5.3.1平行线的性质(1)课件(新人教版七年级数学下)
合集下载
人教版数学七年级下册5.3.1 第1课时 平行线的性质 -课件
4
b
2
∴ 2+ 4=180°
线被第三条直线所截,同旁内角互补. 简单说成:两直线平行,同旁内角互补.
应用格式:
∵a∥b(已知)
∴∠2+∠4=180 °
a
1
4
b
2
(两直线平行,内错角相等)
c
典例精析
例 如图,是一块梯形铁片的残余部分,量得∠A=100°, ∠B=115°,梯形的另外两个角分别是多少度?
解:因为梯形上、下底互相平行,所以
∠A与∠D互补, ∠B与∠C互补. D
C
于是∠D=180 °-∠A=180°-
100°=80°
A
B
∠所C以=梯18形0的°另-∠外B两=1个80角°分-1别15是°8=06°5°、 65°.
四、平行线的判定与性质 讨论:平行线三个性质的条件是什么?结论是
什么?它与判定有什么区别?(分组讨论)
如图,已知a//b,那么2与3相等吗?为什么?
解 ∵ a∥b(已知),
∴∠1=∠2(两直线平行,同位角相等).
a
1
又∵ ∠1=∠3(对顶角相等),
3
b
2
∴ ∠2=∠3(等量代换).
c
总结归纳
性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.
应用格式:
∵a∥b(已知)
解: ∠A =∠D.理由:
∵ AB∥DE( 已知 )
D
∴∠A=_∠__C_P_E__ ( 两直线平行,同位角相等)
A
∵AC∥DF( 已知 )
F C
P E
图1 B
∴∠D=_∠__C_P_E_ ( 两直线平行,同位角相等 )
平行线的性质 优秀课件ppt
素材:探索平行线的性质(播放状态下,点击画面操作)
探索平行线的性质.swf
当堂练习
1.如图,已知平行线AB、CD被直线AE所截
(1)从 ∠1=110o可以知道∠2 是多少度吗,为什么?
(2)从∠1=110o可以知道 ∠3是多少度吗,为什么?
(3)从 ∠1=110o可以知道∠4 是多少度吗,为什么?
又∵∠A=100°,∠C=110°(已知),
∴∠ 1 = 80 °, ∠ 2 = 70 °.
∴∠AEC=∠1+∠2= 80 °+ 70 ° = 150 °.
4.已知AB⊥BF,CD⊥BF,∠1= ∠2,试说明∠3=∠E.
65
度数
78
c
观察 ∠1~ ∠8中,哪些是同位角?它们的度数 之间有什么关系?说出你的猜想:
a
21
34
b
65
78
c
猜想 两条平行线被第三条直线所截,同位角_相_等_.
再任意画一条截线d,同样度量各个角的度 数,你的猜想还成立吗?
d
a
b
如果两直线不平行,上述结论还成立吗?
总结归纳
一般地,平行线具有如下性质:
当堂练习
1.填空:如图,
(1)∠1=∠2 时,AB∥CD. (2)∠3= ∠5或∠4时,AD∥BC.
A 1 B
D
5 2
3 C
4 F
E
2.直线a,b与直线c相交,给出下列条件:
①∠1= ∠2;
②∠3= ∠6;
③∠4+∠7=180o; ④∠3+ ∠5=180°, c
其中能判断a//b的是( B )
A. ①②③④ B .①③④
3.如图,直线 a ∥ b,直线b垂直于直线c,那么直线a
5.3 .1平行线的性质(1)
B 4 D F
如图,已知:AC∥DE,∠1=∠2, 试说明AB∥CD.
证明:由AC∥DE (已知), 根据:两直线平行,内错角相等. A D 得∠ACD= ∠ 2 . 1 2 又由∠1=∠2(已知).B E C 根据: 等量代换 . 得∠1=∠ACD . 再根据:内错角相等,两直线平行 . 得 AB ∥CD .
引例1 小明必须要订做一块与原来一模一样的 新玻璃,已知量得∠A=115°,∠D=100°, 请你想一想,梯形的另外两个角各是多少度时, 才能为小明合理地解决问题。 解:∵AD∥BC (已知) A D ∴ A + B=180° C (两直线平行,同旁内角互补) B 即 ∠B= 180°- A=180°-115°=65° ∵AD∥BC (已知) ∴ D+ C=180° (两直线平行,同旁内角互补) 即 C=180°- D =180°-100°=80° 答:梯形的另外两个角分别为65°、80° 。
思考2
简单说成:两直线平行,同旁内角互补。
精彩回放
平行线的性质1 两条平行线被第三条直线所截,同位角相等。 简单说成:两直线平行,同位角相等。 平行线的性质2 两条平行线被第三条直线所截,内错角相等 简单说成:两直线平行,内错角相等。 平行线的性质3 两条平行线被第三条直线所截,同旁内角互补 简单说成:两直线平行,同旁内角互补。
判断正误
①两直线被第三条直线所截,同位角相等(
②两直线平行,同旁内角相等。(
×
×
)
)
③“内错角相等,两直线平行”是平行线的性质。 ( )
×
④“两直线平行,同旁内角互补”是平行线的性 质。( )
√ห้องสมุดไป่ตู้
完成并比较.如图, (1)∵a∥b(已知), ∴∠1___ ) = ∠2( 两直线平行,同位角相等 (2)∵ a∥b (已知), = ∠3( 两直线平行,内错角相等 ∴∠2___ ) (3)∵a∥b(已知), ∴∠2+∠4=180 ____( ° 两直线平行,同旁内角互 )
5.3.1平行线的性质(1)(新版人教版) 4
A 1 2 4 3 E
B
D
4.巩固新知,深化理解
10. 如图,已知AB∥CD,AE∥CF,∠A= 39°,
∠C是多少度?为什么?
E F
A C
G
B D
4.巩固新知,深化理解
方法一
E
解:∵AB∥CD, ∴ ∠C=∠1. ∵ AE∥CF, ∴ ∠A=∠1. ∴ ∠C=∠A. ∵∠A= 39º , ∴∠C= 39º .
A C G
F
1
B D
4.巩固新知,深化理解
方法二
解:∵AB∥CD,
∴ ∠C=∠2. ∵ AE∥CF,
A G
E F
∴ ∠A=∠2. ∴ ∠C=∠A. ∵∠A= 39º , ∴∠C= 39º .
C
2
B D
小结
两直线平行
线的关系
性质 判定
系 法平 的行 线 的 性 区质 同位角相等 和 内错角相等 平 别 行 同旁内角互补 线 与的 角的关系 判 定 联方
A 1 2 4 3 E
B
D
4.巩固新知,深化理解
8. 如图,平行线AB,CD被直线AE所截. (2)从∠1=110º 可以知道∠3是多少度吗?为什么? 答:∠3 =110º .因为AB∥CD ,∠1和∠3是同位角, 根据两直线平行,同位角相等,得到∠1=∠3.因为 ∠1=110º ,所以∠3 =110º . C
1.梳理旧知,引出新课
平行线的判定
结论
判定方法1 同位角相等,两直线平行. 判定方法2 内错角相等,两直线平行. 判定方法3 同旁内角互补,两直线平行.
1 线 平 行
结论
?
1.梳理旧知,引出新课
条件
两条平行线 被第三条直 线所截
B
D
4.巩固新知,深化理解
10. 如图,已知AB∥CD,AE∥CF,∠A= 39°,
∠C是多少度?为什么?
E F
A C
G
B D
4.巩固新知,深化理解
方法一
E
解:∵AB∥CD, ∴ ∠C=∠1. ∵ AE∥CF, ∴ ∠A=∠1. ∴ ∠C=∠A. ∵∠A= 39º , ∴∠C= 39º .
A C G
F
1
B D
4.巩固新知,深化理解
方法二
解:∵AB∥CD,
∴ ∠C=∠2. ∵ AE∥CF,
A G
E F
∴ ∠A=∠2. ∴ ∠C=∠A. ∵∠A= 39º , ∴∠C= 39º .
C
2
B D
小结
两直线平行
线的关系
性质 判定
系 法平 的行 线 的 性 区质 同位角相等 和 内错角相等 平 别 行 同旁内角互补 线 与的 角的关系 判 定 联方
A 1 2 4 3 E
B
D
4.巩固新知,深化理解
8. 如图,平行线AB,CD被直线AE所截. (2)从∠1=110º 可以知道∠3是多少度吗?为什么? 答:∠3 =110º .因为AB∥CD ,∠1和∠3是同位角, 根据两直线平行,同位角相等,得到∠1=∠3.因为 ∠1=110º ,所以∠3 =110º . C
1.梳理旧知,引出新课
平行线的判定
结论
判定方法1 同位角相等,两直线平行. 判定方法2 内错角相等,两直线平行. 判定方法3 同旁内角互补,两直线平行.
1 线 平 行
结论
?
1.梳理旧知,引出新课
条件
两条平行线 被第三条直 线所截
人教版七年级数学下册《平行线的性质》公开课PPT
判断下列说法是否正确 1.两直线被第三条直线所截,同位角相等。 2.两直线平行,同旁内角相等。 3.“内错角相等,两直线平行”是平行线的性质。 4.“两直线平行,同旁内角互补”是平行线的性质。
A1
D
B
C
1、如果AD//BC,根据___________
可得∠B= _______
2、如果AD//BC,根据___________
为∠1=85º
1
如图,梯子的各条横档互相 平行,∠1=1000,求∠2的度 数。
A
2 B
C
1D
如图,在汶川大地震当 中,一辆抗震救灾汽车 经过一条公路两次拐弯 后,和原来的方向相同, 也就是拐弯前后的两条 路互相平行.第一次拐的 角∠B等于1420,第二次 拐的角∠C是多少度?为 什么?
1420
AB
C
D
?
如图,是举世闻名的三星堆考古中发掘出 的一个梯形残缺玉片,工作人员从玉片上已经 量得∠A=115°,∠D=100°。已知梯形的两底 AD//BC,请你求出另外两个角的度数。
A
D
115° 110°
B
C
已知:直线a∥b, ∠1=115°. 则: ∠2=___,理由:________.
若∠3= 115°,则:直线c与d有
把下列句子颠倒一下前后顺序,能得到 怎样的一句话?这句话正确吗?
1.对顶角相等;
2.如果两个数的和为0,那么这两个数互 为相反数; 3.我爱我的学生;
• 同位角相等,两直线平行 • 内错角相等,两直线平行 • 同旁内角互补,两直线平行
两直线平行,同位角相等 两直线平行,内错角相等 两直线平行,同旁内角互补
何位置关系?并说明理由.
c
5.3.1 平行线的性质(1)
A E
B
1
C
2
F D
已知AB∥CD,∠B=130°,∠E=80° 已Байду номын сангаасAB∥CD,∠B=35°,∠E=80° 求∠D的度数
A
E C
B E D
考 考 你
如图DE∥GF,BC∥DE EF∥DC, DC∥AB 你知道∠B与∠F的关系吗?
D G C
E
F B
A
复习回顾:
平行线的判定方法 平行线的性质
同位角相等, 两直线平行. 两直线平行, 同位角相等. 两直线平行, 内错角相等. 两直线平行, 同旁内角互补.
∴ AE∥BC
(内错角相等,两直线平行)
6.如图,已知∠ABC+∠C=180°,BD 平分∠ABC,∠CBD与∠D相等吗?请说明 理由.
A B
D
C
7.如图, ∠1= ∠2,∠3=65°.
求∠4的度数.
a
1 2 3 4
b
c
d
∵ AD//BC (已知) A ∴∠2=∠3
(两直线平行,内错角相等).
B
5.已知:如图∠1=∠2, ∠A= ∠C,说明:AE∥BC
(已知) 解:∵ ∠1=∠2 ∴AB//CD (同位角相等,两直线平行) ∴ ∠ 3= ∠ A (两直线平行,同位角相等) ∵ ∠A=∠C (已知) (等量代换)
∴ ∠ 3= ∠ C
如图,一条公路两次转弯后, 和原来的方向相同.如果第一 O 次拐的角是36 ,第二次拐 的角是多少度?为什么?
如图,在一条公路两侧铺设 平行管道,如果公路一侧铺设 o 的角度为120 ,那么为了使管 道对接,别一侧应以什么角度 铺设?为什么?
如图,DE∥BC,DF∥AC 试写出图中和∠C相等的角
B
1
C
2
F D
已知AB∥CD,∠B=130°,∠E=80° 已Байду номын сангаасAB∥CD,∠B=35°,∠E=80° 求∠D的度数
A
E C
B E D
考 考 你
如图DE∥GF,BC∥DE EF∥DC, DC∥AB 你知道∠B与∠F的关系吗?
D G C
E
F B
A
复习回顾:
平行线的判定方法 平行线的性质
同位角相等, 两直线平行. 两直线平行, 同位角相等. 两直线平行, 内错角相等. 两直线平行, 同旁内角互补.
∴ AE∥BC
(内错角相等,两直线平行)
6.如图,已知∠ABC+∠C=180°,BD 平分∠ABC,∠CBD与∠D相等吗?请说明 理由.
A B
D
C
7.如图, ∠1= ∠2,∠3=65°.
求∠4的度数.
a
1 2 3 4
b
c
d
∵ AD//BC (已知) A ∴∠2=∠3
(两直线平行,内错角相等).
B
5.已知:如图∠1=∠2, ∠A= ∠C,说明:AE∥BC
(已知) 解:∵ ∠1=∠2 ∴AB//CD (同位角相等,两直线平行) ∴ ∠ 3= ∠ A (两直线平行,同位角相等) ∵ ∠A=∠C (已知) (等量代换)
∴ ∠ 3= ∠ C
如图,一条公路两次转弯后, 和原来的方向相同.如果第一 O 次拐的角是36 ,第二次拐 的角是多少度?为什么?
如图,在一条公路两侧铺设 平行管道,如果公路一侧铺设 o 的角度为120 ,那么为了使管 道对接,别一侧应以什么角度 铺设?为什么?
如图,DE∥BC,DF∥AC 试写出图中和∠C相等的角
人教版七年级数学下册《平行线的性质》相交线与平行线PPT优秀课件
置关系,而平行线的性质是根据两条直线的位置关系得 到两角的数量关系; (2)平行线的判定的条件是平行线的性质的结论,而平行线 的判定的结论是平行线的性质的条件.
感悟新知
特别警示 ●两条直线平行是前提,只有在这个前提下才有同
位角相等; ●格式书写时,顺序不能颠倒,与判定不能混淆.
感悟新知
例 1 如图5.3-2,把三角尺的直角顶点放在直尺的一边上, 若∠ 1=30°,则∠ 2 的度数为( A ) A.60° B.50° C.40° D.30°
感悟新知
1-1.[中考·柳州] 如图,直线a,b 被直线c 所截,若a ∥ b, ∠ 1=70 °,则∠ 2 的度数是( C ) A. 50° B. 60° C. 70° D. 110°
感悟新知
知识点 2 平行线的性质2
1. 性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.
2. 表达方式:如图5.3-3,因为a ∥ b(已知), 所以∠ 1= ∠ 2(两直线平行,内错角相等).
感悟新知
特别警示 并不是所有的内错角都相等,只有在“两直线平
行”的前提下,才有内错角相等.
感悟新知
例2 如图5.3-4,AB ∥ CD,BE 平分∠ ABC,CF 平分 ∠ BCD,你能发现BE 和CF 有何特殊的位置关系吗? 说说你的理由. 解题秘方:由两直线平行得到 内错角相等,再由内错角相等 得到两直线平行.
感悟新知
解:BE∥CF.理由如下:∵ AB∥CD(已知),
∴∠ ABC= ∠ BCD (两直线平行,内错角相等).
∵ BE 平分∠ ABC,CF 平分∠ BCD (已知),
∴∠ 2=
1 2
∠ ABC,∠ 1=Fra bibliotek1 2
感悟新知
特别警示 ●两条直线平行是前提,只有在这个前提下才有同
位角相等; ●格式书写时,顺序不能颠倒,与判定不能混淆.
感悟新知
例 1 如图5.3-2,把三角尺的直角顶点放在直尺的一边上, 若∠ 1=30°,则∠ 2 的度数为( A ) A.60° B.50° C.40° D.30°
感悟新知
1-1.[中考·柳州] 如图,直线a,b 被直线c 所截,若a ∥ b, ∠ 1=70 °,则∠ 2 的度数是( C ) A. 50° B. 60° C. 70° D. 110°
感悟新知
知识点 2 平行线的性质2
1. 性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.
2. 表达方式:如图5.3-3,因为a ∥ b(已知), 所以∠ 1= ∠ 2(两直线平行,内错角相等).
感悟新知
特别警示 并不是所有的内错角都相等,只有在“两直线平
行”的前提下,才有内错角相等.
感悟新知
例2 如图5.3-4,AB ∥ CD,BE 平分∠ ABC,CF 平分 ∠ BCD,你能发现BE 和CF 有何特殊的位置关系吗? 说说你的理由. 解题秘方:由两直线平行得到 内错角相等,再由内错角相等 得到两直线平行.
感悟新知
解:BE∥CF.理由如下:∵ AB∥CD(已知),
∴∠ ABC= ∠ BCD (两直线平行,内错角相等).
∵ BE 平分∠ ABC,CF 平分∠ BCD (已知),
∴∠ 2=
1 2
∠ ABC,∠ 1=Fra bibliotek1 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
创设情景
现在同学们已经掌握了利用同位角相等,或者内错角相等, 或者同旁内角互补, 判定两条直线平行的三种方法.在这一 节课里:大家把思维的指向反过来: 如果两条直线平行,那 么同位角、内错角、同旁内角的数量关系又该如何表达
【课中探究】
1.数学活动 (1)学生画图活动:用直尺和三角尺画出两条平行线a∥b,再 画一条截线c与直线a、b相交,标出所形成的八个角 (2)学生测量这些角的度数,把结果填入表内.
三、选择题. 1.∠1和∠2是直线AB、CD被直线EF所截而成的内错角,那么∠1和∠2 的大小关系是( ) D A.∠1=∠2 B.∠1>∠2; C.∠1<∠2 D.无法确定 2.一个人驱车前进时,两次拐弯后,按原来的方向前进, 这两次拐弯的角 度是( B) A.向右拐85°,再向右拐95°; B.向右拐85°,再向左拐85° C.向右拐85°,再向右拐85°; D.向右拐85°,再向左拐95°
3.数学活动——在小组内部交流,归纳结论.
平行线具有性质: 性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行, 同位 角相等. 性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行, 内错 相等. 性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行, 同旁 内角互补.
5.3.1平行线的性质(1)
【学习目标】
1.掌握平行线的三条性质,并能用它们进行简单的推理和计算. 2.能区分平行线的性质和判定,平行线的性质与判定的混合应用.
【重点难点】
重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算. 难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用 .
4.数学活动——先独立思考,然后在小组内交流,并展示.
平行线的性质 平行线的判定
1 3 4
因为a∥b, 因为∠1=∠2, 所以∠1=∠2 所以a∥b. 因为a∥b, 因为∠2=∠3, 所以∠2=∠3, 所以a∥b. 因为a∥b, 因为∠2+∠4=180°, 所以∠2+∠4=180°, 所以a∥b.
A
2 1
D
8 7
北
北 甲
56
B D E C
A
ቤተ መጻሕፍቲ ባይዱ
3
B
4
5
6
C
乙
F
(1) (2) (3) 2.如图(2),在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是 南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的 两直线平行,内错角相等 北偏东56度 走向是________________, 因为___________________. AB ∥______, EF 理由是 3.因为AB∥CD,EF∥CD,所以______ 平行于同一条直线的两条直线平行 ____________________________. 4.如图(3),AB∥EF,∠ECD=∠E,则CD∥AB.说理如下: 因为∠ECD=∠E, 所以CD∥EF( 内错角相等,两直线平行 ) 又AB∥EF, 所以CD∥AB( 平行于同一条直线的两条直线平行 ).
角
∠1
∠2
∠3
∠4
∠5
∠6
∠7
∠8
度数
2.数学活动
(1)学生根据测量所得数据作出猜想. 图中哪些角是同位角?它们具有怎样的数量关系?图中哪些角是内错角? 它们具有怎样的数量关系?图中哪些角是同旁内角?它们具有怎样的数 量关系?在详尽分析后,写出猜想. •(2)再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成 立吗?
a
2
b c
5.数学活动——进一步研究平行线三条性质之间的关系 结合上图根据性质1,你能推出性质2吗?你能推出性质3吗?
因为a∥b,所以∠1=∠2(两直线平行,同位角相等); 又∠3=∠1(对顶角相等),所以∠2=∠3. 大家自己推出性质3
1 3 4
a
2
b c
【当堂达标】
一、判断题. 1.两条直线被第三条直线所截,则同旁内角互补.( 错 ) 2.两条直线被第三条直线所截,如果同旁内角互补,那么同位角相等.(对) 3.两条平行线被第三条直线所截,则一对同旁内角的平分线互相平行.(错) 二、填空题. 4 1 8 5 1.如图(1),若AD∥BC,则∠______= ∠_______, ∠_______= ∠_______, BAD ∠ABC+∠_______=180 °; 若DC∥AB,则∠______= ∠_______, 2 6 ∠________= ∠__________, ∠ABC+∠_________=180 °. BCD 3 7