大学一年级上学期-微积分试题-第一学期期末试卷A

合集下载

大学一年级上学期-微积分试题-期末试卷A卷解答

大学一年级上学期-微积分试题-期末试卷A卷解答

………….5 分
再证: e−x2 ≤ 1
(x > 0)
1+ x2
亦即证:1 + x2 ≤ e x2
设 g(x) = ex2 − 1 − x2 ,则 g(0) = 0
………….7 分
g′(x) = 2xex2 − 2x = 2x(e x2 − 1) ≥ 0
………….8 分
当x > 0时, g(x)单增,⇒ x > 0时,有g(x) > 0.

y 2 )2 dy

π
1 y 4dy = 8 π
0
0
3
y x = y2
(1,1)
x = 2 − y2
(2,0) x
七、(8 分)解: f ′(x) = (x − 1)(x − 2)2 ,
令 f ′(x) = 0, 得驻点:x1 = 1, x2 = 2 ,列表
x
(−∞,1)
1
(1,2)
2
f ′(x)
0
t
………….7 分
∫ ∫ ∫ ∫ x
t+2
x+2
t+2
= [2 f (t) − f (s)ds]dt + [2 f (t) − f (s)ds]dt
0
t
x
t
∫ ∫ ∫ = F (x) + 2 x+2 f (t)dt −
x+2 t+2
[ f (s)ds]dt
x
x
t
∫ ∫ ∫ 2
x+2 2
= F (x) + 2 f (t)dt − [ f (s)ds]dt (由(1)的结论)
………….2 分

大一微积分期末试卷及答案[1]

大一微积分期末试卷及答案[1]

微积分期末试卷 一、选择题(6×2)1~6 DDBDBD二、填空题1 In 1x + ;2 322y x x =-;3 2log ,(0,1),1xy R x =-; 4(0,0)5解:原式=11(1)()1mlim lim 2(1)(3)3477,6x x x x m xm x x x m b a →→-+++===-++∴=∴=-= 三、判断题1、 无穷多个无穷小的和是无穷小( )2、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( )3、 设函数f(x)在[]0,1上二阶可导且'()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有1~5 FFFFT四、计算题1用洛必达法则求极限2120lim x x x e →解:原式=222111330002(2)lim lim lim 12x x x x x x e e x e x x --→→→-===+∞-2 若34()(10),''(0)f x x f =+求解:33223333232233432'()4(10)312(10)''()24(10)123(10)324(10)108(10)''()0f x x x x x f x x x x x x x x x x f x =+⋅=+=⋅++⋅⋅+⋅=⋅+++∴= 3 240lim(cos )x x x →求极限4 (3y x =-求5 3tan xdx ⎰6arctan x xdx ⎰求五、证明题。

1、 证明方程310x x +-=有且仅有一正实根。

证明:设3()1f x x x =+-2、arcsin arccos 1x 12x x π+=-≤≤证明() 六、应用题1、 描绘下列函数的图形3.4.补充点7179(2,).(,).(1,2).(2,)2222---50lim (),()0x f x f x x →=∞∴=有铅直渐近线 6如图所示:2.讨论函数22()f x x Inx =-的单调区间并求极值 由上表可知f(x)的单调递减区间为(,1)(0,1)-∞-和单调递增区间为(1,0)1-+∞和(,)且f(x)的极小值为f(-1)=f(1)=1。

大一上学期微积分期末试卷及答案

大一上学期微积分期末试卷及答案

大一上学期微积分期末试卷及答案微积分期末试卷1,cossinxx.()2,()()1设在区间(fxgx,,0,)内( )。

22,是增函数,是减函数fxgx()()B()()fxgx是减函数,是增函数 C二者都是增函数D二者都是减函数2x20cossin、x,,时,与相比是( )exx,高阶无穷小,低阶无穷小,等价无穷小,同阶但不等价无价小1x,、,=,是函数,=(,-sinx)的( ),连续点,可去间断点,跳跃间断点,无穷型间断点,、下列数列有极限并且极限为,的选项为( ),1nnA X(1) B Xsin,,,,nnn211 Xcos,C X(1) ,,aDnnnna5"()、若在处取得最大值,则必有( )fxX0,f,() ()XoBXo,,f,00CXXXXf,且()0''( )<0 D''()'()0,,ff不存在或f00001()2x6、曲线( )yxe, ,仅有水平渐近线,仅有铅直渐近线,既有铅直又有水平渐近线,既有铅直渐近线1~6 DDBDBD一、填空题1,、( ),dxd,+112、求过点(,,,)的一条直线,使它与曲线,,相切。

这条直线方程为:,,,,、函数,,的反函数及其定义域与值域分别是: ,,,,,,、,,,的拐点为:,,,,axb,,、若则的值分别为:lim2,,ab,x,,,,2x-3x32yxx,,21 ; 2 ; 3 ; 4(0,0) In1x,yR,log,(0,1),21,x(1)()1mxxmxm,,,,limlim2,,,xx,,115解:原式= (1)(3)34xxx,,,?,?,,,mba77,6 二、判断题1、无穷多个无穷小的和是无穷小( )sinx2、在区间(,)是连续函数(),,,,limx,0xf"(x)=0一定为f(x)的拐点()3、 0xx处取得极值,则必有f(x)在处连续不可导( ) 4、若f(X)在005、设函数,(x)在上二阶可导且0,1,,fxffCff'()0A'0B'(1),(1)(0),A>B>C( ),,,,,令(),则必有 1~5 FFFFT三、计算题122x1用洛必达法则求极限 limxe,x011221,3xxeex(2),2x解:原式= limlimlim,,,,,e,3xxx,,,0001,2x2x 34fxxf()(10),''(0),,求2 若解:332233,,,,,fxxx'()4(10)xx312(10)33232233432,,,,,,,,,,,,,fxxx''()24(1xxxx0)12xxx3(10)324(10)108(10)f'0?,x'()42x求极限lim(cos)x3 ,x044IcosnxIcosnx2lim2xxx,0解:原式=limee,x,01(sin),x4costanInxxx,,cosxlimcoslimlimlimlim2Inx,,,,,,22xxxxx,,,,,00 000xxxxx2224,2?,原式e5x,13求的导数yx,,(31)4 x,2511解:I3112nyInxInxInx,,,,,,3221531111 y',,,,,,yxxx3312122,,,5,,x,15113yx'(31),,,,,,xxxx,,,,2312(1)2(2),,3tanxdx5 ,22解:原式=tantansec1)tanxxdxxxdx,,(,,2 =sectantanxxdxxdx,,,sinx =tantanxdxdx,,,cosx1 =tantancosxdxdx,,,cosx12 =tancosxInxc,,2求xxdxarctan,611222解:原式=arctan()(arctanarctan)xdxxxxdx,,,,222111x,,2 =(arctan)xxdx,2,21,x11,,2 =xxdxarctan(1),,2,,,21,x,,21,xx =arctanxc,,22四、证明题。

大学一年级上学期-微积分试题-微积分A第一学期期末试题答案

大学一年级上学期-微积分试题-微积分A第一学期期末试题答案

⎟⎞ ⎠
=
e
2.
dy = 1 , d x 2(1 + t)2
d2 y = − 1 . d x 2 2(1 + t)2
当 t = 1时,
dy = 1, dx 8
d2 y = − 1 . d x2 32
曲率半径
R
=
[1 +
y′2 ]3 / 2 y′′
=
[1 +
1 ]3 / 2 64
=
65
65
1
16
t =1
y
=
C1
cos
2x
+
C2
sin
2x
+
1 4
x
+
1 5
e
x
4. 解法一,取 x 为积分变量
2/5
V = ∫012π (3 − x) ⋅ 2x 2 d x = 4π [∫013 x 2 d x − ∫01 x 3 d x]
= 3π
解法二,取 y 为积分变量
∫ V = 2π(3 − y / 2)2 d y − π ⋅ 22 ⋅ 2 . 0 = 3π .
k
= lim x →∞
f
(x) x
=
⎡ lxi→m∞ ⎢⎣
(1
x +
2
x)2
+
3⎤
x
⎥ ⎦
= 1.
ห้องสมุดไป่ตู้
b
=
lim[ f
32
3. 对应齐次方程的特征方程: r 2 + 4 = 0. 于是,特征根为: r1,2 = ±2 i .
对应齐次方程的通解为:Y (x) = C1 cos 2x + C2 sin 2x

微积分A第一学期期末试卷A及答案

微积分A第一学期期末试卷A及答案

《微积分A 》期末试卷(A 卷)班级 学号 姓名 成绩一、求解下列各题(每小题7分,共35分) 1设,1arctan 122---=x x x x y 求.y '2 求不定积分.)ln cos 1sin (2dx x x xx⎰++ 3求极限.)(tanlim ln 110x x x ++→ 4 计算定积分,)(202322⎰-=a x a dxI 其中.0>a 5 求微分方程.142+='-''x y y 的通解. 二、完成下列各题(每小题7分,共28分)1 设当0→x 时,c bx ax e x---2是比2x 高阶的无穷小,求c b a ,,的值. 2求函数)4()(3-=x x x f 在),(+∞-∞内的单调区间和极值.3 设)(x y y =是由方程组⎪⎩⎪⎨⎧=--+=⎰01cos sin )cos(20t t y du t u x t所确定的隐函数,求.dx dy 4 求证:.sin sin42222⎰⎰ππππ=dx xxdx xx.三、(8分)设)(x y 在),0[+∞内单调递增且可导,又知对任意的,0>x 曲线)(x y y =,上点)1,0(到点),(y x 之间的弧长为,12-=y s 试导出函数)(x y y =所满足的微分方程及初始条件,并求)(x y 的表达式. 四、(8分)过点)0,1(-作曲线x y =的切线,记此切线与曲线x y =、x 轴所围成的图形为D ,(1) 求图形D 的面积;(2) 求D 绕x 轴旋转一周所得旋转体的体积.五、(7分)求证:方程010cos 042=++⎰⎰-xt xdt e dt t 有并且只有一个实根.六、(8分)一圆柱形桶内有500升含盐溶液,其浓度为每升溶液中含盐10克。

现用浓度为每升含盐20克的盐溶液以每分钟5升的速率由A 管注入桶内(假设瞬间即可均匀混合),同时桶内的混合溶液也以每分钟5升的速率从B 管流出。

最新微积分(上)期末考试试题A卷(附答案)

最新微积分(上)期末考试试题A卷(附答案)

一、 选择题 (选出每小题的正确选项,每小题2分,共计10分)1.1lim 2xx -→=_________。

(A ) -∞ (B ) +∞ (C ) 0 (D ) 不存在 2.当0x →时,()x xf x x+=的极限为 _________。

(A ) 0 (B ) 1 (C )2 (D ) 不存在 3. 下列极限存在,则成立的是_________。

0()()()lim ()x f a x f a A f a x -∆→+∆-'=∆0()(0)()lim (0)x f tx f B tf x→-'= 0000()()()lim 2()t f x t f x t C f x t →+--'= 0()()()lim ()x f x f a D f a a x →-'=-4. 设f (x )有二阶连续导数,且()0()(0)0,lim1,0()_______x f x f f f x x→'''==则是的。

(A ) 极小值 (B )极大值( C )拐点 (D ) 不是极值点也不是拐点 5.若()(),f x g x ''=则下列各式 成立。

()()()0A f x x φ-=()()()B f x x C φ-=()()()C d f x d x φ=⎰⎰()()()d dD f x dx x dx dx dxφ=⎰⎰ 二、 填空题(每小题3分,共18分)1. 设0(2)()0(0)0,lim1sin x f x f x x f x→===-在处可导,且,那么曲线()y f x =在原点处的切线方程是__________。

2.函数()f x =[0,3]上满足罗尔定理,则定理中的ξ= 。

3.设1(),()ln f x f x dx x'=⎰的一个原函数是那么 。

4.设(),xf x xe -=那么2阶导函数 ()___f x x ''=在点取得极_____值。

大一期末考试微积分试题带答案汇编

大一期末考试微积分试题带答案汇编

第一学期期末考试试卷一、填空题(将正确答案写在答题纸的相应位置. 答错或未答,该题不得分.每小题3分,共15分.)1. =→xx x 1sin lim 0___0_____.2. 设1)1(lim )(2+-=∞→nx xn x f n ,则)(x f 的间断点是___x=0_____.3. 已知(1)2f =,41)1('-=f ,则12()x df x dx -== _______.4. ()ax x '=_______.5. 函数434)(x x x f -=的极大值点为________.二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代码写在答题纸的相应位置.答案选错或未选者,该题不得分.每小题3分,共15分.) 1. 设)(x f 的定义域为)2,1(, 则)(lg x f 的定义域为________. A.)2lg ,0( B. ]2lg ,0[ C. )100,10( D.)2,1(.2. 设对任意的x ,总有)()()(x g x f x ≤≤ϕ,使lim[()()]0x g x x ϕ→∞-=,则lim ()x f x →∞______.A.存在且一定等于零B. 存在但不一定等于零C.不一定存在D. 一定存在. 3. 极限=-→xx x xe 21lim0________.A. 2eB. 2-eC. eD.不存在.4. 设0)0(=f ,1)0(='f ,则=-+→xx f x f x tan )2()3(lim0________.A.0B. 1C. 2D. 5.5. 曲线221xy x=-渐近线的条数为________. A .0 B .1 C .2 D .3. 三、(请写出主要计算步骤及结果,8分.) 求20sin 1lim sin x x e x x →--. 四、(请写出主要计算步骤及结果,8分.)求21lim(cos )x x x +→. 五、(请写出主要计算步骤及结果,8分.)确定常数,a b , 使函数2(sec )0()0x x x x f x ax b x -⎧>=⎨+≤⎩处处可导.六、(请写出主要计算步骤及结果,8分.)设21()arctan ln(1)2f x x x x =-+,求dy .dy=arctanxdx七、(请写出主要计算步骤及结果,8分.) 已知2326x xy y -+=确定y 是x 的函数,求y ''. 八、(请写出主要计算步骤及结果,8分.)列表求曲线523333152y x x =-+的凹向区间及拐点.九、证明题(请写出推理步骤及结果,共6+6=12分.)1. 设)(x f 在[,]a b 上连续,且(),(),f a a f b b <>证明在开区间(,)a b 内至少存在一点ξ,使()f ξξ=.2. 设函数)(x f 在]1,0[上连续,在)1,0(内可导, 且0)1(=f ,求证:至少存在一点)1,0(∈ξ,使得3'()()0f f ξξξ+=.第一学期期末考试参考答案与评分标准一、填空题(3×5=15)1、02、 0x = 3 、4- 4、()1ln 1ax a x x a x -⋅+ 5、3x = 二、单项选择题(3×5=15)1、C2、C3、A4、B5、D三、(8×1=8)220000sin 1sin 1lim lim 2sin cos lim 62sin 1lim 822x x x x x x x x e x e x x x e xxe x →→→→----=-=+==L L L L L L L L L 分分分 四、(8×1=8)()200ln cos 1lim1sin cos lim 112lim (cos )268x x x x x x x xx e ee +→++→→-⋅--===L L L L L L L L L 分分分五、(8×1=8)因为()f x 在(),-∞+∞处处可导,所以()f x 在0x =处连续可导。

大学一年级上学期-微积分试题-微A9(1)期末试题(A)

大学一年级上学期-微积分试题-微A9(1)期末试题(A)

课程编号:MTH17005 北京理工大学2009-2010学年第一学期2009级《微积分A 》期末试卷(A)一、填空(每小题4分,共28分)1. 极限=−−→x e e xx x sin lim 0 .设)1(x f e y =,f 为可微函数,则=dy .3. 不定积分∫=+dx xx tan 1cos 12 ; 定积分=∫ππ−dx x x 22sin .4. 设函数)(x y y =由方程确定,则012=−∫+−x y t dt e x =dx dy ,==0x dx dy.5. 微分方程的通解为 x xy y 24=+′.6. 曲线 在⎩⎨⎧=++=−+010)1(y te t t x y 0=t 处的切线方程为 , 法线方程为 .=+∫∞+221dx x x 7. 广义积分.二、(10分)已知⎩⎨⎧≥<+=0,arctan 0,1)(x x x x x f ,求 (1)的表达式;)11()()(1≤≤−=∫−x dt t f x F x (2)研究)(x F 在上的连续性和可导性.]1,1[−三、(9分)已知,sin 4lim )1(lim 0202x x dt t t b ax x x xx x −+=−−++∫→+∞→求常数的值. b a ,四、(9分)在曲线x y ln =上求曲率最大的点的坐标及曲率的最大值.五、(10分)设星形线的方程为, )20(sin cos 33π≤≤⎩⎨⎧==t t y t x 求星形线的弧长; 求星形线所围的图形绕x 轴旋转一周所得旋转体的体积.六、(10分) 设函数)(x y y =y 满足微分方程:,且其图形在点处的切线与曲线在该点的切线重合,求函数x e y y y 223=+′−′′)1,0(12+−=x x )(x y y =.七、(9分)已知)(x f 是连续函数,求证:∫∫−+=aa dx x a f x f dx x f 020)]2()([)( 并计算.cos 1sin 02∫π+dx x x x八、(9分)一容器内盛有10升盐水,其中含盐100克,今用3升/分的匀速将净水由A管注入容器,并以2升/分的匀速让盐水由B 管流出,求30分钟末容器内溶液的含盐量(假定溶液在任一时刻都是均匀的).九、(6 分)设)(x f 在上连续,在内有二阶导数,且]2,0[)2,0(,01))(2ln(lim1=−+→x x f x ,证明:至少存在一点∫10(f =)0(x f )dx )2,0(∈ξ,使得0)()(=ξ′′+ξ′f f .------------------------- 赠予 ------------------------【幸遇•书屋】你来,或者不来我都在这里,等你、盼你等你婉转而至盼你邂逅而遇你想,或者不想我都在这里,忆你、惜你忆你来时莞尔惜你别时依依你忘,或者不忘我都在这里,念你、羡你念你袅娜身姿羡你悠然书气人生若只如初见任你方便时来随你心性而去却为何,有人为一眼而愁肠百转为一见而不远千里晨起凭栏眺但见云卷云舒风月乍起春寒已淡忘如今秋凉甚好几度眼迷离感谢喧嚣把你高高卷起砸向这一处静逸惊翻了我的万卷 和其中的一字一句幸遇只因这一次被你拥抱过,览了 被你默诵过,懂了被你翻开又合起 被你动了奶酪和心思不舍你的过往和过往的你记挂你的现今和现今的你遐想你的将来和将来的你难了难了相思可以这一世。

大一上学期微积分期末试卷

大一上学期微积分期末试卷

微积分期末试卷1兀、.设f(x)=2cos x,g(x)=(—)sin x在区间(0,)内()。

22A f(x)是增函数,g(x)是减函数B f(x)是减函数,g(x)是增函数C二者都是增函数口二者都是减函数2、T0时,e2x-cos x与sin x相比是()A高阶无穷小B低阶无穷小C等价无穷小D同阶但不等价无价小3、x0是函数y(1x的()A连续点B可去间断点C跳跃间断点D无穷型间断点4、下列数列有极限并且极限为1的选项为()I n冗AX=(-1)n-—BX=sinn-n n n2IICX=(a>1)D X=cos—n n nn a5、若f"(x)在X处取得最大值,则必有()0A'(X)=oB f X)<o00C f X)=0且''(X)<0D''(X)不存在或'(X)=000006、曲线y=xe(x2)()A仅有水平渐近线B仅有铅直渐近线C既有铅直又有水平渐近线D既有铅直渐近线1~6DDBDBD一、填空题1、()=-^―d xx1相切。

这条直线方程为:x 2、求过点(2,0)的一条直线,使它与曲线y=2x3、函数y=,^的反函数及其定义域与值域分别是:2x+14、y=&X的拐点为:5、若lim-:ax>"=2,则a/的值分别为:x-1X2+x2y—x3-2x2;3y=log--,(0,1),R;4(0,0)21-x(x-1)(x+m)x+m1+mlim=lim==25解:原式=彳-1(x-1)(x+3)x-1x+34m=7b=—7,a=6二、判断题1、无穷多个无穷小的和是无穷小()2、limsi吧在区间(-如+8)是连续函数()x f 0x3、f”(x )一定为的拐点()04、若f(X)在x 处取得极值,则必有f(x)在x 处连续不可导()005、设函数f (x)在[0,1]上二阶可导且f '(x )<0令A =f '(0),B =f '(1),C =f (1)-f (0),则必有A>B>C()1~5FFFFT三、计算题-11用洛必达法则求极限lim x 2e x2x f 0ex2e x 2(-2x -3)1.一解:原式=lim 丁=lim =lim e x 2=+8x f 0x f 0-2x -3x f 0x 22若f (x )=(x 3+10)4,求"(0)解:f '(x )=4(x 3+10)3•3x 2=12x 2(x 3+10)3f "(x )=24x -(x 3+10)3+12x 2・3•(x 3+10)2•3x 2=24x •(x 3+10)3+108x 4(x 3+10)2・•.f "(x )=03求极限lim(cos x )x 2x f044,解:原式lim e ;2历cos x=e x —0x 21n cos xx —04In cos xlim_In cos x =lim x ―0x2x —0x 21 (-sin x ) =lim cos x x —0x=lim x —0一tan x =lim x =-2x —o x 24求y =(3x -1);:士1的导数x -2 解:I 〃y = —In3x —1+—Inx —1一y ,1=5y 3 331—十2 113x 一12x 一122Inx-2J tan 3xdx5解:原式J tan 2x tan xdx =J(sec 2x -1)tan xdx=J sec 2x tan xdx -Jtan xdxsin x tan xd tan x - cos xJJ1tan xd tan x - dxd cos xltan 2x +In cos x +c 2求J x arctan xdxy'=(3x -1)x 一213x -12(x -1)2(x 一2)5 3BM +解:原式1J arctan xd (x 2)=1(x 2arctan x -J x 2d arctan x )221,J x 2+1-1,、 (x 2arctan x -dx ) 21+x 21 x 2arctan x -J(1-)dx 1+x 21+x 2x arctan x --+c四、证明题。

大一微积分期末试题附答案

大一微积分期末试题附答案

微积分期末试卷一、选择题(6×2)cos sin 1.()2,()()22()()B ()()D x x f x g x f x g x f x g x C π==1设在区间(0,)内( )。

A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数2x 1n n n n 20cos sin 1n A X (1) B X sin21C X (1) xn e x x n a D a π→-=--==>、x 时,与相比是( )A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( )A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1X cosn=200000001()5"()() ()()0''( )<0 D ''()'()06x f x X X o B X oC X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( )A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线二、填空题1d 12lim 2,,x d xax ba b →++=xx2211、( )=x+1、求过点(2,0)的一条直线,使它与曲线y=相切。

这条直线方程为:x23、函数y=的反函数及其定义域与值域分别是:2+1x5、若则的值分别为:x+2x-3三、判断题1、 无穷多个无穷小的和是无穷小( )2、 0sin limx xx→-∞+∞在区间(,)是连续函数()3、 0f"(x )=0一定为f(x)的拐点()4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( )5、 设函数f(x)在[]0,1上二阶可导且'()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有四、计算题1用洛必达法则求极限212lim x x x e →2 若34()(10),''(0)f x x f =+求3 24lim(cos )xx x →求极限4 (3y x =-求5 3tan xdx ⎰五、证明题。

微积分(上)期末考试试题A卷(附答案)

微积分(上)期末考试试题A卷(附答案)

一、 选择题 (选出每小题的正确选项,每小题2分,共计10分)1.10lim 2xx -→=_________。

(A ) -∞ (B ) +∞ (C ) 0 (D ) 不存在 2.当0x →时,()x xf x x+=的极限为 _________。

(A ) 0 (B ) 1 (C )2 (D ) 不存在 3. 下列极限存在,则成立的是_________。

0()()()lim ()x f a x f a A f a x-∆→+∆-'=∆0()(0)()lim(0)x f tx f B tf x→-'=0000()()()lim2()t f x t f x t C f x t→+--'=0()()()lim()x f x f a D f a a x→-'=-4. 设f (x )有二阶连续导数,且()0()(0)0,lim1,0()_______x f x f f f x x→'''==则是的。

(A ) 极小值 (B )极大值( C )拐点 (D ) 不是极值点也不是拐点 5.若()(),f x g x ''=则下列各式 成立。

()()()0A f x x φ-=()()()B f x x C φ-=()()()C d f x d x φ=⎰⎰()()()d dD f x dx x dx dx dx φ=⎰⎰二、 填空题(每小题3分,共18分)1. 设0(2)()0(0)0,lim1sin x f x f x x f x→===-在处可导,且,那么曲线()y f x =在原点处的切线方程是__________。

2.函数()f x =[0,3]上满足罗尔定理,则定理中的ξ=。

3.设1(),()ln f x f x dx x'=⎰的一个原函数是那么 。

4.设(),xf x xe -=那么2阶导函数 ()___f x x ''=在点取得极_____值。

大一上学期微积分期末试卷及答案

大一上学期微积分期末试卷及答案

微积分期末试卷1.设 f ( x) 2cosx , g (x) ( 1 )sin x 在区间( 0, )内( )。

2 2A f ( x)是增函数, g ( x)是减函数 Bf ( x)是减函数, g( x)是增函数 C 两者都是增函数 D 两者都是减函数、 x时, 2x与对比是()2ecosxsin xA高阶无量小 B低阶无量小C等价无量小D同阶但不等价无价小13、x =0是函数y =(1 -sinx) x 的( )A连续点B可去中断点 C跳跃中断点 D无量型中断点4、以下数列有极限而且极限为1的选项为( )A X n( 1)n1 B X n sinnn2C X n1n (a 1) D X ncos1an5、若 f "( x)在 X 0处获得最大值,则必有( )A f ' o B f ' o(X 0) (X 0)C f ' 且f ''( X 0 )<0 f ''(X 0 ) 不存在或 f'(X 0) 0 (X 0 ) 0 D 、曲线( 1 ))y xe x 2(6A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线D既有铅直渐近线1~6 DDBDBD 一、填空题1、(d)=1dxx +12、求过点(2,0)的一条直线,使它与曲线y=1相切。

这条直线方程为:xx3、函数y= 2的反函数及其定义域与值域分别是: x2+14、y= 3 x的拐点为:2 ax b5、若 limx 则 a, b 的值分别为:22, x 1x+ 2x-31 In x1 ;2 yx 3 2x 2 ; 3 ylog 2 x x ,(0,1), R ; 4(0,0)1lim( x1)( x m )limxm1m 2( x1)( x 3)x 345 解:原式 = x1x1m7b7, a6二、判断题1、 无量多个无量小的和是无量小()2、 limsin x在区间(, )是连续函数()x 0x3、 f"(x 0) =0必定为 f(x) 的拐点()4、 若 f(X) 在 x 0 处获得极值,则必有 f(x) 在 x 0 处连续不行导( )5、 设函数f(x)在0,1上 二阶可 导 且f '( x)0令 Af ('0), Bf '(1), Cf (1)f (0), 则必有 A>B>C( )1~5 FFFFT三、计算题11 用洛必达法例求极限 lim x2 e x 2x 0111ex 22 ( 2x3 )解:原式 = lime xlim ex21lim2x3x 0xx 0x 22 若 f ( x) (x3 10)4 , 求 f ''(0)解:f '(x)4( x 3 10) 3 3x 212 x 2 ( x 3 10) 3f ''( x)24 x ( x 3 10) 3 12 x 2 3 ( x 3 10) 2 3x 224 x ( x 3 10) 3 108 x 4 ( x 3 10) 2f ''( x)43 求极限 lim(cos x) x2x 04lim 4I n cosx解:原式 =lim ex2 I ncos xx 2e x 0x 01sin x)Q lim4lim In cos x( tan xxIn cosxlim cosxlimlim 2 x 0x2x 0x 2 x 0x x 0x x 0 x4222原式e 25x1的导数4 求 y (3x 1)3x 2解: In y5In 3x 11In x 1 1In x 232 2y '15 3 1 1 1 1 1 y3 3x 12 x 2 x 25x 1511y '(3x 1)3x2 3x 1 2(x 1) 2(x 2)5tan 3xdx解:原式 = tan 2x tan xdx(sec 2x 1) tan xdx = sec 2 x tan xdx tan xdx = tan xd tan xsin x dxcos x= tan xd tan x1 d cos xcos x12= tan x In cosxc6 求x arctanxdx解:原式 =1arctanxd( x 2)1(x 2 arctanx x 2 d arctanx)2x 22=1( x 2arctanx1 12 1 x 2 dx)=1x 2arctanx(1 12 1 x 2 )dx=1x 2 arctanx x c22四、证明题。

大一微积分期末试卷及答案

大一微积分期末试卷及答案

微积分期末试卷选择题(6×2)cos sin 1.()2,()()22()()B ()()D x x f x g x f x g x f x g x C π==1设在区间(0,)内( )。

A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数2x 1n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π→-=--==>、x 时,与相比是( )A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( )A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 X cos n = 200000001()5"()() ()()0''( )<0 D ''()'()06x f x X X o B X oC X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( )A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线1~6 DDBDBD一、填空题1d 12lim 2,,x d x ax b a b →++=xx2211、( )=x+1、求过点(2,0)的一条直线,使它与曲线y=相切。

这条直线方程为:x23、函数y=的反函数及其定义域与值域分别是:2+1x5、若则的值分别为:x+2x-31 In 1x + ;2 322y x x =-;3 2log ,(0,1),1x y R x=-; 4(0,0) 5解:原式=11(1)()1m limlim 2(1)(3)3477,6x x x x m x m x x x m b a →→-+++===-++∴=∴=-= 二、判断题1、 无穷多个无穷小的和是无穷小( )2、 0sin lim x x x→-∞+∞在区间(,)是连续函数() 3、 0f"(x )=0一定为f(x)的拐点()4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( )5、 设函数f(x)在[]0,1上二阶可导且'()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有1~5 FFFFT三、计算题1用洛必达法则求极限2120lim x x x e → 解:原式=222111330002(2)lim lim lim 12x x x x x x e e x e xx--→→→-===+∞- 2 若34()(10),''(0)f x x f =+求解: 33223333232233432'()4(10)312(10)''()24(10)123(10)324(10)108(10)''()0f x x x x x f x x x x x x x x x x f x =+⋅=+=⋅++⋅⋅+⋅=⋅+++∴= 3 240lim(cos )xx x →求极限4I cos 2204I cos lim 022000002lim 1(sin )4cos tan cos lim cos lim lim lim lim 22224n x x x n x x x x x x x x e e x In x x x x In x x x x xx e →→→→→→→-=---=====-∴=解:原式=原式4 (3y x =-求 511I 31123221531111'3312122511'(3312(1)2(2)n y In x In x In x y y x x x y x x x x =-+---=⋅+⋅-⋅---⎤=-+-⎥---⎦解:5 3tan xdx ⎰ 2222tan tan sec 1)tan sec tan tan sin tan tan cos 1tan tan cos cos 1tan cos 2x xdx x xdxx xdx xdxx xd x dx xxd x d x xx In x c =----++⎰⎰⎰⎰⎰⎰⎰⎰解:原式=( = = = =6arctan x xdx ⎰求22222222211arctan ()(arctan arctan )22111(arctan )2111arctan (1)211arctan 22xd x x x x d x x x x dx xx x dx x x x x c =-+--+⎡⎤--⎢⎥+⎣⎦+-+⎰⎰⎰⎰解:原式= = = =四、证明题。

大一微积分期末考题

大一微积分期末考题

大一微积分期末考题
一、概念题
1.微积分的基本概念是什么?
2.请解释函数的导数和积分的概念。

3.什么是微分和积分运算?
4.请解释微积分中的极限概念。

二、计算题
1.已知函数f(x)=3x^2+2x-5,请计算f(x)的导数和不定积分。

2.计算函数g(x)=∫(3x^2+2x-5)dx。

3.已知函数h(x)=x^3,求函数h(x)的导数和不定积分。

4.如果已知函数f(x)的导数为f’(x)=2x+3,求函数f(x)本身。

三、证明题
1.请证明对于任意实数a,导数函数的导数等于原函数的二阶导数。

2.已知函数f(x)满足f’’(x)=0,证明函数f(x)为一次函数。

3.证明函数f(x)=e^x的导数为它本身。

4.请证明函数f(x)=sin(x)的导数为f’(x)=cos(x)。

四、应用题
1.铁丝制成的矩形围墙面积为A,围墙的长和宽相差d。

请计算出长和宽的值,使得围墙面积最大。

2.已知曲线y=x^2+2x+1在x=0处的切线方程为y=2x+1,求曲线方程所在点的曲率。

3.某人出发从A地骑自行车向B地,沿直线行驶。

已知该人的速度v(t)=5t+1,t为时间。

求该人从A骑到B所需的时间。

4.一球从地面以v0的速度竖直向上抛射,忽略空气阻力。

求该球从抛出到回落的过程中,其高度最高点的坐标。

以上为大一微积分期末考题,希望各位同学在复习时能够重点关注这些考点,并根据自己的实际情况进行准备。

祝各位同学考试顺利!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程编号:A071001 北京理工大学2006-2007学年第一学期
2006级《微积分A 》期末试卷(A 卷)
班级 学号 姓名 成绩
一、
求解下列各题(每小题7分,共35分) 1 设,1arctan 122−−−=x x x x
y 求.y ′
2 求不定积分.)ln cos 1sin (2dx x x x
x ∫++ 3 求极限.)(tan lim ln 110
x x x ++→ 4 计算定积分)(202322∫−=a x a dx I 其中 .0>a 5
求微分方程.142+=′−′′x y y 的通解. 二、
完成下列各题(每小题7分,共28分) 1
设当0→x 时,c bx ax e x −−−2是比2
x 高阶的无穷小,求的值. c b a ,,2 求函数)4()(3−=x x x f 在),(+∞−∞内的单调区间和极值. 3 设)(x y y =是由方程组所确定的隐函数,求⎪⎩⎪⎨⎧=−−+=∫0
1cos sin )cos(20t t y du t u x t .dx dy 4 求证: .sin sin 42222∫∫ππππ=dx x x
dx x x .
三、(8分)设)(x y 在内单调递增且可导,又知对任意的),0[+∞,0>x 曲线)(x y y =,上点到点)1,0(),(y x 之间的弧长为,12−=
y s 试导出函数)(x y y =所满足的微分方程及初始条件,并求)(x y 的表达式.
四、(8分)过点作曲线)0,1(−x y =的切线,记此切线与曲线x y =、x 轴所围成的
图形为D ,
(1) 求图形D 的面积;
(2) 求D 绕x 轴旋转一周所得旋转体的体积.
五、(7分)求证:方程010cos 042
=++∫∫−x t x dt e dt t 有并且只有一个实根. 六、(8分)一圆柱形桶内有500升含盐溶液,其浓度为每升溶液中含盐10克。

现用浓度为每升含盐20克的盐溶液以每分钟5升的速率由A 管注入桶内(假设瞬间即可均匀混合),同时桶内的混合溶液也以每分钟5升的速率从B 管流出。

假设桶内的溶液始终保持为500升,求任意t 时刻桶内溶液的含盐量.
七、(6分)设)(x f 在上可导,且满足]1,0[∫=21
)(2)1(dx x f e e f x ,求证:至少存在一点,使得)1,0(∈ξ.0)()(=ξ+ξ′f f
------------------------- 赠予 ------------------------
【幸遇•书屋】
你来,或者不来
我都在这里,等你、盼你
等你婉转而至
盼你邂逅而遇
你想,或者不想
我都在这里,忆你、惜你
忆你来时莞尔
惜你别时依依
你忘,或者不忘
我都在这里,念你、羡你
念你袅娜身姿
羡你悠然书气
人生若只如初见
任你方便时来
随你心性而去
却为何,有人
为一眼而愁肠百转
为一见而不远千里
晨起凭栏眺
但见云卷云舒
风月乍起
春寒已淡忘
如今秋凉甚好
几度眼迷离
感谢喧嚣
把你高高卷起
砸向这一处静逸
惊翻了我的万卷 和其中的一字一句
幸遇只因这一次
被你拥抱过,览了 被你默诵过,懂了
被你翻开又合起 被你动了奶酪和心思
不舍你的过往
和过往的你
记挂你的现今
和现今的你
遐想你的将来
和将来的你
难了难了
相思可以这一世。

相关文档
最新文档