2016年华罗庚金杯赛初一初赛试题及答案
2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小中组A卷)
2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小中组A卷)一、填空题(每小题10分,共80分)1.(10分)计算:(98×76﹣679×8)÷(24×6+25×25×3﹣3)=.2.(10分)从1,2,3,4,5这5个数中选出4个不同的数填入下面4个方格中□+□>□+□,有种不同的填法使式子成立.(提示:1+5>2+3和5+1>2+3是不同的填法)3.(10分)将图中左边的大三角形纸板剪3刀,得到4个大小相同的小三角形纸板(第一次操作),见图中间,再将每个小三角形纸板剪3刀,得到16个大小相同的更小的三角形纸板(第二次操作),见图右边,这样继续操作下去,完成前六次操作共剪了刀.4.(10分)一个两位数与109的乘积为四位数,它能被23整除且商是一位数,这个两位数最大等于.5.(10分)图中的网格是由6个相同的小正方形构成,将其中4个小正方形涂上灰色,要求每行每列都有涂色的小正方形,经旋转后两种涂色的网格相同,则视为相同的涂法,那么有种不同的涂色方法.6.(10分)有若干个连续的自然数,任取其中4个不同的数相加,可得到385个不同的和.则这些自然数有个.7.(10分)在4×4方格网的每个小方格中都填有一个非零自然数,每行、每列及每条对角线上的4个数之积都相等,如图给出了几个所填的数,那么五角星所在的小方格中所填的数是.8.(10分)甲、乙两人在一条长120米的直路上来回跑,甲的速度是5米/秒,乙的速度是3米/秒,若他们同时从同一端出发跑了15分钟,则他们在这段时间内共迎面相遇次(端点除外).二、解答题(共4小题,满分20分)9.(5分)图中有一个边长为6厘米的正方形ABCD与一个斜边长为8厘米的等腰直角三角形AEF,E在AB的延长线上,则图中阴影部分的面积为多少平方厘米?10.(5分)有10个两两不同的自然数,其中任意5个的乘积是偶数,全部10个数的和是奇数,则这10个自然数的和最小是多少?11.(5分)在1到200这200个自然数中任意选数,至少要选出多少个才能确保其中必有2个数的乘积等于238?12.(5分)最初,盒子中有三张卡片,分别写着数1,2,3,每次,从盒子里取出两张卡片,将上面的数之和写到另一张空白卡片上,再把一张卡片放回盒子,如此5次后,除了最后一张写数的卡片外,其他的卡片都至少取出过一次,不超过两次,问:此时盒子里面卡片上的数最大为多少?2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小中组A卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)计算:(98×76﹣679×8)÷(24×6+25×25×3﹣3)=1.【分析】有括号,所以先算括号里面的,再算括号外面的,据此解答即可.【解答】解:(98×76﹣679×8)÷(24×6+25×25×3﹣3)=(7448﹣5432)÷(144+1875﹣3)=2016÷2016=1;故答案为:1.【点评】计算四则混合运算时,要按照运算顺序,先算乘除,后算加减,有括号的先算括号里面的,再算括号外面的,如果既含有小括号又含有中括号,要先算小括号里面的,再算中括号里面的.2.(10分)从1,2,3,4,5这5个数中选出4个不同的数填入下面4个方格中□+□>□+□,有48种不同的填法使式子成立.(提示:1+5>2+3和5+1>2+3是不同的填法)【分析】我们可以从首尾数字入手考虑:比1+5大的组合入手(有1种),就有3+4>1+5比1+4大的组合入手(有2种),就有2+5>1+4,3+5>1+4比1+3大的组合入手(有3种),就有2+4>1+3,2+5>1+3,4+5>1+3以此类推,比1+2大的组合有3种比2+3大的组合有2种比2+4大的组合有1种每种组合有4种不同的填法,依此即可求解.【解答】解:比1+5大的组合入手(有1种),就有3+4>1+5比1+4大的组合入手(有2种),就有2+5>1+4,3+5>1+4比1+3大的组合入手(有3种),就有2+4>1+3,2+5>1+3,4+5>1+3以此类推,比1+2大的组合有3种比2+3大的组合有2种比2+4大的组合有1种(1+2+3)×2×4=12×4=48(种)答:有48种不同的填法使式子成立.故答案为:48.【点评】考查了填符号组算式,关键是得到所有组合的情况数,另外理解每种组合有4种不同的填法.3.(10分)将图中左边的大三角形纸板剪3刀,得到4个大小相同的小三角形纸板(第一次操作),见图中间,再将每个小三角形纸板剪3刀,得到16个大小相同的更小的三角形纸板(第二次操作),见图右边,这样继续操作下去,完成前六次操作共剪了4095刀.【分析】首先分析第二块是剪3刀,变成4块,之后就是每一块上都是3刀,继续计算即可.【解答】解:依题意可知:第一次是剪3刀变成4块.第二次是每一块都被剪3刀共12刀变成16块.第三次为16×3=48(刀);块数是16×4=64(块);第四次为64×3=192(刀);块数是64×4=256(块);第五次为256×3=768(刀);块数是256×4=1024(块);第六次为1024×3=3072(刀).3+12+48+192+768+3072=4095.故答案为:4095【点评】本题考察队找规律的理解和运用,关键问题是找到块数和刀数的关系.问题解决.4.(10分)一个两位数与109的乘积为四位数,它能被23整除且商是一位数,这个两位数最大等于69.【分析】按题意,此两位数是23的倍数,而使此两位数与109的乘积为四位数,则此两位数能取得数为:23、46、69,而最大的是69.【解答】解:根据分析,此两位数是23的倍数,而使此两位数与109的乘积为四位数,则此两位数能取得数为:23、46、69,综上,这个两位数最大为69,故答案是:69.【点评】本题考查了数的整除特征,突破点是:从能被23整除且商是一位数,推测出此两位数.5.(10分)图中的网格是由6个相同的小正方形构成,将其中4个小正方形涂上灰色,要求每行每列都有涂色的小正方形,经旋转后两种涂色的网格相同,则视为相同的涂法,那么有7种不同的涂色方法.【分析】首先可以根据第一列涂色的数量进行分类讨论,注意考虑旋转后相同的视为相同涂法.【解答】解:①当第一列涂了3个时,涂色情况如下:,有3种情况;②当第一列涂了2个时,涂色情况如下:,有4种情况.共计3+4=7种.故答案为:7.【点评】本题的突破口在于能正确分类,做到不重不漏,难度不大.6.(10分)有若干个连续的自然数,任取其中4个不同的数相加,可得到385个不同的和.则这些自然数有100个.【分析】假设这些连续的自然数中最小的数为a,最大的教为a+n+3,那么任取4个自然数和最小必为a+a+1+a+2+a+3=4a+6,最大的和为a+n+a+n+1+a+n+2+a+n+3=4a+6+4n.且由于连续自然数之间的所有和都能够取到.可得方程4n=385﹣1,解得n=96,依此得到最小的自然数为a.最大的自然数为a+99,共100个数,从而求解.【解答】解:设这些连续的自然数中最小的数为a,最大的教为a+n+3,那么任取4个自然数和最小必为a+a+1+a+2+a+3=4a+6,最大的和为a+n+a+n+1+a+n+2+a+n+3=4a+6+4n.依题意有4n=385﹣1,解得n=96.则最小的自然数为a,最大的自然数为a+99,共100个数.答:这些自然数有100个.故答案为:100.【点评】考查了数字问题,得到4个连续自然数最小和和最大的和是解题关键.7.(10分)在4×4方格网的每个小方格中都填有一个非零自然数,每行、每列及每条对角线上的4个数之积都相等,如图给出了几个所填的数,那么五角星所在的小方格中所填的数是1.【分析】首先分析题中的幻方规律可知可根据比较法求解,不需要求出幻和.【解答】解:依题意可知:根据幻方规律比较法可知:设方格数字如图所示:a×2×16×b=a×8×32×8,∴b=64.再根据c×4×8×128=64×c×五角星×64五角星就是1故答案为:1【点评】本题考查对幻方的理解和运用,关键问题是根据比较法求解,问题解决.8.(10分)甲、乙两人在一条长120米的直路上来回跑,甲的速度是5米/秒,乙的速度是3米/秒,若他们同时从同一端出发跑了15分钟,则他们在这段时间内共迎面相遇23次(端点除外).【分析】根据题意,要明白他们的迎面相遇时,2人一共的行程是2个单程120×2=240(米),用时为240÷(3+5)=30(秒),即每30秒就相遇一次(包括端点的).那端点的相遇用时为:2人单程用时(120÷3=40,120÷5=24)的公倍数,最小公倍数第一次在端点相遇的用时.用120÷30=4可知,他们4次相遇中就有1次为端点相遇.即15分钟内相遇的总次数为:15×60÷30=30,其中在端点相遇的次数为30÷4的整数部分,即7.所以他们在这段时间内共迎面相遇(端点除外)的次数为:30﹣7=23【解答】解:240÷(3+5)=30(秒)120÷3=40(秒)120÷5=24(秒)40与24的最小公倍数120(2人第一次在端点相遇的用时)120÷30=415×60÷30=30(次)30÷4=7 (2)30﹣7=23(次)答:他们在这段时间内共迎面相遇23次(端点除外).【点评】此题的关键是搞明白他们每次相遇的2人行程均为240米和每次在端点相遇的用时为:2人单程用时(120÷3=40与120÷5=24)的公倍数.二、解答题(共4小题,满分20分)9.(5分)图中有一个边长为6厘米的正方形ABCD与一个斜边长为8厘米的等腰直角三角形AEF,E在AB的延长线上,则图中阴影部分的面积为多少平方厘米?【分析】按题意,阴影部分的面积与直角三角形的面积之和,等于正方形的面积加上三角形BGE的面积,故可以先求得三角形BGE的面积,即可求得阴影部分的面积.【解答】解:根据分析,BG=BE=AE﹣AB=8﹣6=2(厘米),故三角形BGE的面积=BG×BE×=×2×2=2(平方厘米),因为三角形AEF为等腰直角三角形,所以由AE2=AF2+FE2得出AF=4,阴影部分的面积+△AEF的面积=正方形ABCD的面积+△BGE的面积⇒阴影部分的面积=正方形ABCD的面积+△BGE的面积﹣△AEF的面积=6×6+2﹣4×4×=22(平方厘米),故答案是:22【点评】本题考查三角形的面积,突破点是:阴影部分的面积与直角三角形的面积之和,等于正方形的面积加上三角形BGE的面积,即可求得阴影部分的面积.10.(5分)有10个两两不同的自然数,其中任意5个的乘积是偶数,全部10个数的和是奇数,则这10个自然数的和最小是多少?【分析】按题意,任意5个的乘积是偶数,说明至多有4个奇数,又全部10个数的和是奇数,则奇数的个数为1个或3个,取奇数里的最小数1或1,3,5,其他几个数可能的情况,分别比较大小,求出最小值.【解答】解:根据分析,10个自然数中奇数的个数为1个或3个,①只有一个奇数时,则奇数最小为1,其他偶数最小的为:0,2、4、6、8、10、12、14、16、18,此时自然数和=0+1+2+4+6+8+10+12+14+16+18=91;②若有三个奇数,则奇数为1、3、5,则其他偶数最小为:0,2、4、6、8、10、12此时自然数和=0+1+3+5+2+4+6+8+10+12=51.综上,这10个自然数的和最小是51.故答案是:51.【点评】本题考查数字和问题,突破点是:求出奇数的个数,和偶数的个数,再求和.11.(5分)在1到200这200个自然数中任意选数,至少要选出多少个才能确保其中必有2个数的乘积等于238?【分析】首先分析238的因数,使其中2个因数相乘得238的共4组,利用最不利原则求出结果.【解答】解:依题意可知:将238分解成小于200的数字积有238=17×14=7×34=2×119共有三组.的两位数相乘的因数有(17,14),(7,34),(2,119)共6个数约数分为3组.最不利原则是其他的194选择了,再从三组因数中每组挑选一个共197个,再选择一个就是组成两个因数的积是238了.共197+1=198;答:至少选出198个才能保证有连个数的乘积是238.【点评】本题是考查对抽屉原来的理解和运用,关键的问题是分组找出最倒霉的情况,问题解决.12.(5分)最初,盒子中有三张卡片,分别写着数1,2,3,每次,从盒子里取出两张卡片,将上面的数之和写到另一张空白卡片上,再把一张卡片放回盒子,如此5次后,除了最后一张写数的卡片外,其他的卡片都至少取出过一次,不超过两次,问:此时盒子里面卡片上的数最大为多少?【分析】由已知可知:最后一共得到8个数,所有得数一共加了2×5=10次,由于每张卡片至少取过1次,不超过两次,有4个数被计算了一次,第七个数只会被第8个数计算一次,因此第7个数只会被计算一次,要想卡片上的数尽可能的大,要让4,5,6个数计算两次,第1,2,3个数计算1次,可以使第8个数最大,分情况讨论即可.【解答】解:由分析可得:要想卡片上的数尽可能的大要让4,5,6个数计算两次,第1,2,3个数计算1次可以使第8个数最大①1,2,3,4,6,10,16,26②1,2,3,3,6,9,15,24③1,2,3,5,6,11,17,28答:此时盒子里面卡片上的数最大为28.【点评】本题可以应用这个方法:为了使最后得到的数字最大,那么尽量保证每次取得的都是交大的两个数相加,在整个过程中还得保证1至少用一次,1可以是任意一次取得的,利用枚举法即可.。
华杯赛决赛第13~16届(初一组)试题及答案(精心汇编)
9. 答案:20,21,22. 解答: 设最小角为 x, 最大角为 4x, 另一个角为 y. 则由题目的条件得
x y 4x 180 , x y 4x , 4x 90
①
由①的前两个式子得到: 6x x y 4x 180 9x , 解得 20 x 30 ; 又由①的第三
xy 0 . 因此, 三个相等的式子只有两种可能:
(1) x y xy x . 由后一等式得到, y 1或 y 1, 而 y 1是不可能的, 因为 y
此时由第一个等式得到 x 1 x , 矛盾. 当 y 1 时, 由第一个等式得到 x 1 x , 即 2x 1 , 所以 x 1 .
Пᰃ
乍ᓣ.
4. ϔৡ䖤ࡼਬ䖯㸠⠀ቅ䆁㒗, Ңቅ㛮ߎথ, Ϟቅ䏃䭓 10 ग㉇, ↣ᇣᯊ㸠 3 ग㉇;
⠀ࠄቅ乊ৢ⊓ॳ䏃ϟቅ, ϟቅ↣ᇣᯊ㸠 5 ग㉇, 䙷М䖭ԡ䖤ࡼਬϞϟቅⱘᑇ
ഛ䗳ᑺᰃ↣ᇣᯊ
20
3y
10
25 y 25
2
0
第十三届全国“华罗庚庚金杯”少年数学邀请赛决赛试卷(初一组)
第十三届“华罗庚金杯”少年数字邀请赛
决赛试题参考答案(初一组)
一、填空(每题 10 分,共 80 分)
题号 1
2
3
4
5
6
7
8
答案 1℃ 29
8
6 2017036 0
6
4
二、解答下列各题(每题 10 分,共 40 分,要求写出简要过程)
2 (2) x y xy x . 由后一等式同样得到, y 1或 y 1, 同样, y 1是不可能
y 的, 而当 y 1时, 由第一个等式得到 2x 1, 所以 x 1 .
华杯赛初赛历年真题集(含答案)
目录2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (3)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (5)2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷 (11)2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷 (13)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (19)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (23)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (30)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (32)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (38)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (40)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (46)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (48)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (53)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (55)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (60)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (63)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (70)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (72)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (79)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (81)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则A、B、C处填的数各是多少?4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?5.“神舟五号”载人飞船载着航天英雄杨利伟于2003年10月16日清晨6时51分从太空返回地球,实现了中华民族的飞天梦.飞船绕地球共飞行14圈,其中后10圈沿离地面343千米的圆形轨道飞行.请计算飞船沿圆形轨道飞行了多少千米(地球半径为6371千米,圆周率π=3.14).6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?11.如图,大小两个半圆,它们的直径在同一直线上,弦AB与小圆相切,且与直径平行,弦AB长12厘米.求图中阴影部分的面积(圆周率π=3.14).12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与解析一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?考点:竖式数字谜.专题:填运算符号、字母等的竖式与横式问题.分析:根据整数加法的计算方法进行推算即可.解答:解:解法一:个位上:0+“杯”=4,可得“杯”=4;十位上:1+“华”的末尾是0,由1+9=10,可得“华”9,向百位上进1;百位上:9+1=10,向千位上进1;千位上:1+1=2;由以上可得:;因此,“华杯”代表的两位数是94.解法二:已知1910与“华杯”之和等于2004;那么“华杯”=2004﹣1910=94;因此,“华杯”代表的两位数是94.点评:本题非常巧妙地考察了对整数的加法运算法则及数位的进位等知识要点的熟悉掌握程度.2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?考点:百分数的实际应用;长方形的周长;长方形、正方形的面积.专题:分数百分数应用题.分析:设长方形的长为a,宽为b,因此各边长增加10%时,则长为(1+10%)a=110%a,长为(1+10%)b=110%b,因此各边长增加10%时,周长增加2(1.1a+1.1b)﹣2(a+b)=2(a+b)×10%,即周长增加10%.面积增加1.1a×1.1b﹣ab=1.21ab﹣ab=ab×21%,即面积增加21%.解答:周长增加10%,面积增加21%解:设长方形的长为a,宽为b,边长增加10%时,则长为(1+10%)a=110%a,长为(1+10%)b=110%b,周长增加:2(110%a+110%b)﹣2(a+b)=220%a+220%b﹣2a﹣2b=2(a+b)×10%;面积增加:110%a×110%b﹣ab=121%ab﹣ab=ab×21%;答:周长增加了10%,面积增加了21%.点评:在求出长宽增加后的长度基础上,根据长方形的周长与面积公式计算是完成本题的关键.3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则A、B、C处填的数各是多少?考点:正方体的展开图.专题:立体图形的认识与计算.分析:如图,是正方体展开图的“222”结构,把它折叠成正方体后,A面与1面相对,B面与2面相对,C 面与4面相对,相使使其对面两数之和为7,A面填6,B面填5,C面填3.解答:解:如图,折成正方体后,A面与1面相对,B面与2面相对,C面与4面相对,要使其对面之各为7,则A面填6,B面填5,C面填3.点评:本题是考查正方体的展开图,关键是弄清把它折叠成正方体后,哪两个面相对.4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?考点:数列中的规律.专题:探索数的规律.分析:这列数的特点是每个数的分母比分子大2,分子为奇数列,要使1﹣<,则n>999.5,即从n=1000开始,带入分数,即可得解.解答:解:这列数的特点是每个数的分母比分子大2,分子为奇数列,1﹣<,n>999.5,从n=1000开始,即从开始,满足条件.答:从开始,1与每个数之差都小于.点评:找出这列数的规律,根据已知列出等式求解.5.“神舟五号”载人飞船载着航天英雄杨利伟于2003年10月16日清晨6时51分从太空返回地球,实现了中华民族的飞天梦.飞船绕地球共飞行14圈,其中后10圈沿离地面343千米的圆形轨道飞行.请计算飞船沿圆形轨道飞行了多少千米(地球半径为6371千米,圆周率π=3.14).考点:有关圆的应用题.专题:平面图形的认识与计算.分析:先圆形轨道的半径,再根据圆的周长公式:C=2πr求出飞船沿圆形轨道飞行1圈的长度,再乘以10即可求出飞船沿圆形轨道飞行了多少千米.解答:解:2×3.14×(6371+343)×10=2×3.14×6714×10=3.14×134280=421639.2(千米);答:飞船沿圆形轨道飞行了421639.2千米.点评:考查了有关圆的应用题,关键是熟练掌握圆的周长公式.6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?考点:染色问题.专题:传统应用题专题.分析:根据四个扇形中有一个红色、两个、三个、四个分类列举即可.解答:解:按逆时针方向涂染各扇形:红红红红红红红黄红红黄黄红黄红黄红黄黄黄黄黄黄黄所以,共有6种.点评:本题考查了排列组合知识中的染色问题,还可以列式解答:4×(4﹣1)÷2=6(种).7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?考点:时间与钟面.专题:时钟问题.分析:可设当前是9点x分,则5分钟前分针指向x﹣5的位置,而分针转动的速度是时针的12倍,分针5分钟后指向x+5的位置,时针指向9刻度后刻度处,根据题意列出方程解答即可.解答:解:设当前时刻是9点x分.则5分钟后时针的位置为45+=x﹣5540+x+5=12x﹣6011x=605x=55;答:此时刻是9点55分.点评:本题主要考查钟表问题的实际应用,熟练掌握钟表的特征是解答本题的关键.8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?考点:抽屉原理.专题:传统应用题专题.分析:建立抽屉:一副扑克牌有54张,大小鬼不相同,那么(54﹣2)÷4=13,所以一共有13+2=15个抽屉;分别是:1、2、3、…K、小鬼、大鬼,由此利用抽屉原理考虑最差情况,即可进行解答.解答:解:建立抽屉:54张牌,根据点数特点可以分别看做15个抽屉,考虑最差情况:每个抽屉都摸出了1张牌,共摸出15张牌,此时再任意摸出一张,无论放到哪个抽屉,都会出现有两张牌在同一个抽屉,即两张牌点数相同,15+1=16(张),答:至少抽取16张扑克牌,方能使其中至少有两张牌有相同的点数.点评:此类问题关键是根据点数特点,建立抽屉,这里要注意考虑最差情况.9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?考点:带余除法.专题:余数问题.分析:先设这个两位数为10a+b,则可用含a、b的代数式表示将它依次重复写3遍成的一个8位数,再将此8位数除以该两位数得到商为1010101,然后将1010101除以9即可求解.解答:解:设这个两位数为10a+b,则将它依次重复3遍成的一个8位数为:1000000(10a+b)+10000(10a+b)+100(10a+b)+10a+b=1010101(10a+b),将此8位数除以该两位数得到的商为:1010101(10a+b)÷(10a+b)=1010101,则1010101÷9=112233…4.答:得到的余数是4.点评:本题考查了带余除法的定义及应用,难度中等,用含a、b的代数式正确表示将(10a+b)这个数依次重复写3遍成的一个8位数是解题的关键.10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?考点:图形的拆拼(切拼).专题:平面图形的认识与计算.分析:因为这块长方形木板的面积为90×40=3600(平方厘米),又因为3600=60×60,即所求的正方形的边长为60厘米,如下图所示.解答:解:因为90×40=3600,3600=60×60,所求的正方形的边长为60厘米,可以如下图拼成:因此,能拼成一个正方形.点评:先求出总面积,看看是否能分成两个数的平方.11.如图,大小两个半圆,它们的直径在同一直线上,弦AB与小圆相切,且与直径平行,弦AB长12厘米.求图中阴影部分的面积(圆周率π=3.14).考点:组合图形的面积.专题:平面图形的认识与计算.分析:将小圆缩小至0,则AB就是大圆直径,阴影部分就是大圆的一半,利用圆的面积公式即可求解.解答:解:将小圆缩小至0,则AB就是大圆直径,阴影部分就是大圆的一半,所以阴影部分的面积是:×3.14×(12÷2)2=×3.14×36=56.52(平方厘米);答:图中阴影部分的面积是56.52平方厘米.点评:此题可以巧妙地利用“缩小法”,得出阴影部分的面积与直径为AB的圆的面积的关系,问题即可得解.12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?考点:有关圆的应用题.专题:平面图形的认识与计算.分析:由于小铁环的半径为25厘米,大铁环的半径为50厘米,可得小铁环的半径是大铁环半径的一半.根据周长与半径的关系可得大环周长是小环的2倍,即小环沿大环转2个周长时又回到原位,再减去公转的1圈,可得小环自身转动的圈数.解答:解:由于小铁环的半径是大铁环半径的一半,所以大环周长是小环的2倍,即小环沿大环转2个周长时又回到原位,其中有1个周长属于小环公转的,而另一个周长才是小环自身转动的,因此,小环自身转动1圈.点评:本题考查了圆与圆的位置关系,小铁环运动的圈数乘以它的周长就等于大铁环的周长.2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家歌伦布首次远洋航行是在1492年.问这两次远洋航行相差多少年?2.从冬至之日起每九天分为一段,依次称之为一九,二九,…,九九,2004年的冬至为12月21日,2005年的立春是2月4日.问立春之日是几九的第几天?3.如图是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是多少?4.爸爸、妈妈、客人和我四人围着圆桌喝茶.若只考虑每人左邻的情况,问共有多少种不同的入座方法?5.在奥运会的铁人三项比赛中,自行车比赛距离是长跑的4倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米.求三项的总距离.6.如图,用同样大小的正三角形,向下逐次拼接出更大的正三角形.其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问这列数中的第9个是多少?7.一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示.若用甲容器取水来注满乙容器,问:至少要注水多少次?8.100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组.问:高、低年级学生各多少人?9.小鸣用48元钱按零售价买了若干练习本.如果按批发价购买,每本便宜2元,恰好多买4本.问:零售价每本多少元?10.不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈.问最多有多少名同学?11.输液100毫升,每分钟输2.5毫升.请你观察第12分钟时吊瓶图象中的数据,回答整个吊瓶的容积是多少毫升?12.两条直线相交所成的锐角或直角称为两条直线的“夹角”.现平面上有若干条直线,它们两两相交,并且“夹角”只能是30°,60°或90°.问:至多有多少条直线?2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与试题解析一、解答题(共12小题,满分0分)1.2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家歌伦布首次远洋航行是在1492年.问这两次远洋航行相差多少年?考点:日期和时间的推算.分析:先求出郑和首次下西洋的时间,再求差.解答:解:2005﹣600=1405(年),1492﹣1405=87(年).答:这两次远洋航行相差87年.点评:本题先根据2005年求出郑和首次下西洋的时间,再用较晚的时间减去较早的时间.2.从冬至之日起每九天分为一段,依次称之为一九,二九,…,九九,2004年的冬至为12月21日,2005年的立春是2月4日.问立春之日是几九的第几天?考点:日期和时间的推算.分析:先求出2004年的12月21日到2005年的2月4日经过了多少天,再求这些天里有几个9天,还余几天,再根据余数推算是几九第几天即可.解答:解:2004年的12月21日到12月31日共有11天,1月份有31天,2月4日是2月的第四天,那么一共经过了:11+31+4=46(天),46÷9=5…1,说明已经经过了5个9天,还余1天,这一天就是六九的第一天.答:立春之日是六九的第1天.点评:本题的是9天为1个周期,先求出经过的天数(注意两头的天数都算),再求这些天里有几个9天,还余几天,再根据余数判断.3.如图是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是多少?考点:规则立体图形的体积.分析:根据棱柱的体积公式:底面积×高,进行计算.解答:解:因为直三棱柱的底面是直角边都为1的直角三角形,高为1,所以直三棱柱的体积=×1×1×1=.答:这个直三棱柱的体积是.故答案为:.点评:本题考查了直三棱柱及展开图的特征和直三棱柱体积计算.直三棱柱是由三个长方形的侧面和上下两个底面组成.4.爸爸、妈妈、客人和我四人围着圆桌喝茶.若只考虑每人左邻的情况,问共有多少种不同的入座方法?考点:加法原理.分析:可先把我放在第一个位置,进而考虑我的左邻的情况,我的左邻的左邻的情况,找到总情况数即可.解答:解:共有6种不同的入座方法.点评:考查用列表法解决问题;把1个人固定位置,进而考虑左邻的情况是解决本题的关键.5.在奥运会的铁人三项比赛中,自行车比赛距离是长跑的4倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米.求三项的总距离.考点:分数除法应用题.分析:把自行车的距离看成单位“1”,那么长跑的距离就是自行车的,游泳的距离是自行车的,它们的差对应的数量是8.5千米,用除法可以求出自行车的距离,根据自行车的距离求出另外两项的距离,再把三者加起来.解答:解:自行车比赛距离是长跑的4倍,那么长跑的距离就是自行车的,8.5÷()=8.5÷,=40(千米);40×=10(千米);40×=1.5(千米);40+10+1.5=51.5(千米);答:三项的总距离是51.5千米.点评:本题关键是把倍数关系看成一个是另一个的几分之几,找出单位“1”分析出数量关系,再由基本的数量关系求解.6.如图,用同样大小的正三角形,向下逐次拼接出更大的正三角形.其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问这列数中的第9个是多少?考点:事物的简单搭配规律.分析:观察图形,分析数列,发现规律:从第一个数开始,后面的数依次比前一个数多3、4、5、6、7、…据此规律,推出即可.解答:解:6﹣3=3;10﹣6=4;15﹣10=5;21﹣15=6;…从第一个数开始,后面的数依次比前一个数多3、4、5、6、7、…往下写数:3,6,10,15,21,28,36,45,55,…第9个数是55.答:这列数中的第9个是55.点评:观察图形,分析数列,发现规律,然后利用规律解决问题.7.一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示.若用甲容器取水来注满乙容器,问:至少要注水多少次?考点:规则立体图形的体积.分析:根据圆锥的体积公式求出容器甲容积,根据球的体积公式求出容器乙容积,相除即可求解.解答:解:容器甲容积:V甲=×π×()2×1=π;容器乙容积:V乙=×π×13=π,V乙÷V甲=π÷π=8.答:至少要注水8次.点评:考查了圆锥的体积和球的体积.球的体积公式是V=πr3.圆锥的体积是V=sh=πr2h.8.100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组.问:高、低年级学生各多少人?考点:鸡兔同笼.分析:可设高年级有学生x人,则低年级的学生有100﹣x人,根据等量关系:高年级组数+低年级组数=41组解答即可.解答:解:高年级有学生x人,则低年级的学生有100﹣x人,由题意得:=41,3x+2(100﹣x)=246,3x+200﹣2x=246,x=46,100﹣46=54(人),答:高年级有46人,低年级有54人.点评:此类题目中一般都有两个等量关系,抓住其中一个等量关系设出一个未知数,从而得出另一个未知数;另一个等量关系用来列方程.9.小鸣用48元钱按零售价买了若干练习本.如果按批发价购买,每本便宜2元,恰好多买4本.问:零售价每本多少元?考点:整数、小数复合应用题;合数与质数;质数与合数问题.分析:先将48分解质因数:48=1×48=2×24=3×16=4×12=6×8,因数全写出来,再找出里面相差分别是2和4的,那么这两个算式就分别为零售价和批发价.解答:解:48=48=1×48=2×24=3×16=4×12=6×8,找出里面相差分别是2和4的,那么这两个算式就分别为零售价和批发价;只有4×12和6×8,12比8多4,4比6少2,则零售价为6元,批发价为4元;答:零售价为6元.点评:解答此题应结合合数和质数的含义进行分析,通过分解质因数,找出符合题意的答案即可.10.不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈.问最多有多少名同学?考点:最大与最小.分析:设两种组合外圈的组数为a、b,那么第一种的人数是5+8a人,第二种的人数是8+5b人,因为总人数一定相等,求出a与b的关系,根据a和b关系讨论取值.解答:解:设两种组合外圈的组数为a、b,那么第一种的人数是5+8a,第二种的人数是8+5b,则5+8a=8+5b即;8a=5b+3,当b=1时,a=1,总人数为5+8×1=13(人);当b=9时,a=6,总人数为5+8×6=53(人);当b=17时,a=11,总人数为5+8×11=93(人).数字再大就超过100了,所以最多有93人.答:最多有93名同学.点评:本题先找出两种组数之间的关系,然后根据组数是自然数和它们之间的关系讨论取值,找出100以内最大的即可.11.输液100毫升,每分钟输2.5毫升.请你观察第12分钟时吊瓶图象中的数据,回答整个吊瓶的容积是多少毫升?考点:整数、小数复合应用题.分析:水平面的刻度是80毫升,说明空的部分是80毫升;根据每分钟的输液量和输液时间求出已经输出的体积,用100毫升减去已经输出的体积就是瓶内剩下的体积;整个吊瓶的容积就是空的部分加剩下的这部分体积.解答:解:100﹣2.5×12=70(毫升),80+70=150(毫升),答:整个吊瓶的容积是150毫升.点评:本题第12分时瓶子上方没有溶液的容积的等量关系是解决本题的关键.12.两条直线相交所成的锐角或直角称为两条直线的“夹角”.现平面上有若干条直线,它们两两相交,并且“夹角”只能是30°,60°或90°.问:至多有多少条直线?考点:乘法原理.分析:根据题意,“夹角”只能是30°,60°或90°,都是30°的倍数,根据这个倍数,通过旋转的方法,进一步解答即可.解答:解:因为夹角只能是30°、60°或者90°,其均为30°的倍数,所以每画一条直线后,逆时针旋转30°画下一条直线,这样就能够保证两两直线夹角为30°的倍数,即为30°、60°或者90°(因为如果每次旋转度数其他角度,例如15°,则必然会出现两条直线的夹角为15°或15°的其它倍数,如45°这与题目不符);因为该平面上的直线两两相交,也就是说不会出现平行的情况,在画出6条直线时,直线旋转过5次,5×30°=150°,如果再画出第7条直线,则旋转6次,6×30°=180°,这样第七条直线就与第一条直线平行了.如图:所以最多能画出六条.答:至多有6条直线.点评:根据题意,由题目给出的条件,通过旋转的方法进一步解答即可.2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷一、选择题(共6小题,每小题6分,满分36分)1.(6分)如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB 的中点M和BC 的中点N,剪掉AMBN得五边形AMNCD.则将折叠的五边形AMNCD纸片展开铺平后的图形是()A.B.C.D.2.(6分)2008006共有()个质因数.A.4B.5C.6D.73.(6分)(2007•北塘区)奶奶告诉小明:“2006年共有53个星期日”.聪敏的小明立刻告诉奶奶:2007年的元旦一定是()A.星期一B.星期二C.星期六D.星期日4.(6分)如图,长方形ABCD小AB:BC=5:4.位于A点的第一只蚂蚁按A→B→C→D→A的方向,位于C点的第二只蚂蚁按C→B→A→D→C的方向同时出发,分别沿着长方形的边爬行.如果两只蚂蚁第一次在B点相遇,则两只蚂蚁第二次相遇在()边上.A.A B B.B C C.C D D.D A5.(6分)如图,ABCD是个直角梯形(∠DAB=∠ABC=90°).以AD为一边向外作长方形ADEF,其面积为6.36平方厘米,连接BE交AD于P,再连接PC.则图中阴影部分的面积是()平方厘米.A.6.36 B.3.18 C.2.12 D.1.596.(6分)五位同学扮成奥运会吉祥物福娃贝见、晶晶、欢欢、迎迎和妮妮,排成一排表演节目,如果贝贝和妮妮不相邻,共有()种不同的排法.A.48 B.72 C.96 D.120二、填空题(共8小题,每小题3分,满分24分)7.(3分)在算式中,汉字“第、十、一、届、华、杯、赛”代表1,2,3,4,5,6.7,8,9中的7个数字,不同的汉字代表不同的数字,恰使得加法算式成立.则“第、十、一、届、华、杯、赛”所代表的7个数字的和等于_________•8.(3分)全班50个学生,每人恰有三角板或直尺中的一种,28人有直尺,有三角板的人中,男生是14人,若已知全班共有女生31人,那么有直尺的女生有_________人.9.(3分)如图是﹣个直圆柱形状的玻璃杯,一个长为12厘米的直棒状细吸管(不考虑吸管粗细)放在玻璃杯内.当吸管一端接触圆柱下底面时,另一端沿吸管最少可露出上底面边缘2厘米,最多能露出4厘米.则这个玻璃杯的容积为_________立方厘米.(取π=3.14)(提示:直角三角形中“勾6、股8、弦10)10.(3分)有5个黑色和白色棋子围成一圈,规定:将同色的和相邻的两个棋子之间放入一个白色棋子,在异色的和相邻的两个棋子之间放入一个黑色棋子,然后将原来的5个棋子拿掉,如果从图5(1)的初始状态开始依照上述规定操作下去,对于圆圈上呈现5个棋子的情况,圆圈上黑子最多能有_________个.11.(3分)李大爷用一批化肥给承包的麦田施肥.若每亩施6千克,则缺少化肥300千克;若每亩施5千克,则余下化肥200千克.那么李大爷共承包了麦田_________亩,这批化肥有_________千克.12.(3分)将从1开始的到103的连续奇数依次写成﹣个多位数:a=13579111315171921…9799101103.则数a共有_________位,数a除以9的余数是_________.13.(3分)自制的一副玩具牌共计52张(含4种牌:红桃,红方、黑桃、黑梅.每种牌都有1点、2点,…、13点牌各一张).洗好后背面朝上放好.一次至少抽取_________张牌,才能保证其中必定有2张牌的点数和颜色都相同.如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取_________张牌.。
2016年第二十一届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组A卷)
2016年第二十一届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组A卷)一、选择题(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.(10分)算式×的结果中含有()个数字0.A.2017B.2016C.2015D.2014 2.(10分)已知A,B两地相距300米.甲、乙两人同时分别从A,B两地出发,相向而行,在距A地140米处相遇;如果乙每秒多行1米,则两人相遇处距B地180米.那么乙原来的速度是每秒()米.A.2B.2C.3D.33.(10分)在一个七位整数中,任何三个连续排列的数字都构成一个能被11或13整除的三位数,则这个七位数最大是()A.9981733B.9884737C.9978137D.9871773 4.(10分)将1,2,3,4,5,6,7,8这8个数排成一行,使得8的两边各数之和相等,那么共有()种不同的排法.A.1152B.864C.576D.2885.(10分)在等腰梯形ABCD中,AB平行于CD,AB=6,CD=14,∠AEC是直角,CE=CB,则AE2等于()A.84B.80C.75D.646.(10分)从自然数1,2,3,…,2015,2016中,任意取n个不同的数,要求总能在这n个不同的数中找到5个数,它们的数字和相等.那么n的最小值等于()A.109B.110C.111D.112二、填空题(每小题10分,共40分)7.(10分)两个正方形的面积之差为2016平方厘米,如果这样的一对正方形的边长都是整数厘米,那么满足上述条件的所有正方形共有对.8.(10分)如图,O,P,M是线段AB上的三个点,AO=AB,BP=AB,M是AB的中点,且OM=2,那么PM 长为.9.(10分)设P是一个平方数.如果q﹣2和q+2都是质数,就称q为P型平方数.例如:9就是一个P型平方数.那么小于1000的最大P型平方数是.10.(10分)有一个等腰梯形的纸片,上底长度为2015,下底长度为2016,用该纸片剪出一些等腰梯形,要求剪出的梯形的两个底边分别在原来梯形的底边上,剪出的梯形的两个锐角等于原来梯形的锐角,则最多可以剪出个同样的等腰梯形.2016年第二十一届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组A卷)参考答案与试题解析一、选择题(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.(10分)算式×的结果中含有()个数字0.A.2017B.2016C.2015D.2014【分析】把变形为﹣1,然后根据乘法的分配律拆分,再进一步解答即可.【解答】解:×=(﹣1)×=×﹣=﹣个位0减9不够减,需要连续退位,个位数得1,所以数字0的个数是:2016﹣1=2015(个)故选:C.【点评】本题考查了数字问题,难点是把算式变形出含数字“0”的形式;本题也可以从最简单的算式入手,找规律,然后根据规律再回到问题中解答.2.(10分)已知A,B两地相距300米.甲、乙两人同时分别从A,B两地出发,相向而行,在距A地140米处相遇;如果乙每秒多行1米,则两人相遇处距B地180米.那么乙原来的速度是每秒()米.A.2B.2C.3D.3【分析】本题是典型的利用正反比例解行程问题.首先根据不变量判断正反比.两次相遇过程中两人的时间相同路程比等于速度比.两次过程中甲的速度没变.通分比较乙的.即可解决问题.【解答】解:第一次相遇过程中甲乙两人的路程之比为140:(300﹣140)=7:8,时间相同路程比就是速度比.第二次相遇过程中的路程比是(300﹣180):180=2:3,速度比也是2:3.在两次相遇问题中甲的速度是保持不变的,通分得,第一次速度比:7:8=14:16.第二次速度比2:3=14:21.速度从16份增加到21份速度增加每秒1米,即1÷(21﹣16)=.乙原来的速度是16×=3.2米/秒.故选:D.【点评】本题的关键是找到在两次相遇过程中的不变量,甲的速度是不变的时间,判断是正比,再将速度通分到甲的份数相同,乙的前后进行比较即可求解问题解决.3.(10分)在一个七位整数中,任何三个连续排列的数字都构成一个能被11或13整除的三位数,则这个七位数最大是()A.9981733B.9884737C.9978137D.9871773【分析】首先根据最大的3位数是11或是13的倍数开始.然后每次向后边推一位数字找出最大的倍数即可.【解答】解:在7位数中,首先分析前三位数字,最大的11的倍数是990,最大13的倍数是988,因为0不能做首位.所以7位数中不能含有数字0,11倍数的第二大数字是979小于988.所以前三位数字是988.第4位根据如果是11的倍数数字就是880.如果是13的倍数就是884.最大是884.第5位根据如果是11的倍数数字就是847,如果是13的倍数就是845.最大是847.第6位根据如果是11的倍数数字就是473,如果是13的倍数在470﹣479没有13的倍数.所以是473第7位根据如果是11的倍数是737,如果是13的倍数没有符合的数字.所以这个7位数是9884737.故选:B.【点评】本题考察是整除特性的理解,突破口是开始的三位数字988,然后根据整除找到最大的满足条件的数字即可.4.(10分)将1,2,3,4,5,6,7,8这8个数排成一行,使得8的两边各数之和相等,那么共有()种不同的排法.A.1152B.864C.576D.288【分析】首先求出1,2,3,4,5,6,7的和是28,判断出8的两边各数之和都是14;然后分4种情况:(1)8的一边是1,6,7,另一边是2,3,4,5时;(2)8的一边是2,5,7,另一边是1,3,4,6时;(3)8的一边是3,4,7,另一边是1,2,5,6时;(4)8的一边是1,2,4,7,另一边是3,5,6时;求出每种情况下各有多少种不同的排法,即可求出共有多少种不同的排法.【解答】解:1+2+3+4+5+6+7=288的两边各数之和是:28÷2=14(1)8的一边是1,6,7,另一边是2,3,4,5时,不同的排法一共有:(3×2×1)×(4×3×2×1)×2=6×24×2=288(种)(2)8的一边是2,5,7,另一边是1,3,4,6时,不同的排法一共有288种.(3)8的一边是3,4,7,另一边是1,2,5,6时,不同的排法一共有288种.(4)8的一边是1,2,4,7,另一边是3,5,6时,不同的排法一共有288种.因为288×4=1152(种),所以共有1152种不同的排法.答:共有1152种不同的排法.故选:A.【点评】此题主要考查了排列组合问题,考查了乘法原理的应用,要熟练掌握,注意不能多数、漏数.5.(10分)在等腰梯形ABCD中,AB平行于CD,AB=6,CD=14,∠AEC是直角,CE=CB,则AE2等于()A.84B.80C.75D.64【分析】如图,连接AC,过点A作AF⊥CD于点F,过点B作BG⊥CD于点G,构建直角△AFC和直角△BGC,结合勾股定理求得AE2的值.【解答】解:如图,连接AC,过点A作AF⊥CD于点F,过点B作BG⊥CD于点G,则AF=BG,AB=FG=6,DF=CG=4.在直角△AFC中,AC2=AF2+FC2=AF2+102=AF2+100,在直角△BGC中,BC2=BG2+GC2=AF2+42=AF2+16,又∵CE=CB,∠AEC=90°,∴AE2=AC2﹣EC2=AF2+100﹣(AF2+16)=84,即AE2=84.故选:A.【点评】本题考查了等腰梯形的性质,勾股定理的应用.解题的关键是作出辅助线,构建直角三角形,利用勾股定理来求AE2的值.6.(10分)从自然数1,2,3,…,2015,2016中,任意取n个不同的数,要求总能在这n个不同的数中找到5个数,它们的数字和相等.那么n的最小值等于()A.109B.110C.111D.112【分析】首先确定题中要求的是每一个数字中的数字和120的数字和就是3,那么找到最大的就是1999的是28,最小的是1的情况共有几个数字满足情况.都至多选出4个.再选一个就是满足条件的.【解答】解:依题意可知:1﹣2019中最大的数字和是1999数字和为28.数字和最小的为1共有1,10,100,1000共四个.数字和为27的有999,1899,1998,1989共四个.数字和为2﹣26的都超过5个数.那么只要2﹣26的数字和中挑出4个数字,在把数字和为1,27,28的都算上,再来一个就是5个数字了满足情况了.27×4+1+1=110.故选:B.【点评】本题考查是最倒霉的情况,想要找出5个满足条件的,那么就都给最多4个满足条件,再给一个就是满足条件的共最小是110个数字问题解决.二、填空题填空题(每小题10分,共40分)7.(10分)两个正方形的面积之差为2016平方厘米,如果这样的一对正方形的边长都是整数厘米,那么满足上述条件的所有正方形共有12对.【分析】假设大正方形的边长为x,小正方形的为y,x2﹣y2=(x+y)(x﹣y)=2016,x+y与x﹣y奇偶性相同,乘积2016是偶数,所以必是偶数,据此分解质因数2016=25×32×7,然后解答即可.【解答】解:假设大正方形的边长为x,小正方形的为y,有题意可得:x2﹣y2=2016,因式分解:(x+y)(x﹣y)=2016,x+y与x﹣y奇偶性相同,乘积2016是偶数,所以必是偶数,2016=25×32×7,2016因数的个数:(1+5)×(2+1)×(1+1)=36(个),共有因数36÷2=18对因数,其中奇因数有:(2+1)×2=6对,所以偶数有:18﹣6=12对,即,满足上述条件的所有正方形共有12对.故答案为:12.【点评】本题考查了约数个数的定理和奇偶性问题,关键是得到2016的约数的个数,难点是去掉几个奇因数;本题还可以根据x+y与x﹣y都是偶数,它们的积至少含有4这个偶数,所以2016÷4=504,然后确定504的约数是24个,即12对即可.8.(10分)如图,O,P,M是线段AB上的三个点,AO=AB,BP=AB,M是AB的中点,且OM=2,那么PM 长为.【分析】如果想求出PM那么必须找到和OM的关系,在这些线段中都和AB进行的比较,可以转换为OM,PM和AB的关系即可求解.【解答】解:依题意可知:PM=AM﹣AP=AB﹣(AB﹣BP)=AB﹣AB=AB.OM=MB﹣OB=AB﹣(AB﹣AO)=AB﹣AB=AB=2∴AB=PM=故答案为:【点评】本题的关键是找到如果想求出PM需要转换成求线段AB,再用OM求出AB,都转换成和AB的关系那么问题解决.9.(10分)设P是一个平方数.如果q﹣2和q+2都是质数,就称q为P型平方数.例如:9就是一个P型平方数.那么小于1000的最大P型平方数是225.【分析】小于1000的最大P型平方数,33的平方数是1089,这个数需要小于33的平方的平方数.q﹣2和q+2的差是4.只要找到数字相差4的不超过33的质数组合即可.【解答】解:小于33的质数有31,29,23,19,17,13,11,7,5,3,2等数字差是4的两个质数有19和23最大.21﹣2=19,21+2=23.21×21=441.故答案为:441.【点评】本题关键在于找到q﹣2和q+2的差是4的质数,而且小于33的质数.要注意找到的是这两个质数,题中要找的是一个平方数441,不是21.10.(10分)有一个等腰梯形的纸片,上底长度为2015,下底长度为2016,用该纸片剪出一些等腰梯形,要求剪出的梯形的两个底边分别在原来梯形的底边上,剪出的梯形的两个锐角等于原来梯形的锐角,则最多可以剪出4029个同样的等腰梯形.【分析】由于等腰梯形的纸片,上底长度为2015,下底长度为2016,它们上下底的长度相差1,要求剪出的梯形的两个底边分别在原来梯形的底边上,剪出的梯形的两个锐角等于原来梯形的锐角,则剪出的梯形的下底长度约大于2016﹣2015=1,依此即可求解.【解答】解:(2015﹣1)×2+1=2014×2+1=4028+1=4029(个)答:最多可以剪出4029个同样的等腰梯形.故答案为:4029.【点评】考查了图形划分,本题理解剪出的梯形的下底长度约大于2016﹣2015=1是解题的关键.。
第十六届华罗庚赛初赛试题
第十六届华罗庚赛初赛试题一、选择题(每小题10分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。
)1、若连续的四个自然数都为合数,那么这四个数之和的最小值为( )(A )100 (B)101 (C)102 (103)解析:可以设这4个连续自然数为:a 、a+1、a+2、a+3。
因为(a+a+1+a+2+a+3)=4a+6,所以四个连续自然数的和必定是4的倍数加上2。
这四个数中只有102÷4余数是2。
所以符合条件的是C 。
这里“四个自然数都是合数”可以忽略了。
这四个连续自然数是24、25、26、27。
2、用火柴棍摆放数字0~9130,按照这样的规则,可以对应出( )个不同的数字。
(A )10 (B)8 (C)6 (D)5解析:方法一:容易发现,因为是由7根火柴棍组成的,如果原数字有n 根火柴,则对应数字7-n 。
原数字的火柴数目依次是2,5,5,4,5,6,3,7,6,6,包含了2,3,4,5,6,7,共6个不同数字,所以对应的也有6个不同的。
方法二:找出所有的对应数字,1的对应数字是5;2的对应数字是2;3的对应数字是2;4的对应数字是3;5的对应数字是2,6的对应数字是1;7的对应数字是4,8的对应数字是0;9的对应数字是1;0的对应数字是1。
其中不同的只有5、2、3、1、4、0。
所以有6种不同的数字。
3、两数之和与两数之商都为6,那么这两数之积减这两数之差(大减小)等于( )。
(A )2674 (B )571 (C) 76 (D) 496 解析:这属于和倍问题,大数是小数的6倍,所以它们的和等于小数的7倍,即小数为76,大数为736,两数之积为49216,两数之差为736-76=730,所以差为49216-730=496 4、老师问学生:“昨天你们有几个人复习数学了?”张:“没有人”李:“一个人”王:“二个人”赵:“三个人”刘:“四个人”老师知道,他们昨天下午有人复习,也有人没复习,复习了的人说的都是真话,没复习的人说的都是假话。
2016年第22届“华杯赛”决赛初一组试题(pdf版)
内
的个位数字是 4.
, 其中 m 是正整数.
已知 x . 设 x 表示不大于 x 的最大整数, 定义 x x x . 如果 x x 是整数, 则满足条件的所有 x 的和等于 . 组.
封
线
5.
设 x, y, z 是自然数, 则满足 x y z xy 的 x, y, z 有
三、解答下列各题(每小题 15 分,共 30 分,要求写出详细过程)
13. 直线 a 平行于直线 b, a 上有 个点 A , A , , A , b 上有 个点 B , B , ,
B , 用线段连接 Ai 和 B j ( i= , , , j= , , ), 所得到的图形中一条边
在 a 上或者在 b 上的三角形有多少个?
14. 已知关于 x, y 的方程 x y k 有且只有六组正整数解, 且 x y , 求 k 的最大值.
-2-
2. 如右图, △ABC, △AEF 和△BDF 均为正三 角形, 且△ABC, △AEF 的边长分别为 和 , 则线段 DF 长度的最大值等于 .
.
学校____________ 姓名_________ 参赛证号
勿
答
3.
请
如下的代数和
() m m ( m )
p q , 都是正整数, 则 p q 的最大值等于 q p
密
6.
设 p, q,
.
7.
右图是 A, B, C, D, E 五个防区和连接这些防区的 条公路的示意图. 已知每一个防区驻有一支部队. 现在这五支部队都要换防, 且换防时, 每一支部队 只能经过一条公路, 换防后每一个防区仍然只驻有 一支部队, 则共有 种不同的换防方式.
第九届全国“华罗庚金杯”少年数学邀请赛决赛试题及参考答案(初一组)
第九届全国“华罗庚金杯”少年数学邀请赛决赛试题参考答案 (初一组)第九届全国“华罗庚金杯”少年数学邀请赛决赛试题参考答案(初一组)一、 填空题(每题10分,如果一道题中有两个答案,则每个5分)二、 解答下列各题,要求写出简要过程(每题10分)7、解答:.13922=+n m①解方程⎩⎨⎧-=+-=+965543y x y x 得到x=-3,y=1;②代入原方程中后两个方程,得到⎩⎨⎧=+=-3568n m n m 再解上面关于m和n的方程,得到.,136139-==n m ③计算.13916911722==+n m8、解答:李家养牛300头,王家养牛221头。
算术方法:(见小学解答) 代数解法:① 李家的牛群中有67%是母牛,67是质数,可以设李家养牛头数为100x ,王家的牛群中仅有131是母牛,13是质数,可以设王家养牛数是13y ,列出方程100x+13y=521。
…………………………(*)② x 和y 是整数,分别取x=1,2,3,4,5。
可以得到x=3,y=13。
或者解同余方程(*)。
(*)式两边除13,)13(14Mod x ≡-…………………………(**)x=3是(**)式的解,得到y=17。
9、解答:71=∆∆的面积的面积ABC G H I ① 如图(A),连接BG ,用S记△ABC 的面积,X 和Y 分别记第九届全国“华罗庚金杯”少年数学邀请赛决赛试题参考答案 (初一组)△DCG 和△BGF 的面积。
② 由已知条件:,331S Y X =+ (1) S Y X 3232=+ 解方程组(1),得到.,214211S Y S X ==同样方法可以得到△EAH 的面积=△FBI 的面积=.211S③ 从△ADC 的面积=△BEA =,31S ,得到, 四边形GCEH 的面积=四边形HAFI 的面积=(.)521S S =-所以,我们得到 △GHI 的面积=,)(71211211032S S =-- 即71=∆∆的面积的面积ABC GHI10、解答:12⨯[34⨯5-6÷(7-8)-9]=12⨯167=2004和12⨯[34×5-6⨯(7-8)-9]=12⨯167=200411、解答:42圈。
2016年第21届“华罗庚杯赛”决赛初一组试题及答案
x 2 n ⎪第二十一届华罗庚金杯少年数学邀请赛 决赛试题(初一组) (时间: 2016 年 3 月 12 日 10:00~11:30)一、填空题(每小题 10 分, 共 80 分)1. 已知 n 个数 x 1, x 2 , , x n , 每个数只能取 0, 1, -1中的一个. 若x 1 + x 2 + + x n = 2016 , 则 2015 1 + x 2015 + + x 2015 的值为 .2. 某停车场白天和夜间两个不同时段的停车费用的单价不同.张明 2 月份白天 的停车时间比夜间要多 40% , 3 月份白天的停车时间比夜间要少 40% . 若 3 月 份的总停车时间比 2 月份多 20% , 但停车费用却少了 20% , 那么该停车场白 天时段与夜间时段停车费用的单价之比是 .3. 在 9⨯ 9 的格子纸上, 1⨯1 小方格的顶点叫做格点. 如右图, 三角形 ABC 的三个顶点都是格点. 若一个格点 P 使得三角 形 PAB 与三角形 PAC 的面积相等, 就称 P 点为“好点”. 那 么在这张格子纸上共有 个“好点”.4. 设正整数 x , y 满足 xy - 9x - 9y = 20, 则 x 2 + y 2 = .5. 甲、乙两队修建一条水渠.甲先完成工程的三分之一, 乙后完成工程的三分 之二, 两队所用的天数为 A ; 甲先完成工程的三分之二, 乙后完成工程的三分 之一, 两队所用天数为 B ; 甲、乙两队同时工作完成的天数为 C . 已知 A 比 B 多 5, A 是 C 的 2 倍多 4. 那么甲单独完成此项工程需要 天.6. 已知 x + y + z = 5 , 1 + 1 + 1 = 5 , xyz = 1, 则 x 2 + y 2 + z 2 = . x y z7. 关于 x , y 的方程组⎧ 1 x + y = a ⎨ 2 ⎪⎩| x | - y = 1只有唯一的一组解, 那么 a 的取值为 .总分 密封线内请勿答题学校____________姓名_________参赛证号8.右图是一个骰子的展开图, 每个面是一个单位正方形. 用 四个骰子粘成一个 2⨯ 2⨯1的长方体放到桌面上, 要求每 两个粘在一起的面上的“点数”相同.长方体放到桌面上 的六个面分别记为上、下、左、右、前、后六个面, 两个 长方体不同是指对应六个面的“点”的拼图不同. 不考虑长方体的旋转, 共 可以粘出 种不同的长方体二、解答下列各题(每题 10 分, 共 40 分, 要求写出简要过程)9. 在恰有三条边相等的四边形中, 有两条等长的边所夹的内角为直角. 若从 该直角顶点引出的对角线恰好把这个四边形分成两个等腰三角形, 求该直 角所对的角的度数.10. 围着一张可以转动的圆桌, 均匀地放着 8 把椅子, 在桌子上对着椅子放有 8个人的名片. 这 8 个人入座后, 将圆桌顺时针转动, 第一次转 45︒ , 从第二 次开始, 每次转动比上一次多转 45︒ . 每转动一次, 当某人对着自己的名片 时, 取走自己的名片. 如果入座时谁都没有对着自己的名片, 那么桌子至少 转多少度才能保证所有入座可能的情况下 8 个人都拿到了自己的名片?11. 两张 8 ⨯12 的长方形纸片重叠地放置, 有一个顶点重合, 尺寸如右图所示. 问图中阴影部分的面积是多少?12. 证明: 对任何非零自然数 n , 1212323-++n n n ,都是整数, 并用 3 除余 2。
第十一届全国华罗庚金杯少年数学邀请赛初赛试卷(初一组)
第十一届全国华罗庚金杯少年数学邀请赛初赛试卷(初一组)第十一届全国"华罗庚金杯"少年数学邀请赛初赛试卷(初一组)(时间2006年3月18日10:00~11:00)一、选择题以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题后面的圆括号内(每小题6分)。
1. 下面用七巧板组成的六个图形中有对称轴的图为()个(不考虑拼接线)。
(A)5 (B)2 (C)3 (D)42. 有如下四个命题:①最大的负数是-1;②最小的整数是1;③最大的负整数是-1;④最小的正整数是1;其中真命题有()个。
(A)1个(B)2个(C)3个(D)4个3. 如果a,b,c均为正数,且a(b+c)=152,b(c+a)=162,c(a+b)=170,那么abc的值是()(A)672 (B)688 (C)720 (D)7504. 下图给出了一个立体图形的正视图、左视图和俯视图,图中单位为厘米,立体图形的体积为()立方厘米。
(A)2π (B)2.5π (C)3π (D)3.5π5. 甲、乙轮船在静水中航行的速度分别为V1,V2,(V1>V2),下游的A港与上游的B港间的水路路程为150千米,若甲船从A港、乙船从B港同时出发相向航行,两船在途中的C点相遇,若乙船从A 港、甲船从B港同时出发相向航行,两船在途中的D点相遇,已知C、D间的水路路程为21千米,则V1:V2等于()(A)55/41 (B)57/43 (C)59/45 (D)61/476. 有一串数:1,2^2,3^3,4^4 ,………2004^2004,2005^2005,2006^2006。
大明从左到右依次计算前面1003个数的末位数字之和,并且记为a,小光计算余下的1003个数的末位数字之和,并且记为b,则a-b =()(A)-3 (B)3 (C)-5 (D)5二.A组填空题(每小题8分)7. 如图1.以AB为直径画一个大半圆,BC=2AC,分别以AC,CB 为直径在大半圆内部画两个小半圆,那么阴影部分的面积与大半圆面积的比等于____。
2016年华罗庚金杯赛初一初赛试题及答案
第二十一届华罗庚金杯少年数学邀请赛初赛试卷(初一组)(时间:2015年12月12I]10:00—11:00)一、选择题(每小题10分,共60分,以下每题的四个选项中,仅仃一个毡正确的,请将表示正确答案的英文字母写在每题的I则括号内.)1,代数和-1X2008--2X2007-3X2006+4X2OO5+----1003x100641004x1005的个位数字是().(A)7CB)K CO9(D)02,已知-1<^<人父0.则F列不等式成汇的是().(A)a<u1'<ub2<ah(B)a<ab2<ab<(C)a<ab<ah2<u y(D)a3<ab2<a<cth3.在数轴上,4T和点/,分别表小数日和a IL在取点。
的两侧.若|订一占二2016.AO=2BO.[[\\(t+h=().(A)6048(B)—6048(C)±672(D)04.如力图所示,-:角形加右拈直角三角形,乙4出「=60口.若在i工线.或”上取-点儿使刊,一角形〃月一为等腰-关吟一那么达抨K 的点尸的个数为().\(A)4(B)5(C)6(D)7ifi I')1★2奴小时(D)二、填空题(每小题10分,共40分)5.如右图,乙是主河流甲的支流,水流流向如箭头所示.匕流和支流的水流速度相等,船在匕流和支流中的静水 (B)12-r6.甲、乙、内、「四种商品的单价分别为2元,3元,5元和7元,现从中选购里,共有种不同的搬花顺邙.全平方数,则彳=需用5小时.则船从B 经C 到4再从/经C 到力需用(件共花费「36元一如果至少选购「3种而品,则买了)件丁商品.7.如右图,在平行四边形丽Z )中,AB =2AD.点OC/9=14,ZAEC'=90Q ,(E =CB ,则10已知四位数工是完全平片数,将其4个数字各加1后得到的四位数仍然是方 速度也相等一已知船从/处经「•开往出处需川6小时.从B 经「到D 需用&小时,从I )经('到X 为平行四边形内一点,它到直战出九仅二(力的距 离分别为短氏一“它到仞和CD 的距离相等,则品如右图所小、韩梅家的花右两侧各摆了3盆花.韩梅每次按照以下规则往家中搬盆花:先选择左侧还是 右侧,然后搬该侧离家最近的.要把所有的花撤到家 如右图,在等腰梯形片肌笫中.AB//CD,加?=6(A)7(B)8(C)9(D)0a 和b,且在原点O 的两侧.若AO=2OB,则a+b=().4.如右图所示,三角形ABC 是直角三角形,口ABC=60度.若在直线(A)4(B)5(C)6(D)7 5.如右图,乙是主河流甲的支流度相等,船在主流和支流中的静水速度也相等 需用6小时,从B 经C 到D 需用8小时A,再从A 经C 到D 需用()小时.1.代数和的个位数字是().,那么这样的点P 的个数为().PAB 为等腰三角形AC 或BC 上取一点P,使得三角形水流流向如箭头所示.主流和支流的水流速.已知AC=CD,船从A 处经C 开往B 处从D 经C 到B 需用5小时.则船从B 经C 到2.已知则下列不等式成立的是().3.在数轴上,点A 和点B 分别表示数2元,3元,5元和7元.现从中选购了6.甲、乙、丙、丁四种商品的单价分别为件共花费了36元.如果至少选购了3种商品,则买了()件丁商品.(A)1(B)2(C)3(D)4二、填空题(每小题10分,共40分)7.如右图,□□□□□□ABCD中,AB=2AB.点O为平行四边形内一点,它到直线AB, BC,CD□□□□□□a,b,c,且它到AD和CD的距离相等,则2a-b+c=.8.如右图所示,韩梅家的左右两侧各摆了3盆花.韩梅每次按照以下规则往家中搬一盆花:先选择左侧还是右侧,然后搬该侧离家最近的.要把所有的花搬到家里,共有种不同的搬花顺序.9.如右图,□□□□□ABCD中,AB//CD,AB=6,CD=14,1AEC=90度,CE=CB,则10.已知四位数x是完全平方数,将其4个数字各加1□□□□□□□□□□□□平方数,则x=.第二十一届华罗庚金杯少年数学邀请赛初赛试卷(初一组)一.选择理t每小理1。
历年华罗庚金杯试题
历年华罗庚金杯试题第一届“华罗庚金杯”少年数学邀请赛初赛试题1.1966、1976、1986、1996、2006这5个数的总和是多少?2.每边长是10厘米的正方形纸片,正中间挖一个正方形的洞,成为一个宽度是1厘米的方框。
把5个这样的方框放在桌面上,成为这样的图案。
问桌面上被这些方框盖住的部分面积是多少平方厘米?3.105的约数共有几个?4.妈妈让小明给客人烧水沏茶。
洗开水壶要用1分钟,烧开水要用15分钟,洗茶壶要用1分钟,洗茶杯要用1分钟,拿茶叶要用2分钟。
小明估算了一下,完成这些工作要花20分钟,为了使客人早点喝上茶,按你认为最合理的安排,多少分钟就能沏茶了?5.右面的算式里,4个小纸片各盖住了一个数字。
被盖住的4个数字总和是多少?6.松鼠妈妈采松籽。
晴天每天可以采20个。
有雨的天每天只能采12个。
它一连几天采了112个松籽,平均每天采14个。
问这几天当中有几天有雨?7.边长1米的正方体2100个,堆成一个实心的长方体。
它的高是10米,长、宽都大于高。
问长方体的长与宽的和是几米?8.早晨8点多钟,有两辆汽车先后离开化肥厂,向幸福村开去。
两辆汽车的速度都是每小时60公里。
8点32分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的3倍。
到了8点39分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的2倍.那么,第一辆汽车是8点几分离开化肥厂的?9.有一个整数,除300、262、205,得到相同的余数.问这个整数是几?10.甲、乙、丙、丁4个人比赛乒乓球,每两个人都要赛一场.结果甲胜了丁,并且甲、乙、丙3个胜的场数相同.问丁胜了几场?11.两个十位数1111111111和9999999999的乘积有几个数字是奇数?12.黑色、白色、黄色的筷子各有8根,混杂地放在一起。
黑暗中想从这些筷子中取出颜色不同的两双筷子。
问至少要取多少根才能保证达到要求?13.有一块菜地和一块麦地,菜地的21和麦地的31放在一起是13亩,麦地的21和菜地的31放在一起是12亩,那么,菜地是几亩?14.71427和19的积被7除,余数是几?15.科学家进行一项实验,每隔5小时做一次记录.做第十二次记录时,挂钟的时针恰好指向9,问做第一次记录时,时针指向几?16.有一路电车的起点站和终点站分别是甲站和乙站。
2016年第二十一届“华罗庚金杯”少年数学邀请赛初赛试卷(小中组A卷)
2016年第二十一届“华罗庚金杯”少年数学邀请赛初赛试卷(小中组A卷)一、选择题(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.(10分)计算:124+129+106+141+237﹣500+113=()A.350B.360C.370D.3802.(10分)如图所示,韩梅家的左右两侧各摆了2盆花.每次,韩梅按照以下规则往家中搬一盆花:先选择左侧还是右侧,然后搬该侧离家最近的.要把所有的花搬到家里,共有()种不同的搬花顺序.A.4B.6C.8D.103.(10分)在桌面上,将一个边长为1 的正六边形纸片与一个边长为1的正三角形纸片拼接,要求无重叠,且拼接的边完全重合,则得到的新图形的边数为()A.8B.7C.6D.54.(10分)甲、乙、丙、丁四支足球队进行比赛.懒羊羊说:甲第一,丁第四;喜羊羊说:丁第二,丙第三;沸羊羊说:丙第二,乙第一.每个的预测都只对了一半,那么,实际的第一名至第四名的球队依次是()A.甲乙丁丙B.甲丁乙丙C.乙甲丙丁D.丙甲乙丁5.(10分)如图,在5×5的空格内填入数字,使每行、每列及每个粗线框中的数字为1,2,3,4,5,且不重复.那么五角星所在的空格内的数字是()A.1B.2C.3D.46.(10分)在除法算式中,被除数为2016,余数为7,则满足算式的除数共有()个.A.3B.4C.5D.6二、填空题(每小题10分,共40分)7.(10分)动物园里有鸵鸟和梅花鹿若干,共有腿122条.如果将鸵鸟与梅花鹿的数目互换,则应有腿106条,那么鸵鸟有只,梅花鹿有头.8.(10分)某年,端午节距离儿童节和父亲节的天数相同,在月历中与六月最后一天同列,父亲节是六月的第三个星期日,则该年的父亲节是六月日.(如图是某个月的月历示意图)9.(10分)在一个六位数中,任何3个连续排列的数字都构成能被6 或7 整除的三位数,则这个六位数最小是.10.(10分)小虎用6个边长均为1的等边三角形在桌面上无重叠地拼接图形,每个三角形都至少有一条边与另一个三角形的一条边完全重合,如图是拼接出的两个图形.那么,在所有拼接出的图形中,最小的周长是.2016年第二十一届“华罗庚金杯”少年数学邀请赛初赛试卷(小中组A卷)参考答案与试题解析一、选择题(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.(10分)计算:124+129+106+141+237﹣500+113=()A.350B.360C.370D.380【分析】根据加法的交换律与结合律简算即可.【解答】解:124+129+106+141+237﹣500+113=(124+106)+(129+141)+(237+113)﹣500=230+270+350﹣500=850﹣500=350故选:A.【点评】此题重点考查了学生对运算定律的掌握与运用情况,要结合数据的特征,灵活选择简算方法.2.(10分)如图所示,韩梅家的左右两侧各摆了2盆花.每次,韩梅按照以下规则往家中搬一盆花:先选择左侧还是右侧,然后搬该侧离家最近的.要把所有的花搬到家里,共有()种不同的搬花顺序.A.4B.6C.8D.10【分析】分两种情况讨论:①先取的两盆在同侧有=2种搬法;②在异侧有×=4种搬法,所以共有2+4=6种,据此解答即可.【解答】解:根据分析可得,+×=2+4=6(种)答:共有6种不同的搬花顺序.故选:B.【点评】本题考查了排列组合知识的灵活应用,关键是先分类再计数.3.(10分)在桌面上,将一个边长为1 的正六边形纸片与一个边长为1的正三角形纸片拼接,要求无重叠,且拼接的边完全重合,则得到的新图形的边数为()A.8B.7C.6D.5【分析】正六边形每个内角是120°,正三角形每个内角是60°,正六边和正三角形边长都为1,所以它们的边拼组后有两组成为直线段,所以减少了4条边,据此解答即可.【解答】解:180°×(6﹣2)÷6=180°×4÷6=120°180°÷6=60°120°+60°=180°所以,拼接后的图形是:6+3﹣4=5(条)答:得到的新图形的边数为5.故选:D.【点评】本题关键是算出正六边形每个内角的度数,明确拼组方法.4.(10分)甲、乙、丙、丁四支足球队进行比赛.懒羊羊说:甲第一,丁第四;喜羊羊说:丁第二,丙第三;沸羊羊说:丙第二,乙第一.每个的预测都只对了一半,那么,实际的第一名至第四名的球队依次是()A.甲乙丁丙B.甲丁乙丙C.乙甲丙丁D.丙甲乙丁【分析】可以先假设懒羊羊说的第一句是对的,即甲是第一,则沸羊羊说的乙是第一是错的,则丙是第二是对的,就可以推测出喜羊羊说的丙第三是错的,则喜羊羊说的丁第二是对的,与丙第二矛盾,故假设不成立,然后根据其它几句话判断四人的名次.【解答】解:根据分析,假设懒羊羊说的第一句是对的,即甲是第一,则沸羊羊说的乙是第一是错的,则丙是第二是对的,就可以推测出喜羊羊说的丙第三是错的,则喜羊羊说的丁第二是对的,与丙第二矛盾,故假设不成立,故懒羊羊说的甲第一是错的,丁第四是对的;由此可以推测乙是第一,丙是第三,则甲是第二.故排名是:乙甲丙丁.故选:C.【点评】本题考查了逻辑推理,突破点是:运用假设法,逻辑推理找到矛盾的地方,再排出名次.5.(10分)如图,在5×5的空格内填入数字,使每行、每列及每个粗线框中的数字为1,2,3,4,5,且不重复.那么五角星所在的空格内的数字是()A.1B.2C.3D.4【分析】首先根据排除法在第一宫格中必须有4,那么第二行的第二列的数字只能为4.继续使用排除法即可推理成功.【解答】解:依题意可知:首先根据在第一宫格中必须有4,那么第二行的第二列的数字只能为4.同理在第二行第四列的数字只能是1.继续推理可得:所以再五角星的空格位置填写1.故选:A.【点评】本题是考察对凑数谜的理解和运用,关键的问题是使用排除法.问题解决.6.(10分)在除法算式中,被除数为2016,余数为7,则满足算式的除数共有()个.A.3B.4C.5D.6【分析】除数×商=2016﹣7=2009,然后把2009分解因数,再根据余数小于除数,即可确定满足算式的除数共有几个.【解答】解:2016﹣7=2009,2009=7×287=49×41=1×2009所以满足算式的除数有:287、49、41、2009,共4个;答:满足算式的除数共有4个.故选:B.【点评】本题考查了整除问题与有余数除法的综合应用,关键是得到2009的大于7的因数.二、填空题(每小题10分,共40分)7.(10分)动物园里有鸵鸟和梅花鹿若干,共有腿122条.如果将鸵鸟与梅花鹿的数目互换,则应有腿106条,那么鸵鸟有15只,梅花鹿有23头.【分析】一只梅花鹿有4条腿,一只鸵鸟有2条腿,把一只鸵鸟换成一只梅花鹿就少4﹣2=2条腿,把所以鸵鸟与梅花鹿的数目互换共少了122﹣106=16条腿,即有16÷2=8只梅花鹿换成了鸵鸟,原来的梅花鹿比鸵鸟多8头.多加上8只鸵鸟后,则梅花鹿和鸵鸟的数量相同,所以再加上8×2=16条腿,则一共有122+16=138条腿时,梅花鹿和鸵鸟的只数相同,这时一头梅花鹿和一只鸵鸟有4+2=6条腿,据此可求出梅花鹿的数量,进而可求出鸵鸟的数量.【解答】解:122﹣106=16(条)16÷(4﹣2)=16÷2=8(头)(122+8×2)÷(4+2)=(122+16)÷6=138÷6=23(头)23﹣8=15(只)答:鸵鸟有15只,梅花鹿有23头.故答案为:15,23.【点评】本题的关键是让学生理解鸵鸟和梅花鹿互换后少的腿数,是因每鸵鸟比每只梅花鹿就少2条腿,从而求出鸵鸟比梅花鹿少的只数,进而补上只数它们的数量相等,从而根据数量相等时的腿数,求出梅花鹿的头数.8.(10分)某年,端午节距离儿童节和父亲节的天数相同,在月历中与六月最后一天同列,父亲节是六月的第三个星期日,则该年的父亲节是六月17日.(如图是某个月的月历示意图)【分析】六月一共有30天,端午节和六月30日中间相差了数个整星期,所以端午节和六月30日相差的天数为7的倍数.而六月30 日和六月1日相差29天,所以端午节和六月1日相差了某个7的倍数加1 天,从而端午节和父亲节也相差了某个7 的倍数加1天,所以父亲节和六月1日相差了某个7的倍数加2天.根据父亲节是星期日,可得结论.【解答】解:六月一共有30天,端午节和六月30日中间相差了数个整星期,所以端午节和六月30日相差的天数为7的倍数.而六月30 日和六月1日相差29天,所以端午节和六月1日相差了某个7的倍数加1 天,从而端午节和父亲节也相差了某个7 的倍数加1天,所以父亲节和六月1日相差了某个7的倍数加2天.又由于父亲节是星期日,所以六月1日是星期5,从而推断出,六月的第三个星期日为17日,故答案为17.【点评】本题考查找规律,考查日期的推算,考查学生分析解决问题的能力,属于中档题.9.(10分)在一个六位数中,任何3个连续排列的数字都构成能被6 或7 整除的三位数,则这个六位数最小是112642.【分析】因为任何3个连续排列的都是三位数,说明这个六位数中无0.因为要使六位数最小,不妨设,六位数为11□□□□,用分类讨论是思想思考问题即可.【解答】解:因为任何3个连续排列的都是三位数,说明这个六位数中无0.因为要使六位数最小,不妨设,六位数为11□□□□,①11x,则有⇒①112,②12X,则有⇒②126,③26x,则有⇒③264,④64x,则有⇒④642,故答案为112642【点评】本题考查最大与最小、整除问题等知识,解题的关键是学会用分类讨论的思想思考问题,学会用尝试的方法解决问题.10.(10分)小虎用6个边长均为1的等边三角形在桌面上无重叠地拼接图形,每个三角形都至少有一条边与另一个三角形的一条边完全重合,如图是拼接出的两个图形.那么,在所有拼接出的图形中,最小的周长是6.【分析】首先分析最小情况就是重复边数最多的情况.【解答】解:依题意可知:重叠的边数越多面积越小.故最小周长为:6故答案为:6【点评】本题考查对剪切和拼接的理解和运用,关键问题是枚举出最小的方式即可,问题解决.。
1-16届华罗庚金杯赛试题
第一届“华罗庚金杯”少年数学邀请赛(初赛试题)1.1966、1976、1986、1996、2006这5个数的总和是多少?2.每边长是10厘米的正方形纸片,正中间挖一个正方形的洞,成为一个宽度是1厘米的方框。
把5个这样的方框放在桌面上,成为这样的图案。
问桌面上被这些方框盖住的部分面积是多少平方厘米?3.105的约数共有几个?4.妈妈让小明给客人烧水沏茶。
洗开水壶要用1分钟,烧开水要用15分钟,洗茶壶要用1分钟,洗茶杯要用1分钟,拿茶叶要用2分钟。
小明估算了一下,完成这些工作要花20分钟,为了使客人早点喝上茶,按你认为最合理的安排,多少分钟就能沏茶了?5.右面的算式里,4个小纸片各盖住了一个数字。
被盖住的4个数字总和是多少?6.松鼠妈妈采松籽。
晴天每天可以采20个。
有雨的天每天只能采12个。
它一连几天采了112个松籽,平均每天采14个。
问这几天当中有几天有雨?7.边长1米的正方体2100个,堆成一个实心的长方体。
它的高是10米,长、宽都大于高。
问长方体的长与宽的和是几米?8.早晨8点多钟,有两辆汽车先后离开化肥厂,向幸福村开去。
两辆汽车的速度都是每小时60公里。
8点32分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的3倍。
到了8点39分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的2倍.那么,第一辆汽车是8点几分离开化肥厂的?9.有一个整数,除300、262、205,得到相同的余数.问这个整数是几?10.甲、乙、丙、丁4个人比赛乒乓球,每两个人都要赛一场.结果甲胜了丁,并且甲、乙、丙3个胜的场数相同.问丁胜了几场?11.两个十位数1111111111和9999999999的乘积有几个数字是奇数?12.黑色、白色、黄色的筷子各有8根,混杂地放在一起。
黑暗中想从这些筷子中取出颜色不同的两双筷子。
问至少要取多少根才能保证达到要求?13.有一块菜地和一块麦地,菜地的21和麦地的31放在一起是13亩,麦地的21和菜地的31放在一起是12亩,那么,菜地是几亩?14.71427和19的积被7除,余数是几?15.科学家进行一项实验,每隔5小时做一次记录.做第十二次记录时,挂钟的时针恰好指向9,问做第一次记录时,时针指向几?16.有一路电车的起点站和终点站分别是甲站和乙站。
第二十一届华罗庚金杯少年数学邀请赛试题(初一、初二组)
第二十一届华罗庚金杯少年数学邀请赛决赛试题(初一组)(时间:2016年3月12日10:00--11:30)一、填空题(每小题10分,共80分)1.已知n个数x1,x2,……x n,每个数只能取0,1,-1中的一个,若x1+x2+…+x n=2016,则x12015+x22015+…+x n2015的值为__________。
2.某停车场白天和夜晚两个不同时段的停车费用的单价不同,张明2月份白天的停车时间比夜间要多40%,3月份白天的停车时间比夜间要少40%。
若3月份的总停车时间比2月份多20%,但停车费用却少了20%,那么该停车场白天时段与夜间时段停车费用的单价之比是__________。
3.在9×9的格子纸上,1×1小方格的顶点叫做格点,如右图。
三角形ABC的三个顶点都是格点,若一个格点P使得三角形PAB与三角形PAC的面积相等,就称P点为“好点”。
那么,在这张格子纸上共有__________个“好点”。
4.设正整数x,y满足xy―9x―9y=20,则x2+y2=________。
5.甲、乙两队修建一条水渠,甲先完成工程的三分之一,乙后完成工程的三分之二,两队所用的天数为A;甲先完成工程的三分之二,乙后完工程的三分之一,两队所用天数为B;甲、乙两队同时工作完成的天数为C。
已知A比B 多5,A是C的2倍多4,那么甲单独完成此项工程需要__________天。
6.已知x+y+z=5,1x+1y+1z=5,xyz=1,则x2+y2+z2=__________。
7.关于x,y的方程组:只有唯一的一组解,那么a的取值为__________。
8.右图是一个骰子的展开图,每个面是一个单位正方形,用四个骰子粘成一个2×2×1的长方体放到桌面上,要求每两个粘在一起的面上的“点数”相同。
长方体放到桌面上的六个面分别记为上、下、左、右、前、后六个面,两个长方体不同是指对应六个面的“点”的拼图不同,不考虑长方体的旋转,共可以粘出__________种不同的长方体。
2016年第二十一届“华罗庚金杯”少年数学邀请赛初赛试卷(小中组B卷).doc
2016年第二十一届“华罗庚金杯”少年数学邀请赛初赛试卷(小中组B卷)2016 年第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小中组 B 卷)题一、选择题(每小题 10 分,共 60 分。
以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。
) 1.(10 分)凑 24 点游戏规则是:从一副扑克牌中抽去大小王剩下 52 张,(如果初练也可只用 1~10 这 40 张牌)任意抽取 4 张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成 24,每张牌必须用一次且只能用一次,并不能用几张牌组成一个多位数,如抽出的牌是 3、8、8、9,那么算式为(9﹣8)83 或(9﹣88)3 等,在下面 4 个选项中,唯一无法凑出 24 点的是() A.1、2、3、3 B.1、5、5、5 C.2、2、2、2 D.3、3、3、3 2.(10 分)在如图的算式中,每个汉字代表 0 至 9 中的一个数字,不同汉字代表不同的数字.当算式成立时,好字代表的数字是() A.1 B.2 C.4 D.6 3.(10 分)如图,边长分别为 10 厘米和 7 厘米的正方形部分重叠,重叠部分的面积是 9 平方厘米,图中两个阴影部分的面积相差()平方厘米. A.51 B.60 C.42 D.9 4.(10 分)库里是美国 NBA 勇士队当家球星,在过去的 10 场比赛中已经得了333 分的高分.他在第 11 场得()分就能使前 11 场的平均分达到 34 分. A.35 B.40 C.41 D.47 5.(10 分)如图,木板上有 10 根钉子,任意相邻的两根钉子距离都相等,以这些钉子为顶点,用橡皮筋可套出()个正三角形. A.6 B.10 C.13 D.15 6.(10 分)在桌面上,将一个边长为 1 的正六边形纸片与一个边长为 1 的正三角形纸片拼接,要求无重叠,且拼接的边完全重合,则得到的新图形的边数为() A.8 B.7 C.6 D.5 二、填空题(每小题 10 分,共 40 分)7.(10 分)计算:19872015﹣19862016= . 8.(10 分)学校打算组织同学们去秋游,每辆大巴车有 39 个座位,每辆公交车有 27 个座位,大巴车比公交车少 2 辆,如果所有学生和老师都乘坐大巴,每辆大巴车上有 2 位老师,则多出 3 个座位;如果都乘坐公交车,每辆公交车都坐满并且各有 1 位老师,则多出 3 位老师,那么共有位老师,名同学参加这次秋游. 9.(10 分)于 2015 年 10 月 29 日闭幕的党的十八届五中全会确定了允许普遍二孩的政策.笑笑的爸爸看到当天的新闻后跟笑笑说:我们家今年的年龄总和是你年龄的7 倍,如果明年给你添一个弟弟或者妹妹,我们家 2020 年的年龄总和就是你那时年龄的 6 倍,那么笑笑今年岁. 10.(10 分)教育部于 2015 年 9 月21 日公布了全国青少年校园足球特色学校名单,笑笑所在的学校榜上有名,为了更好地备战明年市里举行的小学生足球联赛.近期他们学校的球队将和另 3支球队进行一次足球友谊赛,比赛采用单循环制(即每两队比赛一场),规定胜一场得 3 分,负一场得 0 分,平局两队各得 1 分;以总得分高低确定名次,若两支球队得分相同,就参考净胜球、相互胜负关系等因素决定名次.笑笑学校的球队要想稳获这次友谊赛的前两名,至少要得分.2016 年第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小中组 B 卷)参考答案与试题解析题一、选择题(每小题 10 分,共 60 分。
华罗庚金杯赛数学试题与答案[第1至15届]
华罗庚金杯赛数学试题与答案[第1至15届]目录第1届华罗庚金杯赛数学试题与答案 (1)第2届华罗庚金杯赛数学试题与答案 (6)第3届华罗庚金杯赛数学试题与答案 (14)第4届华罗庚金杯赛数学试题与答案 (21)第5届华罗庚金杯赛数学试题与答案 (26)第6届华罗庚金杯赛数学试题与答案 (31)第7届华杯赛初赛试题及解答 (38)第8届华杯赛初赛试题及解答 (41)第9届华杯赛初赛试题及解答 (45)第10届华杯赛初赛试题及解答 (49)第11届华杯赛初赛试题及解答 (53)第12届华杯赛初赛试题及解答 (60)第13届华杯赛少年邀请赛初赛摸拟试卷 (64)第14届华罗庚金杯少年数学邀请赛 (66)第15届华杯赛决赛真题及答案解析 (68)第1届华罗庚金杯赛数学试题与答案1、甲班和乙班共83人,乙班和丙班共86人,丙班和丁班共88人。
问甲班和丁班共多少人?2、一笔奖金分一等奖、二等奖、三等奖,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍。
如果评一、二、三等奖各两人,那么每个一等奖的奖金是308元;如果一个一等奖,两个二等奖,三个三等奖,那么一等奖的奖金是多少元?3、一个长方形,被两条直线分成四个长方形,其中三个的面积是20亩、25亩和30亩。
问另一个长方形的面积是多少亩?4、在一条公路上,每隔一百公里有一个仓库,共有五个仓库。
一号仓库存有10吨货物,二号仓库存有20吨货物,五号仓库存有40吨货物,其余两个仓库是空的。
现在想把所有的货物集中存放在一个仓库里,如果每吨货物运输一公里需要0.5元的运费,那么最少要花多少运费才行?5、有一个数,除以3余数是2,除以4余数是1。
问这个数除以12余数是几?6、四个一样的长方形和一个小的正方形(如图)拼成了一个大正方形。
大正方形的面积是49平方米,小正方形的面积是4平方米。
问长方形的短边长度是几米?7、有两条纸带,一条长21厘米,一条长13厘米,把两条纸带剪下同样长的一段以后,发现短纸带剩下的长度是长纸带的长度的八分之十三。
华杯赛1-15届的真题和答案
=11111111110000000000-1111111111=111111111088888888889 于是有 10 个数字是奇数。 12.【解】10 根筷子,可能 8 根黑,1 根白,1 根黄,其中没有颜色不同的两双筷子。 如果取 11 根,那么由于 11>3,其中必有两根同色组成一双,不妨设这一双是黑色的,去掉 这两根,余下 9 根,其中黑色的至多 6(=8-2)根,因而白、黄两色的筷子至少有 3(=9-6) 根,3 根中必有 2 根同色组成一双。这样就得到颜色不同的两双筷子。所以至少要取 11 根。 13.【解】菜地的 3 倍和麦地的 2 倍是 13× 6 公顷。菜地的 2 倍和麦地的 3 倍是 12× 6 公顷, 因此菜地与麦地共:(13× 6+12× 6)÷ (3+2)=30(公顷), 菜地是 13× 6-30× 2=18(公顷)。 14. 【解】71427 被 7 除,余数是 6,19 被 7 除,余数是 5,所以 71427× 19 被 7 除,余数就 是 6× 5 被 7 除所得的余数 2。 15.【解】从第一次记录到第十二次记录,相隔十一次,共 5× 11=55(小时)。时针转一圈是 12 小时,55 除以 12 余数是 7,9-7=2 答:时针指向 2。 16.【解】因为电车每隔 5 分钟发出一辆,15 分钟走完全程。骑车人在乙站看到的电车是 15 分钟以前发出的,可以推算出,他从乙站出发的时候,第四辆电车正从甲站出发骑车人从乙 站到甲站的这段时间里,甲站发出的电车是从第 4 辆到第 12 辆。电车共发出 9 辆,共有 8 个 间隔。于是:5× 8=40(分) 。 17.【解】小数点后第 7 位应尽可能大,因此应将圈点点在 8 上,新的循环小数是 。
18.【解】三个背包分别装 8.5 千克、6 千克与 4 千克,4 千克、3 千克与 2 千克,这时最重 的背包装了 lO 千克。 另一方面最重的包放重量不少于 10 千克:8.5 千克必须单放(否则这一包的重量超过 10)6 千 克如果与 2 千克放在一起, 剩下的重量超过 10, 如果与 3 千克放在一起, 剩下的重量等于 10。 所以最重的背包装 10 千克。 19.【解】从第一排与第二排看,五个小纸片的长等于三个小纸片的长加三个小纸片的宽, 也就是说,二个小纸片的长等于三个小纸片的宽。 已知小纸片的宽是 12 厘米,于是小纸片的长是:12× 3÷ 2=18(厘米), 阴影部分是三个正方形,边长正好是小纸片的长与宽的差:18-12=6 于是,阴影部分的面积是:6× 6× 3=108(平方厘米)。
初中数学华罗庚竞赛试卷
1. 下列各数中,有理数是()A. $\sqrt{3}$B. $\pi$C. $\frac{1}{2}$D. $\sqrt{2}+\sqrt{3}$2. 下列等式中,正确的是()A. $(-3)^2=9$B. $(2a)^3=8a^3$C. $(a+b)^2=a^2+2ab+b^2$D. $(a-b)^2=a^2-b^2$3. 若方程 $2x-3=5$ 的解为 $x=a$,则 $a$ 的值为()A. 2B. 3C. 4D. 54. 下列函数中,为一次函数的是()A. $y=x^2+1$B. $y=\frac{1}{x}$C. $y=2x-3$D. $y=\sqrt{x}$5. 在平面直角坐标系中,点A(2,3)关于原点的对称点为()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,3)6. 若等差数列 $\{a_n\}$ 的前n项和为 $S_n$,则 $S_{10}$ 等于()A. $5(a_1+a_{10})$B. $10a_6$C. $5(a_1+a_{10})^2$D. $10a_6^2$7. 在等腰三角形ABC中,AB=AC,若 $\angle BAC=60^\circ$,则 $\angleABC$ 等于()A. $30^\circ$B. $45^\circ$C. $60^\circ$D. $90^\circ$8. 下列不等式中,恒成立的是()A. $x^2+y^2\geq 2xy$B. $x^2+y^2\leq 2xy$C. $x^2+y^2>2xy$D.$x^2+y^2<2xy$9. 下列各式中,不是一元二次方程的是()A. $x^2-5x+6=0$B. $x^2+2x-3=0$C. $x^2+3x+2=0$D. $x^2-4=0$10. 若 $a+b=5$,$ab=6$,则 $a^2+b^2$ 的值为()A. 17B. 16C. 15D. 1411. 已知等差数列 $\{a_n\}$ 的第一项为2,公差为3,求第10项 $a_{10}$ 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年华罗庚金杯赛初一初赛试题及答案
1.代数和的个位数字是().
(A)7 (B)8 (C)9 (D)0
2.已知则下列不等式成立的是().
3.在数轴上, 点A和点B分别表示数a和b, 且在原点O的两侧.若AO=2OB, 则a+b=().
4.如右图所示, 三角形ABC是直角三角形,∠ABC=60度.若在直线AC或BC上取一点P, 使得三角形PAB 为等腰三角形,那么这样的点P的个数为().
(A)4(B)5(C)6(D)7
5.如右图, 乙是主河流甲的支流, 水流流向如箭头所示. 主流和支流的水流速度相等, 船在主流和支流中的静水速度也相等. 已知AC=CD, 船从A处经C开往B处需用6小时, 从B经C到D需用8小时, 从D经C到B需用5小时. 则船从B经C 到A, 再从A经C到D需用()小时.
6.甲、乙、丙、丁四种商品的单价分别为2元, 3元, 5元和7元. 现从中选购了6件共花费了36元. 如果至少选购了3种商品, 则买了()件丁商品.
(A)1 (B)2 (C)3 (D)4
二、填空题(每小题10 分, 共40分)
7.如右图, 在平行四边形ABCD中,AB=2AB.点O为平行四边形内一点, 它到直线AB, BC, CD的距离分别为a, b, c, 且它到AD和CD的距离相等,则2a-b+c=.
8.如右图所示, 韩梅家的左右两侧各摆了3盆花.韩梅每次按照以下规则往家中搬一盆花:先选择左侧还是右侧, 然后搬该侧离家最近的. 要把所有的花搬到家里, 共有种不同的搬花顺序.
9.如右图,在等腰梯形ABCD中, AB//CD, AB=6, CD=14, ∠AEC=90度, CE=CB, 则
10.已知四位数x是完全平方数, 将其4个数字各加1后得到的四位数仍然是完全平方数, 则x=.。