八年级数学下册《5.2 数据的收集》教案 北师大版
北师大版八年级数学下册 第五章 分式与分式方程 5.2 分式的乘除法 教案
数学八年级下北师大版第五章第二节《分式的乘除法》教学设计一、内容分析1. 教材的地位及作用本节课为北师大版数学教材八年级下册第五章《分式与分式方程》第二节《分式的乘除法》的内容,本节课是学生初中阶段代数部分学习的一个重要内容.在知识的联系上,本节是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础.在能力的培养上,学生的运算能力和逻辑思维能力得到了发展和提高.在数学思想方法上,本节课是培养学生类比的一个好素材,同时培养了学生的探索精神和用数学的意识.2. 学情分析(1)从心理学的分析来说,初二学生处于逻辑抽象的起点,思维发展的转折点,表现从经验型思维向理论型思维转化的特点.他们身心发展较快,对事物发展的好奇心强,有一定的求知欲,需要我们不断引导.(2)经过七年级的学习,学生已经具备了一定的知识储备知识技能和良好的数学学习习惯,并且学生已经学习分式基本性质、分式的约分和因式分解,通过与分数的乘除法类比,促进知识的正迁移.(3)八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习.3. 教学目标(1)知识技能:理解分式的乘除运算法则;会进行简单的分式的乘除法运算.(2)数学思考:经历探索分式的乘除法法则的过程,让学生熟悉“数、式通性”“类比、转化”的数学思想方法,感知数学知识具有普遍的联系性.(3)问题解决:会用分式乘除法法则进行分式乘除法运算,并能解决简单的实际问题,增强应用意识,提高实践能力.(4)情感态度:通过师生观察、猜想、讨论、交流、归纳,培养学生合作探究的意识和能力,同时增强学生的创新意识和应用意识,使学生体验在数学学习活动中探索与创造的乐趣,了解数学的价值,同时化简分式的最简结果也让学生感受到数学的简洁美.4.教学重点难点重点:分式乘除法的法则及应用.难点:分子分母是多项式的分式的乘除法运算.二、教法学法1. 教法分析教育的本质在于引导的艺术,为了充分调动学生学习的积极性,培养学生的运算能力,使本节课教学丰富有效,本课的教法为:在教师的引导下学生经历“类比分数――观察猜想――归纳明晰――理解应用”的活动过程,体会知识的形成和应用,感受学习过程中数学方法的渗透.采用ppt辅助课堂教学,直观呈现教学素材,激发学生的学习兴趣,提高学习效率,体验在数学学习活动中探索的乐趣,体会数学的应用价值.2. 学法指导学习过程中,充分引导学生积极思维,让每个学生都动口、动手、动脑,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性.三、教学过程环节过程设计学生活动教师活动设计意图情境引入请你来帮忙!同学们,请你们来帮助老师算一算老师在火星上的体重是变重了还是变轻了?学生积极运算并回答.教师根据学生的回答板书算式:162738239183291=⨯⨯=⨯该问题的提出,立刻给课堂注入活力,极大的激发了学生的学习兴趣,同时引出分数的乘除法,为后面类比得到分式的乘除法做好准备,同时数学的应用价值也得以体现.探究新知1.复习分数的乘法法则162738239183291=⨯⨯=⨯叙述法则并填空:两个分数相乘, 把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;2.复习分数的除法法则学生独立运算,回忆并能够语言描述分数的乘除法法则.通过引例得到分数乘法算式,启发引导学生依据算理回顾分数乘法法则.以同样思路复习回顾分数的除法法则.分数的除法运算关键在与将除法运算转化3364823913829183291=⨯⨯=⋅=÷ 叙述法则:两个分数相除, 把除式的分子分母颠倒位置后,再与被除式相乘. 3. 类比得分式的乘法法则归纳分式的乘法法则:两个分式相乘, 把分子相乘的积作为积的分子,把分母相乘的积作为积的分母; 4. 类比得分式的除法法则归纳分式的乘法法则:两个分式相除, 把除式的分子分母颠倒位置后再与被除式相乘. 5.分式乘法拓展-分式乘方:n na ba b 与n⎪⎪⎭⎫ ⎝⎛有什么关系? 分析:教师引导提问,提示学生类比分数的乘除法运算法则.学生全面参与,独立思考,广泛交流,自主归纳出法则.学生思考并解答,教师为乘法运算,体现转化思想.类比分数的乘除法法则得到分式的乘除法则,由学生自己尝试探索猜想、归纳总结,把课堂还给学生,激发学生自主学习的积极性.探索的过程体现了从特殊到一般的思想方法,符合学生的认知规律,易于学生理解、接受,同时培养学生观察分析、猜想、归纳的能力,及有条理的思维和表达的能力.该问题是分式乘法的延伸,即分式的乘方.学生应理解其推导过程,明确算理,同时也是对乘法法则的深入理解.a b a b a b a b a b ⋅⋅⋅⋅⋅=⎪⎪⎭⎫ ⎝⎛n(乘方的意义) a a a a bb b b ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(分式乘法法则)nn a b =(乘方的意义)强调:1. 分式乘除法运算的根据是分式乘除法法则,实质是分式约分,而分式约分的根据是分式的基本性质;2. 当分式的分子分母中有多项式时,先分解因式,再进行乘除运算;3. 分式乘除的最后结果要化成最简分式或整式. 点拨思路.应用新知典例分析 例1 计算:223a 2y 4y 3a )1(⋅ x 6y(2)3xy 22÷ 例2 计算: a 2a 12-a 2a (1)2+⋅+ 4a 1a 44a -a 1-a (2)222--÷+ 教师点拨: 1.分式乘除法运算的根据是分式乘除法法则,实质是分式约分,而分式约分的根据是分式的基本性质.2.当分式的分子分母中有多项式时,先分解因式,再进行乘除运算.3.分式乘除的最后结果要化成最简分式或整式.明确算理,准确运算,结果最简 教师示范例1第(1)题,一位学生板演第(2)题,教师巡视并及时评价. 学生完成后教师点评. 教师示范例2第(1)题,一位学生板演第(2)题,教师巡视批改,学生完成后,全班讲评,明确步骤算理.例1设计的这两道题都是分子分母为单项式的分式乘除法运算,解题过程中,使学生会根据法则,体会并理解每一步的算理,从而进行简单的分式的乘除法运算,达到突破重点的目的.例2设计的这两道题是分子、分母为多单项式的分式乘除法则的运用,通过学生板演,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法,从而使难点迎刃而解. 两个例题是将课本例题做重新整合编排,学习内容由简至难,符合学生的认知规律,根据学情合理使用教材,使例题具有针对性和有效性.反馈练习A组2abba)1(⋅1-aa)a-a((2)2÷22yx-1y1(3)÷-xxx3x4x96x-x2x(4)2222--÷++B组购买西瓜时,人们总希望西瓜瓤占整个西瓜的比例越大越好. 假如我们把西瓜都看成球形,并且西瓜瓤的分布是均匀的, 西瓜的皮厚都是d .已知球体的体积公式为334RVπ=(其中R为球的半径),那么(1) 西瓜瓤与西瓜的体积各是多少?(2) 西瓜瓤与西瓜的体积的比是多少?(3) 买大西瓜合算还是买小西瓜合算?四位学生板演,其他学生在练习本上独立完成.做完后教师讲评,同桌交换批改,举手看正答情况.教师巡视,了解学生的作答情况,及时评价.学生先猜测结果,认真审题后,结合问题完成讨论.第3小题若课堂时间不够,可留作课下思考题,下节课再讨论.A组四道题目紧扣课本,是对例题中的各个类型题目的巩固练习,第三小题改编自课本习题,遇到分式的分子或分母符号为负数时,可将负号提出后放在分式的前面,便于计算,这也是学生的易错点,则要通过练习加以巩固.四位学生板演既是对这几个学生知识掌握情况的了解,也是以此估计全班学习情况的手段,了解学生知识技能的掌握情况,检查教学目标完成效果.B组通过实例进一步丰富分式乘除运算的实际背景,增强学生的代数推理能力与应用意识.一开始设问“买大西瓜划算还是买小西瓜划算”,引起学生质疑和兴趣,引出计算体积,再与学生共同讨论分析后,根据三个问题的设问层层递进,降低问题的难度,得以顺利解决.此题一方面巩固了分式乘除法法则,应用了nnabab=⎪⎪⎭⎫⎝⎛n的关系进行讨论,培养了学生的钻研精神和发散思维,提高了学生的运算能力,培养了学生的应用意识,体现了数学的价值.小结提升 将本节课知识梳理如下:学生回答相互补充,交流,归纳.课堂小结是对整节课的完整概括,框图形成了完整的知识结构,清晰明了.布置作业1.习题 5.3:第1、2、3、4题;2.预习第三节内容.3.你还有什么问题吗?若有,课下可与同学交流.学生课后认真完成.作业的布置巩固了学生对知识的扎实掌握,训练了学生利用有关概念性质解决问题的能力;预习旨在培养了学生良好的学习习惯.提问是有意识的培养学生发现问题、提出问题的能力和创新意识.课后寄语 祝同学们 今天一路奋斗、一路付出、一路坚持;明天一份欢欣、一份成长、一份收获!给学生美好祝愿!四、板书设计5.2 分式的乘除法分式乘除法法则: 例1:(1) 例2:(1)bcad c d b a =⨯bcad c d b a b a =⨯=÷d c (2) (2)。
8年级数学北师大版下 册教案第2章《不等式的解集》
教学设计不等式的解集
拓展应用1、已知x﹣2﹤a的解集如图所示,则a的值为()
A、3
B、1
C、-3
D、4
2、不等式x﹤3的正整数解有()个。
A、1个
B、2个
C、3个
D、4个
3、不等式x﹤a的正整数解恰好是1,2,则a的取值范围为()
A 1<a<2
B 2<a<3
C 2≤a<3
D 2<a≤3
4. 在某次数学竞赛中,老师对优秀学生给予奖励,准备了30元,买了3个笔记本和若干支笔,已知笔记本每本4元,笔每支2元,问可以买多少支笔?
小结这节课你有哪些收获
板书设计
2.3不等式的解集
1.不等式的解:使不等式成立的未知数的值
2.不等式的解集:不等式的所有解
3.解不等式:
4.不等式解集的数轴表示:①画数轴
②找界点
③定方向
解集的表示
不等式的解
特殊到一般
思想
不等式的解集
数形结合
思想
不等式。
北师大版八年级下册数学全册精品教案设计
北师大版八年级下册数学全册精品教案设计一、教学内容1. 第十三章:数据的收集与整理13.1 数据的收集13.2 数据的整理13.3 数据的表示2. 第十四章:概率初步14.1 随机事件14.2 概率的计算14.3 概率的应用二、教学目标1. 让学生掌握数据的收集、整理和表示方法,能够运用这些方法解决实际问题。
2. 使学生了解随机事件的性质,掌握概率的计算方法,并能运用概率知识解决简单问题。
3. 培养学生的数据分析、逻辑思维和解决问题的能力。
三、教学难点与重点1. 教学难点:数据的整理和表示,概率的计算。
2. 教学重点:数据的收集方法,随机事件的性质,概率的应用。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备、教学课件。
2. 学具:学生用书、练习本、铅笔、直尺、圆规。
五、教学过程1. 引入:通过实际情景,如调查班级同学的身高、体重等数据,引出数据的收集与整理。
2. 新课导入:讲解数据的收集方法、整理方法和表示方法,结合实例进行分析。
3. 例题讲解:以教材中的例题为载体,详细讲解数据的整理与表示,以及概率的计算方法。
4. 随堂练习:针对教学内容,设计具有代表性的练习题,让学生独立完成,并及时反馈、纠正。
5. 知识拓展:介绍随机事件在实际生活中的应用,激发学生学习兴趣。
六、板书设计1. 数据的收集与整理收集方法:问卷调查、观察、访谈等整理方法:分类、排序、汇总等表示方法:表格、条形图、折线图等2. 概率初步随机事件:不确定事件、必然事件、不可能事件概率的计算:古典概率、频率估计概率概率的应用:生活中的概率问题七、作业设计1. 作业题目:(1)收集本班同学的年龄、性别、爱好等数据,整理成表格,并用适当的图表示出来。
(2)计算一枚硬币正面向上的概率,并解释原因。
2. 答案:(1)略(2)概率为0.5,因为硬币正反两面的出现是等可能的。
八、课后反思及拓展延伸1. 反思:本节课的教学内容是否讲解清楚,学生是否掌握了重点、难点。
八年级下册北师大版数学总复习框架概讲教案练习
八年级下册北师大版数学总复习框架概讲教案练习一、复习目标:1. 回顾和巩固八年级下册北师大版数学的主要知识点和技能。
2. 培养学生的综合运用能力和解决问题的能力。
二、复习内容:1. 第一章:实数与代数1.1 实数的概念和性质1.2 代数式的概念和运算2. 第二章:方程与不等式2.1 方程的解法2.2 不等式的解法3. 第三章:几何基础3.1 点的概念和性质3.2 线段和射线的概念和性质3.3 角的概念和性质4. 第四章:三角形4.1 三角形的性质4.2 三角形的判定4.3 三角形的证明5. 第五章:四边形5.1 四边形的性质5.2 四边形的判定5.3 四边形的证明三、复习方法:1. 采用问题导入法,引导学生回顾和巩固已学知识。
2. 通过例题讲解和练习,帮助学生理解和掌握主要概念和技能。
3. 利用小组讨论和合作交流,促进学生主动参与和思考。
四、复习过程:1. 课堂讲解:教师根据复习内容,进行系统的讲解和阐述。
2. 例题解析:教师选取典型例题,进行详细的解析和讲解。
3. 练习巩固:学生进行相关的练习题,巩固所学知识和技能。
4. 小组讨论:学生分组讨论和交流,共同解决问题和分享思路。
5. 总结反馈:教师对学生的复习情况进行总结和反馈,指出存在的问题和不足。
五、复习评价:1. 学生完成课堂练习和课后作业的情况。
2. 学生在小组讨论和合作交流中的表现。
3. 教师对学生的总结反馈和评价。
教学资源:教材、PPT、练习题、小组讨论材料。
六、第六章:函数6.1 函数的概念和性质6.2 一次函数和二次函数的图象和性质6.3 函数的图像和解析式七、第七章:数据处理7.1 数据的收集和整理7.2 数据的描述和分析7.3 数据的图表表示八、第八章:全等三角形8.1 全等三角形的概念和性质8.2 全等三角形的判定8.3 全等三角形的应用九、第九章:相似三角形9.1 相似三角形的概念和性质9.2 相似三角形的判定9.3 相似三角形的应用十、第十章:圆10.1 圆的概念和性质10.2 圆的方程和圆的周长、面积10.3 圆的弧、弦和圆心角的关系六、复习方法:1. 采用案例分析法,结合实际问题引导学生理解和掌握函数的概念和性质。
北师大版八年级下册数学全册教案设计
北师大版八年级下册数学全册教案设计一、教学内容1. 第五章:平行四边形5.1 平行四边形的性质与判定5.2 矩形、菱形、正方形的性质与判定5.3 梯形的性质2. 第六章:数据的收集与处理6.1 数据的收集与整理6.2 概率初步6.3 统计图表的选择与应用二、教学目标1. 知识与技能:(1)掌握平行四边形及其特殊图形的性质与判定方法;(2)学会数据的收集、整理、分析与处理,掌握概率初步知识;(3)能够运用统计图表进行数据分析。
2. 过程与方法:(1)通过实际操作,提高学生的观察、分析、解决问题的能力;(2)培养学生进行数据收集、整理、分析的实际操作能力;(3)培养学生运用数学知识解决实际问题的能力。
3. 情感态度与价值观:(1)激发学生学习数学的兴趣,增强学生克服困难的信心;(2)培养学生的团队合作精神,提高学生的沟通能力;(3)培养学生严谨、认真的学习态度。
三、教学难点与重点1. 教学难点:(1)平行四边形及其特殊图形的性质与判定方法;(2)数据的收集、整理、分析与处理;(3)概率的计算与应用。
2. 教学重点:(1)掌握平行四边形及其特殊图形的性质与判定方法;(2)数据的收集、整理、分析及统计图表的选择与应用;(3)概率的计算与应用。
四、教具与学具准备1. 教具:多媒体设备、黑板、粉笔、平行四边形模型、统计图表等;2. 学具:直尺、圆规、量角器、剪刀、彩纸等。
五、教学过程1. 实践情景引入:通过展示生活中的平行四边形图形,引导学生观察、分析其性质与判定方法。
2. 例题讲解:(1)平行四边形的性质与判定;(2)矩形、菱形、正方形的性质与判定;(3)梯形的性质;(4)数据的收集、整理、分析与处理;(5)概率的计算与应用。
3. 随堂练习:设计相关习题,巩固所学知识,提高学生的实际操作能力。
4. 小组讨论:(2)讨论数据收集、整理、分析的方法,提高学生的实际操作能力;(3)探讨概率的计算与应用,培养学生的逻辑思维能力。
八年级下册北师大版数学全册教案
八年级下册北师大版数学全册教案第一章:二次根式1.1 二次根式的概念与性质教学目标:理解二次根式的概念,掌握二次根式的性质及运算方法。
教学内容:介绍二次根式的定义,探索二次根式的性质,如平方、乘除、加减等运算方法。
教学方法:通过实际例子引导学生理解二次根式的概念,通过练习题巩固二次根式的性质及运算方法。
1.2 二次根式的乘除法教学目标:掌握二次根式的乘除法运算规则。
教学内容:介绍二次根式的乘除法运算方法,如乘法、除法的规则及注意事项。
教学方法:通过实际例子讲解二次根式的乘除法运算方法,通过练习题巩固学生的理解。
第二章:角的度量2.1 角的概念与分类教学目标:理解角的概念,掌握角的分类及度量方法。
教学内容:介绍角的概念,如锐角、直角、钝角等,学习角的度量方法,如度、分、秒的换算。
教学方法:通过实际例子引导学生理解角的概念,通过练习题巩固角的分类及度量方法。
2.2 量角器的使用教学目标:掌握量角器的使用方法,能够准确测量角的大小。
教学内容:介绍量角器的结构及使用方法,如量角器的摆放、读数等。
教学方法:通过实际操作讲解量角器的使用方法,通过练习题巩固学生的掌握程度。
第三章:平行线的性质3.1 平行线的定义与性质教学目标:理解平行线的定义,掌握平行线的性质及推论。
教学内容:介绍平行线的定义,探索平行线的性质,如同位角相等、内错角相等等。
教学方法:通过实际例子引导学生理解平行线的定义,通过练习题巩固平行线的性质及推论。
3.2 平行线的判定教学目标:掌握平行线的判定方法,能够正确判断两条直线是否平行。
教学内容:介绍平行线的判定方法,如同位角相等、内错角相等、同旁内角互补等。
教学方法:通过实际例子讲解平行线的判定方法,通过练习题巩固学生的理解。
第四章:几何图形的对称性4.1 对称性的概念与性质教学目标:理解对称性的概念,掌握对称性的性质及应用。
教学内容:介绍对称性的概念,探索对称性的性质,如轴对称、中心对称等。
北师大版八年级数学下册 第五章 分式与分式方程 5.2 分式的乘除法 教案
数学八年级下北师大版第五章第二节《分式的乘除法》教学设计一、内容分析1. 教材的地位及作用本节课为北师大版数学教材八年级下册第五章《分式与分式方程》第二节《分式的乘除法》的内容,本节课是学生初中阶段代数部分学习的一个重要内容.在知识的联系上,本节是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础.在能力的培养上,学生的运算能力和逻辑思维能力得到了发展和提高.在数学思想方法上,本节课是培养学生类比的一个好素材,同时培养了学生的探索精神和用数学的意识.2. 学情分析(1)从心理学的分析来说,初二学生处于逻辑抽象的起点,思维发展的转折点,表现从经验型思维向理论型思维转化的特点.他们身心发展较快,对事物发展的好奇心强,有一定的求知欲,需要我们不断引导.(2)经过七年级的学习,学生已经具备了一定的知识储备知识技能和良好的数学学习习惯,并且学生已经学习分式基本性质、分式的约分和因式分解,通过与分数的乘除法类比,促进知识的正迁移.(3)八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习.3. 教学目标(1)知识技能:理解分式的乘除运算法则;会进行简单的分式的乘除法运算.(2)数学思考:经历探索分式的乘除法法则的过程,让学生熟悉“数、式通性”“类比、转化”的数学思想方法,感知数学知识具有普遍的联系性.(3)问题解决:会用分式乘除法法则进行分式乘除法运算,并能解决简单的实际问题,增强应用意识,提高实践能力.(4)情感态度:通过师生观察、猜想、讨论、交流、归纳,培养学生合作探究的意识和能力,同时增强学生的创新意识和应用意识,使学生体验在数学学习活动中探索与创造的乐趣,了解数学的价值,同时化简分式的最简结果也让学生感受到数学的简洁美.4.教学重点难点重点:分式乘除法的法则及应用.难点:分子分母是多项式的分式的乘除法运算.二、教法学法1. 教法分析教育的本质在于引导的艺术,为了充分调动学生学习的积极性,培养学生的运算能力,使本节课教学丰富有效,本课的教法为:在教师的引导下学生经历“类比分数――观察猜想――归纳明晰――理解应用”的活动过程,体会知识的形成和应用,感受学习过程中数学方法的渗透.采用ppt辅助课堂教学,直观呈现教学素材,激发学生的学习兴趣,提高学习效率,体验在数学学习活动中探索的乐趣,体会数学的应用价值.2. 学法指导学习过程中,充分引导学生积极思维,让每个学生都动口、动手、动脑,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性.三、教学过程归纳分式的乘法法则:两个分式相乘, 把分子相乘的积作为积归纳分式的乘法法则:两个分式相除, 把除式的分子分母颠倒位置后再与被除式相乘.四、板书设计。
北师大版八年级下册数学教案
北师⼤版⼋年级下册数学教案 数学是研究现实世界空间形式和数量关系的⼀门科学。
是中学的重要部分也是为⾼中打下基础,下⾯店铺⼩编为你整理了北师⼤版⼋年级下册数学教案,希望对你有帮助。
北师⼤初⼆数学下册教案:统计调查 教材分析:1、地位与作⽤ 本节课主要是在学⽣学习了收集、整理、描述、分析数据的⼀般过程与(全⾯调查)的基础上来进⼀步研究抽样调查。
这是抽样调查第⼀节课,通过调查结果有破坏性以及数⽬变⼤,全⾯调查不太合适,需要新的调查⽅法,使学⽣感受到抽样调查的必要性。
接着重点介绍抽样调查的有关概念和它们之间的关系,难点是有关抽样调查的特征的探究。
最后⼜介绍了最科学、应⽤最⼴泛的简单随机抽样,为后⾯学习分层抽样做铺垫。
本节课有承上启下的作⽤。
社会在向信息时代迈进,数据⽇益成为⼀种重要的信息,统计主要来研究⽣活中的数据,帮助⼈们解决问题。
根据数据思考和处理问题,通过数据发现事物发展规律是统计的基本思想。
特别注意到,本节课⽤样本估计总体是归纳法在统计中的⼀种运⽤。
统计调查介绍了利⽤收集整理数据的⽅法,本节抽样调查是其中的主要内容,蕴含以上的统计思想。
学好本节课⾮常关键。
2、教学⽬标 知识⽬标:让学⽣经历数据的收集、整理、描述、分析的模拟历程,从中了解抽样调查、总体、个体、样本、样本容量等统计概念;全⾯调查与抽样调查的特点;⽤简单随机抽样的数据去估计总体的⽅法。
能⼒⽬标:初步感受抽样调查的必要性和可⾏性。
初步体会⽤样本估计总体的思想。
体会有代表性的样本对正确估计总体的重要性。
情感⽬标:⿎励学⽣⾃主探索、合作交流,意识到合作的重要性。
为达到以上教学⽬标,结合学⽣实际情况,确定本节课教学重难点。
3、教学重难点 重点:理解抽样调查、总体、个体、样本、样本容量等统计概念,体会⽤样本估计总体的思想。
难点:全⾯调查与抽样调查的特点;选取有代表性的样本对正确估计总体的重要性。
我通过举具体的⽣活实例来说明讲解来突出重点突破难点。
2022北师大版八年级数学下册全套教案
2022北师大版八年级数学下册全套教案目录第一章一元一次不等式和一元一次不等式组1不等关系2不等式的基本性质3不等式的解集4一元一次不等式5一元一次不等式与一次函数6一元一次不等式组第二章分解因式1分解因式2提公因式法3运用公式法第三章分式1分式2分式的乘除法3分式的加减法4分式方程第四章相似图形1线段的比2黄金分割3形状相同的图形4相似多边形5相似三角形6探索三角形相似的条件7测量旗杆的高度8相似多边形的性质9图形的放大与缩小第五章数据的收集与处理1每周干家务活的时间2数据的收集3频数与频率4数据的波动第六章证明(一)1你能肯定吗2定义与命题3为什么他们平行4如果两条直线平行5三角形内角和定理的证明6关注三角形的外角第一章一元一次不等式和一元一次不等式组1.1不等关系一、教学目标:理解实数范围内代数式的不等关系,并会进行表示。
能够根据具体的事例列出不等关系式。
二、教学过程:如图:用两根长度均为Lcm的绳子,各位成正方形和圆。
(1)如果要使正方形的面积不大于25㎝2,那么绳长L应该满足怎样的关系式?(2)如果要使原的面积大于100㎝2,那么绳长L应满足怎样的关系式?(3)当L=8时,正方形和圆的面积哪个大?L=12呢?(4)由(3)你能发现什么?改变L的取值再试一试。
在上面的问题中,所谓成的正方形的面积可以表示为(L/4)2,远的面积可以表示为π(L/2π)2(1)要是正方形的面积不大于25㎝2,就是(L/4)2≤25,即L2/16≤25。
(2)要使原的面积大于100㎝2,就是π(L/2π)2>100即L2/4π>100。
(3)当L=8时,正方形的面积为82/16=6,圆的面积为82/4π≈5.1,4<5.1此时圆的面积大。
当L=12时,正方形的面积为122/16=9,圆的面积为122/4π≈11.5,9<11.5,此时还是圆的面积大。
教师得出结论(4)由(3)可以发现,无论绳长L取何值,圆的面积总大于正方形的面积,即L2/4π>L2/16。
北师大版八年级下册数学教案
北师大版八年级下册数学教案北师大版八班级下册数学教案1一、指导思想在教学中努力推动九年义务教育,落实新课改,表达新理念,培育创新精神。
通过数学课的教学,使同学切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本学问和基本技能;努力培育同学的运算力量、规律思维力量,以及分析问题和解决问题的力量。
二、学情分析八班级是学校学习过程中的关键时期,同学基础的好坏,直接影响到将来是否能升学。
优生不多,思想不够活跃,有少数同学不上进,思维跟不上。
要在本期获得抱负成果,老师和同学都要付出努力,充分发挥同学是学习的主体,老师是教的主体作用,注意方法,培育力量。
三、本学期教学内容分析本学期教学内容共计六章。
第一章《三角形的证明》本章将证明与等腰三角形和直角三角形的性质及判定有关的一些结论,证明线段垂直平分线和角平分线的有关性质,将讨论直角三角形全等的判定,进一步体会证明的必要性。
其次章《一元一次不等式和一元一次不等式组》本章通过详细实例建立不等式,探究不等式的基本性质,了解一般不等式的解、解集、解集在数轴上的表示,一元一次不等式的解法及应用;通过详细实例渗透一元一次不等式、一元一次方程和一次函数的内在联系.最终讨论一元一次不等式组的解集和应。
第三章《图形的平移与旋转》本章将在学校学习的基础上进一步熟悉平面图形的平移与旋转,探究平移,旋转的性质,熟悉并观赏平移,中心对称在自然界和现实生活中的应用。
第四章《分解因式》本章通过详细实例分析分解因式与整式的乘法之间的关系揭示分解因式的实质,最终学习分解因式的几种基本方法。
第五章《分式与分式方程》本章通过分数的有关性质的回顾建立了分式的概念、性质和运算法则,并在此基础上学习分式的化简求值、解分式方程及列分式方程解应用题,能解决简洁的实际应用问题。
第六章《平行四边形》本章将讨论平行四边形的性质与判定,以及三角形中位线的性质,还将探究多边形的内角和,外角和的规律;经受操作,试验等几何发觉之旅,享受证明之美。
北师大版八年级数学下册知识点重点总结精选重难点
第一章 一元一次不等式和一元一次不等式组一. 不等关系1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式.2. 区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。
3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0 非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0 二. 不等式的基本性质1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即: 如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即 如果a>b,并且c>0,那么ac>bc, c bc a >. (3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即: 如果a>b,并且c<0,那么ac<bc, cbc a <2. 比较大小:(a 、b 分别表示两个实数或整式) 一般地: 如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b; 如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b; 如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b;即:a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<0 (由此可见,要比较两个实数的大小,只要考察它们的差就可以了.三. 不等式的解集:1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3. 不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左 四. 一元一次不等式:1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3. 解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题) 4. 一元一次不等式基本情形为ax>b(或ax<b) ①当a>0时,解为a b x>;②当a=0时,且b<0,则x 取一切实数;当a=0时,且b ≥0,则无解;③当a<0时, 解为ab x <;5. 不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式;④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意.五. 一元一次不等式组1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定.3. 解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.两个一元一次不等式组的解集的四种情况(a、b为实数,且a<b)第二章分解因式一. 分解因式1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2. 因式分解与整式乘法是互逆关系。
北师版八年级数学频数与频率2
5.3 频数与频率(第二课时)一、教学目标(一)知识与技能:经历数据收集,进行简单的数据整理,由推理过程感受抽样的必要性;能根据数据绘制相应的频数分布直方图和频数分布折线图。
(二)过程与方法:经历收集、处理数据的过程,进一步了解频数与频率在实际生活中的应用,通过绘图,进一步掌握数形结合的思想方法。
(三)情感与能力:能根据数据处理的结果,做出合理的判断和预测,从而解决实际问题,并在这一过程中体会统计对决策的作用。
经历自主探究、合作交流等学习方式的学习及激励评价,让学生在学习中锻炼能力,培养良好的情感、态度和价值观。
(四)教学重点:绘制频数分布直方图和频数分布折线图。
(五)教学难点:将一组数据正确地进行分组并列频数分布直方图。
二、教材分析本节内容选于《义务教育课程标准实验教科书—数学》(北师大版)八年级(下)第五章第3节,本章在已学习“数据的代表”的基础上,以理解频数、频率的概念为核心内容,为下一节课学习“数据的波动”作好准备。
前3册的学习中,学生已经初步经历了一些数据收集的过程,获得了一些数据收集与处理的活动经验。
但对于数据收集的方法,学生尚多是凭借一些生活的经验,对此缺乏一种理性的思考。
为此,本章将介绍数据收集的两种常用方法-----普查和抽样调查,并希望通过实际问题的讨论,让学生明确两种方式的特点,从而能够具体情境的要求中选用适当的调查方式。
在八年级上学期,学生已经研究过刻画数据“平均水平”的几个尺度,具备了一定的数据处理的能力。
但仅有“平均水平”,还难以准确地刻画一组数据。
为此,本节又介绍了刻画数据几个量——频数与频率。
本节课重在学生自己动脑、动手,培养创造精神和探究意识,因而在教学中,教师要热情鼓励学生自主探究和大胆创新,对每一位同学作品给予鼓励和足够的重视。
三、学生情况分析1、学生已在八上初步学习了“数据的代表”等基本知识,同时结合农村初中学生实际,探讨生活中的实际问题。
深入三峡坝区调查个体户经营情况,进行数据收集与处理。
北师大版八年级下册数学《资源与评价》答案
1.1 不等关系1.B ; 2.A ; 3.D ; 4.C ; 5.C ;6.D ;7.(1)>,(2)>;8.3y +4x <0;9.x<ll .7,x ≥11.7;10.a <1<1a ;11.8;12.12a 2+12b 2>ab (a ≠b) . 13.(1)2a<a+3,(2)1502y -≥,(3)3x +l < 2x -5.14.(1)设这个数为x ,则x 2≥0;(2)设某天的气温为x ℃, 则≤25. 15.2a<a +b <3b . 16.a >b .17.设参加春游的同学x 人,则8x<250,9x >250(或8x< 250<9x ). 18.50+(20-3)x >270.19.设该同学至少应答对x 道题,依题意有6x -(16-x)×2≥60.20.(1)>(2)=(3)>(4)>(5)>; 22a b +≥2ab (当a =b 时取等号).聚沙成塔:甲同学说的意思是:如果每5人一组玩一个篮球,那么玩球的人数少于50人,有些同学就没有球玩.乙同学说的意思是:如果每6人一组玩一个篮球,那么就会有一个组玩篮球的人数不足6人.丙同学说的意思是:如果每6人一组玩一个篮球,除了一个球以外,剩下的每6人玩一个球,还有几个(不足6人)玩另外一个篮球.1.2 不等式的基本性质1.C ; 2.D ; 3.B ; 4.A ; 5.C ; 6.A ; 7.C ; 8.D ; 9.(1)<(2)>(3)>(4)>(5)>(6)<;10.(1)<(2)>(3)>(4)<;11.a <0; 12.(4); 13.0,1,2,3,4,5; 14.<a b ; 15.<2 <0; 16.>32. 17.(1)x >5;(2)172x >-;(3)得x <-3.(4)x <-8. 18.解:根据不等式基本性质3,两边都乘以-12,得3a >4a .根据不等式基本性质1,两边都减去3a ,得0>a ,即a<0 ,即a 为负数. 19.(1)a >0;(2)a >l 或a <0;(3)a<0. 聚沙成塔解:∵B 1=45×111111111=45×(10+11111)=12.5+111125.1<13A 1=⨯341111111=⨯34(10+1111)=13.33+11133.1>13∴A 1>B1>0 ∴A <B点拨:利用倒数比较大小是一种重要方法.1.3 不等式的解集1.A ;2.B ;3.C ;4.D ;5.B ;6.A ;7.B ;8.C ;9.答案不唯一,如x -1≤0,2x ≤2等. 10.=52,≤52.11.x =2. 12.x =1,2,3 13.-6. 14.(1)x >3;(2)x <6;(3)x >5;(4)x >10. 15.x =1,2 16.n >75% 40%≤n ≤49% n <20% 温饱.17.图略.18.答案不惟一:(1)x <4; (2) -3<x ≤1. 19.不少于1.5克. 20.x 可取一切实数.21.非负整数为0,1,2,3. 22. x >512. 23. k 大于36时b 为负数. 24. a=-3 聚沙成塔解:设白球有x 个,红球有y 个,由题意,得⎩⎨⎧=+60322y x xy x由第一个不等式得:3x <3y <6x ,由第二个不等式得,3y=60-2x ,则有3x <60-2x <6x ∴7.5<x <12,∴x 可取8,9,10,11.又∵2x=60-3y=3(20-y ) ∴2x 应是3的倍数 ∴x 只能取9,y =39260⨯-= 14 答:白球有9个,红球有14个.1.4一元一次不等式(1)1.B ;2.C ;3.D ;4.B ;5.B ;6.D ;7.A ;8.A ;9.x =0,-1,-2,-3,-4 ;10.x <-3;11.R >3;12.-6;13.2;14.2≤a <3; 15.x ≥119. 16.第④步错误,应该改成无论x 取何值,该不等式总是成立的,所以x 取一切数. 17.(1)得x ≥1;(2)x >5;(3)x ≤1;(4)x < 3;18.(1)解不等式231023x x ++-≥,得74x ≥- 所以当74x ≥-时,23123x x ++-的值是非负数.(2)解不等式231123x x ++-≤,得14x ≤- 所以当14x ≤-时,代数式23123x x ++-的值不大于119.p >-6. 20.-11.聚沙成塔解:假设存在符合条件的整数m . 由 321mx x +->+ 解得 25->m x由 mm x m x 931+>+整理得 m m m x ->92, 当0>m 时,29mx ->.根据题意,得 2925mm -=- 解得 m=7 把m=7代入两已知不等式,都解得解集为1>x ,因此存在整数m ,使关于x 的不等式与321mx x +->+是同解不等式,且解集为1>x .1.4一元一次不等式(2)1.B ; 2.B ; 3.C ; 4.C ; 5.D ; 6.12; 7.13; 8.152. 9.以后6天内平均每天至少要挖土80立方米. 10.以后每个月至少要生产100台. 11.不少于16千米.12.每天至少安排3个小组.13.招聘A 工种工人为50人时,可使每月所付的工资最少,此时每月工资为130000元. 14.甲厂每天处理垃圾至少需要6小时. 15.(1)y=9.2-0.9x ;;(2)饼干和牛奶的标价分别为2元、8元. 聚沙成塔 解:(1)由题意,可将一、二、三等奖的奖品定为相册、笔记本、钢笔即可.此时所需费用为5×6+10×5+25×4=180(元); (2)设三等奖的奖品单价为x 元,则二等奖奖品单价应为4x 元,一等奖奖品单价为20x 元,由题意应由5×20x +10×4x +25×x ≤1000,解得x ≤6.06(元).故x 可取6元、5元、4元.故4x 依次应为24元,20元,16元,20x 依次应为120元、100元、80元.再看表格中所提供各类奖品单价可知,120元、24元、6元以及80元、16元、4元这两种情况适合题意,故有两种购买方案,方案一:奖品单价依次为120元、24元、6元,所需费用为990元;方案二:奖品单价依次为80元、16元、4元,所需费用为660元.从而可知花费最多的一种方案需990元.1.5一元一次不等式与一次函数(1)1.A ;2.D ;3.C ;4.C ;5.B ;6.A ;7.D ;8.B ;9.m <4且m ≠1;10.20;11.x >-45,x <-45;12.x <-5;13.x >-2;14.x <3;15.(-3,0);16.(2,3). 17.(1) 12x <-;(2)x ≤0.18. (1)P (1,0);(2)当x <1时y 1>y 2,当x >1时y 1<y 2. 聚沙成塔在直角坐标系画出直线x =3,x +y =0,x -y +5=0, 因原点(0,0)不在直线x -y +5=0上,故将原点(0,0)代入x -y +5可知,原点所在平面区域表示x -y+5≥0部分, 因原点在直线x+y=0上,故取点(0,1)代入x+y 判定可知点(0,1)所在平面区域表示x+y≥0的部分,见图阴影部分.1.5 一元一次不等式与一次函数(2)1.B ;2.B ;3.A ;4.13;5.(1)y 1=600+500x y 2=2000+200x ; (2)x >432,到第5个月甲的存款额超过乙的存款额. 6.设商场投入资金x 元,如果本月初出售,到下月初可获利y 1元, 则y 1=10%x +(1+10%)x·10%=0.1x +0.11x =0.21x ;如果下月初出售,可获利y 2元,则y 2=25%x -8000=0.25x -8000 当y 1=y 2即0.21x =0.25x -8000时,x =200000 当y 1>y 2即0.21x >0.25x -8000时,x <200000 当y 1<y 2即0.21x <0.25x -8000时,x >200000∴ 若商场投入资金20万元,两种销售方式获利相同;若商场投入资金少于20万元,本月初出售获利较多,若投入资金多于20万元,下月初出售获利较多.7.(1)分两种情况:y=x(0≤x ≤8),y=2x -8(x >8); (2)14. 8.(1)乙在甲前面12米;(2)s 甲=8t ,s 乙=12+213t ; (3)由图像可看出,在时间t >8秒时,甲走在乙前面,在0到8秒之间,甲走在乙的后面,在8秒时他们相遇.9.解:如果购买电脑不超过11台,很明显乙公司有优惠,而甲公司没优惠,因此选择乙公司.如果购买电脑多于10台.则:设学校需购置电脑x 台,则到甲公司购买需付[10×5800+5800(x -10)×70%]元,到乙公司购买需付5800×85% x 元.根据题意得: 1)若甲公司优惠:则 10×5800+5800(x -10)×70%<5800×85% x 解得: x >202)若乙公司优惠:则 10×5800+5800(x -10)×70%>5800×85% x 解得: x <203)若两公司一样优惠:则 10×5800+5800(x -10)×70%=5800×85% x 解得: x =20答:购置电脑少于20台时选乙公司较优惠,购置电脑正好20台时两公司随便选哪家,购置电脑多于20台时选甲公司较优惠. 10.(1)他继续在A 窗口排队所花的时间为42844a a -⨯-=(分) (2)由题意,得42625246a a -⨯-⨯+⨯>,解得 a >20. 11. 解:(1)设轿车要购买x 辆,那么面包车要购买(10-x )辆,由题意得:7x +4(10-x )≤55 解得:x ≤5又∵x ≥3,则 x =3,4,5 ∴购机方案有三种:方案一:轿车3辆,面包车7辆;方案二:轿车4辆,面包车6辆;方案三:轿车5辆,面包车5辆; (2)方案一的日租金为:3×200+7×110=1370(元) 方案二的日租金为:4×200+6×110=1460(元) 方案三的日租金为:5×200+5×110=1550(元) 为保证日租金不低于1500元,应选择方案三. 12.(1)y 1=50+0.4x ,y 2=0.6x ;(2)当y 1=y 2,即50+0.4x =0.6x 时,x =250(分钟),即当通话时间为250分钟时,两种通讯方式的费用相同; (3)由y 1<y 2即50+0.4x <0.6x ,知x >250,即通话时间超过250分钟时用“全球通”的通讯方式便宜.13.解:(1)该商场分别购进A 、B 两种商品200件、120件. (2)B 种商品最低售价为每件1080元. 聚沙成塔 解:(1)500n ;(2)每亩年利润=(1400×4+160×20)-(500+75×4+525×4+15×20+85×20) =3900(元) (3)n 亩水田总收益=3900n 需要贷款数=(500+75×4+525×4+15×20+85×20)n -25000=4900n -25000 贷款利息=8%×(4900n -25000)=392n -2000根据题意得:35000)2000392(3900≥--n n 解得:n ≥9.41 ∴ n =10需要贷款数:4900n -25000=24000(元)答:李大爷应该租10亩水面,并向银行贷款24000元,可使年利润超过35000元.1.6 一元一次不等式组(1)1.C ;2.D ;3.C ;4.C ;5.A ;6.D ;7.D ;8.-1<y <2;9.-1≤x <3;10.-14≤x ≤4;11.M ≥2;12.2≤x <5;13.a ≤2;14.-6;15.A ≤1; 16.(1)31023x <<;(2)无解;(3)-2≤x <13;(4)x >-3.17.解集为345x <≤-,整数解为2,1,0,-1.18.不等式组的解集是27310x ≤<-,所以整数x 为0.19.不等式组的解集为6913x ≤, 所以不等式组的非负整数解为:0,l ,2,3,4,5.聚沙成塔 -4<m <0.5.1.6.一元一次不等式组(2)1.解:设甲地到乙地的路程大约是xkm ,据题意,得 16<10+1.2(x -5)≤17.2, 解之,得10<x ≤11,即从甲地到乙地路程大于10km ,小于或等于11km .2.解:设甲种玩具为x 件,则甲种玩具为(50-x )件.根据题意得:⎩⎨⎧≤-+≤-+6440)50(1201404600)50(10080x x x x 解得:20≤x ≤22答:甲种玩具不少于20个,不超过22个. 3.(1)y =3.2-0.2x(2)共有三种方案,A 、B 两种车厢的节数分别为24节、16节或25节、15节或26节、14节. 4.(1)共有三种购买方案,A 、B 两种型号的设备分别为0台、10台或1台、9台或2台、8台;(2)A 、B 两种型号的设备分别1台、9台;(3)10年节约资金42.8万元. 5.解:设明年可生产产品x 件,根据题意得:⎪⎩⎪⎨⎧+≤≤≤⨯≤600006000412000100002400800120x x x 解得:10000≤x ≤12000 答:明年产品至多能生产12000件.6.解:设宾馆底层有客房x 间,则二楼有客房(x+5)间.根据题意得:⎪⎪⎩⎪⎪⎨⎧>+<+><48)5(448)5(3485484x x x x 解得:9.6<x <11,所以 x = 10 答:该宾馆底层有客房10间. 7.解:(1)32(20)y x x =+-40x =+ (2)由题意可得203(20)264486(20)708x x x x +-⎧⎨+-⎩≥ ①≤ ②解①得x ≥12 解②得x ≤14∴不等式的解为12≤x ≤14 ∵x 是正整数∴x 的取值为12,13,14即有3种修建方案:①A 型12个,B 型8个;②A 型13个,B 型7个;③A 型14个,B 型6个. (3)∵y =x +40中,y 随x 的增加而增加,要使费用最少,则x =12 ∴最少费用为y =x +40=52(万元) 村民每户集资700元与政府补助共计:700×264+340000=524800>520000 ∴每户集资700元能满足所需要费用最少的修建方案. 8.解:(1)设一盒“福娃”x 元,一枚徽章y 元,根据题意得23153195x y x y +=⎧⎨+=⎩ 解得15015x y =⎧⎨=⎩ 答:一盒“福娃”150元,一枚徽章15元. (2)设二等奖m 名,则三等奖(10—m )名,216515015(10)1000216515015(10)1100m m m m ⨯++-⎧⎨⨯++-⎩≥≤ 解得1041242727m ≤≤. ∵m 是整数,∴m =4,∴10-m =6. 答:二等奖4名,三等奖6名.单元综合评价1. 3a -2b ≤5; 2.0,1,2,3; 3. <; 4. x >21; 5. m <2; 6.28人或29人;7.4x ; 8. 51-+≤a a x ; 9.x >2; 10. 1. 11. D ; 12. B ;13. B ;14. C ;15. D ;16. C ;17. B ;18. A . 19.解:图略 (1)x >-4 (2)-6≤x ≤-2. 20.(1)x ≤4;(2)x <3;(3)1<x ≤2; (4)2<x ≤4. 21. 解:9a 2 + 5a + 3-(9a 2-a -1)=6a +4当6a +4>0即a >-32时,9a 2 + 5a + 3>9a 2-a -1 当6a +4=0即a =-32时,9a 2 + 5a + 3=9a 2-a -1当6a +4<0即a <-32时,9a 2 + 5a + 3<9a 2-a -1.22.解:根据三角形三边关系定理,得 ⎩⎨⎧->-+<-38213821a a解得 25-<<-a .23.解:设导火线至少需xcm ,根据题意,得40215>⋅x4.80>x 81≈x答:导火线至少需要81厘米长.24.解:假设存在符合条件的整数m . 由 321mx x +->+ 解得 25->m x由 mm x m x 931+>+整理得 m m m x ->92, 当0>m 时,29mx ->.根据题意,得 2925mm -=- 解得 m=7 把m=7代入两已知不等式,都解得解集为1>x因此存在整数m ,使关于x 的不等式与321mx x +->+是同解不等式,且解集为1>x .25.解:(1)y 1=250x+200,y 2=222x+1600.(2)分三种情况:①若y 1>y 2,250x+200>222x+1600,解得x >50;②若y 1=y 2,解得x=50; ③若y 1<y 2,解得x <50.因此,当所运海产品不少于30吨且不足50吨时,应选择汽车货运公司承担运输业务;当所运海产品刚好50吨时,可选择任意一家货运公司;当所运海产品多于50吨时,应选择铁路货运公司承担业务.第二章 分解因式2.1分解因式1.整式,积;2.整式乘法;3.因式分解;4.C ;5.A ;6.D ;7.D ;8.B ;9.2,1-=-=n m ;10.0; 11.C; 12.能;2.2提公因式法1.ab 2;2.3+x ;3.)43)(2(++a a ;4.(1)x+1;(2)b-c;5.22432y xy x +-;6.D;7.A;8.(1)3xy(x-2); (2))5(522x y y x -; (3))1382(22+--m m m ; (4))72)(3(--a a ; (5))223)((y x m y x +--; (6))25()(62a b b a --;(7) )413(522y xy y x -+; (8)2(x+y)(3x-2y); (9)))((c b a a x ---; (10))(2n m q +;9.C;10.10;21;11.)1(2n n a a a ++;12.)1(2+=+n n n n ;13.6-;14.6;2.3运用公式法(1)1.B;2.B;3.C;4.(1)))((x y x y -+;(2))3)(3(41y x y x -+; 5.(1)800;(2)3.98; 6.(1)(2x+5y)(2x-5y); (2)y(x+1)(x-1); (3)(2x+y-z)(2x-y+z); (4)(5a-3b)(3a-5b);(5)-3xy(y+3x)(y-3x); (6)4a 2(x+2y)(x-2y); (7)(a+4)(a-4); (8))3)(3)(9(22y x y x y x -++; (9)(7p+5q)(p+7q); (10)-(27a+b)(a+27b); 7.x m+1(x+1)(x-1); 8.A; 9.2008; 10.40162009; 2.3运用公式法(2)1.±8;2.1;3.2)121(-x ; 4.(1)5x+1;(2)b-1;(3)4;2;(4)±12mn;2m ±3n;5.D;6.C;7.D;8.D;9.C;10.C;11.A;12.(1)-(2a-1)2;(2)-y(2x-3y)2;(3)(3x-3y+1)2;(4)3(1-x)2;(5)-a(1-a)2; (6)(x+y)2(x-y)2; (7)(a+b)2(a-b)2; (8)(x+3)2(x-3)2; (9)22)3(n mn +; (10)-2ax n-1(1-3x)2; 13.x=2;y=-3; 14.(1)240000;(2)2500;15.7;16.31-;17.A;18.B;19.B;20.1;单元综合评价1.C; 2.B; 3.B; 4.C; 5.C; 6.A; 7.C; 8.D; 9.A; 10.A;11.-11或13;12.57;13.-6;14.3;15.5;16. -3xy(3x 2y+2xy-1); 17.(a-b)2(a+b); 18.2)21(--x a ; 19.(x+y)2(x-y)2; 20.45000; 21.14; 22.2)1(1)1(+=+++n n n n第三章 分式3.1分式(1)1.②和④,①和③;2.43;3.23+-m m ,-2;4.31,-5;5.为任意实数,1;6.32-,3±;7.⑴t s ,⑵)(a mb a m --,⑶b a bn am ++,⑷pnm -;8.B ;9.C ;10.C ;11.⑴3±≠x ,⑵a x 4±≠;12.⑴x=2,⑵x=1;13.a=6;14.2<x ;15.-3,-1,0,2,3,5;四.109=+b a . 1分式(2):1.⑴ab a +2,⑵x ,⑶4n ,⑷x-y ;2.1≠x 且0≠x ;3.①y x32,②x x --112,③xx x -+-2122,④1312-++x x x ;4.①y x y x 560610+-,②15203012+-x y x ,③yx y x 20253940+-,④b a b a 1512810+-;5.B ;6.71-;7.①-6xyz ,②m m 2-,③42+-m ,④22+-a a ;8.5;9.53;10.-3,11;11.5642++x x ;四.1.M=N ;2.1. 3.2分式的乘除法1.⑴bc a 2,⑵22xy ;2.2-≠x 且3-≠x 且4-≠x ;3.b a x 265;4.515;5.D ;6.D ;7.C ;8.⑴y x 2-,⑵55ba -,⑶2-x x ,⑷11-+-m m ;9.⑴-1,⑵34-,⑶41.四.1. 3.3分式的加减法(1)1.⑴ab c -7,⑵1,⑶3-a ,⑷a b c b c 129810+-;2.D ;3.15bc 2;4.22+x x ;5.2235--x x ;6.yx xy+;7.⑴a1-,⑵8-,⑶33-+x x ,⑷a a 2-;8.52;9.2x ;10.-2;11.B ;12.⑴2,⑵21+-x ;13.83;四.1.3.3分式的加减法(2)1.B;2.B;3.C;4.27;5.1;6.⑴11-x ,⑵2)2(4--x x x ,⑶y ,⑷3-x ;7.31或21;8.81;9.A=1,B=1;10.12;11.-3;四.解:由13ab a b =+,得3a b ab +=,即113a b+=……① 同理可得114b c +=……②,115a c +=……③,①+②+③得22212a b c ++=,∴1116a b c ++=,∴6bc ac ab abc++=,∴abc ab bc ca ++=163.4分式方程(1)1.整式方程,检验;2.12-x ;3.D ;4.0;5.x=20;6.-1;7.5;8.x=2;9.3;10.C ;11.D ;12.3;13.4;14.-1;15.A ;16.⑴原方程无解,⑵x=2,⑶x=3,⑷3-=x ;四.221+-n n .3.4分式方程(2)1.B ;2.C ;3.3;4.22;5.D ;6.⑴x200,⑵5x ,(200-5x),⑶55200+-x x ,⑷1552005200++-+=x xx ;⑸20;7.3±;8.⑴x=4,⑵x=7;9.1>m 且9≠m ;10.解:设公共汽车的速度为x 千米/时,则小汽车速度为3x 千米/时,根据题意得xx x 38031380=+-解得x=20,经检验x=20是所列方程的解,所以3x=60,答:公共汽车的速度为20千米/时,小汽车的速度为60千米/时;11.解:设去年居民用水价格为x 元,则今年价格为1.25x 元,根据题意得,6181.2536=-xx ,解得x=1.8,经检验x=1.8是所列方程的解,所以1.25x=2.25.答:今年居民用水价格为2.25元.四.解:设需要竖式纸盒5x 个,则需要横式3x 个,根据题意得,)3354x x ⨯+⨯(∶)325(x x ⨯+=29x ∶11x=29∶11.答:长方形和正方形纸板的张数比应是29∶11.单元综合评价1.D ;2.B ;3.D ;4.C ;5.B ;6.B ;7.C ;8.)1()1(2-+x x x ;9.21≠x 且43-≠x ;10.2;11.53;12.-3;13.av v a +25;14.x=2;15.1<m 且3-≠m ;16.1210222++-x x x ;17.x -22;18.21;19.56-=x ;20.5-=x ;21.解:设改进前每天加工x 个,则改进后每天加工2.5个,根据题意得155.210001000+=xx ,解得x=40,经检验x=40是所列方程的解,所以2.5x=100.答:改进后每天加工100个零件.22.解:设甲原来的速度为x 千米/时,则乙原来的速度为(x-2)千米/时,根据题意得240844-40-=-+x x x ,解得x=12,经检验x=12是所列方程的解,所以x-2=10.答:甲原来的速度为12千米/时,乙原来的速度为10千米/时.第四章 相似图形4. 1线段的比⑴1.2:5,57;2.58;3.269;4.5; 5.1:50000;6.45;7.1:2:2;8.D ;9.B ;10.C ;11.B ;12.D ;13.⑴√⑵×;14.BC=10cm .4.1线段的比⑵1.3;2.32;3.53;4.C ;5.B ;6.B ;7.D ;8.B ;9.PQ=24;10.⑴3;⑵54-;11.⑴38;⑵76-;(3)-5;12.a :b:c=4:8:7;13.分两种情况讨论:⑴a +b+c≠0时,值为2;⑵a +b+c=0时,值为-1.4.2黄金分割 1.AP 2=BP·AB 或PB 2=AP·AB ;2.0.618;3.7.6,4.8;4.C ;5.C ;6.B ;7.C ;8证得AM 2=AN·MN 即可;9.⑴AM=5-1;DM=3-5;⑵略;⑶点M 是线段AD 的黄金分割点;10.通过计算可得215-=AB AE ,所以矩形ABFE 是黄金矩形. 4.3形状相同的图形1.相同⑶⑸;不同(1)(2)(4)(6).2.(a )与⑷,(b)与⑹,(c)与⑸是形状相同的;3.略;4.⑴AB=13,BC=26,AC=5,⑵A /B /=213,B /C /=226,A /C /=10,⑶成比例,⑷相同.4.4相似多边形1.×2.√3.×4.√5.√6.①④⑤;7.B ;8.B ;9.C ;10.C ;11.A ;12.27;13.66;14.一定;15.不一定;16.2;17.都不相似,不符合相似定义;18.各角的度数依次为650,650,1150;1150.B 'C '=A 'D '=415cm ;19.BC·CF=1;20.相似;21.2;22.b 2=2a 2. 4.5相似三角形1.全等;2.4:3;3.24cm ;4.80,40;5.直角三角形,96cm 2;6.3.2;7.D ;8.B ;9.D ;10.C ;11.C ;12.A ;13.B ;14.A /B /=18cm ,B /C /=27cm ,A /C /=36cm ;15.⑴相似,1:2.⑵分别为43a 2和163a 2. ⑶面积之比等于边长之比的平方.4.6探索三角形相似的条件⑴1.2;2.6;3.2;4.4;△CDF ,1:2,180;5.4:3;6.2.4;7.572;8.B ;9.B ;10.C ;11.C ;12D ;13.BF=10cm ;14.⑴略.⑵BM=3. 15.由已知可得:AE AF BE FG =, AEAF DE FC =,BE=DE ,所以,FG=FC . 16.由已知可得: AG AF CG BF =,AG AF GD EF =,所以GD EF CG BF =.17. 由已知得:BF DF CF GF =,BFDF EF CF =,可得EF CF CF GF =,即: CF 2=GF·EF . 18.由已知得: PB PD PA PQ =,PB PD PR PA =,可得: 22PBPD PR PQ =. 19.不变化,由已知得: BC CP AB PE =,BCBP CD PF =,得:1=+CD PF AB PE ,即PE+PF=3. 20.提示:过点C 作CG//AB 交DF 于G .21.23. 22.⑴由已知得:21===CD OE FC OF GC EG ,所以32=CE GC ,即31=BC GC .问题得证.⑵连结DG 交AC 于M ,过M 作MH ⊥BC 交BC 于H ,点H 即为所求.23.⑴证△AEC ≌△AEF 即可.⑵EG=4.24.⑴过点E 作EG//BC 交AE 于G .可得: nn m EC BE +=.⑵由⑴与已知得:2=+n n m 解得:m=n ,即AF=BF .所以:CF ⊥AB .⑶不能,由⑴及已知可得:若E 为中点,则m=0与已知矛盾.4.6探索三角形相似的条件⑵1.三;2.22,26;3.6;4;15-55;5.310;6.2.4;7.A ;8.C ;9.B ;10.A ;11.B ;12.A ;13.⑴略.⑵相似,由⑴得∠AFE=∠BAC=600,∠AEF 公共.⑶由△BDF ∽△ABD 得: AD BD BD DF =,即BD 2=AD·DF .14.⑴∠BAC=∠D 或∠CAD=∠ACB .⑵由△ABC ∽△ACD 得BCAC AC AD =,解得:AD= 4,所以中位线的长= 6.5. 15.证: △ADF ∽△BDE 即可.16.AC = 43.17.提示:连结AC 交BD 于O .18.连结PM ,PN .证: △BPM ∽△CPN 即可.19.证△BOD ∽△EOC 即可.20.⑴连结AF .证; △ACF ∽△BAF 可得AF 2=FB·FC ,即FD 2=FB·FC .⑵由⑴相似可得: CF AF AC AB =,AF BF AC AB =,即CFBF AC AB =22. 21.⑴略.⑵作AF//CD 交BC 与F .可求得AB=4.⑶存在.设BP=x ,由⑴可得xx -⨯=74834,解得x 1=1, x 2= 6.所以BP 的长为1cm 或6cm .22.⑴由∠AFC=∠BCE=∠BCF+450,∠A=∠B=450可证得相似.⑵由⑴得AF·BE=AC·BC=2S .23. ⑴略. ⑵△ABP ∽△DPQ , DQ PD AP AB =,xy x -+=522,得y =-21x 2+25x -2.(1<x <4). 24. ⑴略. ⑵不相似.增加的条件为: ∠C=300或∠ABC=600.4.6探索三角形相似的条件⑶1.√;2.√;3.相似;4.90;5.相似;6.相似;7.D ;8.C ;9.C ;10.略;11.略;12.易得BCEF OC OF AC DF OA OD AB DE ====. 13.证: 22===AG AF CG AC AC CF 得△ACF ∽△ACG ,所以∠1=∠CAF ,即∠1+∠2+∠3=900. 14.A .15. ⑴略. ⑵AQ 平分∠DAP 或△ADQ ∽△AQP 等.4.6探索三角形相似的条件⑷1.相似;2.4.1;3.310;4.4;5.ABD ,CBA ,直角;6.D ;7.A ;8.C ;9.B ;10.C ;11.DE//BC ;12.证△AEF ∽△ACD ,得∠AFE=∠D ;13.易得△ABD ∽△CBE , ∠ACB=∠DEB .14.证△ABD ∽△ACE 得∠ADB=∠AEC 即可.15.略.16. ⑴CD 2=AC·BD .⑵∠APB=1200. 17.分两种情况讨论: ⑴CM=55,⑵CM=552. 18. ⑴证明△ACD ∽△ABE , ⑵AD AC DE BC =或AE AB DE BC =.由⑴得: AD AE AC AB =,△ABC ∽△AED 问题即可得证.19.650或1150.20.易得2==CEDF CF AD ,△CEF ∽△DAF ,得2=EF AF 与∠AFE=900.即可得到.21. ⑴证明△CDE ∽△ADE ,⑵由⑴得BC AD CE DM 212=,即BC AD CE DM =,又∠ADM=∠C .⑶由⑵得∠DBF=∠DAM ,所以AM ⊥BE . 22.易得:AC=6,AB=10.分两种情况讨论: 设时间为t 秒.⑴当AC CQ BC PC =时, 6828t t =-,解得t=512.⑵同理得8628t t =-,解得t=1132. 23. ⑴相似,提示可延长FE ,CD 交于点G . ⑵分两种情况:①∠BCF=∠AFE 时,产生矛盾,不成立.②当∠BCF=∠EFC 时,存在,此时k=23.由条件可得∠BCF=∠ECF=∠DCE=300,以下略.4.6探索三角形相似的条件⑸1.B ;2.C ;3.B ;4.C ;5.C ;6.C ;7.C ;8.A ;9.C ;10.B ;11.2等(答案不 唯一);12.DE//BC(答案不唯一);13. △ABF ∽△ACE , △BDE ∽△CDF 等;14.②③;15. ∠B=∠D(答案不 唯一);16.略;17.略(只要符合条件即可);18. ⑴七. ⑵△ABE ∽△DCA ∽△DAE ;19.利用相似可求得答案: x = 2cm .20. ⑴相似,证略.⑵BD=6.21.BF 是FG ,EF 的比例中项.证△BFG ∽△EFB 即可.22.证△ACF ∽△AEB .23. 2.24. ⑴AQ=AP ,6-t=2t 解得t=2.⑵S=12×6-21×12t -21×6(12-2t)=36.所以四边形的面积与点P ,Q 的位置无关.⑶分两种情况:①t=3.②t=56. 4.7测量旗杆的高度1.20;2.5;3.14;4.C ;5.C ;6.AB=25346米;7.MH=6m ;8. ⑴DE=310m ;⑵3.7m/s ;9.由相似可得: ⎪⎪⎩⎪⎪⎨⎧+==1284.37.18.17.1BC AB BC AB 解得AB=10.所以这棵松树的高为10m . 10.略.4.8相似多边形的性质1.2:3;2.2:5,37.5;3.1:4,1:16;4.1:4;5.75;6.1:16;7.22;8.60;9.C ;10.C ;11.C ;12.D ;13.B ;14.B ;15.C ;16.B ;17.4.8cm ;18.25;19.16;20.⑴提示:延长AD ,BF 交于G .AE:EC=3:2.⑵4.21.⑴S 1:S=1:4.⑵141+-=x y (0<x <4).22.提示:延长BA ,CD 交于点F .面积=16217.23. ⑴可能,此时BD=72108180-.⑵不可能,当S FCE ∆的面积最大时,两面积之比=925<4. 24.⑴S AEF ∆=x x 512522+-.⑵存在.AE=266-.25.略.26. ⑴640元.⑵选种茉莉花.⑶略.27. ⑴利用勾股定理问题即可解决.⑵答:无关.利用△MCG ∽△MDE 的周长比等于相似比可求得△MCG 的面积=4a .28. ⑴CP=22.⑵CP=724.⑶分两种情况①PQ=3760,②PQ=49120. 29.提示:作△ABC 的高AG . ⑴略.⑵DE=38. 30. ⑴x =310s .⑵2:9.⑶AP=940或20. 31.⑴DE=AD ,AE=BE=CE . ⑵有: △ADE ∽△ACE 或△BCD ∽△ABC . ⑶2:1.4.9图形的放大与缩小1.点O ,3:2;2.68,40;3. △A 'B 'C ',7:4, △OA 'B ',7:4;4.一定;5.不一定;6.略;7.(-1,2)或(1, -2),(-2,1)或(1, -2);8.2:1;9.D ;10.C ;11.B ;12.D ;13.C ;14.D ;15.略;16.略;17.略;18.略;19. ⑴略; ⑵面积为445. 单元综合评价⑴1.C ;2.C ;3.C ;4.A ;5.D ;6.B ;7.B ;8.C ;9.95;10.80;11.5;12.8;13.7.5;14.5;15.8:27;16.a 22;17.1:3; 18.相似.证明略.19.10:2.20.25:64.21.边长为6.22.y x :=3:2.23.略.24. △ABF ∽△ACE ,AB AF AC AE =得△AEF ∽△ACB . 25.菱形的边长为320cm . 26.证明略.27. ⑴边长为48mm .⑵分两种情况讨论:①PN=2PQ 时,长是7480mm ,宽是7240mm .②PQ=2PN 时,长是60mm .宽是30mm .单元综合评价⑵1.64cm ;2.4:9;3.30;4.三;5.72;6. △AEC ;7.1:4;8.②③④;9.8:5;10.7;11.C ;12.B ;13.B ;14.C ;15.C ;16.D ;17.D ;18.C ;19.B ;20.A ;21.略;22.EC= 4.5cm ;23.21. 6cm 2;24.略;25.边长是48mm .26. ⑴AC AO BC OE =,DC DF BC OF =,DCDF AC AO =,所以:OE= OF . ⑵易得OE=712,EF=2OE=724.27. ⑴PM=43厘米. ⑵相似比为2:3.⑶由已知可得:t=aa +66≤3,解得a ≤6,所以3<a ≤6. ⑷存在.由条件可得:⎪⎪⎩⎪⎪⎨⎧-=-+=t t a at a a t 3)(66 解得: a 1=23,a 2=-23(不合题意,舍去). 28. ⑴600,450.⑵900-21α.⑶900-21α,900+21α.证明略. 第五章 数据的收集与处理5.1 每周干家务活的时间1、(1)普查 (2)抽样调查 (3)抽样调查 (4)抽样调查2、(1)总体:该种家用空调工作1小时的用电量;个体:每一台该种家用空调工作1小时的用电量;样本:10台该种家用空调每台工作1小时的用电量;样本容量:10 (2)总体:初二年级270名学生的视力情况;个体:每一名学生的视力情况;样本:抽取的50名学生的视力情况;样本容量:50.3、D4、B5、(1)适合抽样调查 (2)适合普查 (3)适合抽样调查 (4)适合普查6、(1)缺乏代表性 (2)缺乏代表性 (3)有代表性7、8001512000=÷条 8、估计该城市一年(以365天计)中空气质量达到良以上的天数为219天. 四、聚沙成塔(略)5.2 数据的收集1、抽样调查2、A3、C4、7万名学生的数学成绩、每名考生的数学成绩、1500名考生的数学成绩5、D6、(1)丘陵,平原,盆地,高原,山地;山地的面积最大(2)59%(3)丘陵和平原(4)各种地形的面积占总面积的百分比,100%(5)略(6)不能(7)96万平方千米,249.6万平方千米.7、原因可能是:样本的容量太小,或选区的样本不具有代表性、广泛性、随机性.8、(1)否(2)抽样调查(3)200(4)不一定,抽查的样本不具有代表性和广泛性. 9、(1)平均质量为2.42千克. (2)900只可以出售.四、聚沙成塔能装电话或订阅《文学文摘》杂志的人在经济上相对富裕,而占人口比例多数、收入不高的选民却选择了罗斯福,因此抽样调查既要关注样本的大小,又要关注样本的代表性.5.3 频数与频率1、C2、0.323、0.54、0.185、D6、(1)48人(2)12人,0.257、0.258、(1)0.26 24 3 0.06(2)略9、(1)8,12,0.2,0.24 (2)略 (3)900名学生竞赛成绩, 每名学生竞赛成绩, 50名学生竞赛成绩,50 (4)80.5~90.5 (5)216人四、聚沙成塔(1)89分(2)甲的综合得分=92(1-a )+87a 乙的综合得分=89(1-a )+88a 当0.5 ≤a <0.75, 甲的综合得分高;当0.75 <a ≤0.8, 乙的综合得分高.5.4 数据的波动1、B2、A3、24、C5、B6、B7、D8、9 s ²9、2 10、4牛顿 11、(1)90分、70分、甲组(2)172、256、甲组成绩比较整齐. 12、甲x =8,乙x =8,x 丙=7.6,2甲s =4.4,2乙s =2.8,2s 丙=5.44;(2)乙 13、(1)8,7,8,2,60% (2)略 四、聚沙成塔(1)701.6 699.3 (2)65.84 284.21 (3)甲稳定 (4)甲,乙单元综合评价1、 某校八年级学生的视力情况,每名八年级学生的视力情况,85八年级学生的视力情况.2、 (2), (1)、(3)3、3.2 、964、不可信,样本不具有代表性5、50,20、0.46、3,5,12克7、(1)50,(2)60%(3)15 8、3,2.25,1.5 9、A 10、B 11、D 12、B 13、C 14、B 15、B 16、B 17、C 18、B 19、(1)102、113,106 (2)3180(3)y=53x 20\(1)21人 (2)0.96 (3)答题合理即可 21、(1)7、7、7.5、3(2)①甲的成绩较为稳定②乙的成绩较好③乙要比甲成绩好④尽管甲的成绩较为稳定,单从折线图的走势看,从第四次射击后,乙每次成绩都比甲高,并成上升趋势,乙的潜力比较大.第六章 证明(一)6.1 你能肯定吗?1、 观察可能得出的结论是(1)中的实线是弯曲的;(2)a 更长一些;(3)AB 与CD 不平行.而我们用科学的方法验证可发现:(1)中的实线是直的;(2)a 与b 一样长;(3)AB 与CD 平行. 2、一样长.计算略. 3、(1)不正确;(2)不正确;(3)不正确. 4.A 5.B6.能 7、原式=n 4,,所以一定为4的倍数.8、(1)正确的结论有①②③;(2)略 9.将此长方体从右到左数记为Ⅰ,Ⅱ,Ⅲ,Ⅳ,由Ⅱ,Ⅳ可知,白颜色的面与红、黄两种颜色的面必相邻,又由Ⅰ知,白颜色的面应是蓝色的对面,恰为Ⅰ中的下底面,由Ⅲ知红与紫必相邻,再与Ⅰ相比较知,黄色的对面必为紫色了,从而红色的对面必为绿色了,通过上面的推理可以知道Ⅰ的下底面为白颜色,有4朵花,Ⅱ的下底面为绿色,有6朵花,Ⅲ的下底面为黄色,有2朵花,Ⅳ的下底面的紫色有5朵花,故这个长方体的下底面有(4+6+2+5)朵花,即共17朵花.聚沙成塔.m 4.107371000201.030≈÷⨯,比五层楼和电视塔都高.6.2 定义与命题1.(1)题设:两个角是对顶角;结论:这两个角相等(2)题设: 22b a =;结论:b a =(3)题设:如果两个角是同角或等角的补角;结论:这两个角相等(4)题设:同旁内角互补;结论:两直线平行(5)题设:经过两点作直线;结论:有且只有一条直线.2.C3.C4.C5.B6.D7.(1)如果在同一平面内,两条直线垂直于同一条直线,那么这两条直线平行.(2)如果一个三角形有两条边相等,那么这两条边所对的角相等.(3)如果两个数的绝对值相等,那么这两个数相等.(4)如果一个数是有理数,那么在数轴上就有一个点与之相对应.(5)如果一个三角形是直角三角形,那么这个三角形的两个锐角互余.8.略9.D 10.D 11.B 12.C 13.D 14略 15.(1)假命题(2)真命题(3)假命题16. 两条平行直线被第三条直线所截,同旁内角的平分线互相垂直.17.解;例如已知,,C B AC AB ∠=∠=求证:AD AE =是真命题.(只要答案合理即可)18.先把羊带过河,再把狼带过河,然后把羊带回去,把青草带过河,最后再回去把羊带过河.6.3 为什么它们平行1.C2. C3.B4.C5.B6. D7.A8.B9.(1)AD ∥BC (2) AD ∥BC (3)AB ∥CD 10.平行11.平行 12.平行,同位角相等,两直线平行. 13——16答案略 17.因为∠A=∠1,∠2+∠ACE+∠1=180º,又AC ⊥CE ,故∠ACE=90º,∴∠1+∠2=90º,∴∠A+∠2=90º,∴∠ABC=90º,同理∠EDC=90º,∴AB ∥DE. 18.提示:∠B+∠A=90º,∠AEF=∠B ,∴∠AEF+∠A=90º19.提示:∠A=90º,∠B=60º,∠C=30º ,∠A :∠B :∠C=3:2:16.4 如果两条直线平行1.C 2.C 3.C 4.B 5.A 6. 110º 7. 123º 8. 180º 9.南偏东70º 10. 证明:(1)∵AD ∥BC ,∴∠1=∠B ,∠2=∠C.又∠B=∠C ,∴∠1=∠2,即AD 平分∠EAC ;(2)由∠B+∠C+∠BAC=180º,且∠1+∠2+∠BAC=180º知,∠1+∠2=∠B+∠C ,又AD 平分∠EAC ,∴∠1=∠2,而∠B=∠C ,故∠1=∠B ,或∠2=∠C ,从而AD ∥BC.11. 148º12.提示:过点C 做CP ∥AB 13. 121º49ˊ 14. (1)证明:过C 作CD ∥AB ,∵AB ∥EF ,∴CD ∥AB ∥EF ,∴∠B=∠BCD ,∠F=∠FCD , 故∠B+∠F=∠BCF.(2)过C 作CD ∥AB ,∴∠B+∠BCD=180º,又AB ∥EF ,AB ∥CD ,∴CD ∥EF ∥AB ,∴∠F+∠FCD=180º,故∠B+∠F+∠BCF=360º.6.5 三角形内角和定理的证明1.B2.D3.C4.D5.B6. 90º7. 50º, 100º8. 40º9. 63º 10. 100º 11. 50º12.略13.略 14.连CE ,记∠AEC=∠1,∠ACE=∠2,∴∠D+∠2+∠1+∠DEA=180º,∠B+∠1+∠2+∠BCA=180º,∠F+∠1+∠2+21∠DEA+21∠BCD=180º 由 ∠D+∠2+∠1+∠DEA+∠B+∠1+∠2+∠BCA=360º. ∴21(∠D+∠B )+∠1+∠2+21∠BCA+21∠DEA=180º ∴∠1+∠2+21∠BCA+21∠DEA=180º-21(∠D+∠B ), 即∠F+180º-21(∠D+∠B )=180º,∴∠F=21(∠B+∠D ); ( 2)设∠B=2α,则∠D=4α,∴∠F= 21(∠B+∠D )=3α, 又∠B :∠D :∠F=2:4:x ,∴x=3.2.略. 15.略6.6 关注三角形的外角1.C 2.C 3.C 4.B 5C 6. 35° 7. 37.5° 8. 260° 9. 55°或70° 10. 120°或115°或125°11.AF ⊥DE 12.∠D=70° ∠D=90°12A +∠ 13. 证法一:延长CD 交AB 于点E ; 证法二:过点B 做BF ⊥AD ,交AD 的延长线于点F.14.证法1: 360BDC BDA CDA∠=-∠-∠又180BDA B BAD ∠=-∠-∠ 180CDA C CAD ∠=-∠-∠360(180)BDC B BAD ∴∠=--∠-∠-(180)C CAD BAD CAD B C -∠-∠=∠+∠+∠+∠即BDC BAC B C ∠=∠+∠+∠;证法2略. 15.略16.延长BP 交AC 于D ,则∠BPC >∠BDC ,∠BDC >∠A 故∠BPC >∠A(2)在直线l 同侧,且在△ABC 外,存在点Q ,使得∠BQC >∠A 成立.此时,只需在AB 外,靠近AB 中点处取点Q ,则∠BQC >∠A .证明略.提示:单元综合评价一、1.A 2.C 3.D 4.B 5.B 6.B 7.B 8.C 9.B 10.B二、11.略12.80° 13.60° 14.115° 15.88° 16.45°>∠B>30°17.360 ° 18.118° 19.3 20.68°三、21.10022.证明: ∵∠ADE=∠B ,∴ED ∥BC . ∴∠1=∠3.∵∠1=∠2,∴∠3=∠2.∴CD ∥FG .∵FG ⊥AB ,∴CD ⊥AB .23. ∵L 1∥L 2, ∴∠ECB+∠CBF=180°. ∴∠ECA+∠ACB+∠CBA+∠ABF=180°.∵∠A=90°, ∴∠ACB+∠CBA=90°. 又∠ABF=25°, ∴∠ECA=180°-90°-25°=65°.24.解:分两种情况(1)当ABC ∆为锐角三角形时,70B ∠=(2) 当ABC ∆为钝角三角形时,20B ∠=25.略 33.FD EC ⊥90EFD FEC ∴∠=-∠而FEC B BAE ∴∠=∠+∠又AE 平分BAC ∠11(180)22BAE BAC B C ∴∠=∠=-∠-∠=190()2B C -∠+∠ 则19090()2EFD B B C ⎡⎤∠=-∠+-∠+∠⎢⎥⎣⎦=1()2C B ∠-∠ (2)成立。
北师大版八年级下册数学第二章《回顾与思考》教案
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与实数、向量、函数或图形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如绘制一次函数和二次函数的图像,观察向量的合成等。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们回顾了实数、向量、函数及图形的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
举例:通过图形展示向量加法的平行四边形法则和数乘的几何意义。
(3)一次函数、二次函数的性质及图像:重点讲解一次函数、二次函数的图像特点、性质及其应用。
举例:以y = x^2为例,分析其图像的开口方向、顶点坐标等性质。
(4)三角形、四边形的性质及判定:强调三角形的稳定性、四边形的特殊性质,以及各类特殊图形的判定方法。
此外,小组讨论环节让我看到了学生们的思维火花。他们在探讨数学知识在实际生活中的应用时,提出了许多有趣的观点。这表明学生们具有很好的创新意识和解决问题的能力。但同时,我也注意到部分学生在讨论中较为沉默,可能是因为他们对相关知识点的掌握不够自信。为此,我将在以后的课堂中,更加关注这些学生,鼓励他们积极参与讨论,提高自信心。
难点解析:结合实际案例,让学生动手操作,学会数据的收集、整理、描述和分析,提高解决问题的能力。
北师大数据的收集教案5篇
北师大数据的收集教案5篇北师大数据的收集教案1教学目标:1能根据统计结果回答问题发现问题,进行简单的预测和较为合理的判断。
2让学生进行一些社会调查,体验实践性和现实性,激发学生的学习兴趣,培养学生的应用意识,并接受其中的思想教育。
教学重点:让学生选择记录方法作记录,并体会哪种记录方法既清楚又方便。
教学难点:根据统计表提出问题并初步进行简单的预测。
教法:采用讲授法讨论法发现法。
确立学生的主体地位,让学生真正地成为学习的主人,将学习的内容与学生的实际水平有效地结合起来,让学生在引导中探索,探索中发展,发展中提高。
教学过程:一情境引入教师谈话:同学们,新的学期已经开始了几天,我们的学习生活正逐渐步入正轨,今天,老师要请你们帮忙,为老师评选一名数学科代表。
教师出示评选条件:1数学成绩优秀。
2数学成绩一般,但非常希望能提高数学成绩。
3愿意为大家服务,乐意为数学老师服务。
师:你想推荐谁当数学科代表?(学生自由发言并说出理由。
)教师根据学生的回答,筛选出两位学生的名字写在黑板上,如张三李四。
二互动新授1学习用记录的方法收集整理数据。
(1)收集数据。
教师引导:刚才我们通过筛选选出了两位合适的同学,那么,这两位同学哪个更合适呢?我们要从这两位同学中选一位,你有没有合适的方法?学生讨论,说说选择的方法。
教师提问:用我们上节课学习的举手统计的方法可行吗?为什么?小结:举手投票,存在很多人情因素,有时会出现其他同学不公平不服气的情况,影响同学之间的和睦相处,那有没有更公平公正的方法呢?(学生自由发言。
) 出示小精灵的话:可以用投票的方式来决定谁能担任科代表。
教师讲解投票的方法,拿出准备好的小纸张,从黑板上选一个你心目中的科代表的名字。
学生动笔写,将写好的纸张折好,由小组长收上来。
(2)学习记录方法。
教师将收好的纸张放在讲台桌上。
师:现在老师要从这些纸张里拿出一张,报出名字,同学们要想办法把它记在纸张上,老师报一个,你记一个,一直到把这些纸张记完。
数学八年级下北师大版5.2数据的收集同步练习1
5.2 数据的收集同步练习(总分:50分时间30分钟)一、选择题(每题4分,共12分)1.下列方法属于“划记法”的是()A.我国古代的象形文字B.鲁滨孙漂流时为了记日期而在船上刻的线C.古罗马数字D.阿拉伯数字2.下列说法正确的是()A.有通过普查才能够获取总体的特征 B.抽样调查是获取数据的唯一途径C.普查比抽样调查方便得多 D.抽样调查时的样本应具有随机性3.为了了解某县20-30岁青年的文化水平(学历来反映),采取了抽样调查方式获得结果。
下面所采取的抽样方式合理的是()A.抽查了该县20-30岁的在职干部B.抽查了该县城关地区20-30岁的青年C.随机抽查了该县所有20-30岁青年共500名D.抽查了该县农村某镇的所有20-30岁的青年二、填空题(每题4分,共8分)4.为了了解中央电视台春节联欢晚会的收视率,应采用适合的调查方式为_________(选填“全面调查”或“抽样调查”)7.5.抽样调查为了获得较为准确的调查结果,抽样时要注意样本的_______和________.三、解答题(每题6分,共30分)6.2003年5月,一场抗击非典肺炎的“战争”在全国各地进行着,为了获得每天感染非典患者,疑似病例患者的数据,需要对十二亿多人进行普查吗?你认为采取什么调查方式更适合?请结合实际情况谈谈你的想法。
7.为了完成下列任务,你认为采用什么调查方式更合适?(1)了解你们班同学周末时间是如何安排的.(2)了解一批圆珠笔芯的使用寿命.(3)了解我国八年级学生的视力情况.8.姚明作为我国最优秀的篮球运动员转会至美国NBA,一方面推动我国篮球事业的快速发展,同时也给他所加入的NBA俱乐部带来更大的商机,它将拥有来自世界人口最多的国家的广大球迷爱好者和姚明的崇拜者,使得凡是姚明所参加的每一场NBA球赛能获得更多的观众收视率。
如果要对姚明最近一场球赛的收视率在国内进行调查,是否每个看电视的人都要被问到?仅对六十岁以上的老年同志的调查结果能否作为该场比赛的国内收视率?你认为应该怎样调查更合适些?9.《红楼梦》是我国最经典的名著之一,为了了解我国阅读过,《红楼梦》的读者,你认为采用什么方式调查更合适些?你认为对不同地区,不同年龄,不同文化背景的人所做的调查结果会一样吗?10.为了保护环境,某校环保小组成员小明收集废电池,第一天收集1号电池4节,5号电池5节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽样时要注意样本的代表性与广泛性.
活动与探究
板书设计
5.2数据的收集
一、复习提问
普查、抽样调查
二、例题讲解
三、议一议
四、课堂练习
五、课时小结
六、课后作业
教学反思
反复使用修订记录说明
本节课主要学习了数据的收集.当总体中的个体数目较多时,为了节省时间、人力、物力,可采用抽样调查.为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性.还要注意关注样本的大小.
四.课堂练习
五.课后作业
习题5.2
抽样时要注意样本的代表性和广泛性.
我们应注意抽出的样本就必须有较强的代表性.每个部分都应抽取到,而且应注意各部分的比例.广泛性是指总体中的每个个体均有被选的可能.
教学
环节
教师活动
学生活动
备注
例题讲解
1.例题讲解
为了了解你所在地区老年人的健康状况,你准备怎样收集数据?
下面分别是小明、小颖公园里调查了1000他们一年中生病的次数.
小颖:在医院调查了1000名老年病人,他们一年中生病的次数如下表所示:(投影片2)
小华:调查了10名老年邻居,他们一年中生病的次数如下表所示:(投影片3)
1.必然要求素材本身的真实性,以培养学生求真的科学态度.
2.通过同学间的交流与合作,培养大家的合作精神.
教学
重点
数据的收集
教学
难点
如何确定调查范围与对象,合理收集数据是否具有代表性与广泛性.
教学
手段
教学
方法
启发引导法
教学
准备
教学过程
教学
环节
教师活动
学生活动
备注
导入新课
两种调查方式:普查与抽样调查,并要求掌握总体、个体、样本这些基本概念.这节课我们继续学习统计初步知识,如何收集数据.如何使收集的数据有广泛性和代表性.如何使所收集到的数据更真实、可靠地反映总体情况.
[生3]小华仅仅调查了10位老年人.因为样本太小了,所以不能据此推断某地区老年人的健康状况.
教学
环节
教师活动
学生活动
备注
小结
练习
作业
抽样调查应注意什么?
代表性、广泛性分别指什么,你是怎么理解的?
2.议一议
为了了解该地区老年人的健康状况,你认为应当怎样收集数据?
3.想一想
抽样调查时应注意什么?
三.小结
你同意他们三个人的做法吗?
比较一下上述两种表示各自的优越性.
比较一下小明与小颖所得数据的差别,是什么原因造成的?
说明你的理由.
[生1]小明调查的对象选自公园里的老年人.常去公园里活动的老年人,平时一定注意身体的保健
[生2]小颖收集的数据来自医院看病的1000名老年人.这部分人相对体质较弱.我认为用这些数据得到的调查结果不准确.因为收集的数据缺乏代表性和广泛性.
课题
《5.2数据的收集》教案
课型
新课
课时
1
三维目标
知识与技能
1.会采取合理的调查方法收集数据,能对数据进行加工、整理.
2.进一步了解、掌握抽样调查与普查各自的优、缺点
过程与方法
1.经历数据收集、加工与整理.发展统计意识和数据处理能力.
2.通过调查,培养学生的探索精神、分析、处理问题的能力.
情感态度与价值观