m 【答案】A 7.(2009呼和浩特)2-的倒数是( ) A .12-B .12C .2D .2-答案:A8.(2009年龙岩)-2的相反数是( )A .-2B .2C .21D .-21 【答案】B 9.(2009年铁岭市)目前国内规划中的第一高楼上海中心大厦,总投入约14 800 000 000元.14 800 000 000元用科学记数法表示为( ) A .111.4810⨯元 B .90.14810⨯元C .101.4810⨯元D .914.810⨯元【答案】C10.(2009年黄石市)12-的倒数是( ) A .2 B .12 C .12- D .2-【答案】D11.(2009年广东省)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A .107.2610⨯ 元B .972.610⨯ 元C .110.72610⨯ 元 D .117.2610⨯元 【答案】A 12.(2009年枣庄市)实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -< 【答案】C13.(2009年枣庄市)-12的相反数是( ) A .2 B .2- C .12 D .12-【答案】C14.(2009年赤峰市)景色秀美的宁城县打虎石水库,总库容量为119600000立方米,用科学计数法表示为 ( ) A 、1.196×108立方米 B 、1.196×107立方米 C 、11.96×107立方米 D 、0.1196×109立方米 【答案】A15.(2009年赤峰市)3(3)-等于( ) A 、-9 B 、9 C 、-27 D 、2716.(2009贺州)计算2)3(-的结果是( ).A .-6B .9C .-9D .6 【答案】B 17.(2009年浙江省绍兴市)甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为( )A .8.1×190-米 B .8.1×180-米 C .81×190-米 D .0.81×170-米 【答案】B 18.(2009年江苏省)2-的相反数是( ) A .2 B .2-C .12D .12-【答案】A 19.(2009贵州黔东南州)下列运算正确的是( C ) A 、39±= B 、33-=- C 、39-=- D 、932=-【答案】B20.(2009年淄博市)如果2()13⨯-=,则“”内应填的实数是( D )A . 32B . 23C .23-D .32-21.(2009襄樊市)通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示为( B ) A .53.110-⨯ B .63.110-⨯ C .73.110-⨯ D .83.110-⨯ 解析:本题考查科学记数法,0.0000031=63.110-⨯,故选B 。

初中数学中考真题精编-2009年答案及评分标准

初中数学中考真题精编-2009年答案及评分标准

2009年来宾市初中毕业升学统一考试试题数学参考答案及评分标准一、填空题:本大题共10小题,每小题3分,共30分.1.-237; 2.10; 3.(x +2)(x -2); 4.25; 5.⎩⎨⎧==11y x ; 6.x y 2-=;7.1.30×105; 8.65; 9.2; 10.答案不唯一,只要符合题意均给分.二、选择题:本大题共8小题,每小题3分,共24分.题号 11 12 13 14 15 16 17 18 答案DBCDACCB三、解答题:本大题共8小题,满分66分. 19.解:原式=222919⨯+-+ …………4分(每对一个值给1分)=1+1=2……………………5分20.解:设该镇这两年中财政净收入的平均年增长率为x , ……………………1分依题意可得:5000(1+x )2=2×5000 ………………………………4分解得 21=+x ,或021<-=+x (舍去) ……………………5分∴%4.41414.012=≈-=x……………………………………6分答:该镇这两年中财政净收入的平均年增长率约为41.4﹪.…………7分21.解:(1)502;(2)23.71;(3)图略,值为150(图、值各1分);(4)80—99.(每小题各2分)22.证明:∵四边形ABCD 是平行四边形∴CD =AB ,AD =CB ,∠DAB =∠BCD ……2分 又∵△ADE 和△CBF 都是等边三角形 ∴DE =BF ,AE =CF∠DAE =∠BCF =60° ………………4分∵∠DCF =∠BCD -∠BCF ∠BAE =∠DAB -∠DAE ∴∠DCF =∠BAE……………………6分∴△DCF ≌△BAE (SAS ) ………………7分∴DF =BE∴四边形BEDF 是平行四边形. …………8分23.解:(1)见参考图 ……………………………3分(不用尺规作图,一律不给分。

2009年河北省中考数学试卷及答案解析

2009年河北省中考数学试卷及答案解析

2009年河北省中考数学试卷一、选择题(共12小题,每小题2分,满分24分)1.(2分)(﹣1)3等于()A.﹣1 B.1 C.﹣3 D.32.(2分)在实数范围内,有意义,则x的取值范围是()A.x≥0 B.x≤0 C.x>0 D.x<03.(2分)如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.54.(2分)下列运算中,正确的是()A.4m﹣m=3 B.﹣(m﹣n)=m+n C.(m2)3=m6D.m2÷m2=m5.(2分)如图,四个边长为1的小正方形拼成一个大正方形,A,B,O是小正方形顶点,⊙O的半径为1,P是⊙O上的点,且位于右上方的小正方形内,则∠APB等于()A.30°B.45°C.60°D.90°6.(2分)反比例函数y=(x>0)的图象如图所示,随着x值的增大,y值()A.增大B.减小C.不变D.先减小后增大7.(2分)下列事件中,属于不可能事件的是()A.某个数的绝对值小于0 B.某个数的相反数等于它本身C.某两个数的和小于0 D.某两个负数的积大于08.(2分)如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB,CD分别表示一楼,二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯从点B到点C上升的高度h是()A.m B.4m C.4m D.8m9.(2分)某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y=(x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A.40m/s B.20m/s C.10m/s D.5m/s10.(2分)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是()A.20 B.22 C.24 D.2611.(2分)如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.12.(2分)古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31二、填空题(共6小题,每小题3分,满分18分)或“>”).13.(3分)比较大小:﹣6﹣9.(填“<”、“=”14.(3分)据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约为12 000 000千瓦.12 000 000用科学记数法表示为千瓦.15.(3分)在一周内,小明坚持自测体温,每天3次.测量结果统计如下表:体温(℃)36.136.236.336.436.536.636.7次数2346312则这些体温的中位数是℃.16.(3分)若m、n互为倒数,则mn2﹣(n﹣1)的值为.17.(3分)如图,等边△ABC的边长为1cm,D、E分别是AB、AC上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为cm.18.(3分)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为55cm,此时木桶中水的深度是cm.三、解答题(共8小题,满分78分)19.(8分)已知a=2,b=﹣1,求1+的值.20.(8分)如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且CD=24 m,OE⊥CD于点E.已测得sin∠DOE=.(1)求半径OD;(2)根据需要,水面要以每小时0.5m的速度下降,则经过多长时间才能将水排干?21.(9分)某商店在四个月的试销期内,只销售A、B两个品牌的电视机,共售出400台.试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图1和图2.(1)第四个月销量占总销量的百分比是;(2)在图2中补全表示B品牌电视机月销量的折线;(3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,求抽到B品牌电视机的概率;(4)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断该商店应经销哪个品牌的电视机.22.(9分)已知抛物线y=ax2+bx经过点A(﹣3,﹣3)和点P(t,0),且t≠0.(1)若该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最小值,并写出t的值;(2)若t=﹣4,求a、b的值,并指出此时抛物线的开口方向;(3)直接写出使该抛物线开口向下的t的一个值.23.(10分)如图1至图5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.阅读理解:(1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周;(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A﹣B﹣C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转周.实践应用:(1)在阅读理解的(1)中,若AB=2c,则⊙O自转周;若AB=l,则⊙O自转周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转周;若∠ABC=60°,则⊙O在点B处自转周;(2)如图3,∠ABC=90°,AB=BC=c.⊙O从⊙O1的位置出发,在∠ABC外部沿A﹣B﹣C滚动到⊙O4的位置,⊙O自转周.拓展联想:(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC 外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由;(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.24.(10分)在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.(1)如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,求证:FM=MH,FM⊥MH;(2)将图1中的CE绕点C顺时针旋转一个锐角,得到图2,求证:△FMH是等腰直角三角形;(3)将图2中的CE缩短到图3的情况,△FMH还是等腰直角三角形吗?(不必说明理由)25.(12分)某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm 的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数120B型板材块数2m n设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m=,n=;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?26.(12分)如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB﹣BC﹣CP 于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t=2时,AP=,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值;若不能,请说明理由;(4)当DE经过点C时,请直接写出t的值.2009年河北省中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题2分,满分24分)1.(2分)(2009?河北)(﹣1)3等于()A.﹣1 B.1 C.﹣3 D.3【分析】根据﹣1的奇次幂等于﹣1,直接得出结果.【解答】解:(﹣1)3=﹣1.故选A.【点评】本题考查了有理数的乘方:﹣1的奇次幂等于﹣1.2.(2分)(2009?河北)在实数范围内,有意义,则x的取值范围是()A.x≥0 B.x≤0 C.x>0 D.x<0【分析】根据二次根式有意义的条件可直接解答.【解答】解:二次根式有意义的条件可知:x≥0.故选A.【点评】本题主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.(2分)(2010?南通)如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.5【分析】根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.【解答】解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选D.【点评】本题考查了菱形的性质和等边三角形的判定.4.(2分)(2009?河北)下列运算中,正确的是()A.4m﹣m=3 B.﹣(m﹣n)=m+n C.(m2)3=m6D.m2÷m2=m【分析】根据合并同类项的法则,只把系数相加减,字母与字母的次数不变;去括号法则,括号前面是负号,去掉括号和负号,括号里的各项都变号;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、应为4m﹣m=3m,故本选项错误;B、应为﹣(m﹣n)=﹣m+n,故本选项错误;C、应为(m2)3=m2×3=m6,正确;D、m2÷m2=1,故本选项错误.故选C.【点评】本题综合考查了合并同类项的法则,去括号法则,幂的乘方的性质,同底数幂的除法的性质,熟练掌握运算性质和法则是解题的关键.5.(2分)(2009?河北)如图,四个边长为1的小正方形拼成一个大正方形,A,B,O是小正方形顶点,⊙O的半径为1,P是⊙O上的点,且位于右上方的小正方形内,则∠APB等于()A.30°B.45°C.60°D.90°【分析】根据圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半求解.【解答】解:根据题意∠APB=∠AOB,∵∠AOB=90°,∴∠APB=90°×=45°.故选B.【点评】本题考查了圆周角和圆心角的有关知识.6.(2分)(2010?宁德)反比例函数y=(x>0)的图象如图所示,随着x值的增大,y值()A.增大B.减小C.不变D.先减小后增大【分析】根据反比例函数的性质:当k>0时,在每一个象限内,函数值y随着自变量x的增大而减小作答.【解答】解:由解析式知k=1>0,所以当x>0时,函数y随着自变量x的增大而减小.故选B.【点评】本题考查了反比例函数的性质.对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.7.(2分)(2009?河北)下列事件中,属于不可能事件的是()A.某个数的绝对值小于0 B.某个数的相反数等于它本身C.某两个数的和小于0 D.某两个负数的积大于0【分析】不可能事件是一定条件下一定不会发生的事件.依据定义即可解得.【解答】解:A、任何数的绝对值都大于或等于0,故为不可能事件,符合题意;B、0的相反数等于它本身,为随机事件,不符合题意;C、两个负数的和小于0,为随机事件,不符合题意;D、正确,为必然事件,不符合题意;故选A.【点评】本题考查事件的分类,事件根据其发生的可能性大小分为必然事件、随机事件、不可能事件.8.(2分)(2010?枣庄)如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB,CD分别表示一楼,二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯从点B到点C上升的高度h是()A.m B.4m C.4m D.8m【分析】过C作CE⊥AB,已知ABC=150°,即已知∠CBE=30°,根据三角函数就可以求解.【解答】解:过C作CE⊥AB于E点.在Rt△CBE中,由三角函数的定义可知×=4m.CE=BC?sin30°=8故选:B.【点评】考查三角函数的应用.9.(2分)(2009?河北)某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y=(x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A.40m/s B.20m/s C.10m/s D.5m/s【分析】本题实际是告知函数值求自变量的值,代入求解即可.另外实际问题中,负值舍去.【解答】解:当刹车距离为5m时,即y=5,代入二次函数解析式:5=x2.解得x=±10,(x=﹣10舍),故开始刹车时的速度为10m/s.故选C.【点评】考查自变量的值与函数值的一一对应关系,明确x、y代表的实际意义,刹车距离为5m,即是y=5,求刹车时的速度x.10.(2分)(2009?河北)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是()A.20 B.22 C.24 D.26【分析】本题考查整体的思想及简单几何体表面积的计算能力.从正方体毛坯一角挖去一个小正方体得到的零件的表面积等于原正方体表面积.【解答】解:挖去一个棱长为1的小正方体,得到的图形与原图形表面积相等,则表面积是2×2×6=24.故选C.【点评】本题可以有多种解决方法,一种是把每个面的面积计算出来然后相加,这样比较麻烦,另一种算法就是解答中的这种,这种方法的关键是能想象出得到的图形与原图形表面积相等.11.(2分)(2009?河北)如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.【分析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【解答】解:由题意知,函数关系为一次函数y=﹣2x+4,由k=﹣2<0可知,y 随x的增大而减小,且当x=0时,y=4,当y=0时,x=2.故选D.【点评】本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=﹣2x+4,然后根据一次函数的图象的性质求解.12.(2分)(2009?河北)古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n(n+1)和(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.【解答】解:显然选项A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.故选:C.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题(共6小题,每小题3分,满分18分)或“>”).13.(3分)(2009?河北)比较大小:﹣6>﹣9.(填“<”、“=”【分析】本题可利用绝对值概念根据两个负数绝对值大的数反而小比较大小.【解答】解:∵|﹣6|=6,|﹣9|=9,且6<9;∴﹣6>﹣9.【点评】本题考查的是两个负有理数大小的比较方法:两个负数相比较,绝对值大的数反而小.14.(3分)(2009?河北)据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约为12 000 000千瓦.12 000 000用科学记数法表示为 1.2×107千瓦.【分析】数据绝对值大于10或小于1时科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n是负数.【解答】解:根据题意12 000 000用科学记数法表示为 1.2×107千瓦.【点评】本题考查的是科学记数法.任意一个绝对值大于10或绝对值小于1的数都可写成a×10n的形式,其中1≤|a|<10,对于绝对值大于10的数,指数n 等于原数的整数位数减去1.所以12 000 000=1.2×107.15.(3分)(2009?河北)在一周内,小明坚持自测体温,每天3次.测量结果统计如下表:体温(℃)36.136.236.336.436.536.636.7次数2346312则这些体温的中位数是36.4℃.【分析】由表提供的信息可知,一组数据的中位数是将这组数据从小到大(或从大到小)依次排列时,处在最中间位置的数,据此可知这组数据的中位数.【解答】解:这组数据的中位数应是第11个数为36.4.故填36.4.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.要明确定义:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.16.(3分)(2009?河北)若m、n互为倒数,则mn2﹣(n﹣1)的值为1.【分析】由m,n互为倒数可知mn=1,代入代数式即可.【解答】解:因为m,n互为倒数可得mn=1,所以mn2﹣(n﹣1)=n﹣(n﹣1)=1.【点评】倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;17.(3分)(2009?河北)如图,等边△ABC的边长为1cm,D、E分别是AB、AC 上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为3cm.【分析】由题意得AE=A′E,AD=A′D,故阴影部分的周长可以转化为三角形ABC 的周长.【解答】解:将△ADE沿直线DE折叠,点A落在点A′处,所以AD=A′D,AE=A′E.则阴影部分图形的周长等于BC+BD+CE+A′D+A′E,=BC+BD+CE+AD+AE,=BC+AB+AC,=3cm.故答案为:3.【点评】折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.18.(3分)(2013?鞍山)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为55cm,此时木桶中水的深度是20cm.【分析】考查方程思想及观察图形提取信息的能力.【解答】解:设较长铁棒的长度为xcm,较短铁棒的长度为ycm.因为两根铁棒之和为55cm,故可列x+y=55,又知两棒未露出水面的长度相等,故可知x=y,据此可列:,解得:,因此木桶中水的深度为30×=20cm.故填20.【点评】本题是一道能力题,注意图形与方程等量关系的结合.三、解答题(共8小题,满分78分)19.(8分)(2009?河北)已知a=2,b=﹣1,求1+的值.【分析】先对所求的代数式化简,再将未知数的值代入计算.【解答】解:原式=1+=1+a+b;当a=2,b=﹣1时,原式=2.【点评】此题考查分式的计算与化简,解决这类题目关键是把握好通分与约分.分式加减的本质是通分,乘除的本质是约分.同时注意在进行运算前要尽量保证每个分式最简.20.(8分)(2009?河北)如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且CD=24 m,OE⊥CD于点E.已测得sin∠DOE=.(1)求半径OD;(2)根据需要,水面要以每小时0.5m的速度下降,则经过多长时间才能将水排干?【分析】根据三角函数可得到OD的值;再根据勾股定理求得OE的值,此时再求所需的时间就变得容易了.【解答】解:(1)∵OE⊥CD于点E,CD=24,∴ED=CD=12,在Rt△DOE中,∵sin∠DOE==,∴OD=13(m);(2)OE===5,∴将水排干需:5÷0.5=10(小时).【点评】此题主要考查了学生对垂径定理及勾股定理的运用.21.(9分)(2009?河北)某商店在四个月的试销期内,只销售A、B两个品牌的电视机,共售出400台.试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图1和图2.(1)第四个月销量占总销量的百分比是30%;(2)在图2中补全表示B品牌电视机月销量的折线;(3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,求抽到B品牌电视机的概率;(4)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断该商店应经销哪个品牌的电视机.【分析】(1)分析扇形图,易得答案;(2)根据扇形图,可补全折线图;(3)根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数;二者的比值就是其发生的概率的大小;(4)比较折线图,经销销量好的那个品牌.【解答】解:(1)分析扇形图可得:第四个月销量占总销量的百分比为:1﹣(15%+30%+25%)=30%;(2)根据扇形图及(1)的结论,可补全折线图如图2;(3)根据题意可得:第四个月售出的电视机中,共400×30%=120台,其中B 品牌电视机为80台,故其概率为;(4)由于月销量的平均水平相同,从折线的走势看,A品牌的月销量呈下降趋势,而B品牌的月销量呈上升趋势.所以该商店应经销B品牌电视机.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.用到的知识点为:概率=所求情况数与总情况数之比.22.(9分)(2009?河北)已知抛物线y=ax2+bx经过点A(﹣3,﹣3)和点P(t,0),且t≠0.(1)若该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最小值,并写出t的值;(2)若t=﹣4,求a、b的值,并指出此时抛物线的开口方向;(3)直接写出使该抛物线开口向下的t的一个值.【分析】(1)由图可以看出A点为抛物线的顶点,且开口向上,所以此点即为此函数的最小值;(2)点p是抛物线与x轴的一个交点,而此时另一个交点是0,那么P与O是关于抛物线对称轴的两个对称点,知道了对称点的坐标,就很容易求出t的值;(3)a>0时,抛物线的开口向上,a<0时,抛物线的开口向下,求出a的值就知道其开口方向.【解答】解:(1)∵抛物线的对称轴经过点A,∴A点为抛物线的顶点,∴y的最小值为﹣3,∵P点和O点对称,∴t=﹣6;(2)分别将(﹣4,0)和(﹣3,﹣3)代入y=ax2+bx,得:,解得,∴抛物线开口方向向上;(3)将A(﹣3,﹣3)和点P(t,0)代入y=ax2+bx,,由①得,b=3a+1③,把③代入②,得at2+t(3a+1)=0,∵t≠0,∴at+3a+1=0,∴a=﹣.∵抛物线开口向下,∴a<0,∴﹣<0,∴t+3>0,∴t>﹣3.故t的值可以是﹣1(答案不唯一).(注:写出t>﹣3且t≠0或其中任意一个数均给分)【点评】此题主要考查了抛物线的对称性及开口方向的问题,对于二次函数的图象和性质要很熟悉.23.(10分)(2009?河北)如图1至图5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.阅读理解:(1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周;(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A﹣B﹣C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转周.实践应用:(1)在阅读理解的(1)中,若AB=2c,则⊙O自转2周;若AB=l,则⊙O 自转周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转周;若∠ABC=60°,则⊙O在点B处自转周;(2)如图3,∠ABC=90°,AB=BC=c.⊙O从⊙O1的位置出发,在∠ABC外部沿A﹣B﹣C滚动到⊙O4的位置,⊙O自转周.拓展联想:(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC 外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由;(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.【分析】(1)读懂题意,套公式易得若AB=2c,则⊙O自转2周;若AB=l,则⊙O自转周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转周;若∠ABC=60°,则⊙O在点B处自转周.(2)因∠ABC=90°,AB=BC=c,则⊙O自转1+=周,拓展联想:因三角形和五边形的外角和是360°,则⊙O共自转了(+1)周.【解答】解:实践应用(1)2;.;.(2).拓展联想(1)∵△ABC的周长为l,∴⊙O在三边上自转了周.又∵三角形的外角和是360°,∴在三个顶点处,⊙O自转了=1(周).∴⊙O共自转了(+1)周.(2)∵五边形的外角和也等于360°∴所做运动和三角形的一样:(+1)周.【点评】此题主要考查三角形外角的性质,也是一道探索规律题,找准规律是关键.24.(10分)(2009?河北)在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.(1)如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,求证:FM=MH,FM⊥MH;(2)将图1中的CE绕点C顺时针旋转一个锐角,得到图2,求证:△FMH是等腰直角三角形;(3)将图2中的CE缩短到图3的情况,△FMH还是等腰直角三角形吗?(不必说明理由)【分析】(1)本题主要利用重合的性质来证明.(2)首先要连接MB、MD,然后证明△FBM≌△MDH,从而求出两角相等,且有一角为90°.(3)根据(2)的证明过程,中△FBM≌△MDH仍然成立即可证明.【解答】(1)证明:∵四边形BCGF为正方形∴BF=BM=MN,∠FBM=90°∵四边形CDHN为正方形∴DM=DH=MN,∠HDM=90°∵BF=BM=MN,DM=DH=MN∴BF=BM=DM=DH∵BF=DH,∠FBM=∠HDM,BM=DM∴△FBM≌△HDM∴FM=MH,∵∠FMB=∠DMH=45°,∴∠FMH=90度,∴FM⊥HM.(2)证明:连接MB、MD,如图2,设FM与AC交于点P.∵B、D、M分别是AC、CE、AE的中点,∴MD∥BC,且MD=AC=BC=BF;MB∥CD,且MB=CE=CD=DH(三角形的中位线平行于第三边并且等于第三边的一半),∴四边形BCDM是平行四边形,∴∠CBM=∠CDM,又∵∠FBP=∠HDC,∴∠FBM=∠MDH,∴△FBM≌△MDH,∴FM=MH,且∠FMB=∠MHD,∠BFM=∠HMD.∴∠FMB+∠HMD=180°﹣∠FBM,∵BM∥CE,∴∠AMB=∠E,同理:∠DME=∠A.∴∠AMB+∠DME=∠A+∠AMB=∠CBM.由已知可得:BM=CE=AB=BF,∴∠A=∠BMA,∠BMF=∠BFM,∴∠FMH=180°﹣(∠FMB+∠HMD)﹣(∠AMB+∠DME),=180°﹣(180°﹣∠FBM)﹣∠CBM,=∠FBM﹣∠CBM,=∠FBC=90°.∴△FMH是等腰直角三角形.(3)解:△FMH还是等腰直角三角形.【点评】本题综合考查了等腰三角形的判定,偏难,学生要综合运用学过的几何知识来证明.25.(12分)(2009?河北)某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数120B型板材块数2m n设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m=0,n=3;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?【分析】(1)按裁法二裁剪时,2块A型板材块的长为120cm,150﹣120=30,所以无法裁出B型板,按裁法三裁剪时,3块B型板材块的长为120cm,120<150,而4块块B型板材块的长为160cm>150所以无法裁出4块B型板;(2)由题意得:共需用A型板材240块、B型板材180块,又因为满足x+2y=240,2x+3z=180,然后整理即可求出解析式;(3)由题意,得Q=x+y+z=x+120﹣x+60﹣x和,[注:事实上,0≤x≤90且x是6的整数倍].由一次函数的性质可知,当x=90时,Q最小.此时按三种裁法分别裁90张、75张、0张.【解答】解:(1)按裁法二裁剪时,2块A型板材块的长为120cm,150﹣120=30,所以无法裁出B型板,按裁法三裁剪时,3块B型板材块的长为120cm,120<150,而4块块B型板材块的长为160cm>150cm,所以无法裁出4块B型板;∴m=0,n=3;(2)由题意得:共需用A型板材240块、B型板材180块,又∵满足x+2y=240,2x+3z=180,∴整理即可求出解析式为:y=120﹣x,z=60﹣x;(3)由题意,得Q=x+y+z=x+120﹣x+60﹣x.。

2009年荆州市中考数学试卷(含答案)

2009年荆州市中考数学试卷(含答案)

2009年湖北荆州市初中升学考试数学试题一、选择题(每小题3分,共24分)1在-1,1,0,-2四个实数中,最大的是( ) A .-1 B .1 C .0 D .-2 2.抛物线23(1)2y x =-+的对称轴是( )A .1x =B .1x =-C . 2x =D .2x =-3.如图所示是荆州博物馆某周五天参观人数 的折线统计图,则由图中信息可知这五天参 观人数(单位:百人)的极差是( ) A . 1 B .2 C .3 D .44.如图,将一个直角三角板的斜边垂直于水平桌面,再绕斜边旋转一周, 则旋转后所得几何体的俯视图是( )5.用配方法解一元二次方程2430x x -+=时可配方得( )A.2(2)7x -= B.2(2)1x -= C.2(2)1x += D.2(2)2x +=620b +=,点M (a ,b )在反比例函数ky x=的图 象上,则反比例函数的解析式为A .2y x =B .1y x =-C .1y x =D .2y x=7.如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( ) A .3cm B .4cm C .5cm D .6cm8.如图,两同心圆的圆心为O ,大圆的弦AB 切小圆于P ,两圆的半径 分别为6,3,则图中阴影部分的面积是( )A.πB.πC.3πD.2π二、填空题(每小题3分,共18分)D C B A(第3题图)NE(第7题图)9_________. 10.如图,射线AC ∥BD ,∠A =70°,∠B =40°,则∠P= .11.如图,已知零件的外径为25mm ,现用一个交叉卡钳(两条尺长AC 和BD 相等,OC=OD )量零件的内孔直径AB .若OC ∶OA=1∶2,量得CD =10mm ,则零件的厚度_____x mm =.12.定义新运算“*”,规则:()()a ab a b b a b ≥⎧*=⎨<⎩,如122*=,(=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宁夏回族自治区2005年课程改革实验区初中毕业、高中阶段招生
数学试题参考答案及评分标准
一、选择题(每小题3分,共24分)
A 卷
B 卷
二、填空题(每小题3分,共24分)
9. x(x+y)(x-y); 10. 二、四; 11. 49; 12. (5,2); 13. 14; 14. 49°; 15. 100; 16.)0,32(-或)0,268.0(;
三、解答题(共24分) 17.(6分)原式
2
2
1131=-
+= …………………6分
18. (6分)原式1
)
1)(1(1++-+
-⋅
=
x x x x
x x
2211-=-+-=x x x (4)

当12+=x 时,原式22= …………………6分
19. (6分) ⑴平均数21(岁) …………………2分
⑵众数21(岁) …………………4分 中位数21(岁) …………………6分
20. (6分)把x=3代入方程ax+12=0
得:a=-4 …………………3分 把a=-4代入不等式(a+2)x<-6
得:x>3 …………………6分
四、解答题(共48分)
21. (6分) ⑴每写出一对相似三角形得1分; …………………3分
⑵ 图中相等线段为:AD=BD …………………4分 说明理由 …………………6分 22. (6分)⑴ 设:黄球的个数为x 个
则,根据题意:
3
1545=++x
解之得:x=6 …………………3分 ⑵ 任意摸出一个红球的概率:
15
4 …………………6分
23. (8分)解:⑴建立如图所示的直角坐标系.
过点B 作BM ⊥x 轴 则 ∠ABM=60° ∵ ∠NBC=30°
∴ ∠ABC=90° …………………2分 在Rt △ABC 中, ∵ AB=3
500米, BC=500米
∴ AC=
2
2
BC
AB
+=1000(米) …………………4分
⑵ ∵ tan ∠BAC=AB
BC =3
500
500
=
3
3
∴ ∠BAC=30° …………………6分 ∴ 目的地C 在营地A 的北偏东30°的方向. …………………8分
25.(10分)
解法一 : 设0时~5时的一次函数关系式为b kx y +=1 …………………1分 将点(0,3) (5,-3)分别代入上式得:
3=b
5
6-
=k
∴ 3
5
61
+-=x y
…………………3分
设5时~8时的一次函数关系式为b kx y +=2 …………………4分 将点(5,-3) (8,5)分别代入上式得:
⎩⎨
⎧=+-=+5
835b k b k
解之得:3
8=
k 3
49-
=b
∴ 3
493
82
-
=x y
…………………6分
当1y 、2y 分别为零时,2
51
=
x 8
492
=
x
而 3
8
292
58
4912
>=-=
-x x
∴ 应采取防霜冻措施. …………………10分 解法二:设AB 、BC 分别交x 轴于M 、N ,点E(5,0)点F (8、0),点Q (0,-3) ∵ △AOM ∽△AQB
∴ OM=2.5 EM=OE-OM=2.5 ……………4分 同理:△BEN ∽△CFN 得:8
9=EN
……………8分
则:MN 8
29=>3
∴应采取防霜冻措施. ……………10分 26.(10分) ⑴ 在Rt △ABC 中,
∵ AC=3 BC=4 ∴ AB=5 ……………1分 因AE=x 则AF=6-x (AF<5) 过点F 作FD ⊥AC 于D ∵ Rt △ADF ∽Rt △ACB ∴ BC FD AB
AF
=
即)
6(5
44
5
6x FD FD x
-=⇒=-
…………………3分
(利用解直角三角形得到FD 同样给分) 则S △AEF x
x x x FD AE 5
1252)6(5
4212
12
+
-
=-⋅
⋅=
⋅=
)30(<<x (5)

⑵ 当S △AEF =2
1=S △ABC =3时,
得到: 3
5125
22
=+
-
x x
整理得: 2x 2
-12x+15=0 解之得: 2
6
62
-=
x
, 2
6
62
+=
x
……………8分
∵ 30<<x ∴2
6
62
+=
x (舍去)
当 26
6-=
x
时, 5
2
6
66<+=
-
x
∴这样的EF 存在. …………………10分 A B C
M
F
O y (°C )
x (时)
Q
E
N
24.(8分)符合题意的三角形每画出一个得4分
例如(下列画法仅供参考)
697
8
5
4
4
2
3
1。

相关文档
最新文档