2019-2020年高三数学 基础练习(24)理
人教A版2019-2020学年湖北省黄冈市高三上学期期末数学试卷(理科)(解析版)
2019-2020学年高三第一学期期末数学试卷(理科)一、选择题(本题共12小题)1.已知集合,集合B={x|x﹣x2<0},则A∩B=()A.∅B.{x|x<1} C.{x|0<x<1} D.{x|x<0}2.复数z=的虚部为()A.i B.﹣i C.﹣1 D.13.若直线x+y+a=0平分圆x2+y2﹣2x+4y+1=0的面积,则a的值为()A.1 B.﹣1 C.2 D.﹣24.已知向量,,若,则=()A.5 B.C.6 D.5.图1是我国古代数学家赵爽创制的一幅“勾股圆方图”(又称“赵爽弦图”),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,受其启发,某同学设计了一个图形,它是由三个全等的钝角三角形与中间一个小正三角形拼成一个大正三角形,如图2所示,若AD=5,BD=3,则在整个图形中随机取点,此点来自中间一个小正三角形(阴影部分)的概率为()A.B.C.D.6.若x、y满足约束条件,则z=3x﹣2y的最小值为()A.B.﹣C.﹣5 D.57.将甲、乙、丙、丁四人分配到A,B,C三所学校任教,每所学校至少安排1人,则甲不去A学校的不同分配方法有()A.18种B.24种C.32种D.36种8.已知实数x>0,y>0,则“xy≤1”是“2x+2y≤4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.将函数的图象向左平移个单位,再向上平移1个单位,得到g (x)的图象.若g(x1)•g(x2)=9,且x1,x2∈[﹣2π,2π],则x1﹣x2的最大值为()A.πB.2πC.3πD.4π10.关于函数有下列结论:①图象关于y轴对称;②图象关于原点对称;③在(﹣∞,0)上单调递增;④f(x)恒大于0.其中所有正确结论的编号是()A.①③B.②④C.③④D.①③④11.已知抛物线C:x2=2py的焦点为F,定点,若直线FM与抛物线C相交于A,B两点(点B在F,M中间),且与抛物线C的准线交于点N,若|BN|=7|BF|,则AF 的长为()A.B.1 C.D.12.如图,在△ABC中,,点D在线段BC上,且BD=3DC,,则△ABC的面积的最大值为()A.B.4 C.D.二、填空题(本大题共4小题,每题5分,共20分)13.在log20.2,20.2,0.20.3三个数中,则最大的数为.14.已知F是双曲线C:的一个焦点,点P在C上,O为坐标原点,若|OP|=|OF|,则△OPF的面积为.15.设数列{a n}满足a1=a,(a n+1﹣1)(1﹣a n)=2a n(n∈N*),若数列{a n}的前2019项的乘积为3,则a=.16.已知函数f(x)=(x+1)sin x+cos x,若对于任意的(x1≠x2),均有|f(x1)﹣f(x2)|<a||成立,则实数a的取值范围为.三、解答题:本大题有6小题,共60分,解答应写出文字说明、证明过程或演算步骤. 17.已知函数.(1)求的值;(2)求f(x)的最小正周期及单调增区间.18.已知数列{a n}满足a1=1,a n+a n+1=4n﹣1,n=1,2,3…,(1)求数列{a n}的通项;(2)设S n=a1a2﹣a2a3+a3a4﹣a4a5+…+a2n﹣1a2n﹣a2n a2n+1,求S n.19.已知f(x)=kx﹣sin2x+a sin x(k,a为实数).(1)当k=0,a=2时,求f(x)在[0,π]上的最大值;(2)当k=4时,若f(x)在R上单调递增,求a的取值范围.20.已知椭圆Γ:的离心率为,点A为该椭圆的左顶点,过右焦点F(c,0)的直线l与椭圆交于B,C两点,当BC⊥x轴时,三角形ABC的面积为18.(1)求椭圆Γ的方程;(2)如图,当动直线BC斜率存在且不为0时,直线x=c分别交直线AB,AC于点M、N,问x轴上是否存在点P,使得PM⊥PN,若存在求出点P的坐标;若不存在说明理由.21.黄冈“一票通”景区旅游年卡,是由黄冈市旅游局策划,黄冈市大别山旅游公司推出的一项惠民工程,持有旅游年卡一年内可不限次畅游全市19家签约景区.为了解市民每年旅游消费支出情况(单位:百元),相关部门对已游览某签约景区的游客进行随机问卷调查,并把得到的数据列成如表所示的频数分布表:(1)求所得样本的中位数(精确到百元);(2)根据样本数据,可近似地认为市民的旅游费用支出服从正态分布N(45,152),若该市总人口为750万人,试估计有多少市民每年旅游费用支出在7500元以上;(3)若年旅游消费支出在40(百元)以上的游客一年内会继续来该景点游玩现从游客中随机抽取3人,一年内继续来该景点游玩记2分,不来该景点游玩记1分,将上述调查所得的频率视为概率,且游客之间的选择意愿相互独立,记总得分为随机变量X,求X 的分布列与数学期望.(参考数据:P(μ﹣σ<X<μ+σ)≈0.6827,P(μ﹣2σ<X<μ+2σ)≈0.9545;P (μ﹣3σ<X<μ+3σ)≈0.9973)22.已知函数f(x)=alnx﹣(x﹣1)e x,其中a为非零常数.(1)讨论f(x)的极值点个数,并说明理由;(2)若a>e,(i)证明:f(x)在区间(1,+∞)内有且仅有1个零点;(ii)设x0为f(x)的极值点,x1为f(x)的零点且x1>1,求证:x0+2lnx0>x1.参考答案一、选择题(本题共12小题)1.已知集合,集合B={x|x﹣x2<0},则A∩B=()A.∅B.{x|x<1} C.{x|0<x<1} D.{x|x<0}【分析】可以求出集合A,B,然后进行交集的运算即可.解:∵A={x|x≤1},B={x|x<0或x>1},∴A∩B={x|x<0}.故选:D.2.复数z=的虚部为()A.i B.﹣i C.﹣1 D.1【分析】直接由复数代数形式的乘除运算化简复数z,则答案可求.解:z==,则复数z=的虚部为:﹣1.故选:C.3.若直线x+y+a=0平分圆x2+y2﹣2x+4y+1=0的面积,则a的值为()A.1 B.﹣1 C.2 D.﹣2【分析】根据题意,由圆的方程分析圆的圆心,进而分析可得圆心在直线x+y+a=0上,将圆心坐标代入直线方程可得a﹣2﹣1=0,解可得a的值,即可得答案.解:根据题意,圆的方程为x2+y2﹣2x+4y+1=0,其圆心为(1,﹣2),若直线x+y+a=0平分圆x2+y2﹣2x+4y+1=0的面积,则圆心在直线x+y+a=0上,则有a+1﹣2=0,解可得a=1;故选:A.4.已知向量,,若,则=()A.5 B.C.6 D.【分析】通过向量的数量积求解x,然后求解向量的模.解:向量,,若,可得﹣x﹣10=﹣7,解得x=﹣3,所以=(﹣4,3),则||==5.故选:A.5.图1是我国古代数学家赵爽创制的一幅“勾股圆方图”(又称“赵爽弦图”),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,受其启发,某同学设计了一个图形,它是由三个全等的钝角三角形与中间一个小正三角形拼成一个大正三角形,如图2所示,若AD=5,BD=3,则在整个图形中随机取点,此点来自中间一个小正三角形(阴影部分)的概率为()A.B.C.D.【分析】求得∠ADB=120°,在△ABD中,运用余弦定理,求得AB,以及DE,根据三角形的面积与边长之间的关系即可求解.解:∵∠ADB=180°﹣60°=120°,在△ABD中,可得AB2=AD2+BD2﹣2AD•BD•cos∠ADB,即为AB2=52+32﹣2×5×3×(﹣)=49,解得AB=7,∵DE=AD﹣BD=2;∴==.故选:B.6.若x、y满足约束条件,则z=3x﹣2y的最小值为()A.B.﹣C.﹣5 D.5【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.解:由约束条件作出可行域如图:联立,解得A(﹣1,1).化目标函数z=3x﹣2y为y=,由图可知,当直线y=过A时,直线在y轴上的截距最大,z有最小值为﹣5.故选:C.7.将甲、乙、丙、丁四人分配到A,B,C三所学校任教,每所学校至少安排1人,则甲不去A学校的不同分配方法有()A.18种B.24种C.32种D.36种【分析】根据题意,分两种情况讨论:①其他三人中有一个人与甲在同一个学校,②没有人与甲在同一个学校,由加法原理计算可得答案.解:根据题意,分两种情况讨论,①其他三人中有一个人与甲在同一个学校,有C31A21A22=12种情况,②没有人与甲在同一个学校,则有C21C32A22=12种情况;则若甲要求不到A学校,则不同的分配方案有12+12=24种;故选:B.8.已知实数x>0,y>0,则“xy≤1”是“2x+2y≤4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】通过举反例得到“xy≤1”推不出“2x+2y≤4”;再由“2x+2y≤4”⇒“xy≤1”.能求出结果.解:∵实数x>0,y>0,∴当x=3,y=时,2x+2y=23+>4,∴“xy≤1”推不出“2x+2y≤4”;反之,实数x>0,y>0,“2x+2y≤4”⇒“xy≤1”.∴实数x>0,y>0,则“xy≤1”是“2x+2y≤4”的必要不充分条件.故选:B.9.将函数的图象向左平移个单位,再向上平移1个单位,得到g (x)的图象.若g(x1)•g(x2)=9,且x1,x2∈[﹣2π,2π],则x1﹣x2的最大值为()A.πB.2πC.3πD.4π【分析】首先利用函数的关系式的平移变换的应用求出新函数的关系式,进一步利用函数的最值的应用求出结果.解:函数的图象向左平移个单位,得到y=2sin()的图象,再向上平移1个单位,得到g(x)=2sin(2x+)+1的图象,由于若g(x1)•g(x2)=9,且x1,x2∈[﹣2π,2π],所以函数在x=x1和x2时,函数都取得最大值.所以(k∈Z),解得,由于且x1,x2∈[﹣2π,2π],所以,同理,所以.故选:C.10.关于函数有下列结论:①图象关于y轴对称;②图象关于原点对称;③在(﹣∞,0)上单调递增;④f(x)恒大于0.其中所有正确结论的编号是()A.①③B.②④C.③④D.①③④【分析】利用函数的奇偶性、单调性直接求解.解:函数,在①中,f(﹣x)=(1+)=﹣(1+)=(+)=(1+)=f(x).∴函数是偶函数,图象关于y轴对称,故①正确;在②中,函数是偶函数,图象关于y轴对称,故②错误;在③中,在(﹣∞,0)上任取x1,x2,令x1<x2<0,f(x2)﹣f(x1)=﹣(1+)=+>0,∴函数在(﹣∞,0)上单调递增,故③正确;在④中,当x>0时,>0,1+>0,f(x)>0,当x<0时,<0,1+<0,f(x)>0.∴f(x)恒大于0,故④正确.故选:D.11.已知抛物线C:x2=2py的焦点为F,定点,若直线FM与抛物线C相交于A,B两点(点B在F,M中间),且与抛物线C的准线交于点N,若|BN|=7|BF|,则AF 的长为()A.B.1 C.D.【分析】由题意画出图形,求出AB的斜率,得到AB的方程,求得p,可得抛物线方程,联立直线方程与抛物线方程,求解A的坐标,再由抛物线定义求解AF的长.解:如图,过B作BB′垂直于准线,垂足为B′,则|BF|=|BB′|,由|BN|=7|BF|,得|BN|=7|BB′|,可得sin,∴cos∠BNB′=﹣,tan∠BNB′=﹣,又M(,0),∴AB的方程为y=﹣,取x=0,得y=,即F(0,),则p=1,∴抛物线方程为x2=2y.联立,解得.∴|AF|=.故选:C.12.如图,在△ABC中,,点D在线段BC上,且BD=3DC,,则△ABC的面积的最大值为()A.B.4 C.D.【分析】设∠BAD=θ,则0<θ<∠BAC,根据三角形的面积公式求出AC,AB,然后由S△ABC=AB•AC•sin∠BAC=[4sin(2θ+φ)﹣1],根据三角函数的性质求出面积的最大值.解:设∠BAD=θ,则0<θ<∠BAC.∵BD=3DC,,∴S△ABD=S△ABC,∴,∴,同理AB=8sin(∠BAC﹣θ),∴S△ABC====(其中tanφ=),∵0<θ<∠BAC,∴当2θ+φ=时,sin(2θ+φ)max=1,∴.故选:C.二、填空题(本大题共4小题,每题5分,共20分)13.在log20.2,20.2,0.20.3三个数中,则最大的数为20.2.【分析】利用对数函数和指数函数的性质求解.解:∵log20.2<log21=0,∴log20.2<0,∵20.2>20=1,∴20.2>1,∵0<0.20.3<0.20=1,∴0<0.20.3<1,∴20.2最大,故答案为:20.2.14.已知F是双曲线C:的一个焦点,点P在C上,O为坐标原点,若|OP|=|OF|,则△OPF的面积为.【分析】由题意画出图形,不妨设F为双曲线C:的右焦点,P为第一象限点,求出P点坐标,再由三角形面积公式求解.解:如图,不妨设F为双曲线C:的右焦点,P为第一象限点.由双曲线方程可得,a2=1,b2=3,则c=2,则以O为圆心,以2为半径的圆的方程为x2+y2=4.联立,解得P(,).∴S△OPF=×2×=.故答案为:.15.设数列{a n}满足a1=a,(a n+1﹣1)(1﹣a n)=2a n(n∈N*),若数列{a n}的前2019项的乘积为3,则a= 2 .【分析】本题先根据递推式的特点可知a n≠1,然后将递推式可转化为a n+1=.再根据a1=a逐步代入前几项即可发现数列{a n}是以最小正周期为4的周期数列.再算出一个周期内的乘积为1,即可根据前2019项的乘积为3求出a的值.解:由题意,根据递推式,a n≠1.故递推式可转化为a n+1=.∵a1=a,∴a2=,a3===﹣,a4===,a5===a.∴数列{a n}是以最小正周期为4的周期数列.∴a1•a2•a3•a4=a••(﹣)•=1.∵2019÷4=504…3,∴a1•a2…a2019=a1•a2•a3=a••(﹣)==3,解得a=2.故答案为:2.16.已知函数f(x)=(x+1)sin x+cos x,若对于任意的(x1≠x2),均有|f(x1)﹣f(x2)|<a||成立,则实数a的取值范围为[1,+∞).【分析】求导可知函数f(x)在上为增函数,进而原问题等价于对于任意的(x1≠x2),均有,构造函数h(x)=f(x)﹣ae x,则函数h(x)在上为减函数,求导后转化为最值问题求解即可.解:f'(x)=sin x+(x+1)cos x﹣sin x=(x+1)cos x,任意的(x1≠x2),f'(x)>0恒成立,所以f(x)单调递增,不妨设x1<x2,则f(x1)<f(x2),又,故|f(x1)﹣f(x2)|<a||等价于,即,设,易知函数h(x)在上为减函数,故h′(x)=(x+1)cos x﹣ae x≤0在上恒成立,即在上恒成立,设,则=,故函数g(x)在上为减函数,则g(x)max=g(0)=1,故a≥1.故答案为:[1,+∞).三、解答题:本大题有6小题,共60分,解答应写出文字说明、证明过程或演算步骤. 17.已知函数.(1)求的值;(2)求f(x)的最小正周期及单调增区间.【分析】(I)结合和差角公式及二倍角,辅助角公式对已知函数进行化简,然后直接代入即可求解,(2)结合正弦函数的性质即可求解.解:(Ⅰ)因为,=所以,(2)f(x)的最小正周期.令,解得所以f(x)的单调增区间为.18.已知数列{a n}满足a1=1,a n+a n+1=4n﹣1,n=1,2,3…,(1)求数列{a n}的通项;(2)设S n=a1a2﹣a2a3+a3a4﹣a4a5+…+a2n﹣1a2n﹣a2n a2n+1,求S n.【分析】(1)利用数列的递推关系式推出a n+1﹣a n﹣1=4,通过当n为奇数,当n为偶数,,分别求解通项公式.(2)化简S n=a2(a1﹣a3)+a4(a3﹣a5)+…+a2n(a2n﹣1﹣a2n+1),然后求解数列的和即可.解:(1)∵a n+a n+1=4n﹣1,n=1,2,3…①,∴a n﹣1+a n=4(n﹣1)﹣1,n=2,3,4…②①﹣②得a n+1﹣a n﹣1=4,n=2,3…当n为奇数,,当n为偶数,所以.(2)S n=a1a2﹣a2a3+a3a4﹣a4a5+…+a2n﹣1a2n﹣a2n a2n+1,S n=a2(a1﹣a3)+a4(a3﹣a5)+…+a2n(a2n﹣1﹣a2n+1)=.19.已知f(x)=kx﹣sin2x+a sin x(k,a为实数).(1)当k=0,a=2时,求f(x)在[0,π]上的最大值;(2)当k=4时,若f(x)在R上单调递增,求a的取值范围.【分析】(1)求导后,列表得x,f′(x),f(x)的变化情况,进而求得最大值;(2)依题意,4cos2x﹣a cos x﹣6≤0恒成立,换元后利用二次函数的图象及性质得解.解:(1)当k=0,a=2时,f(x)=﹣sin2x+2sin xf′(x)=﹣2cos2x+2cos x=﹣4cos2x+2cos x+2=2(2cos x+1)(1﹣cos x),则x,f′(x),f(x)的变化情况如下:∴=.(2)f(x)在R上单调递增,则f′(x)=4﹣2(cos2x﹣sin2x)+a cos x≥0对∀x∈R 恒成立.得4cos2x﹣a cos x﹣6≤0,设t=cos x∈[﹣1,1],g(t)=4t2﹣at﹣6,则g(t)≤0在[﹣1,1]上恒成立,由二次函数图象,得﹣2≤a≤2.20.已知椭圆Γ:的离心率为,点A为该椭圆的左顶点,过右焦点F(c,0)的直线l与椭圆交于B,C两点,当BC⊥x轴时,三角形ABC的面积为18.(1)求椭圆Γ的方程;(2)如图,当动直线BC斜率存在且不为0时,直线x=c分别交直线AB,AC于点M、N,问x轴上是否存在点P,使得PM⊥PN,若存在求出点P的坐标;若不存在说明理由.【分析】(1)由离心率及三角形ABC的面积和a,b,c之间的关系求出椭圆方程;(2)由(1)知A的坐标,设直线BC的方程,及B,C的坐标,进而写直线AB,AC的方程,与直线x=c联立求出M,N的坐标,假设存在P点,是PM⊥PN,使数量积等于零,求出P点坐标.【解答】解(1)由已知条件得,解得;所以椭圆Γ的方程为;(2)设动直线BC的方程为y=k(x﹣2),B(x1,y1),C(x2,y2),则直线AB、AC的方程分别为和,所以点M、N的坐标分别为,联立得(3+4k2)x2﹣16k2x+16k2﹣48=0,所以;于是,假设存在点P(t,0)满足PM⊥PN,则(t﹣2)2+y M y N=0,所以t=﹣1或5,所以当点P为(﹣1,0)或(5,0)时,有PM⊥PN.21.黄冈“一票通”景区旅游年卡,是由黄冈市旅游局策划,黄冈市大别山旅游公司推出的一项惠民工程,持有旅游年卡一年内可不限次畅游全市19家签约景区.为了解市民每年旅游消费支出情况(单位:百元),相关部门对已游览某签约景区的游客进行随机问卷调查,并把得到的数据列成如表所示的频数分布表:(1)求所得样本的中位数(精确到百元);(2)根据样本数据,可近似地认为市民的旅游费用支出服从正态分布N(45,152),若该市总人口为750万人,试估计有多少市民每年旅游费用支出在7500元以上;(3)若年旅游消费支出在40(百元)以上的游客一年内会继续来该景点游玩现从游客中随机抽取3人,一年内继续来该景点游玩记2分,不来该景点游玩记1分,将上述调查所得的频率视为概率,且游客之间的选择意愿相互独立,记总得分为随机变量X,求X 的分布列与数学期望.(参考数据:P(μ﹣σ<X<μ+σ)≈0.6827,P(μ﹣2σ<X<μ+2σ)≈0.9545;P (μ﹣3σ<X<μ+3σ)≈0.9973)【分析】(1)设样本的中位数为x,可得,解得x.(2)μ=45,σ=15,μ+2σ=75,旅游费用支出在7500元以上的概率为P(x≥μ+2σ)=,即可估计有多少万市民旅游费用支出在7500元以上.(3)由表格知一年内游客继续来该景点游玩的概率为,X可能取值为3,4,5,6,利用二项分布列即可得出.解:(1)设样本的中位数为x,则,解得x=45,所得样本中位数为45(百元).(2)μ=45,σ=15,μ+2σ=75,旅游费用支出在7500元以上的概率为P(x≥μ+2σ)==,0.0228×750=17.1,估计有17.1万市民旅游费用支出在7500元以上.(3)由表格知一年内游客继续来该景点游玩的概率为,X可能取值为3,4,5,6.,,,,故其分布列为.22.已知函数f(x)=alnx﹣(x﹣1)e x,其中a为非零常数.(1)讨论f(x)的极值点个数,并说明理由;(2)若a>e,(i)证明:f(x)在区间(1,+∞)内有且仅有1个零点;(ii)设x0为f(x)的极值点,x1为f(x)的零点且x1>1,求证:x0+2lnx0>x1.【分析】(1)先对函数求导,然后结合导数与单调性的关系,对a进行分类讨论即可求解函数的单调性,进而可确定极值,(2)(i)转化为证明f′(x)=0只有一个零点,结合函数与导数知识可证;(ii)由题意可得,,代入可得,,结合函数的性质可证.解:(1)解:由已知,f(x)的定义域为(0,+∞),∵,①当a<0时,a﹣x2e x<0,从而f′(x)<0,所以f(x)在(0,+∞)内单调递减,无极值点,②当a>0时,令g(x)=a﹣x2e x,则由于g(x)在[0,+∞)上单调递减,g(0)=a>0,,所以存在唯一的x0∈(0,+∞),使得g(x0)=0,所以当x∈(0,x0)时,g(x)>0,即f′(x)>0;当x∈(x0,+∞)时,g(x)<0,即f′(x)<0,所以当a>0时,f(x)在(0,+∞)上有且仅有一个极值点.(2)证明:(i)由(1)知.令g(x)=a﹣x2e x,由a>e得g(1)=a﹣e>0,所以g(x)=0在(1,+∞)内有唯一解,从而f′(x)=0在(0,+∞)内有唯一解,不妨设为x0,则f(x)在(1,x0)上单调递增,在(x0,+∞)上单调递减,所以x0是f(x)的唯一极值点.令h(x)=lnx﹣x+1,则当x>1时,<0,故h(x)在(1,+∞)内单调递减,从而当x>1时,h(x)<h(1)=0,所以lnx<x﹣1.从而当a>e时,lna>1,且f(lna)=aln(lna)﹣(lna﹣1)e lna<a(lna﹣1)﹣(lna ﹣1)a=0又因为f(1)=0,故f(x)在(1,+∞)内有唯一的零点.(ii)由题意,即,从而,即.因为当x1>1时,lnx1<x1﹣1,又x1>x0>1,故,即,两边取对数,得lne,于是x1﹣x0<2lnx0,整理得x0+2lnx0>x1.。
(高考题 模拟题)高考数学 基础巩固练(二)理(含解析)-人教版高三全册数学试题
基础巩固练(二)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2019·高考)已知复数z=2+i,则z·z=( )A. 3B. 5 C.3 D.5答案 D解析解法一:∵z=2+i,∴z=2-i,∴z·z=(2+i)(2-i)=5.故选D.解法二:∵z=2+i,∴z·z=|z|2=5.故选D.2.(2019·某某高考)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A)∩B=( )A.{-1} B.{0,1}C.{-1,2,3} D.{-1,0,1,3}答案 A解析∵U={-1,0,1,2,3},A={0,1,2},∴∁U A={-1,3}.又∵B={-1,0,1},∴(∁U A)∩B={-1}.故选A.3.(2019·某某二模)某几何体的三视图如图所示,则这个几何体的直观图可以是( )答案 B解析由正视图排除A,C;由侧视图排除D,故B正确.4.(2019·某某呼和浩特市高三3月第一次质量普查)在等比数列{a n}中,a2-a1=2,且2a2为3a1和a3的等差中项,则a4为 ( )A .9B .27C .54D .81 答案 B解析 根据题意,设等比数列{a n }的公比为q ,若2a 2为3a 1和a 3的等差中项,则有2×2a 2=3a 1+a 3,变形可得4a 1q =3a 1+a 1q 2,即q 2-4q +3=0,解得q =1或3;又a 2-a 1=2,即a 1(q -1)=2,则q =3,a 1=1,则a n =3n -1,则有a 4=33=27.故选B.5.(2019·某某市适应性试卷)函数f (x )=(x 3-x )ln |x |的图象是( )答案 C解析 因为函数f (x )的定义域关于原点对称,且f (-x )=-(x 3-x )ln |x |=-f (x ),∴函数是奇函数,图象关于原点对称,排除B ,函数的定义域为{x |x ≠0},由f (x )=0,得(x 3-x )ln |x |=0,即(x 2-1)ln |x |=0,即x =±1,即函数f (x )有两个零点,排除D ,f (2)=6ln 2>0,排除A.故选C.6.(2019·某某省内江二模)如果执行下面的程序框图,输出的S =110,则判断框处为( )A .k <10?B .k ≥11? C.k ≤10? D.k >11? 答案 C解析 由程序框图可知,该程序是计算S =2+4+…+2k =k (2+2k )2=k (k +1),由S =k (k +1)=110,得k =10,则当k =10时,k =k +1=10+1=11不满足条件,所以条件为“k ≤10?”.故选C.7.(2019·某某二模)勒洛三角形是由德国机械工程专家、机构运动学家勒洛(1829~1905)首先发现,所以以他的名字命名,其作法为:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,现在勒洛三角形内部随机取一点,则此点取自等边三角形内部的概率为( )A.2π-332(π-3)B.32(π-3)C.32(π+3)D.2π-332(π+3)答案 B解析 如题图,设BC =2,以B 为圆心的扇形的面积为π×226=2π3,又∵△ABC 的面积为12×32×2×2=3,∴勒洛三角形的面积为3个扇形面积减去2个正三角形的面积,即为2π3×3-23=2π-23,故在勒洛三角形中随机取一点,此点取自等边三角形的概率为32π-23=32(π-3),故选B.8.(2019·某某一模)已知M (-4,0),N (0,4),点P (x ,y )的坐标x ,y 满足⎩⎪⎨⎪⎧x ≤0,y ≥0,3x -4y +12≥0,则MP →·NP →的最小值为( )A.25B.425 C .-19625 D .- 5 答案 C解析 由点P (x ,y )的坐标x ,y 满足⎩⎪⎨⎪⎧x ≤0,y ≥0,3x -4y +12≥0,作出可行域如图中阴影部分,则MP →·NP →=(x +2)2+(y -2)2-8的最小值为点A (-2,2)到直线3x -4y +12=0的距离的平方再减8,由d =|3×(-2)-4×2+12|5=25,可得(x +2)2+(y -2)2-8的最小值为-19625.故选C.9.(2019·某某一模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,a =3,c =23,b sin A =a cos ⎝⎛⎭⎪⎫B +π6,则b =( )A .1 B. 2 C. 3 D. 5 答案 C解析 在△ABC 中,由正弦定理得asin A=bsin B,得b sin A =a sin B ,又b sin A =a cos ⎝⎛⎭⎪⎫B +π6,∴a sin B =a cos ⎝⎛⎭⎪⎫B +π6,即sin B =cos ⎝⎛⎭⎪⎫B +π6=cos B cos π6-sin B sin π6=32cos B -12sin B ,∴tan B =33,又B ∈(0,π),∴B =π6.∵在△ABC 中,a =3,c =23,由余弦定理得b =a 2+c 2-2ac cos B =9+12-2×3×23×32= 3.故选C. 10.(2019·某某某某高三3月模拟)若函数f (x )=sin ⎝⎛⎭⎪⎫ωx -π6(ω>0)在[0,π]上的值域为⎣⎢⎡⎦⎥⎤-12,1,则ω的最小值为( )A.23B.34C.43D.32 答案 A解析 ∵0≤x ≤π,∴-π6≤ωx -π6≤ωπ-π6,而f (x )的值域为⎣⎢⎡⎦⎥⎤-12,1,发现f (0)=sin ⎝ ⎛⎭⎪⎫-π6=-12,∴π2≤ωπ-π6≤7π6,整理得23≤ω≤43.则ω的最小值为23.故选A.11.(2019·某某模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点A 为双曲线右支上一点,线段AF 1交左支于点B ,若AF 2⊥BF 2,且|BF 1|=13|AF 2|,则该双曲线的离心率为( )A. 2B.655C.355D .3 答案 B解析 因|BF 1|=13|AF 2|,设|AF 2|=3t ,则|BF 1|=t ,t >0,由双曲线的定义可得|BF 2|=|BF 1|+2a =t +2a ,|AF 1|=|AF 2|+2a =3t +2a , 则|AB |=|AF 1|-|BF 1|=2t +2a ,由AF 2⊥BF 2,可得(2a +2t )2=(3t )2+(t +2a )2,解得t =23a ,则在直角三角形ABF 2中,cos A =3t 2t +2a =2a 103a =35,在△AF 1F 2中,可得cos A =(3t )2+(3t +2a )2-(2c )22·3t ·(3t +2a )=4a 2+16a 2-4c 216a 2=35,化为c 2=135a 2,则e =c a=135=655.故选B. 12.(2019·高考)数学中有许多形状优美、寓意美好的曲线,曲线C :x 2+y 2=1+|x |y 就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C 上任意一点到原点的距离都不超过2; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( )A .①B .②C .①②D .①②③ 答案 C解析 由x 2+y 2=1+|x |y ,当x =0时,y =±1;当y =0时,x =±1;当y =1时,x =0,±1.故曲线C 恰好经过6个整点:A (0,1),B (0,-1),C (1,0),D (1,1),E (-1,0),F (-1,1),所以①正确.由基本不等式,当y >0时,x 2+y 2=1+|x |y =1+|xy |≤1+x 2+y 22,所以x 2+y 2≤2,所以x 2+y 2≤2,故②正确.如图,由①知长方形CDFE 面积为2,三角形BCE 面积为1,所以曲线C 所围成的“心形”区域的面积大于3,故③错误.故选C.第Ⅱ卷 (非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.(2019·某某一模)已知(a -x )(2+x )5的展开式中x 3的系数为40,则实数a 的值为________.答案 3解析 ∵(a -x )(2+x )5=(a -x )(32+80x +80x 2+40x 3+10x 4+x 5)的展开式中x 3的系数为40a -80=40,∴a =3.14.(2019·揭阳一模)在曲线f (x )=sin x -cos x ,x ∈⎝ ⎛⎭⎪⎫-π2,π2的所有切线中,斜率为1的切线方程为________.答案 x -y -1=0解析 由f (x )=sin x -cos x ,得f ′(x )=cos x +sin x =2sin ⎝⎛⎭⎪⎫x +π4,由2sin ⎝ ⎛⎭⎪⎫x +π4=1,得sin ⎝ ⎛⎭⎪⎫x +π4=22,∵x ∈⎝ ⎛⎭⎪⎫-π2,π2,∴x +π4∈⎝ ⎛⎭⎪⎫-π4,3π4,∴x +π4=π4,即x =0.∴切点为(0,-1),切线方程为y +1=x ,即x -y -1=0.15.(2019·某某一模)在四面体ABCD 中,AB =BC =1,AC =2,且AD ⊥CD ,该四面体外接球的表面积为________.答案 2π解析 如图,∵AB =BC =1,AC =2,∴AB ⊥BC ,又AD ⊥CD ,∴AC 的中点即为外接球的球心,外接球的半径为22,∴S 球=4π×12=2π.16.(2019·某某省十所名校高三尖子生第二次联考)若函数y =f (x )的图象存在经过原点的对称轴,则称y =f (x )为“旋转对称函数”,下列函数中是“旋转对称函数”的有________.(填写所有正确结论的序号)①y =⎩⎪⎨⎪⎧e x(x ≤0),ln x (0<x ≤1);②y =cos ⎝ ⎛⎭⎪⎫ln 1+x 1-x ;③y =ln (e3x+1).答案 ①②解析 对于①,y =e x(x ≤0)的反函数为y =ln x (0<x ≤1),所以函数y =⎩⎪⎨⎪⎧e x(x ≤0),ln x (0<x ≤1)关于直线y =x 对称,故①是“旋转对称函数”.对于②,令y =f (x )=cos ⎝ ⎛⎭⎪⎫ln 1+x 1-x ,则f (-x )=cos ⎝ ⎛⎭⎪⎫ln 1-x 1+x =cos ⎝ ⎛⎭⎪⎫-ln 1+x 1-x =cos ⎝ ⎛⎭⎪⎫ln 1+x 1-x =f (x ),所以函数y =cos ⎝ ⎛⎭⎪⎫ln 1+x 1-x 是偶函数,它的图象关于y 轴对称,故②是“旋转对称函数”.对于③,y =ln (e 3x+1)>ln e 3x=3x ,当x →+∞时,y →3x ,则函数y =ln(e3x+1)的图象只可能关于直线y =3x 对称,又y =ln (e3x+1)>ln 1=0,当x →-∞时,y →0,这与函数y =ln (e 3x+1)的图象关于直线y =3x 对称矛盾,故③不是“旋转对称函数”.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:60分.17.(本小题满分12分)(2019·某某某某高三第二次统考)已知数列{a n }中,a 1=1,a n-a n -1=2n -1(n ∈N *,n ≥2).(1)求数列{a n }的通项公式;(2)设b n =14a n -1,求数列{b n }的通项公式及其前n 项和T n .解 (1)当n ≥2时,由于a n -a n -1=2n -1,a 1=1,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=1+3+…+(2n -1)=n 2, 又a 1=1满足上式,故a n =n 2(n ∈N *). (2)b n =14a n -1=14n 2-1=1(2n +1)(2n -1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1.所以T n =b 1+b 2+…+b n=12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=12⎝⎛⎭⎪⎫1-12n +1=n2n +1. 18.(本小题满分12分)(2019·某某质量检测)如图,已知三棱柱ABC -A 1B 1C 1,侧面ABB 1A 1为菱形,A 1C =BC .(1)求证:A 1B ⊥平面AB 1C ;(2)若∠ABB 1=60°,∠CBA =∠CBB 1,AC ⊥B 1C ,求二面角B -AC -A 1的余弦值. 解 (1)证明:因为侧面ABB 1A 1为菱形, 所以A 1B ⊥AB 1,记A 1B ∩AB 1=O ,连接CO , 因为A 1C =BC ,BO =A 1O , 所以A 1B ⊥CO ,又AB 1∩CO =O , 所以A 1B ⊥平面AB 1C .(2)解法一:因为∠CBA =∠CBB 1,AB =BB 1,BC =BC ,所以△CBA ≌△CBB 1,所以AC =B 1C . 又O 是AB 1的中点,所以CO ⊥AB 1, 又A 1B ⊥CO ,A 1B ∩AB 1=O , 所以CO ⊥平面ABB 1A 1.令BB 1=2,因为∠ABB 1=60°,侧面ABB 1A 1为菱形,AC ⊥B 1C ,O 为AB 1的中点, 所以CO =1.如图,以O 为坐标原点,OB 所在的直线为x 轴,OB 1所在的直线为y 轴,OC 所在的直线为z 轴建立空间直角坐标系.则O (0,0,0),A (0,-1,0),B (3,0,0),C (0,0,1),A 1(-3,0,0), 所以AB →=(3,1,0),AC →=(0,1,1),AA 1→=(-3,1,0),A 1C →=(3,0,1). 设平面ABC 的法向量为n 1=(x ,y ,z ), 则⎩⎪⎨⎪⎧n 1·AB →=0,n 1·AC →=0,即⎩⎨⎧3x +y =0,y +z =0,令x =1,则n 1=(1,-3,3),同理可得平面A 1AC 的一个法向量为n 2=(1,3,-3),cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-57,由图知二面角B -AC -A 1为钝角, 所以二面角B -AC -A 1的余弦值为-57.解法二:因为∠CBA =∠CBB 1,AB =BB 1,BC =BC , 所以△CBA ≌△CBB 1, 所以AC =B 1C .设AB =2,因为∠ABB 1=60°,侧面ABB 1A 1为菱形,所以AA 1=AB 1=2,OA =OB 1=1,OB =OA 1= 3.又AC ⊥B 1C ,所以CO =1,AB =B 1C =2,又A 1C =BC ,O 为A 1B 的中点,所以BC =A 1C =2,所以△ABC 为等腰三角形,△A 1AC 为等腰三角形.如图,取AC 的中点M ,连接BM ,A 1M ,则∠BMA 1为二面角B -AC -A 1的平面角.在△BMA 1中,可得BM =A 1M =142,A 1B =23, 所以cos ∠BMA 1=BM 2+A 1M 2-A 1B 22BM ·A 1M =-57,所以二面角B -AC -A 1的余弦值为-57.19.(本小题满分12分)(2019·某某一模)已知F 为椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点,点P (2,2)在C 上,且PF ⊥x 轴.(1)求C 的方程;(2)过F 的直线l 交C 于A ,B 两点,交直线x =4于点M .证明:直线PA ,PM ,PB 的斜率成等差数列.解 (1)因为点P (2,2)在C 上,且PF ⊥x 轴,所以c =2,设椭圆C 的左焦点为E ,连接EP ,则|EF |=2c =4,|PF |=2,在Rt △EFP 中,|PE |2=|PF |2+|EF |2=18,所以|PE |=3 2.所以2a =|PE |+|PF |=42,a =22, 又b 2=a 2-c 2=4,故椭圆C 的方程为x 28+y 24=1.(2)证明:由题意可设直线l 的方程为y =k (x -2), 令x =4,得M 的坐标为(4,2k ),由⎩⎪⎨⎪⎧x 28+y 24=1,y =k (x -2)得(2k 2+1)x 2-8k 2x +8(k 2-1)=0,设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=8k 22k 2+1,x 1x 2=8(k 2-1)2k 2+1. ①记直线PA ,PB ,PM 的斜率分别为k 1,k 2,k 3, 从而k 1=y 1-2x 1-2,k 2=y 2-2x 2-2,k 3=2k -24-2=k -22. 因为直线l 的方程为y =k (x -2),所以y 1=k (x 1-2),y 2=k (x 2-2), 所以k 1+k 2=y 1-2x 1-2+y 2-2x 2-2=y1x1-2+y2x2-2-2⎝⎛⎭⎪⎫1x1-2+1x2-2=2k-2·x1+x2-4x1x2-2(x1+x2)+4. ②①代入②,得k1+k2=2k-2·8k22k2+1-48(k2-1)2k2+1-16k22k2+1+4=2k-2,又k3=k-22,所以k1+k2=2k3,故直线PA,PM,PB的斜率成等差数列.20.(本小题满分12分)(2019·某某一模)十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民收入也逐年增加.为了更好地制定2019年关于加快提升农民年收入力争早日脱贫的工作计划,该地扶贫办统计了2018年50位农民的年收入并制成如下频率分布直方图:(1)根据频率分布直方图估计50位农民的年平均收入x(单位:千元)(同一组数据用该组数据区间的中点值表示);(2)由频率分布直方图可以认为该贫困地区农民年收入X服从正态分布N(μ,σ2),其中μ近似为年平均收入x,σ2近似为样本方差s2,经计算得s2=6.92,利用该正态分布,求:(ⅰ)在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?(ⅱ)为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每个农民的年收入相互独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?附:参考数据与公式 6.92≈2.63,若X~N(μ,σ2),则①P(μ-σ<X≤μ+σ)=0.6827;②P(μ-2σ<X≤μ+2σ)=0.9545;③P(μ-3σ<X≤μ+3σ)=0.9973.解 (1)x =12×0.04+14×0.12+16×0.28+18×0.36+20×0.10+22×0.06+24×0.04=17.40.(2)由题意,X ~N (17.40,6.92).(ⅰ)∵P (x >μ-σ)=12+0.68272≈0.8414,∴μ-σ=17.40-2.63=14.77时,满足题意, 即最低年收入大约为14.77千元.(ⅱ)由P (X ≥12.14)=P (X ≥μ-2σ)=0.5+0.95452≈0.9773,得每个农民年收入不少于12.14千元的概率为0.9773,记1000个农民年收入不少于12.14千元的人数为ξ,则ξ~B (1000,p ),其中p =0.9773.于是恰好有k 个农民的年收入不少于12.14千元的概率是P (ξ=k )=C k1000p k(1-p )1000-k,从而由P (ξ=k )P (ξ=k -1)=(1001-k )×pk (1-p )>1,得k <1001p ,而1001p =978.233,∴当0≤k ≤978时,P (ξ=k -1)<P (ξ=k ), 当979≤k ≤1000时,P (ξ=k -1)>P (ξ=k ).由此可知,在走访的1000位农民中,年收入不少于12.14千元的人数最有可能是978. 21.(本小题满分12分)(2019·某某三模)已知a ∈R ,函数f (x )=2x+a ln x .(1)讨论函数f (x )的单调性;(2)若x =2是f (x )的极值点,且曲线y =f (x )在两点P (x 1,f (x 1)),Q (x 2,f (x 2))(x 1<x 2<6)处切线平行,在y 轴上的截距分别为b 1,b 2,求b 1-b 2的取值X 围.解 (1)f ′(x )=-2x 2+a x =ax -2x2,①当a ≤0时,f ′(x )<0在x ∈(0,+∞)上恒成立, ∴f (x )在(0,+∞)上单调递减;②当a >0时,x ∈⎝⎛⎭⎪⎫0,2a 时,f ′(x )<0,x ∈⎣⎢⎡⎭⎪⎫2a ,+∞时,f ′(x )>0,即f (x )在x ∈⎝ ⎛⎭⎪⎫0,2a 上单调递减,在x ∈⎣⎢⎡⎭⎪⎫2a,+∞上单调递增.(2)∵x =2是f (x )的极值点, ∴由(1)可知2a=2,∴a =1.设在P (x 1,f (x 1))处的切线方程为y -⎝ ⎛⎭⎪⎫2x 1+ln x 1=⎝ ⎛⎭⎪⎫-2x 21+1x 1(x -x 1),在Q (x 2,f (x 2))处的切线方程为y -⎝ ⎛⎭⎪⎫2x 2+ln x 2=⎝ ⎛⎭⎪⎫-2x 22+1x 2(x -x 2),∵这两条切线互相平行, ∴-2x 21+1x 1=-2x 22+1x 2,∴1x 1+1x 2=12. ∵1x 2=12-1x 1,且0<x 1<x 2<6, ∴16<12-1x 1<1x 1,∴14<1x 1<13,∴x 1∈(3,4). 令x =0,则b 1=4x 1+ln x 1-1,同理,b 2=4x 2+ln x 2-1.解法一:∵1x 2=12-1x 1,∴b 1-b 2=4⎝⎛⎭⎪⎫1x 1-1x 2+ln x 1-ln x 2=4⎝⎛⎭⎪⎫2x 1-12-ln 1x 1+ln ⎝⎛⎭⎪⎫12-1x1.设g (x )=8x -2-ln x +ln ⎝ ⎛⎭⎪⎫12-x ,x ∈⎝ ⎛⎭⎪⎫14,13,∴g ′(x )=8-1x -112-x =16x 2-8x +12x 2-x =(4x -1)22x 2-x<0, ∴g (x )在区间⎝ ⎛⎭⎪⎫14,13上单调递减, ∴g (x )∈⎝ ⎛⎭⎪⎫23-ln 2,0, 即b 1-b 2的取值X 围是⎝ ⎛⎭⎪⎫23-ln 2,0.解法二:∵x 2=2x 1x 1-2, ∴b 1-b 2=4⎝ ⎛⎭⎪⎫1x 1-1x 2+ln x 1-ln x 2=8x 1-2+ln ⎝ ⎛⎭⎪⎫x 12-1. 令g (x )=8x +ln ⎝ ⎛⎭⎪⎫x 2-1-2,其中x ∈(3,4),∴g ′(x )=-8x 2+1x -2=x 2-8x +16x 2(x -2)=(x -4)2x 2(x -2)>0,∴函数g (x )在区间(3,4)上单调递增,∴g (x )∈⎝ ⎛⎭⎪⎫23-ln 2,0, ∴b 1-b 2的取值X 围是⎝ ⎛⎭⎪⎫23-ln 2,0.解法三:∵x 1x 2=2(x 1+x 2),∴b 1-b 2=4x 1-4x 2+ln x 1-ln x 2=4(x 2-x 1)x 1x 2+ln x 1x 2=2(x 2-x 1)x 1+x 2+ln x 1x 2=2⎝ ⎛⎭⎪⎫1-x 1x 21+x 1x 2+ln x 1x 2.设g (x )=2(1-x )1+x +ln x ,则g ′(x )=-4(1+x )2+1x =(1-x )2x (1+x )2.∵x 1x 2=x 12-1∈⎝ ⎛⎭⎪⎫12,1,∴g ′(x )>0, ∴函数g (x )在区间⎝ ⎛⎭⎪⎫12,1上单调递增,∴g (x )∈⎝ ⎛⎭⎪⎫23-ln 2,0, ∴b 1-b 2的取值X 围是⎝ ⎛⎭⎪⎫23-ln 2,0.(二)选考题:10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)[选修4-4:坐标系与参数方程] (2019·某某模拟)已知曲线C 的极坐标方程为ρ=4cos θsin 2θ,直线l 的参数方程为⎩⎪⎨⎪⎧x =t cos α,y =1+t sin α(t 为参数,0≤α<π).(1)把曲线C 的极坐标方程化为直角坐标方程,并说明曲线C 的形状; (2)若直线l 经过点(1,0),求直线l 被曲线C 截得的线段AB 的长.解 (1)将曲线C 的极坐标方程ρ=4cos θsin 2θ化为ρ2sin 2θ=4ρcos θ,得到曲线C 的直角坐标方程为y 2=4x ,故曲线C 是顶点为O (0,0),焦点为F (1,0)的抛物线.(2)直线l 的参数方程为⎩⎪⎨⎪⎧x =t cos α,y =1+t sin α(t 为参数,0≤α<π).若直线l 经过点(1,0),则α=3π4,∴直线l 的参数方程为⎩⎪⎨⎪⎧x =t cos 3π4=-22t ,y =1+t sin 3π4=1+22t (t 为参数).将其代入y 2=4x ,得t 2+62t +2=0.设A ,B 对应的参数分别为t 1,t 2,则t 1+t 2=-62,t 1t 2=2.|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=(-62)2-4×2=8.23.(本小题满分10分)[选修4-5:不等式选讲] (2019·某某模拟)已知函数f (x )= |x +1|+|x -3|-m 的定义域为R . (1)某某数m 的取值X 围;(2)若m 的最大值为n ,当正数a ,b 满足23a +b +1a +2b =n 时,求7a +4b 的最小值.解 (1)∵函数的定义域为R , ∴|x +1|+|x -3|-m ≥0恒成立,设函数g (x )=|x +1|+|x -3|,则m 不大于函数g (x )的最小值, 又|x +1|+|x -3|≥|(x +1)-(x -3)|=4, 即函数g (x )的最小值为4,∴m ≤4. (2)由(1)知n =4,∴7a +4b =14(6a +2b +a +2b )⎝ ⎛⎭⎪⎫23a +b +1a +2b =14⎝ ⎛⎭⎪⎫5+2(3a +b )a +2b +2(a +2b )3a +b ≥ 14⎝⎛⎭⎪⎫5+2×23a +b a +2b ·a +2b 3a +b =94, 当且仅当a +2b =3a +b ,即b =2a =310时取等号.∴7a +4b 的最小值为94.。
2024届高考数学复习:精选历年真题、好题专项(二项式定理)练习(附答案)
2024届高考数学复习:精选历年真题、好题专项(二项式定理)练习一. 基础小题练透篇1.已知(2x +1)n 的展开式中,第三项和第四项的二项式系数相等,则n =( ) A .7 B .6 C .5 D .42.[2023ꞏ上海市月考]在⎝⎛⎭⎫x -1x 7的二项展开式中,系数最大的是第( )项A .3B .4C .5D .63.[2023ꞏ福建省莆田第一中学高三考试]在⎝⎛⎭⎫x -2x 6的展开式中,常数项为( )A .80B .-80C .160D .-160 4.[2023ꞏ福建省福州第八中学高三训练](x +2y )(x -y )5的展开式中的x 3y 3项系数为( ) A .30 B .10 C .-30 D .-105.[2023ꞏ重庆市检测]若(x 2+1)(4x +1)8=a 0+a 1(2x +1)+a 2(2x +1)2+…+a 10(2x +1)10,则a 1+a 2+…a 10等于( )A .2B .1C .54D .-146.[2023ꞏ江西省联考]已知(x +1)4+(x -2)8=a 0+a 1(x -1)+a 2(x -1)2+…+a 8(x -1)8,则a 3=( )A .64B .48C .-48D .-647.[2023ꞏ湖南省高三第一次大联考]设(1+2x )n =a 0+a 1x +a 2x 2+…+a n x n ,若a 5=a 6,则n =( )A .6B .7C .8D .98.[2023ꞏ云南省昆明市高三检测]若(3x +x )n 的展开式的所有项的系数和与二项式系数和的比值是32,则展开式中x 3项的系数是__________.二. 能力小题提升篇1.[2023ꞏ辽宁省凤城市月考]在(x -1)n 的二项展开式中,仅有第6项的二项式系数最大,则n =( )A .8B .9C .10D .112.[2023ꞏ江苏省常州市高三模拟 ]若(1-ax +x 2)(1-x )8的展开式中含x 2的项的系数为21,则a =( )A .-3B .-2C .-1D .13.[2023ꞏ上海市一模]二项式(x +13x)30的展开式中,其中是有理项的项数共有( )A .4项B .7项C .5项D .6项4.[2023ꞏ吉林省吉林市月考]若二项式⎝⎛⎭⎫12-x n 的展开式中所有项的系数和为164 ,则展开式中二项式系数最大的项为( )A .-52 x 3B .154 x 4 C .-20x 3 D .15x 45.[2023ꞏ浙江省高三联考](x-23x)6的展开式的中间一项的系数是__________.(用数字作答).6.[2023ꞏ浙江嘉兴检测]已知⎝⎛⎭⎫3x 2+1x n展开式中的各二项式系数的和比各项系数的和小240,则n =__________;展开式中的系数最大的项是________.三. 高考小题重现篇1.[2020ꞏ北京卷]在(x -2)5的展开式中,x 2的系数为( ) A .-5 B .5 C .-10 D .102.[2019ꞏ全国卷Ⅲ](1+2x 2)(1+x )4的展开式中x 3的系数为( ) A .12 B .16 C .20 D .243.[2022ꞏ新高考Ⅰ卷]⎝⎛⎭⎫1-yx (x +y )8的展开式中x 2y 6的系数为________________(用数字作答).4.[2020ꞏ全国卷Ⅲ]⎝⎛⎭⎫x 2+2x 6的展开式中常数项是______(用数字作答).5.[2021ꞏ上海卷]已知二项式(x +a )5展开式中,x 2的系数为80,则a =________. 6.[2021ꞏ浙江卷]已知多项式(x -1)3+(x +1)4=x 4+a 1x 3+a 2x 2+a 3x +a 4,则a 1=________,a 2+a 3+a 4=________.四. 经典大题强化篇1.已知(2x -1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5.求下列各式的值: (1)a 0+a 1+a 2+…+a 5; (2)|a 0|+|a 1|+|a 2|+…+|a 5|; (3)a 1+a 3+a 5.2.[2023ꞏ江西省景德镇一中考试]已知函数f (n ,x )=⎝⎛⎭⎫2m +m x n (m >0,x >0).(1)当m =2时,求f (7,x )的展开式中二项式系数最大的项;(2)若f (10,x )=a 0+a 1x +a 2x 2 +…+a 10x 10 ,且a 2=180,参考答案一 基础小题练透篇1.答案:C答案解析:因为(2x +1)n的展开式中,第三项和第四项的二项式系数相等,所以C 2n =C 3n ,由组合数的性质可得n =2+3=5.2.答案:C答案解析:在二项式⎝ ⎛⎭⎪⎫x -1x 7 的展开式中,通项公式为T r +1=C r 7 ·x 7-r ·⎝ ⎛⎭⎪⎫-1x r =(-1)r C r7 x 7-2r,故第r +1项的系数为(-1)r C r7 ,当r =0,2,4,6时,系数为正,因为C 07 <C 17 =C 67 <C 27 <C 47 ,所以当r =4时,系数最大的项是第5项. 3.答案:D答案解析:由于x ,1x互为倒数,故常数项为第4项,即常数项为C 36 x 3⎝ ⎛⎭⎪⎫-2x 3 =20×(-8)=-160.故选D. 4.答案:B答案解析:因为(x +2y )(x -y )5=x (x -y )5+2y (x -y )5,(x -y )5的通项为:T r +1=C r5 x 5-r (-y )r ,令r =3,则T 4=C 35 x 2(-y )3,令r =2,则T 3=C 25 x 3(-y )2,所以x 3y 3的系数为C 35 (-1)3+2C 25 (-1)2=-10+20=10. 故选B. 5.答案:D答案解析:令x =0,则a 0+a 1+a 2+…+a 10=(0+1)×(0+1)8=1,令x =-12,则a 0=⎝ ⎛⎭⎪⎫14+1 ×(-2+1)8=54 ,∴a 1+a 2+…+a 10=1-54 =-14 . 6.答案:C答案解析:由(x +1)4+(x -2)8=[(x -1)+2]4+[(x -1)-1]8=a 0+a 1(x -1)+a 2(x -1)2+…+a 8(x -1)8,得a 3·(x -1)3=C 14 ·(x -1)3·2+C 58 ·(x -1)3·(-1)5,∴a 3=8-C 58 =-48.故选C. 7.答案:C答案解析:(1+2x )n 展开式第r +1项T r +1=C r n (2x )r =C r n 2r x r,∵a 5=a 6,∴C 5n 25=C 6n 26,即C 5n =2C 6n ,∵n !5!(n -5)! =2×n !6!(n -6)! , 整理得n -5=3,∴n =8. 故选C.8.答案:15答案解析:令x =1,得所有项的系数和为4n ,二项式系数和为2n ,所以4n 2n =2n=32,即n =5,(3x +x )5的第r +1项为C r5 ·(3x )5-r·⎝ ⎛⎭⎪⎫x 12 r=C r 5 ·35-r ·x 5-r2 .令5-r2=3,得r =4,所以x 3项的系数是C 45 ×3=15.二 能力小题提升篇1.答案:C答案解析:因为在(x -1)n的二项展开式中,仅有第6项的二项式系数最大,即C 5n 最大,所以n =10.2.答案:C答案解析:(1-x )8展开式第r +1项T r +1=C r 8 18-r (-x )r =(-1)r C r 8 x r,(1-ax +x 2)(1-x )8的展开式中含x 2的项的系数为1·(-1)2C 28 -a ·(-1)C 18 +1·(-1)0C 08 ,所以1·(-1)2C 28 -a ·(-1)C 18 +1·(-1)0C 08 =21,解方程可得a =-1,故选C.3.答案:D答案解析:二项式(x +13x )30的展开式中,通项公式为C r 30 ·(x )30-r·(13x)r=C r30 ·x15-56r,0≤r ≤30,∴r =0,6,12,18,24,30时满足题意,共6项. 4.答案:A答案解析:令x =1可得⎝ ⎛⎭⎪⎫12-1 n=⎝ ⎛⎭⎪⎫-12 n =164 =⎝ ⎛⎭⎪⎫-12 6 ,所以n =6,展开式有7项,所以二项式⎝ ⎛⎭⎪⎫12-x 6 展开式中二项式系数最大的为第4项T 4=(-1)3C 36 ⎝ ⎛⎭⎪⎫12 6-3x 3=-52x 3. 5.答案:-16027答案解析:由二项式展开式可知,⎝⎛⎭⎪⎪⎫x 3-23x 6的展开式的中间一项的系数为C 36 ⎝ ⎛⎭⎪⎫13 3·(-2)3=-16027. 6.答案:4 108x 5答案解析:⎝ ⎛⎭⎪⎫3x 2+1x n 展开式中,各二项式系数的和比各项系数的和小240,即2n -(3+1)n =-240,化简得22n -2n -240=0,解得2n =16或2n=-15(不合题意,舍去),所以n =4.所以⎝ ⎛⎭3x 2+1x 4=81x 8+4×27x 5+6×9x 2+4×3x +1x4 ,展开式中的系数最大的项是108x 5.三 高考小题重现篇1.答案:C答案解析:由二项式定理得(x -2)5的展开式的通项T r +1=C r 5 (x )5-r (-2)r=C r 5 (-2)rx 5-r2 ,令5-r 2=2,得r =1,所以T 2=C 15 (-2)x 2=-10x 2,所以x 2的系数为-10.2.答案:A答案解析:展开式中含x 3的项可以由“1与x 3”和“2x 2与x ”的乘积组成,则x 3的系数为C 34 +2C 14 =4+8=12.3.答案:-28答案解析:因为⎝⎛⎭⎪⎫1-y x()x +y 8=()x +y 8-y x()x +y 8,所以⎝⎛⎭⎪⎫1-y x()x +y 8的展开式中含x 2y 6的项为C 68 x 2y 6-y xC 58 x 3y 5=-28x 2y 6,⎝ ⎛⎭⎪⎫1-y x ()x +y 8的展开式中x 2y 6的系数为-28. 4.答案:240答案解析:展开式的通项为T r +1=C r6 (x 2)6-r·⎝ ⎛⎭⎪⎫2x r=2r C r 6 x12-3r ,令12-3r =0,解得r =4,故常数项为24C 46 =240.5.答案:2答案解析:(x +a )5的展开式的通项为T r +1=C r 5 x 5-r a r ,令5-r =2,得r =3,则C 35 a 3=80,解得a =2.6.答案:5 10答案解析:(x -1)3展开式的通项T r +1=C r 3 x 3-r ·(-1)r ,(x +1)4展开式的通项T k +1=C k 4 x 4-k ,则a 1=C 03 +C 14 =1+4=5;a 2=C 13 (-1)1+C 24 =3;a 3=C 23 (-1)2+C 34 =7;a 4=C 33 (-1)3+C 44 =0.所以a 2+a 3+a 4=3+7+0=10.四 经典大题强化篇1.答案解析:(1)令x =1,得a 0+a 1+a 2+…+a 5=1.(2)令x =-1,得-35=-a 0+a 1-a 2+a 3-a 4+a 5.由(2x -1)5的通项T r +1=C r 5 (-1)r ·25-r ·x 5-r, 知a 1,a 3,a 5为负值,所以|a 0|+|a 1|+|a 2|+…+|a 5|=a 0-a 1+a 2-a 3+a 4-a 5=35=243. (3)由a 0+a 1+a 2+…+a 5=1,-a 0+a 1-a 2+…+a 5=-35,得2(a 1+a 3+a 5)=1-35,所以a 1+a 3+a 5=1-352=-121.2.答案解析:(1)当m =2时,f (7,x )=⎝ ⎛⎭⎪⎫1+2x 7 的展开式共有8项,二项式系数最大的项为第四项或第五项,所以T 4=C 37 ⎝ ⎛⎭⎪⎫2x 3 =280x3 或T 5=C 47 ⎝ ⎛⎭⎪⎫2x 4=560x4 .(2)①f (10,x )=⎝ ⎛⎭⎪⎫2m +m x 10 的通项公式为T r +1=C r 10 ⎝ ⎛⎭⎪⎫2m10-r⎝ ⎛⎭⎪⎫m x r=210-r ·m 2r -10·C r 10 x -r ,且f (10,x )=a 0+a 1x+a 2x2 +…+a n xn ,所以1x2 的系数为a 2=28C 210 m -6=180,解得m=2,所以f (10,x )的通项公式为T r +1=C r10 ⎝ ⎛⎭2x r=2r C r 10 x -r ,所以a r =2r C r10 ,当r =0时,a 0=1,令x =1,∑10i =1a i =310-1=59 048, ②设a r =2r C r10 为a i (0≤i ≤10)中的最大值,则⎩⎨⎧2r C r 10 ≥2r -1C r -110 2r C r 10 ≥2r +1C r +110, 解得⎩⎪⎨⎪⎧2(11-r )≥r r +1≥2(10-r ) ,即193 ≤r ≤223 ,r ∈N ,所以r =7,所以(a i )max =a 7=27C 710 =15 360.。
2019-2020学年重庆市巴蜀中学高三(上)9月月考数学试卷(理科)(含解析)
2019-2020学年重庆市巴蜀中学高三(上)9月月考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={x|≤0},B={x|y=,则A∩B=()A.[﹣1,1]B.[0,1]C.[0,1)D.(0,1)2.(5分)已知命题p,q,“¬p为假”是“p∨q为真”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)已知抛物线C:y2=4x的焦点为F,点M(x0,2)在抛物线C上,则|MF|=()A.2B.3C.4D.54.(5分)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m∥α,n∥α.则m∥n B.若m⊥α,n⊥α,则m∥nC.若m∥α,m∥β,则α∥βD.若α⊥γ,β⊥γ,则α∥β5.(5分)阅读如图所示的程序框图,运行相应的程序,则输出的结果是()A.B.﹣1C.D.06.(5分)已知是函数f(x)=2sin(2x+φ)(|φ|<)图象的一条对称轴,则下列说法正确的是()A.φ=B.f(x)在[0,]上单调递增C.由f(x)的图象向左平移个单位可得到y=2sin2x的图象D.由f(x)的图象向左平移个单位可得到y=2sin2x的图象7.(5分)若tan=3,则=()A.B.C.﹣D.8.(5分)函数f(x)是定义在R上的奇函数,f(x+1)是偶函数,且当0<x≤1时,f(x)=﹣log2018x,则f(2018﹣)=()A.1B.﹣1C.0D.29.(5分)一个几何体的三视图如图所示,则该几何体的体积为()A.B.5C.D.610.(5分)已知双曲线C:的左、右焦点分別为F1,F2,点M,N为异于F1,F2的两点,且M,N的中点在双曲线C的左支上,点M关于F1和F2的对称点分别为A,B,则|NA|﹣|NB|的值为()A.26B.﹣26C.52D.﹣5211.(5分)将某商场某区域的行走路线图抽象为一个2×2×3的长方体框架(如图),小红欲从A处行走至B处,则小红行走路程最近且任何两次向上行走都不连续的路线共有()A.360种B.210种C.60种D.30种12.(5分)已知f(x)是定义在R上的可导函数,且满足(x+3)f(x)+xf′(x)>0,则()A.f(x)>0B.f(x)<0C.f(x)为减函数D.f(x)为增函数二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)如果复数(a∈R)为实数,则a=.14.(5分)若a=,则)展开式的常数项为.15.(5分)已知m,n为正实数,则当=时取得最小值.16.(5分)函数=x3+2017x﹣2017﹣x+1.若f(sinθ+cosθ)+f(sin2θ﹣t)<2对∀θ∈R 恒成立,则t的取值范围是.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(12分)函数f(x)=A sin(ωx+φ)(A>0,ω>0,)的部分图象如图所示、(Ⅰ)求f(x)的解析式;(Ⅱ)设g(x)=f(x)+2sin(x﹣)sin(x+),求函数g(x)的最小正周期及在区间[0,]上的最小值.18.(12分)我市准备实施天然气价格阶梯制,现提前调査市民对天然气价格阶梯制的态度,随机抽查了50名市民,现将调査情况整理成了被调査者的频率分布直方图(图5)和赞成者的频数表如下:(Ⅰ)若从年龄在[15,25),[45,55)的被调查者中各随机选取2人进行调查,求所选取的4人中至少有2人对天然气价格阶梯制持赞成态度的概率;(Ⅱ)若从年龄在[15,25),[25,35)的被调査者中各随机选取2人进行调査,记选取的4人中对天然气价格实施阶梯制持不赞成态度的人数为X,求随机变量X的分布列和数学期望.19.(12分)如图6,梯形ABCD中,AB∥CD,矩形BFED所在的平面与平面ABCD垂直,且AD=DC=CB=BF=AB=2.(Ⅰ)求证:平面ADE⊥平面BFED;(Ⅱ)若P为线段EF上一点,直线AD与平面P AB所成的角为θ,求θ的最大值.20.(12分)已知椭圆C1:(a>b>0)的离心率为,过点E(,0)的椭圆C1的两条切线相互垂直.(Ⅰ)求椭圆C1的方程;(Ⅱ)在椭圆C1上是否存在这样的点P,过点P引抛物线C2:x2=4y的两条切线l1,l2,切点分别为B,C,且直线BC过点A(1,1)?若存在,指出这样的点P有几个(不必求出点的坐标);若不存在,请说明理由.21.(12分)已知函数f(x)=x2﹣aln(x+4)(a∈R)存在两个极值点x1,x2,且x1<x2.(Ⅰ)求实数a的取值范围;(Ⅱ)若﹣1<x2<0,求证:f(x1)+9x2>0.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若曲线C1的极坐标方程为=0,曲线C2的参数方程为,(θ为参数)(Ⅰ)求曲线C1的直角坐标方程和曲线C2的普通方程;(Ⅱ)若动点P,Q分别在曲线C1与曲线C2上运动,求|PQ|的最大值.[选修4-5:不等式选讲]23.设函数f(x)=2|x+1|+|x+3|的最小值为m,且f(a)=m.(Ⅰ)求m及a的值;(Ⅱ)若实数p,q,r满足p2+2q2+r2=m,证明:q(p+r)≤2.2019-2020学年重庆市巴蜀中学高三(上)9月月考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={x|≤0},B={x|y=,则A∩B=()A.[﹣1,1]B.[0,1]C.[0,1)D.(0,1)【分析】可以求出集合A,B,然后进行交集的运算即可.【解答】解:∵A={x|0≤x<1},B={x|1﹣x2≥0}={x|﹣1≤x≤1},∴A∩B=[0,1).故选:C.【点评】考查描述法、区间的定义,分式不等式的解法,以及交集的运算.2.(5分)已知命题p,q,“¬p为假”是“p∨q为真”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据复合命题真假关系,结合充分条件和必要条件的定义进行判断即可.【解答】解:若¬p为假,则p为真,则p∨q为真,即充分性成立,当p假q真时,满足p∨q为真,但¬p为真,则必要性不成立,则“¬p为假”是“p∨q为真”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,结合复合命题真假关系是解决本题的关键.3.(5分)已知抛物线C:y2=4x的焦点为F,点M(x0,2)在抛物线C上,则|MF|=()A.2B.3C.4D.5【分析】求得抛物线的焦点F和准线方程,代入M的坐标,解得x0,再由抛物线的定义可得所求值.【解答】解:抛物线C:y2=4x的焦点为F(1,0),准线方程为x=﹣1,M(x0,2)在抛物线C上,可得8=4x0,即x0=2,由抛物线的定义可得|MF|=2+1=3.故选:B.【点评】本题考查抛物线的定义和方程、性质,考查方程思想和运算能力,属于基础题.4.(5分)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m∥α,n∥α.则m∥n B.若m⊥α,n⊥α,则m∥nC.若m∥α,m∥β,则α∥βD.若α⊥γ,β⊥γ,则α∥β【分析】A根据线面平行的性质判断.B利用线面垂直的性质判断.C利用线面平行和面面平行的判定定理判断.D利用面面垂直的性质定理判断.【解答】解:A.平行于同一平面的两条直线不一定平行,可能相交,可能异面,∴A错误.B.垂直于同一平面的两条直线平行,∴B正确.C.平行于同一条直线的两个平面的不一定平行,可能相交,∴C错误.D.垂直于同一平面的两个平面不一定平行,可能相交,∴D错误.故选:B.【点评】本题主要考查空间直线和平面平行或垂直的位置关系的判断,要求熟练掌握相应的判定定理和性质定理.5.(5分)阅读如图所示的程序框图,运行相应的程序,则输出的结果是()A.B.﹣1C.D.0【分析】题目给出了当型循环结构框图,首先引入累加变量s和循环变量n,由判断框得知,算法执行的是求的余弦值的和,n从1取到1009.【解答】解:通过分析知该算法是求和cos+cos+cos+cos+…+cos,在该和式中,从第一项起,每6项和为0,由于1009=168×6+1,故cos+cos+cos+cos+…+cos=168(cos+cos+cos+cos+…+cos)+cos=.故选:C.【点评】本题考查了程序框图中的当型循环结构,当型循环结构是先判断再执行,若满足条件进入循环,否则结束循环,循环结构主要用在一些规律的重复计算,如累加、累积等,在循环结构中框图中,特别要注意条件应用,如计数变量和累加变量等.6.(5分)已知是函数f(x)=2sin(2x+φ)(|φ|<)图象的一条对称轴,则下列说法正确的是()A.φ=B.f(x)在[0,]上单调递增C.由f(x)的图象向左平移个单位可得到y=2sin2x的图象D.由f(x)的图象向左平移个单位可得到y=2sin2x的图象【分析】求出f(x)的对称轴,将代入,根据φ的取值范围求得φ,进而得到函数解析式,根据正弦函数的性质作答;【解答】解:由题意得,2×+φ=+kπ,φ=﹣+kπ,∵∴φ=﹣,A选项不正确;∴f(x)=2sin(2x﹣),由﹣+2kπ≤2x﹣≤+2kπ得函数的单调增区间为﹣+kπ≤x≤+kπ,B选项不正确;f(x)=2sin2(x﹣),D选项正确.故选:D.【点评】本题考查了三角函数图象性质及图象变换,属于基础题.7.(5分)若tan=3,则=()A.B.C.﹣D.【分析】由已知利用两角和的正切函数公式可求tanα的值,利用三角函数恒等变换的应用化简所求即可计算得解.【解答】解:∵tan==3,∴解得tanα=,∴=====﹣.故选:A.【点评】本题主要考查了三角函数恒等变换的应用在三角函数化简求值中的综合应用,考查了转化思想,属于基础题.8.(5分)函数f(x)是定义在R上的奇函数,f(x+1)是偶函数,且当0<x≤1时,f(x)=﹣log2018x,则f(2018﹣)=()A.1B.﹣1C.0D.2【分析】由已知可知,f(x)的图象关于原点对称,且关于x=1对称,从而可知函数的周期T=4,然后代入可求.【解答】解:∵f(x)是定义在R上的奇函数,f(x+1)是偶函数,∴f(x)的图象关于原点对称,且关于x=1对称,∴函数的周期T=4,∵当0<x≤1时,f(x)=﹣log2018x,则f(2018﹣)=f(2﹣)=f()=1,故选:A.【点评】本题主要考查了利用函数的性质求解函数值,解题的关键是灵活利用性质.9.(5分)一个几何体的三视图如图所示,则该几何体的体积为()A.B.5C.D.6【分析】由三视图可知几何体是由直三棱柱和四棱锥组合而成,由三视图求出几何元素的长度,由分割法、换底法,以及柱体、锥体的体积公式求出几何体的体积,【解答】解:由三视图可知几何体是由直三棱柱ABD﹣AFG和四棱锥C﹣BDGF组合而成,直观图如图所示:直三棱柱的底面是一个直角三角形,两条直角边分别是1、2,高是2,∴几何体的体积V=V三棱柱ABD﹣EFG+V四棱锥C﹣BDGF=V三棱柱ABD﹣EFG+V三棱锥C﹣DFG+V三棱锥C﹣BDF=V三棱柱ABD﹣EFG+V三棱锥F﹣CDG+V三棱锥F﹣BDC==2+=,故选:A.【点评】本题考查三视图求几何体的体积以及表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力.10.(5分)已知双曲线C:的左、右焦点分別为F1,F2,点M,N为异于F1,F2的两点,且M,N的中点在双曲线C的左支上,点M关于F1和F2的对称点分别为A,B,则|NA|﹣|NB|的值为()A.26B.﹣26C.52D.﹣52【分析】根据中点的性质以及对称性,转化为三角形的中位线关系,结合双曲线的定义进行求解即可.【解答】解:设M,N的中点是P,∵点M关于F1和F2的对称点分别为A,B,∴F1是AM的中点,F2是BM的中点,则PF1是△MAN的中位线,PF2是△MBN的中位线,则|NA|=2|PF1|,|NB|=2|PF2|,则|NA|﹣|NB|=2(|PF1|﹣|PF2|)=﹣2×2a=﹣4a,由双曲线的方程得a2=169,得a=13,即|NA|﹣|NB|=﹣4a=﹣4×13=﹣52,故选:D.【点评】本题主要考查双曲线的定义的应用,结合三角形中位线的性质是解决本题的关键.注意数形结合.11.(5分)将某商场某区域的行走路线图抽象为一个2×2×3的长方体框架(如图),小红欲从A处行走至B处,则小红行走路程最近且任何两次向上行走都不连续的路线共有()A.360种B.210种C.60种D.30种【分析】首先分析题意,将原题转化为“走3次向上,2次向右,2次向前且3次向上不连续的”排列组合问题,再由组合数得其数目.【解答】解:根据题意最近路线,那就是不走回头路,不走重复路线;所以一共要走3次向上,2次向右,2次向前,一共七次;因为不能连续向上,所以先把不向上的次数排列起来,也就是2次向右和2次向前全排列共;因为2次向右没有顺序,所以再除以;同理还需在除以接下来就是把3次向上插到4次不向上之间的空当中5个位置排3个元素共;则共有;故选:C.【点评】本题考查排列、组合的实际应用,解题的难点在于将原题转化为排列、组合问题,特别注意题干中“不连续向上攀登”的限制.12.(5分)已知f(x)是定义在R上的可导函数,且满足(x+3)f(x)+xf′(x)>0,则()A.f(x)>0B.f(x)<0C.f(x)为减函数D.f(x)为增函数【分析】根据题意,设g(x)=x3e x f(x),对其求导分析可得函数g(x)在R上单调递增,而g(0)=0,进而分情况讨论可得f(x)>0,综合即可得答案.【解答】解:根据题意,设g(x)=x3e x f(x),g′(x)=x2e x[(x+3)f(x)+xf′(x)],∵(x+1)f(x)+xf'(x)>0,∴g′(x)=x2e x[(x+1)f(x)+x′(x)]>0,故函数g(x)在R上单调递增,而g(0)=0,∴x>0时,g(x)=x3e x f(x)>0⇒f(x)>0;x<0时,g(x)=x3e x f(x)<0⇒f(x)>0;在(x+3)f(x)+xf'(x)>0中取x=0,得f(0)>0.综上,f(x)>0.故选:A.【点评】本题考查函数的导数与函数单调性的关系,关键是构造函数,并分析函数的单调性.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)如果复数(a∈R)为实数,则a=﹣2.【分析】利用复数代数形式的乘除运算化简,再由虚部为0求得a值.【解答】解:∵=为实数,∴2+a=0,即a=﹣2.故答案为:﹣2.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.14.(5分)若a=,则)展开式的常数项为240.【分析】求定积分得到a的值,在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项.【解答】解:若a==e x=e ln3﹣e0=2,则=,它的展开式通项公式为T r+1=•(﹣2)r•x12﹣3r,令12﹣3r=0,求得r=4,可得它的展开式的常数项为•16=240,故答案为:240.【点评】本题主要考查求定积分,二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于中档题.15.(5分)已知m,n为正实数,则当=1时取得最小值.【分析】根据条件可得=,然后利用基本不等式求出的最小值,即可得到的值.【解答】解:∵m,n为正实数,∴=≥=5,当且仅当,即时取等号,∴当=1时,取得最小值.故答案为:1.【点评】本题考查了基本不等式在求最值中的应用,考查了转化思想,属中档题.16.(5分)函数=x3+2017x﹣2017﹣x+1.若f(sinθ+cosθ)+f(sin2θ﹣t)<2对∀θ∈R 恒成立,则t的取值范围是(,+∞).【分析】由题意可得f(+x)+f(﹣x)=2,f(sinθ+cosθ)+f(sin2θ﹣t)<2对∀θ∈R 恒成立可转化为,可令x=cos2θ,则f(sin2θ)+f(sinθ+t)>f(1+cos2θ)+f(1﹣cos2θ),可得f(sinθ+t)>f(1+cos2θ)恒成立,可令x=sinθ+cosθ﹣,则可得f(sin2θ﹣t)<f(1﹣sinθ﹣cosθ)恒成立,再由f(x)的单调性和参数分离,转化为求最值,即可得到所求范围.【解答】解:f(x+)=x3+2017x﹣2017﹣x+1,可得f(﹣x)=﹣x+2017﹣x﹣2017x+1,则f(+x)+f(﹣x)=2,f(sinθ+cosθ)+f(sin2θ﹣t)<2,即为f(sinθ+cosθ)+f(sin2θ﹣t)<2=f(+x)+f(﹣x),f(sinθ+cosθ)+f(sin2θ﹣t)<2对∀θ∈R恒成立,可令x=sinθ+cosθ﹣,则f(sinθ+cosθ)+f(sin2θ﹣t)<f(sinθ+cosθ)+f(1﹣sinθ﹣cosθ),可得f(sin2θ﹣t)<f(1﹣sinθ﹣cosθ)恒成立,由于f(x+)在R上递增,f(x+)的图象向右平移个单位可得f(x)的图象,则f(x)在R上递增,可得sin2θ﹣t<1﹣sinθ﹣cosθ恒成立,即有t>sin2θ+sinθ+cosθ﹣1,设g(θ)=sin2θ+sinθ+cosθ﹣1=(sinθ+cosθ)2﹣(sinθ+cosθ)﹣2再令sinθ+cosθ=m,则m=sin(θ+),则﹣≤m≤,则g(m)=m2﹣m﹣2,其对称轴m=,故当m=﹣时,g(m)取的最大值,最大值为2+﹣2=.则t>,故答案为:(,+∞)【点评】本题考查不等式恒成立问题的解法,注意运用转化思想,以及函数的单调性和对称性,考查化简整理的运算能力,属于难题.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(12分)函数f(x)=A sin(ωx+φ)(A>0,ω>0,)的部分图象如图所示、(Ⅰ)求f(x)的解析式;(Ⅱ)设g(x)=f(x)+2sin(x﹣)sin(x+),求函数g(x)的最小正周期及在区间[0,]上的最小值.【分析】(Ⅰ)先确定周期,再确定ω,代入最值点求得φ值.(Ⅱ)观察角度之间的关系,根据二倍角公式、辅助角公式化简g(x),求得周期,并用整体法求函数在区间的最值.【解答】解:(Ⅰ)由图象知:A=1,T=,∴ω==2.又∵2×+φ=+2kπ,∴φ=+2kπ,又,∴φ=,即函数解析式为f(x)=sin(2x+).(Ⅱ)g(x)=sin(2x+)+2sin(x﹣)sin[(x﹣)+]=sin(2x+)+2sin (x﹣)cos(x﹣)=sin(2x+)+sin(2x﹣)=sin2x+cos2x﹣sin2x﹣cos2x=(sin2x﹣cos2x)=sin(2x﹣).∴g(x)的最小正周期为π,∵x∈[0,],∴2x﹣∈[﹣,],∴当2x﹣=﹣,即x=0时,g(x)的最小值为.【点评】本题考查根据函数图象求解析式,掌握二倍角公式,辅助角公式,属于基础题.18.(12分)我市准备实施天然气价格阶梯制,现提前调査市民对天然气价格阶梯制的态度,随机抽查了50名市民,现将调査情况整理成了被调査者的频率分布直方图(图5)和赞成者的频数表如下:(Ⅰ)若从年龄在[15,25),[45,55)的被调查者中各随机选取2人进行调查,求所选取的4人中至少有2人对天然气价格阶梯制持赞成态度的概率;(Ⅱ)若从年龄在[15,25),[25,35)的被调査者中各随机选取2人进行调査,记选取的4人中对天然气价格实施阶梯制持不赞成态度的人数为X,求随机变量X的分布列和数学期望.【分析】(Ⅰ)结合频率分布直方图与频数表可得各组的情况列表,利用对立事件概率计算公式有求出所选取的4人中到少有2人对天然气价格阶梯制持赞成态度的概率.(Ⅱ)X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和E (X).【解答】解:(Ⅰ)结合频率分布直方图与频数表可得各组的情况如下表:∴所选取的4人中到少有2人对天然气价格阶梯制持赞成态度的概率为:P1=1﹣=.(Ⅱ)X的可能取值为0,1,2,3,P(X=0)==,P(X=1)==.P(X=2)==,P(X=3)==,∴X的分布列为:E(X)==.【点评】本题考查概率、离散型随机变量的分布列、数学期望的求法,考查对立事件概率计算公式、排列组合等基础知识,考查运算求解能力,是中档题.19.(12分)如图6,梯形ABCD中,AB∥CD,矩形BFED所在的平面与平面ABCD垂直,且AD=DC=CB=BF=AB=2.(Ⅰ)求证:平面ADE⊥平面BFED;(Ⅱ)若P为线段EF上一点,直线AD与平面P AB所成的角为θ,求θ的最大值.【分析】(Ⅰ)取AB的中点G,连结DG,推导出四边形BCDG是平行四边形,AD⊥BD,AD⊥平面BFED,由此能证明平面ADE⊥平面BFED.(Ⅱ)由于BFED是矩形,BD⊥DE,由AD⊥平面BFED,以D为坐标原点,DA,DB,DE为x,y,z轴,建立空间直角坐标系,利用向量法能求出θ的最大值.【解答】解:(Ⅰ)如图,取AB的中点G,连结DG,则CD AB,∴CD DG,∴四边形BCDG是平行四边形,∴DG=BC=AB=AG=BG,∴AD⊥BD,又平面ABCD⊥平面BFED,且平面ABCD∩平面BFED=BD,∴AD⊥平面BFED,又AD⊂平面ADE,∴平面ADE⊥平面BFED.(Ⅱ)解:由于BFED是矩形,∴BD⊥DE,由(Ⅰ)知AD⊥平面BFED,以D为坐标原点,DA,DB,DE为x,y,z轴,建立空间直角坐标系,D(0,0,0),A(2,0,0),B(0,2,0),=(2,0,0),设点P(0,t,2),=(﹣2,2,0),=(﹣2,t,2),平面P AB的法向量=(x,y,z),∴,取y=2,得平面P AB的一个法向量为=(2,2,2﹣t),∴sinθ==,当t=2时,(sinθ)max=,∴θmax=.∴θ的最大值为.【点评】本题考查面面垂直的证明,考查线面角的最大值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20.(12分)已知椭圆C1:(a>b>0)的离心率为,过点E(,0)的椭圆C1的两条切线相互垂直.(Ⅰ)求椭圆C1的方程;(Ⅱ)在椭圆C1上是否存在这样的点P,过点P引抛物线C2:x2=4y的两条切线l1,l2,切点分别为B,C,且直线BC过点A(1,1)?若存在,指出这样的点P有几个(不必求出点的坐标);若不存在,请说明理由.【分析】(Ⅰ)由椭圆的对称性,不妨设在x轴上方的切点为M,x轴下方的切点为N,求得NE的方程为y=x﹣,由椭圆离心率把椭圆方程化为,联立直线方程与椭圆方程,利用判别式等于0求得c,则椭圆方程可求;(Ⅱ)设B(x1,y1),C(x2,y2),P(x0,y0),由抛物线方程利用导数求得抛物线C2:x2=4y在点B处的切线l1,由点P(x0,y0)在切线l1上,得,同理,则点B,C的坐标都满足方程,可得直线BC的方程为,再由点A(1,1)在直线BC上,得,可得点P的轨迹方程为y=,进一步得到直线y=经过椭圆C1内一点(0,﹣1),可得直线y=与椭圆C1有两个交点,则满足条件的P有两个.【解答】解:(Ⅰ)由椭圆的对称性,不妨设在x轴上方的切点为M,x轴下方的切点为N,则k NE=1,NE的方程为y=x﹣.∵椭圆C1的(a>b>0)的离心率为,即,则a=2c,b=,∴椭圆C1的方程:,联立,得.由△=,得c=1.∴椭圆C1的方程为;(Ⅱ)设B(x1,y1),C(x2,y2),P(x0,y0),由x2=4y,得,y,∴抛物线C2:x2=4y在点B处的切线l1为,即,∵,∴y=.∵点P(x0,y0)在切线l1上,∴,①同理,②综合①②得,点B,C的坐标都满足方程.∵经过B,C两点的直线是唯一的,∴直线BC的方程为.∵点A(1,1)在直线BC上,∴,∴点P的轨迹方程为y=.又∵点P在椭圆C1上,又在直线y=上,∴直线y=经过椭圆C1内一点(0,﹣1),∴直线y=与椭圆C1有两个交点,∴满足条件的P有两个.【点评】本题考查椭圆方程的求法,考查直线与圆锥曲线的综合,考查计算能力,属难题.21.(12分)已知函数f(x)=x2﹣aln(x+4)(a∈R)存在两个极值点x1,x2,且x1<x2.(Ⅰ)求实数a的取值范围;(Ⅱ)若﹣1<x2<0,求证:f(x1)+9x2>0.【分析】(Ⅰ)f(x)存在两个极值点x1,x2,关于x的方程2x﹣=0,即x2+8x﹣a =0在(﹣4,+∞)内有两个不等实根,进而解出答案.(Ⅱ)由(Ⅰ)知⇒,==,只需确定它的最大值就可证明.【解答】解:由题意:f′(x)=2x﹣(x>﹣4),∵f(x)存在两个极值点x1,x2,∴关于x的方程2x﹣=0,即x2+8x﹣a=0在(﹣4,+∞)内有两个不等实根,令s(x)=2x2+8x(x>﹣4),t(x)=a,则s(x)与t(x)的图象有两个不同的交点,结合图象可得a∈(﹣8,0),(Ⅱ)证明:由(Ⅰ)知⇒,=,=,令g(x)=x++8﹣2(x+2)ln(﹣x)(﹣1<x<0),g′(x)=1﹣﹣2ln(﹣x)﹣2(x+4)=﹣﹣﹣1﹣2ln(﹣x),令F(x)=g′(x)=﹣﹣﹣1﹣2ln(﹣x),(﹣1<x<0),则F′(x)=+﹣=<0,∴F(x)在(﹣1,0)单调递减,从而F(x)<F(﹣1)=﹣9<0,即g′(x)<0,∴g(x)在(﹣1,0)单调递减,从而g(x)<g(﹣1)=﹣9,即,又x2∈(﹣1,0),∴f(x1)>﹣9x2,故f(x1)+9x2>0.【点评】本题考查导数的综合应用,属于中档题.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若曲线C1的极坐标方程为=0,曲线C2的参数方程为,(θ为参数)(Ⅰ)求曲线C1的直角坐标方程和曲线C2的普通方程;(Ⅱ)若动点P,Q分别在曲线C1与曲线C2上运动,求|PQ|的最大值.【分析】(Ⅰ)首先利用转换关系式,把参数方程极坐标方程和直角坐标方程之间进行转换.(Ⅱ)利用参数方程点的坐标公式,利用两点间的距离公式的应用和三角函数关系式的恒等变换及函数的性质的应用求出函数的最大值.【解答】解:(Ⅰ)曲线C1的极坐标方程为=0,转换为直角坐标方程为.圆心坐标为(0,2),r=.曲线C2的参数方程为,(θ为参数)转换为直角坐标方程为.(Ⅱ)根据曲线C2的参数方程为,(θ为参数)设点Q(2cosθ,sinθ),则点Q与圆心的距离d===,当时,,所以|PQ|的最大值为.【点评】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,两点间的距离公式的应用,三角函数关系式的恒等变换,函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.[选修4-5:不等式选讲]23.设函数f(x)=2|x+1|+|x+3|的最小值为m,且f(a)=m.(Ⅰ)求m及a的值;(Ⅱ)若实数p,q,r满足p2+2q2+r2=m,证明:q(p+r)≤2.【分析】(1)利用绝对值不等式的性质可得m=4,然后解方程可得a=﹣1.(2)结合(1)的结论,原不等式即p2+2q2+r2=4,利用不等式的性质和均值不等式的结论即可证得题中的结论.【解答】解:(1)∵f(x)=2|x+1|+|x+3|≥|x+1|+|x﹣3|≥|(x+1)﹣(x﹣3)|=4,当且仅当,即x=﹣1时,f(x)min=4,∴m=4,a=﹣1.(2)证明:由(1)知:p2+2q2+r2=4,∵p2+q2≥2pq,q2+r2≥2qr,∴p2+2q2+r2≥2pq+2qr=2q(p+r),即2q(p+r)≤4,∴q(p+r)≤2.【点评】本题考查了绝对值不等式的应用以及均值不等式的应用,属于中档题.。
(完整)2019-2020年高考数学专题练习——集合与逻辑(一)(含解析)
2019-2020年高考数学专题练习——集合与逻辑(一)一、选择题1.已知集合{}2320A x x x =-+≥,(){}321B x log x +<,则A B =( ) A. {}21x x -<< B.{} 12x x x ≤≥或 C.{} 1x x < D.∅2.集合{}2log 2A x Z x =∈≤的真子集个数为( ) A .7 B .8 C .15 D .163.若复数z =(x 2-4)+(x +3)i (x ∈R ),则“z 是纯虚数”是“x =2”的 A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件4.设有下面四个命题:1P :若z 满足z C ∈,则 z z R ⋅∈;2P :若虚数(),a bi a R b R +∈∈是方程32 1 0x x x +++=的根,则a bi -也是方程的根: 3P :已知复数12,z z 则12z z =的充要条件是12z z R ∈: 4P ;若复数12z z >,则12,z z R ∈.其中真命题的个数为( )A .1B .2C .3D .45. “221a b +=”是“sin cos 1a b θθ+≤恒成立”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件6.已知集合{}{}2320,230A x x x B x x =-+<=->,则R A C B ⋂= ( )A .31,2⎛⎫-- ⎪⎝⎭B.31,2⎛⎫ ⎪⎝⎭C .31,2⎛⎤⎥⎝⎦D .3,22⎛⎫⎪⎝⎭7.设集合2{|60,}A x x x x Z =--<∈,{|,,}B z z x y x A y A ==-∈∈,则A ∩B =( ) A .{0,1} B .{0,1,2} C .{0,1,2,3} D .{-1,0,1,2}8.已知p :x R ∀∈,220x x a ++>;q :28a <.若“p q ∧”是真命题,则实数a 的取值范围是( )A .(1,+∞)B .(-∞,3)C .(1,3)D .(-∞,1)∪(3,+∞)9.设R θ∈,则“66ππθ-<”是“3sin 2θ<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件10.设集合{}2|670A x x x =--<,{}|B x x a =≥,现有下面四个命题: p 1:a R ∃∈,A B =∅;p 2:若0a =,则(7,)A B =-+∞; p 3:若(,2)R C B =-∞,则a A ∈;p 4:若1a ≤-,则A B ⊆. 其中所有的真命题为( ) A .p 1,p 4 B .p 1,p 3,p 4 C .p 2,p 3 D .p 1,p 2,p 411.已知命题P :存在n R ∈,使得223()n nf x nx-=是幂函数,且在(0,+∞)上单调递增; 命题q :“2,23x R x x ∃∈+>”的否定是“2,23x R x x ∀∈+<”.则下列命题为真命题的是 A .p q ∧ B .p q ⌝∧ C .p q ∧⌝ D .p q ⌝∧⌝12.已知集合M ={x |22194x y +=},N ={y|132x y+=},则M ∩N =A .∅B .{(3,0),(2,0)}C .{3,2}D .[-3,3]13.设集合{}{}m B m A 2,2,42==,,若φ≠⋂B A ,则m 的取值可能是( ) A.1 B.2 C.3 D.214.下列判断错误..的是 ( ) A .“22bm am <”是“b a <”的充分不必要条件B .命题“01,23≤--∈∀x x R x ”的否定是“01,23>--∈∃x x R x ”C .若p ,q 均为假命题,则q p Λ为假命题D .命题:若12=x ,则1=x 或1-=x 的逆否命题为:若1≠x 或1-≠x ,则12≠x15.已知A ,B ,C ,D ,E 是空间五个不同的点,若点E 在直线BC 上,则“AC 与BD 是异面直线”是“AD 与BE 是异面直线”的( ) A .充分不必要条件 B .充分必要条件 C.必要不充分条件 D .既不充分也不必要条件16.下列选项错误的是( )A .命题“若1x ≠,则2320x x -+≠”的逆否命题是“若2320x x -+=,则1x =”B .“2x >”是“2320x x -+>”的充分不必要条件;C.若命题p :x R ∀∈,210x x ++≠,则p ⌝:0x R ∃∈,20010x x ++=; D .在命题的四种形式中,若原命题为真命题,则否命题为假命题17.对于常数m 、n ,“0mn >”是“方程221mx y +=的曲线是椭圆”的( )条件 A .充分不必要 B .必要不充分 C.充分必要D .既不充分也不必要条件18.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的. 若T,V 是Z 的两个不相交的非空子集,,T U Z ⋃=且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是()A. ,T V 中至少有一个关于乘法是封闭的B. ,T V 中至多有一个关于乘法是封闭的C. ,T V 中有且只有一个关于乘法是封闭的D. ,T V 中每一个关于乘法都是封闭的19.设集合S={1,2,3,4,5,6},定义集合对(A ,B)::,A 中含有3个元素,B 中至少含有2个元素,且B 中最小的元素不小于A 中最大的元素.记满足的集合对(A ,B)的总个数为m ,满足的集合对(A ,B)的总个数为n ,则的值为( )A.111 B.161C.221 D.29220.定义非空集合A 的真子集的真子集为A 的“孙集”,则集合{1,3,5,7,9}的孙集的个数为 () A .23B .24C .26D .3221.已知:集合2012,3,2,{1,A =},A B ⊆,且集合B 中任意两个元素之和不能被其差整除。
2019-2020学年云南师大附中高三(下)月考数学试卷(理科)(含答案)
2019-2020学年云南师大附中高三(下)月考数学试卷(理科)(六)一、选择题.1.(5分)已知集合2{|log 1}A x x =<,集合{|||2}B x N x =∈<,则(A B = )A .{|01}x x <<B .{|02}x x <C .{|22}x x -<<D .{0,1}2.(5分)已知i 为虚数单位,则复数3(1)(1)(i i --= )A .2iB .2i -C .2D .2-3.(5分)已知平面向量a ,b 的夹角为30︒,||1a =,1()2a a b -=-,则||(b = )AB .2C .3D .44.(5分)已知实数x ,y 满足约束条件()1221x y x y y +⎧⎪-⎨⎪⎩,则yx 的最大值为( )A .2B .32C .1D .235.(5分)在区间(0,3)上随机地取一个数k ,则事件“直线y kx =与双曲线22:1C x y -=有两个不同的交点“发生的概率为( ) A .13B .12C .23D .16.(5分)已知3(21)()x x a -+展开式中各项系数之和为27,则其展开式中2x 项的系数为( )A .24B .18C .12D .47.(5分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c,若sin A =,a =,c a >,则角C 的大小为( )A .3πB .2πC .23πD .34π8.(5分)在下面四个三棱柱中,A ,B 为三棱柱的两个顶点,E ,F ,G 为所在棱的中点,则在这四个三棱柱中,直线AB 与平面EFG 不平行的是( )A .B .C .D .9.(5分)已知椭圆2222:1(0)x y C a b a b +=>>与抛物线2:2(0)E y px p =>有公共焦点F ,椭圆C 与抛物线E 交于A ,B 两点,且A ,B ,F 三点共线,则椭圆C 的离心率为( )A 21B .22C .3D .51-10.(5分)已知数列{}n a 满足:对*n N ∀∈,1log (2)n n a n +=+,设n T 为数列{}n a 的前n 项之积,则下列说法错误的是( ) A .12a a >B .17a a >C .63T =D .76T T <11.(5分)数学家托勒密从公元127年到151年在亚历山大城从事天文观测,在编制三角函数表过程中发现了很多重要的定理和结论,如图便是托勒密推导倍角公式“2cos212sin αα=-”所用的几何图形。
2024年高考数学专项复习数列考查的九个热点(解析版)
数列考查的九个热点热点题型速览热点一等差数列的基本计算热点二等比数列的基本计算热点三等差数列与等比数列的综合计算热点四数列与函数的交汇热点五数列与不等式交汇热点六数列与解析几何交汇热点七数列与概率统计交汇热点八等差数列、等比数列的判断与证明热点九数列中的“新定义”问题热点一等差数列的基本计算1(2023春·河南开封·高三通许县第一高级中学校考阶段练习)已知等差数列a n 为递增数列,S n 为其前n 项和,a 3+a 7=34,a 4⋅a 6=280,则S 11=()A.516B.440C.258D.2202(2022秋·黑龙江哈尔滨·高三哈师大附中校考期中)某种卷筒卫生纸绕在圆柱形盘上,空盘时盘芯直径为60mm ,满盘时直径为120mm ,已知卫生纸的厚度为0.1mm ,则满盘时卫生纸的总长度大约( )(π≈3.14,精确到1m )A.65mB.85mC.100mD.120m3(2020·全国高考真题(理))北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块2024年高考数学专项复习数列考查的九个热点(解析版)4(2022·全国·统考高考真题)记S n为等差数列a n的前n项和.若2S3=3S2+6,则公差d=.【规律方法】1.等差数列中的基本量a1,a n,d,n,S n,“知三可求二”,在求解过程中主要运用方程思想.要注意使用公式时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意运用整体代换思想,使运算更加便捷.2. 在等差数列{a n}中,若出现a m-n,a m,a m+n等项时,可以利用等差数列的性质将其转化为与a m有关的条件;若求a m项,可由a m=12(a m-n+a m+n)转化为求a m-n,a m+n或a m-n+a m+n的值.3.数列的基本计算,往往以数学文化问题为背景.热点二等比数列的基本计算5(2020·全国·统考高考真题)设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8= ()A.12B.24C.30D.326(2023·广东揭阳·惠来县第一中学校考模拟预测)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起由于脚痛,每天走的路程都为前一天的一半,一共走了六天,才到目的地.则此人后3天共走的里程数为()A.6B.12C.18D.427(2023·全国高考真题)已知a n为等比数列,a2a4a5=a3a6,a9a10=-8,则a7=.【规律方法】1.等比数列运算问题的一般求法是设出首项a1和公比q,然后由通项公式或前n项和公式转化为方程(组)求解.2.等比数列的通项公式及前n项和公式,共涉及五个量a1,a n,q,n,S n,知其中三个就能求另外两个,体现了用方程的思想解决问题.3.根据题目特点,可选用等比数列的性质.热点三等差数列与等比数列的综合计算8(2019·北京·高考真题)设{an}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)记{an}的前n项和为Sn,求Sn的最小值.9(2022·全国·统考高考真题)记S n为数列a n的前n项和.已知2S nn+n=2a n+1.(1)证明:a n是等差数列;(2)若a4,a7,a9成等比数列,求S n的最小值.10(2023·天津·统考高考真题)已知a n是等差数列,a2+a5=16,a5-a3=4.(1)求a n的通项公式和2n-1i=2n-1a i .(2)已知b n为等比数列,对于任意k∈N*,若2k-1≤n≤2k-1,则b k<a n<b k+1,(Ⅰ)当k≥2时,求证:2k-1<b k<2k+1;(Ⅱ)求b n 的通项公式及其前n 项和.热点四数列与函数的交汇11(2018·浙江·高考真题)已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3).若a 1>1,则A.a 1<a 3,a 2<a 4B.a 1>a 3,a 2<a 4C.a 1<a 3,a 2>a 4D.a 1>a 3,a 2>a 412(2023秋·湖南长沙·高三雅礼中学校考阶段练习)如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为y =1.1x ,第n 根弦(n ∈N ,从左数首根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线l :y =x +1交于点A n x n ,y n 和B n x n,y n,则20n =0y n y n=.(参考数据:取1.122=8.14.)13(2023秋·福建厦门·高三厦门一中校考阶段练习)已知数列a n 满足a 1>0,a n +1=log 2a n ,n =2k -1,k ∈N ∗2a n+2,n =2k ,k ∈N ∗.(1)判断数列a 2n -1 是否是等比数列?若是,给出证明;否则,请说明理由;(2)若数列a n 的前10项和为361,记b n =1log 2a 2n +1 ⋅a 2n +2,数列b n 的前n 项和为T n ,求证:T n <12.14(2023·全国·高三专题练习)已知A x 1,y 2 、B x 2,y 2 是函数f x =2x 1-2x ,x ≠12-1,x =12的图象上的任意两点,点M 在直线x =12上,且AM =MB .(1)求x 1+x 2的值及y 1+y 2的值;(2)已知S 1=0,当n ≥2时,S n =f 12 +f 2n +f 3n +⋅⋅⋅+f n -1n,设a n =2Sn,T n 数列a n 的前n 项和,若存在正整数c ,m ,使得不等式T m -c T m +1-c <12成立,求c 和m 的值;热点五数列与不等式交汇15(2022·浙江·统考高考真题)已知数列a n 满足a 1=1,a n +1=a n -13a 2n n ∈N ∗,则()A.2<100a 100<52 B.52<100a 100<3 C.3<100a 100<72 D.72<100a 100<416(2023·浙江嘉兴·统考模拟预测)如图,在一个单位正方形中,首先将它等分成4个边长为12的小正方形,保留一组不相邻的2个小正方形,记这2个小正方形的面积之和为S 1;然后将剩余的2个小正方形分别继续四等分,各自保留一组不相邻的2个小正方形,记这4个小正方形的面积之和为S 2.以此类推,操作n 次,若S 1+S 2+⋅⋅⋅+S n ≥20232024,则n 的最小值是()A.9B.10C.11D.1217(2023秋·四川绵阳·高三绵阳中学校考阶段练习)已知等差数列a n 的前n 项和为S n ,且S 4=4S 2,a 3n =3a n +2n ∈N *(1)求a n 的通项公式,(2)设b n =1a n a n +1,且b n 的前n 项和为T n ,证明,13≤T n <12.18(2022·全国·统考高考真题)记S n 为数列a n 的前n 项和,已知a 1=1,S n a n 是公差为13的等差数列.(1)求a n 的通项公式;(2)证明:1a 1+1a 2+⋯+1a n<2.19(2021·全国·统考高考真题)设a n 是首项为1的等比数列,数列b n 满足b n =na n3.已知a 1,3a 2,9a 3成等差数列.(1)求a n 和b n 的通项公式;(2)记S n 和T n 分别为a n 和b n 的前n 项和.证明:T n <S n2.20(2023·河南郑州·统考模拟预测)已知数列a n 与b n 的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =32b n +1-b n 恒成立.(1)若A n =3n 2+3n2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+⋯+b n +1a n a n +1<13恒成立,求正整数b 1的最小值.21(2023秋·云南·高三云南师大附中校考阶段练习)已知a n 为等差数列,b n 为等比数列,b 1=2a 1=2,a 5=5a 4-a 3 ,b 5=4b 4-b 3 ,数列c n 满足c n =1a n a n +2,n 为奇数b n,n 为偶数.(1)求a n 和b n 的通项公式;(2)证明:2ni =1c i ≥133.热点六数列与解析几何交汇22(2022·全国·统考高考真题)图1是中国古代建筑中的举架结构,AA ,BB ,CC ,DD 是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中DD 1,CC 1,BB 1,AA 1是举,OD 1,DC 1,CB 1,BA 1是相等的步,相邻桁的举步之比分别为DD 1OD 1=0.5,CC 1DC 1=k 1,BB 1CB 1=k 2,AA 1BA 1=k 3.已知k 1,k 2,k 3成公差为0.1的等差数列,且直线OA 的斜率为0.725,则k 3=()A.0.75B.0.8C.0.85D.0.923(重庆·高考真题)设A x 1,y 1 ,B 4,95 ,C x 2,y 2 是右焦点为F 的椭圆x 225+y 29=1上三个不同的点,则“|AF |,|BF |,|CF |成等差数列”是“x 1+x 2=8”的()A.充要条件B.必要而不充分条件C.充分而不必要条件D.既不充分也不必要条件24(2021·浙江·统考高考真题)已知a ,b ∈R ,ab >0,函数f x =ax 2+b (x ∈R ).若f (s -t ),f (s ),f (s +t )成等比数列,则平面上点s ,t 的轨迹是()A.直线和圆B.直线和椭圆C.直线和双曲线D.直线和抛物线热点七数列与概率统计交汇25(2023秋·江西·高三校联考阶段练习)甲同学现参加一项答题活动,其每轮答题答对的概率均为13,且每轮答题结果相互独立.若每轮答题答对得5分,答错得0分,记第i 轮答题后甲同学的总得分为X i ,其中i =1,2,⋅⋅⋅,n .(1)求E X 99 ;(2)若乙同学也参加该答题活动,其每轮答题答对的概率均为23,并选择另一种答题方式答题:从第1轮答题开始,若本轮答对,则得20分,并继续答题;若本轮答错,则得0分,并终止答题,记乙同学的总得分为Y .证明:当i >24时,E X i >E Y .26(2023秋·湖北荆州·高三沙市中学校考阶段练习)在正三棱柱ABC -A 1B 1C 1中,点A 处有一只小蚂蚁,每次随机等可能地沿各条棱或侧面对角线向另一顶点移动,设小蚂蚁移动n 次后仍在底面ABC 的顶点处的概率为P n .(1)求P1,P2的值.(2)求P n.27(2019·全国·高考真题(理))为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,⋯,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,⋯,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(i)证明:{p i+1-p i}(i=0,1,2,⋯,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.热点八等差数列、等比数列的判断与证明28【多选题】(2022·广东茂名·模拟预测)已知数列a n的前n项和为S,a1=1,S n+1=S n+2a n+1,数列2na n⋅a n+1的前n项和为Tn,n∈N*,则下列选项正确的为()A.数列a n+1是等比数列 B.数列a n+1是等差数列C.数列a n的通项公式为a n=2n-1 D.T n>129(2021·全国·统考高考真题)记S n为数列a n的前n项和,b n为数列S n的前n项积,已知2S n+1b n=2.(1)证明:数列b n是等差数列;(2)求a n的通项公式.热点九数列中的“新定义”问题30(2020·全国·统考高考真题)0-1周期序列在通信技术中有着重要应用.若序列a1a2⋯a n⋯满足a i∈{0,1}(i=1,2,⋯),且存在正整数m,使得a i+m=a i(i=1,2,⋯)成立,则称其为0-1周期序列,并称满足a i+m=a i(i=1,2,⋯)的最小正整数m为这个序列的周期.对于周期为m的0-1序列a1a2⋯a n⋯,C(k)=1 mmi=1a i a i+k(k=1,2,⋯,m-1)是描述其性质的重要指标,下列周期为5的0-1序列中,满足C(k)≤15(k=1,2,3,4)的序列是()A.11010⋯B.11011⋯C.10001⋯D.11001⋯31【多选题】(2023秋·湖南长沙·高三周南中学校考阶段练习)古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数,他们根据沙粒或小石子所排列的形状,把数分成许多类,如图中第一行图形中黑色小点个数:1,3,6,10,⋯称为三角形数,第二行图形中黑色小点个数:1,4,9,16,⋯称为正方形数,记三角形数构成数列a n,正方形数构成数列b n,则下列说法正确的是()A.1b 1+1b 2+1b 3+⋯+1b n<2;B.1225既是三角形数,又是正方形数;C.10i =11b i +1-a i +1=95;D.∀m ∈N *,m ≥2总存在p ,q ∈N *,使得b m =a p +a q 成立;32(2022秋·山东·高三校联考阶段练习)若项数为n 的数列a n 满足:a i =a n +1-i i =1,2,3,⋯,n 我们称其为n 项的“对称数列”.例如:数列1,2,2,1为4项的“对称数列”;数列1,2,3,2,1为5项的“对称数列”.设数列c n 为2k +1项的“对称数列”,其中c 1,c 2⋯c k +1是公差为2的等差数列,数列c n 的最大项等于8,记数列c n 的前2k +1项和为S 2k +1,若S 2k +1=32,则k =.数列考查的九个热点热点题型速览热点一等差数列的基本计算热点二等比数列的基本计算热点三等差数列与等比数列的综合计算热点四数列与函数的交汇热点五数列与不等式交汇热点六数列与解析几何交汇热点七数列与概率统计交汇热点八等差数列、等比数列的判断与证明热点九数列中的“新定义”问题热点一等差数列的基本计算1(2023春·河南开封·高三通许县第一高级中学校考阶段练习)已知等差数列a n 为递增数列,S n 为其前n 项和,a 3+a 7=34,a 4⋅a 6=280,则S 11=()A.516 B.440C.258D.220【答案】D【分析】根据给定条件,利用等差数列性质求出a 4,a 6,再利用前n 项和公式求解作答.【详解】等差数列a n 为递增数列,则a 4<a 6,由a 3+a 7=34,得a 4+a 6=34,而a 4⋅a 6=280,解得a 4=14,a 6=20,所以S 11=11(a 1+a 11)2=11a 6=220.故选:D2(2022秋·黑龙江哈尔滨·高三哈师大附中校考期中)某种卷筒卫生纸绕在圆柱形盘上,空盘时盘芯直径为60mm ,满盘时直径为120mm ,已知卫生纸的厚度为0.1mm ,则满盘时卫生纸的总长度大约( )(π≈3.14,精确到1m )A.65m B.85mC.100mD.120m【答案】B【分析】依题意,可以把绕在盘上的卫生纸长度,近似看成300个半径成等差数列的圆周长,然后分别计算各圆的周长,再借助等差数列前n 项和公式求总和即可.【详解】因为空盘时盘芯直径为60mm ,则半径为30mm ,周长为2π×30=60πmm ,又满盘时直径为120mm ,则半径为60mm ,周长为2π×60=120πmm ,又因为卫生纸的厚度为0.1mm ,则60-300.1=300,即每一圈周长成等差数列,项数为300,于是根据等差数列的求和公式,得:S300=300×60π+120π2=27000πmm ,又27000πmm≈84780mm≈85m,即满盘时卫生纸的总长度大约为85m,故选:B.3(2020·全国高考真题(理))北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块【答案】C【解析】设第n环天石心块数为a n,第一层共有n环,则a n是以9为首项,9为公差的等差数列,a n=9+n-1×9=9n,设S n为a n的前n项和,则第一层、第二层、第三层的块数分别为S n,S2n-S n,S3n-S2n,因为下层比中层多729块,所以S3n-S2n=S2n-S n+729,即3n9+27n2-2n9+18n2=2n9+18n2-n9+9n2+729即9n2=729,解得n=9,所以S3n=S27=279+9×272=3402.故选:C4(2022·全国·统考高考真题)记S n为等差数列a n的前n项和.若2S3=3S2+6,则公差d=.【答案】2【分析】转化条件为2a1+2d=2a1+d+6,即可得解.【详解】由2S3=3S2+6可得2a1+a2+a3=3a1+a2+6,化简得2a3=a1+a2+6,即2a1+2d=2a1+d+6,解得d=2.故答案为:2.【规律方法】1.等差数列中的基本量a1,a n,d,n,S n,“知三可求二”,在求解过程中主要运用方程思想.要注意使用公式时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意运用整体代换思想,使运算更加便捷.2. 在等差数列{a n}中,若出现a m-n,a m,a m+n等项时,可以利用等差数列的性质将其转化为与a m有关的条件;若求a m 项,可由a m =12(a m -n +a m +n)转化为求a m -n ,a m +n 或a m -n +a m +n 的值.3.数列的基本计算,往往以数学文化问题为背景.热点二等比数列的基本计算5(2020·全国·统考高考真题)设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4=2,则a 6+a 7+a 8=()A.12B.24C.30D.32【答案】D【分析】根据已知条件求得q 的值,再由a 6+a 7+a 8=q 5a 1+a 2+a 3 可求得结果.【详解】设等比数列a n 的公比为q ,则a 1+a 2+a 3=a 11+q +q 2 =1,a 2+a 3+a 4=a 1q +a 1q 2+a 1q 3=a 1q 1+q +q 2 =q =2,因此,a 6+a 7+a 8=a 1q 5+a 1q 6+a 1q 7=a 1q 51+q +q 2 =q 5=32.故选:D .6(2023·广东揭阳·惠来县第一中学校考模拟预测)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起由于脚痛,每天走的路程都为前一天的一半,一共走了六天,才到目的地.则此人后3天共走的里程数为()A.6B.12C.18D.42【答案】D【分析】设第n n ∈N ∗ 天走a n 里,其中1≤n ≤6,由题意可知,数列a n 是公比为12的等比数列,利用等比数列的求和公式求出a 1的值,然后利用等比数列的求和公式可求得此人后3天共走的里程数.【详解】设第n n ∈N ∗ 天走a n 里,其中1≤n ≤6,由题意可知,数列a n 是公比为12的等比数列,所以,a 11-12 6 1-12=6332a 1=378,解得a 1=378×3263=192,所以,此人后三天所走的里程数为a 4+a 5+a 6=192×181-1231-12=42.故选:D .7(2023·全国高考真题)已知a n 为等比数列,a 2a 4a 5=a 3a 6,a 9a 10=-8,则a 7=.【答案】-2【分析】根据等比数列公式对a 2a 4a 5=a 3a 6化简得a 1q =1,联立a 9a 10=-8求出q 3=-2,最后得a 7=a 1q ⋅q 5=q 5=-2.【解析】设a n 的公比为q q ≠0 ,则a 2a 4a 5=a 3a 6=a 2q ⋅a 5q ,显然a n ≠0,则a 4=q 2,即a 1q 3=q 2,则a 1q =1,因为a 9a 10=-8,则a 1q 8⋅a 1q 9=-8,则q 15=q 5 3=-8=-2 3,则q 3=-2,则a 7=a 1q ⋅q 5=q 5=-2,故答案为:-2.【规律方法】1.等比数列运算问题的一般求法是设出首项a 1和公比q ,然后由通项公式或前n 项和公式转化为方程(组)求解.2.等比数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,q ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.3.根据题目特点,可选用等比数列的性质.热点三等差数列与等比数列的综合计算8(2019·北京·高考真题)设{an }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(Ⅰ)求{an }的通项公式;(Ⅱ)记{an }的前n 项和为Sn ,求Sn 的最小值.【答案】(Ⅰ)a n =2n -12;(Ⅱ)-30.【分析】(Ⅰ)由题意首先求得数列的公差,然后利用等差数列通项公式可得a n 的通项公式;(Ⅱ)首先求得S n 的表达式,然后结合二次函数的性质可得其最小值.【详解】(Ⅰ)设等差数列a n 的公差为d ,因为a 2+10,a 3+8,a 4+6成等比数列,所以(a 3+8)2=(a 2+10)(a 4+6),即(2d -2)2=d (3d -4),解得d =2,所以a n =-10+2(n -1)=2n -12.(Ⅱ)由(Ⅰ)知a n =2n -12,所以S n =-10+2n -122×n =n 2-11n =n -112 2-1214;当n =5或者n =6时,S n 取到最小值-30.9(2022·全国·统考高考真题)记S n 为数列a n 的前n 项和.已知2S nn+n =2a n +1.(1)证明:a n 是等差数列;(2)若a 4,a 7,a 9成等比数列,求S n 的最小值.【答案】(1)证明见解析;(2)-78.【分析】(1)依题意可得2S n +n 2=2na n +n ,根据a n =S 1,n =1S n-Sn -1,n ≥2,作差即可得到a n -a n -1=1,从而得证;(2)法一:由(1)及等比中项的性质求出a 1,即可得到a n 的通项公式与前n 项和,再根据二次函数的性质计算可得.【详解】(1)因为2S nn+n =2a n +1,即2S n +n 2=2na n +n ①,当n ≥2时,2S n -1+n -1 2=2n -1 a n -1+n -1 ②,①-②得,2S n +n 2-2S n -1-n -1 2=2na n +n -2n -1 a n -1-n -1 ,即2a n +2n -1=2na n -2n -1 a n -1+1,即2n -1 a n -2n -1 a n -1=2n -1 ,所以a n -a n -1=1,n ≥2且n ∈N *,所以a n 是以1为公差的等差数列.(2)[方法一]:二次函数的性质由(1)可得a 4=a 1+3,a 7=a 1+6,a 9=a 1+8,又a 4,a 7,a 9成等比数列,所以a 72=a 4⋅a 9,即a 1+6 2=a 1+3 ⋅a 1+8 ,解得a 1=-12,所以a n=n-13,所以S n=-12n+n n-12=12n2-252n=12n-2522-6258,所以,当n=12或n=13时,S nmin=-78.[方法二]:【最优解】邻项变号法由(1)可得a4=a1+3,a7=a1+6,a9=a1+8,又a4,a7,a9成等比数列,所以a72=a4⋅a9,即a1+62=a1+3⋅a1+8,解得a1=-12,所以a n=n-13,即有a1<a2<⋯<a12<0,a13=0.则当n=12或n=13时,S nmin=-78.【整体点评】(2)法一:根据二次函数的性质求出S n的最小值,适用于可以求出S n的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.10(2023·天津·统考高考真题)已知a n是等差数列,a2+a5=16,a5-a3=4.(1)求a n的通项公式和2n-1i=2n-1a i .(2)已知b n为等比数列,对于任意k∈N*,若2k-1≤n≤2k-1,则b k<a n<b k+1,(Ⅰ)当k≥2时,求证:2k-1<b k<2k+1;(Ⅱ)求b n的通项公式及其前n项和.【答案】(1)a n=2n+1,2n-1i=2n-1a i=3⋅4n-1;(2)(Ⅰ)证明见解析;(Ⅱ)b n=2n,前n项和为2n+1-2.【分析】(1)由题意得到关于首项、公差的方程,解方程可得a1=3,d=2,据此可求得数列的通项公式,然后确定所给的求和公式里面的首项和项数,结合等差数列前n项和公式计算可得2n-1i=2n-1a i=3⋅4n-1.(2)(Ⅰ)利用题中的结论分别考查不等式两侧的情况,当2k-1≤n≤2k-1时,b k<a n,取n=2k-1,当2k-2≤n≤2k-1-1时,a n<b k,取n=2k-1-1,即可证得题中的不等式;(Ⅱ)结合(Ⅰ)中的结论,利用极限思想确定数列的公比,进而可得数列的通项公式,最后由等比数列前n 项和公式即可计算其前n项和.【详解】(1)由题意可得a2+a5=2a1+5d=16a5-a3=2d=4,解得a1=3d=2,则数列a n的通项公式为a n=a1+n-1d=2n+1,求和得2n-1i=2n-1a i=2n-1i=2n-12i+1=22n-1i=2n-1i+2n-1-2n-1+1=22n-1+2n-1+1+2n-1+2+⋯+2n-1+2n-1=22n-1+2n-1⋅2n-12+2n-1=3⋅4n-1.(2)(Ⅰ)由题意可知,当2k-1≤n≤2k-1时,b k<a n,取n=2k-1,则b k<a2k-1=2×2k-1+1=2k+1,即b k<2k+1,当2k-2≤n≤2k-1-1时,a n<b k,取n=2k-1-1,此时a n=a2k-1-1=22k-1-1+1=2k-1,据此可得2k-1<b k,综上可得:2k-1<b k<2k+1.(Ⅱ)由(Ⅰ)可知:2k-1<bk<2k+1,2k+1-1<b k+1<2k+1+1则数列b n的公比q满足2k+1-12k+1=2-32k+1<q=b k+1b k<2k+1+12k-1=2+32k-1,当k∈N*,k→+∞时,2-3 2k+1→2,2+32k-1→2,所以q=2,所以2k-1<b12k-1<2k+1,即2k-12k-1=2-12k-1<b1<2k+12k-1=2+12k-1,当k∈N*,k→+∞时,2-1 2k-1→2,2+12k-1→2,所以b1=2,所以数列的通项公式为b n=2n,其前n项和为:S n=2×1-2n1-2=2n+1-2.热点四数列与函数的交汇11(2018·浙江·高考真题)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3).若a1>1,则A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【答案】B【分析】先证不等式x≥ln x+1,再确定公比的取值范围,进而作出判断.【详解】令f(x)=x-ln x-1,则f (x)=1-1x,令f(x)=0,得x=1,所以当x>1时,f (x)>0,当0<x<1时,f (x)<0,因此f(x)≥f(1)=0,∴x≥ln x+1,若公比q>0,则a1+a2+a3+a4>a1+a2+a3>ln(a1+a2+a3),不合题意;若公比q≤-1,则a1+a2+a3+a4=a1(1+q)(1+q2)≤0,但ln(a1+a2+a3)=ln[a1(1+q+q2)]>ln a1>0,即a1+a2+a3+a4≤0<ln(a1+a2+a3),不合题意;因此-1<q<0,q2∈(0,1),∴a1>a1q2=a3,a2<a2q2=a4<0,选B.【点睛】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如x≥ln x+1,e x≥x+1,e x≥x2+1(x≥0).12(2023秋·湖南长沙·高三雅礼中学校考阶段练习)如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为y=1.1x,第n根弦(n∈N,从左数首根弦在y轴上,称为第0根弦)分别与雁柱曲线和直线l:y=x+1交于点A n x n,y n和B n x n ,y n,则20n=0y n y n=.(参考数据:取1.122=8.14.)【答案】914【分析】根据题意可得y n =n +1,y n=1.1n ,进而利用错位相减法运算求解.【详解】由题意可知:y n =n +1,y n =1.1n ,则20n =0y n y n=20n =0n +1 1.1n =1×1.10+2×1.11+⋯+20×1.119+21×1.120,可得1.1×20n =0y n y n =1×1.11+2×1.12+⋯+20×1.120+21×1.121,两式相减可得:-0.1×20n =0y n y n=1.10+1.11+⋯+1.120-21×1.121=1-1.1211-1.1-21×1.121=1-1.121+0.1×21×1.121-0.1=1+1.122-0.1=1+8.14-0.1=-91.4,所以20n =0y n y n=914.故答案为:914.13(2023秋·福建厦门·高三厦门一中校考阶段练习)已知数列a n 满足a 1>0,a n +1=log 2a n ,n =2k -1,k ∈N ∗2a n+2,n =2k ,k ∈N ∗.(1)判断数列a 2n -1 是否是等比数列?若是,给出证明;否则,请说明理由;(2)若数列a n 的前10项和为361,记b n =1log 2a 2n +1 ⋅a 2n +2,数列b n 的前n 项和为T n ,求证:T n <12.【答案】(1)数列a 2n -1 成等比数列,证明见解析(2)证明见解析【分析】(1)推导出a 2n +1=2a 2n +2=2log 2a 2n -1+2=4a 2n -1,得到结论;(2)先得到a 2n -1=a 1⋅4n -1,a 2n =2(n -1)+log 2a 1,从而得到S 10=341a 1+5log 2a 1+20,令f (x )=341x +5log 2x +20,得到函数单调递增,且由特殊点函数值得到a 1=1,b n =14n2,求出T 1=14<74,当n ≥2时,利用裂项相消法求和,得到T n <12.【详解】(1)数列a 2n -1 成等比数列,证明如下:根据a n +1=log 2a n ,n =2k -1,k ∈N ∗2a n+2,n =2k ,k ∈N ∗得,a 2n +1=2a 2n +2=2log 2a 2n -1+2=22a 2n -1=4a 2n -1;∵a 1>0,∴a 2n -1>0,a2n +1a 2n -1=4,即数列a 2n -1 成等比数列.(2)由(1)得,a 2n -1=a 1⋅4n -1,a 2n =log 2a 2n -1=2(n -1)+log 2a 1,故S 10=a 140+41+42+43+44 +5log 2a 1+2×(0+1+2+3+4)=341a 1+5log 2a 1+20,由S 10=361,得341a 1+5log 2a 1+20=361.令f (x )=341x +5log 2x +20,当x >0时,f (x )=341x +5log 2x +20单调递增,且f (1)=361=f a 1 ,故a 1=1,a 2n +1=4n =22n ,a 2n +2=log 2a 1+2n =2n ,∴b n =1log 2a 2n +1 ⋅a 2n +2=14n 2,T 1=b 1=14<12,当n ≥2时,b n =14n2<14(n -1)n =141n -1-1n∴T n =b 1+b 2+⋯+b n <141+1-12+12-13+⋯+1n -1-1n=142-1n <14×2=12,综上,知T n <1214(2023·全国·高三专题练习)已知A x 1,y 2 、B x 2,y 2 是函数f x =2x 1-2x,x ≠12-1,x =12的图象上的任意两点,点M 在直线x =12上,且AM =MB .(1)求x 1+x 2的值及y 1+y 2的值;(2)已知S 1=0,当n ≥2时,S n =f 12 +f 2n +f 3n +⋅⋅⋅+f n -1n,设a n =2Sn,T n 数列a n 的前n 项和,若存在正整数c ,m ,使得不等式T m -c T m +1-c <12成立,求c 和m 的值;【答案】(1)x 1+x 2=1,y 1+y 2=-2(2)存在,c =1,m =1【分析】(1)根据点M 在直线x =12上,设M 12,y M ,利用AM =MB ,可得x 1+x 2=1,分类讨论:①x 1=12,x 2=12;②x 1≠12时,x 2≠12,利用函数解析式,可求y 1+y 2的值;(2)由(1)知,当x 1+x 2=1时,y 1+y 2=-2,∴f k n +f n -kn=-2,代入k =0,1,2,⋯,n -1,利用倒序相加法可得S n =1-n ,从而可得数列a n 的通项与前n 项和,利用T m -c T m +1-c <12化简即可求得结论.【详解】(1)根据点M 在直线x =12上,设M 12,y M ,则AM =12-x 1,y M -y 1 ,MB =x 2-12,y 2-y M ,∵AM =MB ,∴x 1+x 2=1.①当x 1=12时,x 2=12,y 1+y 2=f x 1 +f x 2 =-1-1=-2;②当x 1≠12时,x 2≠12,y 1+y 2=2x 11-2x 1+2x 21-2x 2=2x 11-2x 2 +2x 21-2x 1 1-2x 1 1-2x 2 =2(x 1+x 2)-8x 1x 21-2(x 1+x 2)+4x 1x 2=2(1-4x 1x 2)4x 1x 2-1=-2;综合①②得,y 1+y 2=-2.(2)由(1)知,当x 1+x 2=1时,y 1+y 2=-2.∴f k n +f n -k n=-2,k =0,1,2,⋯,n -1,∴n ≥2时,S n =f 1n +f 2n +f 3n +⋯+f n -1n①S n =f n -1n +f n -2n +f n -3n +⋯+f 1n ②①+②得,2S n =-2(n -1),则S n =1-n .又n =1时,S 1=0满足上式,∴S n =1-n .∴a n =2S n=21-n ,∴T n =1+12+⋯+12n -1=1×1-12 n1-12=2-22n.∵T m -c T m +1-c <12,∴2T m -c -T m +1-c 2T m +1-c<0,∴c -2T m -T m +1c -T m +1<0,∵Tm +1=2-12m ,2T m -T m +1=4-42m -2+12m =2-32m ,∴12≤2-32m <c <2-12m <2,c ,m 为正整数,∴c =1,当c =1时,2-32m<12-12m >1,∴1<2m <3,∴m =1.【点评】作为高考热点,数列与函数的交汇问题,等差数列易于同二次函数结合,研究和的最值问题,而等比数列易于同指数函数结合,利用指数函数的单调性解决问题,递推、通项问题往往与函数的单调性、周期性相结合.热点五数列与不等式交汇15(2022·浙江·统考高考真题)已知数列a n 满足a 1=1,a n +1=a n -13a 2n n ∈N ∗,则()A.2<100a 100<52 B.52<100a 100<3 C.3<100a 100<72 D.72<100a 100<4【答案】B【分析】先通过递推关系式确定a n 除去a 1,其他项都在0,1 范围内,再利用递推公式变形得到1a n +1-1a n =13-a n >13,累加可求出1a n >13(n +2),得出100a 100<3,再利用1a n +1-1a n =13-a n<13-3n +2=131+1n +1 ,累加可求出1a n -1<13n -1 +1312+13+⋯+1n ,再次放缩可得出100a 100>52.【详解】∵a 1=1,易得a 2=23∈0,1 ,依次类推可得a n ∈0,1由题意,a n +1=a n 1-13a n ,即1a n +1=3a n 3-a n=1a n +13-a n ,∴1a n +1-1a n =13-a n >13,即1a 2-1a 1>13,1a 3-1a 2>13,1a 4-1a 3>13,⋯,1a n -1a n -1>13,(n ≥2),累加可得1a n -1>13n -1 ,即1a n >13(n +2),(n ≥2),∴a n <3n +2,n ≥2 ,即a 100<134,100a 100<10034<3,又1a n +1-1a n =13-a n <13-3n +2=131+1n +1 ,(n ≥2),∴1a 2-1a 1=131+12 ,1a 3-1a 2<131+13 ,1a 4-1a 3<131+14 ,⋯,1a n -1a n -1<131+1n,(n≥3),累加可得1a n -1<13n -1 +1312+13+⋯+1n ,(n ≥3),∴1a 100-1<33+1312+13+⋯+1100 <33+1312×4+16×96 <39,即1a 100<40,∴a 100>140,即100a 100>52;综上:52<100a 100<3.故选:B .16(2023·浙江嘉兴·统考模拟预测)如图,在一个单位正方形中,首先将它等分成4个边长为12的小正方形,保留一组不相邻的2个小正方形,记这2个小正方形的面积之和为S 1;然后将剩余的2个小正方形分别继续四等分,各自保留一组不相邻的2个小正方形,记这4个小正方形的面积之和为S 2.以此类推,操作n 次,若S 1+S 2+⋅⋅⋅+S n ≥20232024,则n 的最小值是()A.9B.10C.11D.12【答案】C【分析】由题意可知操作n 次时有2n 个边长为12n 的小正方形,即S n =2n ×12n2=12n,结合等比数列前n 项和解不等式即可.【详解】由题意可知操作1次时有21=2个边长为121=12的小正方形,即S 1=21×1212=121=12,操作2次时有22=4个边长为122=14的小正方形,即S 2=22×122 2=122=14,操作3次时有23=8个边长为123=18的小正方形,即S 3=23×1232=123=18,以此类推可知操作n 次时有2n 个边长为12n 的小正方形,即S n =2n ×12n2=12n ,由等比数列前n 项和公式有S 1+S 2+⋅⋅⋅+S n =12+12 2+⋅⋅⋅+12 n =12×1-12 n1-12=1-12 n,从而问题转换成了求1-12 n ≥20232024不等式的最小正整数解,将不等式变形为12 n ≤12024,注意到12 10=11024>12024,1211=12048<12024,且函数y =12x在R 上单调递减,所以n 的最小值是11.故选:C .17(2023秋·四川绵阳·高三绵阳中学校考阶段练习)已知等差数列a n 的前n 项和为S n ,且S 4=4S 2,a 3n =3a n +2n ∈N *(1)求a n 的通项公式,(2)设b n =1a n a n +1,且b n 的前n 项和为T n ,证明,13≤T n <12.【答案】(1)a n =2n -1(2)证明见解析【分析】(1)利用等差数列的通项公式以及前n 项和公式,列方程求解首项和公差,即得答案;(2)由(1)结论可得b n =1a n a n +1的表达式,利用裂项求和可得T n 表达式,即可证明结论.【详解】(1)设a n 的公差为d ,由S 4=4S 2得,4a 1+6d =42a 1+d ,解得d =2a 1,∵a 3n =3a n +2,即a 1+3n -1 d =3a 1+n -1 d +2,∴2d =2a 1+2,结合d =2a 1,∴d =2,a 1=1,∴a n =1+2n -1 =2n -1;(2)证明:由b n =12n -1 2n +1=1212n -1-12n +1 .∴T n =b 1+b 2+⋯+b n =121-13+13-15+⋯+12n -1-12n +1,即∴T n =121-12n +1 ,又T n 随着n 的增大增大,当n =1时,T n 取最小值为T 1=13,又n →+∞时,12n +1>0,且无限趋近于0,故T n =121-12n +1 <12,故13≤T n <12.18(2022·全国·统考高考真题)记S n 为数列a n 的前n 项和,已知a 1=1,S n a n 是公差为13的等差数列.(1)求a n 的通项公式;(2)证明:1a 1+1a 2+⋯+1a n<2.【答案】(1)a n =n n +12(2)见解析【分析】(1)利用等差数列的通项公式求得S n a n =1+13n -1 =n +23,得到S n =n +2 a n 3,利用和与项的关系得到当n ≥2时,a n =S n -S n -1=n +2 a n 3-n +1 a n -13,进而得:a n a n -1=n +1n -1,利用累乘法求得a n =n n +1 2,检验对于n =1也成立,得到a n 的通项公式a n =n n +1 2;(2)由(1)的结论,利用裂项求和法得到1a 1+1a 2+⋯+1a n =21-1n +1 ,进而证得.【详解】(1)∵a 1=1,∴S 1=a 1=1,∴S1a 1=1,又∵S n a n 是公差为13的等差数列,∴S n a n =1+13n -1 =n +23,∴S n =n +2 a n 3,∴当n ≥2时,S n -1=n +1 a n -13,∴a n =S n -S n -1=n +2 a n 3-n +1 a n -13,整理得:n -1 a n =n +1 a n -1,即a na n-1=n+1n-1,∴a n=a1×a2a1×a3a2×⋯×a n-1a n-2×a na n-1=1×31×42×⋯×nn-2×n+1n-1=n n+12,显然对于n=1也成立,∴a n的通项公式a n=n n+12;(2)1a n =2n n+1=21n-1n+1,∴1 a1+1a2+⋯+1a n=21-12+12-13+⋯1n-1n+1=21-1n+1<219(2021·全国·统考高考真题)设a n是首项为1的等比数列,数列b n满足b n=na n3.已知a1,3a2,9a3成等差数列.(1)求a n和b n的通项公式;(2)记S n和T n分别为a n和b n的前n项和.证明:T n<S n 2.【答案】(1)a n=13n-1,b n=n3n;(2)证明见解析.【分析】(1)利用等差数列的性质及a1得到9q2-6q+1=0,解方程即可;(2)利用公式法、错位相减法分别求出S n,T n,再作差比较即可.【详解】(1)因为a n是首项为1的等比数列且a1,3a2,9a3成等差数列,所以6a2=a1+9a3,所以6a1q=a1+9a1q2,即9q2-6q+1=0,解得q=13,所以a n=13n-1,所以b n=na n3=n3n.(2)[方法一]:作差后利用错位相减法求和T n=13+232+⋯+n-13n-1+n3n,S n 2=12130+131+132+⋯+13n-1 ,T n-S n2=13+232+333+⋯+n3n-12130+131+132+⋯+13n-1 =0-1230+1-1231+2-1232+⋯+n-1-123n-1+n3n.设Γn=0-1230+1-1231+2-1232+⋯+n-1-123n-1, ⑧则13Γn=0-1231+1-1232+2-1233+⋯+n-1-123n. ⑨由⑧-⑨得23Γn=-12+131+132+⋯+13n-1-n-323n=-12+131-13n-11-13-n-323n.所以Γn=-14×3n-2-n-322×3n-1=-n2×3n-1.因此T n-S n2=n3n-n2×3n-1=-n2×3n<0.故T n<S n 2.[方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得S n=1×1-13n1-13=321-13n,T n=13+232+⋯+n-13n-1+n3n,①1 3T n=132+233+⋯+n-13n+n3n+1,②①-②得23T n=13+132+133+⋯+13n-n3n+1=131-13n1-13-n3n+1=121-13n-n3n+1,所以T n=341-13n-n2⋅3n,所以T n-S n2=341-13n-n2⋅3n-341-13n=-n2⋅3n<0,所以T n<S n 2 .[方法三]:构造裂项法由(Ⅰ)知b n=n13n,令c n=(αn+β)13 n,且b n=c n-c n+1,即n13 n=(αn+β)13 n-[α(n+1)+β]13n+1,通过等式左右两边系数比对易得α=32,β=34,所以c n=32n+34 ⋅13 n.则T n=b1+b2+⋯+b n=c1-c n+1=34-34+n2 13 n,下同方法二.[方法四]:导函数法设f(x)=x+x2+x3+⋯+x n=x1-x n1-x,由于x1-x n1-x'=x1-x n'1-x-x1-x n×1-x'1-x2=1+nx n+1-(n+1)x n(1-x)2,则f (x)=1+2x+3x2+⋯+nx n-1=1+nx n+1-(n+1)x n(1-x)2.又b n=n13n=13n13 n-1,所以T n=b1+b2+b3+⋯+b n=131+2×13+3×132+⋯+n⋅13n-1 =13⋅f 13 =13×1+n13n+1-(n+1)13 n1-132=341+n13n+1-(n+1)13n =34-34+n213 n,下同方法二.20(2023·河南郑州·统考模拟预测)已知数列a n与b n的前n项和分别为A n和B n,且对任意n∈N*,a n +1-a n =32b n +1-b n 恒成立.(1)若A n =3n 2+3n2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+⋯+b n +1a n a n +1<13恒成立,求正整数b 1的最小值.【答案】(1)n (n +1);(2)3【分析】(1)利用a n ,S n 求通项公式,再求证{b n }是首项、公差均为2的等差数列,进而求B n ;(2)由题设易得b n +1=3b n ,等比数列前n 项和公式求B n ,进而可得b n +1a n a n +1=1B n -1B n +1,裂项相消法化简已知不等式左侧,得b 1>31-23n +1-1恒成立,进而求最小值.【详解】(1)由题设,a n =A n -A n -1=32[n 2+n -(n -1)2-n +1]=3n 且n ≥2,而a 1=A 1=3,显然也满足上式,故a n =3n ,由a n +1-a n =32b n +1-b n ⇒b n +1-b n =2,又b 1=2,所以{b n }是首项、公差均为2的等差数列.综上,B n =2×(1+...+n )=n (n +1).(2)由a n =B n ,a n +1-a n =32b n +1-b n ,则B n +1-B n =b n +1=32(b n +1-b n ),所以b n +1=3b n ,而b 1≥1,故bn +1b n=3,即{b n }是公比为3的等比数列.所以B n =b 1(1-3n )1-3=b 12(3n -1),则B n +1=b12(3n +1-1),b n +1a n a n +1=B n +1-B n B n +1B n =1B n -1B n +1,而b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+⋯+b n +1a n a n +1<13,所以1B 1-1B 2+1B 2-1B 3+...+1B n -1B n +1=1B 1-1B n +1=1b 1-2b 1(3n +1-1)<13,所以1b 11-23n +1-1 <13⇒b 1>31-23n +1-1对n ∈N *都成立,所以1-23n +1-1<1,故b 1≥3,则正整数b 1的最小值为3.21(2023秋·云南·高三云南师大附中校考阶段练习)已知a n 为等差数列,b n 为等比数列,b 1=2a 1=2,a 5=5a 4-a 3 ,b 5=4b 4-b 3 ,数列c n 满足c n =1a n a n +2,n 为奇数b n,n 为偶数.(1)求a n 和b n 的通项公式;(2)证明:2ni =1c i ≥133.【答案】(1)a n =n ;b n =2n (2)证明见解析【分析】(1)设等差数列a n 的公差为d ,等比数列b n 的公比为q ,根据题意列式求d ,q ,进而可得结果;(2)利用分组求和以及裂项相消法求得T n =-14n +2+4n +13-56,进而根据数列单调性分析证明.【详解】(1)设等差数列a n 的公差为d ,等比数列b n 的公比为q ,由a 1=1,a 5=5a 4-a 3 ,可得1+4d =5d ,解得d =1。
考点 二元一次不等式(组)-2020年高考数学(理)一轮必刷题(解析版)
考点35 二元一次不等式(组)1.(2019·安徽高三高考模拟(理))若直线()1y k x =+与不等式组243322y x x y x y -≤⎧⎪-≤⎨⎪+≥⎩表示的平面区域有公共点,则实数k 的取值范围是( ) A .(],1-∞ B .[]0,2C .[]2,1-D .(]2,2-【答案】B 【解析】画出不等式组243322y x x y x y -≤⎧⎪-≤⎨⎪+≥⎩表示的平面区域,如下图所示直线()1y k x =+过定点(1,0)A -要使得直线()1y k x =+与不等式组243322y x x y x y -≤⎧⎪-≤⎨⎪+≥⎩表示的平面区域有公共点则0AC k k #20=20(1)AC k -=--[]0,2k ∴∈.故选B2.(2019·湖南长沙一中高三高考模拟(理))已如定点P (1,9),动点Q (,)x y 在线性约束条件360200x y x y y --≤⎧⎪-+≥⎨⎪≥⎩所表示的平面区域内,则直线PQ 的斜率k 的取值范围为( ) A .[1,7]- B .[7.1]-C .),7[]1,(+∞⋃--∞D .[9,1][7,)--+∞【答案】C 【解析】不等式组表示的平面区域是如图所示阴影部分,直线20x y -+=与直线360x y --=的交点为(4,6)A , 直线20x y -+=与y 轴的交点为(0,2)B ,只需求出过p 的直线经过可行域内的点A 或B 时的斜率,92710BP k -==-,96114AP k -==--,所以结合图象可得7≥k 或1k ≤-, 故选C.3.(2019·福建高三高考模拟(理))已知平面区域:,:,则点是的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B 【解析】 平面区域,表示圆以及内部部分;的可行域如图三角形区域:则点P (x ,y )∈Ω1是P (x ,y )∈Ω2的必要不充分条件. 故选:B .4.(2018·湖南长沙一中高三高考模拟(理))在平面直角坐标系中,为不等式组所表示的区域上一动点,则的最小值是( ) A .1 B .C .2D .【答案】B 【解析】作出不等式组表示的可行域如图中阴影部分所示,过点O 向直线 作垂线,垂足在可行域内,所以O 到直线的距离即为的最小值,所以.故选B.5.(2019·福建高三高考模拟(理))已知(1,1)A -,(4,0)B ,(2,2)C ,平面区域E 是由所有满足AD AB AC λμ=+(12,13)λμ≤≤≤≤的点(,)D x y 组成的区域,则区域E 的面积是( ). A .8B .12C .16D .20【答案】C【解析】由()1,1A -,()4,0B ,()2,2C ,(),D x y 得()1,1AD x y =-+,()3,1AB =,()1,3AC = 因为AD AB AC λμ=+所以1313x y λμλμ-=+⎧⎨+=+⎩,解得348348x y y x λμ--⎧=⎪⎪⎨-+⎪=⎪⎩又因为12,13λμ≤≤≤≤代入化简得123204320x y y x ≤-≤⎧⎨≤-≤⎩画出不等式组代表的平面区域如图中阴影部分,且阴影部分为平行四边形由直线方程解出点()A 5,3,()B 8,4,()C 10,10,()D 7,9 点()D 7,9到直线AB:340x y -+=的距离()2273941013d -⨯+==+-,AB 10= 所以阴影部分面积为S 101610== 故选:C.6.(2019·北京高三高考模拟(理))设不等式组22(1)x y y k x ⎧+≤⎨+≤+⎩所表示的平面区域为D ,其面积为S .①若4S =,则k 的值唯一;②若12S =,则k 的值有2个;③若D 为三角形,则203k <≤;④若D 为五边形,则4k >.以上命题中,真命题的个数是( ) A .1 B .2C .3D .4【答案】C 【解析】由题得不等式|x|+|y|≤2,表示的是如图所示的正方形区域,不等式y+2≤k(x+1),表示的是经过定点(-1,-2)的动直线y+2=k(x+1)的一侧(与k 的正负有关),所以不等式组()221x y y k x ⎧+≤⎪⎨+≤+⎪⎩所表示的平面区域D 就是它们的公共部分,(1)因为大正方形的面积为8,若4S =,面积为正方形面积的一半,且过原点O 的任意直线均可把正方形的面积等分,故当S=4时,直线必过原点,所以k=2,k 的值唯一,命题正确; (2)左边阴影三角形的面积为1,故当k 取适当的负值左倾可以使三角形的面积为12,k 取适当的正值,使得阴影部分的面积为12,故S=12时,k 的值有两个,故该命题正确;(3)由(2)的讨论可知,当k <-2时,左边也有一个三角形,所以当D 为三角形时,k 的取值范围为2--20]3∞(,)(,,故该命题错误;(4)经过点(-1,-2)和(0,2)的直线绕定点(-1,-2)向左旋转一点,D 就是五边形, 此时k >2--2=40--1()().故命题正确.故选:C7.(2019·北京高三高考模拟(理))记不等式组0,3,y y x y kx ≥⎧⎪≤+⎨⎪≤⎩所表示的平面区域为D .“点(1,1)D -∈”是“1k ≤-”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】画出可行域和点()1,1-如下图所示,将y kx =旋转到点()1,1-的位置,得1,1k k =-=-,当()1,1D -∈时,1k ≤-;当1k ≤-时,()1,1D -∈.故“点()1,1D -∈”是“1k ≤-”的充分必要条件.故选C.8.(2019·江西高三高考模拟(理))已知20(,)|20360x y D x y x y x y ⎧⎫+-≤⎧⎪⎪⎪=-+≤⎨⎨⎬⎪⎪⎪-+≥⎩⎩⎭,给出下列四个命题:1P :(,)x y D ∀∈,22x y -≤+≤;2P :(,)x y D ∀∈,03yx >+; 3P :(,)x y D ∃∈,2x y +<-;4P :(,)x y D ∃∈,222x y +≤;其中真命题是( )A .1P 和2PB .1P 和4PC .2P 和3PD .2P 和4P【答案】B 【解析】不等式组()20,|20360x y D x y x y x y ⎧⎫+-≤⎧⎪⎪⎪=-+≤⎨⎨⎬⎪⎪⎪-+≥⎩⎩⎭的可行域如图,当z=x+y 过A (﹣2,0)点时,z 最小,可得:﹣2+0=﹣2,当z=x+y 过B 或C 点时,z 最大,可得:z=2, 故P 1:(),x y D ∀∈,22x y -≤+≤为真命题; P 3:(),x y D ∃∈,2x y +<-为假命题;又3yx +表示可行域内的点与(-3,0)连线的斜率, ∴由A (﹣2,0)点,可得23=-+0, 故P 2:∀(x ,y )∈D ,3yx +>0错误; 由(﹣1,1)点,x 2+y 2=2故p 4:∃(x ,y )∈D ,x 2+y 2≤2为真命题.可得选项1P 和4P 正确. 故选:B .9.(2019·江西新余一中高三高考模拟(理))已知实数x ,y 满足线性约束条件21x y y x x +≤⎧⎪≥⎨⎪≥-⎩,则其表示的平面区域外接圆的面积为( ). A .π B .2πC .4πD .6π【答案】C 【解析】由线性约束条件21x y y x x +≤⎧⎪≥⎨⎪≥-⎩,画出可行域如图(ABC 及内部),又2x y +=与y=x 垂直,∴ABC ∠为直角,即三角形ABC 为直角三角形,∴ABC 外接圆的直径为AC ,又A(-1,3),C(-1,-1),AC=4, ∴ABC 外接圆的半径r=2, ∴ABC 外接圆的面积为2πr ⨯=4π,故选C.10.(2019·河北唐山一中高三高考模拟(理))已知x ,y 满足约束条件,若20100x x y x y m -≤⎧⎪-+≥⎨⎪+-≥⎩,若32z x y=-的最大值为4,则实数m 的值为( ) A .2 B .3C .4D .8【答案】B 【解析】由不等式组,画出可行域如下图所示:线性目标函数z 3x 2y =-,化为322z y x =- 画出目标函数可知,当在A 点时取得z 取得最大值 因为A (2,-2+m ) 代入目标函数可得342222m -+=⨯- 解得m=3 所以选B11.(2018·湖北高三高考模拟(理))设不等式组表示的平面区域为,则( )A .的面积是B .内的点到轴的距离有最大值C .点在内时,D .若点,则【答案】C 【解析】画出可行域如下图所示:有图可知,可行域面积是无限大的,可行域内的点到轴的距离也是没有最大值的,故两个选项错误.注意到在可行域内,而,故D选项错误.有图可知,可行域内的点和连线的斜率比的斜率要小,故C选项正确.所以选C.12.(2018·山东高二高考模拟(理))已知不等式组所表示的平面区域为面积等于的三角形,则实数k的值为A.1 B.C.1或D.【答案】A【解析】不等式组所表示的平面区域为面积等于的三角形,如图:平面为三角形所以过点,,与x轴的交点为,与的交点为,三角形的面积为:,解得:.故选:A.13.(2018·江西高三高考模拟(理))已知实数、满足线性约束条件,则其表示的平面区域的面积为A.B.C.D.【答案】B【解析】满足约束条件,如图所示:可知范围扩大,实际只有,其平面区域表示阴影部分一个三角形,其面积为故选B.14.(2018·河南信阳高中高三高考模拟(理))已知实数,满足约束条件,则的取值范围为()A.B.C.D.【答案】C【解析】画出不等式表示的可行域,如图阴影三角形所示,由题意得.由得,所以可看作点和连线的斜率,记为,由图形可得,又,所以,因此或,所以的取值范围为.故选C.15.(2019·辽宁高三高考模拟(理))已知实数x,y满足123321142y xy xy x⎧≥-+⎪⎪≤--⎨⎪⎪≤+⎩,则目标函数43z x y=-的最小值为_____.【答案】﹣22【解析】解:画出约束条件123321142y xy xy x⎧≥-+⎪⎪≤--⎨⎪⎪≤+⎩表示的平面区域如图所示,由图形知,当目标函数z =4x ﹣3y 过点A 时取得最小值,由1233142y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩,解得A (﹣4,2),代入计算z =4×(﹣4)﹣3×2=﹣22, 所以z =4x ﹣3y 的最小值为﹣22. 故答案为:﹣22.16.(2019·西藏山南二中高三高考模拟(理))设不等式组22042x y x y -+≥⎧⎪≤⎨⎪≥-⎩表示的平面区域为D ,在区域D内随机取一个点,则此点到直线50x -=的距离大于7的概率是__________. 【答案】425【解析】如图,不等式对应的区域为DEF ∆及其内部其中()()()6,2,4,2,4,3D E F --- 求得直线DF 交x 轴于点()2,0B -当点D 在线段2x =-上时,点D 到直线50x -=的距离等于7∴要使点D 到直线的距离大于7,则点D 应在BCD ∆内(或其边界)因此,根据几何概型计算公式,可得所求概率142421251052⨯⨯=⨯⨯ 本题正确结果:42517.(2019·南昌市外国语学校高三高考模拟(理))设m 为实数,若22250{()|30}{()|25}0x y x y x x y R x y x y mx y -+≥⎧⎪-≥∈⊆+≤⎨⎪+≥⎩,,、,,则m 的最大值是____.【答案】43【解析】解:设()250{,|30,,}0x y M x y x x y R mx y -+≥⎧⎪=-≥∈⎨⎪+≥⎩,()22{,|25}N x y x y =+≤,显然点集N 表示以原点为圆心,5为半径的圆及圆的内部,点集M 是二元一次不等式组25030,,0x y x x y R mx y -+≥⎧⎪-≥∈⎨⎪+≥⎩表示的平面区域,如图所示,作图可知,边界250x y -+=交圆2225x y +=于点()()3,4,5,0A C -,边界y mx =-恒过原点,要求m 的最大值,故直线y mx =-必须单调递减, 因为M N ⊆,所以当y mx =-过图中B 点时,m 取得最大,联立方程组22325x x y =⎧⎨+=⎩,解得()3,4B -, 故4030m ---=-,即max 43m =. 18.(2019·河南高三高考模拟(理))不等式组2024020x x y x y -≤⎧⎪-+≥⎨⎪--+≤⎩,表示的平面区域的面积为________.【答案】3 【解析】依据不等式组画出可行域,如图阴影部分所示,平面区域为ABC ∆,其中()2,0A ,()0,2B ,()2,3C ,所以1232S AC =⨯⨯=.故答案为:3.19.(2019·江苏高三高考模拟)记不等式组03y y x y kx ≥⎧⎪≤+⎨⎪≤⎩,所表示的平面区域为D .“点(1,1)D -∈”是“1k ≤-”成立的_____条件.(可选填:“充分不必要”、“必要不充分”、“充分必要”、“既不充分也不必要”) 【答案】充分必要 【解析】解:因为点(﹣1,1)满足03y y x ≥⎧⎨≤+⎩所以点(﹣1,1)R ∆D 等价于1k ≤-等价于1k ≤- 所以“点(﹣1,1)R ∆D”是“k ≤﹣1”成立的充要条件 故答案为:充分必要.20.(2019·四川高三高考模拟(理))已知变量x ,y 满足20{2300x y x y y -≤-+≥≥,则z x y =+的最小值为_________.【答案】3-【解析】作出不等式组对应的平面区域如图:由z=x+y得y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点A时,直线的截距最小,此时z最小,由230yx y=⎧⎨-+=⎩,解得A(﹣3,0),此时z=﹣3,故答案为-3.21.(2018·江西高三高考模拟(理))已知实数,满足不等式组,那么的最大值和最小值分别是和,则=___________.【答案】0【解析】画出不等式组表示的可行域,如图阴影部分所示.由得,结合图形,平移直线可得,当直线经过可行域内的点A时,直线在y轴上的截距最大,此时取得最大值;当直线经过可行域内的点B时,直线在y轴上的截距最小,此时取得最小值.由题意得,∴,∴.故答案为0.。
A佳教育湖湘名校2019-2020学年高三下学期3月线上自主联合检测理科数学试题(带答案解析)
本题考查了向量的坐标运算,难度不大.
4.B
【解析】
【分析】
由题意可知 是函数的最小值, 是函数的最大值,则 的最小值就是函数的半周期.
【详解】
对任意的 , 成立,
所以 , ,
所以 ,
又 的周期 ,
所以 ,
故选:B.
【点睛】
本题主要考查三角函数的性质运用,考查分析理解能力,难度不大
5.B
【解析】
【分析】
先将圆 的方程化为标准方程,得到其圆心坐标与半径,再结合直线与圆的位置关系可得 、 的值,进而求出答案.
A.2B.1C.4D.
5.在圆 : 中,过点 的最长弦和最短弦分别为 和 ,则四边形 的面积为()
A.6B.12C.24D.36
6.“勾股定理”在西方被称为“毕达哥拉斯定理”.三国时期,吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形,若直角三角形中较小的锐角 ,现在向该正方形区域内随机地投掷100枚飞镖,则估计飞镖落在区域1的枚数最有可能是()
A.30B.40C.50D.60
7.已知抛物线x2=-4y的准线与双曲线 =1(a>0,b>0)的两条渐近线围成一个等腰直角三角形,则该双曲线的离心率是()
A. B.2 C. D.5
8.已知二进制数 化为十进制数为 ,若 的展开式中, 的系数为15,则实数 的值为()
A. B. C.1D.2
9.若两个等差数列 、 的前 项和分别为 、 ,且满足 ,则 的值为()
(1)求曲线 的普通方程和直线 的直角坐标方程;
(2)已知点 ,直线 交曲线 于 , 两点,求 的值.
2019-2020学年河南省南阳一中高三(下)第九次考试数学试卷(理科)
2019-2020学年河南省南阳一中高三(下)第九次考试数学试卷(理科)试题数:23,总分:1501.(单选题,5分)已知集合A={x|-3<x<2},B={x|lnx>0},则A∩B=()A.{-3,-2,-1,0,1}B.{1,2}C.{x|-3≤x≤1}D.{x|1<x<2}2.(单选题,5分)已知复数z=13+4i,则下列说法正确的是()A.复数z的实部为3B.复数z的虚部为425iC.复数z的共轭复数为325+425iD.复数的模为13.(单选题,5分)椭圆x29+y216=1的一个焦点坐标为()A.(5,0)B.(0,5)C.(√7,0)D.(0,√7)4.(单选题,5分)已知m=log40.4,n=40.4,p=0.40.5,则()A.m<n<pB.m<p<nC.p<n<mD.n<p<m5.(单选题,5分)曲线y=(x3+x2)e x在x=1处的切线方程为()A.y=7ex-5eB.y=7ex+9eC.y=3ex+5eD.y=3ex-5e6.(单选题,5分)设等差数列{a n}的前n项和为S n,若a4=11,S15=15,则a2=()A.18B.16C.14D.127.(单选题,5分)要得到函数y=−√2sin3x的图象,只需将函数y=sin3x+cos3x的图象()A.向右平移3π个单位长度4个单位长度B.向右平移π2C.向左平移个π单位长度4D.向左平移个π单位长度28.(单选题,5分)若5个人按原来站的位置重新站成一排,恰有两人站在自己原来的位置上的概率为()A. 12B. 14C. 16D. 189.(单选题,5分)定义在R上的奇函数f(x)满足,当x≤0时f(x)=e x-e-x,则不等式f (x2-2x)-f(3)<0的解集为()A.(-1,3)B.(-3,1)C.(-∞,-1)∪(3,+∞)D.(-∞,-3)∪(1,+∞)10.(单选题,5分)过原点O作直线l:(2m+n)x+(m-n)y-2m+2n=0的垂线,垂足为P,则P到直线x-y+3=0的距离的最大值为()A. √2 +1B. √2 +2C. 2√2 +1D. 2√2 +211.(单选题,5分)已知圆锥的母线长l为4,侧面积为S,体积为V,则V取得最大值时圆S锥的侧面积为()A. 2√2πB. 3√2πC. 6√2πD. 8√2π12.(单选题,5分)已知点A是双曲线x2a2−y2b2=1(a>0,b>0)的右顶点,若存在过点N(3a,0)的直线与双曲线的渐近线交于一点M,使得△AMN是以点M为直角顶点的直角三角形,则双曲线的离心率()A.存在最大值3√24B.存在最大值2√33C.存在最小值3√24D.存在最小值2√3313.(填空题,5分)已知向量a⃗ =(2,3),b⃗⃗ =(-1,m),且a⃗与a⃗+b⃗⃗垂直,则m=___ .14.(填空题,5分)已知所有项均为正数的等比数列{a n}的前n项和为Sn,若a1=1,S4=a4+21,则公比q=___ .15.(填空题,5分)二项式(x3√x )7的展开式中,x4的系数为___ .16.(填空题,5分)已知角α∈(π,32π),β∈(0,π2),且满足tanα=1+sinβcosβ,则β=___(用α表示)17.(问答题,12分)在△ABC中,角A,B,C所对的边分别为a,b,c且cos2C-cos2B=sin2A--sinAsinC.(Ⅰ)求角B的值;(Ⅱ)若△ABC的面积为3√3,b= √13,求a+c的值.18.(问答题,12分)如图所示的多面体ABCDEF中,四边形ABCD是边长为2的正方形,ED || FB,DE= 12BF,AB=FB,FB⊥平面ABCD(Ⅰ)设BD与AC的交点为O,求证:OE⊥平面ACF;(Ⅱ)求二面角E-AF-C的正弦值.19.(问答题,12分)已知椭圆x2a2+y2b2=1 (a>b>0)的离心率e=√32,且经过点(√3,12),A,B,C,D为椭圆的四个顶点(如图),直线l过右顶点A且垂直于x轴.(1)求该椭圆的标准方程;(2)P为l上一点(x轴上方),直线PC,PD分别交椭圆于E,F两点,若S△PCD=2S△PEF,求点P的坐标.20.(问答题,12分)设函数f(x)=ln(1+x),g(x)=xf'(x),x≥0,其中f'(x)是f (x)的导函数.(1)若f(x)≥ag(x)恒成立,求实数a的取值范围;(2)设n∈N*,比较g(1)+g(2)+⋅⋅⋅+g(n)与n-f(n)的大小,并说明理由.21.(问答题,12分)某电子公司新开发一电子产品,该电子产品的一个系统G有3个电子元件组成,各个电子元件能否正常工作的概率均为12,且每个电子元件能否正常工作相互独立.若系统G中有超过一半的电子元件正常工作,则G可以正常工作,否则就需要维修,且维修所需费用为500元.(Ⅰ)求系统不需要维修的概率;(Ⅱ)该电子产品共由3个系统G组成,设ξ为电子产品需要维修的系统所需的费用,求ξ的分布列与期望;(Ⅲ)为提高G系统正常工作概率,在系统内增加两个功能完全一样的其他品牌的电子元件,每个新元件正常工作的概率均为p,且新增元件后有超过一半的电子元件正常工作,则G可以正常工作,问:p满足什么条件时,可以提高整个G系统的正常工作概率?22.(问答题,10分)已知平面直角坐标系中,曲线C1的参数方程为{x=2cosφy=1+cos2φ(φ为参数),以原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为θ=π3(ρ∈R)(Ⅰ)求曲线C2的直角坐标方程;(Ⅱ)求曲线C1与曲线C2交点的直角坐标23.(问答题,0分)已知函数f(x)=|x-1|+|2x+4|.(Ⅰ)求不等式f(x)>6的解集;(Ⅱ)若f(x)-|m-1|≥0恒成立,求实数m的取值范围2019-2020学年河南省南阳一中高三(下)第九次考试数学试卷(理科)参考答案与试题解析试题数:23,总分:1501.(单选题,5分)已知集合A={x|-3<x<2},B={x|lnx>0},则A∩B=()A.{-3,-2,-1,0,1}B.{1,2}C.{x|-3≤x≤1}D.{x|1<x<2}【正确答案】:D【解析】:先解出B中不等式,然后根据交集的定义求解即可.【解答】:解:因为:lnx>0,所以x>1,故B={x|x>1},故A∩B={x|1<x<2}.故选:D.【点评】:本题考查集合的运算以及不等式的解法.属于基础题.2.(单选题,5分)已知复数z=13+4i,则下列说法正确的是()A.复数z的实部为3B.复数z的虚部为425iC.复数z的共轭复数为325+425iD.复数的模为1【正确答案】:C【解析】:利用复数代数形式的乘除运算化简,然后逐一核对四个选项得答案.【解答】:解:∵ z=13+4i =3−4i25=325−425i,∴z的实部为325,虚部为−425,z的共轭复数为325+425i,模为√(325)2+(425)2=15,【点评】:本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.(单选题,5分)椭圆x29+y216=1的一个焦点坐标为()A.(5,0)B.(0,5)C.(√7,0)D.(0,√7)【正确答案】:D【解析】:判断椭圆的焦点坐标所在的轴,然后求解即可.【解答】:解:椭圆x 29+y216=1的焦点坐标在y轴,又因为a=4,b=3,所以c= √7,故双曲线x 29+y216=1的上焦点的坐标是(0,√7).故选:D.【点评】:本题考查椭圆的简单性质的应用,是基本知识的考查.4.(单选题,5分)已知m=log40.4,n=40.4,p=0.40.5,则()A.m<n<pB.m<p<nC.p<n<mD.n<p<m【正确答案】:B【解析】:根据幂函数,指数函数,对数函数的性质可得.【解答】:解:因为m=log40.4<0,n=40.4>1,0<p=0.40.5<1,所以m<p<n.故选:B.【点评】:本题考查了不等关系与不等式,幂函数,指数函数,对数函数的性质,属基础题.5.(单选题,5分)曲线y=(x3+x2)e x在x=1处的切线方程为()A.y=7ex-5eB.y=7ex+9eD.y=3ex-5e【正确答案】:A【解析】:求出函数的导数,求出切线的斜率,求出切点坐标,然后求解切线方程.【解答】:解:由y=(x3+x2)e x得y'=(3x2+2x)e x+(x3+x2)e x,所以y'|x=1=7e,又x=1时,y=2e,所以所求切线方程为y-2e=7e(x-1),即y=7ex-5e.故选:A.【点评】:本题考查切线方程的求法,函数的导数的应用,是基本知识的考查.6.(单选题,5分)设等差数列{a n}的前n项和为S n,若a4=11,S15=15,则a2=()A.18B.16C.14D.12【正确答案】:B【解析】:由S15=15,⇒a8=1,又a4=11,所以公差d=1−114=−52,即可求出a2.【解答】:解:因为S15=15(a1+a15)2=15a8=15,所以a8=1,又a4=11,所以公差d=1−114=−52,所以a2=a4-2d=11+5=16.故选:B.【点评】:本题考查了等差数列的前n项和,考查了等差数列的通项公式,属于基础题.7.(单选题,5分)要得到函数y=−√2sin3x的图象,只需将函数y=sin3x+cos3x的图象()A.向右平移3π4个单位长度B.向右平移π2个单位长度C.向左平移个π4单位长度D.向左平移个π2单位长度【正确答案】:C【解析】:直接利用三角函数关系式的变换和平移变换的应用求出结果.【解答】:解:因为y=sin3x+cos3x=√2sin(3x+π4),所以将其图象向左平移π4个单位长度,可得y=√2sin[3(x+π4)+π4]=√2sin(3x+π)=−√2sin3x,故选:C.【点评】:本题考查的知识要点:三角函数关系式的恒等变换,平移变换的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.8.(单选题,5分)若5个人按原来站的位置重新站成一排,恰有两人站在自己原来的位置上的概率为()A. 12B. 14C. 16D. 18【正确答案】:C【解析】:分2步分析:① 先从5个人里选2人,其位置不变,有C52=10种,② 对于剩余的三人,因为每个人都不能站在原来的位置上,有2种,所以恰有两人站在自己原来的位置上包含的基本事件为10×2=20,又基本事件总数为120,代入古典概型概率公式即可.【解答】:解:根据题意,分2步分析:① 先从5个人里选2人,其位置不变,有C52=10种选法,② 对于剩余的三人,因为每个人都不能站在原来的位置上,因此第一个人有两种站法,被站了自己位置的那个人只能站在第三个人的位置上,因此三个人调换有2种调换方法,故不同的调换方法有10×2=20种.而基本事件总数为A55=120,所以所求概率为20120=16.故选:C.【点评】:本题考查了古典概型的概率求法,考查了计数原理,排列组合的知识,本题属于基础题.9.(单选题,5分)定义在R上的奇函数f(x)满足,当x≤0时f(x)=e x-e-x,则不等式f (x2-2x)-f(3)<0的解集为()A.(-1,3)B.(-3,1)C.(-∞,-1)∪(3,+∞)D.(-∞,-3)∪(1,+∞)【正确答案】:A【解析】:由已知求得函数解析式,再由导数研究函数的单调性,把f(x2-2x)-f(3)<0转化为关于x的一元二次函数求解.【解答】:解:设x>0,则-x<0,∵f(x)是奇函数,∴f(x)=-f(-x)=-(e-x-e x)=e x-e-x,,∴当x∈R时,f(x)=e x−1e x∴ f′(x)=e x+1>0,则f(x)为R上的单调递增函数,e x故由f(x2-2x)-f(3)<0,得f(x2-2x)<f(3),即x2-2x-3<0,解得-1<x<3,故选:A.【点评】:本题考查函数解析式及其求法,训练了利用导数研究函数的单调性,考查数学转化思想方法,属中档题.10.(单选题,5分)过原点O作直线l:(2m+n)x+(m-n)y-2m+2n=0的垂线,垂足为P,则P到直线x-y+3=0的距离的最大值为()A. √2 +1B. √2 +2C. 2√2 +1D. 2√2 +2【正确答案】:A【解析】:整理直线方程,找到直线过的定点Q(0,2),则点P在以oq为直径的圆上,将P到直线x-y+3=0的距离的最大值转化为圆心(0,1)到直线的距离处理即可.【解答】:解:(2m+n )x+(m-n )y-2m+2n=0整理得(2x+y-2)m+(x-y+2)n=0, 由题意得 {2x +y −2=0x −y +2=0 ,解得 {x =0y =2 ,所以直线l 过定点Q (0,2).因为OP⊥l ,所以点P 的轨迹是以OQ 为直径的圆,圆心为(0,1),半径为1, 因为圆心(0,1)到直线x-y+3=0的距离为 d =√2=√2 ,所以P 到直线x-y+3=0的距离的最大值为 √2+1 . 故选:A .【点评】:本题考查了直线过定点问题,考查了圆的方程,点到直线的距离公式,属于中等题. 11.(单选题,5分)已知圆锥的母线长l 为4,侧面积为S ,体积为V ,则 VS 取得最大值时圆锥的侧面积为( ) A. 2√2π B. 3√2π C. 6√2π D. 8√2π 【正确答案】:D【解析】:设圆锥的底面半径为r ,高为h ,则r 2+h 2=l 2=16,求出 V S的表达式,利用基本不等式求解即可.【解答】:解:设圆锥的底面半径为r ,高为h ,则r 2+h 2=l 2=42=16,所以VS=13πr 2ℎπrl=rℎ12≤112×r 2+ℎ22=112×162=23,当且仅当 r =ℎ=2√2 时取等号. 此时侧面积为 12×2π×2√2×4=8√2π . 故选:D .【点评】:本题考查几何体的体积以及侧面积的求法,基本不等式的应用,考查计算能力. 12.(单选题,5分)已知点A是双曲线 x 2a 2−y 2b 2 =1(a >0,b >0)的右顶点,若存在过点N(3a ,0)的直线与双曲线的渐近线交于一点M ,使得△AMN 是以点M 为直角顶点的直角三角形,则双曲线的离心率( ) A.存在最大值 3√24B.存在最大值2√33C.存在最小值3√24 D.存在最小值2√33【正确答案】:B【解析】:取双曲线的渐近线方程 y =b a x ,设 M (m ,b a m) ,则 AM ⃗⃗⃗⃗⃗⃗⃗=(m −a ,ba m) ,NM ⃗⃗⃗⃗⃗⃗⃗⃗=(m −3a ,b am) . 若存在过N (3a ,0)的直线与双曲线的渐近线交于一点M ,使得△AMN 是以M 为直角顶点的直角三角形,通过 AM ⃗⃗⃗⃗⃗⃗⃗•NM ⃗⃗⃗⃗⃗⃗⃗⃗=0 ,化简利用判别式转化求解离心率的最大值.【解答】:解:双曲线x 2a 2−y 2b 2=1(a >0,b >0) 的右顶点A (a ,0),双曲线的渐近线方程为 y =±ba x , 不妨取 y =bax ,设 M (m ,b a m) ,则 AM ⃗⃗⃗⃗⃗⃗⃗=(m −a ,ba m) , NM ⃗⃗⃗⃗⃗⃗⃗⃗=(m −3a ,b am) . 若存在过N (3a ,0)的直线与双曲线的渐近线交于一点M ,使得△AMN 是以M 为直角顶点的直角三角形,则 AM ⃗⃗⃗⃗⃗⃗⃗•NM ⃗⃗⃗⃗⃗⃗⃗⃗=0 ,即 (m −a )(m −3a )+(b a m)2=0 , 整理可得 (1+b 2a 2)m 2−4am +3a 2=0 , 由题意可知此方程必有解, 则判别式 △=16a 2−12a 2(1+b 2a 2)≥0 ,得a 2≥3b 2,即a 2≥3c 2-3a 2, 解得 1<e =ca ≤2√33, 所以离心率存在最大值 2√33. 故选:B .【点评】:本题考查双曲线的简单性质的应用,直线与双曲线的位置关系,向量的数量积判断直线的垂直,考查转化思想以及计算能力.13.(填空题,5分)已知向量 a ⃗ =(2,3), b ⃗⃗ =(-1,m ),且 a ⃗ 与 a ⃗+b ⃗⃗ 垂直,则m=___ . 【正确答案】:[1]- 113【解析】:由向量的坐标运算求出a⃗ + b⃗⃗,再由两向量垂直数量积为0可得关于m的方程,即可求解.【解答】:解:∵向量a⃗ =(2,3),b⃗⃗ =(-1,m),∴ a⃗+b⃗⃗=(1,3+m),∵ a⃗与a⃗+b⃗⃗垂直,∴2+3(3+m)=0,解得m=- 113.故答案为:- 113.【点评】:本题主要考查向量的坐标运算及数量积与两个平面向量垂直的关系,属于基础题.14.(填空题,5分)已知所有项均为正数的等比数列{a n}的前n项和为Sn,若a1=1,S4=a4+21,则公比q=___ .【正确答案】:[1]4【解析】:利用等比数列的求和公式即可得出.【解答】:解:由题意得S4-a4=21,∴S3=21,又a1=1,∴ S3=1−q31−q=21,解得q=4或q=-5(舍),∴q=4.故答案为:4.【点评】:本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.15.(填空题,5分)二项式(x3√x )7的展开式中,x4的系数为___ .【正确答案】:[1] 283【解析】:由二项式定理及展开式通项公式可得:x4系数为C72•(−23)2=283,得解.【解答】:解:由二项式(x−3√x )7展开式的通项公式为T r+1=C7r•x7−r•(−23x−12)r=C7r•(−23)r•x7−32r得:令7−32r=4,解得r=2,即x4系数为:C72•(−23)2=283,故答案为:283.【点评】:本题考查了二项式定理及展开式通项公式,属中档题.16.(填空题,5分)已知角α∈(π,32π),β∈(0,π2),且满足tanα=1+sinβcosβ,则β=___(用α表示)【正确答案】:[1] 2α−52π【解析】:直接利用三角函数的中的角的范围的应用和三角函数关系式的恒等变换及同角三角函数的应用求出结果.【解答】:解:法一:由tanα=1+sinβcosβ得sinαcosα=1+sinβcosβ,所以sinαcosβ=cosα(1+sinβ),即sin(α-β)=cosα.结合诱导公式得sin(α−β)=sin(π2−α).因为α∈(π,3π2),β∈(0,π2),所以α−β∈(π,3π2),π2−α∈(−π,−π2).由诱导公式可得sin(α−β)=sin[2π+(π2−α)],易知2π+(π2−α)∈(π,32π),因为y=sinx在(π2,32π)上单调递减,所以α−β=2π+(π2−α),即β=2α−52π.法二:由tanα=1+sinβcosβ得tanα=sinβ2+cosβ2cosβ2−sinβ2=tanβ2+11−tanβ2=tan(β2+π4),所以tanα=tan(β2+π4).因为α∈(π,3π2),β∈(0,π2),所以β2+π4∈(π4,π2).由诱导公式可得tan(α-π)=tanα,即tan(α−π)=tan(β2+π4)因为y=tanx在(0,π2)上单调递增,所以α−π=β2+π4,即β=2α−52π.故答案为:2α−52π【点评】:本题考查的知识要点:三角函数关系式的恒等变换,函数的单调性的应用,同角三角函数关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.17.(问答题,12分)在△ABC中,角A,B,C所对的边分别为a,b,c且cos2C-cos2B=sin2A--sinAsinC.(Ⅰ)求角B的值;(Ⅱ)若△ABC的面积为3√3,b= √13,求a+c的值.【正确答案】:【解析】:(Ⅰ)由同角三角函数基本关系式,正弦定理化简已知等式可得a2+c2-b2=ac,根据余弦定理可求cosB的值,结合范围0<B<π,利用特殊角的三角函数值即可求解.(Ⅱ)由(Ⅰ)知B=π3,利用余弦定理可得b2=a2+c2-ac,利用三角形的面积公式可得ac=12,联立可求a+c的值.【解答】:解:(Ⅰ)由cos2C-cos2B=sin2A-sinAsinC,得sin2B-sin2C=sin2A-sinAsinC.由正弦定理,得b2-c2=a2-ac,即a2+c2-b2=ac,所以cosB=a 2+c2−b22ac=ac2ac=12.因为0<B<π,所以B=π3.(Ⅱ)由(Ⅰ)知B=π3,∴b2=a2+c2-2accosB=a2+c2-ac.①又S=12acsinB=3√3,∴ac=12,②又∵ b=√13,∴据① ② 解,得13=(a+c)2-3ac=(a+c)2-3×12,∴a+c=7.【点评】:本题主要考查了同角三角函数基本关系式,正弦定理,余弦定理,特殊角的三角函数值,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18.(问答题,12分)如图所示的多面体ABCDEF中,四边形ABCD是边长为2的正方形,ED || FB,DE= 12BF,AB=FB,FB⊥平面ABCD(Ⅰ)设BD 与AC 的交点为O ,求证:OE⊥平面ACF ; (Ⅱ)求二面角E-AF-C 的正弦值.【正确答案】:【解析】:(Ⅰ)证明DE⊥AC ,在△EOF 中,利用勾股定理证明OE⊥OF ,然后证明OE⊥面ACF .(Ⅱ)以D 为原点,DA ,DC ,DE 方向建立空间直角坐标系,求出面AEF 的一个法向量,面AFC 的一个法向量,设θ为二面角E-AF-C 的平面角,利用空间向量的数量积求解即可.【解答】:(Ⅰ)证明:由题意可知:ED⊥面ABCD , 从而Rt△EDA≌Rt△EDC ,∴EA=EC ,又O 为AC 中点, ∴DE⊥AC ,在△EOF 中, OE =√3,OF =√6,EF =3 , ∴OE 2+OF 2=EF 2,∴OE⊥OF 又AC⋂OF=O , ∴OE⊥面ACF .(Ⅱ)解:ED⊥面ABCD ,且DA⊥DC ,如图以D 为原点,DA ,DC ,DE 方向建立空间直角坐标系,从而E (0,0,1),A (2,0,0),C (0,2,0),F (2,2,2),O (1,1,0) 由(Ⅰ)可知 EO ⃗⃗⃗⃗⃗⃗=(1 ,1,-1)是面AFC 的一个法向量, 设 n ⃗⃗=(x ,y ,z )为面AEF 的一个法向量,由 {AF ⃗⃗⃗⃗⃗⃗•n ⃗⃗=2y +2z =0AE ⃗⃗⃗⃗⃗⃗•n ⃗⃗=−2x +z =0 ,令x=1得 n ⃗⃗=(1 ,-2,2).设θ为二面角E-AF-C 的平面角, 则 |cosθ|=|cos <EO ⃗⃗⃗⃗⃗⃗,n ⃗⃗>|=|EO⃗⃗⃗⃗⃗⃗n ⃗⃗||EO⃗⃗⃗⃗⃗⃗|•|n ⃗⃗|=√33,∴ sinθ=√63. ∴二面E-AF-C 角的正弦值为 √63 .【点评】:本题考查直线与平面垂直的判断定理的应用,二面角的平面角的求法,考查空间想象能力以及逻辑推理能力计算能力. 19.(问答题,12分)已知椭圆x 2a 2+y 2b 2=1 (a >b >0) 的离心率 e =√32 ,且经过点 (√3,12) ,A ,B ,C ,D 为椭圆的四个顶点(如图),直线l 过右顶点A 且垂直于x 轴. (1)求该椭圆的标准方程;(2)P 为l 上一点(x 轴上方),直线PC ,PD 分别交椭圆于E ,F 两点,若S △PCD =2S △PEF ,求点P 的坐标.【正确答案】:【解析】:(1)利用椭圆的离心率 e =√32 ,且经过点 (√3,12) ,列出方程组求解即可. (2)设P (2,m ),m >0,直线PC 的方程为 y =m−12x +1 ,与椭圆联立,利用韦达定理,推出E 的坐标,结合联立方程组 {y =m+12x −1x 24+y 2=1 求出F 点的横坐标,由S △PCD =2S △PEF ,转化求解即可.【解答】:解:(1)因 x 2a 2+y 2b 2=1 (a >b >0) 的离心率 e =√32 ,且经过点 (√3,12) , 所以 {c a=√32(√3)2a 2+14b 2=1……………(2分) 解得a 2=4,b 2=1.所以椭圆标准方程为 x 24+y 2=1 .………(4分)(2)由(1)知椭圆方程为 x 24+y 2=1 ,所以直线l 方程为x=2,C (0,1),D (0,-1). …………(6分)设P (2,m ),m >0,则直线PC 的方程为 y =m−12x +1 ,…………………………(8分)联立方程组 {y =m−12x +1x 24+y 2=1消y 得(m 2-2m+2)x 2+4(m-1)x=0,所以E 点的横坐标为 x E =−4(m−1)m 2−2m+2 ; …………………………(10分) 又直线PD 的方程为 y =m+12x −1 ,联立方程组 {y =m+12x −1x 24+y 2=1消y 得(m 2+2m+2)x 2-4(m+1)x=0,所以F 点的横坐标为 x F =4(m+1)m 2+2m+2. …………………………(12分)由S △PCD =2S △PEF 得 12PC •PDsin∠DPC =2×12PE •PFsin∠EPF , 则有 PC•PDPE•PF =2 ,则2−02+4(m−1)m 2−2m+2•2−02−4(m+1)m 2+2m+2=2 ,…………………………(14分)化简得 m 4+4m4=2 ,解得m 2=2,因为m >0,所以 m =√2 ,所以点P 的坐标为 (2,√2) . …………………………(16分)【点评】:本题考查直线与椭圆的位置关系的应用,考查分析问题解决问题的能力. 20.(问答题,12分)设函数f (x )=ln (1+x ),g (x )=xf'(x ),x≥0,其中f'(x )是f (x )的导函数.(1)若f(x)≥ag(x)恒成立,求实数a的取值范围;(2)设n∈N*,比较g(1)+g(2)+⋅⋅⋅+g(n)与n-f(n)的大小,并说明理由.【正确答案】:【解析】:(1)将已知不等式转化为ln(1+x)≥ ax1+x恒成立,构造函数ϕ(x)=ln(1+x)- ax1+x(x≥0),求导,分a≤1,a>1两种情况讨论,即可得解;(2)在(2)中取a=1,可得ln(1+x)>x1+x ,x>0,令x= 1n,则ln n+1n>1n+1,n依次取1,2,3…,然后各式相加即得到不等式.【解答】:解:(1)已知f(x)≥ag(x)恒成立,即ln(1+x)≥ ax1+x恒成立.设ϕ(x)=ln(1+x)- ax1+x (x≥0),则ϕ′(x)= 11+x- a(1+x)2= x+1−a(1+x)2,………………………(1分)当a≤1时,ϕ(x)≥0仅当x=0,a=1时等号成立,∴ϕ(x)在[0,+∞)上单调递减,又ϕ(0)=0,∴ϕ(x)≥0在[0,+∞)上恒成立,∴a≤1时,ln(1+x)≥ ax1+x恒成立(仅当x=0时等号成立);……………………………………..(3分)当a>1时,对x∈(0,a-1]有ϕ′(x)<0,ϕ(x)在(0,a-1]上单调递减,∴ϕ(a-1)<ϕ(0)=0,即a>1时,存在x>0,使ϕ(x)<0,故知ln(1+x)≥ ax1+x不恒成立.……………………….(5分)综上可知,a的取值范围是(-∞,1].………………………………………………………………………(6分)(2)由题设知g(1)+g(2)+…+g(n)= 12 + 23+…+ nn+1,n-f(n)=n-ln(n+1),比较结果为g(1)+g(2)+…+g(n)>n-ln(n+1).证明如下:上述不等式等价于ln(n+1)>12 + 13+…+1n+1,……………………………………………………………(8分)在(1)中取a=1,可得ln(1+x)>x1+x,x>0,…………………………………………………………(10分).令x= 1n ,n∈N,则ln n+1n>1n+1,故有ln2-ln1>12,ln3-ln2>13,…ln(n+1)-lnn>1n+1,上述各式相加可得ln(n+1)>12 + 13+…+ 1n+1,结论得证……………………………………………………………(12分)【点评】:本题主要考查构造函数解决不等式问题;利用导数求函数的最值,不等式比较大小,累加法的应用,属于一道综合题.21.(问答题,12分)某电子公司新开发一电子产品,该电子产品的一个系统G有3个电子元件组成,各个电子元件能否正常工作的概率均为12,且每个电子元件能否正常工作相互独立.若系统G中有超过一半的电子元件正常工作,则G可以正常工作,否则就需要维修,且维修所需费用为500元.(Ⅰ)求系统不需要维修的概率;(Ⅱ)该电子产品共由3个系统G组成,设ξ为电子产品需要维修的系统所需的费用,求ξ的分布列与期望;(Ⅲ)为提高G系统正常工作概率,在系统内增加两个功能完全一样的其他品牌的电子元件,每个新元件正常工作的概率均为p,且新增元件后有超过一半的电子元件正常工作,则G可以正常工作,问:p满足什么条件时,可以提高整个G系统的正常工作概率?【正确答案】:【解析】:(Ⅰ)用2个电子元件正常工作加上3个电子元件正常工作可得.(Ⅱ)设X为维修维修的系统的个数,则X~B(3,12),且ξ=500X,所以P(ξ=500k)=P(X=k)=C3k•(12)k•(12)3−k,k=0,1,2,3.再求出概率,写出分布列,期望.(Ⅲ)按照原来和后来增加的原件中正常工作的个数分类讨论,利用独立重复试验的概率公式计算可得.【解答】:解(Ⅰ)系统不需要维修的概率为C32•(12)2•12+C33•(12)3=12.(Ⅱ)设X为维修的系统的个数,则X~B(3,12),且ξ=500X,所以P(ξ=500k)=P(X=k)=C3k•(12)k•(12)3−k,k=0,1,2,3.所以ξ的分布列为所以ξ的期望为E(ξ)=0×8 +500×8+1000×8+1500×8=750..(Ⅲ)当系统G有5个电子元件时,原来3个电子元件中至少有1个元件正常工作,G系统的才正常工作.若前3个电子元件中有1个正常工作,同时新增的两个必须都正常工作,则概率为C31• 12•(12)2•p2= 38p2;若前3个电子元件中有两个正常工作,同时新增的两个至少有1个正常工作,则概率为C32•(12)2• 12• C21•p•(1-p)+ C32•(12)2• 12p2= 38(2p-p2);若前3个电子元件中3个都正常工作,则不管新增两个元件能否正常工作,系统G均能正常工作,则概率为C33•(12)3= 18.所以新增两个元件后系统G能正常工作的概率为38 p2+ 38(2p-p2)+ 18= 34p+ 18,于是由34 p+ 18- 12= 38(2p-1)知,当2p-1>0时,即12<p<1时,可以提高整个G系统的正常工作概率.【点评】:本题考查了离散型随机变量的期望和方差,属中档题.22.(问答题,10分)已知平面直角坐标系中,曲线C1的参数方程为{x=2cosφy=1+cos2φ(φ为参数),以原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为θ=π3(ρ∈R)(Ⅰ)求曲线C2的直角坐标方程;(Ⅱ)求曲线C1与曲线C2交点的直角坐标【正确答案】:【解析】:(Ⅰ)直接利用转换关系式,把参数方程极坐标方程和直角坐标方程之间进行转换. (Ⅱ)利用直线和曲线的位置关系式的应用,建立方程组,进一步求出交点的坐标.【解答】:解:(I )依题意,曲线C 2的极坐标方程为 θ=π3(ρ∈R ) 转换为的直角坐标方程为y= √3x .(II )因为曲线C 1的参数方程为 {x =2cosφy =1+cos2φ (φ为参数),所以曲线的直角坐标方程为 y =12x 2 (x∈[-2,2]),联立 {y =√3x y =12x 2 解方程组得 {x =0y =0或 {x =2√3y =6 , 根据x 的范围应舍去 {x =2√3y =6, 故交点的直角坐标为(0,0).【点评】:本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,直线和曲线的位置关系式的应用,方程组的解法和应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.23.(问答题,0分)已知函数f (x )=|x-1|+|2x+4|.(Ⅰ)求不等式f (x )>6的解集;(Ⅱ)若f (x )-|m-1|≥0恒成立,求实数m 的取值范围【正确答案】:【解析】:(1)利用分段讨论法,去掉绝对值,解不等式即可;(2)利用绝对值不等式求出f (x )的最小值,再把f (x )-|m-1|≥0恒成立化为|m-1|≤3,从而求出实数m 的取值范围.【解答】:解:(1)依题意,|x-1|+|2x+4|>6,当x <-2时,原式化为1-x-2x-4>6,解得x <-3,故x <-3;当-2≤x≤1时,原式化为1-x+2x+4>6,解得x >1,故无解;当x >1时,原式化为x-1+2x+4>6,解得x >1,故x >1;综上所述,不等式f(x)>6的解集为(-∞,-3)∪(1,+∞);(2)因为f(x)=|x-1|+|2x+4|=|x-1|+|x+2|+|x+2|≥|x-1|+|x+2|≥3,当且仅当x=-2时,等号成立.故f(x)-|m-1|≥0恒成立等价于|m-1|≤3;即-3≤m-1≤3,解得-2≤m≤4;故实数m的取值范围为[-2,4].【点评】:本题出来含有绝对值的不等式解法与应用问题,也考查了不等式恒成立应用问题,是基础题.。
2019-2020学年济南市高三二模考试(针对性训练)数学模拟试题(理)有答案
高三针对性训练理科数学本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分150分,考试时间120分钟。
考试结束后。
将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B +=+; 如果事件A ,B 独立,那么()()()P A P A P B =g ;n 次独立重复试验中事件A 恰好发生k 次概率为()()10,1,2,,n kk kn C p p k n --=⋅⋅⋅.第I 卷(共50分)一、选择题:本大题共10个小题.每小题5分,共50分.每小题给出的四个选项中只有一项是符合题目要求的.(1)已知全集U=R ,集合{}{}220,sin ,A x x x B y y x x R =-≤==∈,则图中阴影部分表示的集合为(A) []1,2- (B) [)(]1,01,2-⋃(C) []0,1 (D) (](),12,-∞-⋃+∞(2)定义运算a cb dad bc =-,复数z 满足12z i ii =+,则复数z 在复平面内对应的点位于 (A)第一象限 (B)第二象限 (C)第三象限(D)第四象限(3)若随机变量X 服从正态分布N(1,4),设()()03,12,P X m P X n m n <<=-<<=,则的大小关系为 (A) m n > (B) m n < (C) m n = (D)不确定(4)若直线0x y m -+=被圆()2215x y -+=截得的弦长为23,则m 的值为 (A)1(B) 3-(C)l 或-3 (D)2(5)随着“银发浪潮”的涌来,养老是当下普遍关注的热点和难点问题.济南市创新性的采用“公建民营”的模式,建立标准的“日间照料中心”,既吸引社会力量广泛参与养老建设,也方便规范化管理.计划从中抽取5个中心进行评估,现将所有中心随机编号,用系统(等距)抽样的方法抽取,已知抽取到的号码有5号,23号和29号,则下面号码中可能被抽到的号码是 (A)9 (B)12 (C)15 (D)17(6)命题p :将函数cos sin y x x =⋅的图象向右平移34π个单位可得到1cos 22y x =的图象;命题q :对0m ∀>,双曲线2222x y m -=的离心率为3.则下列结论正确的是(A)p 是假命题(B) p ⌝是真命题(C) p q ∨是真命题 (D) p q ∧是假命题(7)若实数变量,x y 满足约束条件23x y x y ++-≤,目标函数()1z ax y a R =-+∈.有如下结论:①可行域外轮廓为矩形;②可行域面积为3;③1a z =时,的最小值为1-;④2a =时,使得z 取最大值的最优解有无数组;则下列组合中全部正确的为 (A)①② (B)②③ (C)①③ (D)③④(8)如图所示,两个非共线向量,OA OB u u u r u u u r的夹角为θ,N 为OB 中点,M 为OA上靠近A 的三等分点,点C 在直线MN 上,且OC xOA yOB =+u u u r u u u r u u u r(),x y R ∈,则22x y +的最小值为(A)425(B)25 (C)49(D)23(9)函数()()()112002nmf x ax x a ⎡⎤=->⎢⎥⎣⎦在区间,上的图象如图所示,则,m n 的值可能是(A)1,1m n == (B) 1,2m n == (C) 2,3m n == (D) 3,1m n ==(10)执行如下框图所示算法,若实数,a b 不相等,依次输入,,a b a b +输出值依次记为()()()()()(),,f a b f a f b f a b f a f b ++--,则的值为(A)0 (B)1或-1 (C)0或±1 (D)以上均不正确第Ⅱ卷(共100分)二、填空题:本大题共5个小题。
2019-2020年高三二模数学试题 含答案
2019-2020年高三二模数学试题 含答案一、填空题(每小题4分,共56分)1.已知集合{}{}221,,0,1<<=-=x x B a A ,若,则实数的取值范围是 2.函数cos ()sin ()y x x ππ22=+-+44的最小正周期为 . 3.在等差数列中,已知则 .4.若,是直线的倾斜角,则= .(用的反正切表示) 5.设(i 为虚数单位),则 .6.直角坐标系内有点A (2,1),B (0,2),将线段绕直线旋转一周,所得到几何体的体积为 .7.已知平面向量,若,则8.设,行列式34210231D -=xa 中第3行第2列的代数余子式记作,函数的反函数经过点,则a= .9.某学生参加3门课程的考试。
假设该学生第一门、第二门及第三门课程取得合格水平的概率依次为,,且不同课程是否取得合格水平相互独立。
则该生只取得一门课程合格的概率为 .10.已知是椭圆上的一点,为椭圆的左、右焦点,则的最小值为 . 11.已知是等差数列,设.某学生设计了一个求的算法框图(如图),图中空白处理框中是用的表达式对赋值,则空白处理框中应填入:←____________.12.不等式对一切非零实数均成立,则实数的范围为13.平面直角坐标系中,为坐标原点.定义、两点之间的“直角距离”为1212(,)d P Q x x y y =-+-,已知点,点M 是直线30(1)kx y k k -++=?上的动点,的最小值为 .14.当为正整数时,用表示的最大奇因数,如,设(1)(2)(3)(4)(21)(2)n n n S N N N N N N =+++++-+K ,则数列的前项和的表达式为 .二、选择题(每小题5分,共20分)15.已知,是两条不同的直线,是一个平面,以下命题正确的是( ) (A ) 若, , 则; (B )若, , 则 ; (C )若, , 则 ; (D ) 若, , 则 ;16.以下是科学家与之相研究的领域不匹配的是( ) (A )笛卡儿—解析几何; (B )帕斯卡—概率论;(C )康托尔—集合论;(D )祖暅之—复数论;(第11题图)17.已知各项均不为零的数列,定义向量,,. 下列命题中真命题是( ) (A) 若总有成立,则数列是等差数列(B) 若总有成立,则数列是等比数列 (C) 若总有成立,则数列是等差数列(D) 若总有成立,则数列是等比数列 18.方程的正根从小到大地依次排列为,则正确的结论为( ) (A )(B ) (C ) (D )三、解答题(12+14+14+16+18,共74分)19.已知向量()()wx a b wx a sin 3,1,1,cos 1+=+=(为常数且),函数在上的最大值为.(1)求实数的值;(2)把函数的图象向右平移个单位,可得函数的图象,若在上为增函数,求的最大值.20.已知三棱柱的侧棱与底面垂直,11,,AA AB AC AB AC M ===⊥是的中点,是的中点,点在上,且满足(1)证明:;(2)当取何值时,直线与平面所成的角最大?并求该角的最大值的正切值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高三数学 基础练习(24)理
一、填空题:本大题共10小题,每小题5分,共计50分. 1.抛物线的焦点坐标为 .
2.已知集合U ={2,3,6,8},A ={2,3},B ={2,6,8},则(∁U A )∩B = .
3.已知双曲线的一条渐近线方程为则的值为 .
4.的值为 .
5.已知椭圆x 210-m +y 2
m -2=1,长轴在y 轴上.若焦距为4,则m 等于________.
6.如图所示的算法中,输出的结果是 .
7.从某班学生中任意找出一人,如果该同学的身高小于160 cm 的概率为0.2,该同学的身高在[160,175](单位:cm)内的概率为0.5,那么该同学的身高超过175 cm 的概率为 .
8.已知等比数列的前项和为,且,,
( 第6题 )
则数列的公比为 .
9.抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )=1
2
,
P (B )=16
,则出现奇数点或2点的概率为 .
10.已知函数⎪⎩⎪
⎨⎧∈-∈=]3,1(,2
329]1,0[,3)(x x x x f x ,当时,,
则实数的取值范围是 .
二、解答题:解答应写出必要的文字步骤.
11.(本小题满分14分)已知,是第四象限角.
(1)求的值; (2)求的值.
2019-2020年高三数学 基础练习(25)理
1.抛物线的准线方程为 .
2.已知集合{|1},{|2}A x x B x x =>-=≤,那么 .
3.函数f (x )=x
ln x 的单调递减区间是 .
4.在等比数列{}中,若,则的值是 .
5.如图为某个容量为100的样本的频率分布直方图,分组为[96,98),[98,100),[100,102),[102,104),[104,106],则在区间[98,100)上的数据的频数为.
6.某大学共有学生5600人,其中专科生1300人,本科生3000人,研究生1300人,现采用分层抽样的方法,抽取容量为280的样本,则抽取的本科生人数为.
7.若函数f(x)=ax2-x-1有且仅有一个零点,则实数a的取值为___ _____.
8.从装有3个红球、2个白球的袋中任取3个球,则所取3个球中至少有1个白球的概率是_______.
9.函数f(x)=3x-7+ln x的零点位于区间(n,n+1)(n∈N)内,则n=.
10.已知△ABC中,∠C=90°,,,分别为边上的点,
且,,则.
二、解答题:解答应写出必要的文字步骤.
11.(本小题满分14分)
给定椭圆C:().称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到点F的距离为.
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,,使得,与椭圆C都只有一个交
点,试判断,是否垂直,并说明理由.。