北师大版-七年级下数学第一单元试题
北师大版数学七年级下册 第一单元综合测试卷(解析版)
北师大版数学七年级下册第一单元综合测试卷(解析版)一、选择题。
01.下列算式的运算结果为a⁴的是 ( )A.a⁴•a B.(a²)² C.a³+a³ D.a⁴÷a02 .下列运算正确的是 ( )A.3a²+a=3a³ B.2a³•(-a²)=2a⁵C.4a⁶+2a²=2a³ D.(-3a)²-a²=8a²03.下列计算结果正确的是 ( )A.2a³+a³=3a⁶B.(-a)²•a³=-a⁶C.(-1)⁻²=4 D.(-2)⁰=-1204.下列运算正确的是 ( )A.5m+2m=7m² B.-2m²•m³=2m⁵C.(-a²b)³=-a⁶b³ D.(b+2a)(2a-b)=b²-4a²05.下列各式的计算结果等于x²-5x-6的是 ( )A.(x-6)(x+1) B.(x+6) (x-l)C.(x-2)(x+3) D.(x+2)(x-3)06.下列各式的计算结果错误的是 ( )A.(a+b)(a-b)=a²-b²B.(x+l)(x-l)=x²-1C.(2x+l) (2x-l)=2x²-1D.(-3x+2)(-3x-2)=9x²-407.如果x²+2mx+9是一个完全平方式,则m的值是( )A.3 B.±3 C.6 D.±608.有下列运算:①a³+a³=a⁶;②(-a³)²=a⁶;③(-1)⁰=1;④(a+b)²=a²+b²;⑤a³•a³=a⁹;⑥(-ab²)³=ab⁶.其中正确的有 ( )A.1个 B.2个 C.3个 D.4个09.任意给定一个非零数,按下列程序计算,最后输出的结果是( )A.m B.m² C.m+l D.m-l10.计算(5m²+15m³n-20m⁴)÷(-5m²),结果正确的是( )A.1-3mn+4m² B.-1-3m+4m²C.4m²-3mn-1 D.4m²-3mn11.如图,从边长为(a+l)cm的正方形纸片中剪去一个边长为(a-l)cm的正方形(a >1),剩余部分沿虚线又剪拼成一个长方形(不重叠且无缝隙),则该长方形的面积是 ( )A.2 cm² B.2a cm²C.4a cm²D. (a²-l)cm²二、填空题.12.计算:3a³•a²-2a⁷÷a²=______________.13.一个长方形的面积为a²+2a,若一边长为a,则另一边长为___________.14如图①,将边长为a的大正方形剪去一个边长为b的小正方形并沿图中的虚线剪开,拼接后得到图②,这种变化可以用含字母a,b的等式表示为_____________.15.若(x+1)(2x-3)=2x ²+mx+n ,则m=______,n=____.16.若m ²-n ²=6,且m-n=3,则m+n=________.若x+y=3,xy=l ,则X ²+y ²=_____________.三、解答题.17 .先化简,再求值:(2+x)(2-x )+(x-1)(x+5),其中x=32.18 先化简,再求值:(m-l)²-m(n-2)-(m-l)(m+1),其中m 和n 是面积为5的直角三角形的两直角边长.19 .某种大肠杆菌的半径R 是3.5×10⁻⁶米,一只苍蝇携带这种细菌1.4×l0³个,如果把这个细菌近似地看成球状,那么这只苍蝇所携带的所有大肠杆菌的总体积是多少?(结果保留到小数点后3位,球的体积公式为343V R π)20. 已知(x+y)²=49,(x-y)²=1,求下列各式的值.(l)x ²+y ²;(2)xy .21 计算:(1)4-(-2)⁻²-3²÷(-3)⁰; (2)(2a+b)(b-2a)-(a-3b)².22. (1)已知m+n=4,mn=2,求m²+n²的值;(2)已知aᵐ=3,aⁿ=5,求a³ᵐ⁻²ⁿ的值.23. 两个两位数的十位上的数字相同,其中一个数的个位上的数字是6,另一个数的个位上的数字是4,它们的平方差是220,求这两个两位数.24 已知(x²+mx+n)(x+l)的结果中不含x²项和x项,求m,n的值.25 观察下列关于自然数的等式:(l)3²-4×l²=5;(2)5²-4×2²=9;(3)7²-4×3²=13;根据上述规律解决下列问题.(1)完成第五个等式:11²-4×____²=____;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.26 对于任何实数,我们规定符号a b c d 的意义是a b c d =ad-bc . (1)按照这个规定请你计算5678的值;(2)按照这个规定请你计算:当x ²-3x+1=0时,12x x +- 31xx -值.27 阅读下面的文字,回答后面的问题.求5+5²+5³+…+5¹⁰⁰的值.解:令S=5+5²+5³+…+5¹⁰⁰①, 将等式两边同时乘5,得5S=5²+5³+5⁴+…+5¹⁰¹②,②-①得4S=5¹⁰¹-5,∴101554S -=. 即5+5²+5³+…+5¹⁰⁰=101554- 问题:(1)求2+2²+2³+…+2¹⁰⁰的值;(2) 求4+12+36+…+4×3⁴⁰的值.第一章综合测试卷01 B解析:A.a⁴•a=a⁵.不符合题意;B. (a²)²=a⁴,符合题意;C.a³+a³=2a³,不符合题意;D.a⁴÷a=a³,不符合题意,故选B.02 D解析:A 3a²与a不是同类项,不能合并,∴A选项错误;B.2a³•(-a²)=2×(-1)a⁵=-2a⁵,∴B选项错误;C.4a⁶与2a²不是同类项,不能合并,∴C选项错误;D.(-3a)²-a²= 9a²-a²=8a²,∴D选项正确.故选D。
(新北师大版)数学七年级(下)第一单元测试题及答案
北师版七年级下册第一单元测试卷姓名 成绩一、选择题。
1、下列判断中不正确的是( )A.单项式m的次数是0B.单项式y的系数是1C.21,-2a都是单项式 D.x x -2+1是二次三项式2、如果一个多项式的次数是6次,那么这个多项式任何一项的次数( )A 、都小于6B 、都等于6C 、都不小于6D 、都不大于63、下列各式中,运算正确的是( )A 、422x x x =+B 、123=-n m n m y x y xC 、552332954y x y x y x =+D 、424242235y x y x y x -=+-4、下列多项式的乘法中,可以用平方差公式计算的有( )A 、)21)(21(--+x x B 、)2)(2(--+-m mC 、)22)(22(b a b a -+-D 、)33)(33(33y x y x +-5、在代数式π,2,52,,2,21,2222x yx x x a b b b a ++--+中,下列结论正确的是( )A 、有3个单项式,2个多项式B 、有4个单项式,2个多项式C 、有5个单项式,3个多项式D 、有7个整式6、关于200820082)21(⋅计算正确的是( )A 、0B 、1C 、-1D 、240167、多项式5334826x y x a a +--中,最高次项的系数和常数项分别为( )A 、2和8B 、4和-8C 、6和8D 、-2和-88、若关于x 的积)7)((+-x m x 中常数项为14,则m 的值为( )A 、2B 、-2C 、7D 、-79、已知31=+m m ,则441m m +的值是( )A 、9B 、49C 、47D 、110、若))(3(152n x x mx x ++=-+,则m 的值为( )A 、-5B 、5C 、-2D 、2二、填空题11、)3()918(252ab b a b a -÷-=_________。
12、若016822=+-+-n n m ,则______________,==n m 。
北师大版初中数学七年级下册第一章综合测试试卷-含答案01
第一章综合测试一、选择题(共10小题) 1.下列计算中,正确的是( ) A .235a a a += B .2552a a =−(())C .32365a b a b =()D .236a a a = 2.化简32x −()的结果是( ) A .6x − B .5x − C .6xD .5x 3.计算2223a a −÷)(的结果是( )A .29a −B .46aC .23aD .29a4.下列变形正确的是( ) A .2131313m m m −+=−()() B .24416n n n −−−+=−−()()C .222244x y x xy y −+=−+() D .22232343a b c a b c a b c ++−+=−+()()()5.若315x =,35y =,则3x y −等于( ) A .5B .3C .15D .106.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000 000 076克,用科学记数法表示是( ) A .87.610⨯克B .77.610−⨯克C .87.610−⨯克D .97.610−⨯克7.若2322x x p mx nx ++=+−()(),则下列结论正确的是( ) A .6m =B .1n =C .2p =−D .3mnp =8.计算:2011201020102 1.513⨯⨯−()()()的结果为( )A .23B .23−C .32D .32−9.已知3181a =,4127b =,619c =,则下列关系中正确的是( ) A .b c a >>B .a c b >>C .a b c >>D .a b c <<10.如图所示,有三种卡片,其中边长为a 的正方形1张,边长为a 、b 的矩形卡片4张,边长为b 的正方形4张用这9张卡片刚好能拼成一个正方形,则这个正方形的面积为( )A .2244a ab b ++B .22484a ab b ++C .2244a ab b ++D .222a ab b ++二、填空题(共10小题)11.计算:332−−=()________. 12.当113a −=()时,a 的取值范围是________.13.计算:2233m n m n −+−−=()()________.14.若数m ,n 满足2|2|20180m n −+−=(),则10m n −+=________. 15.若24x kx ++是完全平方式,则k 的值是________. 16.计算:432682x x x −÷−=)()(________. 17.已知13a a+=,则221a a +的值是________.18.若32751222m n m a b a b a b −=−())(;则m =________,n =________.19.已知4x a =,7y a =,则x y a +=________.20.小红:如图是由边长分别为a ,b 的两个正方形拼成的图形;小明:阴影部分的面积等于图中两个正方形的面积和减去3个不同的直角三角形的面积.请根据小明和小红的对话,用含有a ,b 的式子表示如图所示的阴影部分的面积________.三、解答题(共7小题) 21.计算:(1)2423xy xy −().(2)322223533y y y y −+÷().22.计算:2x y x y x y +−+−()()()23.已知32n x =,23n y =,求332232n n nx y x y +−((()))的值.24.先化简,再求值:2[22522]3x y x y x x y x y y +−−+++÷−()()()()(),其中1x =,2y =.25.如图所示的大正方形是由两个小正方形和两个长方形组成.(1)通过两种不同的方法计算大正方形的面积,可以得到一个数学等式;(2)利用(1)中得到的结论,解决下面的问题:若2a b +=,3ab =−, 求:①22a b +; ②44a b +.26.在日历上,我们可以发现其中某些数满足一定的规律,如图是2020年1月份的日历.如图所选择的两组四个数,分别将每组数中相对的两数相乘,再相减,例如:911317⨯−⨯=________,1214620⨯−⨯=________,不难发现,结果都是________. (1)请将上面三个空补充完整;(2)请你利用整式的运算对以上规律进行证明.27.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是________.(请选择正确的一个) A .22a b a b a b −=+−()()B .2222()a ab b a b −+=−C .2a ab a a b +=+()(2)若2216x y −=,8x y +=,求x y −的值;(3)计算:222111111234−−−()()() (22)111120182019−−()().第一章综合测试答案解析一、 1.【答案】B【解析】解:A 、2a 与3a 不是同类项,所以不能合并,故本选项不合题意;B 、2552a a =−(()),正确;C 、32396a b a b =(),故本选项不合题意;D 、235a a a =,故本选项不合题意.故选:B.2.【答案】C【解析】解:原式6x =,故选:C. 3.【答案】D【解析】解:222422399a a a a a −÷=÷=().故选:D.4.【答案】C【解析】先根据平方差公式和完全平方公式求出每个式子的值,再判断即可.解:A 、2131319m m m −+=−()(),故本选项不符合题意;B 、24416n n n −−−+=−()(),故本选项不符合题意;C 、222244x y x xy y −+=−+(),故本选项符合题意;D 、22232323a b c a b c a c b ++−+=+−()()()(),故本选项不符合题意;故选:C. 5.【答案】B【解析】根据同底数幂的除法,底数不变,指数相减,可得答案. 解:3331553x y x y −=÷=÷=,故选:B. 6.【答案】C【解析】对于绝对值小于1的数,用科学记数法表示为10n a ⨯形式,其中110a ≤<,n 是一个负整数,除符号外,数字和原数左边第一个不为0的数前面0的个数相等,根据以上内容写出即可. 解:80.0000000767.610−=⨯克克,故选:C. 7.【答案】D【解析】直接利用多项式乘以多项式化简得出答案.解:2322x x p mx nx ++=+−()(),2233222x p x p mx nx ∴+++=+−(),故3m =,32p n +=,22p =−,解得:1p =−,1n =−,故3mnp =.故选:D.8.【答案】A【解析】分别根据积的乘方以及1−的偶数次幂等于1解答即可.解:2011201020102010201020102010222232221.51 1.51133332333⨯⨯−=⨯⨯⨯=⨯⨯=⨯=()()()()()().故选:A. 9.【答案】C【解析】直接利用幂的乘方运算法则将原式变形进而得出答案.解:31124813a ==,41123273b ==,6112293c ==,a b c ∴>>.故选:C. 10.【答案】A【解析】由边长为a 的正方形1张,边长为a 、b 的矩形卡片4张,边长为b 的正方形4张,可得拼成的正方形面积为2244a ab b ++,根据完全平方式可求正方形边长. 解:由题意,得2244a ab b ++,故选:A.二、11.【答案】827− 【解析】原式利用负整数指数幂法则计算即可得到结果.解:原式827=−12.【答案】13a ≠【解析】直接利用零指数幂的定义分析得出答案.解:当0113a −=()时,a 的取值范围是:13a ≠.13.【答案】2249m n −【解析】根据平方差公式,可得答案.解:原式2223m n =−−()2223m n =−() 2249m n =− 14.【答案】32【解析】直接利用绝对值以及偶次方的性质得出m ,n 的值,进而得出答案.解:2|2|20180m n −+−=(),2m ∴=,2018n =,则1013122m n −+=+=. 15.【答案】4±【解析】这里首末两项是x 和2的平方,那么中间项为加上或减去x 和2的乘积的2倍也就是kx ,由此对应求得k 的数值即可. 解:24x kx ++是一个多项式的完全平方,22kx x ∴=±⨯,4k ∴=±.16.【答案】234x x −+【解析】根据多项式除以单项式,用多项式的每一项除以单项式,把所得的商相加,可得答案. 【解答】解;原式42326282x x x x =÷−−÷−()()234x x =−+.17.【答案】7【解析】把已知条件两边平方,然后整理即可求解.完全平方公式:2222a b a ab b ±=±+().解:13a a +=,22129a a ∴++=,221927a a∴+=−=. 18.【答案】1 2【解析】直接利用积的乘方运算法则以及单项式乘以单项式运算法则计算得出答案.解:32751222m n m a b a b a b −=−)()(,3322751824m n m a b a b a b ∴−=−))((,32327522m n m a b a b ++∴−=−,325m ∴+=,解得:1m =,327m n +=,解得:2n =.答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
初中数学北师大版七年级下学期 第一章 单元测试卷及答案
初中数学北师大版七年级下学期第一章单元测试卷一、单选题1.下列运算正确的是()A.3a2÷2a2=1B.(a2)3=a5C.a2·a4=a6D.(2a2)2=2a42.计算(a3)2正确的是()A.a B.a5C.a6D.a83.下列各式能用平方差公式计算的是()A.(3x+2y)(2x−3y)B.(3x+2y)(3x−y)C.(3x+2y)(3x−2y)D.(3x−2y)(2y−3x)4.2020年疫情的影响,人类的健康备注关注。
同时我们生存的环境雾霾天气引发关注,宽空气中漂浮着大量的粉尘颗粒,若某各粉尘颗粒的直径约为0.0000065米,则0.0000065用科学记数法表示为()A.6.5×10-5 B.6.5×10-6 C.6.5×10-7 D.65×10-65.如图,边长为(m+4)的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠、无缝隙),若拼成的矩形一边长为4,则另一边长为()A.m+4B.m+8C.2m+4D.2m+86.如图,边长为a的正方形中剪去一个边长为b的小正方形,剩下部分正好拼成一个等腰梯形,利用这两幅图形面积,能验证怎样的数学公式?()A.a2−b2=(a+b)(a−b)B.(a+b)2−(a−b)2=4abC.(a+b)2=a2+2ab+b2D.(a−b)2=a2−2ab+b27.a=5140,b=3210,c=2280,则a、b、c的大小关系是()A.a<b<c B.b<a<c C.c<a<b D.c<b<a8.已知2n+212+1(n<0)是一个有理数的平方,则n的值为()A .﹣16B .﹣14C .﹣12D .﹣10二、填空题9.某种计算机完成一次基本运算的时间约为 0.0000000001s ,把 0.0000000001 用科学记数法可以表示为 .10.计算: −2x(x 2+x −2)= .11.若 y x ⋅y 3⋅y 2⋅y =y 10 ,则 x = .12.当x 时, (x −4)0=1 .13.计算 (−x −y)2= .14.计算: (34)2017×(−113)2018= . 15.一个长方形的面积是(x 2-9)平方米,其长为(x +3)米,用含有x 的整式表示它的宽为 米.16.已知 a 2−3a +1=0 ,求 a 4+1a 4 的值为 . 三、计算题17.计算:(1)(−3a)2⋅(a 2)3+(−a 2)4 (2)(2x +y −2)(2x +y +2) .18.计算:(1)(−13)−1+(−2)3×(π−2)0 (2)(2a 2)2−a 7÷(−a)319.按要求完成下列各小题.(1)计算: (−38)2019×(83)2020 ; (2)已知 3x +5y =4 ,求 8x ⋅25y 的值.20.已知: a x =−2,a y =3 . 求(1)a x+y (2)a 3x−2y .四、解答题21.已知a m=4,a n=4,求a m+n的值.22.已知长方形的面积是3a3b4 -ab2,宽为2b2,那么长方形的长为多少?23.课后,数学老师在如图所示的黑板上给同学们留了一道题,请你帮助同学们解答.24.已知α,β为整数,有如下两个代数式22α,2 4β(1)当α=﹣1,β=0时,求各个代数式的值;(2)问它们能否相等?若能,则给出一组相应的α,β的值;若不能,则说明理由.答案解析部分1.【答案】C 2.【答案】C 3.【答案】C 4.【答案】B 5.【答案】C6.【答案】A 7.【答案】C 8.【答案】B 9.【答案】1×10−10 10.【答案】−2x 3−2x 2+4x11.【答案】4 12.【答案】≠4 13.【答案】x 2+2xy +y 2 14.【答案】43 15.【答案】(x-3)16.【答案】47 17.【答案】(1)解:原式= 9a 2⋅a 6+a 8= 9a 8+a 8= 10a 8 ;(2)解:原式= (2x +y)2−22= 4x 2+4xy +y 2−4 .18.【答案】(1)解: (−13)−1+(−2)3×(π−2)0 =- 3−8×1=-11(2)解: (2a 2)2−a 7÷(−a)3= 4a 4+a 4= 5a 4 .19.【答案】(1)解:原式= (−38)2019×(83)2019×83= (−38×83)2019×83= (−1)2019×83= −83; (2)解: 8x ⋅25y =23x ⋅25y =23x+5y因为 3x +5y =4 ,所以 23x+5y =24=16 .即 8x ⋅25y =16 .20.【答案】(1)解: a x+y =a x ⋅a y =(−2)×3=−6(2)解: a 3x−2y =(a x )3÷(a y )2=(−2)3÷32=−8921.【答案】解: ∵a m =4 , a n =4 ,∴ 原式 =a m ·a n ,=4×4=16 22.【答案】解: (3a3b4 -ab2)÷2b2= 32a3b2−12a 23.【答案】⑴解:由题意,得2a=23b﹣3,32b=3a﹣3,得{a=3b−32b=a−3,解得a=15,b=6;⑴m a+b÷m a﹣b=m2b=m12.24.【答案】解:(1)把α=﹣1代入代数式,得:22α=1 4,把β=0代入代数式,得:24β=2,(2)不能.理由如下:2 4β=222β=21−2β,∵α,β为整数,∴(1﹣2β)为奇数,2α为偶数,∴1﹣2β≠2α,∴22α≠24β.。
(完整版)北师大版七年级下册数学第一章单元测试题
北师大版七年级下册数学第一章单元测试题一.选择题(共10小题)1.化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5D.﹣x52.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+13.下列运算正确的是()A.a2•a3=a6B.5a﹣2a=3a2C.(a3)4=a12D.(x+y)2=x2+y24.下列运算正确的是()A.a+2a=2a2B.(﹣2ab2)2=4a2b4C.a6÷a3=a2 D.(a﹣3)2=a2﹣95.下列计算正确的是()A.3a+4b=7ab B.(ab3)2=ab6C.(a+2)2=a2+4 D.x12÷x6=x66.地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×1077.若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A.﹣6 B.6 C.18 D.308.计算:(x﹣1)(x+1)(x2+1)﹣(x4+1)的结果为()A.0 B.2 C.﹣2 D.﹣2a49.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+15)cm2D.(8a+15)cm210.2+1)(22+1)(24+1)(28+1)(216+1)+1的计算结果的个位数字是()A.8 B.6 C.4 D.2二.填空题(共10小题)11.若a m=2,a n=8,则a m+n=______.12.计算:(﹣5a4)•(﹣8ab2)=______.13.若2•4m•8m=216,则m=______.14.计算:﹣(﹣)﹣83×0.1252=______.15.已知10m=3,10n=2,则102m﹣n的值为______.16.已知(x﹣1)(x+3)=ax2+bx+c,则代数式9a﹣3b+c的值为______.17.观察下列各式的规律:(a﹣b)(a+b)=a2﹣b2(a﹣b)(a2+ab+b2)=a3﹣b3(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=______.18.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是______.19.如果x+y=﹣1,x﹣y=﹣3,那么x2﹣y2=______.20.计算:=______.三.解答题(共10小题)21.已知a x=5,a x+y=30,求a x+a y的值.22.已知2x+5y=3,求4x•32y的值.23.计算:12×(﹣)+8×2﹣2﹣(﹣1)2.24.先化简,再求值:(a+b)(a﹣b)﹣b(a﹣b),其中,a=﹣2,b=1.25.已知2x=3,2y=5.求:(1)2x+y的值;(2)23x的值;(3)22x+y﹣1的值.26.(1)若x n=2,y n=3,求(x2y)2n的值.(2)若3a=6,9b=2,求32a﹣4b+1的值.27.计算:(1)(π﹣3)0+(﹣)﹣2+(﹣14)﹣23;(2)(﹣4xy3)•(xy)+(﹣3xy2)2.28.(2016春•滁州期末)如图1所示,边长为a的正方形中有一个边长为b的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含a,b的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.29.已知(x2+mx+n)(x+1)的结果中不含x2项和x项,求m,n的值.30.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是______;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).北师大版七年级下册数学第一章单元测试题参考答案与试题解析一.选择题(共10小题)1.(2016•呼伦贝尔)化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5D.﹣x5【分析】根据同底数幂相乘,底数不变,指数相加计算后选取答案.【解答】解:(﹣x)3(﹣x)2=(﹣x)3+2=﹣x5.故选D.【点评】主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.2.(2016•哈尔滨)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+1【分析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选:C.【点评】此题主要考查了幂的乘方运算以及合并同类项以及完全平方公式、同底数幂的乘法运算、积的乘方运算等知识,正确掌握相关运算法则是解题关键.3.(2016•娄底)下列运算正确的是()A.a2•a3=a6B.5a﹣2a=3a2C.(a3)4=a12D.(x+y)2=x2+y2【分析】分别利用同底数幂的乘法运算法则以及合并同类项法则、幂的乘方运算法则、完全平方公式分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、5a﹣2a=3a,故此选项错误;C、(a3)4=a12,正确;D、(x+y)2=x2+y2+2xy,故此选项错误;故选:C.【点评】此题主要考查了同底数幂的乘法运算以及合并同类项、幂的乘方运算、完全平方公式等知识,正确把握相关定义是解题关键.4.(2016•荆门)下列运算正确的是()A.a+2a=2a2B.(﹣2ab2)2=4a2b4C.a6÷a3=a2 D.(a﹣3)2=a2﹣9【分析】根据合并同类项系数相加字母及指数不变,积的乘方等于乘方的积,同底数幂的除法底数不变指数相减,差的平方等余平方和减积的二倍,可得答案.【解答】解:A、合并同类项系数相加字母及指数不变,故A错误;B、积的乘方等于乘方的积,故B正确;C、同底数幂的除法底数不变指数相减,故C错误;D、差的平方等余平方和减积的二倍,故D错误;故选:B.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.5.(2016•东营)下列计算正确的是()A.3a+4b=7ab B.(ab3)2=ab6C.(a+2)2=a2+4 D.x12÷x6=x6【分析】A:根据合并同类项的方法判断即可.B:根据积的乘方的运算方法判断即可.C:根据完全平方公式判断即可.D:根据同底数幂的除法法则判断即可.【解答】解:∵3a+4b≠7ab,∴选项A不正确;∵(ab3)2=a2b6,∴选项B不正确;∵(a+2)2=a2+4a+4,∴选项C不正确;∵x12÷x6=x6,∴选项D正确.故选:D.【点评】(1)此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.(2)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(3)此题还考查了完全平方公式的应用,以及合并同类项的方法,要熟练掌握.6.(2016•聊城)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×107【分析】直接利用整式的除法运算法则结合科学记数法求出答案.【解答】解:∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷(1.4×1018)≈7.1×10﹣7.故选:B.【点评】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.7.(2016•临夏州)若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A.﹣6 B.6 C.18 D.30【分析】原式利用完全平方公式,平方差公式化简,去括号整理后,将已知等式代入计算即可求出值.【解答】解:∵x2+4x﹣4=0,即x2+4x=4,∴原式=3(x2﹣4x+4)﹣6(x2﹣1)=3x2﹣12x+12﹣6x2+6=﹣3x2﹣12x+18=﹣3(x2+4x)+18=﹣12+18=6.故选B【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.8.(2016春•揭西县期末)计算:(x﹣1)(x+1)(x2+1)﹣(x4+1)的结果为()A.0 B.2 C.﹣2 D.﹣2a4【分析】原式利用平方差公式计算,去括号合并即可得到结果.【解答】解:原式=(x2﹣1)(x2+1)﹣(x4+1)=x4﹣1﹣x4﹣1=﹣2,故选C【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.9.(2016春•山亭区期末)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+15)cm2D.(8a+15)cm2【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【解答】解:矩形的面积为:(a+4)2﹣(a+1)2=(a2+8a+16)﹣(a2+2a+1)=a2+8a+16﹣a2﹣2a﹣1=6a+15.故选C.【点评】此题考查了图形的剪拼,关键是根据题意列出式子,运用完全平方公式进行计算,要熟记公式.10.(2016春•相城区期中)(2+1)(22+1)(24+1)(28+1)(216+1)+1的计算结果的个位数字是()A.8 B.6 C.4 D.2【分析】原式变形后,利用平方差公式计算得到结果,归纳总结即可确定出结果的个位数字.【解答】解:原式=(2﹣1)•(2+1)•(22+1)•(24+1)…(216+1)+1=(22﹣1)•(22+1)•(24+1)…(216+1)+1=(24﹣1)•(24+1)…(216+1)+1=232﹣1+1=232,∵21=2,22=4,23=8,24=16,25=32,…,∴其结果个位数以2,4,8,6循环,∵32÷4=8,∴原式计算结果的个位数字为6,故选:B.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.二.填空题(共10小题)11.(2016•大庆)若a m=2,a n=8,则a m+n=16.【分析】原式利用同底数幂的乘法法则变形,将已知等式代入计算即可求出值.【解答】解:∵a m=2,a n=8,∴a m+n=a m•a n=16,故答案为:16【点评】此题考查了同底数幂的乘法,熟练掌握乘法法则是解本题的关键.12.(2016•临夏州)计算:(﹣5a4)•(﹣8ab2)=40a5b2.【分析】直接利用单项式乘以单项式运算法则求出答案.【解答】解:(﹣5a4)•(﹣8ab2)=40a5b2.故答案为:40a5b2.【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.13.(2016•白云区校级二模)若2•4m•8m=216,则m=3.【分析】直接利用幂的乘方运算法则得出2•22m•23m=216,再利用同底数幂的乘法运算法则即可得出关于m的等式,求出m的值即可.【解答】解:∵2•4m•8m=216,∴2•22m•23m=216,∴1+5m=16,解得:m=3.故答案为:3.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确应用运算法则是解题关键.14.(2016•黄冈模拟)计算:﹣(﹣)﹣83×0.1252=﹣7.【分析】直接利用积的乘方运算法则结合有理数的乘法运算法则化简求出答案.【解答】解:﹣(﹣)﹣83×0.1252=﹣(8×0.125)2×8=﹣8=﹣7.故答案为:﹣7.【点评】此题主要考查了积的乘方运算和有理数的乘法运算,正确应用积的乘方运算法则是解题关键.15.(2016•阜宁县二模)已知10m=3,10n=2,则102m﹣n的值为.【分析】根据幂的乘方,可得同底数幂的除法,根据同底数幂的除法,可得答案.【解答】解:102m=32=9,102m﹣n=102m÷10n=,故答案为:.【点评】本题考查了同底数幂的除法,利用幂的乘方得出同底数幂的除法是解题关键.16.(2016•河北模拟)已知(x﹣1)(x+3)=ax2+bx+c,则代数式9a﹣3b+c的值为0.【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件求出a,b,c的值,即可求出原式的值.【解答】解:已知等式整理得:x2+2x﹣3=ax2+bx+c,∴a=1,b=2,c=﹣3,则原式=9﹣6﹣3=0.故答案为:0.【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.17.(2016•百色)观察下列各式的规律:(a﹣b)(a+b)=a2﹣b2(a﹣b)(a2+ab+b2)=a3﹣b3(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=a2017﹣b2017.【分析】根据已知等式,归纳总结得到一般性规律,写出所求式子结果即可.【解答】解:(a﹣b)(a+b)=a2﹣b2;(a﹣b)(a2+ab+b2)=a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4;…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=a2017﹣b2017,故答案为:a2017﹣b2017【点评】此题考查了平方差公式,以及多项式乘以多项式,弄清题中的规律是解本题的关键.18.(2016•乐亭县二模)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是(a﹣b)2.【分析】先求出正方形的边长,继而得出面积,然后根据空白部分的面积=正方形的面积﹣矩形的面积即可得出答案.【解答】解:∵图(1)是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a+b,∵由题意可得,正方形的边长为(a+b),∴正方形的面积为(a+b)2,∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2﹣4ab=(a﹣b)2.故答案为(a﹣b)2.【点评】此题考查了完全平方公式的几何背景,求出正方形的边长是解答本题的关键.19.(2016春•沛县期末)如果x+y=﹣1,x﹣y=﹣3,那么x2﹣y2=3.【分析】利用平方差公式,对x2﹣y2分解因式,然后,再把x+y=﹣1,x﹣y=﹣3代入,即可解答.【解答】解:根据平方差公式得,x2﹣y2=(x+y)(x﹣y),把x+y=﹣1,x﹣y=﹣3代入得,原式=(﹣1)×(﹣3),=3;故答案为3.【点评】本题考查了平方差公式,熟练掌握平方差公式是解题的关键.公式:(a+b)(a﹣b)=a2﹣b2.20.(2016春•高密市期末)计算:=2015.【分析】原式变形后,利用平方差公式计算即可得到结果.【解答】解:原式===2015,故答案为:2015【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.三.解答题(共10小题)21.(2016春•长春校级期末)已知a x=5,a x+y=30,求a x+a y的值.【分析】首先根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,求出a y的值是多少;然后把a x、a y的值相加,求出a x+a y的值是多少即可.【解答】解:∵a x=5,a x+y=30,∴a y=a x+y﹣x=30÷5=6,∴a x+a y=5+6=11,即a x+a y的值是11.【点评】此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.22.(2016春•江都区校级期中)已知2x+5y=3,求4x•32y的值.【分析】根据同底数幂相乘和幂的乘方的逆运算计算.【解答】解:∵2x+5y=3,∴4x•32y=22x•25y=22x+5y=23=8.【点评】本题考查了同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘的性质,整体代入求解也比较关键.23.(2016•阜阳校级二模)计算:12×(﹣)+8×2﹣2﹣(﹣1)2.【分析】先算乘方,再算乘法,最后算加减即可.【解答】解:原式=12×(﹣)+8×﹣1=﹣4+2﹣1=﹣3.【点评】本题考查的是负整数指数幂,熟知有理数混合运算的法则是解答此题的关键.24.(2016•湘西州)先化简,再求值:(a+b)(a﹣b)﹣b(a﹣b),其中,a=﹣2,b=1.【分析】原式利用平方差公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2﹣b2﹣ab+b2=a2﹣ab,当a=﹣2,b=1时,原式=4+2=6.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.25.(2015春•吉州区期末)已知2x=3,2y=5.求:(1)2x+y的值;(2)23x的值;(3)22x+y﹣1的值.【分析】将所求式子利用幂运算的性质转化,再整体代入即可得到结果.【解答】解:(1)2x+y=2x•2y=3×5=15;(2)23x=(2x)3=33=27;(3)22x+y﹣1=(2x)2•2y÷2=32×5÷2=.【点评】本题考查了同底数幂的乘法,幂的乘方,积的乘方,利用幂运算的性质将所求式子变形是解题的关键.26.(2015春•张家港市期末)(1)若x n=2,y n=3,求(x2y)2n的值.(2)若3a=6,9b=2,求32a﹣4b+1的值.【分析】(1)根据积的乘方和幂的乘方法则的逆运算,即可解答;(2)根据同底数幂乘法、除法公式的逆运用,即可解答.【解答】解:(1)(x2y)2n=x4n y2n=(x n)4(y n)2=24×32=16×9=144;(2)32a﹣4b+1=(3a)2÷(32b)2×3=36÷4×3=27.【点评】本题考查的是幂的乘方和积的乘方、同底数幂的乘除法,掌握它们的运算法则及其逆运算是解题的关键.27.(2016春•宿州校级期末)计算:(1)(π﹣3)0+(﹣)﹣2+(﹣14)﹣23;(2)(﹣4xy3)•(xy)+(﹣3xy2)2.【分析】(1)原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,第三项利用乘方的意义计算,即可得到结果.(2)原式第一项利用单项式乘单项式法则计算,第二项利用幂的乘方与积的乘方运算法则计算,合并即可得到结果.【解答】解:(1)(π﹣3)0+(﹣)﹣2+(﹣14)﹣23=1+4﹣1﹣8=12;(2)(﹣4xy3)•(xy)+(﹣3xy2)2.=﹣2x2y4+9x2y4=7x2y4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.28.(2016春•滁州期末)如图1所示,边长为a的正方形中有一个边长为b的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含a,b的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.【分析】(1)根据两个图形的面积相等,即可写出公式;(2)根据面积相等可得(a+b)(a﹣b)=a2﹣b2;(3)从左到右依次利用平方差公式即可求解.【解答】解:(1),S2=(a+b)(a﹣b);(2)(a+b)(a﹣b)=a2﹣b2;(3)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1=(22﹣1)(22+1)(24+1)(28+1)+1=(24﹣1)(24+1)(28+1)+1=(28﹣1)(28+1)+1=(216﹣1)+1=216.【点评】本题考查了平方差的几何背景以及平方差公式的应用,正确理解平方差公式的结构是关键.29.(2016春•北京校级月考)已知(x2+mx+n)(x+1)的结果中不含x2项和x项,求m,n 的值.【分析】把式子展开,合并同类项后找到x2项和x项的系数,令其为0,可求出m和n的值.【解答】解:(x2+mx+n)(x+1)=x3+(m+1)x2+(n+m)x+n.又∵结果中不含x2的项和x项,∴m+1=0且n+m=0解得m=﹣1,n=1.【点评】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.30.(2016春•吉安期中)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是B;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).【分析】(1)观察图1与图2,根据两图形阴影部分面积相等验证平方差公式即可;(2)①已知第一个等式左边利用平方差公式化简,将第二个等式代入求出所求式子的值即可;②原式利用平方差公式变形,约分即可得到结果.【解答】解:(1)根据图形得:a2﹣b2=(a+b)(a﹣b),上述操作能验证的等式是B,故答案为:B;(2)①∵x2﹣4y2=(x+2y)(x﹣2y)=12,x+2y=4,∴x﹣2y=3;②原式=(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)(1﹣)(1+)=××××××…××××=×=.【点评】此题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.。
(完整版)新北师大版七年级数学下册单元测试题及答案(最新整理)
)
A.相等
B.互补
C.相等或互补 D.相等且互补
4、下列说法中,为平行线特征的是(
)
①两条直线平行,同旁内角互补; ②同位角相等, 两条直线平行;
③内错角相等, 两条直线平行;
④垂直于同一条直线的两条直线平行.
A.①
B.②③
C.④
D.②和④
5、如上图 3,AB∥CD∥EF,若∠ABC=50°,∠CEF=150°,则∠BCE=( )
【】
A.600
B.500
C.400
D.300
2、如上图,AB⊥BC,BC⊥CD,∠EBC=∠BCF,那么,∠ABE 与∠DCF 的位置与大小关系是
()
A.是同位角且相等 B.不是同位角但相等; C.是同位角但不等 D.不是同位角也不
等
3、如果两个角的一边在同一直线上,另一边互相平行,那么这两个角只能(
9.计算(a-b)(a+b)(a2+b2)(a4-b4)的结果是(
)
A.a8+2a4b4+b8 B.a8-2a4b4+b8 C.a8+b8
D.a8-b8
10.已知 P 7 m 1,Q m2 8 m (m 为任意实数),则 P、Q 的大小关系为(
)
15
15
A、 P Q
B、 P Q
C、 P Q
19.多项式 5x2-7x-3 是____次_______项式.
20.用科学记数法表示-0.000000059=________.
21.若-3xmy5 与 0.4x3y2n+1 是同类项,则 m+n=______.
22.如果(2a+2b+1)(2a+2b-1)=63,那么 a+b 的值是________.
北师大版七年级数学下册第一章单元测试题(含答案)
第一章整式的乘除一、选择题(本大题共7小题,每小题3分,共21分)1.计算a 3·a 2的结果是()A .a B .a 5C .a 6D .a 92.下列运算正确的是A.632a a ·a =B.523a a a =+ C.842)(a a = D.a a a =-233.下列运算:①a ²·a ³=a 6,②(a ³)²=a 6,③a 5÷a 5=a ,④(ab )³=a ³b ³,其中结果正确的个数为()A .1B .2C .3D .44下列计算结果为3x 的是()A.62x x ÷B.4x x -C.2x x + D.2x x 5下面是一位同学做的四道题:①222()a b a b +=+.②224(2)4a a -=-.③532a a a ÷=.④3412a a a ⋅=.其中做对的一道题的序号是()A.①B.②C.③D.④6.对于任意有理数a ,b ,现用“☆”定义一种运算:a ☆b=a 2-b 2,根据这个定义,代数式(x+y )☆y 可以化简为()A .xy+y 2B .xy-y 2C .x 2+2xy D .x 27.如图2①,在边长为a 的正方形中剪去一个边长为b (b<a )的小正方形,把剩下部分沿虚线剪开,再拼成一个梯形(如图2②),利用这两个图形中阴影部分的面积,可以验证的等式是()图2A.a2+b2=(a+b)(a-b)B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2D.a2-b2=(a+b)(a-b)二、填空题(本大题共7小题,每小题4分,共28分)8.计算:(π-3.14)0-2=.9.计算:(3a-2b)(2b+3a)=.10.在电子显微镜下测得一个圆球体细胞的直径是5×10-5cm,2×103个这样的细胞排成的细胞链的长是cm.11.若a为正整数,且x2a=6,则(2x5a)2÷4x6a的值为.12.计算:3x2y-xy2+12xy÷-12xy=.13.若a2+b2=5,ab=2,则(a+b)2=.14.如图3,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为.图3三、解答题(本大题共6小题,共51分)15.(8分)计算:(1)x·x4+x2(x3-1)-2x3(x+1)2;(2)[(x-3y)(x+3y)+(3y-x)2]÷(-2x).16.(8分)运用乘法公式简便计算: (1)9982;(2)197×203.17.(7分)先化简,再求值:(x-y2)-(x-y)(x+y)+(x+y)2,其中x=3,y=-13.18.(8分)如图4①所示,边长为a的正方形中有一个边长为b的小正方形,图4②是由图①中阴影部分拼成的一个长方形.(1)设图①中阴影部分的面积为S1,图②中阴影部分的面积为S2,请直接用含a,b的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)×(22+1)×(24+1)×(28+1)+1.图419.(10分)某银行去年新增加居民存款10亿元人民币.(1)经测量,100张面值为100元的新版人民币大约厚0.9厘米,如果将10亿元面值为100元的新版人民币摞起来,大约有多高?(2)一台激光点钞机的点钞速度约是8×104张/时,按每天点钞5小时计算,如果让点钞机点一遍10亿元面值为100元的新版人民币,点钞机大约要点多少天?图520.(10分)某学校分为初中部和小学部,初中部的学生人数比小学部多.做广播体操时,初中部排成的是一个规范的长方形方阵,每排(3a-b)人,站有(3a+2b)排;小学部排成的方阵,排数和每排人数都是2(a+b).(1)试求该学校初中部比小学部多多少名学生;(2)当a=10,b=2时,试求该学校一共有多少名学生.参考答案BC B D C C.D8.-39.9a2-4b210.0.111.3612.-6x+2y-113.914.1315.解:(1)原式=x5+x5-x2-2x3(x2+2x+1)=x5+x5-x2-2x5-4x4-2x3=-4x4-2x3-x2.(2)原式=(x2-9y2+9y2-6xy+x2)÷(-2x)=(2x2-6xy)÷(-2x)=-x+3y.16.解:(1)9982=(1000-2)2=1000000-4000+4=996004.(2)197×203=(200-3)×(200+3)=2002-32=40000-9=39991.17.解:原式=x-y2-x2+y2+x2+2xy+y2=x+2xy+y2.当x=3,y=-13时,原式=3-2+19=109.18.解:(1)S1=a2-b2,S2=(a+b)(a-b).(2)(a+b)(a-b)=a2-b2.(3)原式=(2-1)×(2+1)×(22+1)×(24+1)×(28+1)+1=(22-1)×(22+1)×(24+1)×(28+1)+1=(24-1)×(24+1)×(28+1)+1=(28-1)×(28+1)+1=(216-1)+1=216.19.解:(1)10亿=1000000000=109,所以10亿元的总张数为109÷100=107(张), 107÷100×0.9=9×104(厘米)=900(米).答:大约有900米高.(2)107÷(5×8×104)=(1÷40)×(107÷104)=0.025×103=25(天).答:点钞机大约要点25天.20.解:(1)因为该学校初中部学生人数为(3a-b)(3a+2b)=9a2+6ab-3ab-2b2=9a2+3ab-2b2,小学部学生人数为2(a+b)·2(a+b)=4(a+b)2=4(a2+2ab+b2)=4a2+8ab+4b2,所以该学校初中部比小学部多的学生数为(9a2+3ab-2b2)-(4a2+8ab+4b2)=5a2-5ab-6b2.答:该学校初中部比小学部多(5a2-5ab-6b2)名学生.(2)该学校初中部和小学部一共的学生数为(9a2+3ab-2b2)+(4a2+8ab+4b2)=13a2+11ab+2b2.当a=10,b=2时,原式=13×102+11×10×2+2×22=1528.答:该学校一共有1528名学生.。
新北师大版七年级数学下册单元测试题和答案【最新整理】
七年级数学下 第1章 整式的乘除--单元测试卷(一)一、选择题(共10小题,每小题3分,共30分) 1.下列运算正确的是( )A. 954a a a =+B. 33333a a a a =⋅⋅C. 954632a a a =⨯D. ()743a a =-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2( ) A. 1- B. 1 C. 0 D. 19973.设()()A b a b a +-=+223535,则A=( )A. 30ab B. 60ab C. 15ab D. 12ab 4.已知,3,5=-=+xy y x 则=+22y x ( ) A. 25. B 25- C 19 D 、19- 5.已知,5,3==b a x x 则=-b a x 23( ) A 、2527 B 、109 C 、53D 、526. .如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a +b )(m +n ); ②2a (m +n )+b (m +n ); ③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有( )A 、①②B 、③④C 、①②③D 、①②③④7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( )A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -112 ,则a²+b 2的值等于( )A 、84B 、78C 、12D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( )A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 8 10.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( ) A 、Q P > B 、Q P = C 、Q P < D 、不能确定 二、填空题(共6小题,每小题4分,共24分) 11.设12142++mx x 是一个完全平方式,则m =_______。
北师大初一数学7年级下册 第1章(整式的乘除)1.7同底数幂的除法和整式的除法 一课一练(含答案)
《同底数幂的除法和整式的除法》习题2一、选择题1.下列计算正确的是( )A .248a a a ∙=B .352()a a =C .236()ab ab =D .624a a a ÷=2.下列计算正确的是( )A .325()m m =B .3710m m m ⋅=C .236(3)9m m -=-D .632m m m ÷=3.计算下列各式,结果为5x 的是( )A .()32x B .102x x ÷C .23x x ⋅D .6x x-4.下列计算中,结果是8m 的是( )A .()42m B .24•m m C .122m m ÷D .24m m +5.下列计算方法正确的是( )A .20212021a a a ⨯⨯=B .20212021a a a -÷=C .20212021a a a ++=D .20212021a a a --=6.下列运算正确的是( )A .236a a a⋅=B .842a a a÷=C .532a a -=D .()2224ab a b -=7.在①42a a ⋅,②()32a -,③212a a ÷,④23a a ⋅,⑤33a a +,计算结果为6a 的个数是( )A .1个B .2个C .3个D .4个8.马虎在下面的计算中只做对了一道题,他做对的题目是( )A .3515a a a⋅=B .()236a a -=C .()3326y y =D .632a a a ÷=9.下列运算正确的是( ).A .6212x x x ⋅=B .623x x x +=C .()268x x =D .()624x x x -÷=10.下列运算中,正确的是( )A .623a a a ÷=B .246a a a -=⋅C .333()ab a b =D .246()a a =11.()2334a bc ab ⎛⎫-÷- ⎪⎝⎭的商为:( )A .214a cB .14acC .294a cD .94ac12.已知32228287m n a b a b b ÷=,则m 、n 的值为( )A .4,3m n ==B .4,1m n ==C .1,3m n ==D .2,3m n ==13.若□×2xy =16x 3y 2,则□内应填的单项式是( )A .4x 2yB .8x 3y 2C .4x 2y 2D .8x 2y14.在等式210()5b b ÷=-中,括号内应填入的整式为( )A .-2bB .bC .2bD .-3b15.一个三角形的面积为(x 3y )2,它的一条边长为(2xy )2,那么这条边上的高为( )A .12x4B .14x4C .12x 4yD .12x216.已知M 2(2)x - =53328182x x y x --,则M =( )A .33491x xy ---B .33491x xy +-C .3349x xy -+D .33491x xy -++17.计算(﹣8m 4n+12m 3n 2﹣4m 2n 3)÷(﹣4m 2n)的结果等于( )A .2m 2n ﹣3mn+n 2B .2n 2﹣3mn 2+n 2C .2m 2﹣3mn+n 2D .2m 2﹣3mn+n18.计算:(﹣6x 3+9x 2﹣3x )÷(﹣3x )=( )A .2x 2﹣3xB .2x 2﹣3x +1C .﹣2x 2﹣3x +1D .2x 2+3x ﹣119.若长方形的面积是2226a ab a -+,长为2a ,则这个长方形的周长是( )A .626a b -+B .226a b -+C .62a b-D .320.计算()3214217(7)x x x x -+÷-的结果是( )A .23x x -+B .2231x x -+-C .2231x x -++D .2231x x -+21.已知被除式是x 3+3x 2﹣1,商式是x ,余式是﹣1,则除式是( )A .x 2+3x ﹣1B .x 2+3xC .x 2﹣1D .x 2﹣3x +122.计算(﹣4a 2+12a 3b)÷(﹣4a 2)的结果是( )A .1﹣3abB .﹣3abC .1+3abD .﹣1﹣3ab23.一个长方形的面积为2x 2y ﹣4xy 3+3xy ,长为2xy ,则这个长方形的宽为( )A .x ﹣2y 232+B .x ﹣y 332+C .x ﹣2y +3D .xy ﹣2y 32+24.已知A=2x ,B 是多项式,在计算B÷A 时,小强同学把B÷A 误看了B+A ,结果得2x2-x ,则B÷A 的结果是( )A .2x2+xB .2x2-3xC .1+2x D .32x -25.面积为9a 2−6ab +3a 的长方形一边长为3a ,另一边长为( )A .3a −2b +1B .2a −3bC .2a −3b +1D .3a −2b26.若2x 与一个多项式的积为3222x x x -+,则这个多项式为( )A .221x x -+B .2424x x -+C .2112x x -+D .212x x -二、计算题1.计算(1)232232213(-a b)ab a b 334() (2)223-5a 3ab -6a ()(3)()()223x x -+ (4)()()222323x x y xy y x x y x y ⎡⎤---÷⎣⎦(5)()34221242ayay ay ⎛⎫-⋅÷ ⎪⎝⎭(6)()()()33332424ax a x ax -÷2.化简求值.(1)求(1)(21)2(5)(2)x x x x -+--+的值,其中15x =.(2)先化简,再求值:()()()()2233102x y x y x y y x ⎡⎤+-+--÷⎣⎦,其中3x =-,12y =.(3)先化简,再求值:(x ﹣y )(x ﹣2y )﹣(3x ﹣2y )(x +3y ),其中x =4,y =﹣1.(4)先化简,再求值:()()()()223443x y x y x y y ⎡⎤-+-÷⎣⎦-﹣,(其中x =﹣4,y =3).(5)先化简,再求值(3a+2b)(2a ﹣3b)﹣(a ﹣2b)(2a ﹣b),其中11.54a b =-=,.三、解答题1.(1)已知4 m =a ,8n =b ,用含a 、b 的式子表示下列代数式:①求:22 m+3n 的值;②求:24 m -6n 的值;(2)已知2×8x ×16=226,求x 的值.2.已知:53a =,58b =,572c =.(1)求)(25a 的值.(2)求5a b c -+的值.(3)直接写出字母a 、b 、c 之间的数量关系.3.王老师给学生出了一道题:先化简,在求值:222(2)(2)2(2(216)(2)a b a b a b ab a b a +-+-+-÷-),其中12a =,1b =-.同学们看了题目后发表不同的看法.小张说:“条件1b =-是多余的.”小李说:“不给这个条件,就不能求出结果,所以不多余.”(1)你认为他们谁说的有道理?为什么?(2)若m x 的值等于此题计算的结果,试求2m x 的值.答案一、选择题1.D .2.B .3.C4.A .5.B .6.D .7.A .8.B .9.D .10.C .11.B .12.A .13.D .14.A .15.A.16.D .17.C .18.B .19.A .20.B .21.B.22.A .23.A24.D.25.A.26.C 二、计算题1.(1)232232213(-a b)ab a b334()6324328132794a b a b a b ⎛⎫⎛⎫⎛⎫=- ⎪⎪⎪⎝⎭⎝⎭⎝⎭6233428132794a b ++++=-⨯⨯119281a b =-;(2)223-5a 3ab -6a ()3251530a b a =-+;(3)()()223x x -+22436x x x =-+-226x x =--;(4)()()222323x x y xy y x x y x y ⎡⎤---÷⎣⎦()32223223x y x y x y x y x y =--+÷()3222223x y x y x y=-÷322222323x y x y x y x y=÷-÷2233xy =-.(5)原式3448361242a y ay a y ⎛⎫=⋅÷ ⎪⎝⎭344138161242a y+-+-⎡⎤⎛⎫=⨯÷⎢⎥ ⎪⎝⎭⎢⎥⎣⎦8232a y =23256a y =(6)原式396123384a x a x a x =-÷396312384a x a x --=-393984a x a x =-394a x =2.(1)解:(x-1)(2x+1)-2(x-5)(x+2)=2x 2+x-2x-1-2x 2-4x+10x+20=5x+19,当15x =时,原式=5×15+19=20.(2)原式()222226932102x xy y x xy y y x =++--+-÷=()2242x xy x-+÷=2x y -+当3x =-,12y =时,原式314=+=.(3)原式=(x 2﹣2xy ﹣xy+2y 2)﹣(3x 2+9xy ﹣2xy ﹣6y 2)=x 2﹣3xy+2y 2﹣3x 2﹣7xy+6y 2=﹣2x 2﹣10xy+8y 2当x =4,y =﹣1时,原式=﹣2×42﹣10×4×(﹣1)+8×(﹣1)2=﹣32+40+8=16(4)】解:()()()()223443x y x y x y y ⎡⎤--+-÷⎣⎦﹣=()()2222412941643x xy y x xy xy y y -+-+-+÷-=()()23133xy yy +÷-=133x y --,当x =﹣4,y =3时,原式=4-13=-9.(5)(3a+2b)(2a ﹣3b)﹣(a ﹣2b)(2a ﹣b)=(6a 2+4ab ﹣9ab ﹣6b 2)﹣(2a 2-4ab ﹣ab+2b 2)=6a 2+4ab ﹣9ab ﹣6b 2﹣2a 2+4ab+ab ﹣2b 2=4a 2﹣8b 2,当a=﹣1.532=-,b=14时,原式=4×(32-)2﹣8×(14)2=9-12=172.三、解答题1.解:(1)①()()2323232222248m nm n m n m n ab +=⋅=⋅=⋅=;②()()2224646232222222248mnm nmnmna b-=÷=÷=÷=;(2)343526281622222x x x +⨯⨯=⨯⨯==,得3526x +=,解得7x =.2.解(1)∵53a =,∴)(22539a==;(2)∵53a =,58b =,572c =,∴5537252758a c ab cb-+⨯⨯===;(3)∵22(5)53898725a b c ⨯=⨯=⨯==,∴255a b c +=,即2c a b =+.3.解:(1)小张说的有道理,理由如下:222(2)(2)2(2(216)(2)a b a b a b ab a b a +-+-+-÷-)22222(2)2(44)(8)a b a ab b b ab =-+-++-+2222248828a b a ab b b ab =-+-+-+212a =∵化简得结果为212a ,212a 中不含字母b ∴条件1b =-是多余的,小张说的有道理.(2)当12a =时,2211212()2a =⨯3=由题意得:3m x =,222()39m m x x ===∴.即2m x 的值为9.。
北师大版七年级下册数学第一章测试题
北师大版七年级下册数学第一章测试题北师大版七年级下册数学第一章测试题一.选择题(共10小题)1.计算(-x^2y)^2的结果是()A。
x^4y^2B。
-x^4y^2C。
x^2y^2D。
-x^2y^22.下列计算正确的是()A。
(-x^3)^2 = x^6B。
(-3x^2)^2 = 9x^4C。
(-x)^2 = x^2D。
x^8 ÷ x^4 = x^43.计算(2x+1)(x-1)-(x^2+x-2)的结果,与下列哪一个式子相同?()A。
x^2-2x+1B。
x^2-2x-3C。
x^2+x-3D。
x^2-34.若x^2+4x-4=0,则3(x-2)^2-6(x+1)(x-1)的值为()A。
-6B。
6C。
18D。
305.已知(x-2015)^2+(x-2017)^2=34,则(x-2016)^2的值是()A。
4B。
8C。
12D。
166.已知a-b=3,则代数式a^2-b^2-6b的值为()A。
3B。
6C。
9D。
127.已知正数x满足x^2+6x=62,则x+的值是()A。
8B。
4C。
-1+√17D。
-1-√178.如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角线剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A。
abB。
(a+b)^2C。
(a-b)^2D。
a^2-b^29.设(5a+3b)^2=(5a-3b)^2+A,则A=A。
30abB。
60abC。
15abD。
12ab10.已知(x-y)^2=49,xy=2,则x^2+y^2的值为()A。
53B。
45C。
47D。
51二.选择题(共10小题)11.计算:(-5a^4)•(-8ab^2)=40a^5b^2.12.若2•4m•8m=216,则m=3/2.13.若x+3y=0,则2x•8y=-48xy.14.已知(x-1)(x+3)=ax^2+bx+c,则代数式9a-3b+c的值为12.15.已知(a+b)^2=7,(a-b)^2=4,则ab的值为-3/2.16.若(m-2)^2=3,则m^2-4m+6的值为7.17.观察下列各式及其展开式:a+b)^2=a^2+2ab+b^2a+b)^3=a^3-3a^2b+3ab^2-b^3a+b)^4=a^4-4a^3b+6a^2b^2-4ab^3+b^4a+b)^5=a^5-5a^4b+10a^3b^2-10a^2b^3+5ab^4-b^5…请你猜想(a-b)^10的展开式第三项的系数是120.分析】直接计算即可得出结果,注意符号的变化和运算顺序.解答】解:(﹣2)2+2×(﹣3)+2016=4+(﹣6)+2016=2014.故选:D.点评】此题考查了加减乘方运算的综合运用能力,需要注意计算顺序和符号变化.3.(2016•泰安)已知2x2﹣3x=2,求3(2+x)(2﹣x)﹣(x﹣3)2的值是()A.﹣3B.﹣2C.0D.1分析】根据已知条件,化简3(2+x)(2﹣x)﹣(x﹣3)2,然后代入2x2﹣3x=2计算即可.解答】解:3(2+x)(2﹣x)﹣(x﹣3)2=3(4﹣x2)﹣(x﹣3)2=12﹣3x2﹣x2﹣6x﹣x2+6x﹣9=﹣5x2﹣6.代入2x2﹣3x=2,得3(2+x)(2﹣x)﹣(x﹣3)2=﹣5x2﹣6=﹣5×2﹣6=﹣16.故选:B.点评】此题考查了代数式的化简和代入计算能力,需要注意计算过程中的细节和符号变化.4.(2016•南京)已知(a+b)2=25,(a﹣b)2=9,求ab与a2+b2的值.分析】根据已知条件,可以列出方程组,然后解方程求出ab和a2+b2的值.解答】解:由(a+b)2=25,得a+b=5;由(a﹣b)2=9,得a﹣b=3或a﹣b=﹣3.当a﹣b=3时,解得a=4,b=1,因此ab=4,a2+b2=17;当a﹣b=﹣3时,解得a=3,b=2,因此ab=6,a2+b2=13.故选:B.点评】此题考查了解方程和代数式计算的能力,需要注意列方程和解方程的过程.5.(2016•南昌)已知x﹣=3,求x2+和x4+的值.分析】根据已知条件,可以求出x的值,然后代入计算x2+和x4+的值.解答】解:由x﹣=3,得x=1/3.因此,x2+=(1/3)2=1/9,x4+=(1/3)4=1/81.故选:B.点评】此题考查了解方程和代数式计算的能力,需要注意代入计算的过程和细节.6.(2016•南京)已知关于x的多项式A,当A﹣(x﹣2)2=x(x+7)时,求多项式A.分析】根据已知条件,可以列出关于A的方程,然后解方程求出多项式A.解答】解:将A﹣(x﹣2)2=x(x+7)两边同时加上(x﹣2)2,得A=x(x+7)+(x﹣2)2.因此,多项式A=x2+7x+x2﹣4x+4=x2+3x+4.故选:A.点评】此题考查了解方程和代数式计算的能力,需要注意列方程和解方程的过程.7.(2016•南昌)已知a+b=5,ab=6,求下列各式的值:1)a2+b22)(a﹣b)2.分析】根据已知条件,可以列出方程组,然后解方程求出a和b的值,代入计算各式的值.解答】解:由a+b=5,ab=6,得a=2,b=3或a=3,b=2.1)当a=2,b=3时,a2+b2=22+32=13;当a=3,b=2时,a2+b2=32+22=13.2)当a=2,b=3时,(a﹣b)2=(2﹣3)2=1;当a=3,b=2时,(a﹣b)2=(3﹣2)2=1.故选:B.点评】此题考查了解方程和代数式计算的能力,需要注意列方程和解方程的过程以及代入计算的细节.8.(2016•南昌)已知(x﹣y)2=9,x2+y2=5,求[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y的值.分析】根据已知条件,可以化简出题目中的式子,然后代入计算即可.解答】解:将[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y化简得y2﹣x2÷xy.由(x﹣y)2=9,得x﹣y=3或x﹣y=﹣3.当x﹣y=3时,解得x=2,y=﹣1,因此y2﹣x2÷xy=1/2;当x﹣y=﹣3时,解得x=﹣1,y=2,因此y2﹣x2÷xy=﹣1/2.故选:C.点评】此题考查了代数式的化简和代入计算能力,需要注意计算过程中的细节和符号变化.9.(2016•南昌)若4a2﹣(k﹣1)a+9是一个关于a的完全平方式,则k=______.分析】根据完全平方式的定义,可以列出方程,然后解方程求出k的值.解答】解:由4a2﹣(k﹣1)a+9是一个关于a的完全平方式,得k2﹣4×4×9(﹣1)=0.因此,k2﹣144=0,解得k=﹣12或k=12.故选:D.点评】此题考查了完全平方式的定义和解方程的能力,需要注意列方程和解方程的过程.10.(2016•南昌)若ax=2,ay=3,则a3x2y=______.分析】根据已知条件,可以将a3x2y化简为ax×ay×ax×ay×ax,然后代入计算即可.解答】解:a3x2y=ax×ay×ax×ay×ax=2×3×2×3×2=72.故选:C.点评】此题考查了代数式的化简和代入计算能力,需要注意计算过程中的细节和符号变化.二.填空题(共10小题)18.若4a2﹣(k﹣1)a+9是一个关于a的完全平方式,则k=______.解:k=12或k=﹣12.19.若ax=2,ay=3,则a3x2y=______.解:a3x2y=72.20.我国南宋数学家XXX用三角形解释二项和的乘方规律,称之为“XXX三角”.这个三角形给出了(a+b)n(n=1,2,3,4…)的展开式的系数规律(按a的次数由大到小的顺序):请依据上述规律,写出(x﹣)2016展开式中含x2014项的系数是______.解:(x﹣)2016展开式中含x2014项的系数是2015×(﹣1)×(﹣2)×…×(﹣2013)=2015×2013!/2!=﹣xxxxxxxx00.21.先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=.解:(x﹣1)(x﹣2)﹣(x+1)2=(x2﹣3x+2)﹣(x2﹣2x+1)=﹣x+1,其中x=2.22.(1)计算:(﹣2)2+2×(﹣3)+2016.(2)化简:(m+1)2﹣(m﹣2)(m+2).解:(1)(﹣2)2+2×(﹣3)+2016=2014.2)(m+1)2﹣(m﹣2)(m+2)=m2+2m+1﹣(m2﹣4)=6m+5.23.已知2x2﹣3x=2,求3(2+x)(2﹣x)﹣(x﹣3)2的值.解:3(2+x)(2﹣x)﹣(x﹣3)2=3(4﹣x2)﹣(x﹣3)2=﹣5x2﹣6.代入2x2﹣3x=2,得3(2+x)(2﹣x)﹣(x﹣3)2=﹣16.24.先化简,再求值:(2a+b)(2a﹣b)﹣a(8a﹣2ab),其中a=﹣,b=2.解:(2a+b)(2a﹣b)﹣a(8a﹣2ab)=4a2﹣b2﹣8a2+2ab2=﹣4a2+2ab2﹣b2=﹣20,其中a=﹣1/2,b=2.25.已知(a+b)2=25,(a﹣b)2=9,求ab与a2+b2的值.解:由(a+b)2=25,得a+b=5;由(a﹣b)2=9,得a﹣b=3或a﹣b=﹣3.当a﹣b=3时,解得a=4,b=1,因此ab=4,a2+b2=17;当a﹣b=﹣3时,解得a=3,b=2,因此ab=6,a2+b2=13.26.已知x﹣=3,求x2+和x4+的值.解:由x﹣=3,得x=1/3.即(x﹣2016+1)2+(x﹣2016﹣1)2=34。
北师大版七年级数学下册单元测试题全套及参考答案
北师大版七年级数学下册单元测试题全套(含答案)第一章达标检测卷(满分:120分时间:90分钟)一、选择题(每小题3分,共30分)1.计算x3·x3的结果是( )A.2x3 B.2x6C.x6 D.x92.根据北京小客车指标办的通报,截至2017年6月8日24时,个人普通小客车指标的基准中签几率继续创新低,约为0.00122,相当于817人抢一个指标,小客车指标中签难度继续加大.将0.00122用科学记数法表示应为( )A.1.22×10-5 B.122×10-3C.1.22×10-3 D.1.22×10-23.下列计算中,能用平方差公式计算的是( )A.(x+3)(x-2) B.(-1-3x)(1+3x)C.(a2+b)(a2-b) D.(3x+2)(2x-3)4.下列各式计算正确的是( )A.a+2a2=3a3 B.(a+b)2=a2+ab+b2C.2(a-b)=2a-2b D.(2ab)2÷ab=2ab(ab≠0)5.若(y+3)(y-2)=y2+my+n,则m,n的值分别为( )A.m=5,n=6 B.m=1,n=-6C.m=1,n=6 D.m=5,n=-66.计算(8a2b3-2a3b2+ab)÷ab的结果是( )A.8ab2-2a2b+1 B.8ab2-2a2bC.8a2b2-2a2b+1 D.8a2b-2a2b+17.设(a+2b)2=(a-2b)2+A,则A等于( )A.8ab B.-8abC.8b2 D.4ab8.若M=(a+3)(a-4),N=(a+2)(2a-5),其中a为有理数,则M、N的大小关系是( ) A.M>N B.M<NC.M=N D.无法确定9.若a =20180,b =2016×2018-20172,c =⎝ ⎛⎭⎪⎫-232016×⎝ ⎛⎭⎪⎫322017,则下列a ,b ,c 的大小关系正确的是( ) A .a <b <c B .a <c <b C .b <a <c D .c <b <a10.已知x 2+4y 2=13,xy =3,求x +2y 的值.这个问题我们可以用边长分别为x 与y 的两种正方形组成一个图形来解决,其中x >y ,能较为简单地解决这个问题的图形是( )二、填空题(每小题3分,共24分) 11.计算:a 3÷a =________.12.若长方形的面积是3a 2+2ab +3a ,长为3a ,则它的宽为__________. 13.若x n =2,y n =3,则(xy )n=________. 14.化简a 4b 3÷(ab )3的结果为________. 15.若2x +1=16,则x =________.16.用一张包装纸包一本长、宽、厚如图所示的书(单位:cm).若将封面和封底每一边都包进去3cm ,则需长方形的包装纸____________cm 2.(第16题图)17.已知(x +y )2=1,(x -y )2=49,则x 2+y 2的值为________. 18.观察下列运算并填空.1×2×3×4+1=24+1=25=52; 2×3×4×5+1=120+1=121=112; 3×4×5×6+1=360+1=361=192; 4×5×6×7+1=840+1=841=292; 7×8×9×10+1=5040+1=5041=712; ……试猜想:(n +1)(n +2)(n +3)(n +4)+1=________2. 三、解答题(共66分) 19.(8分)计算:(1)23×22-⎝ ⎛⎭⎪⎫120-⎝ ⎛⎭⎪⎫12-3;(2)-12+(π-3.14)0-⎝ ⎛⎭⎪⎫-13-2+(-2)3.20.(12分)化简:(1)(2x -5)(3x +2);(2)(2a +3b )(2a -3b )-(a -3b )2;(3)⎝ ⎛⎭⎪⎫52x 3y 3+4x 2y 2-3xy ÷(-3xy );(4)(a +b -c )(a +b +c ).21.(10分)先化简,再求值:(1)(1+a )(1-a )+(a -2)2,其中a =12;(2)[x 2+y 2-(x +y )2+2x (x -y )]÷4x ,其中x -2y =2.22.(8分)若m p =15,m 2q =7,m r =-75,求m 3p +4q -2r的值.23.(8分)对于任意有理数a 、b 、c 、d ,我们规定符号(a ,b )(c ,d )=ad -bc .例如:(1,3)(2,4)=1×4-2×3=-2. (1)(-2,3)(4,5)=________;(2)求(3a +1,a -2)(a +2,a -3)的值,其中a 2-4a +1=0.24.(10分)王老师家买了一套新房,其结构如图所示(单位:米).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?(第24题图)25.(10分)阅读:已知a+b=-4,ab=3,求a2+b2的值.解:∵a+b=-4,ab=3,∴a2+b2=(a+b)2-2ab=(-4)2-2×3=10.请你根据上述解题思路解答下面问题:(1)已知a-b=-3,ab=-2,求(a+b)(a2-b2)的值;(2)已知a-c-b=-10,(a-b)c=-12,求(a-b)2+c2的值.参考答案与解析一、1.C 2.C 3.C 4.C 5.B 6.A 7.A 8.B 9.C 10.B 解析:(x +2y )2=x 2+4xy +4y 2,故符合的图形为B. 二、11.a 212.a +23b +1 13.614.a 15.3 16.(2a 2+19a -10) 17.2518.(n 2+5n +5) 解析:观察几个算式可知结果都是完全平方式,且5=1×4+1,11=2×5+1,19=3×6+1,……由此可知,最后一个式子为完全平方式,且底数为(n +1)(n +4)+1=n 2+5n +5. 19.解:(1)原式=8×4-1-8=23.(4分) (2)原式=-1+1-9-8=-17.(8分)20.解:(1)原式=6x 2+4x -15x -10=6x 2-11x -10.(3分) (2)原式=4a 2-9b 2-a 2+6ab -9b 2=3a 2+6ab -18b 2.(6分) (3)原式=-56x 2y 2-43xy +1.(9分)(4)原式=(a +b )2-c 2=a 2+b 2-c 2+2ab .(12分)21.解:(1)原式=1-a 2+a 2-4a +4=-4a +5.(3分)当a =12时,原式=-4×12+5=3.(5分)(2)原式=(x 2+y 2-x 2-2xy -y 2+2x 2-2xy )÷4x =(2x 2-4xy )÷4x =12x -y .(8分)∵x -2y =2,∴12x -y =1,∴原式=1.(10分) 22.解:m3p +4q -2r=(m p )3·(m 2q )2÷(m r )2.(4分)∵m p =15,m 2q =7,m r =-75,∴m 3p +4q -2r=⎝ ⎛⎭⎪⎫153×72÷⎝ ⎛⎭⎪⎫-752=15.(8分)23.解:(1)-22(2分)(2)(3a +1,a -2)(a +2,a -3)=(3a +1)(a -3)-(a -2)(a +2)=3a 2-9a +a -3-(a 2-4)=3a 2-9a +a -3-a 2+4=2a 2-8a +1.(5分)∵a 2-4a +1=0,∴2a 2-8a =-2,∴(3a +1,a -2)(a +2,a -3)=-2+1=-1.(8分)24.解:(1)卧室的面积是2b (4a -2a )=4ab (平方米),(2分)厨房、卫生间、客厅的面积和是b ·(4a -2a -a )+a ·(4b -2b )+2a ·4b =ab +2ab +8ab =11ab (平方米),(4分)即木地板需要4ab 平方米,地砖需要11ab 平方米.(5分)(2)11ab ·x +4ab ·3x =11abx +12abx =23abx (元),即王老师需要花23abx 元.(10分)25.解:(1)∵a -b =-3,ab =-2,∴(a +b )(a 2-b 2)=(a +b )2(a -b )=[(a -b )2+4ab ](a -b )=[(-3)2+4×(-2)]×(-3)=-3.(5分)(2)∵a-c-b=-10,(a-b)c=-12,∴(a-b)2+c2=[(a-b)-c]2+2(a-b)c=(-10)2+2×(-12)=76.(10分)第二章达标检测卷(满分:120分时间:90分钟)一、选择题(每小题3分,共30分)1.下列图形中,∠1与∠2互为对顶角的是( )2.如图,O是直线AB上一点,若∠1=26°,则∠AOC的度数为( )A.154° B.144°C.116° D.26°或154°(第2题图)3.如图,已知直线a,b被直线c所截,那么∠1的同旁内角是( )A.∠3 B.∠4C.∠5 D.∠6(第3题图)4.下列作图能表示点A到BC的距离的是( )5.如图,下列条件:①∠1=∠3;②∠2=∠3;③∠4=∠5;④∠2+∠4=180°中,能判断直线l1∥l2的有( )A.1个 B.2个C.3个 D.4个(第5题图)6.如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=110°,则∠4的度数为( ) A.70° B.80°C.110° D.100°(第6题图)7.如图,AB∥CD,CD∥EF,则∠BCE等于( )A.∠2-∠1 B.∠1+∠2C.180°+∠1-∠2 D.180°-∠1+∠2(第7题图)8.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为( )A.85° B.70°C.75° D.60°(第8题图)9.如图,E,F分别是AB,CD上的点,G是BC的延长线上一点,且∠B=∠DCG=∠D,则下列结论不一定成立的是( )A.∠AEF=∠EFC B.∠A=∠BCFC.∠AEF=∠EBC D.∠BEF+∠EFC=180°(第9题图)10.一次数学活动中,检验两条完全相同的纸带①、②的边线是否平行,小明和小丽采用两种不同的方法:小明把纸带①沿AB折叠,量得∠1=∠2=50°;小丽把纸带②沿GH折叠,发现GD与GC重合,HF与HE 重合.则下列判断正确的是( )A.纸带①的边线平行,纸带②的边线不平行B.纸带①的边线不平行,纸带②的边线平行C.纸带①、②的边线都平行D.纸带①、②的边线都不平行(第10题图)二、填空题(每小题3分,共24分)11.如图,∠1和∠2是________角,∠2和∠3是________角.(第11题图)12.如图是李晓松同学在运动会跳远比赛中最好的一跳,甲、乙、丙三名同学分别测得PA=5.52米,PB =5.37米,MA=5.60米,那么他的跳远成绩应该为________米.(第12题图)(第13题图)13.如图,直线AB ,CD 交于点O ,OE ⊥AB ,OD 平分∠BOE ,则∠AOC =________°.14.如图,条件:____________可使AC ∥DF ;条件:____________可使AB ∥DE (每空只填一个条件).(第14题图) (第15题图)15.如图是超市里的购物车,扶手AB 与车底CD 平行,∠2比∠3大10°,∠1是∠2的2011倍,则∠2的度数是________.16.一个安全用电标识如图①所示,此标识可以抽象为图②中的几何图形,其中AB ∥CD ,ED ∥BF ,点E 、F 在线段AC 上.若∠A =∠C =17°,∠B =∠D =50°,则∠AED 的度数为________.(第16题图) (第17题图)17.如图,AB ∥CD ,OE 平分∠BOC ,OF ⊥OE ,OP ⊥CD ,∠ABO =a °.有下列结论:①∠BOE =12(180-a )°;②OF 平分∠BOD ;③∠POE =∠BOF ;④∠POB =2∠DOF .其中正确的结论是________(填序号). 18.已知OA ⊥OC ,∠AOB ∶∠AOC =2∶3,则∠BOC 的度数为________. 三、解答题(共66分)19.(7分)已知一个角的余角比它的补角的23还小55°,求这个角的度数.20.(7分)用直尺和圆规作图:已知∠1,∠2,求作一个角,使它等于∠1+2∠2.(第20题图)21.(8分)如图,DG⊥BC,AC⊥BC,FE⊥AB,∠1=∠2,试说明:CD⊥AB.解:∵DG⊥BC,AC⊥BC(已知),∴∠DGB=∠ACB=90°(垂直定义),∴DG∥AC(__________________________),∴∠2=∠________(____________________).∵∠1=∠2(已知),∴∠1=∠________(等量代换),∴EF∥CD(________________________),∴∠AEF=∠________(__________________________).∵EF⊥AB(已知),∴∠AEF=90°(________________),∴∠ADC=90°(________________),∴CD⊥AB(________________).(第21题图)22.(8分)如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1,求∠AOF 的度数.(第22题图)23.(10分)如图,已知直线l1∥l2,A,B分别是l1,l2上的点,l3和l1,l2分别交于点C,D,P是线段CD 上的动点(点P不与C,D重合).(1)若∠1=150°,∠2=45°,求∠3的度数;(2)若∠1=α,∠2=β,用α,β表示∠APC+∠BPD.(第23题图)24.(12分)如图,已知BE平分∠ABD,DE平分∠BDC,且∠EBD+∠EDB=90°.(1)试说明:AB∥CD;(2)H是BE延长线与直线CD的交点,BI平分∠HBD,写出∠EBI与∠BHD的数量关系,并说明理由.(第24题图)25.(14分)如图,已知AB∥CD,AD∥BC,∠DCE=90°,点E在线段AB上,∠FCG=90°,点F在直线AD上,∠AHG=90°.(1)找出图中与∠D相等的角,并说明理由;(2)若∠ECF=25°,求∠BCD的度数;(3)在(2)的条件下,点C(点C不与B,H两点重合)从点B出发,沿射线BG的方向运动,其他条件不变,求∠BAF的度数.(第25题图)参考答案与解析1.C 2.A 3.B 4.B 5.C 6.A 7.C 8.C 9.C10.B 解析:如图①,∵∠1=∠2=50°,∴∠3=∠1=50°,∠4=180°-∠2=130°.由折叠可知∠4=∠2+∠5,∴∠5=∠4-∠2=80°.∵∠3≠∠5,∴纸带①的边线不平行.如图②,∵GD 与GC 重合,HF 与HE 重合,∴∠CGH =∠DGH =90°,∠EHG =∠FHG =90°,∴∠CGH +∠EHG =180°,∴纸带②的边线平行.故选B.(第10题答图)11.同位 同旁内 12.5.37 13.45 14.∠ACB =∠EFD ∠B =∠E15.55° 16.67° 17.①②③18.30°或150° 解析:∵OA ⊥OC ,∴∠AOC =90°.∵∠AOB ∶∠AOC =2∶3,∴∠AOB =60°,如答图,∠AOB 的位置有两种情况:一种是在∠AOC 内,一种是在∠AOC 外.(1)当在∠AOC 内时,∠BOC =90°-60°=30°;(2)当在∠AOC 外时,∠BOC =90°+60°=150°.综上可知,∠BOC 的度数为30°或150°.(第18题答图)19.解:设这个角的度数为x ,依题意有23(180°-x )-55°=90°-x ,(4分)解得x =75°.故这个角的度数为75°.(7分) 20.解:略.(7分)21.解:同位角相等,两直线平行 ACD 两直线平行,内错角相等 ACD 同位角相等,两直线平行(4分)ADC 两直线平行,同位角相等 垂直的定义 等量代换 垂直的定义(8分)22.解:∵OE 平分∠BOD ,∴∠DOE =∠EOB .(2分)又∵∠AOD ∶∠DOE =4∶1,∠AOD +∠DOE +∠EOB =180°,∴∠DOE =∠EOB =30°,∠AOD =120°,∴∠COB =∠AOD =120°.(5分)∵OF 平分∠COB ,∴∠BOF =12∠COB=60°,∴∠AOF =180°-∠BOF =180°-60°=120°.(8分)23.解:(1)过点P 向右作PE ∥l 1.∵l 1∥l 2,∴l 1∥PE ∥l 2,∴∠1+∠APE =180°,∠2=∠BPE .(2分)∵∠1=150°,∠2=45°,∴∠APE =180°-∠1=180°-150°=30°,∠BPE =∠2=45°,∴∠3=∠APE +∠BPE =30°+45°=75°.(6分)(2)由(1)知∠1+∠APE =180°,∠2=∠BPE .∵∠1=α,∠2=β,∴∠APB =∠APE +∠BPE =180°-∠1+∠2=180°-α+β,(8分)∴∠APC +∠BPD =180°-∠APB =180°-(180°-α+β)=α-β.(10分)24.解:(1)∵BE 平分∠ABD ,DE 平分∠BDC ,∴∠ABD =2∠EBD ,∠BDC =2∠EDB .(3分)∵∠EBD +∠EDB =90°,∴∠ABD +∠BDC =2(∠EBD +∠EDB )=180°,∴AB ∥CD .(6分)(2)∠EBI =12∠BHD .(8分)理由如下:∵AB ∥CD ,∴∠ABH =∠EHD .(10分)∵BI 平分∠EBD ,∴∠EBI =12∠EBD=12∠ABH =12∠BHD .(12分) 25.解:(1)与∠D 相等的角为∠DCG ,∠ECF ,∠B .(1分)理由如下:∵AD ∥BC ,∴∠D =∠DCG .∵∠FCG =90°,∠DCE =90°,∴∠ECF =∠DCG =∠D .∵AB ∥DC ,∴∠B =∠DCG =∠D ,∴与∠D 相等的角为∠DCG ,∠ECF ,∠B .(4分)(2)∵∠ECF =25°,∠DCE =90°,∴∠FCD =65°.又∵∠BCF =90°,∴∠BCD =65°+90°=155°.(7分)(3)分两种情况进行讨论:①如答图a ,当点C 在线段BH 上时,点F 在DA 的延长线上,此时∠ECF =∠DCG =∠B =25°.∵AD ∥BC ,∴∠BAF =∠B =25°;(10分)②如图b ,当点C 在BH 的延长线上时,点F 在线段AD 上.∵∠B =25°,AD ∥BC ,∴∠BAF =180°-25°=155°.综上所述,∠BAF 的度数为25°或155°.(14分)(第25题答图)第三章 单元检测卷 (满分:120分 时间:90分钟)一、选择题(每小题3分,共30分)1.在圆的面积公式S =πr 2中,常量为( )A .SB .π C.r D .S 和r2.用总长50m 的篱笆围成长方形场地,长方形的面积S (m 2)与一边长l (m)之间的关系式为S =l (25-l ),那么下列说法正确的是( ) A .l 是常量,S 是变量B .25是常量,S 与l 是变量,l 是因变量C .25是常量,S 与l 是变量,S 是因变量D .以上说法都不对3.如果圆珠笔有12支,总售价为18元,用y (元)表示圆珠笔的总售价,x 表示圆珠笔的支数,那么y 与x 之间的关系应该是( )A .y =12xB .y =18xC .y =23xD .y =32x4.如图是护士统计一位病人的体温变化图,这位病人在16时的体温约是( )(第4题图)A .37.8℃B .38℃C .38.7℃D .39.1℃5.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b 与下降高度d 的关系,下面能表示这种关系的式子是( )d 50 80 100 150 b25405075A.b =d 2B .b =2dC .b =d2D .b =d +256.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,这一过程中汽车的行驶速度v 和行驶时间t 之间的关系用图象表示,其图象可能是( )7.某梯形上底长、下底长分别是x,y,高是6,面积是24,则y与x之间的关系式是( ) A.y=-x+8 B.y=-x+4C.y=x-8 D.y=x-48.如图是某港口一天24小时的水深情况变化图象,其中点A处表示的是4时水深16米,点B处表示的是20时水深16米.某船在港口航行时,其水深至少要有16米,该船在港口装卸货物的时间需8小时,另外进港停靠和离港共需4小时.若此船要在进港的当天返航,则该船必须在一天中( ) A.4时至8时内进港 B.4时至12时内进港C.8时至12时内进港 D.8时至20时内进港(第8题图)(第9题图)9.星期天,小王去朋友家借书,如图是他离家的距离y(千米)与时间x(分钟)的关系图象.根据图象信息,下列说法正确的是( )A.小王去时的速度大于回家的速度B.小王在朋友家停留了10分钟C.小王去时花的时间少于回家时所花的时间D.小王去时走下坡路,回家时走上坡路10.如图,在正方形ABCD中,AB=2,E是AB的中点,动点P从点B开始,沿着边BC,CD匀速运动到点D.设点P运动的时间为x,EP=y,那么能表示y与x关系的图象大致是( )二、填空题(每小题3分,共24分)11.大家知道,冰层越厚,所承受的压力越大,其中自变量是_____,因变量是_____.12.如图是某市某天的气温T(℃)随时间t(时)变化的图象,则由图象可知,该天最高气温与最低气温之差为________℃.(第12题图)13.某复印店用电脑编辑并打印一张文稿收费2元,再每复印一张收费0.3元,则总收费y(元)与同样文稿的数量x(张)之间的关系式是______________.14.1~6个月的婴儿生长发育得非常快,出生体重为4000克的婴儿,他们的体重y(克)和月龄x(月)之间的关系如下表:月龄/(月)1234 5体重/(克)47005400610068007500则6个月大的婴儿的体重约为________.15.如图所示的图象反映的过程是:小明从家去书店看书,又去学校取封信后马上回家,其中x表示时间,y表示小明离开家的距离,则小明从学校回家的平均速度为________千米/时.(第15题图)16.某地区截止到2017年栽有果树2400棵,计划今后每年栽果树300棵,x年后,总共栽有果树y棵,则y与x之间的关系式为______________;当x=2时,y的值为________.17.某城市大剧院的一部分为扇形,观众席的座位设置如下表:排数n 1234…座位数m 38414447…则每排的座位数m与排数n的关系式为____________.18.如图是小明从学校到家里行进的路程s(米)与时间t(分钟)的关系图象.观察图象得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走得快.其中正确的有__________(填序号).(第18题图)三、解答题(共66分)19.(8分)下表记录的是某橘农去年橘子的销售额(元)随橘子销量(千克)变化的有关数据,请根据表中数据回答下列问题:销量(千克)123456789销售额(元)24681012141618(1)表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当销量是5千克时,销售额是多少?(3)估计当销量是50千克时,销售额是多少?20.(8分)在如图所示的三个图象中,有两个图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间以更快的速度前进.(第20题图)(1)情境a,b所对应的图象分别是________,________(填序号);(2)请你为剩下的图象写出一个适合的情境.21.(8分)如图,圆柱的高是4cm,当圆柱底面半径r(cm)变化时,圆柱的体积V(cm3)也随之变化.(1)在这个变化过程中,自变量是________,因变量是________;(2)圆柱的体积V与底面半径r的关系式是____________;(3)当圆柱的底面半径由2变化到8时,圆柱的体积由________cm3变化到________cm3.(第21题图)22.(8分)心理学家发现学生对概念的接受能力y与提出概念所用的时间x(分)之间有如下关系:(其中0≤x≤30)提出概念所用的时间257101213141720 (x)59.对概念的接受能力(y)47.853.556.35959.959.858.3558(1)当提出概念所用的时间是10分钟时,学生的接受能力是多少?(2)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强;(3)从表中可知,时间x在什么范围内,学生的接受能力逐步增强?时间x在什么范围内,学生的接受能力逐步降低?23.(10分)温度的变化是人们在生活中经常谈论的话题,请你根据图象(如图)回答下列问题:(1)上午9时的温度是多少?这一天的最高温度是多少?(2)这一天的温差是多少?从最低温度到最高温度经过了多长时间?(3)在什么时间范围内温度在下降?图中的A点表示的是什么?(第23题图)24.(12分)圣诞老人上午8:00从家里出发,骑车去一家超市购物,然后从这家超市回到家中,圣诞老人离家的距离s(千米)和所经过的时间t(分钟)之间的关系如图所示,请根据图象回答问题:(1)圣诞老人去超市途中的速度是多少?回家途中的速度是多少?(2)圣诞老人在超市逗留了多长时间?(3)圣诞老人在来去的途中,离家2千米处的时间是几时几分?(第24题图)25.(12分)某车间的甲、乙两名工人分别同时生产同种零件,他们一天生产零件y(个)与生产时间t(时)的关系如图所示.(1)根据图象填空:①甲、乙中,________先完成一天的生产任务;在生产过程中,________因机器故障停止生产________小时;②当甲、乙所生产的零件个数相等时,求t的值;(2)谁在哪一段时间内的生产速度最快?求该段时间内,他每小时生产零件的个数.(第25题图)参考答案与解析一、1.B 2.C 3.D 4.C 5.C 6.B 7.A 8.A 9.B 10.C 二、11.冰层的厚度 冰层所承受的压力12.12 13.y =0.3x +1.7 14.8200克 15.6 16.y =2400+300x 3000 17.m =3n +35 18.①②④三、19.解:(1)表中反映了橘子的销量与销售额之间的关系,橘子的销量是自变量,销售额是因变量.(4分)(2)当销量是5千克时,销售额是10元.(6分) (3)当销量是50千克时,销售额是100元.(8分) 20.解:(1)图③; 图①(4分)(2)答案不唯一,如小芳离开家不久,休息了一会儿,又走回了家.(8分) 21.解:(1)半径r ;体积V (2分) (2)V =4πr 2(5分) (3)16π 256π(8分)22.解:(1)当x =10时,y =59,所以时间是10分钟时,学生的接受能力是59.(2分) (2)当x =13时,y 的值最大是59.9,所以提出概念13分钟时,学生的接受能力最强.(4分)(3)由表中数据可知当2<x <13时,y 值逐渐增大,学生的接受能力逐步增强;当13<x <20时,y 值逐渐减小,学生的接受能力逐步降低.(8分)23.解:(1)利用图象得出上午9时的温度是27℃,这一天的最高温度是37℃.(3分) (2)这一天的温差是37-23=14(℃),从最低温度到最高温度经过了15-3=12(小时).(6分) (3)温度下降的时间范围为0时至3时及15时至24时,图中的A 点表示的是21点时的气温.(10分) 24.解:(1)由图象可知去超市用了10分钟,从超市返回用了20分钟,家到超市的距离是4千米,(2分)故圣诞老人去超市的速度是4÷10=25(千米/分),从超市返回的速度是4÷20=15(千米/分).(4分)(2)在超市逗留的时间是40-10=30(分钟).(7分)(3)去超市的过程中2÷25=5(分钟),返回的过程中2÷15=10(分钟),40+10=50(分钟).故圣诞老人在8:05和8:50时离家2千米.(12分) 25.解:(1)①甲 甲 3 (3分)②由图象可知,甲、乙所生产的零件个数相等时有两个时刻.第一个时刻为t =3时,(5分)设第二个时刻为t =x 时,则此时甲生产零件10+40-107-5(x -5)=15x -65(个),乙生产零件4+40-48-2(x -2)=6x -8(个),则15x -65=6x -8,解得x =193.综上可知,当t =3和193时,甲、乙所生产的零件个数相等.(9分)(2)甲在5~7时的生产速度最快,(10分)∵40-107-5=15(个),∴他在这段时间内每小时生产零件15个.(12分)第四章 单元检测卷 (满分:120分 时间:90分钟)一、选择题(每小题3分,共30分) 1.若三角形的两个内角的和是85°,则这个三角形是( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .不能确定2.下列长度的三条线段不能组成三角形的是( ) A .5,5,10 B .4,5,6 C .4,4,4 D .3,4,53.如图,BC ⊥AE 于点C ,CD ∥AB ,∠DCB =40°,则∠A 的度数是( ) A .70° B .60° C .50° D .40°(第3题图) (第4题图)4.如图,△ABC ≌△DEF ,若∠A =50°,∠C =30°,则∠E 的度数为( ) A .30° B .50° C .60° D .100°5.如果某三角形的两边长分别为5和7,第三边的长为偶数,那么这个三角形的周长可以是( ) A .10 B .11 C .16 D .266.如图,已知∠ABC =∠BAD ,添加下列条件还不能判定△ABC ≌△BAD 的是( ) A .AC =BD B .∠CAB =∠DBA C .∠C =∠D D .BC =AD(第6题图) (第7题图)7.如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为( ) A .45° B .60° C .90° D .100°8.如图,两棵大树间相距13m ,小华从点B 沿BC 走向点C ,行走一段时间后他到达点E ,此时他仰望两棵大树的顶点A 和D ,两条视线的夹角正好为90°,且EA =ED .已知大树AB 的高为5m ,小华行走的速度为1m/s ,则小华走的时间是( )A .13sB .8sC .6sD .5s(第8题图) (第9题图)9.如图,在△ABC 和△BDE 中,点C 在BD 上,边AC 交边BE 于点F ,若AC =BD ,AB =ED ,BC =BE ,则∠ACB 等于( )A .∠EDB B .∠BED C.12∠AFB D .2∠ABF 10.如图,AE 是△ABC 的角平分线,AD ⊥BC 于点D ,点F 为BC 的中点,若∠BAC =104°,∠C =40°,则有下列结论:①∠BAE =52°;②∠DAE =2°;③EF =ED ;④S △ABF =12S △ABC .其中正确的个数有( )A .1个B .2个C .3个D .4个(第10题图)二、填空题(每小题3分,共24分)11.人字架、起重机的底座,输电线路支架等,在日常生活中,很多物体都采用三角形结构,这是利用了三角形的__________.12.如图,AD 是△ABC 的一条中线,若BC =10,则BD =________.(第12题图)13.若直角三角形中两个锐角的差为20°,则这两个锐角的度数分别是________. 14.如图,AB ∥CD ,AD 与BC 交于点E .若∠B =35°,∠D =45°,则∠AEC =________°.(第14题图) (第15题图)15.如图,在四边形ABCD 中,∠1=∠2,∠3=∠4.若AB =6cm ,AD =8cm ,则CD =________cm. 16.如图,在△ABC 中,∠B =30°,∠C =70°,AD 平分∠BAC ,交BC 于F ,DE ⊥BC 于E ,则∠D =________°.(第16题图) (第17题图)17.如图,△ABC 的中线BD ,CE 相交于点O ,OF ⊥BC ,且AB =6,BC =5,AC =4,OF =1.4,则四边形ADOE 的面积是________.18.如图,已知四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于点E ,且AE =12(AB +AD ),若∠D =115°,则∠B=________°.(第18题图)三、解答题(共66分)19.(8分)如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC,求∠EDC的度数.(第19题图)20.(8分)如图,点B,C,E,F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.试说明:(1)△ABC≌△DEF;(2)AB∥DE.(第20题图)21.(8分)如图,已知线段m,n,如果以线段m,n分别为等腰三角形的底或腰作三角形,能作出几个等腰三角形?请作出.不写作法,保留作图痕迹.(第21题图)22.(10分)已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.试说明:(1)BD=CE;(2)∠M=∠N.(第22题图)23.(10分)如图,A,B是两棵大树,两棵大树之间有一个废弃的圆形坑塘,为开发利用这个坑塘,需要测量A,B之间的距离,但坑塘附近地形复杂不容易直接测量.(1)请你利用所学知识,设计一个测量A,B之间的距离的方案,并说明理由;(2)在你设计的测量方案中,需要测量哪些数据?为什么?(第23题图)24.(10分)如图,B,C都是直线BC上的点,点A是直线BC上方的一个动点,连接AB,AC得到△ABC,D,E分别为AC,AB上的点,且AD=BD,AE=BC,DE=DC.请你探究,线段AC与BC具有怎样的位置关系时DE⊥AB?为什么?(第24题图)25.(12分)如图,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CD为AB边上的高.点E从点B出发沿直线BC以2cm/s的速度移动,过点E作BC的垂线交直线CD于点F.(1)试说明:∠A=∠BCD;(2)当点E运动多长时间时,CF=AB.请说明理由.(第25题图)参考答案与解析一、1.A 2.A 3.C 4.D 5.C 6.A 7.C 8.B 9.C 10.C 二、11.稳定性 12.5 13.55°,35° 14.80 15.6 16.20 17.3.518.65 解析:过C 作CF ⊥AD ,交AD 的延长线于F .∵AC 平分∠BAD ,∴∠CAF =∠CAE .又∵CF ⊥AF ,CE ⊥AB ,∴∠AFC =∠AEC =90°.在△CAF 和△CAE 中,∵⎩⎪⎨⎪⎧∠CAF =∠CAE ,∠AFC =∠AEC ,AC =AC ,∴△CAF ≌△CAE (AAS),∴FC =EC ,AF =AE .又∵AE =12(AB +AD ),∴AF =12(AE +EB +AD ),即AF =BE +AD ,∴DF =BE .在△FDC 和△EBC 中,⎩⎪⎨⎪⎧CF =CE ,∠CFD =∠CEB ,DF =BE ,∴△FDC ≌△EBC (SAS),∴∠FDC =∠EBC .又∵∠ADC =115°,∴∠FDC =180°-115°=65°,∴∠B =65°.19.解:(1)∵∠B =54°,∠C =76°,∴∠BAC =180°-54°-76°=50°.(2分)∵AD 平分∠BAC ,∴∠BAD =∠CAD =25°,∴∠ADB =180°-∠B -∠BAD =180°-54°-25°=101°,∴∠ADC =180°-∠ADB =180°-101°=79°.(5分)(2)∵DE ⊥AC ,∴∠DEC =90°,∴∠EDC =90°-∠C =90°-76°=14°.(8分)20.解:(1)∵AC ⊥BC ,DF ⊥EF ,∴∠ACB =∠DFE =90°.(2分)又∵BC =EF ,AC =DF ,∴△ABC ≌△DEF (SAS).(5分)(2)∵△ABC ≌△DEF ,∴∠B =∠DEF ,∴AB ∥DE .(8分) 21.解:能作出两个等腰三角形,如答图.(8分)(第21题答图)22.解:(1)在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠1=∠2,AD =AE ,∴△ABD ≌△ACE (SAS),∴BD =CE .(4分)(2)∵∠1=∠2,∴∠1+∠DAE =∠2+∠DAE ,即∠BAN =∠CAM .(6分)∵△ABD ≌△ACE ,∴∠B =∠C .(7分)在△ACM 和△ABN 中,⎩⎪⎨⎪⎧∠C =∠B ,AC =AB ,∠CAM =∠BAN ,∴△ACM ≌△ABN (ASA),∴∠M =∠N .(10分)23.解:(1)方案为:①如图,过点B 画一条射线BD ,在射线BD 上选取能直接到达的O ,D 两点,使OD =OB ;②作射线AO 并在AO 上截取OC =OA ;③连接CD ,则CD 的长即为AB 的长.(3分)理由如下:在△AOB 和△COD 中,∵⎩⎪⎨⎪⎧OA =OC (测量方法),∠AOB =∠COD (对顶角相等),OB =OD (测量方法),∴△AOB ≌△COD (SAS),∴AB =CD .(6分)(第23题答图)(2)根据这个方案,需要测量5个数据,即:线段OA ,OB ,OC ,OD ,CD 的长度,并使OC =OA ,OD =OB ,则CD =AB .(10分)24.解:当AC ⊥BC 时,DE ⊥AB .(3分)理由如下:∵AC ⊥BC ,∴∠C =90°.在△AED 和△BCD 中,∵⎩⎪⎨⎪⎧AD =BD ,AE =BC ,DE =DC ,∴△AED ≌△BCD (SSS).(7分)∴∠AED =∠C =90°,∴DE ⊥AB .(10分)25.解:(1)∵∠ACB =90°,CD ⊥AB ,∴∠A +∠ACD =90°,∠BCD +∠ACD =90°,∴∠A =∠BCD .(3分)(第25题答图)(2)如图,当点E 在射线BC 上移动5s 时,CF =AB .可知BE =2×5=10(cm),∴CE =BE -BC =10-3=7(cm),∴CE =AC .∵∠A =∠BCD ,∠ECF =∠BCD ,∴∠A =∠ECF .(5分)在△CFE 与△ABC 中⎩⎪⎨⎪⎧∠ECF =∠A ,CE =AC ,∠CEF =∠ACB ,∴△CFE ≌△ABC ,∴CF =AB .(7分)当点E 在射线CB 上移动2s 时,CF =AB .可知BE ′=2×2=4(cm),∴CE ′=BE ′+BC =4+3=7(cm),∴CE ′=AC .(9分)在△CF ′E ′与△ABC 中⎩⎪⎨⎪⎧∠E ′CF ′=∠A ,CE ′=AC ,∠CE ′F ′=∠ACB ,∴△CF′E′≌△ABC,∴CF′=AB.综上可知,当点E运动5s或2s时,CF=AB.(12分)第五章单元检测卷(时间:120分满分:90分钟)一、选择题(每小题3分,共30分)1.下列瑜伽动作中,可以看成轴对称图形的是( )2.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长度为( )A.6 B.5 C.4 D.3(第2题图)3.下列说法正确的是( )A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴4.如图,若△ABC与△A′B′C′关于直线MN对称,BB′交MN于点O,则下列说法不一定正确的是( ) A.AC=A′C′ B.BO=B′OC.AA′⊥MN D.AB∥B′C′(第4题图)(第5题图)5.如图,∠C=90°,AD平分∠BAC交BC于D.若BC=32,且BD∶CD=9∶7,则点D到AB的距离为( ) A.18 B.16C.14 D.126.已知等腰三角形有一个角为70°,那么它的底角为( )A.45°或55° B.70°或55°C.55° D.70°7.如图,在△ABC中,AB=AC,DB=DC.若BC=6,AD=5,则图中阴影部分的面积为( ) A.30 B.15C.7.5 D.6(第7题图)(第8题图)8.如图,在△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为( )A.50° B.51°C.51.5° D.52.5°9.如图,P是∠AOB外的一点,M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN 上,点P关于OB的对称点R恰好落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为( )A.4.5cm B.5.5cmC.6.5cm D.7cm(第9题图)10.如图是把一张长方形的纸沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,外面部分展开后的图形是( )二、填空题(每小题3分,共24分)11.剪纸艺术充分体现了我国劳动人民的智慧,下图中的剪纸图案共有________条对称轴.(第11题图)(第12题图)12.如图①是一把园林剪刀,把它抽象为图②,其中OA=OB.若剪刀张开的角为30°,则∠A=________°. 13.在△ABC中,AB=5,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是________.14.如图,在△ABC中,AB=AC,BE∥AC,∠BDE=100°,∠BAD=70°,则∠E=________°.(第14题图)(第15题图)15.如图,△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点.若△ABC与△EBC的周长分别是40cm,24cm,则AB=________cm.16.如图,CD与BE互相垂直平分,AD⊥DB,∠BDE=70°,则∠CAD=________°.(第16题图)(第17题图)17.如图,在△ABC中,∠C=90°,O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB=10cm,BC=8cm,CA=6cm,则OD的长度为________.18.如图,D,E为△ABC两边AB,AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=55°,则∠BDF=________.(第18题图)三、解答题(共66分)19.(8分)如图,以虚线为对称轴,画出图形的另一半,并说明图形是什么形状.(第19题图)20.(8分)如图,两个班的学生分别在C,D两处参加植树劳动,现要在道路AO,OB的交叉区域内设一个茶水供应点M,使M到两条道路的距离相等,且MC=MD,这个茶水供应点的位置应建在何处?并在图中表示出来.(第20题图)21.(8分)如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于点D,交AB于点E,∠DAE与∠DAC的度数比为2∶1,求∠B的度数.(第21题图)22.(10分)如图,P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.(第22题图)23.(10分)如图,在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O,连接AD,AE,△ADE的周长为6cm.(1)求BC的长;(2)分别连接OA,OB,OC,若△OBC的周长为16cm,求OA的长.(第23题图)24.(10分)如图,已知∠C=∠D=90°,E是CD上的一点,AE,BE分别平分∠DAB,∠ABC.(1)试说明:点E为CD的中点;(2)求∠AEB的度数.(第24题图)25.(12分)(1)如图,△ABC为等边三角形,点M是BC上任意一点,点N是CA上任意一点,且BM=CN,BN与AM交于点Q,猜测∠BQM等于多少度,并说明理由;(2)若点M是BC延长线上任意一点,点N是CA延长线上任意一点,且BM=CN,BN与AM的延长线交于点Q,(1)中结论还成立吗?画出相应图形,说明理由.(第25题图)参考答案与解析一、1.A 2.B 3.C 4.D 5.C 6.B 7.C 8.D 9.A 10.D二、11.4 12.75 13.5∶3 14.50 15.16 16.70 17.2 cm18.70°解析:∵D为AB的中点且点A和点F关于DE所在直线对称,∴AD=DF=BD,∴∠DFB=∠B=55°,∴∠BDF=70°.19.解:图略.(4分)图①为五角星,图②为一棵树.(8分)20.解:连接CD,先作CD的垂直平分线l1,(4分)再作∠AOB的平分线l2,l1与l2的交点M即为所求,如图所示.(8分)(第20题答图)21.解:设∠DAC=x,则∠DAE=2x.(2分)∵DE是AB的垂直平分线,∴DA=DB,∴∠B=∠DAB=2x.(5分)∵∠C=90°,∴2x+(2x+x)=90°,解得x=18°,∴∠B=36°.(8分)22.解:∵AP=PQ=AQ,∴△APQ是等边三角形,∴∠APQ=∠AQP=∠PAQ=60°.∵AP=BP,∴∠PBA=∠PAB.(3分)又∵∠PBA+∠PAB=180°-∠APB=∠APQ=60°,∴∠PBA=∠PAB=30°.(5分)同理∠QAC =30°,(7分)∴∠BAC=∠BAP+∠PAQ+∠QAC=30°+60°+30°=120°.(10分)23.解:(1)∵l1,l2分别是线段AB,AC的垂直平分线,∴AD=BD,AE=CE,∴AD+DE+AE=BD+DE+CE =BC.(3分)∵△ADE的周长为6cm,即AD+DE+AE=6cm,∴BC=6cm.(5分)(2)∵AB边的垂直平分线l1与AC边的垂直平分线l2交于点O,∴OA=OB=OC.(7分)∵△OBC的周长为16cm,即OC+OB+BC=16cm,∴OC+OB=16-6=10(cm),∴OC=5cm,∴OA=5cm.(10分)24.解:(1)过点E作EF⊥AB于点F.∵BE平分∠ABC,EC⊥BC,EF⊥AB,∴CE=EF.(2分)同理可得EF=ED.∴CE=ED,即点E为CD的中点.(5分)(2)∵∠C=90°,∠D=90°,∴∠C+∠D=180°,∴BC∥AD,∴∠ABC+∠DAB=180°.(7分)又∵AE,BE分别平分∠DAB,∠ABC,∴∠ABE+∠BAE=90°,∴∠AEB=90°.(10分)25.解:(1)∠BQM=60°.(1分)理由如下:∵△ABC为等边三角形,∴AB=BC,∠ACB=∠ABC=60°.又∵BM=CN,∴△ABM≌△BCN(SAS),∴∠BAM=∠CBN.(3分)∵∠CBN+∠ABN=∠ABC=60°,∴∠BAM+∠ABN =60°,∴∠AQB=120°,∴∠BQM=60°.(5分)(2)成立,所画图形如图所示.(7分)理由如下:∵△ABC为等边三角形,∴AB=BC,∠ACB=∠ABC=60°.又∵BM=CN,∴△ABM≌△BCN(SAS),∴∠BAM=∠NBC.(9分)∵∠BAC=∠ABC=60°,∴∠NBA=∠CAM.而∠CAM+∠QAB=180°-∠BAC=120°,∴∠NBA+∠QAB=120°.∴∠BQM=180°-(∠NBA+∠QAB)=60°.(12分)。
北师大版七年级下册数学第一章测试卷及答案
第一章知识梳理A卷知识点1同底数幕的乘法一、选择题1. 计算a2• a5的结果是()A.a10B.a 8C.a 7D.a 3答案:C2. 计算2X 24X 23的结果是( )7 8 12 13A.2B.2C.2D.2答案:B3. 计算x • (-x )2的结果是()A.x3B.-x 3C.x 2D.0答案:A4. (内蒙古呼伦贝尔)化简(-x ) 3(-x ) 2的结果正确的是( )A.-x 6B.x 6C.x 5D.-x 5答案:D5. 计算-b • b3• b4的结果是()7 7 8A.-bB.bC.bD.-b答案:D二、填空题6. (黑龙江大庆)若a m=2, a n=8,则a m+= ______答案:167. 计算:(1) a5• a3• a2= _;(2)(-b ) 2・(-b) 3• (-b) 5=—;m n-2(3)x • x • x = .答案:(1) a10(2) b10(3) x m+n-18. 若a2n-1• a2n+1=a12,贝U n=.答案:39. 一个长方体的长、宽、高分别为a2, a, a3,则这个长方体的体积是_一答案:a6三、解答题10. 计算.(1)104X 105X 106;(2)(丄)3X( 1) 4X 丄;2 2 2(3)b2n• b2n• b2.答案:解:(1)原式=io4+5+6=io15.(2)原式=(-)3叫(-)8.2 2(3)原式=b2n+2n+2=b4n+2.11. 规定:a*b=10a x 10b,例如3*4=103x 104=107.(1)试求2*5和3*17的值;(2)猜想:a*b与b*a的运算结果是否相等?说明理由.答案:解:(1) 2*5=102X 105=107.3*17=103X 1017=1020.(2)相等,理由如下:因为a*b=10a X 10b=10a+b, b*a=10b X 10a=10a+b, 所以a*b=b*a.12.1 kg镭完全蜕变后,放出的热量相当于3.75 X 105 kg煤放出的热量,据估计, 地壳中含有1X 1010 kg的镭,问这些镭完全蜕变后放出的热量相当于多少千克煤放出的热量.c A A c答案:解:3.75 X 10 X 1X 10 =3.75 X 10 kg.答:这些镭完全蜕变后放出的热量相当于 3.75 X 1015 kg煤放出的热量.知识点2幕的乘方13. 计算(a2) 3的结果是( )A. 3a2B.2a 3C.a 5D.a 6答案:D14. 计算(103) 2的结果是()A.103B.105C.106D.109答案:C18. ________________ 若 a 12=x 2= (a 3) 丫,贝U x= , y= . 答案:a 6419. 若 x 3n =3,则 x 6n =. 答案:920. 若(a 3) m =a 4 • a m ,则 m=. 答案:2 21.有一个棱长10 cm 的正方体,在某种物质的作用下,棱长以每秒扩大为原来 的102倍的速度膨胀,则3秒后该正方体的体积是 cm 3.答案:1021 22.计算.(1) (y 4)22326634+ (y ) • y ; (2) -x • (-x ) +2 (x ).(1)原式=y 8+y 8=2y 8.(2)原式=-x 12+2X 12=X 12.23. 比较大小:2100与375,并说明理由. 答案:解:2100< 375.理由:2100= (24) 25=1625, 375= (33) 25=2725, 因为 27>16,所以 1625<2尸,所以 2100< 375.知识点3积的乘方一、选择题24. 计算(2x 3) 2的结果是()15.计算(X 。
北师大版七年级下册数学第一章测试卷及答案
第一章知识梳理A卷知识点1同底数幂的乘法一、选择题1.计算a2·a5的结果是()A.a10B.a8C.a7D.a3答案:C2.计算2×24×23的结果是()A.27B.28C.212D.213答案:B3.计算x·(-x)2的结果是()A.x3B.-x3C.x2D.0答案:A4.(内蒙古呼伦贝尔)化简(-x)3(-x)2的结果正确的是()A.-x6B.x6C.x5D.-x5答案:D5.计算-b·b3·b4的结果是()A.-b7B.b7C.b8D.-b8答案:D二、填空题6.(黑龙江大庆)若a m=2,a n=8,则a m+n=答案:167.计算:(1)a5·a3·a2= ;(2)(-b)2·(-b)3·(-b)5= ;(3)x m·x·x n-2= .答案:(1)a10(2)b10(3)x m+n-18.若a2n-1·a2n+1=a12,则n= .答案:39.一个长方体的长、宽、高分别为a2,a,a3,则这个长方体的体积是 . 答案:a6三、解答题10.计算.(1)104×105×106;(2)(12)3×(12)4×12;(3)b2n·b2n·b2.答案:解:(1)原式=104+5+6=1015.(2)原式=(12)3+4+1=(12)8.(3)原式=b2n+2n+2=b4n+2.11.规定:a*b=10a×10b,例如3*4=103×104=107.(1)试求2*5和3*17的值;(2)猜想:a*b与b*a的运算结果是否相等?说明理由.答案:解:(1)2*5=102×105=107.3*17=103×1017=1020.(2)相等,理由如下:因为a*b=10a×10b=10a+b,b*a=10b×10a=10a+b,所以a*b=b*a.12.1 kg镭完全蜕变后,放出的热量相当于3.75×105 kg煤放出的热量,据估计,地壳中含有1×1010kg的镭,问这些镭完全蜕变后放出的热量相当于多少千克煤放出的热量.答案:解:3.75×105×1×1010=3.75×1015 kg.答:这些镭完全蜕变后放出的热量相当于3.75×1015 kg煤放出的热量.知识点2幂的乘方13.计算(a2)3的结果是()A.3a2B.2a3C.a5D.a6答案:D14.计算(103)2的结果是()A.103B.105C.106D.109答案:C15.计算(x m)3的结果是()A.x3+mB.x mC.x3D.x3m答案:D16.计算(a5)2·a3的结果是()A.a10B.a11C.a12D.a13答案:D17.计算:-(x2)3= .答案:-x618.若a12=x2=(a3)y,则x= ,y= .答案:a6419.若x3n=3,则x6n= .答案:920.若(a3)m=a4·a m,则m= .答案:221.有一个棱长10 cm的正方体,在某种物质的作用下,棱长以每秒扩大为原来的102倍的速度膨胀,则3秒后该正方体的体积是 cm3.答案:102122.计算.(1)(y4)2+(y2)3·y2;(2)-x6·(-x)6+2(x3)4.答案:解:(1)原式=y8+y8=2y8.(2)原式=-x12+2x12=x12.23.比较大小:2100与375,并说明理由.答案:解:2100<375.理由:2100=(24)25=1625,375=(33)25=2725,因为27>16,所以1625<2725,所以2100<375.知识点3积的乘方一、选择题24.计算(2x3)2的结果是()A.4x6B.2x6C.4x5D.2x5答案:A25.(四川攀枝花)计算(ab2)3的结果,正确的是()A.a3b6B.a3b5C.ab6D.ab5答案:A26.(四川成都)计算(-x3y)2的结果是()A.-x5yB.x6yC.-x3y2D.x6y2答案:D二、填空题27.计算:(1)(ab)3= ;(2)(-2a2)3= ;(3)(-4a3b)2= .答案:(1)a3b3(2)-8a6(3)16a6b2三、解答题28.计算.(1)a5·(-a)3+(-2a2)4;(2)[(-x2)3·(-x3)2]3;(3)(-2ab3c2)4.答案:解:(1)原式=-a8+16a8=15a8.(2)原式=(-x6·x6)3=-x36.(3)原式=16a4b12c8.知识点4同底数幂的除法一、填空题29.计算a6÷a3的结果是()A.a9B.a3C.a2D.a-3答案:B30.(12-)0的值是()A.1B.-1C.0D.1 2 -答案:A31.计算3-2的结果是()A.19B.19C.9D.-9 答案:A32.计算x ÷x 3的结果( ) A.21x B.41xC.x 2D.x 4 答案:A二、填空题33.计算:(1)x 6÷(-x )4= ;(2)(-2)6÷(-2)2= ;(3)(ab )5÷(ab )2= .答案:(1)x 2(2)16(3)a 3b 334.2.6×10-7用小数表示为 .答案:0.000 000 2635.若m-n=2,则10m ÷10n = .答案:10036.(山东威海)蜜蜂建造的蜂巢既坚固又省料,其厚度约为0.000 073 m ,将0.000 073用科学记数法表示为 .答案:7.3×10-537.若a=-0.32,b=-32,c=(-13)2,d=(-13)0,则a ,b ,c ,d 的大小关系为 . 答案:d >c >a >b三、解答题38.计算.(1)82m+3÷8m ;(2)2-2×43+(-13)0-(-2)4; (3)(-a 2)3÷(-a 3)2;(4)(m 2)n ·(m n )3÷m n-2;(5)(2m 2n -1)2÷3m 3n -5.答案:解:(1)原式=8m+3.(2)原式=16+1-16=1.(3)原式=-a 6÷a 6=-1.(4)原式=m 5n ÷m n-2=m 4n+2.(5)原式=4m4n-2÷3m3n-5=43mn3.知识点5整式的乘法一、选择题39.计算2a3·a2的结果是()A.2aB.2a5C.2a6D.2a9答案:B40.计算3x2·(-2x)3的结果是()A.-18x5B.-24x5C.-24x6D.-18x6答案:B41.计算(-2a2b)(3a3b2)的结果是()A.-6a5b3B.-6a3b5C.6a5b3D.6a3b5答案:A42.若(y+3)(y-2)=y2+my+n,则m,n的值分别为()A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-6答案:B43.计算(-2x+1)(-3x2)的结果为()A.6x3+1B.6x3-3C.6x3-3x2D.6x3+3x2答案:C44.下列计算结果正确的是()A.(6ab2-4a2b)·3ab=18ab2-12a2bB.(-x)(2x+x2-1)=-x3-2x2+1C.(-3x2y)(-2xy+3yz-1)=6x3y2-9x2y2z2+3x2yD.(34a3-12b)·2ab=32a4b-ab2答案:D45.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式,其中正确的是()①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn.A.①②B.③④C.①②③D.①②③④答案:D二、填空题46.计算:(1)(-5a4)(-8ab2)= ;(2)12x2y·(2x+4y)= ;(3)(4x n+2y3)(-38x n-1y)= ;(4)(-12xyz)·23x2y2·(-35yz3)= .答案:(1)40a5b2(2)x3y+2x2y2(3)-32x2n+1y4(4)15x3y4z4三、解答题47.计算.(1)(x+3)(x-5)-x·(x-2);(2)(4a-b)(-2b)2;(3)(-53ab3c)·310ab3c·(-8abc)2;(4)-6ab·(2a2b-13ab2);(5)(x+5)(2x-3)-2x·(x2-2x+3);(6)(2x-4)(-3x2+12x+1).答案:解:(1)原式=x2-2x-15-x2+2x=-15. (2)原式=(4a-b)·4b2=16ab2-4b3.(3)原式=-32a4b8c4.(4)原式=-12a3b2+2a2b3.(5)原式=2x2+7x-15-2x3+4x2-6x=-2x3+6x2+x-15.(6)原式=-6x3+x2+2x+12x2-2x-4=-6x3+13x2-4.知识点6平方差公式一、选择题48.计算(2x+1)(2x-1)的结果是()A.4x2-1B.2x2-1C.4x-1D.4x2+1 答案:A49.下列式子能用平方差公式计算的是()A.(2a+b)(2b-a)B.(12+1)(-12-1)C.(3x-y)(-3x+y)D.(-m-n)(-m+n)答案:D50.计算(3m-2n)(-3m-2n)的结果是()A.9m2-4n2B.9m2+4n2C.-9m2-4n2D.-9m2+4n2答案:D二、填空题51.计算:(2a+b)(2a-b)= .答案:4a2-b252.已知m+n=3,m-n=2,那么m2-n2= .答案:653.(-3x2+2y2)()=9x4-4y4.答案:-3x2-2y254.如图,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a,b的等式为 .答案:a2-b2=(a+b)(a-b)三、解答题55.简便计算.(1)103×97;(2)899×901+1.答案:解:(1)原式=(100+3)(100-3)=9 991.(2)原式=(900-1)(900+1)+1=810 000.56.计算.(1)(3x-2)(-3x-2);(2)(2x-3y)(3y+2x)-(4y-3x)(3x+4y);(3)(x+1)(x2+1)(x-1).答案:解:(1)原式=-9x2+4.(2)原式=4x2-9y2-16y2+9x2=13x2-25y2.(3)原式=(x+1)(x-1)(x2+1)=(x2-1)(x2+1)=x4-1.知识点7完全平方公式一、选择题57.(湖北武汉)运用乘法公式计算(x+3)2的结果是()A.x2+9B.x2-6x+9C.x2+6x+9D.x2+3x+9答案:C58.计算:(x-5)2=()A.x2-25B.x2+25C.x2-5x+25D.x2-10x+25答案:D59.下列各式中计算正确的是()A.(a-b)2=a2-b2B.(a+2b)2=a2+2ab+4b2C.(a2+1)2=a4+2a+1D.(-m-n)2=m2+2mn+n2答案:D60.如图1,是一个长为2a、宽为2b(a>b)的长方形,用剪刀沿图中虚线剪开,把它分成四个完全一样的小长方形,然后按图2拼成一个新的正方形,则中间空白部分的面积是()A.abB.(a+b)2C.(a-b)2D.a2-b2答案:C二、填空题61.已知a+b=3,ab=1,则a2+b2= .答案:762.若(m-2)2=3,则m2-4m+6的值为 .答案:563.一个正方形的面积是a2+2a+1(a>0),则其边长为 .答案:a+164.已知(a-b)2=9,(a+b)2=25,则a2+b2= .答案:17三、解答题65.简便计算.(1)982;(2)1 0032.答案:解:(1)原式=(100-2)2=1002-400+4=9 604.(2)原式=(1 000+3)2=1 0002+6 000+9=1 006 009.66.计算.(1)(2x-3y)2;(2)(a+1)2-a2;(3)(x+5)2-(x-2)(x-3);(4)(a+2b-3c)(a-2b+3c).答案:解:(1)原式=4x2-12xy+9y2.(2)原式=a2+2a+1-a2=2a+1.(3)原式=x2+10x+25-x2+5x-6=15x+19.(4)原式=[a+(2b-3c)][a-(2b-3c)]=a2-(2b-3c)2=a2-4b2+12bc-9c2.知识点8整式的除法一、选择题67.计算8a3÷(-2a)的结果是()A.4aB.-4aC.4a2D.-4a2答案:D68.计算(-2a3)2÷a2的结果是()A.-4a4B.4a4C.-4a8D.4a8答案:B69.计算(12x3-8x2+16x)÷(-4x)的结果是()A.-3x2+2x-4B.-3x2-2x+4C.-3x2+2x+4D.3x2-2x+4答案:A70.长方形的面积为4a2-6ab+2a,若它的一边长为2a,则它的周长为()A.4a-3bB.8a-6bC.4a-3b+1D.8a-6b+2答案:D二、填空题71.计算:(1)4a3b2÷2ab= ;(2)(8a3bc-2a2b2-12ab)÷(-12ab)= .答案:(1)2a2b(2)-16a2c+4ab+172.已知7x3y2与一个多项式之积是28x4y2+7x4y3-21x3y2,则这个多项式是 . 答案:4x+xy-373.月球距离地球约3.84×105km,一架飞机的速度为8×102km/h,若坐飞机飞行这么远的距离需 h.答案:480三、解答题74.计算.(1)5x2y÷(-12xy)·3xy2;(2)(12x3-6x2+9x)÷(-3x);(3)[x(x2-2x+3)-3x]÷12x2.答案:解:(1)原式=-30x2y2.(2)原式=-4x2+2x-3. (3)原式=2x-475.化简求值.(1)(-xy)3÷(x-2)3,其中x=-4,y=14;(2)[(x+2y)2-(x+y)(3x-y)-5y2]÷2x,其中x=-2,y=12.答案:解:(1)原式=-x3y3÷x-6=-x9y3,当x=-4,y=14时,原式=4 096.(2)原式=(x2+4xy+4y2-3x2-2xy+y2-5y2)÷2x=-x+y,当x=-2,y=12时,原式=52.。
北师大版七年级下册数学全册单元测试卷含答案全套
北师大版七年级下册数学全册单元试卷(6套)第一章测试卷一、选择题(每题3分,共30分)1.计算(-a2)3的结果是( )A.a5B.a6C.-a5D.-a62.计算:20·2-3等于( )A.-18B.18C.0 D.83.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.000 000 5 g,将0.000 000 5用科学记数法表示为( )A.5×107B.5×10-7C.0.5×10-6D.5×10-64.下列运算正确的是( )A.x2·x3=x6B.x2y·2xy=2x3y C.(-3xy)2=9x2y2D.x6÷x3=x2 5.计算4m·8-1÷2m的结果为16,则m的值等于( )A.7 B.6 C.5 D.46.下列四个算式:①5x2y4÷15xy=xy3;②16a6b4c÷8a3b2=2a3b2c;③9x8y2÷3x2y=3x4y;④(12m3-6m2-4m)÷(-2m)=-6m2+3m+2. 其中正确的有( )A .0个B .1个C .2个D .3个7.下列运用平方差公式计算,错误的是( )A .(a +b )(a -b )=a 2-b 2B .(x +1)(x -1)=x 2-1C .(2x +1)(2x -1)=2x 2-1D .(-a +b )(-a -b )=a 2-b 28.若(a +2b )2=(a -2b )2+A ,则A 等于( )A .8abB .-8abC .8b 2D .4ab9.若a =-0.32,b =-3-2,c =⎝ ⎛⎭⎪⎫-13-2,d =⎝ ⎛⎭⎪⎫-130,则a ,b ,c ,d 的大小关系是( )A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b10.在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图①),把余下的部分剪拼成一个长方形(如图②),根据两个图形中阴影部分的面积相等,可以验证( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 2 二、填空题(每题3分,共30分)11.计算:a(a+1)=__________.12.如果x+y=-1,x-y=8,那么代数式x2-y2的值是________.13.某种计算机每秒可做4×108次运算,它工作3×103 s运算的次数为__________.14.如果9x2+k x+25是一个完全平方式,那么k的值是________.15.计算:(-13xy2)2·[xy(2x-y)+xy2]=__________.16.计算:(7x2y3z+8x3y2)÷4x2y2=______________.17.若(x+2m)(x-8)中不含x的一次项,则m的值为________.18.若3x=a,9y=b,则3x-2y的值为________.19.如图,一个长方形花园ABCD,AB=a,AD=b,该花园中建有一条长方形小路LMPQ和一条平行四边形小路RSTK,若LM=R S=c,则该花园中可绿化部分(即除去小路后剩余部分)的面积为________________.20.《数书九章》中的秦九韶算法是我国南宋时期的数学家秦九韶提出的一种多项式简化算法.在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法.例如,计算“当x=8时,多项式3x3-4x2-35x+8的值”,按照秦九韶算法,可先将多项式3x3-4x2-35x+8一步步地进行改写:3x3-4x2-35x+8=x(3x2-4x-35)+8=x[x(3x-4)-35]+8.按改写后的方式计算,它一共做了3次乘法,3次加法,与直接计算相比节省了乘法次数,使计算量减少.计算当x=8时,多项式的值为1 008.请参考上述方法,将多项式x3+2x2+x-1改写为_________________________________;当x=8时,多项式的值为________.三、解答题(21,26题每题12分,22,23题每题8分,其余每题10分,共60分)21.计算:(1)(-12ab)(23ab2-2ab+43b);(2)(a+b)(a-b)+4ab3÷4ab;(3)(2x-y-z)(y-2x-z);(4)(2x+y)(2x-y)+(x+y)2-2(2x2-xy).22.用简便方法计算:(1)102×98;(2)112×92.23.先化简,再求值:(1)(x+y)(x-y)-(4x3y-8xy3)÷2xy,其中x=-1,y=1;(2)(x-1)2-x(x-3)+(x+2)(x-2),其中x2+x-5=0.24.有这样一道题:计算⎣⎢⎡⎦⎥⎤3x (2xy +1)-(26x 2y 2÷2y )+⎝ ⎛⎭⎪⎫72xy 2·47y -1÷3x 的值,其中x =2 018,y =-2 019,甲同学把x =2 018,y =-2 019错抄成x =2 081,y =-2 091,但他的计算结果也是正确的.请你解释一下,这是为什么.25.如图,一块半圆形钢板,从中挖去直径分别为x ,y 的两个半圆. (1)求剩下钢板的面积;(2)当x =2,y =4时,剩下钢板的面积是多少?(π取3.14)26.先计算,再找出规律,然后根据规律填空. (1)计算:①(a -1)(a +1)=________; ②(a -1)(a 2+a +1)=________;③(a-1)(a3+a2+a+1)=________.(2)根据(1)中的计算,用字母表示出你发现的规律.(3)根据(2)中的结论,直接写出结果:①(a-1)(a9+a8+a7+a6+a5+a4+a3+a2+a+1)=__________;②若(a-1)·M=a15-1,则M=____________________;③(a-b)(a5+a4b+a3b2+a2b3+ab4+b5)=__________;④(2x-1)(16x4+8x3+4x2+2x+1)=__________.答案一、1.D 2.B 3.B 4.C 5.A 6.C 7.C 8.A 9.B 10.C二、11.a 2+a 12.-8 13.1.2×1012 14.±30 15.29x 4y 5 16.74yz +2x17.4 18.ab 19.ab -ac -bc +c 220.x [x (x +2)+1]-1;647三、21.解:(1)原式=-12ab ·23ab 2+⎝ ⎛⎭⎪⎫-12ab ·(-2ab )+⎝ ⎛⎭⎪⎫-12ab ·43b =-13a 2b 3+a 2b 2-23ab 2; (2)原式=a 2-b 2+b 2=a 2;(3)原式=[-z +(2x -y )]·[-z -(2x -y )]=(-z )2-(2x -y )2=z 2-(4x 2-4xy +y 2)=z 2-4x 2+4xy -y 2;(4)原式=4x 2-y 2+x 2+y 2+2xy -4x 2+2xy =x 2+4xy .22.解:(1)102×98=(100+2)×(100-2)=1002-22=10 000-4=9 996; (2)112×92=(10+1)2×(10-1)2=[(10+1)×(10-1)]2=(100-1)2=10 000-200+1=9 801.23.解:(1)原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2.当x =-1,y =1时,原式=-x 2+3y 2=-(-1)2+3×12=2.(2)原式=x 2-2x +1-x 2+3x +x 2-4=x 2+x -3. 因为x 2+x -5=0, 所以x 2+x =5.所以原式=x 2+x -3=5-3=2.24.解:因为[3x (2xy +1)-(26x 2y 2÷2y )+⎝ ⎛⎭⎪⎫72xy 2·47y -1]÷3x =(6x 2y +3x -13x 2y +494x 2y 2·47y -1)÷3x =(6x 2y +3x -13x 2y +7x 2y )÷3x =1, 所以上式的值与x ,y 的取值无关. 所以错抄成x =2 081,y =-2 091, 结果也是正确的.25.解:(1)S 剩=12·π⎣⎢⎡⎭⎪⎫(x +y 22-⎝ ⎛⎭⎪⎫x 22-⎝ ⎛⎭⎪⎫y 22]=14πxy .答:剩下钢板的面积为π4xy .(2)当x =2,y =4时,S 剩≈14×3.14×2×4=6.28.答:剩下钢板的面积约是6.28. 26.解:(1)①a 2-1 ②a 3-1 ③a 4-1(2)规律:(a -1)(a n +a n -1+a n -2+…+a 3+a 2+a +1)=a n +1-1(n 为正整数). (3)①a 10-1②a 14+a 13+a 12+a 11+…+a 3+a 2+a +1 ③a 6-b 6 ④32x 5-1第二章达标测试卷一、选择题(每题3分,共30分)1.下图中,∠1和∠2是对顶角的是()2.已知∠1=40°,则∠1的补角的度数是()A.100° B.140° C.50° D.60°3.如图是一条公路上人行横道线的示意图,小丽站在A点想穿过公路,如果小丽想尽快穿过,那么小丽前进的方向应该是()A.线段AB的方向B.线段AC的方向C.线段AD的方向D.线段AE的方向4.如图,已知OA⊥OB,OC⊥OD,则图中∠1和∠2的关系是() A.互余B.互补C.相等D.以上都不对5.如图,是∠B的同旁内角的角有()A.1个B.2个C.3个D.4个6.如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是()A.∠AOC=40° B.∠COE=130°C.∠EOD=40° D.∠BOE=90°7.下图中由∠1=∠2能得到AB∥CD的是()8.在同一平面内有三条不同的直线a,b,c,如果a∥b,a与b的距离是2 cm,并且b上的点P到直线c的距离也是2 cm,那么a与c的位置关系是() A.平行B.相交C.垂直D.不一定9.如图,将四边形纸片ABCD沿PR翻折得到三角形PC′R,恰好C′P∥AB,C′R∥A D.若∠B=120°,∠D=50°,则∠C=()A.85° B.95° C.90° D.80°10.如图,若∠1=∠2,DE∥BC,则下列结论中正确的有()①FG∥DC;②∠AED=∠ACB;③CD平分∠ACB;④∠1+∠B=90°;⑤∠BFG=∠BD C.A.1个B.2个C.3个D.4个二、填空题(每题3分,共30分)11.三条直线a∥b,a∥c,则__________,理由是_________________________ _______________________________________________.12.一个角与它的余角的比是1∶2,则这个角的度数是________.13.如图,ED∥AB,ED交AF于点C,∠ECF=138°,则∠A=________.14.如图,已知直线AB和CD相交于点O,OE⊥AB,∠AOD=128°,则∠CO E的度数是________.15.已知∠AOB=60°,OC为∠AOB的平分线,以OB为始边,在∠AOB的外部作∠BOD=∠AOC,则∠COD的度数是________.16.如图,请填写一个条件:________________,使得DE∥A B.17.如图,已知AC⊥BC,CD⊥AB,AC=3,BC=4,则点B到直线AC的距离等于________,点C到直线AB的垂线段是线段________.18.如图,A,B之间是一座山,一条铁路要通过A,B两点,为此需要在A,B 之间修一条笔直的隧道,在A地测得铁路走向是北偏东63°,那么在B地按南偏西________的方向施工,才能保证铁路准确接通.19.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数是________.20.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=________.三、解答题(21,22题每题8分,23~25题每题10分,26题14分,共60分) 21.如图,已知∠B+∠BCD=180°,∠B=∠D,那么∠E=∠DFE成立吗?为什么?下面是彬彬同学进行的推理,请你将彬彬同学的推理过程补充完整.解:成立.因为∠B+∠BCD=180°(已知),所以__________(同旁内角互补,两直线平行).所以∠B=∠DCE(________________________).又因为∠B=∠D(已知),所以∠DCE=∠D(等量代换).所以AD∥BE(________________________).所以∠E=∠DFE(________________________).22.一个角的余角比它的补角的23还小55°,求这个角的度数.23.如图,已知AB∥CD,∠B=100°,EF平分∠BEC,EG⊥EF,求∠BEG和∠DEG的度数.24.如图,以点B为顶点,射线BC为一边,利用尺规作图法作∠EBC,使∠EB C=∠A,EB与AD平行吗?请说明理由.25.如图,将一副三角尺的直角顶点重合在一起.(1)若∠DOB与∠DOA的度数比是2∶11,求∠BOC的度数;(2)若叠合所成的∠BOC=n°(0<n<90),则∠AOD的补角的度数与∠BOC的度数之比是多少?26.如图,∠B,∠D的两边分别平行.(1)在图①中,∠B与∠D的数量关系是什么?为什么?(2)在图②中,∠B与∠D的数量关系是什么?为什么?(3)由(1)(2)可得结论:____________________________________________________.(4)应用:若两个角的两边分别平行,其中一个角比另一个角的2倍少30°,求这两个角的度数.答案一、1.C 2.B 3.B 4.C 5.C 6.C 7.D8.D点拨:分为两种情况:(1)如图①,直线a和直线c相交(此时直线a和直线c也可能垂直);(2)如图②,直线c和直线a平行.故不能确定a与c的位置关系.9.B点拨:因为C′P∥AB,所以∠C′PC=∠B=120°.因为C′R∥AD,所以∠C′R C=∠D=50°.由折叠的性质可知∠CP R=12∠C′PC=60°,∠C R P=12∠C′R C=25°.所以∠C=180°-60°-25°=95°.10.C二、11.b∥c;平行于同一条直线的两条直线平行12.30° 13.42°14.38°15.60°16.∠ABD=∠D(答案不唯一)17.4;CD18.63°19.20°20.140°三、21.AB∥CD;两直线平行,同位角相等;内错角相等,两直线平行;两直线平行,内错角相等22.解:设这个角的度数为x°.由题意得90-x=23(180-x)-55,解得x=75.所以这个角的度数为75°.23.解:因为AB∥CD,∠B=100°,所以∠BEC=80°.因为EF平分∠BEC,所以∠BEF=∠CEF=40°.因为EG⊥EF,所以∠GEF=90°.所以∠BEG=90°-∠BEF=90°-40°=50°,∠DEG=180°-∠GEF-∠CEF=180°-90°-40°=50°.24.解:EB与AD不一定平行.理由如下:如图,可以作出两个符合要求的角.故EB与AD不一定平行.25.解:(1)设∠DOB=2x°,则∠DOA=11x°.因为∠AOB=∠COD=90°,所以∠AOC=∠DOB=2x°,∠BOC=7x°.又因为∠DOA=∠AOB+∠COD-∠BOC=180°-∠BOC,所以11x=180-7x,解得x=10.所以∠BOC=70°.(2)因为∠AOD=∠AOB+∠COD-∠BOC=180°-∠BOC,所以∠AOD与∠BOC互补,则∠AOD的补角等于∠BOC.故∠AOD的补角的度数与∠BOC的度数之比是1∶1.26.解:(1)∠B=∠D.理由如下:如图①,因为AB∥CD,所以∠B=∠1.因为BE∥DF,所以∠1=∠D.所以∠B=∠D.(2)∠B+∠D=180°.理由如下:如图②,因为AB∥CD,所以∠B=∠2.因为BE∥DF,所以∠2+∠D=180°.所以∠B+∠D=180°.(3)如果两个角的两边分别平行,那么这两个角相等或互补(4)情况①:设一个角是x°,则另一个角也是x°.所以x=2x-30,解得x=30.情况②:设一个角是x°,则另一个角是(180-x)°.所以x=2(180-x)-30,解得x=110.180-x=70.所以这两个角的度数是30°,30°或70°,110°.第三章达标测试卷一、选择题(每题3分,共30分)1.明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中自变量是()A.明明B.电话费C.时间D.爷爷2.已知两个变量之间的关系满足y=-x+2,则当x=-1时,对应的y的值为()A.1B.3C.-1 D.-33.如果圆珠笔有12支,总售价为18元,用y(元)表示圆珠笔的售价,x(支)表示圆珠笔的数量,那么y与x之间的关系应该是()A.y=12x B.y=18xC.y=23x D.y=32x4.小明从家出发,外出散步,到一个公共阅报栏前看了一会儿报后,继续散步了一段时间,然后回家.如图描述了小明在散步过程中离家的距离s(m)与散步所用时间t(min)之间的关系.根据图象,下列信息错误的是()A.小明看报用时8 minB.公共阅报栏距小明家200 mC.小明离家最远的距离为400 mD.小明从出发到回家共用时16 min5.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b与下降高度d的关系,下面能表示这种关系的式子是()d5080100150b25405075A.b=d2B.b=2dC.b=d2D.b=d+256.一个长方形的周长为24 cm,其中一边长为x cm,面积为y cm2,则这个长方形中y与x的关系式可写为()A.y=x2B.y=(12-x)2C.y=x(12-x)D.y=2(12-x)7.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是()A.861 B.863C.865 D.867输入…12345…输出 (1)225310417526…8.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用s表示路程,t表示时间,则与故事情节相吻合的是()9.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是() A.乙前4 s行驶的路程为48 mB.在0 s到8 s内甲的速度每秒增加4 m/sC.两车到第3 s时行驶的路程相等D.在4 s到8 s内甲的速度都大于乙的速度10.已知点P为某个封闭图形边界上一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x的关系图象大致如图所示,则该封闭图形可能是()二、填空题(每题3分,共30分)11.已知圆的半径为r,则圆的面积S与半径r之间有如下关系:S=πr2,在这个关系中,常量是__________,变量是__________.12.如图所示的是春季某地一天气温随时间变化的图象,根据图象判断,在这天中,最高温度与最低温度的差是________℃.13.小虎拿6元钱去邮局买面值为0.8元的邮票,买邮票后所剩的钱数y(元)与买邮票的枚数x(枚)的关系式为________________,最多可以买________枚.14.根据如图所示的程序,当输入x=3时,输出的结果y是________.15.某等腰三角形的周长是50 cm,底边长是x cm,腰长是y cm,则y与x之间的关系式是______________.16.假定甲、乙两人在一次赛跑中,路程s(m)与时间t(s)的关系如图所示,则甲、乙两人中先到达终点的是________,乙在这次赛跑中的速度为__________.17.如图,长方形ABCD的四个顶点在互相平行的两条直线上,AD=10 cm.当点B,C在平行线上运动时,长方形的面积发生了变化.(1)在这个变化过程中,自变量是______________,因变量是________________;(2)如果长方形的边AB长为x(cm),那么长方形的面积y(cm2)与x的关系式为____________.18.声音在空气中传播的速度y(m/s)与气温x(℃)之间的关系式为y=35x+331.(1)当气温为15 ℃时,声音在空气中传播的速度为__________;(2)当气温为22 ℃时,某人看到烟花燃放5 s后才听到响声,则此人与燃放的烟花所在地相距__________.19.某市自来水收费实行阶梯水价,收费标准如下表所示,用户5月份交水费4 5元,则所用水为__________.月用水量不超过12 t的部分超过12 t不超过18t的部分超过18 t的部分收费标准/(元/t) 2.00 2.50 3.00 20.火车匀速通过隧道时,火车在隧道内的长度y(m)与火车行驶时间x(s)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120 m;②火车的速度为30 m/s;③火车整体都在隧道内的时间为25 s;④隧道长度为750 m.其中,正确的结论是________(把你认为正确结论的序号都填上).三、解答题(21~24题每题9分,其余每题12分,共60分)21.下表记录的是某天一昼夜温度变化的数据:时刻/时024681012141618202224温度/℃-3-5-6.5-4047.510851-1-2请根据表格数据回答下列问题:(1)早晨6时和中午12时的温度各是多少?(2)这一天的温差是多少?(3)这一天内温度上升的时段是几时至几时?22.某人沿一条直路行走,此人离出发地的距离s(k m)与行走时间t(min)的关系如图所示,请根据图中提供的信息回答下列问题:(1)此人在这次行走过程中,停留的时间为__________;(2)求此人在0~40 min这段时间内行走的速度是多少千米/时;(3)此人在这次行走过程中共走了多少千米?23.如图,若三角形ABC的底边BC长为6 cm,高AD为x cm.(1)写出三角形的面积y(cm2)与x(cm)之间的关系式;(2)指出关系式中的自变量与因变量;(3)当x=4时,三角形的面积是多少?24.如图,在长方形ABCD中,AB=12 cm,AD=8 cm.点P,Q都从点A同时出发,点P向B点运动,点Q向D点运动,且保持AP=AQ,在这个变化过程中,图中阴影部分的面积也随之变化,当AP由2 cm变到8 cm时,图中阴影部分的面积是增加了,还是减少了?增加或减少了多少平方厘米?25.弹簧挂上物体后会伸长.已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:(1)当所挂物体的质量为3 kg时,弹簧的长度是__________;(2)在弹性限度内如果所挂物体的质量为x kg,弹簧的长度为y cm,根据上表写出y与x的关系式;(3)当所挂物体的质量为5.5 kg时,请求出弹簧的长度;(4)如果弹簧的最大长度为20 cm,那么该弹簧最多能挂质量为多少的物体?26.如图表示甲、乙两人从同一地点出发去B地的情况(图中虚线表示甲,实线表示乙),到10时时,甲大约行驶了13 k m.根据图象回答:(1)甲是几时出发的?(2)乙是几时出发的?到10时时,他大约行驶了多少千米?(3)到10时为止,谁的速度快?(4)两人最终在几时相遇?(5)你能根据图象中的信息编个故事吗?答案一、1.C 2.B 3.D 4.A 5.C 6.C 7.C 8.D9.C 点拨:A.根据图象可得,乙前4 s 的速度不变,为12 m/s ,则行驶的路程为12×4=48(m),故A 正确;B .根据图象得,甲的速度从0 m/s 均匀增加到32 m/s ,则每秒增加328=4(m/s),故B 正确;C .由甲的图象是过原点的线段,可得v =4t (v ,t 分别表示速度、时间,单位分别为m/s ,s),将v =12代入v =4t ,得t =3,则3 s 前,甲的速度小于乙的速度,所以两车到第3秒时行驶的路程不相等,故C 错误;D .在4 s 到8 s 内甲的图象一直在乙的上方,所以甲的速度都大于乙的速度,故D 正确. 10.A二、11.π;r ,S 12.10 13.y =6-0.8x ;7 14.2 15.y =25-12x 16.甲;8 m/s17.(1)AB (或CD )的长度;长方形ABCD 的面积 (2)y =10x 18.(1)340 m/s (2)1 721 m 19.20 t20.②③ 点拨:由折线图可得火车的长度为150 m ,火车的速度是150÷(35-30)=150÷5=30(m/s),火车整体都在隧道内的时间为35-5×2=25(s),隧道的长度是35×30-150=1 050-150=900(m). 三、21.解:(1)早晨6时的温度是-4 ℃,中午12时的温度是7.5 ℃. (2)10-(-6.5)=16.5(℃). 答:这一天的温差是16.5 ℃. (3)温度上升的时段是4时至14时. 22.解:(1)20 min(2)3÷4060=4.5(km/h).答:此人在0~40 min 这段时间内行走的速度是4.5 km/h.(3)4×2=8(k m).答:此人在这次行走过程中共走了8 k m. 23.解:(1)y =12×6x =3x ,即y 与x 之间的关系式为y =3x . (2)在关系式y =3x 中,x 是自变量, y 是因变量.(3)当x =4时,y =3×4=12, 即三角形的面积是12 cm 2. 24.解:图中阴影部分的面积减少了.设AP =x cm(0≤x ≤8),S 阴=y cm 2, 则y =12×8-12x 2,即y =96-12x 2. 当AP =2 cm 时,S 阴=94 cm 2;当AP =8 cm 时,S 阴=64 cm 2,94-64=30(cm 2).所以当AP 由2 cm 变到8 cm 时,图中阴影部分的面积减少了30 cm 2. 25.解:(1)13.5 cm(2)由表格可知,y 与x 之间的关系式为y =12+0.5x .(3)当x =5.5时,y =12+0.5×5.5=14.75,即弹簧的长度为14.75 cm. (4)当y =20时,20=12+0.5x , 解得x =16.故该弹簧最多能挂质量为16 kg 的物体. 26.解:(1)甲是8时出发的.(2)乙是9时出发的,到10时时,他大约行驶了13 km. (3)乙的速度快. (4)最终在12时相遇.(5)能.甲、乙两人从同一个地方出发,约好12时到B 地见面,甲8时出发,以203 km/h 的速度行驶,3 h 后发现按此速度12时无法到达,于是开始加速以20 km/h 的速度行驶,12时准时到达B 地;乙9时出发,以403 km/h 的速度匀速行驶,最后甲、乙两人12时在B 地相遇.(答案不唯一,合理即可)第四章达标测试卷一、选择题(每题3分,共30分)1.若三角形有两个内角的和是85°,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.如图,BC⊥AE于点C,CD∥AB,∠DCB=40°,则∠A的度数是() A.70° B.60°C.50° D.40°3.现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1 B.2C.3 D.44.下列说法正确的是()A.面积相等的两个图形是全等图形B.全等三角形的周长相等C.所有正方形都是全等图形D.全等三角形的边相等5.如图,AD是△ABC的角平分线,过点D向AB,AC两边作垂线,垂足分别为E,F,那么下列结论中不一定正确的是()A.BD=CD B.DE=DFC.AE=AF D.∠ADE=∠ADF6.如图,AD∥BC,AB∥CD,AC,BD交于O点,过O点的直线EF交AD于E点,交BC于F点,且BF=DE,则图中的全等三角形共有()A.6对B.5对C.3对D.2对7.将一副三角尺按下列方式进行摆放,∠1,∠2不一定互补的是()8.如图是工人师傅用同一种材料制成的金属框架,已知∠B=∠E,AB=DE,B F=EC,其中△ABC的周长为24 cm,CF=3 cm,则制成整个金属框架所需这种材料的总长度为()A.45 cm B.48 cmC.51 cm D.54 cm9.根据下列已知条件,能画出唯一一个△ABC的是()A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=610.如图,在△ABC中,AC⊥CB,CD平分∠ACB,点E在AC上,且CE=C B,则下列结论:①DC平分∠BDE;②BD=DE;③∠B=∠CED;④∠A+∠CED=90°,其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共30分)11.如图,照相机的底部用三脚架支撑着,请你说说这样做的依据是_________ _______.12.如图,点B,C,E,F在同一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D=________.13.已知三角形的两边长分别为2 和7,第三边长为偶数,则三角形的周长为_ _________.14.如图,点C,F在线段BE上,BF=EC,∠1=∠2.请你添加一个条件,使△ABC≌△DEF,这个条件可以是____________(不再添加辅助线和字母).15.如图,在△ABC中,BC=8 cm,AB>BC,BD是AC边上的中线,△ABD 与△BDC的周长的差是2 cm,则AB=__________.16.设a,b,c是△ABC的三边长,化简|a+b-c|+|b-c-a|+|c-a-b|=____ ______.17.如图,D,E,F分别为AB,AC,BC上的点,且DE∥BC,△ABC沿线段DE折叠,使点A落在点F处.若∠B=50°,则∠BDF=________.18.如图,已知边长为1的正方形ABCD,AC,BD交于点O,过点O任作一条直线分别交AD,BC于点E,F,则阴影部分的面积是________.19.如图,AD,AE分别是△ABC的角平分线、高线,且∠B=50°,∠C=70°,则∠EAD=________.20.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=1 2(AB+AD),若∠D=115°,则∠B=________.三、解答题(21~24题每题9分,其余每题12分,共60分)21.如图,点B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥F D.试说明:AC=DF.22.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC于E,求∠EDC的度数.23.如图,在正方形ABCD中,点E,F分别在边AB,BC上,AE=BF,AF和DE相交于点G.(1)观察图形,写出图中所有与∠AED相等的角;(2)选择图中与∠AED相等的任意一个角,并加以说明.24.如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点.试说明:BD=AE.25.如图,小明和小月两家位于A,B两处隔河相望,要测得两家之间的距离,小明设计方案如下:①从点A出发沿河岸画一条射线AM;②在射线AM上截取AF=FE;③过点E作EC∥AB,使B,F,C在一条直线上;④CE的长就是A,B间的距离.(1)请你说明小明设计的原理.(2)如果不借助测量仪,小明的设计中哪一步难以实现?(3)你能设计出更好的方案吗?26.如图①,在Rt△ABC中,AB=AC,∠BAC=90°,过点A的直线l绕点A旋转,BD⊥l于D,CE⊥l于E.(1)试说明:DE=BD+CE.(2)当直线l绕点A旋转到如图②所示的位置时,(1)中结论是否成立?若成立,请说明;若不成立,请探究DE,BD,CE又有怎样的数量关系,并写出探究过程.答案一、1.A 2.C 3.B 4.B 5.A 6.A7.D 8.A 9.C 10.D 二、11.三角形的稳定性12.36° 点拨:因为AB ∥DC ,DE ∥GF ,∠B =∠F =72°,所以∠DCE =∠B =72°,∠DEC =∠F =72°.在△CDE 中,∠D =180°-∠DCE -∠DEC =180°-72°-72°=36°. 13.15或17 14.CA =FD (答案不唯一)15.10 cm 点拨:由题意知(AB +BD +AD )-(BC +BD +CD )=2 cm ,AD =CD ,则AB -BC =2 cm.所以AB =BC +2=8+2=10(cm). 16.3a +b -c 17.80° 18.1419.10° 点拨:由AD 平分∠BAC ,可得∠DAC =12∠BAC =12×(180°-50°-70°)=30°.由AE ⊥BC ,可得∠EAC =90°-∠C =20°,所以∠EAD =30°-20°=10°. 20.65° 点拨:过C 作CF ⊥AD ,交AD 的延长线于F .因为AC 平分∠BAD , 所以∠CAF =∠CAE . 因为CF ⊥AF ,CE ⊥AB , 所以∠AFC =∠AEC =90°. 在△CAF 和△CAE 中,⎩⎨⎧∠CAF =∠CAE ,∠AFC =∠AEC ,AC =AC ,所以△CAF ≌△CAE (AAS ). 所以FC =EC ,AF =AE . 因为AE =12(AB +AD ), 所以AF =12(AE +EB +AD ), 即AF =BE +AD . 所以DF =BE .在△FDC 和△EBC 中,⎩⎨⎧CF =CE ,∠CFD =∠CEB ,DF =BE ,所以△FDC ≌△EBC (SAS ). 所以∠FDC =∠EBC . 又因为∠ADC =115°, 所以∠FDC =180°-115°=65°. 所以∠B =65°.三、 21.解:因为AB ∥ED ,AC ∥FD ,所以∠B =∠E ,∠ACB =∠DFE . 因为FB =CE ,所以BF +FC =CE +FC , 即BC =EF .所以△ABC ≌ △DEF (ASA ). 所以AC =DF .22.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°. 因为AD 平分∠BAC , 所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°,∠ADC =180°-101°=79°. (2)因为DE ⊥AC , 所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°.23.解:(1)由题可知∠DAG ,∠AFB ,∠CDE 与∠AED 相等.(2)(答案不唯一)选择∠DAG =∠AED .说明如下: 因为四边形ABCD 是正方形, 所以∠DAB =∠B =90°,AD =AB . 在△DAE 和△ABF 中,⎩⎨⎧AD =BA ,∠DAE =∠B =90°,AE =BF ,所以△DAE ≌△ABF (SAS ). 所以∠ADE =∠BAF .因为∠DAG +∠BAF =90°,∠GDA +∠AED =90°, 所以∠DAG =∠AED .24.解:因为△ABC 和△ECD 都是等腰直角三角形,且∠ACB =∠DCE =90°,所以AC =BC ,CD =CE , ∠ACE +∠ACD =∠BCD +∠ACD . 所以∠ACE =∠BCD . 在△ACE 和△BCD 中,⎩⎨⎧AC =BC ,∠ACE =∠BCD ,CE =CD ,所以△ACE ≌△BCD (SAS ). 所以BD =AE .25.解:(1)全等三角形的对应边相等.(2)③难以实现.(3)略(答案不唯一,只要设计合理即可). 26.解:(1)因为BD ⊥l ,CE ⊥l ,所以∠ADB =∠AEC =90°. 所以∠DBA +∠BAD =90°. 又因为∠BAC =90°, 所以∠BAD +∠CAE =90°. 所以∠DBA =∠CAE .因为AB =AC ,∠ADB =∠CEA =90°, 所以△ABD ≌△CAE (AAS ). 所以AD =CE ,BD =AE . 则AD +AE =BD +CE ,即DE=BD+CE.(2)(1)中结论不成立.DE=BD-CE.同(1)说明△ABD≌△CAE,所以BD=AE,AD=CE.又因为AE-AD=DE,所以DE=BD-CE.第五章达标测试卷一、选择题(每题3分,共30分)1.下列各选项中左边的图形与右边的图形成轴对称的是()2.下面四个选项中的图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()3.下列轴对称图形中,对称轴最多的是()A.正方形B.等边三角形C.等腰三角形D.线段4.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数是()A.30° B.40°C.45° D.60°5.如图,在△ABC中,AB的垂直平分线交AC于点E,若AE=2,则B,E两点间的距离是()A.2 B.3C.4 D.56.能用无刻度直尺,直接准确画出下列轴对称图形的所有对称轴的是()7.下列说法正确的是()A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴8.如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,E为OP上一点,则下列结论错误的是()A.CE=DE B.∠CPO=∠DEPC.∠CEO=∠DEO D.OC=OD9.如图,有一张直角三角形纸片,两直角边AC=5 cm,BC=10 cm,将△AB C折叠,使点B与点A重合,折痕为DE,则△ACD的周长为()A.10 cm B.12 cmC.15 cm D.20 cm10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下面四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论有()A.4个B.3个C.2个D.1个二、填空题(每题3分,共30分)11.以下图形中,对称轴的条数大于3的有________个.12.△ABC 和△A ′B ′C ′关于直线l 对称,若△ABC 的周长为12 cm ,△A ′B ′C ′的面积为6 cm 2,则△A ′B ′C ′的周长为________,△ABC 的面积为___________. 13.已知等腰三角形的顶角是底角的4倍,则顶角的度数为________. 14.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于D ,若CD =12BD ,点D 到边AB 的距离为6,则BC 的长是________.15.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E ,F 是AD 的三等分点,若△ABC 的面积为12 cm 2,则图中阴影部分的面积为__________. 16.如图,AC ,BD 相交于点O ,AB ∥DC ,AB =BC ,∠D =40°,∠ACB =35°,则∠AOD =________.17.如图是一组按照某种规律摆放成的图案,则第2 019个图案________轴对称图形(填“是”或“不是”).18.如图,∠A =15°,AB =BC =CD =DE =EF ,则∠DEF =________. 19.如图,在正方形网格中,阴影部分是涂黑7个小正方形所形成的图案,再将网格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有________种.20.两组邻边分别相等的四边形我们称它为筝形.如图,在四边形ABCD 中,AB =AD ,BC =DC ,AC 与BD 相交于点O ,下列判断正确的有__________(填序号).①AC ⊥BD ;②AC ,BD 互相平分;③AC 平分∠BCD ;④∠ABC =∠ADC =90°; ⑤筝形ABCD 的面积为12AC ·B D.三、解答题(21题8分,22~25题每题10分,26题12分,共60分)21.把图中的图形补成轴对称图形,其中MN,EF为各图形的对称轴.22.如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF 平分∠ACB交AB于点F,试判断CE与CF的位置关系.23.如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于点D,交AB于点E,∠DAE与∠DAC的度数比为2∶1,求∠B的度数.24.如图,已知△ABC是等腰三角形,且AB=AC,D是△ABC外部的一点,连接AD,B D.已知AB=AD,AD∥BC,∠D=35°,求∠DAC的度数.25.如图,校园有两条路OA,OB,在交叉口附近有两块宣传牌C,D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置点P,并说明理由.26.如图①,△ABC为等腰直角三角形,∠BAC=90°,点D为线段BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADE,连接CE.(1)当点D在线段BC上时(不与点B重合),线段CE和BD的数量关系与位置关系分别是什么?请给予说明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图②中画出相应的图形,并说明理由.答案一、1.C2.D3.A4.B5.A6.A 7.C8.B9.C点拨:△ACD的周长为AC+CD+AD.由折叠可知AD=BD,所以AC+CD+AD=AC+BC=15 cm.10.A二、11.312.12 cm;6 cm213.120°14.1815.6 cm216.75°点拨:因为AB=BC,所以∠BAC=∠ACB=35°.因为AB∥CD,所以∠ABD=∠D=40°.所以∠AOB=180°-35°-40°=105°.所以∠AOD=180°-105°=75°.17.是18.60°点拨:因为AB=BC=CD=DE=EF,所以∠BCA=∠A=15°.所以∠ABC=150°.所以∠CBD=∠CDB=30°.所以∠ACD=135°.所以∠CED=∠ECD=45°.所以∠ADE=120°.所以∠EDF=∠EFD=60°.所以∠DEF=60°.19.320.①③⑤三、21.解:如图所示.22.解:因为CD=CA,E是AD的中点,所以∠ACE=∠DCE.因为CF平分∠ACB,所以∠ACF=∠BCF.因为∠ACE+∠DCE+∠ACF+∠BCF=180°,所以∠ACE+∠ACF=90°,即∠ECF=90°.所以CE⊥CF.23.解:设∠DAC=x,则∠DAE=2x.因为DE是AB的垂直平分线,所以DA=DB.所以∠B=∠DAB=2x.因为∠C=90°,所以2x+(2x+x)=90°,x=18°.所以∠B=36°.24.解:因为AD∥BC,所以∠D=∠DBC,∠DAC=∠ACB.因为AB=AC=AD,所以∠D=∠ABD,∠ACB=∠ABC=∠ABD+∠DBC=2∠D=2×35°=70°.所以∠DAC=70°.25.解:如图,到∠AOB两边距离相等的点在这个角的平分线上,而到宣传牌C,D的距离相等的点则在线段CD的垂直平分线上,故它们的交点P即为所求.26.解:(1)CE=BD,且CE⊥BD.说明:因为∠EAD=∠BAC=90°,所以∠EAC=∠DAB.在△ACE和△ABD中,⎩⎨⎧AC =AB ,∠CAE =∠BAD ,AE =AD ,所以△ACE ≌△ABD (SAS ). 所以CE =BD ,∠ECA =∠DBA .所以∠ECD =∠ECA +∠ACD =∠DBA +∠ACD =90°. 所以EC ⊥CB .(2)(1)的结论仍然成立.理由如下: 画出的图形如图所示.因为∠CAB =∠DAE =90°,所以∠CAB +∠CAD =∠DAE +∠CAD ,即∠CAE =∠BAD . 在△ACE 和△ABD 中,⎩⎨⎧AC =AB ,∠CAE =∠BAD ,AE =AD ,所以△ACE ≌△ABD (SAS ). 所以CE =BD ,∠ACE =∠B . 因为AB =AC ,∠BAC =90°, 所以∠B =∠ACB =45°.所以∠BCE =∠ACE +∠ACB =45°+45°=90°. 所以CE ⊥BD .第六章达标测试卷一、选择题(每题3分,共30分) 1.下列事件中是必然事件的是( )A .小菊上学一定乘坐公共汽车B .某种彩票中奖率为415,买10 000张该种彩票一定会中奖。
北师大版七年级数学下册第一章测试题(附答案)
北师大版七年级数学下册第一单元测试题(附答案)学校:___________姓名:___________班级:___________考号:___________一、选择题A .3x-2x=1B .2x+2x=4x 2C .x 3•x -1=x 2D .(-a 3)2=a 52.计算(a 3)2•a 2的结果是( )A .a 8B .a 9C .a 10D .a 113.下列计算正确的是( )A .(a 4)2=a 6B .a+2a=3a 2C .a 7÷a 2=a 5D .a (a 2+a+1)=a 3+a 24.下列计算正确的是( )(A )228=- (B )()632=- (C )22423a a a =- (D )()523a a =-5.下列运算中,结果是a 5的是( )A .a 3•a 2B .a 10÷a 2C .(a 2)3D .(-a )56.下列各式正确的是( )A .a 2+a=a 3B .a 2a=a 3C .2a 2﹣a 2=2D .(﹣a )3﹣a 3=07.已知xy=﹣3,x+y=﹣4,则x 2+3xy+y 2值为( )A .1B .7C .13D .318.已知x 2+kxy+16y 2是一个完全平方式,则k 的值是( )A .8B .±8C .16D .±169.下列计算正确的是( )A .a 3•a 2=a 6B .a 2+a 4=2a 2C .(a 3)2=a 6D .(3a )2=a 610.若正方形的边长增加3cm ,它的面积就增加39cm ,则正方形的边长原来是( )A .8cmB .6cmC .5cmD .10cm11.下列运算正确的是( ).A .x 2•x=x 2B .3x 2﹣x 2=2x 2C .(﹣3x )2=6x 2D .x 8÷x 4=x 212.若42++kx x 是完全平方式,则k 的值是( ) 、±4 D 、4二、填空题(a ﹣b )(a+b )=a 2﹣b 2(a ﹣b )(a 2+ab+b 2)=a 3﹣b 3(a ﹣b )(a 3+a 2b+ab 2+b 3)=a 4﹣b 4…可得到(a ﹣b )(a 2016+a 2015b+…+ab 2015+b 2016)=____.14.已知a 2+2a+b 2-4b+5=0,则a+b= 。
北师大版七年级下册数学第一章测试题
北师大版七年级下册数学第一章测试题A. - 6 B . 6C . 18D . 302225. 已知(x - 2015) + (x - 2017) =34,则(x - 2016)的值是( )A . 4B . 8C . 12D . 16226. 已知a - b=3,则代数式a - b - 6b 的值为( )A . 3B . 6C . 9D . 127. 已知正数x 满足x 2+ =62,则x+的值是()A . 31B . 16C . 8D . 4&如图(1),是一个长为2a 宽为2b (a > b )的矩形,用剪刀沿矩形的两条对角轴剪开,是( )2 2 2 2 A . ab B . (a+b ) C . (a - b ) D . a - b9.设(5a+3b )= ( 5a - 3b ) +A ,贝V A=()A . 30abB . 60abC . 15abD . 12ab 22210 .己知(x - y )=49, xy=2,贝U x +y 的值为()A . 53B . 45C . 47D . 51 二 .选择题(共10小题)4211.计算:(-5a ) ? (- 8ab ) = _________ .12 .若 2?4m ?8m =216,则 m= _______ . 13 .若 x+3y=0 ,则 2 ?8 = ______ .214 .已知(x - 1) (x+3) =ax +bx+c ,则代数式 9a - 3b+c 的值为 ____________2 215 .已知(a+b ) =7 , (a - b ) =4,贝U ab 的值为 __________ .2 216 .若(m - 2) =3,则 m - 4m+6 的值为 _________ .1. A .2..选择题(共10小题) 计算(-x 2y) 2的B .c2 2C . x y)(-3x 2)2=6x C .(-x ) -2=_ D . x 8-x 4=x 223. 4. 2 x 2+x - 2) 2 C . x +x2计算 (2x+1) x 2- 2x+1 B . 若x 2 (x - 1) 2 x 2- 2x -3 的结果,与下列哪一个式子相同?(2-3D . x 2-3 把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积 图⑵b17 .观察下列各式及其展开式:2 2 2(a+b) 2=a2+2ab+b23 3 2 2 3 (a+b) =a - 3a b+3ab - b(a+b) =a - 4a b+6a b - 4ab +b/ ’、55「432“23—4, 5(a+b ) =a - 5a b+10a b - 10a b +5ab - b …请你猜想(a - b ) 10的展开式第三项的系数是 ________ . 18.若4a 2-( k - 1) a+9是一个关于a 的完全平方式,则k= _____ .xy … 3x- 2y19. 右 a =2, a =3,贝U a = ________ . 20.我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为杨辉三角”.这个三角形给出了( a+b ) n (n=1, 2, 3, 4…)的展开式的系数规律(按 a 的次数由大到小的顺序): 请依据上述规律,写出(x -::) 2016展开式中含x 2014项的系数是 ______________ .x1 1(a+b^a+b 1 2 1 (a+bj^^ab+ty 2 13 3 1(a+b ):=a 3+1 斗(6 4 ; (a+b )i =a i +4a 3b+6a z t/+4ab 3+b d三.选择题(共8小题)2 121. 先化简,再求值(x - 1) (x - 2)-( x+1),其中x=.22 223. 已知 2x 2- 3x=2,求 3 ( 2+x ) (2 - x )-( x - 3) 的值.2 022. (1)计算:(-2) 2+2X( - 3) +20160.(2)化简:(m+1) 2 -( m - 2) ( m+2).24.先化简,再求值: (2a+b ) (2a - b ) -y a (8a - 2ab ),其中 a=-*.b=2.26•已知X -,3,求x —和X 4「的值.27.如图(1),将一个长为4a ,宽为2b 的长方形,沿图中虚线均匀分成 4个小长方形,然后按图(2)形状拼成一个正方形.(1 )图(2)中的空白部分的边长是多少?(用含 a , b 的式子表示)(2)观察图(2),用等式表示出(2a - b ) 2, ab 和(2a+b ) 2的数量关系;(3)若2a+b=7 , ab=3,求图(2)中的空白正方形的面积.28. 已知a+b=5, ab=6.求下列各式的值:2 2(1) a 2+b 2 (2) (a -b ) 2.229. 已知关于x 的多项式 A ,当A -( x - 2) =x (x+7)时. (1 )求多项式A .2(2 )若2x +3x+l=0,求多项式 A 的值.la 2a1)阍2)2=9, x2+y2=5,求[x (x2y2-xy) - y (x2- x3y)]30.已知(x - y)北师大版七年级下册数学第一章测试题参考答案与试题解析一•选择题(共10小题)2 21. (2016?盐城)计算(-x y)的结果是()4 2 4 2 2 2 2 2A . x y B. - x y C. x y D . - x y【分析】直接利用积的乘方运算法则计算得出答案.【解答】解:(-x2y)2=x3 4y2.故选:A.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.2. (2016?来宾)下列计算正确的是()3、25 2、24 - 2] 8 4 2A、(- x )=x B. (- 3x )=6x C. (- x)= D. x x =x【分析】根据积的乘方法则:把每一个因式分别乘方,再把所得的幕相乘;负整数指数幕:a-p=—(a z 0, p为正整数);同底数幕相除,底数不变指数相减,对各选项分析判断后利a p用排除法求解.【解答】解:A、(- x5)2=x6 7,故A错误;B、(- 3x2)2=9X4,故B 错误;-2 1 ,, -C、(- X) =—T,故C 正确;XD、x8+ X4=X4,故D 错误.故选:C.【点评】本题考查积的乘方、负整数指数幕、同底数幕的除法,熟练掌握运算性质和法则是解题的关键.2 ,__,3. (2016?台湾)计算(2X+1)(X - 1) - (X +X - 2)的结果,与下列哪一个式子相同?()2 2 2 2A . X - 2X+1B . X - 2X - 3 C. x+x- 3 D . X - 3【分析】原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,即可作出判断.2 2A. - 6B. 6 C . 18 D . 30【分析】原式利用完全平方公式,平方差公式化简,去括号整理后,将已知等式代入计算即4. (2016?临夏州)若X2+4X - 4=0,则3 (X - 2)2- 6 (X+1)(X- 1)的值为()可求出值.【解答】解:T X2+4X - 4=0 ,即卩X2+4X=4 ,【解答】解:(2X+1)(X - 1)-(X2+X - 2)2 2=(2x - 2X+X - 1) -(X+X - 2)2 2=2x - X - 1 - X - X+2=X2 - 2X+1,故选A【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.2 2 2 2 2 2•••原式=3 (x - 4x+4) - 6 (x - 1) =3x - 12x+12— 6x +6= - 3x - 12x+18=— 3 (x +4x ) +18= -12+18=6 . 故选B【点评】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.2 2 25. (2016?仙居县一模)已知(x - 2015) + (x - 2017) =34,则(x - 2016)的值是( )A . 4B . 8C . 12D . 162 2 2 2【分析】 先把(x - 2015) + (x - 2017) =34 变形为(x - 2016+1) + (x - 2016 - 1) =34 , 把(x - 2016)看作一个整体,根据完全平方公式展开,得到关于( x - 2016) 2的方程,解 方程即可求解.2 2【解答】 解:•••( x - 2015) + (x - 2017) =34 ,29•••( x - 2016+1) 2+ (x - 2016 - 1) 2=34 , 2 2(x - 2016) 2+2 (x - 2016) +1+ (x - 2016- 1)- 2 ( x - 2016) + 仁34,2 c2 (x - 2016) +2=34, 2 (x - 2016) 2=32, (x - 2016) 2=16. 故选:D .2 2【点评】 考查了完全平方公式,本题关键是把(x - 2015) + (x - 2017) =34变形为(x -292016+1) + (x - 2016 - 1) =34,注意整体思想的应用.2 96.( 2016?重庆校级二模)已知 a - b=3,则代数式a - b - 6b 的值为( )A . 3B . 6C . 9D . 12【分析】由a - b=3,得到a=b+3,代入原式计算即可得到结果. 【解答】 解:由a - b=3,得到a=b+3, 则原式=(b+3) - b 2- 6b=b 2+6b+9 - b 2- 6b=9, 故选C【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.2 "I17. ( 2016?长沙模拟)已知正数 x 满足x + =62,则x+—的值是(A . 31B . 16C . 8D . 4【分析】因为x 是正数,根据x+ =「J •, 即可计算.【解答】解:I x 是正数,故选C .【点评】本题考查完全平方公式,解题的关键是应用公式 算,:/ : '■丄=「;=8-(x > 0)进行计属于中考常考题型.& ( 2016?泰山区一模)如图(1),是一个长为2a 宽为2b (a > b )的矩形,用剪刀沿矩形 的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是( )又•••原矩形的面积为 4ab , •••中间空的部分的面积 =(a+b ) 2 - 4ab= (a - b ) 故选C .2 2 “9. ( 2016 春?岱岳区期末)设(5a+3b ) = (5a - 3b ) +A ,则 A=( ) A . 30ab B . 60ab C . 15ab D . 12ab【分析】已知等式两边利用完全平方公式展开,移项合并即可确定出A .2 2【解答】解:T( 5a+3b )= (5a- 3b ) +A2 2• A= (5a+3b ) -( 5a - 3b ) = ( 5a+3b+5a - 3b ) (5a+3b - 5a+3b ) =60ab . 故选B 【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键.2 2 210 . (2016春?宝应县期末)己知(X -y ) =49, xy=2,则x +y 的值为( )A . 53B . 45C . 47D . 51【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值. 【解答】解:T( x - y ) 2=49 , xy=12 ,2 2 2• -x +y = (x - y ) +2xy=49 +4=53 .故选:A .【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.2ab B . (a+b ) C . (a - b )D .a 2-b 2【分析】先求出正方形的边长,继而得出面积,然后根据空白部分的面积 =正方形的面积-矩形的面积即可得出答案.【解答】解:由题意可得,正方形的边长为( a+b ),故正方形的面积为a+b )【点评】此题考查了完全平方公式的几何背景, -般.求出正方形的边长是解答本题的关键, 难度2b b圈(1) 圏(2)二 .选择题(共10小题)4 25 211 . (2016?临夏州)计算:(-5a ) ? (- 8ab ) = 40a b _ .【分析】直接利用单项式乘以单项式运算法则求出答案.【解答】解:(-5a4) ? (- 8ab2) =40a5b2.故答案为:40a5b2.【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键. 12【分析】直接利用幕的乘方运算法则得出2?22m?23m=216,再利用同底数幕的乘法运算法则即可得出关于m的等式,求出m的值即可.【解答】解:T 2?4m?8m=216,2m 3m 16二2?2 ?2 =2 ,/• 1 +5m=16,解得:m=3.故答案为:3.【点评】此题主要考查了同底数幕的乘法运算以及幕的乘方运算,正确应用运算法则是解题关键.x y13. (2016?泰州一模)若x+3y=0,则2 ?8 = 1 .【分析】先将8变形为23的形式,然后再依据幕的乘方公式可知8y=23y,接下来再依据同底数幕的乘法计算,最后将x+3y=0代入计算即可.【解答】解: 2X?8y=2X?23y=2X+3y=2°=1.故答案为1.【点评】本题主要考查的是同底数幕的乘法、幕的乘方、零指数幕的性质,熟练掌握相关知识是解题的关键.214. (2016?河北模拟)已知(x - 1)(x+3)=ax +bx+c,则代数式9a-3b+c的值为°. 【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件求出a, b, c的值,即可求出原式的值.【解答】解:已知等式整理得:x2+2x - 3=ax2+bx+c,a=1, b=2, c= —3,则原式=9 — 6 —3=0 .故答案为:0.【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.2 2 耳15. (2016?富顺县校级模拟)已知(a+b)=7, (a- b)=4,则ab的值为__4 【分析】分别展开两个式子,然后相减,即可求出ab的值.【解答】解:(a+b)=a +2ab+b =7,(a- b)=a - 2ab+b =4, 则(a+b)2-(a- b)2=4ab=3,故答案为::12 . (2016?白云区校级二模)若2?4m?8m=216,贝V m= 3【点评】本题主要考查完全平方公式,熟记公式的几个变形公式对解题大有帮助.16. (2 016?曲靖模拟)若(m-2)=3,贝U m - 4m+6的值为5 .【分析】原式配方变形后,将已知等式代入计算即可求出值.【解答】解:•••(m- 2)2=3,2 2•••原式=m - 4m+4+2= (m - 2)+2=3+2=5,故答案为:5【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.17. (2016?东明县二模)观察下列各式及其展开式:2 2 2(a+b ) 2=a 2+2ab+b 2/「、33 小 22 , 3(a+b ) =a - 3a b+3ab - b (a+b ) =a - 4a b+6a b - 4ab +b554 3 22 34.5(a+b ) =a - 5a b+10a b - 10a b +5ab - b (10)请你猜想(a - b )的展开式第三项的系数是45【分析】根据各式与展开式系数规律,确定出所求展开式第三项系数即可.【解答】解:根据题意得:第五个式子系数为1, 6, 15, 20, 15, 6, 1,1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1 , 10 , 45 , 120 , 210 , 252 , 210 , 120 , 45 , 10 ,的展开式第三项的系数是 45 , 故答案为:45. 【点评】此题考查了完全平方公式,弄清题中的规律是解本题的关键.218. (2016?富顺县校级模拟)若 4a -( k - 1) a+9是一个关于a 的完全平方式,贝V k= 13 或-11.【分析】利用完全平方公式的结构特征判断即可确定出 k 的值.【解答】 解:•••4a 2-( k - 1) a+9是一个关于a 的完全平方式,••• k - 1 = ± 12 , 解得:k=13或-11 , 故答案为:13或-11【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.19. (2016 春?泰兴市期末)若 a x =2 , a y =3 ,贝U a"-凶=_ _.9【分析】根据同底数幕的除法及幕的乘法与积的乘方法则,进行计算即可. 【解答】解:a 3x -2y = (a X ) 3十(a y ) 2=8十 9=二.g故答案为:「9【点评】本题考查了同底数幕的除法法则:底数不变,指数相减,属于基础题,掌握运算法 则是关键. 20. (2016?广安)我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为 杨辉三 角”这个三角形给出了( a+b ) n (n=1, 2 , 3 , 4…)的展开式的系数规律(按 a 的次数由大到小的顺序):请依据上述规律,写出(x -::) 2016展开式中含x 2014项的系数是-4032 .1 1 (a+b)-a+b I2 1 (a+bj^+^ab+b 2 13 3 1 (a+b) - a 3+Sa^b+Batf+b 3 14 64 1 (a+b)t =a i +4a 3b+6ai z ^+43^+^第六个式子系数为 第七个式子系数为 第八个式子系数为第九个式子系数为 10 则(a -b )1,【分析】首先确定x2014是展开式中第几项,根据杨辉三角即可解决问题.【解答】解:(X-「)2016展开式中含X2014项的系数,X根据杨辉三角,就是展开式中第二项的系数,即- 2016 X 2=- 4032 .故答案为-4032.【点评】本题考查整式的混合运算、杨辉三角等知识,解题的关键是灵活运用杨辉三角解决问题,属于中考常考题型.三•选择题(共8小题)2 121 • (2016?常州)先化简,再求值(x- 1) (x- 2)-( x+1),其中x= - •2【分析】根据多项式乘以多项式先化简,再代入求值,即可解答.【解答】解:(x- 1) (x- 2)-( x+1) 2,2 2=x- 2x - x+2 - x - 2x - 1=-5x+1当x= 1时,2原式=-5 X - +12_ 3=—2'【点评】本题考查了多项式乘以多项式,解决本题的关键是熟记多项式乘以多项式.2 022. ( 2016?温州二模)(1)计算:(-2) +2 X(- 3) +2016 •(2)化简:(m+1) 2-( m - 2) ( m+2).【分析】(1)原式先计算乘方运算,再计算乘法及零指数幕运算即可得到结果;(2 )原式利用完全平方公式,平方差公式计算即可得到结果.【解答】解: (1)原式=4 - 6+1= - 1;2 2(2)原式=m +2m+1 - m +4=2m+5.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.2 223. (2016?福州校级二模)已知2x - 3x=2,求3 (2+x) (2 - x) -( x - 3)的值. 【分析】先对所求式子进行化简,然后将2x2- 3x=2代入即可解答本题.2【解答】解:3 (2+x) (2 - x)-( x - 3)2 2=12 - 3x - x +6x - 92=—4x +6x+3=-2 (2x - 3x) +3,•/ 2x2- 3x=2 ,•••原式=-2X 2+3= - 1.【点评】本题考查整式的混合运算-化简求值,解题的关键是明确整式的混合运算的计算方法.24. (2016?长春二模)先化简,再求值:(2a+b)(2a-b)-(8a-2ab),其中a=-丄,2 2b=2.【分析】原式利用平方差公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=4a2- b2- 4a2+a2b=a2b - b2,当a= - 1 , b=2 时,原式=1 - 4= - 3 .2 2 2【点评】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.2 2 2 225. (2016春?西藏校级期末)已知(a+b)=25, (a- b)=9,求ab与a +b的值.【分析】把已知两个式子展开,再相加或相减即可求出答案.【解答】解:T(a+b)2=25, (a- b)2=9,2 2 2 2••• a +2ab+b =25①,a —2ab+b =9②,•••① + ②得:2a +2b =34,• 2 .2•• a +b =17,①-②得:4ab=16,• ab=4.【点评】本题考查了完全平方公式的应用,注意:(a+b)2=a2+2ab+b2, (a- b)2=a2- 2ab+b2.26. (2016春?澧县期末)已知x-—=3,求x2+ 和x4+ ,的值. v24【分析】把该式子两边平方后可以求得X2+ 的值,再次平方即可得到X4+ .的值.X X【解答】解:••• x-—=3, (X-—)2=x2+ - 2X K X2• X2+ = (x-一)2+2=32+2=11 .4 \ 2 \ 2 2x4+ . = (x2+ )2- 2=112-2=119.【点评】本题考查了完全平方公式,利用x和I互为倒数乘积是1与完全平方公式来进行解X题.27. (2016春?莱芜期末)如图(1),将一个长为4a,宽为2b的长方形,沿图中虚线均匀分成4个小长方形,然后按图(2)形状拼成一个正方形.(1 )图(2)中的空白部分的边长是多少?(用含a, b的式子表示)2 2(2)观察图(2),用等式表示出(2a- b) , ab和(2a+b)的数量关系;(3)若2a+b=7 , ab=3,求图(2)中的空白正方形的面积.【分析】(1)先计算空白正方形的面积,再求边长;(2 )利用等量关系式 S 空白 =S 大正方形-4个S 长方形代入即可; (3)直接代入(2)中的式子.2 2 2【解答】 解:(1 )•••图(2)中的空白部分的面积 =(2a+b ) - 4a x 2b=4a+4ab+b - 8ab= ( 2a -b )2,•••图(2)中的空白部分的边长是: 2a - b ;(2) • S 空白=S 大正方形-4个S 长方形,2 2••( 2a - b )= (2a+b ) - 4X 2a x b ,则(2a - b ) 2= (2a+b ) 2 - 8ab ;(3) 当 2a+b=7 , ab=3 时,S= (2a+b ) - 8ab=72 - 8 x 3=25; 则图(2)中的空白正方形的面积为25.【点评】本题考查了完全平方公式的几何意义的理解,应从整体和部分两方面来理解完全平方公式的几何意义;主要是根据图形特点,利用面积的和差来计算. 28. (2016春?灌云县期中)已知 a+b=5, ab=6.求下列各式的值:2 2(1) a 2+b 22(2) (a -b ).【分析】(1)根据a 2+b 2= (a+b ) 2-2ab ,即可解答. (2)根据(a - b ) 2= (a+b ) 2- 4ab,即可解答.【解答】 解:(1) {a 2+b 2= (a+b ) 2 - 2ab=52 - 2 x 6a 2+b 2= (a+b ) 2- 2ab=52 - 2x 6=25 - 12=13.2 2 2(2) (a - b ) = (a+b ) - 4ab=5 - 4x 6=25 - 24=1 .【点评】本题考查了完全平分公式,解决本题的关键是熟记完全平分公式. 四.解答题(共2小题)229. (2016?花都区一模)已知关于 x 的多项式 A ,当A -( x - 2) =x (x+7)时. (1 )求多项式A .2(2 )若2x +3x+l=0,求多项式 A 的值. 【分析】(1)原式整理后,化简即可确定出 A ; (2)已知等式变形后代入计算即可求出 A 的值.【解答】解: (1) A -( x - 2) 2=x (x+7),2 2 2 2整理得:A= ( x - 2) +x (x+7) =x - 4x+4+x +7x=2x +3x+4;2(2 )• 2x 2+3x+1=0 ,21)b la (02)• 2x +3x= - 1,• A= - 1 +4=3 ,则多项式A的值为3.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.2 2 2 2 2 23 30. (2016?枣阳市模拟)已知(x - y) =9, x +y =5,求[x (x y - xy)- y (x - x y)]十2x y的值.【分析】直接利用整式的混合运算法则化简,进而将已知结合完全平方公式求出答案.【解答】解:原式=(x3y2- x2y - X2y+X3y2)* x2y=2xy - 2,2 2 2由(x- y) =9,得x - 2xy+y =9,2 2••• x +y =5,/•- 2xy=4 ,••• xy= - 2,原式=-4- 2= - 6.【点评】此题主要考查了整式的混合运算,正确应用乘法公式是解题关键.。
北师大版七年级数学下册第一单元测试题
第一章 整式的乘除 单元测试卷一、选择题(共10小题,每小题3分,共30分)1.下列运算正确的是( )A. 954a a a =+ B . 33333a a a a =⋅⋅C . 954632a a a =⨯ D. ()743a a =-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2( )A. 1- B. 1 C. 0 D. 1997 3.设()()A b a b a +-=+223535,则A =( ) A. 30ab B . 60ab C . 15ab D. 12ab4.已知,3,5=-=+xy y x 则=+22y x ( )A. 25. B 25- C 19 D 、19-5.已知,5,3==b a x x 则=-b a x 23( )A 、2527B 、109 C 、53 D 、52 6.如(x +m)与(x +3)的乘积中不含x 的一次项,则m 的值为( )A 、 –3ﻩB 、3 C、0 ﻩﻩD 、17.计算(a-b)(a+b )(a 2+b 2)(a 4-b 4)的结果是( )A .a8+2a 4b 4+b 8 B.a8-2a 4b 4+b 8 C .a 8+b8 D .a8-b 88.计算(3x 2y)·(-43x 4y)的结果是( ). A .x 6y 2 B.-4x 6y C .-4x 6y2 D .x 8y9.等式(x+4)0=1成立的条件是( ).A.x 为有理数B.x ≠0C.x ≠4 D.x ≠-410.下列多项式乘法算式中,可以用平方差公式计算的是( ).A.(m -n)(n-m) B .(a+b )(-a -b)C .(-a-b)(a -b) D.(a+b )(a +b)二、填空(每题2分,共20分)11.多项式5x 2-7x -3是____次_______项式.12.月球距离地球约为3.84×105千米,一架飞机速度为8×102千米/时,•若坐飞机飞行这么远的距离需_________.13.若-3x m y 5与0.4x 3y2n+1是同类项,则m+n =______.14.有三个连续的自然数,中间一个是x,则它们的积是_______.15.已知51=+x x ,那么221xx +=_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 整式的运算班级____________ 座号____________ 姓名_______________一. 填空题1.一个多项式与,1x 2x 32x x 222+-+-的和是则这个多项式是______________________。
2.若多项式(m+2)1m 2x -y 2-3xy 3是五次二项式,则m=___________.3.写出一个关于x 的二次三项式,使得它的二次项系数为21-,则这个二次三项式是__________4.若2b 1a -=-=,时,代数式a a b 2-的值是________。
5.(-2m+3)(_________)=4m 2-9 (-2ab+3)2=_____________2)b a (-- =____________, 2)b a (+- =_____________。
)a 31)(a 31(--+-=______________, )1x 4)(1x 4(--- =______________6.计算:①_______________)a (23=-- ②________________)y x 3(y x 522=---。
③-3xy ·2x 2y= ; ④-2a 3b 4÷12a 3b 2 = 。
⑤___;__________1n 5·35·n 5=--)( ⑥_____________)ab ()ab (1m 3m =÷+-。
⑦ (8xy 2-6x 2y)÷(-2x)=__________________; ⑧ .____________)22.0(201=π++--⑨(-3x -4y) ·(-3x+4y)=________________; ⑩(-x-4y)·(-x-4y)=_____________ 7..______________a _,__________a ,4a ,3a n 4m 2n m n m ====--已知n 33282=⋅,则n =_______________._________________2,72,323-y x y x =则+==8.如果x +y =6, xy =7, 那么x 2+y 2= 。
9.若P=a 2+3ab +b 2,Q=a 2-3ab +b 2,则代数式()[]Q P P 2Q P -----。
化简后结果是______________________________。
二.选择题1.在下列代数式:x3,y x ,0,abc 32,4,3ab ---中,单项式有【 】 (A )3个 (B )4个 (C )5个 (D )6个2.单项式7xy 243-的次数是【 】 (A )8次 (B )3次 (C )4次 (D )5次3.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真的复习老师课上讲的内容,他突然发现一道题:(-x 2+3xy-21y 2)-(-21x 2+4xy-23y 2)= -21x 2_____+y 2空格的地方被钢笔水弄污了,那么空格中的一项是( )(A )-7xy (B )7xy (C )-xy (D )xy4.下列多项式次数为3的是【 】(A )-5x 2+6x -1 (B )πx 2+x -1 (C )a 2b +ab +b 2 (D )x 2y 2-2xy -15.下列说法中正确的是【 】(A )代数式一定是单项式 (B )单项式一定是代数式(C )单项式x 的次数是0 (D )单项式-π2x 2y 2的次数是6。
6. 下列各题能用同底数幂乘法法则进行计算的是( )(A ). ()()x y x y -+23(B ). ()()--+x y x y 2 (C ). ()()x y x y +++22(D ). ----()()x y x y 23 7.下列各式中计算正确的是:( )632m 2m 22m 1052734a )a ( (D). a )a ()a ( C). ( a ])a [( (B). x )x ( ).A (-=-==-=-=8。
若m 为正整数,且a =-1,则122)(+--m m a 的值是:( )(A ). 1 (B ). -1 (C ). 0 (D ). 1或-19.已知:∣x ∣=1,∣y ∣=21,则(x 20)3-x 3y 2的值等于( )(A )-43或-45 (B )、43或45 (C )、43 (D )、-45三.解答题1.计算)a (5a a 4)a )(2( a a 3a a 2a a )1(3372322m 24m 31m ----++(3)(5x 2y 3-4x 3y 2+6x)÷6x (4)x x )x (x x 72342÷--+• (5) (x+2)(y+3)-(x+1)(y-2) ⑹ (3mn+1)(3mn-1)-(3mn-2)2(7).22)y 2x 3()y 2x 3(--+ (8). 22)y x ()y x (-+(9).)x 9y 4)(x 3y 2)(y 2x 3(22+--- (10)、0.125100×81002.化简求值:,x 2]y 5)y x 3)(y x ()y 2x [(22÷--+-+其中,x =-2,y =213.(1)已知,7b ab ,3ab a 22=+-=+试求2222b a ,b ab 2a -++的值。
(2)已知:a + a 1 = 3 , 求 a 2 + 2a1的值。
4.a 、b 、c 是三个正整数,且ac b 22=+1,以b 为边长的正方形和分别以a 、c 为长和寛的长方形,哪个图形的面积大?大多少?5.乘法公式的探究及应用.(1)如左图,可以求出阴影部分的面积是 (写成两数平方差的形式);(2)如右图,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式 (用式子表达)(4)运用你所得到的公式,计算下列各题:①)p n m 2)(p n m 2(+--+ ② 7.93.10⨯北师大版七年级下期整式测试题150分(120分钟)一、选择题(共30分,每题3分)1.多项式322431x x y xy -+-的项数、次数分别是( ).A .3、4B .4、4C .3、3D .4、3 2.若0.5a 2b y 与34a xb 的和仍是单项式,则正确的是 ( )A .x =2,y =0B .x =-2,y =0C .x =-2,y =1D .x =2,y =13.减去-2x 后,等于4x 2-3x -5的代数式是 ( )A .4x 2-5x -5B .-4x 2+5x +5C .4x 2-x -5D .4x 2-54.下列计算中正确的是()A.a n·a2=a2n B.(a3)2=a5 C.x4·x3·x=x7 D.a2n-3÷a3-n=a3n -65.x2m+1可写作()A.(x2)m+1 B.(x m)2+1 C.x·x2m D.(x m)m+1 6.如果x2-kx-ab=(x-a)(x+b),则k应为()A.a+b B.a-b C.b-a D.-a-b 7.()2--等于().a bA.22++D.222-+a ab ba ab ba b2+B.22-C.22a b8.若a≠b,下列各式中成立的是()A.(a+b)2=(-a+b)2 B.(a+b)(a-b)=(b+a)(b -a)C.(a-b)2n=(b-a)2n D.(a-b)3=(b-a)39.若a+b=-1,则a2+b2+2ab的值为( )A.1 B.-1 C.3 D.-310.两个连续奇数的平方差是( )A.6的倍数B.8的倍数C.12的倍数D.16的倍数二、填空题(共21分,每题3分)11.一个十位数字是a,个位数学是b的两位数表示为10a+b,交换这个两位数的十位数字和个位数字,又得一个新的两位数,前后两个数的差是.12.x+y=-3,则5-2x-2y=_____.13. 已知(9n )2=38,则n =_____.14.若(x +5)(x -7)=x 2+mx +n ,则m =__________,n =________.15.(2a -b )( )=b 2-4a 2.16.(x -2y +1)(x -2y -1)2=( )2-( )2=_______________.17.若m 2+m -1=0,则m 3+2m 2+2008= .三、计算题(共30分,每题5分)18.(3)(2a -3b )2(2a +3b )2;19.(2x +5y )(2x -5y )(-4x 2-25y 2);20.(x -3)(2x +1)-3(2x -1)2.21.4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2);22.(20a n -2b n -14a n -1b n +1+8a 2n b )÷(-2a n -3b );23.解方程:(3x +2)(x -1)=3(x -1)(x +1).四、解答题(共59分,24-26每题5分,27-29每题8分,30、31每题10分)24.已知a 3=5,b 9=10,求b a 23+.25.已知多项式32241x x --除以一个多项式A ,得商式为2x ,余式为1x -。
求这个多项式.26.当3x =-时,代数式538ax bx cx ++-的值为6,试求当3x =时,538ax bx cx ++-的值.27.已知(a+b)2=10,(a-b)2=2,求a2+b2,ab的值.28.已知a+b=5,ab=7,求222ba ,a2-ab+b2的值.29.已知a2+b2+c2=ab+bc+ac,求证a=b=c.30.(1)正方形的边长增大5cm,面积增大2cm75.求原正方形的边长及面积.(2)正方形的一边增加4厘米,邻边减少4厘米,所得的矩形面积与这个正方形的边长减少2厘米所得的正方形的面积相等,求原正方形的边长.31.在一次联欢会上,节目主持人让大家做一个猜数的游戏,游戏的规则是:主持人让观众每人在心里想好一个除0以外的数,然后按以下顺序计算:()1把这个数加上2后平方.()2然后再减去4.()3再除以原来所想的那个数,得到一个商.最后把你所得到的商是多少告诉主持人,主持人便立即知道你原来所想的数是多少,你能解释其中的奥妙吗?五、压底题(10分)32.已知a2+6a+b2-10b+34=0,求代数式(2a+b)(3a-2b)+4ab的值.一、选择题1.B 2.D 3.A 4.D.5.C.6.B.7.C 8.C.9.A 10.B二、填空题11.9(a-b)12.1113.214.-2,35.15.-2a-b.16.x-2y,1x2-4xy+4y.17.2009三、计算题18.16a4-72a2b2+81b419.625y4-16x420.-10x2+7x-6.16ax4y21.522.-10ab n-1+7a2b n-4a n+323.将方程变形为:3x2-x-2=3(x2-1),去括号、移项得:-x-2=-3,解得x=1四、解答题24.ba23 =3a·32b=3a·9b=50.25.2122x x --;26.22-;27.a 2+b 2=21[(a +b )2+(a -b )2]=6,ab =41[(a +b )2+(a -b )2]=2.28.222b a +=21[(a +b )2-2ab ]=21(a +b )2-ab =211. a 2-ab +b 2=(a +b )2-3ab =4.29.用配方法,a 2+b 2+c 2-ab -bc -ac =0,∴ 2(a 2+b 2+c 2-ab -ac -bc )=0,即(a -b )2+(b -c )2+(c -a )2=0.∴ a =b =c .26.x >-31.30.(1)设原正方形的边长为x cm ,由题意得(x +5)2-x 2=75,整理得5(x +5+x )=75(或者10x +25=75),解得x =5,故原正方形的边长为5cm ,面积为25cm 2.(2)设原正方形的边长为x cm ,由题意得(x +4)(x -4)=(x -2)2,整理得x 2-16=x 2-4x +4,移项解得x =5,故原正方形的边长为5厘米. 探究拓广31.解:设这个数为x ,据题意得,()()2224444444x x x x ⎡⎤+-÷=++-÷=+⎣⎦。