初中八年级数学竞赛培优讲义全套专题20 正方形-精编
初二数学知识点专题讲解与练习20---正方形(培优版)
F
A
D
M
B
C
A
D
F
EB
M C
E
G
图1
图G2
【例 3】如图,正方形 ABCD 中,E ,F 是 AB ,BC 边上两点,且 EF = AE + FC , DG ⊥ EF 于 G ,求证: DG = DA .
(重庆市竞
2 / 17
解题思路:构造 AE + FC 的线段是解本例的关键.
赛试题)
A
D
E
G
B
延长线上 (CG > BC) ,取线段 AE 的中点 M .连 MD , MF . (1)探究线段 MD , MF 的关系,并加以证明. (2)将正方形 CGEF 绕点 C 旋转任意角后(如图 2),其他条件不变. 探究线段 MD , MF 的关系,并加以证明.
(大
连市中考题改编) 解题思路:由 M 为 AE 中点,想到“中线倍长法”再证三角形全等.
(黑龙江省中考 试题)
解题思路:对于(2),构造 DN − BM 是解题的关键.
4 / 17
A
D
N
BM
C
图1
A
D
C MB
A
D
N
BM
C
图2
人教版数学八年级培优竞赛 正方形 专题课件
CD 于 F.
A
D
E
A
D
E
P
F
P
F
B
图⑴
C
B
C
图⑵
(1)求证:PC=PE; (2)求 CPE 的度数; (3)如图②,把正方形 ABCD 改为菱形 ABCD,其他条件不变,若 ABC 65 ,则 CPE =__________.
(1)提示:证△ABP≌△CBP(SAS); (2)由(1)知,AABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA =PE, ∴∠DAP=∠E,.∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等), ∴180°-∠PFC-∠PCF=180°-∠DFE-∠E,即∠CPF=∠EDF=90°; (3)115.
B A
图1
B A
图2
10.如图,在由边长为 1 的小正方形组成的网格图中有两个格点 A、B.(注: 网格线交点称为格点)
(1)请在图 1 中确定格点 C,使得△ABC 的面积为 12.如果符合题意的格点 C 不止一个,请分别用 C1 、 C2 、 C3 …表示;
(2)请用无刻度的直尺在图 2 中以 AB 为一边画一个面积为 18 的矩形 ABMN.
(第 3 题)
H
A
D
F
E
G
B
C
(第4题)
4.如图,正方形 ABCD 的边长为 1,AC,BD 是对角线,将△DCB 绕着点 D 顺时针旋转 45 得到△DGH,
HG 交 AB 于点 E,连接 DE 交 AC 于点 F,连接 FG.则下列结论:
① 四边形 AEGF 是菱形; ②△AED≌△GED; ③ DFG 112.5 ;④ BC+FG=1.5
八年级数学培优讲义(下册)
八年级数学培优讲义(下册)(A)AF=EF(B)AB=EF(C)AE=AF(D)AF=BE10.如图,下列推理不正确的是( ).(A)∵AB∥CD∴∠ABC+∠C=180°(B)∵∠1=∠2 ∴AD∥BC(C)∵AD∥BC∴∠3=∠4(D)∵∠A+∠ADC=180°∴AB∥CD 11.平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为( ).(A)5 (B)6(C)8 (D)12综合、运用、诊断一、解答题12.已知:如图,□ABCD中,DE⊥AC于E,BF⊥AC于F.求证:DE=BF.13.如图,在□ABCD中,∠ABC的平分线交CD于点E,∠ADE的平分线交AB于点F,试判断AF与CE是否相等,并说明理由.14.已知:如图,E、F分别为□ABCD的对边AB、CD的中点.(1)求证:DE=FB;(2)若DE、CB的延长线交于G点,求证:CB=BG.15.已知:如图,□ABCD中,E、F是直线AC 上两点,且AE=CF.求证:(1)BE=DF;(2)BE∥DF.拓展、探究、思考16.已知:□ABCD中,AB=5,AD=2,∠DAB =120°,若以点A为原点,直线AB为x 轴,如图所示建立直角坐标系,试分别求出B、C、D三点的坐标.17.某市要在一块□ABCD的空地上建造一个四边形花园,要求花园所占面积是□ABCD面积的一半,并且四边形花园的四个顶点作为出入口,要求分别在□ABCD的四条边上,请你设计两种方案:方案(1):如图1所示,两个出入口E、F已确定,请在图1上画出符合要求的四边形花园,并简要说明画法;图1方案(2):如图2所示,一个出入口M已确定,请在图2上画出符合要求的梯形花园,并简要说明画法.图2测试2 平行四边形的性质(二)学习要求能综合运用所学的平行四边形的概念和性质解决简单的几何问题.课堂学习检测一、填空题1.平行四边形一条对角线分一个内角为25°和35°,则4个内角分别为______.2.□ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是______.3.平行四边形周长是40cm,则每条对角线长不能超过______cm.4.如图,在□ABCD中,AE、AF分别垂直于BC、CD,垂足为E、F,若∠EAF=30°,AB=6,AD=10,则CD=______;AB与CD的距离为______;AD与BC的距离为______;∠D=______.5.□ABCD的周长为60cm,其对角线交于O 点,若△AOB的周长比△BOC的周长多10cm,则AB=______,BC=______.6.在□ABCD中,AC与BD交于O,若OA=3x,AC=4x+12,则OC的长为______.7.在□ABCD中,CA⊥AB,∠BAD=120°,若BC=10cm,则AC=______,AB=______.8.在□ABCD中,AE⊥BC于E,若AB=10cm,BC=15cm,BE=6cm,则□ABCD的面积为______.二、选择题9.有下列说法:①平行四边形具有四边形的所有性质;②平行四边形是中心对称图形;③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形.其中正确说法的序号是( ).(A)①②④(B)①③④(C)①②③ (D)①②③④10.平行四边形一边长12cm,那么它的两条对角线的长度可能是( ).(A)8cm和16cm (B)10cm和16cm(C)8cm和14cm (D)8cm和12cm11.以不共线的三点A、B、C为顶点的平行四边形共有( )个.(A)1 (B)2 (C)3 (D)无数12.在□ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别是AB和CD的五等分点,点B1、B2、和D1、D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为1,则□ABCD的面积为( )3(A)2 (B)55(D)15(C)313.根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第n个图中平行四边形的个数是( )……(1) (2)(3)(A)3n(B)3n(n+1) (C)6n(D)6n(n+1)综合、运用、诊断一、解答题14.已知:如图,在□ABCD中,从顶点D向AB作垂线,垂足为E,且E是AB的中点,已知□ABCD的周长为8.6cm,△ABD的周长为6cm,求AB、BC的长.15.已知:如图,在□ABCD中,CE⊥AB于E,CF⊥AD于F,∠2=30°,求∠1、∠3的度数.拓展、探究、思考16.已知:如图,O为□ABCD的对角线AC的串点,过点O作一条直线分别与AB、CD交于点M、N,点E、F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.17.已知:如图,在□ABCD中,点E在AC上,AE=2EC,点F在AB上,BF=2AF,若△BEF的面积为2cm2,求□ABCD的面积.测试3 平行四边形的判定(一)学习要求初步掌握平行四边形的判定定理.课堂学习检测一、填空题1.平行四边形的判定方法有:从边的条件有:①两组对边__________的四边形是平行四边形;②两组对边__________的四边形是平行四边形;③一组对边__________的四边形是平行四边形.从对角线的条件有:④两条对角线__________的四边形是平行四边形.从角的条件有:⑤两组对角______的四边形是平行四边形.注意:一组对边平行另一组对边相等的四边形______是平行四边形.(填“一定”或“不一定”)2.四边形ABCD中,若∠A+∠B=180°,∠C+∠D=180°,则这个四边形______(填“是”、“不是”或“不一定是”)平行四边形.3.一个四边形的边长依次为a、b、c、d,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形为______.4.四边形ABCD中,AC、BD为对角线,AC、BD相交于点O,BO=4,CO=6,当AO=______,DO=______时,这个四边形是平行四边形.5.如图,四边形ABCD中,当∠1=∠2,且______∥______时,这个四边形是平行四边形.二、选择题6.下列命题中,正确的是( ).(A)两组角相等的四边形是平行四边形(B)一组对边相等,两条对角线相等的四边形是平行四边形(C)一条对角线平分另一条对角线的四边形是平行四边形(D)两组对边分别相等的四边形是平行四边形7.已知:园边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形;③如果再加上条件“OA=OC”,那么四边形ABCD一定是平行四边形;④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法是( ).(A)①②(B)①③④(C)②③(D)②③④8.能确定平行四边形的大小和形状的条件是( ).(A)已知平行四边形的两邻边(B)已知平行四边形的相邻两角(C)已知平行四边形的两对角线(D)已知平行四边形的一边、一对角线和周长综合、运用、诊断一、解答题9.如图,在□ABCD中,E、F分别是边AB、CD上的点,已知AE=CF,M、N是DE和FB的中点,求证:四边形ENFM是平行四边形.10.如图,在□ABCD中,E、F分别是边AD、BC上的点,已知AE=CF,AF与BE相交于点G,CE与DF相交于点H,求证:四边形EGFH是平行四边形.11.如图,在□ABCD中,E、F分别在边BA、DC的延长线上,已知AE=CF,P、Q分别是DE和FB的中点,求证:四边形EQFP是平行四边形.12.如图,在□ABCD中,E、F分别在DA、BC的延长线上,已知AE=CF,FA与BE的延长线相交于点R,EC与DF的延长线相交于点S,求证:四边形RESF是平行四边形.13.已知:如图,四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线BD交于点O,求证:O是BD的中点.14.已知:如图,△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连结AE、CF.求证:CF∥AE.拓展、探究、思考15.已知:如图,△ABC,D是AB的中点,E 是AC上一点,EF∥AB,DF∥BE.(1)猜想DF与AE的关系;(2)证明你的猜想.16.用两个全等的不等边三角形ABC和三角形A′B′C′(如图),可以拼成几个不同的四边形?其中有几个是平行四边形?请分别画出相应的图形加以说明.测试4 平行四边形的判定(二)学习要求进一步掌握平行四边形的判定方法.课堂学习检测一、填空题1.如图,□ABCD中,CE=DF,则四边形ABEF 是____________.1题图2.如图,□ABCD,EF∥AB,GH∥AD,MN ∥AD,图中共有______个平行四边形.2题图3.已知三条线段长分别为10,14,20,以其中两条为对角线,其余一条为边可以画出______个平行四边形.4.已知三条线段长分别为7,15,20,以其中一条为对角线,另两条为邻边,可以画出______个平行四边形.5.已知:如图,四边形AEFD和EBCF都是平行四边形,则四边形ABCD是______.5题图二、选择题6.能判定一个四边形是平行四边形的条件是( ).(A)一组对边平行,另一组对边相等(B)一组对边平行,一组对角互补(C)一组对角相等,一组邻角互补(D)一组对角相等,另一组对角互补7.能判定四边形ABCD是平行四边形的题设是( ).(A)AD=BC,AB∥CD(B)∠A=∠B,∠C=∠D(C)AB=BC,AD=DC(D)AB∥CD,CD=AB8.能判定四边形ABCD是平行四边形的条件是:∠A∶∠B∶∠C∶∠D的值为( ).(A)1∶2∶3∶4 (B)1∶4∶2∶3(C)1∶2∶2∶1 (D)1∶2∶1∶29.如图,E、F分别是□ABCD的边AB、CD 的中点,则图中平行四边形的个数共有( ).(A)2个(B)3个(C)4个(D)5个10.□ABCD的对角线的交点在坐标原点,且AD平行于x轴,若A点坐标为(-1,2),则C点的坐标为( ).(A)(1,-2) (B)(2,-1) (C)(1,-3) (D)(2,-3)11.如图,□ABCD中,对角线AC、BD交于点O,将△AOD平移至△BEC的位置,则图中与OA相等的其他线段有( ).(A)1条(B)2条(C)3条(D)4条综合、运用、诊断一、解答题12.已知:如图,在□ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一组线段相等即可).(1)连结______;(2)猜想:______=______;(3)证明:13.如图,在△ABC中,EF为△ABC的中位线,D为BC边上一点(不与B、C重合),AD与EF交于点O,连结EF、DF,要使四边形AEDF为平行四边形,需要添加条件______.(只添加一个条件)证明:14.已知:如图,△ABC中,AB=AC=10,D 是BC边上的任意一点,分别作DF∥AB交AC于F,DE∥AC交AB于E,求DE+DF的值.15.已知:如图,在等边△ABC 中,D 、F 分别为CB 、BA 上的点,且CD =BF ,以AD 为边作等边三角形ADE .求证:(1)△ACD ≌△CBF ;(2)四边形CDEF 为平行四边形.拓展、探究、思考16.若一次函数y =2x -1和反比例函数x k y 2 的图象都经过点(1,1).(1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,利用图象求点A 的坐标;(3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.17.如图,点A (m ,m +1),B (m +3,m -1)在反比例函数xk y 的图象上.(1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点,以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式.测试5 平行四边形的性质与判定学习要求能综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算.课堂学习检测一、填空题:1.平行四边形长边是短边的2倍,一条对角线与短边垂直,则这个平行四边形各角的度数分别为______.2.从平行四边形的一个锐角顶点作两条高线,如果这两条高线夹角为135°,则这个平行四边形的各内角的度数为______.3.在□ABCD中,BC=2AB,若E为BC的中点,则∠AED=______.4.在□ABCD中,如果一边长为8cm,一条对角线为6cm,则另一条对角线x的取值范围是______.5.□ABCD中,对角线AC、BD交于O,且AB =AC=2cm,若∠ABC=60°,则△OAB的周长为______cm.6.如图,在□ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则□ABCD的面积是______.7.□ABCD中,对角线AC、BD交于点O,若∠BOC=120°AD=7,BD=10,则□ABCD 的面积为______.8.如图,在□ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,AF=5,24BG,则△CEF的周长为______.9.如图,BD为□ABCD的对角线,M、N分别______ 在AD、AB上,且MN∥BD,则S△DMC S△BNC.(填“<”、“=”或“>”)综合、运用、诊断一、解答题10.已知:如图,△EFC中,A是EF边上一点,AB∥EC,AD∥FC,若∠EAD=∠FAB.AB=a,AD=b.(1)求证:△EFC是等腰三角形;(2)求EC+FC.11.已知:如图,△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交BC于F.求证:BE=FC.12.已知:如图,在□ABCD中,E为AD的中点,CE、BA的延长线交于点F.若BC=2CD,求证:∠F=∠BCF.13.如图,已知:在□ABCD中,∠A=60°,E、F分别是AB、CD的中点,且AB=2AD.求证:BF∶BD=3∶3.拓展、探究、思考14.如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)是双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.图1(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.图2测试6 三角形的中位线学习要求理解三角形的中位线的概念,掌握三角形的中位线定理.课堂学习检测一、填空题:1.(1)三角形的中位线的定义:连结三角形两边____________叫做三角形的中位线.(2)三角形的中位线定理是三角形的中位线____________第三边,并且等于____________________________________.2.如图,△ABC的周长为64,E、F、G分别为AB、AC、BC的中点,A′、B′、C′分别为EF、EG、GF的中点,△A′B′C′的周长为_________.如果△ABC、△EFG、△A′B′C′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n个三角形的周长是__________________.3.△ABC中,D、E分别为AB、AC的中点,若DE=4,AD=3,AE=2,则△ABC的周长为______.二、解答题4.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.5.已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.综合、运用、诊断6.已知:如图,E为□ABCD中DC边的延长线上的一点,且CE=DC,连结AE分别交BC、BD于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF.7.已知:如图,在□ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G.求证:GF=GC.8.已知:如图,在四边形ABCD中,AD=BC,E、F分别是DC、AB边的中点,FE的延长线分别与AD、BC的延长线交于H、G点.求证:∠AHF=∠BGF.拓展、探究、思考9.已知:如图,△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E点,若AB=5,AC=7,求ED.10.如图在△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD 的中点.过MN的直线交AB于P,交AC 于Q,线段AP、AQ相等吗?为什么?测试7 矩形学习要求理解矩形的概念,掌握矩形的性质定理与判定定理.课堂学习检测一、填空题1.(1)矩形的定义:__________________的平行四边形叫做矩形.(2)矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角______;矩形的对角线______;矩形是轴对称图形,它的对称轴是____________.(3)矩形的判定:一个角是直角的______是矩形;对角线______的平行四边形是矩形;有______个角是直角的四边形是矩形.2.矩形ABCD中,对角线AC、BD相交于O,∠AOB=60°,AC=10cm,则AB=______cm,BC=______cm.3.在△ABC中,∠C=90°,AC=5,BC=3,则AB边上的中线CD=______.4.如图,四边形ABCD是一张矩形纸片,AD =2AB,若沿过点D的折痕DE将A角翻折,使点A落在BC上的A1处,则∠EA1B=______°。
八年级奥数杯赛培优精品讲义(可直接打印)
.
(“英才杯”竞赛试题)
5.探索规律: 31 3 ,个位数是 3; 32 9 ,个位数是 9; 33 27 ,个位数是 7; 34 81 ,个位数是 1;
35 243 ,个位数是 3; 36 729 ,个位数是 9;…那么 37 的个位数字是
, 330 的个位数字
是
.
(长沙市中考试题)
ab ac ad ae bc bd be cd ce de
.
(创新杯训练试题)
解题思路:对于(1),从幂的乘方逆用入手;对于(2),目前无法求 x 值,可考虑高次多项式用低次 多项式表示;对于(3),它是一个恒等式,即在 x 允许取值范围内取任何一个值代入计算,故可考虑赋值
例题与求解
【例 1】 1,2,3,…,98 共 98 个自然数中,能够表示成两个整数的平方差的个数是
.
(全国初中数字联赛试题)
解题思路:因 a2 b2 (a b)(a b) ,而 a b a b 的奇偶性相同,故能表示成两个整数的平方差
的数,要么为奇数,要么能被 4 整除.
【例 2】(1)已知 a, b 满足等式 x a2 b2 20, y 4(2b a) ,则 x, y 的大小关系是( )
B. y 4x
C. x 12 y D. y 12x
(江苏省竞赛试题)
9.已知 2a 3, 2b 6, 2c 12, 则 a, b, c 的关系是(
)
A. 2b a c
B. 2b a c
C. 2b a c
D. a b c
(河北省竞赛试题)
2n4 2(2n )
.
32001 1 32002 1 (填“>”“<”“=”).
初中数学八年级四边形-正方形中低难度讲义
度.
【例 2】1、四边形 ABCD 是正方形,E,F 分别是 DC 和 CB 的延长线上的点,且 DE=BF,连接 AE,AF,EF. (1)求证:△ ADE≌△ABF; (2)若 BC=8,DE=6,求△ AEF 的面积.
A
D
E
FB
C
2、已知:如图,四边形 ABCD 是正方形.E 是 OB 上一点,DH⊥CE,垂足为 H,DH 与 OC 相交于点 F,求证: OE=OF.
(4)对角线互相垂直的 矩形 是正方形.( )
(5)对角线相等的菱形是正方形.( )
2、下列说法正确的是( )
A.对角线相等且互相垂直的四边形是菱形 B.对角线互相垂直平分的四边形是正方形
C.对角线互相垂直的四边形是平行四边形 D.对角线相等且互相平分的四边形是矩形
3、如图,在矩形 ABCD 中,对角线 AC,BD 交于点 O,要使矩形 ABCD 成为正方形,应添加的一个条件是
D
3、如图,点 P 为正方形 ABCD 对角线 BD 上一点,PE⊥BC 于点 E,PF⊥CD 于点 F. 求证:PA=EF;
G F
B
C
A
D
P
F
BE
C
【例 3】1、判断题:
(1)有一组邻边相等 的矩形是正方形.( )
(2)对角线相等 的菱形是正方形.( )
(3)对角线垂直且相等 的平行四边形是正方形;( )
3、如图①,在正方形 ABCD 中,点 E,F 分别在 AB、BC 上,且 AE=BF. (1)试探索线段 AF、DE 的数量关系,写出你的结论并说明理由; (2)连接 EF、DF,分别取 AE、EF、FD、DA 的中点 H、I、J、K,则四边形 HIJK 是什么特殊平行四边形? 请在图②中补全图形,并说明理由.
初中八年级数学重点学习课件:正方形(知识点串讲)(解析版)
专题10 正方形知识网络重难突破一. 正方形的性质正方形:有一组邻边相等,且有一个角是直角的平行四边形叫做正方形. 如图:正方形ABCD.正方形除了具有平行四边形的所有性质外,还具有矩形和菱形的所有性质,如下:①正方形的对边平行且相等;(AB∥CD,AB=CD;BC∥AD,BC=AD)②正方形的四条边都相等;(AB=BC=CD=AD)③正方形的四个角都是直角;(∠BAD=∠ADC=∠DCB=∠CBA=90°)④正方形的两条对角线相等,互相垂直平分,并且每一条对角线平分一组对角;(AC=BD,AC⊥BD,OA=OB=OC=OD,AC是∠DAB和∠DCB的角平分线,BD是∠ADC和∠CBA的角平分线)⑤对称性:正方形是一个轴对称图形,它有四条对称轴.(对称轴是它对边中点的连线和它的两条对角线所在的直线(AC,BD))典例1.(2018春•随县期末)已知:如图,在正方形ABCD外取一点E,连接AE,BE,DE,过点A作AE的垂线交DE于点P.若AE=AP=1,PB.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1.其中正确结论的序号是()A.①②③B.①②④C.②③④D.①③④【答案】A【解析】解:①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠EAB=∠PAD,又∵AE=AP,AB=AD,∵在△APD和△AEB中,,∴△APD≌△AEB(SAS);故此选项成立;③∵△APD≌△AEB,∴∠APD=∠AEB,∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,∴∠BEP=∠PAE=90°,∴EB⊥ED;故此选项成立;②过B作BF⊥AE,交AE的延长线于F,∵AE=AP,∠EAP=90°,∴∠AEP=∠APE=45°,又∵③中EB⊥ED,BF⊥AF,∴∠FEB=∠FBE=45°,又∵BE,∴BF=EF,故此选项正确;④如图,连接BD,在Rt△AEP中,∵AE=AP=1,∴EP,又∵PB,∴BE,∵△APD≌△AEB,∴PD=BE,∴S△ABP+S△ADP=S△ABD﹣S△BDP S正方形ABCD DP×BE(4).故此选项不正确.综上可知其中正确结论的序号是①②③,故选:A.【点睛】①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等;②过B作BF⊥AE,交AE的延长线于F,利用③中的∠BEP=90°,利用勾股定理可求BE,结合△AEP是等腰直角三角形,可证△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;③利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证;④连接BD,求出△ABD的面积,然后减去△BDP的面积即可.典例2.(2018春•宿松县期末)如图,正方形ABCD的边长为2,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是___.【答案】2【解析】解:由图知,阴影部分的面积等于正方形的面积减去△AQD和△BCP的面积.而点P到BC的距离与点Q到AD的距离的和等于正方形的边长,即△AQD和△BCP的面积的和等于正方形的面积的一半,故阴影部分的面积22=2.故答案为:2.【点睛】阴影部分的面积等于正方形的面积减去△AQD和△BCP的面积和.而两个三角形等底即为正方形的边长,它们的高的和等于正方形的边长,得出阴影部分的面积=正方形面积的一半即可.本题考查正方形的性质,正方形的面积,三角形的面积公式灵活运用,注意图形的特点.典例3.(2018春•长清区期末)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去…记正方形ABCD的边为a1=1,按上述方法所作的正方形的边长依次为a2、a3、a4、…a n,根据以上规律写出的表达式_______.【答案】2n﹣1【解析】解:∵a2=AC,且在直角△ABC中,AB2+BC2=AC2,∴a2a1,同理a3a2=2,a4a3=2,…由此可知:a n=()n﹣1,则2n﹣1.故答案为:2n﹣1.【点睛】求a2的长即AC的长,根据直角△ABC中AB2+BC2=AC2可以计算,同理计算a3、a4.由求出的a2a1,a3a2…,a n,a n﹣1=()n﹣1,可以找出规律,得到第n个正方形边长的表达式.本题考查了正方形的性质,以及勾股定理在直角三角形中的运用,考查了学生找规律的能力,本题中找到a n的规律是解题的关键.典例4.(2018春•东城区期末)正方形ABCD中,点P是边CD上的任意一点,连接BP,O为BP的中点,作PE⊥BD于E,连接EO,AE.(1)若∠PBC=α,求∠POE的大小(用含α的式子表示);(2)用等式表示线段AE与BP之间的数量关系,并证明.【答案】见解析【解析】解:(1)在正方形ABCD中,BC=DC,∠C=90°,∴∠DBC=∠CDB=45°,∵∠PBC=α,∴∠DBP=45°﹣α,∵PE⊥BD,且O为BP的中点,∴EO=BO,∴∠EBO=∠BEO,∴∠EOP=∠EBO+∠BEO=90°﹣2 α;(2)连接OC,EC,在正方形ABCD中,AB=BC,∠ABD=∠CBD,BE=BE,∴△ABE≌△CBE,∴AE=CE,在Rt△BPC中,O为BP的中点,∴CO=BO,∴∠OBC=∠OCB,∴∠COP=2 α,由(1)知∠EOP=90°﹣2α,∴∠EOC=∠COP+∠EOP=90°,又由(1)知BO=EO,∴EO=CO.∴△EOC是等腰直角三角形,∴EO2+OC2=EC2,∴EC OC,即BP,∴BP.【点睛】(1)先根据正方形的性质得:∠DBC=∠CDB=45°,则∠DBP=45°﹣α,根据直角三角形斜边中线的性质可得EO=BO,由等腰三角形性质和外角的性质可得结论;(2)作辅助线,证明△ABE≌△CBE,则AE=CE,根据直角三角形斜边中线的性质得:OC=OB=OP =OE,证明△EOC是等腰直角三角形,最后由勾股定理可得:BP,所以BP.本题考查正方形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、勾股定理等知识,第(2)问有难度,作辅助线,构建全等三角形和等腰直角三角形是解决问题的关键.典例5.(2018春•永康市期末)如图,点A是x轴上的一个动点,点C在y轴上,以AC为对角线画正方形ABCD,已知点C的坐标是C(0,4),设点A的坐标为A(n,0).(1)当n=2时,正方形ABCD的边长AB=_______.(2)连结OD,当OD时,n=_____.【答案】见解析【解析】解:(1)当n=2时,OA=2,在Rt△COA中,AC2=CO2+AO2=20.∵ABCD为正方形,∴AB=CB.∴AC2=AB2+CB2=2AB2=20,∴AB.故答案为:.(2)如图所示:过点D作DM⊥y轴,DN⊥x轴.∵ABCD为正方形,∴A、B、C、D四点共圆,∠DAC=45°.又∵∠COA=90°,∴点O也在这个圆上,∴∠COD=∠CAD=45°.又∵OD,∴DN=DM=1.∴D(﹣1,1).在Rt△DNA和Rt△DMC中,DC=AD,DM=DN,∴△DNA≌△DMC.∴CM=AN=OC﹣MO=3.∵D(﹣1,1),∴A(2,0).∴n=2.如下图所示:过点D作DM⊥y轴,DN⊥x轴.∵ABCD为正方形,∴A、B、C、D四点共圆,∠DAC=45°.又∵∠COA=90°,∴点O也在这个圆上,∴∠AOD=∠ACD=45°.又∵OD,∴DN=DM=1.∴D(1,﹣1).同理:△DNA≌△DMC,则AN=CM=5.∴OA=ON+AN=1+5=6.∴A(6,0).∴n=6.综上所述,n的值为2或6.故答案为:2或6.【点睛】(1)在Rt△AOC中,利用勾股定理求出AC的长度,然后再求得正方形的边长即可;(2)先求得OD与y轴的夹角为45°,然后依据OD的长,可求得点D的坐标,过点D作DM⊥y轴,DN⊥x轴,接下来,再证明△DNA≌△DMC,从而可得到CM=AN,从而可得到点A的坐标.本题主要考查的是正方形的性质、全等三角形的性质、四点共圆,证得OD与两坐标轴的夹角为45°是解题的关键.典例6.(2018春•鹿泉区期末)如图(1),正方形ABCD的对角线AC,BD相交于点O,E是AC上一点,连结EB,过点A作AM⊥BE,垂足为M,AM与BD相交于点F.(1)求证:OE=OF;(2)如图2若点E在AC的延长线上,AM⊥BE于点M,AM交DB的延长线于点F,其他条件不变,结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.【答案】见解析【解析】证明:(1)∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO.在△BOE和△AOF中,∵,∴△BOE≌△AOF.∴OE=OF.(2)OE=OF成立.∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠F+∠MBF=90°,∠E+∠OBE=90°,又∵∠MBF=∠OBE,∴∠F=∠E.在△BOE和△AOF中,∵,∴△BOE≌△AOF.∴OE=OF.【点睛】(1)根据正方形的性质对角线垂直且平分,得到OB=OA,又因为AM⊥BE,所以∠MEA+∠MAE=90°=∠AFO+∠MAE,从而求证出Rt△BOE≌Rt△AOF,得到OE=OF.(2)根据第一步得到的结果以及正方形的性质得到OB=OA,再根据已知条件求证出Rt△BOE≌Rt△AOF,得到OE=OF.本题主要考查正方形的性质和全等三角形的判定与性质,将待求线段放到两个三角形中,通过证明三角形全等得到对应边相等是解题的关键.典例7.(2018春•梁山县期末)以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接EB、FD,交点为G.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是_______;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.【答案】见解析【解析】(1)EB=FD,理由如下:∵四边形ABCD为正方形,∴AB=AD,∵以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,∴AF=AE,∠FAB=∠EAD=60°,∵∠FAD=∠BAD+∠FAB=90°+60°=150°,∠BAE=∠BAD+∠EAD=90°+60°=150°,∴∠FAD=∠BAE,在△AFD和△ABE中,,∴△AFD≌△ABE,∴EB=FD;(2)EB=FD.证:∵△AFB为等边三角形∴AF=AB,∠FAB=60°∵△ADE为等边三角形,∴AD=AE,∠EAD=60°∴∠FAB+∠BAD=∠EAD+∠BAD,即∠FAD=∠BAE∴△FAD≌△BAE∴EB=FD;(3)解:同(2)易证:△FAD≌△BAE,∴∠AEB=∠ADF,设∠AEB为x°,则∠ADF也为x°于是有∠BED为(60﹣x)°,∠EDF为(60+x)°,∴∠EGD=180°﹣∠BED﹣∠EDF=180°﹣(60﹣x)°﹣(60+x)°=60°.【点睛】(1)EB=FD,利用正方形的性质、等边三角形的性质和全等三角形的证明方法可证明△AFD ≌△ABE,由全等三角形的性质即可得到EB=FD;(2)当四边形ABCD为矩形时,EB和FD仍旧相等,证明的思路同(1);(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD不发生变化,是一定值,为60°.本题考查了正方形的性质、全等三角形的判定和性质、等边三角形的性质以及矩形的性质,题目的综合性很强,难度也不小,解题的关键是对特殊几何图形的性质要准确掌握.二. 正方形的判定正方形的判定方法:①有一组邻边相等的矩形是正方形;②有一个角是直角的菱形是正方形.典例1.(2018春•宿豫区期末)在平行四边形ABCD中,对角线AC与BD相交于点O.要使四边形ABCD 是正方形,还需添加一组条件.下面给出了五组条件:①AB=AD,且AC=BD;②AB⊥AD,且AC ⊥BD;③AB⊥AD,且AB=AD;④AB=BD,且AB⊥BD;⑤OB=OC,且OB⊥OC.其中正确的是________(填写序号).【答案】①②③⑤【解析】解:∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AC=BD,∴四边形ABCD是正方形,①正确;∵四边形ABCD是平行四边形,AB⊥AD,∴四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形,②正确;∵四边形ABCD是平行四边形,AB⊥AD,∴四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形,③正确;④AB=BD,且AB⊥BD,无法得出四边形ABCD是正方形,故④错误;∵四边形ABCD是平行四边形,OB=OC,∴四边形ABCD是矩形,又∵OB⊥OC,∴四边形ABCD是正方形,⑤正确;故答案为:①②③⑤.典例2 .(2018春•浦东新区期末)已知:如图,在等边三角形ABC中,过边AB上一点D作DE⊥BC,垂足为点E,过边AC上一点G作GF⊥BC,垂足为点F,BE=CF,联结DG.(1)求证:四边形DEFG是平行四边形;(2)连接AF,当∠BAF=3∠FAC时,求证:四边形DEFG是正方形.【答案】见解析【解析】证明:(1)在等边三角形ABC中,∵DE⊥BC,GF⊥BC,∴∠DEF=∠GFC=90°,∴DE∥GF,∵∠B=∠C=60°,BE=CF,∠DEB=∠GFC=90°,∴△BDE≌△CGF,∴DE=GF,∴四边形DEFG是平行四边形;(2)在平行四边形DEFG中,∵∠DEF=90°,∴平行四边形DEFG是矩形,∵∠BAC=60°,∠BAF=3∠FAC,∴∠GAF=15°,在△CGF中,∵∠C=60°,∠GFC=90°,∴∠CGF=30°,∴∠GFA=15°,∴∠GAF=∠GFA,∴GA=GF,∵DG∥BC,∴∠ADG=∠B=60°,∴△DAG是等边三角形,∴GA=GD,∴GD=GF,∴矩形DEFG是正方形.【点睛】(1)根据等边三角形的性质和平行四边形的判定证明即可;(2)根据等边三角形的判定和性质以及正方形的判定解答即可.此题考查正方形的判定,关键是根据全等三角形的判定和性质以及正方形的判定解答.典例3.(2017秋•南海区期末)如图,以△ABC的各边,在边BC的同侧分别作三个正方形ABDI,BCFE,ACHG.(1)求证:△BDE≌△BAC;(2)求证:四边形ADEG是平行四边形.(3)直接回答下面两个问题,不必证明:①当△ABC满足什么条件时,四边形ADEG是矩形?②当△ABC满足什么条件时,四边形ADEG是正方形?【答案】见解析【解析】解析:(1)证明:∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,,∴△BDE≌△BAC(SAS),(2)∵△BDE≌△BAC,∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(3)①当四边形ADEG是矩形时,∠DAG=90°.则∠BAC=360°﹣∠BAD﹣∠DAG﹣∠GAC=360°﹣45°﹣90°﹣90°=135°,即当∠BAC=135°时,平行四边形ADEG是矩形;②当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.由①知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴AD AB.又∵四边形ACHG是正方形,∴AC=AG,∴AC AB.∴当∠BAC=135°且AC AB时,四边形ADEG是正方形.【点睛】(1)根据全等三角形的判定定理SAS证得△BDE≌△BAC,(2)由△BDE≌△BAC,可得全等三角形的对应边DE=AG.然后利用正方形对角线的性质、周角的定义推知∠EDA+∠DAG=180°,易证ED∥GA;最后由“一组对边平行且相等”的判定定理证得结论;(3)①根据“矩形的内角都是直角”易证∠DAG=90°.然后由周角的定义求得∠BAC=135°;②由“正方形的内角都是直角,四条边都相等”易证∠DAG=90°,且AG=AD.由□ABDI和□ACHG 的性质证得,AC AB.巩固练习1.(2018春•琼中县期末)如图,在正方形ABCD的边BC的延长线上取一点E,使CE=AC,连接AE交CD于F,则∠AFC等于()A.112.5°B.120°C.135°D.145°【答案】A【解析】解:∵四边形ABCD为正方形,∴∠ACD=90°,∴∠DCE=90°,又∵AC是正方形ABCD的对角线,∴∠ACF=45°,∴∠ACE=∠DCE+∠ACF=135°,∵CE=CA,∴∠FAC=∠E(180°﹣135°)=22.5°∴∠AFD=∠FAC+∠ACF=22.5°+45°=67.5°,∴∠AFC=180°﹣67.5°=112.5°,故选:A.2.(2018春•花都区期末)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.B.C.D.2【答案】A【解析】解:连接AC、CF,如图,∵四边形ABCD和四边形CEFG都是正方形,∴∠ACD=45°,FCG=45°,AC BC,CF CE=3,∴∠ACF=45°+45°=90°,在Rt△ACF中,AF2,∵H是AF的中点,∴CH AF.故选:A.3.(2018春•济南期末)如图,P为边长为2的正方形ABCD的对角线BD上任一点,过点P作PE⊥BC于点E,PF⊥CD于点F,连接EF,给出以下4个结论:①AP=EF;②AP⊥EF;③EF最短长度为;④若∠BAP=30°时,则EF的长度为2.其中结论正确的有()A.①②③B.①②C.②③④D.①③④【答案】B【解析】解:①如图,连接PC,∵四边形ABCD为正方形,∴AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,∴△ABP≌△CBP(SAS),∴AP=PC,∵PE⊥BC,PF⊥CD,且∠FCE=90°,∴四边形PECF为矩形,∴PC=EF,∴AP=EF,故①正确;②延长AP交BC于点G,由①可得∠PCE=∠PFE=∠BAP,∵PE∥AB,∴∠EPG=∠BAP,∴∠EPG=∠PFE,∵∠EPF=90°,∴∠EPG+∠PEF=∠PEG+∠PFE=90°,∴AP⊥EF,故②正确;③当AP⊥BD时,AP有最小值,此时P为BD的中点,由①可知EF=AP,∴EF的最短长度为,故③错误;④当点P在点B或点D位置时,AP=AB=2,∴EF=AP≤2,∴当∠BAP=30°时,AP<2,即EF的长度不可能为2,故④错误;综上可知正确的结论为①②.故选:B.4.(2018春•苍南县期末)如图,点B在线段AC上,且BC=2AB,点D,E分别是AB,BC的中点,分别以AB,DE,BC为边,在线段AC同侧作三个正方形,得到三个平行四边形(阴影部分).其面积分别记作S1,S2,S3,若S1+S3=15,则S2=___.【答案】6【解析】解:设DB=x,则S1=x2,S2=x×2x=2x2,S3=2x×2x=4x2.由题意得,S1+S3=15,即x2+4x2=15,解得x2=3,所以S2=2x2=6,故答案为:6.5.(2018春•丰台区期末)菱形ABCD中,对角线AC,BD相交于点O,请你添加一个条件,使得菱形ABCD 成为正方形,这个条件可以是_______________________.(写出一种情况即可)【答案】AC=BD(或∠ABC=90°)【解析】解:根据对角线相等的菱形是正方形,可添加:AC=BD;根据有一个角是直角的菱形是正方形,可添加的:∠ABC=90°;故添加的条件为:AC=BD或∠ABC=90°.故答案为AC=BD(或∠ABC=90°)6.(2018秋•普宁市期末)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去第n个正方形的边长为____.【答案】()n﹣1【解析】解:∵四边形ABCD为正方形,∴AB=BC=1,∠B=90°,∴AC2=12+12,AC同理可得:AE=()2,AG=()3…,∴第n个正方形的边长a n=()n﹣1.故答案为()n﹣1.7.(2018春•惠山区期末)如图,正方形ABCD的边长为2,顶点A在y轴上,顶点B在x轴上,则OD 的最大值是___.【答案】1【解析】解:取AB的中点K,连接OK、DK.根据直角三角形斜边上的中线等于斜边的一半可得OK=1,再根据正方形的性质可得DK,∵OK+DK>OD,∴当O、K、D三点共线时OD最长,∴OD的最大值为1,故答案为:1.8.(2018春•洛宁县期末)如图,在△ABC中,∠ACB=90°,四边形ABDE、AGFC都是正方形.求证:BG=EC.【答案】见解析【解析】证明:∵四边形ABDE,AGFC都是正方形,∴AE=AB,AC=AG,∠EAB=∠CAG=90°.∵∠EAC+∠CAB=∠EAB=90°,∠GAB+∠CAB=90°,∴∠EAC=∠BAG,在△EAC和△BAG中,∴△EAC≌△BAG(SAS),∴BG=CE.9.(2018春•庆云县期末)探究:如图,分别以△ABC的两边AB和AC为边向外作正方形ANMB和正方形ACDE,NC、BE交于点P.求证:∠ANC=∠ABE.应用:Q是线段BC的中点,若BC=6,则PQ的长度是多少?【答案】见解析【解析】证明:∵四边形ANMB和ACDE是正方形,∴AN=AB,AC=AE,∠NAB=∠CAE=90°,∵∠NAC=∠NAB+∠BAC,∠BAE=∠BAC+∠CAE,∴∠NAC=∠BAE,在△ANC和△ABE中,ANAN=AB,∠NAC=∠BAE,AC=AE ∴△ANC≌△ABE(SAS),∴∠ANC=∠ABE.解:如图所示:∵四边形NABM是正方形,∴∠NAB=90°,∴∠ANC+∠AON=90°,∵∠BOP=∠AON,∠ANC=∠ABE,∴∠ABP+∠BOP=90°,∴∠BPC=∠ABP+∠BOP=90°,∵Q为BC中点,BC=6,∴PQ BC=3.10.(2018春•徐州期末)已知:如图,在正方形ABCD中,点E、F、G分别在AB、AD、CD上,AB=6,AE=2,DG>AE,BF=EG,BF与EG交于点P.(1)求证:BF⊥EG;(2)连接DP,则DP的最小值为____.【答案】见解析【解析】(1)证明:如图1,过点E作EM⊥CD于M,交BF于点N,∵四边形ABCD是正方形,∴AB=AD,∠A=∠D=∠DME=90°,∴四边形ADME是矩形,∴EM=AD=AB,∵BF=EG,∴Rt△BAF≌Rt△EMG(HL),∴∠ABF=∠MEG,在Rt△BEN中,∵∠ABF+∠ENB=90°,∴∠MEG+∠ENB=90°,∴∠EPF=90°,∴BF⊥EG;(2)如图2,取BE的中点O,连接OP、OD,∵△EPB是直角三角形,∴OP BE,∵AB=6,AE=2,∴BE=6﹣2=4,OB=OE=2,∵OD﹣OP≤DP,∴当O、P、D共线时,DP有最小值,如图3,∵PO2,∴OD2,∴PD=22,即DP的最小值为22;故答案为:22;11.(2018春•平定县期末)如图,已知正方形ABCD,P是对角线AC上任意一点,PM⊥AD,PN⊥AB,垂足分别为点M和N,PE⊥PB交AD于点E.(1)求证:四边形MANP是正方形;(2)求证:EM=BN.【答案】见解析【解析】证明:(1)∵四边形ABCD是正方形,∴∠DAB=90°,AC平分∠DAB,∵PM⊥AD,PN⊥AB,∴∠PMA=∠PNA=90°,∴四边形MANP是矩形,∵AC平分∠DAB,PM⊥AD,PN⊥AB,∴PM=PN,(3分)∴四边形MANP是正方形;(2)∵四边形ABCD是正方形,∴PM=PN,∠MPN=90°,∵∠EPB=90°,∴∠MPE+∠EPN=∠NPB+∠EPN=90°,∴∠MPE=∠NPB,在△EPM和△BPN中,∵,∴△EPM≌△BPN(ASA),∴EM=BN.12.(2018春•秦淮区期末)如图,在矩形ABCD中,Q是BC的中点,P是AD上一点,连接PB、PC,E、F分别是PB、PC的中点,连接QE、QF.(1)求证:四边形PEQF是平行四边形.(2)①当点P在什么位置时,四边形PEQF是菱形?证明你的结论;②矩形ABCD的边AB和AD满足什么条件时,①中的菱形PEQF是正方形?(直接写出结论,不需要说明理由)【答案】见解析【解析】解:(1)证明:在△PBC中,E、F分别是PB、PC的中点,Q是BC的中点,∴QE、QF为△PBC的中位线,∴QE∥PF,QF∥PE,∴四边形PEQF是平行四边形;(2)①当点P为AD的中点时,四边形PEQF是菱形,理由是:当P为AD的中点时,AP=PD,由勾股定理得:PB,PC,∵四边形ABCD是矩形,∴AB=CD,∴PB=PC,∵E、F分别是PB、PC的中点,∴PE=PF,由(1)知:四边形PEQF是平行四边形,∴四边形PEQF是菱形;②矩形ABCD的边AB和AD满足AD=2AB时,①中的菱形PEQF是正方形,理由是:∵AD=2AB,AD=2AP,∴AB=AP,∴△ABP是等腰直角三角形,∴∠APB=45°,同理可得∠CPD=45°,∴∠EPF=90°,∴①中的菱形PEQF是正方形.。
初中八年级数学竞赛培优讲义全套专题20 正方形_答案[精品]
专题 20 正方形例1 ①④⑤ 提示:在AD 上取AH =AE ,连EH ,则∠AHE =45°,∴∠HED =∠HDE =22.5°,则HE =HD .又∵HE =HD >AE ,故②不正确.又AGD FGD CGD S S S ∆∆∆=> ,故③不正确.例2 提示:(1)延长DM 交CE 于N ,连DF ,NF ,先证明△ADM ≌△ENM ,再证明△CDF ≌△ENF 得FD =FN ,∠DFN =∠CFE =90°,故MD ⊥MF 且MD =MF .(2)延长DM 到N 点,使DM =MN ,连FD ,FN ,先证明△ADM ≌△ENM ,得AD =EN ,∠MAD =∠MEN ,则AD ∥EN .延长EN ,DC 交于S 点,则∠ADC =∠CSN =90°.在四边形FCSE 中,∠FCS +∠FEN =180°,又∵∠FCS +∠FCD =180°,故∠FEN =∠FCD ,再证△CDF ≌△ENF .∴(1)中结论仍成立.例3 提示:延长BC 至点H ,使得CH =AE ,连结DE ,DF ,由Rt △DAE ≌Rt △DCH 得,DE =DH ,进而推证△DEF ≌△DFH ,Rt △DGE ≌Rt △DCH . 例4 设AG =a ,BG =b ,AE =x ,ED =y ,则,2. a b x y ax by +=+⎧⎨=⎩①②由①得a -x =y -b ,平方得a 2-2ax +x 2=y 2-2by +b 2. 将②代入得a 2-2ax +x 2=y 2-4ax +b 2, ∴(a +x )2=b 2+y 2,得a +x∵b 2+y 2=CH 2+CF 2=FH 2, ∴a +x =FH ,即DH +BF =FH .延长CB 至M ,使BM =DH ,连结AM ,由Rt △ABM ≌Rt △ADH ,得AM =AH ,∠MAB =∠HAD . ∴∠MAH =∠MAB +∠BAH =∠BAH +∠HAD =90°. 再证△AMF ≌△AHF .∴∠MAF =∠HAF . 即∠HAF =12∠MAH =45°. 例5 (1)如图,延长CD 至点E 1,使DE 1=BE ,连结AE 1,则△ADE 1≌△ABE . 从而,∠DAE 1=∠BAE ,AE 1=AE ,于是∠EAE 1=90°.在△AEF 和△AE 1F 中,EF =BE +DF =E 1D +DF =E 1F ,则△AEF ≌△AE 1F . 故∠EAF =∠E 1AF =12∠EAE 1=45°. (2)如图,在AE 1上取一点M 1,使得AM 1=AM ,连结M 1D ,M 1N .则 △ABM ≌△ADM 1,△ANM ≌△ANM 1, 故∠ABM =∠ADM 1,BM =DM 1,MN =M 1N .∵∠NDM 1=90°,从而M 1N 2=M 1D 2+ND 2,∴MN 2=BM 2+DN 2.FEAD CB MNM E 11A D CFHB MGEP例6 (1)BM +DN =MN 成立.如图a ,把△AND 绕点A 顺时针旋转90°,得到△ABE ,E 、B 、M 三点共线,则△DAN ≌△BAE , ∴AE =AN ,∠EAM =∠NAM =45°,AM =AM ,得△AEM ≌△ANM ,∴ME =MN . ∵ME =BE +BM =DN +BM ,∴DN +BM =MN . (2)DN -BM =MN .如图b ,对于图2,连BD 交AM 于E ,交AN 于F ,连EN ,FM 可进一步证明:①△CMN 的周长等于正方形边长的2倍; ②EF 2=BE 2+DF 2;③△AEN ,△AFM 都为等腰直角三角形; ④2AMN AEF S S ∆∆=.A 级1.75°2.②3.34.5.C 6.B 7.B 8.B9.提示:△ABE ≌△DCE ,△ADF ≌△CDF ,证明∠ABE +∠BAF =90°. 10.提示:延长CE 交DA 的延长线于G ,证明FG =FC . 11.提示:连PC ,则PC =EF .12.(1)延长DM 交EF 于N ,由△ADM ≌△ENM ,得DM =NM ,MF =12DN ,FD =FN ,故MD ⊥MF ,且MD =MF .(2)延长DM 交CE 于N ,连结DF ,FN ,先证明△ADM ≌△ENM ,再证明△CDF ≌△ENF ,(1)中结论仍成立.B 级1.2 22.60°°提示:MA 2+MC 2=MD 2+MB 23.54.D5.C6.B7.B8.提示:⑴在AD 上截取AF =AM ,∠DFM =∠MBN ,由△DFM ≌△MBN ,故DM =MN . ⑵证法同上,结论仍成立.⑶在AD 延长线取一点E ,使DE =BM ,可证明△DEM ≌△MBN ,故DM =MN .9.提示:构造边长为1的正方形ABCD ,P 为正方形ABCD 内一点,过P 作FH ∥AB 交AD 于F ,交BC 于H,作EG ∥AD 交AB 于E ,交CD 于G .设AE =a,则BE =1-a .设AF =b ,则DF =1-b .∴PA =a 2+b 2,同理:PB =(1-a )2+b 2,PC =(1-a )2+(1-b )2,PD =a 2+(1-b )2. 又∵PA +PB +PC +PD ≥2AC =22,∴命题得证.图b图aEEFADCBM N NM BCD A10.提示:MN =BM +DN ,延长CD 至M ',使M 'D =BM ,证明△ADM '≌△ABM ,△AM 'N ≌△AMN ,则∠MAN =∠M 'AN =12∠M ’AM =45°.11.提示:八边形八个内角分成两组,每一组四个角都相等.12.连结RN,MP ,△MPC ≌△BAC ≌△BRN ,则RB =MP ,又△RNM ≌△PCB ,则RM =BP ,从而四边形RBPM 是平行四边形,故BP ∥RM .。
初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页
初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页初中奥数辅导讲义培优计划(星空课堂)第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第十二讲方程与函数第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角2第二十讲直线与圆第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手3第一讲走进追问求根公式形如a某2b某c0(a0)的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。
而公式法是解一元二次方程的最普遍、最具有一般性的方法。
求根公式某1,2bb24ac内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了2a一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。
降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。
解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。
【例题求解】【例1】满足(n2n1)n21的整数n有个。
思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。
【例2】设某1、某2是二次方程某2某30的两个根,那么某134某2219的值等于()A、一4B、8C、6D、0思路点拨:求出某1、某2的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如某123某1,某223某2。
初中八年级数学培优竞赛辅导讲义全册(213页)
初中八年级数学培优竞赛辅导讲义(共213页,按住ctrl键点击目录直接跳转到对应章节)第1讲全等三角形的性质与判定 (2)第2讲角平分线的性质与判定 (12)第3讲轴对称及轴对称变换 (17)第4讲等腰三角形 (25)第5讲等边三角形 (37)第06讲实数 (43)第7讲变量与函数 (50)第8讲一次函数的图象与性质 (55)第9讲一次函数与方程、不等式 (64)第10讲一次函数的应用 (69)第11讲幂的运算 (81)第12讲整式的乘除 (87)第13讲因式分解及其应用 (94)第14讲分式的概念•性质与运算 (101)第15讲分式的化简求值与证明 (109)第16讲分式方程及其应用 (118)第17讲反比例函数的图象与性质 (126)第18讲反比例函数的应用 (139)第19讲勾股定理 (146)第20讲平行四边形 (158)第21讲菱形与矩形 (167)第22讲正方形 (175)第23讲梯形 (185)第24讲数据的分析 (194)B AC D EF 第1讲 全等三角形的性质与判定考点·方法·破译1.能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同; 2.全等三角形性质:①全等三角形对应边相等,对应角相等;②全等三角形对应高、角平分线、中线相等;③全等三角形对应周长相等,面积相等;3.全等三角形判定方法有:SAS ,ASA ,AAS ,SSS ,对于两个直角三角形全等的判定方法,除上述方法外,还有HL 法;4.证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5..证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.经典·考题·赏析【例1】如图,AB ∥EF ∥DC ,∠ABC =90°,AB =CD ,那么图中有全等三角形( ) A .5对 B .4对 C .3对 D .2对【解法指导】从题设题设条件出发,首先找到比较明显的一对全等三角形,并由此推出结论作为下面有用的条件,从而推出第二对,第三对全等三角形.这种逐步推进的方法常用到.解:⑴∵AB ∥EF ∥DC ,∠ABC =90. ∴∠DCB =90. 在△ABC 和△DCB 中AB DC ABC DCB BC CB =⎧⎪=⎨⎪=⎩∠∠ ∴△ABC ≌∴△DCB (SAS ) ∴∠A =∠D ⑵在△ABE 和△DCE 中A DAED DEC AB DC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ABE ≌∴△DCE ∴BE =CE ⑶在Rt △EFB 和Rt △EFC 中BE CEEF EF=⎧⎨=⎩ ∴Rt △EFB ≌Rt △EFC (HL )故选C . 【变式题组】 01.(天津)下列判断中错误的是( )A .有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等A F C E DB D .有一边对应相等的两个等边三角形全等 02.(丽水)已知命题:如图,点A 、D 、B 、E 在同一条直线上,且AD =BE ,∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.03.(上海)已知线段AC 与BD 相交于点O , 连接AB 、DC ,E 为OB 的中点,F 为OC 的中点,连接EF (如图所示).⑴添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC ; ⑵分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是______命题,命题2是_______命题(选择“真”或“假”填入空格).【例2】已知AB =DC ,AE =DF ,CF =FB . 求证:AF =DE .【解法指导】想证AF =DE ,首先要找出AF 和DE 所在的三角形.AF 在△AFB 和△AEF 中,而DE 在△CDE 和△DEF 中,因而只需证明△ABF ≌△DCE 或△AEF ≌△DFE 即可.然后再根据已知条件找出证明它们全等的条件.证明:∵FB =CE ∴FB +EF =CE +EF ,即BE =CF 在△ABE 和△DCF 中, AB DCAE DF BE CF =⎧⎪=⎨⎪=⎩∴△ABE ≌△DCF (SSS ) ∴∠B =∠C在△ABF 和△DCE 中, AB DC B C BF CE =⎧⎪=⎨⎪=⎩∠∠ ∴△ABF ≌△DCE ∴AF =DE【变式题组】01.如图,AD 、BE 是锐角△ABC 的高,相交于点O ,若BO =AC ,BC =7,CD =2,则AO 的长为( ) A .2 B .3 C .4 D .5A B C D O FE A CEFBD02.如图,在△ABC 中,AB =AC ,∠BAC =90°,AE 是过A 点的一条直线,AE ⊥CE 于E ,BD⊥AE 于D ,DE =4cm ,CE =2cm ,则BD =__________. \ 03.(北京)已知:如图,在△ABC 中,∠ ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过点E 作AC 的垂线,交CD 的延长线于点F . 求证:AB =FC .【例3】如图①,△ABC ≌△DEF ,将△ABC 和△DEF 的顶点B 和顶点E 重合,把△DEF 绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .⑴当△DEF 旋转至如图②位置,点B (E )、C 、D 在同一直线上时,∠AFD 与∠DCA 的数量关系是________________;⑵当△DEF 继续旋转至如图③位置时,⑴中的结论成立吗?请说明理由_____________.【解法指导】⑴∠AFD =∠DCA⑵∠AFD =∠DCA 理由如下:由△ABC ≌△DEF ,∴AB =DE ,BC =EF , ∠ABC =∠DEF , ∠BAC =∠EDF ∴∠ABC -∠FBC =∠DEF -∠CBF , ∴∠ABF =∠DEC在△ABF 和△DEC 中, AB DE ABF DEC BF EC =⎧⎪=⎨⎪=⎩∠∠∴△ABF ≌△DEC ∠BAF =∠DEC ∴∠BAC -∠BAF =∠EDF -∠EDC , ∴∠FAC =∠CDF∵∠AOD =∠FAC +∠AFD =∠CDF +∠DCA∴∠AFD =∠DCAAFECB DAE第1题图A BCDEBCDO第2题图B (E )OC F 图③DA【变式题组】01.(绍兴)如图,D、E分别为△ABC的AC、BC边的中点,将此三角形沿DE折叠,使点C 落在AB边上的点P处.若∠CDE=48°,则∠APD等于()A.42°B.48°C.52°D.58°02.如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是()A.△ABC≌△DEF B.∠DEF=90°C.AC=DF D.EC=CF03.一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B、F、C、D在同一条直线上.⑴求证:AB⊥ED;⑵若PB=BC,找出图中与此条件有关的一对全等三角形,并证明.【例4】(第21届江苏竞赛试题)已知,如图,BD、CE分别是△ABC的边A C和AB边上的高,点P在BD的延长线,BP=AC,点Q在CE上,CQ=AB.求证:⑴AP=AQ;⑵AP⊥AQ【解法指导】证明线段或角相等,也就是证线段或角所在的两三角形全等.经观察,证AP=AQ,也就是证△APD和△AQE,或△APB和△QAC全等,由已知条件BP=AC,CQ=AB,应该证△APB≌△QAC,已具备两组边对应相等,于是再证夹角∠1=∠2即可. 证AP⊥AQ,即证∠PAQ=90°,∠PAD+∠QAC=90°就可以.证明:⑴∵BD、CE分别是△ABC的两边上的高,∴∠BDA=∠CEA=90°,∴∠1+∠BAD=90°,∠2+∠BAD=90°,∴∠1=∠2.在△APB和△QAC中, 2AB QCBP CA=⎧⎪=⎨⎪=⎩∠1∠∴△APB≌△QAC,∴AP=AQE FBACDG第2题图21ABCPQEFD⑵∵△APB ≌△QAC ,∴∠P =∠CAQ , ∴∠P +∠PAD =90° ∵∠CAQ +∠PAD =90°,∴AP ⊥AQ 【变式题组】01.如图,已知AB =AE ,∠B =∠E ,BA =ED ,点F 是CD 的中点,求证:02.直距离MA 为am ,此时梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距地面的垂直距离NB 为bm ,梯子倾斜角为45°,这间房子的宽度是( )A .2a bm + B .2a bm - C .bm D .am03.如图,已知五边形ABCDE 中,∠ ABC =∠AED =90°,AB =CD =AE =BC +DE =2,则五边形ABCDE 的面积为__________演练巩固·反馈提高01.(海南)已知图中的两个三角形全等,则∠α度数是( )A .72°B .60°C .58°D .50°02.如图,△ACB ≌△A /C /B /,∠ BCB /=30°,则∠ACA /的度数是( )A .20°B .30°C .35°D .40° 03.(牡丹江)尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是( )AECBA 75° C45° BNM第2题图第3题图D第1题图a αcca50° b72° 58°A .SASB .ASAC .AASD .SSS 04.(江西)如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A . CB =CD B .∠BAC =∠DAC C . ∠BCA =∠DCAD .∠B =∠D =90°05.有两块不同大小的等腰直角三角板△ABC 和△BDE ,将它们的一个锐角顶点放在一起,将它们的一个锐角顶点放在一起,如图,当A 、B 、D 不在一条直线上时,下面的结论不正确的是( )A . △ABE ≌△CBDB . ∠ABE =∠CBDC . ∠ABC =∠EBD =45° D . AC ∥BE06.如图,△ABC 和共顶点A ,AB =AE ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,小华说:“一定有△ABC ≌△AED .”小明说:“△ABM ≌△AEN .”那么( ) A . 小华、小明都对 B . 小华、小明都不对 C . 小华对、小明不对 D .小华不对、小明对07.如图,已知AC =EC , BC =CD , AB =ED ,如果∠BCA =119°,∠ACD =98°,那么∠ECA 的度数是___________.08.如图,△ABC ≌△ADE ,BC 延长线交DE 于F ,∠B =25°,∠ACB =105°,∠DAC =10°,则∠DFB 的度数为_______.09.如图,在Rt △ABC 中,∠C =90°, DE ⊥AB 于D , BC =BD . AC =3,那么AE +DE =______10.如图,BA ⊥AC , CD ∥AB . BC =DE ,且BC ⊥DE ,若AB =2, CD =6,则AE =_____. 11.如图, AB =CD , AB ∥CD . BC =12cm ,同时有P 、Q 两只蚂蚁从点C 出发,沿CB 方向爬行,P 的速度是0.1cm /s , Q 的速度是0.2cm /s . 求爬行时间t 为多少时,△APB ≌△QDC .DA C .Q P.BA E FB DC 12.如图, △ABC 中,∠BCA =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D . ⑴求证:AE =CD ;⑵若AC =12cm , 求BD 的长.13.(吉林)如图,AB =AC ,AD ⊥BC 于点D ,AD 等于AE ,AB 平分∠DAE 交DE 于点F , 请你写出图中三对全等三角形,并选取其中一对加以证明.14.如图,将等腰直角三角板ABC的直角顶点C 放在直线l 上,从另两个顶点A 、B 分别作l 的垂线,垂足分别为D 、E .⑴找出图中的全等三角形,并加以证明; ⑵若DE =a ,求梯形DABE 的面积.(温馨提示:补形法)15.如图,AC ⊥BC , AD ⊥BD , AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E 、F .求证:CE =DF .16.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等,那么在什么情况下,它们会全等? ⑴阅读与证明:对于这两个三角形均为直角三角形,显然它们全等;对于这两个三角形均为钝角三角形,可证明它们全等(证明略); 对于这两个三角形均为锐角三角形,它们也全等,可证明如下;已知△ABC 、△A 1B 1C 1均为锐角三角形,AB =A 1B 1,BC =B 1C 1,∠C =∠C 1.求证:△ABC ≌△A 1B 1C 1.(请你将下列证明过程补充完整)⑵归纳与叙述:由⑴可得一个正确结论,请你写出这个结论.ABCDA 1B 1C 1D 1D B A C EF A E B F D CAEF C DB 培优升级·奥赛检测01.如图,在△ABC 中,AB =AC ,E 、F 分别是AB 、AC 上的点,且AE =AF ,BF 、CE 相交于点O ,连接AO 并延长交BC 于点D ,则图中全等三角形有( ) A .4对 B .5对 C .6对 D .7对02.如图,在△ABC 中,AB =AC ,OC =OD ,下列结论中:①∠A =∠B ②DE =CE ,③连接DE , 则OE 平分∠AOB ,正确的是( ) A .①② B .②③ C .①③ D .①②③03.如图,A 在DE 上,F 在AB 上,且AC =CE , ∠1=∠2=∠3, 则DE 的长等于()A .DCB . BC C . ABD .AE +AC04.下面有四个命题,其中真命题是( )A .两个三角形有两边及一角对应相等,这两个三角形全等B .两边和第三边上的高对应相等的两个三角形全等C . 有一角和一边对应相等的两个直角三角形全等D . 两边和第三边上的中线对应相等的两个三角形全等05.在△ABC 中,高AD 和BE 所在直线相交于H 点,且BH =AC ,则∠ABC =_______.06.如图,EB 交AC 于点M , 交FC 于点D , AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C , AE=AF . 给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ; ④CD =DB ,其中正确的结论有___________.(填序号)07.如图,AD 为在△ABC 的高,E 为AC 上一点,BE 交AD 于点F ,且有BF =AC ,FD =CD .⑴求证:BE ⊥AC ;⑵若把条件“BF =AC ”和结论“BE ⊥AC ”互换,这个命题成立吗?证明你的判定.08.如图,D 为在△ABC 的边BC 上一点,且CD =AB ,∠BDA =∠BAD ,AE 是△ABD 的中线.求证:AC =2AE .09.如图,在凸四边形ABCD 中,E 为△ACD 内一点,满足AC =AD ,AB =AE , ∠BAE +∠BCEABE D CF第6题图2 1AB CE N M3 21ADEBC FADECOA E O BFCD 第1题图B第2题图第3题图AB C DEAEBDC=90°, ∠BAC =∠EAD .求证:∠CED =90°.10.(沈阳)将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .⑴求证:AF +EF =DE ;⑵若将图①中△DBE 绕点B 顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中结论是否仍然成立;⑶若将图①中△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③你认为(1)中结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF 、EF 与DE 之间的关系,并说明理由。
八年级数学培优讲义(下册)
八年级数学培优讲义(下册)测试1 从分数到分式学习要求掌握分式的概念;能求出分式有意义;分式值为0、为1的条件.课堂学习检测一、填空题1.用A 、B 表示两个整式;A ÷B 就可以表示成______的形式;如果除式B 中______;该分式的分式. 2.把下列各式写成分式的形式:(1)5÷xy 为______. (2)(3x +2y )÷(x -3y )为______.3.甲每小时做x 个零件;做90个零件所用的时间;可用式子表示成______小时. 4.n 公顷麦田共收小麦m 吨;平均每公顷的产量可用式子表示成______吨.5.轮船在静水中每小时走a 千米;水流速度是b 千米/时;轮船在逆流中航行s 千米所需要的时间可用式子表示成______小时.6.当x =______时;分式13-x x没有意义. 7.当x =______时;分式112--x x 的值为0.8.分式yx;当字母x 、y 满足______时;值为1;当字母x ;y 满足______时值为-1.二、选择题 9.使得分式1+a a有意义的a 的取值范围是( ) A .a ≠0 B .a ≠1 C .a ≠-1D .a +1>010.下列判断错误..的是( ) A .当32=/x 时;分式231-+x x 有意义 B .当a ≠b 时;分式22ba ab-有意义 C .当21-=x 时;分式x x 412+值为0D .当x ≠y 时;分式x y y x --22有意义 11.使分式5+x x值为0的x 值是( ) A .0 B .5C .-5D .x ≠-512.当x <0时;xx ||的值为( ) A .1 B .-1 C .±1 D .不确定 13.x 为任何实数时;下列分式中一定有意义的是( )A .x x 12+B .112--x x C .11+-x xD .112+-x x 三、解答题14.下列各式中;哪些是整式?哪些是分式?⋅----++++-π1;)1(;2;3;3;13;222x x x x y x y x y x x y x y x 15.x 取什么值时;2)3)(2(---x x x 的值为0?综合、运用、诊断一、填空题16.当x =______时;分式632-x x无意义. 17.使分式2)3(2+x x有意义的条件为______.18.分式2)1(522+++x x 有意义的条件为______. 19.当______时;分式44||--x x 的值为零.20.若分式x--76的值为正数;则x 满足______.二、选择题21.若x 、y 互为倒数;则用x 表示y 的正确结果是( )A .x =-yB .y x 1=C .xy 1=D .xy 1±=22.若分式ba ba 235+-有意义;则a 、b 满足的关系是( )A .3a ≠2bB .b a 51=/C .a b 32-=/ D .b a 32-=/23.式子222--+x x x 的值为0;那么x 的值是( )A .2B .-2C .±2D .不存在24.若分式6922---a a a 的值为0;则a 的值为( )A .3B .-3C .±3D .a ≠-225.若分式1212+-b b的值是负数;则b 满足( )A .b <0B .b ≥1C .b <1D .b >1三、解答题 26.如果分式323||2-+-y y y 的值为0;求y 的值.27.当x 为何值时;分式121+x 的值为正数?28.当x 为何整数时;分式124+x 的值为正整数?拓展、探究、思考29.已知分式,by ay +-当y =-3时无意义;当y =2时分式的值为0;求当y =-7时分式的值.测试2 分式的基本性质学习要求掌握分式的基本性质;并能利用分式的基本性质将分式约分.课堂学习检测一、填空题1.,MB M A B A ⨯⨯=其中A 是整式;B 是整式;且B ≠0;M 是______. 2.把分式xy中的x 和y 都扩大3倍;则分式的值______.3.⋅-=--)(121xx x 4..y x xy x 22353)(= 5.22)(1y x y x -=+. 6.⋅-=--24)(21y y x 二、选择题7.把分式bab a 392+-约分得( )A .33++b a B .33+-b a C .ba 3- D .ba 3+ 8.如果把分式yx yx ++2中的x 和y 都扩大10倍;那么分式的值( ) A .扩大10倍 B .缩小10倍 C .是原来的32D .不变9.下列各式中;正确的是( )A .b a m b m a =++B .0=++b a ba C .1111--=-+c b ac ab D .y x y x y x +=--122 三、解答题 10.约分:(1)ac ab 1510-(2)yx yx 322.36.1-(3)112--m m(4)yx x xy y -+-2442211.不改变分式的值;使下列分式的分子、分母都不含负号.(1);53a - (2);y x 532- (3);52a b-- (4)⋅---xy 1511综合、运用、诊断12.化简分式:(1)=--3)(x y yx _____;(2)=+--22699xx x _____. 13.填空:)()1(=++-nm n m =-----ba n m m n 212)2(;)(⋅-ba221 14.填入适当的代数式;使等式成立.(1)⋅+=--+ba b a b ab a )(22222(2).a b ba b a-=-+)(11 二、选择题 15.把分式yx x-2中的x 、 y 都扩大m 倍(m ≠0);则分式的值( ) A .扩大m 倍 B .缩小m 倍C .不变D .不能确定16.下面四个等式:;22;22;22yx y x y x y x y x y x +-=+---=----=+-③②①⋅-+=--22yx y x ④其中正确的有( ) A .0个 B .1个 C .2个D .3个17.化简22222b ab a b a ++-的正确结果是( )A .b a b a -+B .ba b a +-C .ab21 D .ab21- 18.化简分式2222639ab b a b a -后得( )A .222223ab b a b a - B .263ab a ab - C .ba ab23- D .bb a ab2332- 三、解答题 19.约分:(1)322)(27)(12b a a b a --(2)62322--++x x x x(3)22164mm m --(4)2442-+-x x x20.不改变分式的值;使分子、分母中次数最高的项的系数都化为正数.(1)y x x --22 (2)aa b --2(3)x x x x +---2211(4)2213m m m ---拓展、探究、思考21.(1)阅读下面解题过程:已知,5212=+x x 求142+x x 的值. 解:),0(5212=/=+x x x,5211=+∴xx 即⋅=+251x x⋅=-=-+=+=+∴1742)25(12)1(1111222242x x x x x x (2)请借鉴(1)中的方法解答下面的题目:已知,2132=+-x x x求1242++x x x 的值.测试3 分式的乘法、除法学习要求1.学会类比方法、总结出分式乘法、除法法则. 2.会进行分式的乘法、除法运算.课堂学习检测一、填空题1.=-⋅)29(283x yy x ______. 2.=+-÷-x y x x xy x 33322______. 3.=+÷+)(1b a ba ______.4.=--++⋅+ab a b a .b ab a b ab 2222222______. 5.已知x =2008;y =2009;则4422))((y x y x y x -++的值为______.二、选择题 6.)(22m n nm a-⋅-的值为( ) A .nm a+2 B .nm a+ C .nm a+-D .nm a--7.计算cdaxcd ab 4322-÷等于( ) A .x b 322B .232x bC .x b 322-D .222283dc x b a -8.当x >1时;化简xx --1|1|得( ) A .1B .-1C .±1D .0三、计算下列各题9.xy x y 212852⋅10.nm mnm mn m n m --÷--24222211.11.11)1(122+-÷--x x x x 12.2222294255)23(xa xb a b a a x --⋅++四、阅读下列解题过程;然后回答后面问题13.计算:⋅⨯÷⨯÷⨯÷dd c c b b a 1112解:dd c c b b a 1112⨯÷⨯÷⨯÷ =a 2÷1÷1÷1① =a 2. ②请判断上述解题过程是否正确?若不正确;请指出在①、②中;错在何处;并给出正确的解题过程.综合、运用、诊断一、填空题14.cc b a 1⨯÷_____. 15.x y xy 3232÷-_____.16.一份稿件;甲单独打字需要a 天完成;乙单独打字需b 天完成;两人共同打需_____天完成. 二、选择题 17.计算xx x x x x +-÷---2231)2)(3(的结果是( ) A .22--x xx B .xx x 212--C .xx x --22D .122--x x x18.下列各式运算正确的是( )A .m ÷n ·n =mB .m n n m =÷1.C .111=÷⋅÷mm m m D .1123=÷÷m mm三、计算下列各题19.44)16(.2-+÷-a a a20.2222)1()1(a a a a .a a a -+--21.a b b ab a b ab a b a a 22222224.2+÷+-- 22.xx x x x x --+÷+--32.)3(446222拓展、探究、思考23.小明在做一道化简求值题:,.2)(2222xyx xy y xy x x xy -+-÷-他不小心把条件x 的值抄丢了;只抄了y =-5;你说他能算出这道题的正确结果吗?为什么?测试4 分式的乘法、除法、乘方学习要求掌握乘方的意义;能根据乘方的法则;先乘方;再乘除进行分式运算.课堂学习检测1.分式乘方就是________________.2.=323)2(bca ____________. 3.=-522)23(z y x ____________. 二、选择题4.分式32)32(b a 的计算结果是( ) A .3632b a B .3596b a C .3598b a D .36278b a5.下列各式计算正确的是( )A .yx y x =33 B .326m m m =C .b a ba b a +=++22D .b a a b b a -=--23)()(6.22222nm m n m n ⋅÷-的结果是( )A .2n m -B .32n m -C .4mn-D .-n7.计算⨯-32)2(b a2)2(a b )2(ab -⨯的结果是( )A .68ba-B .638b a -C .5216b aD .5216ba -三、计算题8.32)32(c b a9.22)52(a y x --10.223)2(8y x y ÷11.232)4()2(ba ba -÷-四、解答题12.先化简;再求值:(1),144421422xx x x x ++÷--其中⋅-=41x(2),a b .b b a a b a b a a 222224)()(+÷--其中,21=a b =-1.综合、运用、诊断一、填空题13.=⋅-⋅-76252)1()()(aba b b a ______.14.=-÷-32223)3()3(ac b c ab ______. 二、选择题15.下列各式中正确的是( )A .363223)23(yx y x =B .22224)2(b a a b a a +=+C .22222)(y x y x y x y x +-=+- D .333)()()(n m n m nm n m -+=-+ 16.na b 22)(-(n 为正整数)的值是( )A .n n a b 222+B .n n ab 24C .n n a b 212+-D .n nab 24-17.下列分式运算结果正确的是( )A .nm m n n m =3454.B .bc ad d c b a =.C .22224)2(b a a ba a -=-D .33343)43(y x yx =三、计算下列各题18.2222)2()()(ab abb a -÷⋅-19.23212313.-+-n nn n ba a c b20.22321).()(ba ab a ab b a -÷---四、化简求值21.若m 等于它的倒数;求32222)2.()22(444m m m m m m m --+÷-++的值.拓展、探究、思考22.已知.0)255(|13|2=-+-+b a b a 求2232332).6().()3(a bb a ab b a -÷--的值.测试5 分式的加减学习要求1.能利用分式的基本性质通分. 2.会进行同分母分式的加减法.课堂学习检测一、填空题1.分式2292,32ac bc b a 的最简公分母是______.2.分式3241,34,21x x x x x +--的最简公分母是______. 3.分式)2(,)2(++m b nm a m 的最简公分母是______.4.分式)(,)(x y b yy x a x --的最简公分母是______. 5.同分母的分式相加减的法则是______.6.异分母的分式相加减;先______;变为______的分式;再加减. 二、选择题7.已知=++=/xx x x 31211,0( ) A .x 21 B .x 61 C .x65 D .x611 8.x y y a y x a x +--+++3333等于( ) A .y x y x +-33 B .x -y C .x 2-xy +y 2 D .x 2+y 29.cab c a b +-的计算结果是( )A .abca cb 222+-B .abcb a ac c b 222--C .abc b a ac c b 222+-D .abcac b +- 10.313---a a 等于( )A .aa a --+1622B .1242-++-a a a C .1442-++-a a a D .a a -111.21111x x x x n n n +-+-+等于( ) A .11+n xB .11-n xC .21x D .1三、解答题12.通分:(1)abb a a b 41,3,22 (2))2(2,)2(-+x b x a y(3)aa a a -+21,)1(2(4)aba b a b a --+2222,1,1四、计算下列各题13.x x x x x -+--+22422214.xx x x x x x x +---+--+++3522363422215.412234272--+--x x x 16.xyy xxy x y -+-22综合、运用、诊断一、填空题17.计算a a -+-329122的结果是____________. 18.=-+abb a 6543322____________.二、选择题19.下列计算结果正确的是( )A .)2)(2(42121-+=--+x x x x B .))((211222222222x y y x x x y y x ---=---C .y x xy y x x 231223622-=- D .33329152+-=----x x x x 20.下列各式中错误..的是( ) A .ad a d c d c a d c a d c 2-=---=+-- B .1522525=+++a aaC .1-=---xy yy x xD .11)1(1)1(22-=---x x x x 三、计算下列各题21.b a a a b b b a b a ---+-+22 22.zx y zy z x y z x z y x y ------+++-223.941522333222-++-++a a a a 24.43214121111x x x x x x +-++-+--25.先化简,1)121(22xx x x x x x ÷+---+再选择一个恰当的x 值代入并求值.拓展、探究、思考26.已知,10345252---=++-x x x x B x A 试求实数A 、B 的值.27.阅读并计算:例:计算:⋅+++++++)3)(2(1)2)(1(1)1(1x x x x x x原式31212111111+-+++-+++-=x x x x x x⋅+=+-=)3(3311x x x x仿照上例计算:⋅+++++++)6)(4(2)4)(2(2)2(2x x x x x x测试6 分式的混合运算学习要求1.掌握分式的四则运算法则、运算顺序、运算律. 2.能正确进行分式的四则运算.课堂学习检测一、填空题1.化简=-2222639ab b a b a ______.2.化简2426a a ab -=______. 3.计算)1()1111(2-⨯+--m m m 的结果是______.4.)1(y x y y x +-÷的结果是______.二、选择题5.2222y x y x y x y x -+÷+-的结果是( ) A .222)(y x y x ++ B .222)(y x y x -+ C .222)(y x y x +-D .222)(yx y x ++6.222)(ba b b b a -⨯-的结果是( )A .b 1B .2b ab b a +- C .b a b a +- D .)(1b a b +7.ba ba b a b a b a b a -+⨯-+÷-+22)()(的结果是( ) A .ba ba +- B .ba ba -+ C .2)(ba b a -+ D .1三、计算题8.x x x -+-111 9.291232m m -+-10.242-++x x11.121)11(22+-+-÷--a a a a a a12.)()(nm mnm n m mn m +-÷-+13.)131()11(22a a a a --÷++综合、运用、诊断一、填空题14.=-+-+-b a ba b a b a ______. 15.=++-+-32329122m m m ______. 二、选择题 16.(1-m )÷(1-m 2)×(m +1)的结果是( )A .2)1(1m +B .2)1(1m - C .-1 D .1 17.下列各分式运算结果正确的是( ).24435232510.25bc b a c c b a =①abc b a a c b 32332=⋅②1131).3(1122+=--÷+x x x x ③1111.2=+÷--xyx x x xy ④ A .①③ B .②④C .①②D .③④18.abb a b a 2223231⨯--等于( ) A .aba - B .b a b - C .a b a 323- D .bab 232- 19.实数a 、b 满足ab =1;设,11,1111bba a Nb a M +++=+++=则M 、N 的大小关系为( )A .M >NB .M =NC .M <ND .不确定 三、解答下列各题20.y y y y y y y y 4)44122(22-÷+--+-+ 21.)1214()11(22-----+÷+x x x x x x四、化简求值22.,)]3(232[x y x y x x y x y x x -÷--++-其中5x +3y =0.拓展、探究、思考23.甲、乙两名采购员去同一家饲料公司购买两次饲料;两次购买时饲料的价格各不相同.两位采购员的购货方式也各不相同;甲每次购买1000千克;乙每次只购买800元的饲料;设两次购买的饲料单价分别为m 元/千克和n 元/千克(m ;n 为正整数;且m ≠n );那么甲、乙两名采购员两次购得饲料的平均价格分别是多少?谁的购买方法更合算?测试7 整数指数幂学习要求1.掌握零指数幂和负整数指数幂的意义. 2.掌握科学记数法.课堂学习检测一、填空题1.3-2=______;=--3)51(______.2.(-0.02)0=______;=0)20051(______. 3.(a 2)-3=______(a ≠0);=-2)3(______;=--1)23(______. 4.用科学记数法表示:1cm =______m ;2.7mL =______L . 5.一种细菌的半径为0.0004m ;用科学记数法表示为______m . 6.用小数表示下列各数:10-5=______;2.5×10-3=______.7.(3a 2b -2)3=______;(-a -2b )-2=______.8.纳米是表示微小距离的单位;1米=109纳米;已知某种植物花粉的直径为35000纳米;用科学记数法表示成______m . 二、选择题9.计算3)71(--的结果是( )A .3431-B .211- C .-343 D .-2110.下列各数;属于用科学记数法表示的是( )A .20.7×10-2B .0.35×10-1C .2004×10-3D .3.14×10-5 11.近似数0.33万表示为( )A .3.3×10-2B .3.3000×103C .3.3×103D .0.33×104 12.下列各式中正确的有( )①;9)31(2=-②2-2=-4;③a 0=1;④(-1)-1=1;⑤(-3)2=36.A .2个B .3个C .4个D .1个 三、解答题13.用科学记数法表示:(1)0.00016 (2)-0.0000312 (3)1000.5 (4)0.00003万14.计算:(1)98÷98 (2)10-3 (3)2010)51(-⨯15.地球的质量为6×1013亿吨;太阳的质量为1.98×1019亿吨;则地球的质量是太阳质量的多少倍(用负指数幂表示)?综合、运用、诊断一、填空题16.=-+-01)π()21(______;-1+(3.14)0+2-1=______.17.=-+---|3|)12()21(01______.18.计算(a -3)2(ab 2)-2并把结果化成只含有正整数指数幂形式为______.19.“神威一号”计算机运算速度为每秒384000000000次;其运算速度用科学记数法表示;为______次/秒.20.近似数-1.25×10-3有效数字的个数有______位. 二、选择题21.2009200908)125.0()13(⨯+-的结果是( ) A .3 B .23- C .2 D .022.将201)3(,)2(,)61(---这三个数按从小到大的顺序排列为()A .21)3()61()2(-<<-- B .201)3()2()61(-<-<-C .12)61()2()3(-<-<-D .12)61()3()2(-<-<-三、解答题23.计算下列各式;并把结果化成只含有正整数指数幂的形式:(1)(a 2b -3)-2(a -2b 3)2 (2)(x -5y -2z -3)2(3)(5m -2n 3)-3(-mn -2)-224.用小数表示下列各数: (1)8.5×10-3 (2)2.25×10-8 (3)9.03×10-5测试8 分式方程的解法学习要求了解分式方程的概念和检验根的意义;会解可化为一元一次方程的分式方程.课堂学习检测一、填空题 1.分式方程1712112-=-++x x x 若要化为整式方程;在方程两边同乘的最简公分母是______. 2.方程111=+x 的解是______. 3.方程625--=-x x x x 的解是______. 4.x =2是否为方程32121---=-x x x 的解?答:______.5.若分式方程127723=-+-xax x 的解是x =0;则a =______.二、选择题6.下列关于x 的方程中;不是分式方程的是( )A .11=+x xB .4132=+x xC .52433=+x xD .6516-=x x 7.下列关于x 的方程中;是分式方程的是( )。
初二下册数学直升班培优讲义学生版第7讲 正方形
模块一正方形的性质和判定模块二弦图模块三垂直且相等模型2模块一 正方形的性质和判定1.定义:四个角相等、四条边也相等的四边形叫作正方形2.性质:正方形既是矩形,又是菱形,具有矩形和菱形的一切性质. 性质1:正方形的四个内角都相等,且都为90︒,四条边都相等.性质2:正方形的对角线互相垂直平分且相等,对角线平分一组对角.性质3:正方形具有4条对称轴,两条对角线所在的直线和过两组对边中点的两条直线. 另外,由正方形的性质可以得出:(1)正方形的对角线把正方形分成四个小的等腰直角三角形.(2)正方形的面积是边长的平方,也可表示为对角线长平方的一半.3.判定:判定一个四边形是正方形,除了定义之外,还可以采用以下方法: (1)先证明是矩形,再证明该矩形有一组邻边相等,或对角线互相垂直. (2)先证明是菱形,再证明该菱形的一个角是直角,或两条对角线相等. 模块二 弦图及相关模型1.内弦图 2.外弦图(1)关于两个弦图的做法:内弦图:在正方形ABCD 的各边上分别取E 、F 、G 、H 四个点,使得AE DH CG BF ===,连接EH 、HG 、GF 、FE 可以得到内弦图.外弦图:在正方形ABCD 内,分别取点E 、F 、G 、H 四个点,连接AH 、BE 、CF 、DG ,使得DAH CDG BCF ABE ∠=∠=∠=∠,就可以得到外弦图.(2)关于弦图的作用:由弦图的做法,我们知道会产生四个全等的直角三角形,所以我们在平时的测试中会遇到这两个弦图或者其中的一部分,我们会常利用这两个弦图去构造全等去解决一些难题。
具体应用:①证明勾股定理;②解决复杂的面积问题;③构造全等三角形,求边的关系.(3)弦图常见辅助线添加方法:(△ABC 是等腰直角三角形)3模块三 垂直相等模型 1.模型I2.模型II (母子型)变型(M 为BE 的中点,O O 12、分别为正方形的中心)3.模型III (H 为DF 的中点)【教师备课提示】讲模型3时,铺垫:倍长证垂直相等当要证明的的两条边垂直且相等的时候,两条边在同一个三角形中,通常要倍长一条边,证垂直相等,如图要证明=AB CD ,且AB CD ⊥时,只需要延长CB 到点D 使BD BC =,连接AD ,只需证明=AC AD ,且AC AD ⊥;最后总结证明垂直且相等的方法: 1.构造全等当要证明的的两条边垂直且相等的时候,两条边没有在同一个三角形中,通常要构造两个边所在的三角形全等. 2.倍长证垂直相等当要证明的的两条边垂直且相等的时候,两条边在同一个三角形中,通常要倍长一条边,证垂直相等,如图要证明=AB CD ,且AB CD ⊥时,只需要延长CB 到点D 使BD BC =,连接AD ,只需证明=AC AD ,且AC AD ⊥.4(1)如图1-1,等边△BCP 在正方形ABCD 内,则APD ∠=________.(2)如图1-2,已知正方形ABCD 的面积是64,△BCE 为等边三角形,F 是CE 的中点,AE 、BF 交于点G ,连接CG ,连接BD 交AE 于点H ,则AHB ∠=____,CG =____.图1-1 图1-2(3)如图1-3,在正方形ABCD 中,点P ,Q 为正方形内的两点,且PD PB =,QB AB =,CBP QBP ∠=∠,则BQP ∠=____.(4)如图1-4,点P 是正方形ABCD 的对角线BD 上一点,PE BC ⊥于点E ,PF CD ⊥于点F ,连接EF 给出下列五个结论:①AP EF =;②AP EF ⊥;③△APD 一定是等腰三角形;④PFE BAP ∠=∠;⑤PD EC =2.其中正确结论的番号是____________. 图1-3 图1-4A BDF ECPBAC QPDD ACFEB HGCA BDP5(1)如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE AP ==1,PB =5.下列结论:①APD AEB △≌△;②点B 到直线AE 的距离为2;③EB ED ⊥;④△△APD APB S S +=1+6;⑤正方形ABCD S =4+6.其中正确结论的序号是( )A .①③④B .①②⑤C .③④⑤D .①③⑤(2)如图,正方形ABCD 中,AC 是对角线,今有较大的直角三角板,一边始终经过点B ,直角顶点P 在射线AC 上移动,另一边交DC 于Q .Ⅰ、如图①,当点Q 在DC 边上时,写出PB 与PQ 数量关系(直接写出结论); Ⅱ、如图②,当点Q 落在DC 延长线上时,写出PB 与PQ 的数量关系(直接写出结论).图① 图②A B CD PQA B C D QPA EB C D P6已知:如图,在矩形ABCD 中,BE 平分ABC ∠,CE 平分DCB ∠,BF//CE ,CF//BE .求证:四边形BECF 是正方形.(1)如图4-1,四边形ABCD 是正方形,直线l 、m 、n 分别通过A 、B 、C 三点,且////l m n ,若l 与m 的距离为5,m 和n 的距离为7,则正方形ABCD 的面积为________.(2)(树德半期改编)如图4-2,在△ABC 中,ACB ∠=90︒,AC BC ==10,在△DCE 中,DCE ∠=90︒,DC EC ==6,ACD ∠=60︒,MN BE ⊥,则CM 的长度为________.图4-1 图4-2D CAlBmnCABDE NM7如图,正方形ABCD 的边长为6,AE=4,O 是AD 的中点,且AE =4,那么△EFG 的面积为__________.已知正方形ABCD 中,E 为对角线BD 上一点,过点E 作EF BD ⊥交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .(1)求证:EG CG =,且EG CG ⊥;(2)将图6-1中三角形BEF 绕B 点逆时针旋转45︒,如图6-2所示,取DF 中点G ,连接EG ,CG ,求证:EG CG =且EG CG ⊥;(3)将图6-2中三角形BEF 绕B 点旋转任意角度,如图6-3所示,再连接相应的线段,问(2)中的结论是否仍然成立?图6-1 图6-2 图6-3图3图2图1AEB FC DAEBFC GDAE BF C GD 0推导垂直且相等模型的结论.(1)(2)(3)89笔 记 区1.如图1-1,在正方形ABCD 中,AC 为对角线,点E 在AB 边上,EF AC ⊥于点F ,连接EC ,AF =3,△EFC 的周长为12,则EC 的长为__________.2.如图1-2,以正方形ABCD 的一边向正方形外作等边三角形ABE ,BD 与EC 交于F ,则AFD ∠等于( )A .60︒B .50︒C .45︒D .40︒图1-1 图1-23.如图1-3,已知E 、F 分别是正方形ABCD 的边BC 、CD 上的点,AE 、AF 分别与对角线BD 相交于M 、N ,若EAF ∠=50︒,则CME CNF ∠+∠=__________︒.4.若正方形ABCD 的边长为4,E 为BC 边上一点,BE =3,M 为线段AE 上一点,射线BM 交正 方形的一边于点F ,且BF AE =,求BM 的长.5.如图1-5,AD 为正方形ABCD 对角线,G 为对角线上任意一点,若GF ⊥GE ,且GF =4,则GE =______. 图1-3 图1-5演练 1DC A FEBAD E F C D AF EBCNMABFGC E D6.如图,正方形ABCD的边长为5,直线l1//l2//l3//l4,且直线l2和直线l3之间的距离为1,如果正方形ABCD的四个顶点分别在四条直线上.(1)证明:△≌△AED CFB;(2)求直线l1与l2之间的距离h.7.如图,以△ABC的边AC、AB为一边,分别向三角形的外侧作正方形ACFG和正方形ABDE,连接EG.求证:△△ABC AEGS S=.8.已知P为等腰直角△ABC的斜边AB上任意一点,PE、PF分别为AC、BC之垂线,垂足为E、F.M为AB之中点.求证E、M、F组成等腰直角三角形.PABCE1PH11l4l3l2l1ABDCEFFECDBAl1l2l3l4ABCEFPMNDGEFB CAMPECA AEC F BPM10。
八年级数学培优——正方形
第22讲 正方形考点·方法·破译1.有一组邻边相等且有一个角是直角的平行四边形叫正方形,即邻边相等的矩形或有一个角为直角的菱 形叫正方形.2.熟练掌握正方形的性质,并能在解决问题时将正方形与等腰直角三角形进行替换思考. 3.掌握正方形的判断方法,并应用它的对称性质解决问题.经典•考题•赏析【例1】如图,已知平行四边形ABCD 中,对角线AC 、BD 交于点O ,E 是BD 延长线上的点,且△ACE 是等边三角形.⑴求证:四边形ABCD 是菱形;⑵若∠AED =2∠EAD ,求证:四边形ABCD 是正方形.【变式题组】01.如图,已知正方形ABCD 的对角线AC 和BD 相交于O ,点M 、N 分别在OA 、OD 上,且MN ∥AD .探究:线段DM 和CN 之间的数童关系,写出结论并给出证明.02.如图,点P 是正方形ABCD 对角线AC 上的点,PE ⊥AB ,PF ⊥BC ,E 、F 是垂足,问PD与EF 有怎样的关系? 请说明理由.03.如图,将正方形ABCD 中的△ABD 绕对称中心O 旋转至△GEF 的位置,EF 交AB 于M ,A B DO C E MAD NC BO EAD FC BPGF 交BD 于N .请猜想BM 与FN 有怎样的数量关系?并证明你的结论.04.把一个正方形分成面积相等的四个三角形的方法有很多,除了可以分成相互全等的四个三角形外,你还能用三种不同的方法将正方形分成面积相等的四个三角形吗?请分别画出示意图.【例2】如图,正方形ABCD 绕点A 逆时针旋转n °后得到正方形AEFG ,边EF 与CD 交于点O . ⑴以图中已标有字母的点为端点连接两条线段(正方形的对角线除外),要求所连接的两条线段相交且互相垂直,并说明这两条线段互相垂直的理由;⑵若正方形的边长为2cm ,重叠部分(四边形AEOD )的面积为433cm 2,求旋转的角度。
初中八年级数学 精讲精练习 正方形
第七讲 正方形姓名: 电话: .知识要点八:正方形1.(2016·内江)下列命题中,真命题是( )A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形2.(2017·黔东南州 易错)如图,正方形ABCD 中,E 为AB 中点,EF ⊥AB ,AF =2AE ,FC 交BD 于O ,则∠DOC 的度数为( )A .60°B .67.5°C .75°D .54°第1题 第2题 第3题 第6题3.(与佳一教材例5类似)如图,四边形ABCD 中,AC =a ,BD =b ,且AC ⊥BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2…,如此进行下去,得到四边形A n B n C n D n .下列结论正确的有( ) ①四边形A 2B 2C 2D 2是矩形;②四边形A 4B 4C 4D 4是菱形;③四边形A 5B 5C 5D 5的周长是4a b +;④四边形A n B n C n D n 的面积是12n ab +. A .①② B .②③ C .②③④ D .①②③④4.(2017·绍兴)如图为某城市部分街道示意图,四边形ABCD 为正方形,点G 在对角线BD 上,GE ⊥CD ,GF ⊥BC ,AD =1500m ,小敏行走的路线为B →A →G →E ,小聪行走的路线为B →A →D →E →F .若小敏行走的路程为3100m ,则小聪行走的路程为 m .5.(2017·兰州)在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,要使四边形ABCD 是正方形,还需添加一组条件.下面给出了四组条件:①AB ⊥AD ,且AB =AD ;②AB =BD ,且AB ⊥BD ;③OB =OC ,且OB ⊥OC ;④AB =AD ,且AC =BD .其中正确的序号是 .6.(2016·黑龙江)如图在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,请你添加一个条件,使四边形BECF是正方形.7.(2017·雅安与佳一教材例1类似)如图,E、F是正方形ABCD的对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2)若正方形边长的为4,AE,求菱形BEDF的面积.8.(与佳一教材例2类似)如图,正方形ABCD的边长为6,点E在边AB上,连接ED,过点D作FD⊥DE与BC的延长线相交于点F,连接EF与边CD相交于点G,与对角线BD相交于点H.(1)若BD=BF,求AE的长;(2)若∠2=2∠1,求证:HF=HE+HD.9.(与佳一教材例3类似)已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:MB=MC;(2)填空:当AB:AD= 时,四边形MENF是正方形.10.(与佳一教材例4类似)如图,已知四边形ABCD为正方形,AB=,点E为对角线AC 上一动点,连接DE,过点E作EF⊥DE,交射线BH于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.11.(与佳一教材例6类似)如图,点P是正方形ABCD对角线AC上一动点,点E在射线BC 上,且PB=PE,连接PD,O为AC中点.(1)如图1,当点P在线段AO上时,试猜想PE与PD的数量关系和位置关系,并证明;(2)如图2,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由;(3)如图3,当点P在AC的延长线上时,请你在图3中画出相应的图形(尺规作图,保留作图痕迹,不写作法),并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由.答案:1.C2.A3.C4.46005.①③④6.AC =BC7.(1)证明:连接BD 交AC 于点O .∵四边形ABCD 是正方形,∴BD ⊥AC ,OD =OB =OA =OC .∵AE =CF ,∴OA -AE =OC -CF ,即OE =OF ,∴四边形BEDF 为平行四边形,又∵BD ⊥EF ,∴四边形BEDF 为菱形.(2)解:∵正方形边长的为4,∴BD =AC =∵AE =CF ,∴EF =AC -=∴S 菱形BEDF =12BD ·EF =12⨯. 8.解:(1)∵四边形ABCD 是正方形,且FD ⊥DE ,∴∠ADE =90°-∠EDC =∠CDF ,AD =DC ,∠A =∠DCF =90°.在△DAE 和△DCF 中,===90ADE CDF A DCF AD DC ∠∠⎧⎪∠∠︒⎨⎪=⎩,,, ∴△DAE ≌△DCF (AAS ),∴AE =CF .在Rt △BCD 中,BD=∵CF =BF -BC =BD -BC=6,∴AE=6.(2)在HF 上取一点P ,使得FP =EH ,连接DP .由(1)△DAE ≌△DCF 得DE =DF ,所以△EDF 是等腰直角三角形,∴∠DEF =∠DFE =45°,∴△DEH ≌△DFP (SAS ),∴DH =DP ,∠EDH =∠FDP .在△DHE 和△FHB 中,∵∠DEF =∠HBF =45°,∠EHD =∠BHF (对顶角),∴∠EDH =∠1=12∠2=12(45°-∠EDH ), ∴∠EDH =15°,∠FDP =15°,∴∠HDP =90°-15°-15°=60°,∴△DHP 是等边三角形,∴HD =HP ,∴HF =HE +HD .9.(1)证明:∵四边形ABCD 是矩形,∴AB =DC ,∠A =∠D =90°.∵M 是AD 的中点,∴AM =DM .在△ABM 和△DCM 中,AB DC A D AM DM =⎧⎪∠=∠⎨⎪=⎩,,,∴△ABM ≌△DCM (SAS ),∴MB =MC .(2)解:当AB :AD =1:2时,四边形MENF 是正方形.理由是:∵AB : AD =1:2,AM =DM ,AB =CD ,∴AB =AM =DM =DC .∵∠A =∠D =90°,∴∠ABM =∠AMB =∠DMC =∠DCM =45°,∴∠BMC =90°.∵四边形ABCD 是矩形,∴∠ABC =∠DCB =90°,∴∠MBC =∠MCB =45°,∴BM =CM .∵N 、E 、F 分别是BC 、BM 、CM 的中点,∴BE =CF ,ME =MF ,NF ∥BM ,NE ∥CM ,∴四边形MENF 是平行四边形.∵ME =MF ,∠BMC =90°,∴四边形MENF 是正方形.即当 AB : AD =1:2时,四边形MENF 是正方形.10.(1)证明:过点E 作EM ⊥BC 于点M ,过点E 作EN ⊥CD 于点N ,如图所示.∵四边形ABCD 是正方形,∴∠BCD =90°,∠ECN =45°,∴∠EMC =∠ENC =∠BCD =90°,且NE =NC ,∴四边形EMCN 为正方形,∴EM =EN .∵四边形DEFG 是矩形,∴EM =EN ,∠DEN +∠NEF =∠MEF +∠NEF =90°,∴∠DEN =∠MEF .在△DEN 和△FEM 中,=DNE FME EN EM DEN FEM ∠∠⎧⎪=⎨⎪∠=∠⎩,,, ∴△DEN ≌△FEM (ASA ),∴ED =EF ,∴矩形DEFG 为正方形.(2)解:CE +CG 的值为定值,理由如下:由(1)知矩形DEFG 为正方形,∴DE =DG ,∠EDC +∠CDG =90°.∵四边形ABCD 是正方形,∴AD =DC ,∠ADE +∠EDC =90°,∴∠ADE =∠CDG .在△ADE 和△CDG 中,==AD CD ADE CDG DE DG ⎧⎪∠∠⎨⎪=⎩,,, ∴△ADE ≌△CDG (SAS ),∴AE =CG ,∴AC =AE +CE,∴CE +CG =4是定值.11.解:(1)当点P 在线段AO 上时.在△ABP 和△ADP 中,,45,,AB AD BAP DAP AP AP =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABP ≌△ADP ,∴BP =DP .∵PB =PE ,∴PE =PD .过点P 作PM ⊥CD 于点M ,作PN ⊥BC 于点N.∵PB =PE ,PN ⊥BE ,∴BN =NE .∵BNDM∴BN =DM ,∴DM =NE .在Rt △PNE 和Rt △PMD 中,,,PD PE NE DM =⎧⎨=⎩ ∴Rt △PNE ≌Rt △PMD ,∴∠DPM =∠EPN .∵∠MPN =90°,∴∠DPE =90°.故PE ⊥PD .PE 与PD 的数量关系和位置关系分别为:PE =PD ,PE ⊥PD .(2)∵四边形ABCD 是正方形,AC 为对角线,∴BA =DA ,∠BAP =∠DAP =45°.∵P A =P A ,∴△BAP ≌△DAP (SAS ),∴PB =PD .又∵PB =PE ,∴PE =PD .①当点E与点C重合时,点P恰好在AC中点处,此时,PE⊥PD.②当点E在BC的延长线上时,如图.∵△ADP≌△ABP,∴∠ABP=∠ADP,∴∠CBP=∠CDP.∵BP=PE,∴∠CBP=∠PEC.∵∠1=∠2,∴∠DPE=∠DCE=90°,∴PE⊥PD.综上所述,PE⊥PD.(3)成立,PE⊥PD,PD=PE.。
八年级数学下册同步精品讲义(人教版):正方形(教师版)
正方形的判定除定义外,判定思路有两条: 或先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形); 或先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形).
知识点 04 特殊平行四边形之间的关系
或者可表示为:
知识点 05 顺次连接特殊的平行四边形各边中点得到的四边形的形状
CE=BO=3,同理得出 DF=OA=1,AF=BO=3,再求出 OE、OF,即可得出结果. 【详解】 解:作 CE⊥y 轴于 E,DF⊥x 轴于 F,如图所示:
则∠CEB=∠AFD=90°, ∴∠1+∠3=90°, ∵四边形 ABCD 是正方形, ∴∠ABC=90°,BC=AB, ∴∠2+∠3=90°, ∴∠1=∠2, 在△BCE 和△ABO 中,
能力拓展
考法 01 正方形的性质
【典例 1】如图,直线 L 上有三个正方形 a,b,c,若 a,c 的面积分别为 1 和 9,则 b 的面积为( )
A.8
B.9
C.10
D.11
【答案】C
【解析】
【分析】
运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE,进而利用 AAS 可证明△ACB≌△DCE,
第 13 课 正方形
目标导航
课程标准 1.理解正方形的概念,了解平行四边形、矩形及菱形与正方形的概念之间的从属关系; 2.掌握正方形的性质及判定方法.
知识精讲
知识点 01 正方形的定义
四条边都相等,四个角都是直角的四边形叫做正方形. 注意: 既是矩形又是菱形的四边形是正方形,它是特殊的菱形,又是特殊的矩形,更为特殊的平行四边形,正方 形是有一组邻边相等的矩形,还是有一个角是直角的菱形.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ABCDE F GO专题20 正方形阅读与思考矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形,正方形不仅是特殊的平行四边形,而且是邻边相等的特殊矩形,也是有一个角是直角的菱形,因此,我们可以利用矩形、菱形的性质来研究正方形的有关问题.正方形问题常常转化为三角形问题解决,在正方形中,我们最容易得到特殊三角形、全等三角形,熟悉以下基本图形.例题与求解【例l 】 如图,在正方形纸片ABCD 中,对角线AC ,BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后,折痕DE 分别交AB ,AC 于点E ,G .下列结论:①05.112=∠AGD ;②2=AEAD;③OGD AGD S S ∆∆=;④四边形AEFG 是菱形;⑤OG BE 2=. 其中,正确结论的序号是______________. (重庆市中考试题)解题思路:本题需综合运用轴对称、菱形判定、数形结合等知识方法.【例2】如图1,操作:把正方形CGEF 的对角线CE 放在正方形ABCD 的边BC 的延长线上)(BC CG >,取线段AE 的中点M .连MD ,MF .(1)探究线段MD ,MF 的关系,并加以证明. (2)将正方形CGEF 绕点C 旋转任意角后(如图2),其他条件不变. 探究线段MD ,MF 的关系,并加以证明.(大连市中考题改编) 解题思路:由M 为AE 中点,想到“中线倍长法”再证三角形全等.图2图1MFEGMFGABDCECD BA【例3】如图,正方形ABCD 中,E ,F 是AB ,BC 边上两点,且FC AE EF +=,EF DG ⊥于G ,求证:DA DG =.(重庆市竞赛试题)解题思路:构造FC AE +的线段是解本例的关键.GF B CA DE【例4】 如图,正方形ABCD 被两条与边平行的线段EF 、GH 分割成四个小矩形,P 是EF 与GH 的交点,若矩形PFCH 的面积恰是矩形AGPE 面积的2倍,试确定HAF ∠的大小,并证明你的结论.(北京市竞赛试题) 解题思路:先猜测HAF ∠的大小,再作出证明,解题的关键是由条件及图形推出隐含的线段间的关系.【例5】 如图,在正方形ABCD 中,E ,F 分别是边BC ,CD 上的点,满足DF BE EF +=,AF AE ,分别与对角线BD 交于点N M ,.求证:(1)045=∠EAF ;(2)222DN BM MN +=. (四川省竞赛试题)解题思路:对于(1),可作辅助线,创造条件,再通过三角形全等,即可解答;对于(2),很容易联想到直角三角形三边关系.M NEBCDAFA BCD E FGHP【例6】已知 :正方形ABCD 中,045=∠MAN ,MAN ∠绕点A 顺时针旋转,它的两边分别交CB ,DC (或它们的延长线)于点N M ,.当MAN ∠绕点A 旋转到DN BM =时(如图1),易证MN DN BM =+.(1)当MAN ∠绕点A 旋转到DN BM ≠时(如图2),线段DN BM ,和MN 之间有怎样的数量关系?写出猜想,并加以证明;(2)当MAN ∠绕点A 旋转到如图3的位置时,线段DN BM ,和MN 之间又有怎样的数量关系?请直接写出你的猜想.(黑龙江省中考试题)解题思路:对于(2),构造BM DN -是解题的关键.能力训练A 级1. 如图,若四边形ABCD 是正方形,CDE ∆是等边三角形,则EAB ∠的度数为__________.(北京市竞赛试题)2. 四边形ABCD 的对角线BD AC 、相交于点O ,给出以下题设条件: ①DA CD BC AB ===;②BD AC DO CO BO AO ⊥===,; ③BD AC DO BO CO AO ⊥==,,; ④DA CD BC AB ==,.其中,能判定它是正方形的题设条件是______________. (把你认为正确的序号都填在横线上)(浙江省中考试题)A BCDM N图3A BCD MN图2A BC D MN图13.如图,边长为1的两个正方形互相重合,按住一个不动,将另一个绕顶点A 顺时针旋转030,则这两个正方形重叠部分的面积是__________.(青岛市中考试题)B CDA E第1题图 第3题图 第4题图4.如图,P 是正方形ABCD 内一点,将ABP ∆绕点B 顺时针方向旋转至能与'CBP ∆重合,若3=PB ,则'PP =__________. (河南省中考试题)5.将n 个边长都为cm 1的正方形按如图所示摆放,点n A A A ,,21分别是正方形的中心,则n 个正方形重叠形成的重叠部分的面积和为( )A .241cm B .24cm n C. 241cm n - D. 2)41(cm n(晋江市中考试题)A 5A 3A 4A 2A 1OB F ECA第5题图 第6题图6. 如图,以BCA Rt ∆的斜边BC 为一边在BCA ∆的同侧作正方形BCEF ,设正方形的中心为O ,连接AO ,如果26,4==AO AB ,则AC 的长为( )A . 12B .8 C.34 D. 28(浙江省竞赛试题)7.如图,正方形ABCD 中,035,=∠=MCE MN CE ,那么ANM ∠是( ) A .045 B .055 C. 065 D. 075ABCDPP ''ABCDC 'D 'A '8.如图,正方形ABCD 的面积为256,点F 在AD 上,点E 在AB 的延长线上,CEF Rt ∆的面积为200,则BE 的值是( )A .15B .12C .11D .10第8题图第7题图ABMBCD ACD E FNE9.如图,在正方形ABCD 中,E 是AD 边的中点,BD 与CE 交于F 点,求证:BE AF ⊥.FEB CDA10. 如图,在正方形ABCD 中,E 是AB 边的中点,F 是AD 上的一点,且AD AF 41= . 求证:CE 平分BCF ∠.BCADE F11. 如图,已知P 是正方形ABCD 对角线BD 上一点,F E BC PF DC PE ,,,⊥⊥分别是垂足. 求证:EF AP =.(扬州市中考试题)FEBCAD P12.(1)如图1,已知正方形ABCD 和正方形)(BC CG CGEF >,G C B ,,在同一条直线上,M 为线段AE 的中点.探究:线段MF MD ,的关系.(2)如图2,若将正方形CGEF 绕点C 顺时针旋转045,使得正方形CGEF 的对角线CE 在正方形ABCD 的边BC 的延长线上,M 为AE 的中点.试问:(1)中探究的结论是否成立?若成立,请证明;若不成立,请说明理由.(大连市中考试题)图1 图2B 级1. 如图,在四边形ABCD 中,090,=∠=∠=ABC ADC DC AD ,AB DE ⊥于E ,若四边形ABCD 的面积为8,则DE 的长为__________.2.如图,M 是边长为1的正方形ABCD 内一点,若02290,21=∠=-CMD MB MA ,则=∠M C D__________.(北京市竞赛试题)第3题图第1题图第2题图OCB EBC AE B DADMFAC3.如图,在ABC Rt ∆中,3,900==∠AC C ,以AB 为一边向三角形外作正方形ABEF ,正方形的中心为O ,且24=OC ,则BC 的长为__________.(“希望杯”邀请赛试题)ABCDEFGMABCDEFGM4.如图:边长一定的正方形ABCD ,Q 是CD 上一动点,AQ 交BD 于M ,过M 作AQ MN ⊥交BC 于N 点,作BD NP ⊥于点P ,连接NQ ,下列结论:①MN AM =;②BD MP 21=; ③NQ DQ BN =+;④BMBNAB +为定值,其中一定成立的是( )A . ①②③B .①②④ C. ②③④ D. ①②③④ 5.如图,ABCD 是正方形,AC BF //,AEFC 是菱形,则ACF ∠与F ∠度数的比值是( ) A . 3 B .4 C. 5 D. 不是整数6.一个周长为20的正方形内接于一个周长为28的正方形,那么从里面正方形的顶点到外面正方形的顶点的最大距离是( )A .58 B .527C. 8D. 65E.35(美国高中考试题)第7题图第5题图第4题图第6题图Q BCFABPNMBC DACDDA QE P7.如图,正方形ABCD 中,8=AB ,Q 是CD 的中点,设α=∠DAQ ,在CD 上取一点P ,使α2=∠BAP ,则CP 的长度等于 ( )A . 1B .2 C. 3 D.3(“希望杯”邀请赛试题)8.已知正方形ABCD 中,M 是AB 中点,E 是AB 延长线上一点,DM MN ⊥且交CBE ∠平分线于N (如图1)(1)求证:MN MD =;(2)若将上述条件中的“M 是AB 中点”改为“M 是AB 上任意一点”其余条件不变(如图2),(1)中结论是否成立?如果成立,请证明;如果不成立,请说明理由;(3)如图2,点M 是AB 的延长线上(除B 点外)的任意一点,其他条件不变,则(1)中结论是否成立?如果成立,请证明;如果不成立,请说明理由;(临汾市中考试题)E 图3图2图1N NAB N M ABA B DCCDEDCE MM`9.已知,10,10<<<<b a 求证:22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a .10.如果,点N M ,分别在正方形ABCD 的边CD BC ,上,已知MCN ∆的周长等于正方形ABCD 周长的一半,求MAN ∠的度数. (“祖冲之杯”邀请赛试题)A B DC MN11.如图,两张大小适当的正方形纸片,重叠地放在一起,重叠部分是一个凸八边形ABCDEFGH ,对角线CG AE ,分这个八边形为四个小的凸四边形,请你证明:CG AE ⊥,且CG AE =.(北京市竞赛试题)CBAHGFED12.如图,正方形MNBC 内有一点A ,以AC AB ,为边向ABC ∆外作正方形ABRT 和正方形ACPQ ,连接BP RM ,.求证:RM BP //.(武汉市竞赛试题)MNPQT BCAR。