华东交大2013高等数学A2参考答案
华东交大历年高数上册期末试题及答案10高数上复习题
第一章 复习题 1. 计算下列极限: (1)2)1( 321limn n n -+⋅⋅⋅+++∞→;解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n nn n n n n n . (2)35)3)(2)(1(limn n n n n +++∞→;解 515)3)(2)(1(lim3=+++∞→n n n n n (分子与分母的次数相同, 极限为最高次项系数之比).或 51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n n n n n n n . (3))1311(lim 31xx x ---→; 解 112lim)1)(1()2)(1(lim )1)(1(31lim )1311(lim 212122131-=+++-=++-+--=++--++=---→→→→x x x x x x x x x x x x x x x x x x x . (4)xx x 1sin lim 20→; 解 01sin lim 20=→x x x (当x →0时, x 2是无穷小, 而x 1sin 是有界变量).(5)xx x arctan lim ∞→. 解 0arctan 1lim arctan lim =⋅=∞→∞→x x x x x x (当x →∞时, x 1是无穷小, 而arctan x 是有界变量).(6)145lim1---→x xx x ;解 )45)(1(44lim)45)(1()45)(45(lim 145lim111x x x x x x x x x x x x x x x x x +---=+--+---=---→→→ 214154454l i m1=+-⋅=+-=→xx x .(7))(lim 22x x x x x --++∞→.解 )())((lim)(lim 22222222x x x x x x x x x x x x x x x x x x -++-++--+=--++∞→+∞→1)1111(2lim)(2lim22=-++=-++=+∞→+∞→xx x x x x xx x .(8)xxx sin lnlim 0→; 解 01ln )sin lim ln(sin lnlim 00===→→x xxx x x .(9)2)11(lim xx x+∞→;解[]e e xxx x xx ==+=+∞→∞→21212)11(lim )11(lim(10))1(lim 2x x x x -++∞→;解 )1()1)(1(lim )1(lim 2222x x x x x x x x x x x x ++++-+=-++∞→+∞→ 211111lim 1lim22=++=++=+∞→+∞→x x x x x x . (11)1)1232(lim +∞→++x x x x ;解 2121211)1221(lim )1221(lim )1232(lim ++∞→+∞→+∞→++=++=++x x x x x x x x x x21212)1221()1221(lim ++++=+∞→x x x x e x x x x x =++⋅++=∞→+∞→21212)1221(lim )1221(lim .(12)30sin tan lim x x x x -→; 解 x x x x x x x x x x x x x c o s)c o s 1(s i n lim )1cos 1(sin lim sin tan lim 303030-=-=-→→→ 21)2(2lim cos 2sin 2sin lim320320=⋅=⋅=→→x x x x x x x x x (提示: 用等价无穷小换) . 2. 证明: 当x →0时, arctan x ~x ;证明 因为1tan lim arctan lim00==→→y y x xy x (提示: 令y =arctan x , 则当x →0时, y →0), 所以当x →0时, arctan x ~x .3. 下列函数在指出的点处间断, 说明这些间断点属于哪一类, 如果是可去间断点, 则补充或改变函数的定义使它连续: (1)23122+--=x x x y , x =1, x =2;(2)x xy tan =, x =k , 2ππ+=k x (k =0, ±1, ±2, ⋅ ⋅ ⋅); 解 (1))1)(2()1)(1(23122---+=+--=x x x x x x x y . 因为函数在x =2和x =1处无定义, 所以x =2和x =1是函数的间断点.因为∞=+--=→→231lim lim 222x x x y x x , 所以x =2是函数的第二类间断点;因为2)2()1(limlim 11-=-+=→→x x y x x , 所以x =1是函数的第一类间断点, 并且是可去间断点. 在x =1处, 令y =-2, 则函数在x =1处成为连续的. (2)函数在点x =k π(k ∈Z)和2ππ+=k x (k ∈Z)处无定义, 因而这些点都是函数的间断点. 因∞=→xxk x tan limπ(k ≠0), 故x =k π(k ≠0)是第二类间断点;因为1tan lim0=→xxx ,0tan lim2=+→x x k x ππ(k ∈Z), 所以x =0和2ππ+=k x (k ∈Z) 是第一类间断点且是可去间断点.令y |x =0=1, 则函数在x =0处成为连续的; 令2 ππ+=k x 时, y =0, 则函数在2ππ+=k x 处成为连续的. 4. 设函数⎩⎨⎧≥+<=0)(x x a x e x f x 应当如何选择数a , 使得f (x )成为在(-∞, +∞)内的连续函数?解 要使函数f (x )在(-∞, +∞)内连续, 只须f (x )在x =0处连续, 即只须 a f x f x f x x ===+→-→)0()(lim )(lim 0.因为1lim )(lim 0==-→-→x x x e x f , a x a x f x x =+=+→+→)(lim )(lim 00, 所以只须取a =1.5. 证明方程x =a sin x +b , 其中a >0, b >0, 至少有一个正根, 并且它不超过a +b . 证明 设f (x )=a sin x +b -x , 则f (x )是[0, a +b ]上的连续函数. f (0)=b , f (a +b )=a sin (a +b )+b -(a +b )=a [sin(a +b )-1]≤0.若f (a +b )=0, 则说明x =a +b 就是方程x =a sin x +b 的一个不超过a +b 的根;若f (a +b )<0, 则f (0)f (a +b )<0, 由零点定理, 至少存在一点ξ∈(0, a +b ), 使f (ξ)=0, 这说明x =ξ 也是方程x =a sin x +b 的一个不超过a +b 的根. 总之, 方程x =a sin x +b 至少有一个正根, 并且它不超过a +b .6. 证明()11 2111lim 222=++⋅⋅⋅++++∞→nn n n n . 证明 因为()11 211122222+≤++⋅⋅⋅++++≤+n n n n n n n n n , 且 1111lim lim 2=+=+∞→∞→nn n n n n , 1111lim 1lim 22=+=+∞→∞→n n n n n , 所以()11 2111lim 222=++⋅⋅⋅++++∞→nn n n n . 7. 已知f (x )=⎩⎨⎧≥<0 0sin x x x x , 求f '(x ) .解 当x <0时, f (x )=sin x , f '(x )=cos x ;当x >0时, f (x )=x , f '(x )=1;因为 f -'(0)=10sin lim )0()(lim00=-=--→-→xx x f x f x x , f +'(0)=10lim )0()(lim00=-=-+→+→x x x f x f x x , 所以f '(0)=1, 从而 f '(x )=⎩⎨⎧≥<0 10cos x x x .8*、证明: 函数xx y 1sin 1=在区间(0, 1]上无界, 但这函数不是当x →0+时的无穷大.证明 函数xx y 1sin 1=在区间(0, 1]上无界. 这是因为∀M >0, 在(0, 1]中总可以找到点x k , 使y (x k )>M . 例如当221ππ+=k x k (k =0, 1, 2, ⋅ ⋅ ⋅)时, 有22)(ππ+=k x y k ,当k 充分大时, y (x k )>M .当x →0+ 时, 函数xx y 1sin 1=不是无穷大. 这是因为∀M >0, 对所有的δ>0, 总可以找到这样的点x k , 使0<x k <δ, 但y (x k )<M . 例如可取 πk x k 21=(k =0, 1, 2, ⋅ ⋅ ⋅), 当k 充分大时, x k <δ, 但y (x k )=2k πsin2k π=0<M .第二章 复习题1. 求下列函数的导数: (1) y =ln(1+x 2);解 222212211)1(11x x x x x x y +=⋅+='+⋅+='.(2) y =sin 2x ;解 y '=2sin x ⋅(sin x )'=2sin x ⋅cos x =sin 2x .(3)22x a y -=; 解[]22122221122122)2()(21)()(21)(xa x x x a x a x a x a y --=-⋅-='-⋅-='-='--.(4)xx y ln 1ln 1+-=;解 22)ln 1(2)ln 1(1)ln 1()ln 1(1x x x x x x x y +-=+--+-='.(5)xxy 2sin =; 解 222s i n 2c o s 212s i n 22c o s x x x x x x x x y -=⋅-⋅⋅='. (6)x y arcsin =; 解 2222121)(11)()(11x x x x x x y -=⋅-='⋅-='.(7))ln(22x a x y ++=; 解 ])(211[1)(12222222222'+++⋅++='++⋅++='x a x a x a x x a x x a x y2222221)]2(211[1xa x x a x a x +=++⋅++=. (8)x x y +-=11arcsin . 解 )1(2)1(1)1()1()1(1111)11(11112x x x x x x xx x x x x y -+-=+--+-⋅+--='+-⋅+--='.(9)x x y -+=11arctan ; 解 222211)1()1()1()11(11)11()11(11x x x x xx x x x x y +=-++-⋅-++='-+⋅-++='. (10)x x x y tan ln cos 2tan ln ⋅-=; 解 )(t a n t a n 1c o s t a n ln sin )2(tan 2tan 1'⋅⋅-⋅+'⋅='x x x x x x x yx x x x x x x x x tan ln sin sec tan 1cos tan ln sin 212sec 2tan 122⋅=⋅⋅-⋅+⋅⋅.(11))1ln(2x x e e y ++=;解 xx x x x x x x x x x e ee e e e e e e e e y 2222221)122(11)1(11+=++⋅++='++⋅++='. 2. 求下列函数的n 阶导数的一般表达式: (1) y =sin 2 x ;解y '=2sin x cos x =sin2x ,)22sin(22cos 2π+==''x x y ,)222sin(2)22cos(222ππ⋅+=+='''x x y ,)232sin(2)222cos(233)4(ππ⋅+=⋅+=x x y ,⋅ ⋅ ⋅,]2)1(2sin[21)(π⋅-+=-n x y n n .(2) y =x ln x ;解 1ln +='x y , 11-==''x xy ,y '''=(-1)x -2, y (4)=(-1)(-2)x -3, ⋅ ⋅ ⋅,y (n )=(-1)(-2)(-3)⋅ ⋅ ⋅(-n +2)x -n +1112)!2()1()!2()1(-----=--=n n n n x n x n . (3) y =x e x .解 y '=e x +xe x ,y ''=e x +e x +xe x =2e x +xe x , y '''=2e x +e x +xe x =3e x +xe x , ⋅ ⋅ ⋅,y (n )=ne x +xe x =e x (n +x ) .3. 求方程y =1+xe y 所确定的隐函数的二阶导数22dx y d . 解 方程两边求导数得 y '=e y +x e y y ',ye y e xe e y yy y y -=--=-='2)1(11,3222)2()3()2()3()2()()2(y y e y y y e y y e y y e y y y y y --=-'-=-'---'=''. 4. 求参数方程⎩⎨⎧-=+=t t y t x arctan )1ln(2所确定的函数的三阶导数33dx y d : 解t t t t t t t dx dy 2112111])1[ln()arctan (222=++-='+'-=, t t t t t dx y d 4112)21(2222+=+'=,3422338112)41(t t t t t t dx y d -=+'+=. 5. 注水入深8m 上顶直径8m 的正圆锥形容器中, 其速率为4m 2/min . 当水深为5m 时, 其表面上升的速度为多少?解 水深为h 时, 水面半径为h r 21=, 水面面积为π241h S =,水的体积为3212413131h h h hS V ππ=⋅==,dt dh h dt dV ⋅⋅=2312π, dtdV h dt dh ⋅=24π.已知h =5(m ),4=dtdV (m 3/min), 因此 πππ2516425442=⋅=⋅=dt dV h dt dh (m/min).6. 求下列函数的微分: (1)21arcsin x y -=;解 dx x x x dx x x dx x dx y dy 22221||)12()1(11)1(arcsin --=--⋅--='-='=.(2) y =tan 2(1+2x 2);解 dy =d tan 2(1+2x 2)=2tan(1+2x 2)d tan(1+2x 2)=2tan(1+2x 2)⋅sec 2(1+2x 2)d (1+2x 2) =2tan(1+2x 2)⋅sec 2(1+2x 2)⋅4x dx =8x ⋅tan(1+2x 2)⋅sec 2(1+2x 2)dx .(3)2211arctan xx y +-=;解 )11()11(1111a r c t a n 2222222x x d x x x x d dy +-+-+=+-= dx x x dx x x x x x xx 4222222214)1()1(2)1(2)11(11+-=+--+-⋅+-+=. 7. 讨论函数⎪⎩⎪⎨⎧=≠=0001sin )(x x xx x f 在x =0处的连续性与可导性.解 因为f (0)=0, )0(01sin lim )(lim 00f xx x f x x ===→→, 所以f (x )在x =0处连续; 因为极限x x x x x f x f x x x 1sin lim 01sin lim)0()(lim 000→→→=-=-不存在, 所以f (x )在x =0处不导数. 第三章 复习题1. 验证罗尔定理对函数y =ln sin x 在区间]65 ,6[ππ上的正确性.解 因为y =ln sin x 在区间]65 ,6[ππ上连续, 在)65 ,6(ππ内可导, 且)65()6(ππy y =, 所以由罗尔定理知, 至少存在一点)65 ,6(ππξ∈, 使得y '(ξ)=cot ξ=0. 由y '(x )=cot x =0得)65 ,6(2πππ∈.因此确有)65 ,6(2πππξ∈=, 使y '(ξ)=cot ξ=0.2. 证明: 若函数.f (x )在(-∞, +∞)内满足关系式f '(x )=f (x ), 且f (0)=1则f (x )=e x . 证明 令xe xf x )()(=ϕ, 则在(-∞, +∞)内有0)()()()()(2222≡-=-'='xx x x e e x f e x f e e x f e x f x ϕ,所以在(-∞, +∞)内ϕ(x )为常数.因此ϕ(x )=ϕ(0)=1, 从而f (x )=e x . 3. 用洛必达法则求下列极限: (1)xe e xx x sin lim 0-→-; 解 2c o s l i m s i n l i m00=+=--→-→xe e x e e xx x x x x . (2)22)2(sin ln limx x x -→ππ;解 812c s c lim 41)2()2(2cot lim )2(sin ln lim 22222-=---=-⋅-=-→→→x x x x xx x x πππππ. (3)xx x x cos sec )1ln(lim 20-+→;解 xx x x x x x x x x x 22022020c o s 1l i m c o s 1)1l n (c o s l i m c o s s e c )1l n (l i m -=-+=-+→→→(注: cos x ⋅ln(1+x 2)~x 2)1sin lim )sin (cos 22lim00==--=→→xxx x x x x . 4. 证明不等式 :当x >0时, 221)1ln(1x x x x +>+++;解 设221)1ln(1)(x x x x x f +-+++=, 则f (x )在[0, +∞)内是连续的. 因为0)1ln(1)11(11)1ln()(22222>++=+-++⋅++⋅+++='x x x x x x x x x x x x f ,所以f (x )在(0, +∞)内是单调增加的, 从而当x >0时f (x )>f (0)=0, 即 01)1ln(122>+-+++x x x x , 也就是 221)1l n (1x x x x +>+++. 5. 判定曲线y =x arctan x 的凹凸性: 解 21a r c t a nx x x y ++=',22)1(2x y +=''.因为在(-∞, +∞)内, y ''>0, 所以曲线y =x arctg x 在(-∞, +∞)内是凹的.6. 求下列函数图形的拐点及凹或凸的区间: (1) y =xe -x ;解 y '=e -x -x e -x , y ''=-e -x -e -x +x e -x =e -x (x -2). 令y ''=0, 得x =2.因为当x <2时, y ''<0; 当x >2时, y ''>0, 所以曲线在(-∞, 2]内是凸的, 在[2, +∞)内是凹的, 拐点为(2, 2e -2). (2) y =ln(x 2+1);解 122+='x xy , 22222)1()1)(1(2)1(22)1(2++--=+⋅-+=''x x x x x x x y . 令y ''=0, 得x 1=-1, x 2=1. 列表得可见曲线在(-∞, -1]和[1, +∞)内是凸的, 在[-1, 1]内是凹的, 拐点为(-1, ln2)和(1, ln2).7. 设f (x )在[0, a ]上连续, 在(0, a )内可导, 且f (a )=0, 证明存在一点ξ∈(0, a ), 使f (ξ)+ξf '(ξ)=0.证明 设F (x )=xf (x ), 则F (x )在[0, a ]上连续, 在(0, a )内可导, 且F (0)=F (a )=0. 由罗尔定理, 在(0, a )内至少有一个点ξ , 使F (ξ )=0. 而F (x )=f (x )+x f '(x ), 所以f (ξ)+ξf '(ξ)=0. 8. 求数列}{n n 的最大项. 解 令xx x x x f 1)(==(x >0), 则x x x f ln 1)(ln =,)ln 1(1ln 11)()(1222x x x x x x f x f -=-='⋅, )ln 1()(21x x x fx -='-.令f '(x )=0, 得唯一驻点x =e .因为当0<x <e 时, f '(x )>0; 当x >e 时, f '(x )<0, 所以唯一驻点x =e 为最大值点.因此所求最大项为333}3 ,2m ax{=. 第四、五、六章 复习题 1. 求下列不定积分: (1)⎰dx e x x 3;解 C e C e e dx e dx e xx x xxx++=+==⎰⎰13ln 3)3ln()3()3(3. (2)⎰+++dx x x x 1133224; 解C x x dx x x dx x x x ++=++=+++⎰⎰arctan )113(1133322224.(3)⎰dt tt sin ;解⎰⎰+-==C t t d t dt tt cos 2sin 2sin .(4)⎰-+dx e e xx 1;解 ⎰-+dx e e xx 1C e de edx e e x x xx x +=+=+=⎰⎰arctan 11122. (5)⎰--dx xx 2491;解dx xx dx xdx xx ⎰⎰⎰---=--22249491491)49(49181)32()32(1121222x d x x d x --+-=⎰⎰C x x +-+=2494132arcsin 21. (6)⎰-+dx x x )2)(1(1;解C x x C x x dx x x dx x x ++-=++--=+--=-+⎰⎰|12|ln 31|1|ln |2|(ln 31)1121(31)2)(1(1.(7)⎰-12x x dx ;解C x C t dt tdt t t t tx x x dx +=+==⋅⋅=-⎰⎰⎰1arccos tan sec tan sec 1sec 12令.或C x x d x dx xx x x dx +=--=-=-⎰⎰⎰1arccos 111111112222.(8)⎰-dx xx 92; 解⎰⎰⎰=-=-tdt t d tt t x dx x x 222tan 3)sec 3(sec 39sec 9sec 39令 C x x C t t dt t+--=+-=-=⎰3arccos 393tan 3)1cos 1(322.(9) ⎰-xdx e x cos ;解 因为⎰⎰⎰⎰------+=-==xdx e x e xde x e x d e xdx e x x x x x x sin sin sin sin sin cos ⎰⎰-----+-=-=x x x x x xde x e x e x d e x e cos cos sin cos sin⎰-----=xdx e x e x e x x x cos cos sin ,所以 C x x e C x e x e xdx e x x x x +-=+-=----⎰)cos (sin 21)cos sin (21cos . (10)⎰dx x 2)(arcsin ;解 ⎰⎰-⋅⋅-=dx x x x x x dx x 22211arcsin 2)(arcsin )(arcsin ⎰-+=221arcsin 2)(arcsin x xd x x⎰--+=dx x x x x 2arcsin 12)(arcsin 22C x x x x x +--+=2arcsin 12)(arcsin 22.(11)⎰xdx e x 2sin .解 ⎰⎰⎰-=-=xdx e e dx x e xdx e x x x x 2cos 2121)2cos 1(21sin 2, 而 dx x e x e xde xdx e x x x x ⎰⎰⎰+==2sin 22cos 2cos 2cos⎰⎰-+=+=xdx e x e x e de x x e x x x x x 2cos 42sin 22cos 2sin 22cos ,C x x e xdx e x x ++=⎰)2sin 22(cos 512cos , 所以 C x x e e xdx e x x x ++-=⎰)2sin 22(cos 10121sin 2 (12)dx x x )1(12+⎰; 解 C x x dx x x x dx x x ++-=+-=+⎰⎰)1ln(21||ln )11()1(1222.2. 一曲线通过点(e 2, 3), 且在任一点处的切线的斜率等于该点横坐标的倒数, 求该曲线的方程.解 设该曲线的方程为y =f (x ), 则由题意得xx f y 1)(='=',所以 C x dx xy +==⎰||ln 1. 又因为曲线通过点(e 2, 3), 所以有=3-2=13=f (e 2)=ln|e 2|+C =2+C ,C =3-2=1.于是所求曲线的方程为y =ln|x |+1.3. 设f (x )在[a , b ]上连续, 在(a , b )内可导且f '(x )≤0, ⎰-=x a dt t f a x x F )(1)(. 证明在(a , b )内有F '(x )≤0.证明 根据积分中值定理, 存在ξ∈[a , x ], 使))(()(a x f dt t f x a -=⎰ξ. 于是有))(()(1)(1)(1)()(1)(22a x f a x x f a x x f a x dt t f a x x F x a ----=-+--='⎰ξ )]()([1ξf x f ax --=. 由f '(x )≤0可知f (x )在[a , b ]上是单调减少的, 而a ≤ξ≤x , 所以f (x )-f (ξ)≤0. 又在(a , b )内, x -a >0, 所以在(a , b )内0)]()([1)(≤--='ξf x f ax x F . 4. 计算下列定积分:(1)⎰-πθθ03)sin 1(d ;解 ⎰⎰⎰⎰-+=+=-πππππθθθθθθθθ02002003cos )cos 1(cos sin )sin 1(d d d d 34)cos 31(cos 03-=-+=πθθππ. (2)dx x ⎰-2022; 解 dt t tdt t t x dx x ⎰⎰⎰+=⋅=-020202)2cos 1(cos 2cos 2sin 22ππ令 2)2sin 21(20ππ=+=t t . 6. 求由摆线x =a (t -sin t ), y =a (1-cos t )的一拱(0≤t ≤2π)与横轴 所围成的图形的面积.解:所求的面积为⎰⎰⎰-=--==a a a dt t a dt t a t a ydx A 20222020)cos 1()cos 1()cos 1(ππ22023)2cos 1cos 21(a dt t t a a =++-=⎰. 7. 证明 由平面图形0≤a ≤x ≤b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为⎰=ba dx x xf V )(2π.证明 如图, 在x 处取一宽为dx 的小曲边梯形, 小曲边梯形绕y 轴旋转所得的旋转体的体积近似为2πx ⋅f (x )dx , 这就是体积元素, 即dV =2πx ⋅f (x )dx ,于是平面图形绕y 轴旋转所成的旋转体的体积为⎰⎰==ba ba dx x xf dx x xf V )(2)(2ππ. 8. 利用题7的结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转体的体积.解 20002)sin cos (2cos 2sin 2πππππππ=+-=-==⎰⎰x x x x xd xdx x V . 9. 求心形线ρ=a (1+cos θ )的全长.解 用极坐标的弧长公式.θθθθθρθρππd a a d s ⎰⎰-++='+=0222022)sin ()cos 1(2)()(2a d a 82cos 40==⎰πθθ.第七章 复习题1、设m =3i +5j +8k , n =2i -4j -7k 和p =5i +j -4k . 求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解 因为a =4m +3n -p =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k , 所以a =4m +3n -p 在x 轴上的投影为13, 在y 轴上的分向量7j .2. 设a =3i -j -2k , b =i +2j -k , 求(1)a ⋅b 及a ⨯b ; (2)(-2a )⋅3b 及a ⨯2b ; (3)a 、b 夹角的余弦.解 (1)a ⋅b =3⨯1+(-1)⨯2+(-2)⨯(-1)=3,k j i k j i b a 75121 213++=---=⨯. (2)(-2a )⋅3b =-6a ⋅b = -6⨯3=-18,a ⨯2b =2(a ⨯b )=2(5i +j +7k )=10i +2j +14k .(3)21236143||||||) ,cos(^==⋅=b a b a b a . 3. 设a 、b 、c 为单位向量, 且满足a +b +c =0, 求a ⋅b +b ⋅c +c ⋅a .解 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0,即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0,于是 23)111(21)(21-=++-=⋅+⋅+⋅-=⋅+⋅+⋅c c b b a a a c c b b a .4、设已知向量a =2i -3j +k , b =i -j +3k 和c =i -2j , 计算: (1)(a ⋅b )c -(a ⋅c )b ; (2)(a +b )⨯(b +c );(3)(a ⨯b )⋅c .解 (1)a ⋅b =2⨯1+(-3)⨯(-1)+1⨯3=8, a ⋅c =2⨯1+(-3)⨯(-2)=8,(a ⋅b )c -(a ⋅c )b =8c -8b =8(c -b )=8[(i -2j )-(i -j +3k )]=-8j -24k .(2)a +b =3i -4j +4k , b +c =2i -3j +3k ,k j k j i c b b a --=--=+⨯+332443)()(. (3)k j i k j i b a +--=--=⨯58311132, (a ⨯b )⋅c =-8⨯1+(-5)⨯(-2)+1⨯0=2.5、一平面过点(1, 0, -1)且平行于向量a =(2, 1, 1)和b =(1, -1, 0), 试求这平面方程. 解 所求平面的法线向量可取为k j i k j i b a n 3011112-+=-=⨯=, 所求平面的方程为(x -1)+(y -0)-3(z +1)=0, 即x +y -3z -4=0.6、用对称式方程及参数方程表示直线⎩⎨⎧=++=+-421z y x z y x . 解 平面x -y +z =1和2x +y +z =4的法线向量为n 1=(1, -1, 1), n 2=(2, 1, 1), 所求直线的方向向量为k j i k j i n n s 3211211121++-=-=⨯=. 在方程组⎩⎨⎧=++=+-421z y x z y x 中, 令y =0, 得⎩⎨⎧=+=+421z x z x , 解得x =3, z =-2. 于是点(3, 0, -2)为所求直线上的点.所求直线的对称式方程为32123+==--z y x ; 参数方程为x =3-2t , y =t , z =-2+3t .7、求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面4x -y +z =1上的投影直线的方程. 解 过直线⎩⎨⎧=---=+-0923042z y x z y x 的平面束方程为 (2+3λ)x +(-4-λ)y +(1-2λ)z -9λ=0.为在平面束中找出与已知平面垂直的平面, 令(4 -1, 1)⋅(2+3λ, -4-λ, 1-2λ)=0, 即 4⋅(2+3λ)+(-1)⋅(-4-λ)+1⋅(1-2λ)=0.解之得1113-=λ. 将1113-=λ代入平面束方程中, 得 17x +31y -37z -117=0.故投影直线的方程为⎩⎨⎧=--+=+-011737311714z y x z y x . 8、设3||=a , |b |=1, 6) ,(^π=b a , 求向量a +b 与a -b 的夹角. 解 |a +b |2=(a +b )⋅(a +b )=|a |2+|b |2+2a ⋅b =|a |2+|b |2+2|a |⋅|b |cos(a ,^ b )76cos 3213=++=π, |a -b |2=(a -b )⋅(a -b )=|a |2+|b |2-2a ⋅b =|a |2+|b |2-2|a |⋅|b |cos(a ,^ b )16cos 3213=-+=π. 设向量a +b 与a -b 的夹角为θ, 则721713||||||||||||)()(cos 22=⋅-=-⋅+-=-⋅+-⋅+=b a b a b a b a b a b a b a θ, 72arccos =θ.。
华东交大历年高数上册期末试题及答案08-09高数上试卷及答案
lim
x 0
1 1 x1 ln(x 1)
1
x x1
lim
x0
( x 1) 2 1 1 x 1 ( x 1) 2
1 2
3、 设y (cos x )
sin x
, 求dy.
得分
评阅人
解 两边取对数得 ln y sin x ln cos x
1 sin x y cos x ln cos x sin x y cos x
y (cos x)
dy y dx
sin x
(cos x ln cos x sin x tan x)
(cos x)
sin x
(cos x ln cos x sin x tan x)dx
4、 求不定积分
解
x 4 dx. x
2
得分
评阅人
令x 2 sec t, 则dx 2 sec t tan tdt
华东交通大学 2008—2009 学年第一学期考试卷卷
承诺:我将严格遵守考场纪律,知道考试违纪、作弊的严重性,还知道请他人代考或代他人考者将被开除学籍和 因作弊受到记过及以上处分将不授予学士学位,愿承担由此引起的一切后果。 试卷编号: (A)卷
《高等数学(A)Ⅰ 》 课程 (工科本科 08 级) 课程类别:必 闭卷(√)
二、选择题(每题 3 分,共 15 分)
1、
得分
评阅人
lim
x
2 sin 2 x ( x sin )( C ) x x B. 3 C. 2 D. 1
A.4
专业
2 2、 曲 线 x cos t cos t 上 在 对 应 t 点处的法线斜率为 ( A ) 4 y 1 sin t A. 1 2 B. 2 1 C. 1 2 D. 1 2
华东交大历年高数上册期末试题及答案10高数上复习题
第一章 复习题 1. 计算下列极限: (1)2)1( 321limn n n -+⋅⋅⋅+++∞→;解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n nn n n n n n . (2)35)3)(2)(1(limn n n n n +++∞→;解 515)3)(2)(1(lim3=+++∞→n n n n n (分子与分母的次数相同, 极限为最高次项系数之比).或 51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n n n n n n n . (3))1311(lim 31x x x ---→; 解 112lim)1)(1()2)(1(lim )1)(1(31lim )1311(lim 212122131-=+++-=++-+--=++--++=---→→→→x x x x x x x x x x x x x x x x x x x . (4)xx x 1sin lim 20→; 解 01sin lim 20=→x x x (当x →0时, x 2是无穷小, 而x1sin 是有界变量).(5)xxx arctan lim∞→.解 0arctan 1lim arctan lim =⋅=∞→∞→x x x x x x (当x →∞时, x1是无穷小, 而arctan x 是有界变量).(6)145lim1---→x xx x ;解 )45)(1(44lim )45)(1()45)(45(lim 145lim111x x x x x x x x x x x x x x x x x +---=+--+---=---→→→ 214154454lim1=+-⋅=+-=→xx x .(7))(lim 22x x x x x --++∞→.解 )())((lim)(lim 22222222x x x x x x x x x x x x x x x x x x -++-++--+=--++∞→+∞→1)1111(2lim)(2lim22=-++=-++=+∞→+∞→xx x x x x xx x .(8)xxx sin lnlim 0→; 解 01ln )sin lim ln(sin lnlim 00===→→x xxx x x .(9)2)11(lim xx x+∞→;解[]e e xxx x xx ==+=+∞→∞→21212)11(lim )11(lim(10))1(lim 2x x x x -++∞→;解 )1()1)(1(lim )1(lim 2222x x x x x x x x x x x x ++++-+=-++∞→+∞→ 211111lim 1lim22=++=++=+∞→+∞→x x x x x x . (11)1)1232(lim +∞→++x x x x ;解 2121211)1221(lim )1221(lim )1232(lim ++∞→+∞→+∞→++=++=++x x x x x x x x x x21212)1221()1221(lim ++++=+∞→x x x x e x x x x x =++⋅++=∞→+∞→21212)1221(lim )1221(lim .(12)30sin tan lim x x x x -→; 解 xx x x x x x x x x x x x cos )cos 1(sin lim )1cos 1(sin lim sin tan lim 303030-=-=-→→→ 21)2(2lim cos 2sin 2sin lim320320=⋅=⋅=→→x x x x x x x x x (提示: 用等价无穷小换) . 2. 证明: 当x →0时, arctan x ~x ;证明 因为1tan lim arctan lim 00==→→y y x xy x (提示: 令y =arctan x , 则当x →0时, y →0),所以当x →0时, arctan x ~x .3. 下列函数在指出的点处间断, 说明这些间断点属于哪一类, 如果是可去间断点, 则补充或改变函数的定义使它连续:(1)23122+--=x x x y , x =1, x =2;(2)x xy tan =, x =k , 2ππ+=k x (k =0, ±1, ±2, ⋅ ⋅ ⋅);解 (1))1)(2()1)(1(23122---+=+--=x x x x x x x y . 因为函数在x =2和x =1处无定义, 所以x =2和x =1是函数的间断点.因为∞=+--=→→231lim lim 2222x x x y x x , 所以x =2是函数的第二类间断点;因为2)2()1(limlim 11-=-+=→→x x y x x , 所以x =1是函数的第一类间断点, 并且是可去间断点. 在x =1处, 令y =-2, 则函数在x =1处成为连续的. (2)函数在点x =k π(k ∈Z)和2ππ+=k x (k ∈Z)处无定义, 因而这些点都是函数的间断点. 因∞=→xxk x tan limπ(k ≠0), 故x =k π(k ≠0)是第二类间断点;因为1tan lim0=→xxx ,0tan lim2=+→x x k x ππ(k ∈Z), 所以x =0和2ππ+=k x (k ∈Z) 是第一类间断点且是可去间断点.令y |x =0=1, 则函数在x =0处成为连续的; 令2 ππ+=k x 时, y =0, 则函数在2ππ+=k x 处成为连续的. 4. 设函数⎩⎨⎧≥+<=0)(x x a x e x f x 应当如何选择数a , 使得f (x )成为在(-∞, +∞)内的连续函数?解 要使函数f (x )在(-∞, +∞)内连续, 只须f (x )在x =0处连续, 即只须 a f x f x f x x ===+→-→)0()(lim )(lim 0.因为1lim )(lim 0==-→-→x x x e x f , a x a x f x x =+=+→+→)(lim )(lim 00, 所以只须取a =1.5. 证明方程x =a sin x +b , 其中a >0, b >0, 至少有一个正根, 并且它不超过a +b . 证明 设f (x )=a sin x +b -x , 则f (x )是[0, a +b ]上的连续函数. f (0)=b , f (a +b )=a sin (a +b )+b -(a +b )=a [sin(a +b )-1]≤0.若f (a +b )=0, 则说明x =a +b 就是方程x =a sin x +b 的一个不超过a +b 的根;若f (a +b )<0, 则f (0)f (a +b )<0, 由零点定理, 至少存在一点ξ∈(0, a +b ), 使f (ξ)=0, 这说明x =ξ 也是方程x =a sin x +b 的一个不超过a +b 的根. 总之, 方程x =a sin x +b 至少有一个正根, 并且它不超过a +b .6. 证明()11 2111lim 222=++⋅⋅⋅++++∞→nn n n n . 证明 因为()11 211122222+≤++⋅⋅⋅++++≤+n n n n n n n n n , 且 1111lim lim 2=+=+∞→∞→nn n n n n , 1111lim 1lim 22=+=+∞→∞→n n n n n , 所以()11 2111lim 222=++⋅⋅⋅++++∞→nn n n n . 7. 已知f (x )=⎩⎨⎧≥<0 0sin x x x x , 求f '(x ) .解 当x <0时, f (x )=sin x , f '(x )=cos x ; 当x >0时, f (x )=x , f '(x )=1;因为 f -'(0)=10sin lim )0()(lim00=-=--→-→xx x f x f x x , f +'(0)=10lim )0()(lim00=-=-+→+→x x x f x f x x , 所以f '(0)=1, 从而 f '(x )=⎩⎨⎧≥<0 10cos x x x .8*、证明: 函数xx y 1sin 1=在区间(0, 1]上无界, 但这函数不是当x →0+时的无穷大.证明 函数xx y 1sin 1=在区间(0, 1]上无界. 这是因为∀M >0, 在(0, 1]中总可以找到点x k , 使y (x k )>M . 例如当221ππ+=k x k (k =0, 1, 2, ⋅ ⋅ ⋅)时, 有22)(ππ+=k x y k ,当k 充分大时, y (x k )>M .当x →0+ 时, 函数xx y 1sin 1=不是无穷大. 这是因为∀M >0, 对所有的δ>0, 总可以找到这样的点x k , 使0<x k <δ, 但y (x k )<M . 例如可取 πk x k 21=(k =0, 1, 2, ⋅ ⋅ ⋅), 当k 充分大时, x k <δ, 但y (x k )=2k πsin2k π=0<M .第二章 复习题1. 求下列函数的导数:(1) y =ln(1+x 2);解 222212211)1(11x xx x x x y +=⋅+='+⋅+='.(2) y =sin 2x ;解 y '=2sin x ⋅(sin x )'=2sin x ⋅cos x =sin 2x .(3)22x a y -=;解[]22212222121222122)2()(21)()(21)(x a x x x a x a x a x a y --=-⋅-='-⋅-='-='--.(4)xx y ln 1ln 1+-=;解 22)ln 1(2)ln 1(1)ln 1()ln 1(1x x x x x x x y +-=+--+-='.(5)xxy 2sin =; 解 222sin 2cos 212sin 22cos xx x x x x x x y -=⋅-⋅⋅='.(6)x y arcsin =; 解 2222121)(11)()(11x x x x x x y -=⋅-='⋅-='.(7))ln(22x a x y ++=; 解 ])(211[1)(12222222222'+++⋅++='++⋅++='x a x a x a x x a x x a x y 2222221)]2(211[1x a x x a x a x +=++⋅++=. (8)x x y +-=11arcsin .解 )1(2)1(1)1()1()1(1111)11(11112x x x x x x x x x x x x y -+-=+--+-⋅+--='+-⋅+--='.(9)xx y -+=11arctan ; 解 222211)1()1()1()11(11)11()11(11x x x x xx x x x x y +=-++-⋅-++='-+⋅-++='. (10)x x x y tan ln cos 2tan ln ⋅-=; 解 )(tan tan 1cos tan ln sin )2(tan 2tan 1'⋅⋅-⋅+'⋅='x x x x x x x yx x x x x x x x x tan ln sin sec tan 1cos tan ln sin 212sec 2tan 122⋅=⋅⋅-⋅+⋅⋅.(11))1ln(2x x e e y ++=;解 xx x x x x x x x x x e e e e e e e e e e e y 2222221)122(11)1(11+=++⋅++='++⋅++='.2. 求下列函数的n 阶导数的一般表达式: (1) y =sin 2 x ;解y '=2sin x cos x =sin2x ,)22sin(22cos 2π+==''x x y , )222sin(2)22cos(222ππ⋅+=+='''x x y ,)232sin(2)222cos(233)4(ππ⋅+=⋅+=x x y ,⋅ ⋅ ⋅,]2)1(2sin[21)(π⋅-+=-n x y n n .(2) y =x ln x ;解 1ln +='x y , 11-==''x xy ,y '''=(-1)x -2, y (4)=(-1)(-2)x -3, ⋅ ⋅ ⋅,y (n )=(-1)(-2)(-3)⋅ ⋅ ⋅(-n +2)x -n +1112)!2()1()!2()1(-----=--=n n n n x n x n . (3) y =x e x .解 y '=e x +xe x ,y ''=e x +e x +xe x =2e x +xe x , y '''=2e x +e x +xe x =3e x +xe x , ⋅ ⋅ ⋅,y (n )=ne x +xe x =e x (n +x ) .3. 求方程y =1+xe y 所确定的隐函数的二阶导数22dx y d . 解 方程两边求导数得 y '=e y +x e y y ',ye y e xe e y yy y y -=--=-='2)1(11,3222)2()3()2()3()2()()2(y y e y y y e y y e y y e y y y y y --=-'-=-'---'=''. 4. 求参数方程⎩⎨⎧-=+=t t y t x arctan )1ln(2所确定的函数的三阶导数33dx y d : 解t t t t t t t dx dy 2112111])1[ln()arctan (222=++-='+'-=, t t t t t dx y d 4112)21(2222+=+'=,3422338112)41(t t t t t t dx y d -=+'+=. 5. 注水入深8m 上顶直径8m 的正圆锥形容器中, 其速率为4m 2/min . 当水深为5m 时, 其表面上升的速度为多少?解 水深为h 时, 水面半径为h r 21=, 水面面积为π241h S =,水的体积为3212413131h h h hS V ππ=⋅==,dt dh h dt dV ⋅⋅=2312π, dtdV h dt dh ⋅=24π.已知h =5(m ),4=dtdV (m 3/min), 因此 πππ2516425442=⋅=⋅=dt dV h dt dh (m/min).6. 求下列函数的微分: (1)21arcsin x y -=;解 dx x x x dx x x dx x dx y dy 22221||)12()1(11)1(arcsin --=--⋅--='-='=.(2) y =tan 2(1+2x 2);解 dy =d tan 2(1+2x 2)=2tan(1+2x 2)d tan(1+2x 2)=2tan(1+2x 2)⋅sec 2(1+2x 2)d (1+2x 2) =2tan(1+2x 2)⋅sec 2(1+2x 2)⋅4x dx =8x ⋅tan(1+2x 2)⋅sec 2(1+2x 2)dx .(3)2211arctan xx y +-=;解 )11()11(1111arctan 2222222x x d x x x x d dy +-+-+=+-= dx x x dx x x x x x xx 4222222214)1()1(2)1(2)11(11+-=+--+-⋅+-+=. 7. 讨论函数⎪⎩⎪⎨⎧=≠=0001sin )(x x xx x f 在x =0处的连续性与可导性.解 因为f (0)=0, )0(01sin lim )(lim 00f xx x f x x ===→→, 所以f (x )在x =0处连续; 因为极限xx x x x f x f x x x 1sin lim 01sin lim)0()(lim 000→→→=-=-不存在, 所以f (x )在x =0处不导数. 第三章 复习题1. 验证罗尔定理对函数y =ln sin x 在区间]65 ,6[ππ上的正确性.解 因为y =ln sin x 在区间]65 ,6[ππ上连续, 在)65 ,6(ππ内可导, 且)65()6(ππy y =, 所以由罗尔定理知, 至少存在一点)65 ,6(ππξ∈, 使得y '(ξ)=cot ξ=0. 由y '(x )=cot x =0得)65 ,6(2πππ∈. 因此确有)65 ,6(2πππξ∈=, 使y '(ξ)=cot ξ=0. 2. 证明: 若函数.f (x )在(-∞, +∞)内满足关系式f '(x )=f (x ), 且f (0)=1则f (x )=e x . 证明 令xe xf x )()(=ϕ, 则在(-∞, +∞)内有0)()()()()(2222≡-=-'='xx x x e e x f e x f e e x f e x f x ϕ,所以在(-∞, +∞)内ϕ(x )为常数.因此ϕ(x )=ϕ(0)=1, 从而f (x )=e x . 3. 用洛必达法则求下列极限: (1)xe e xx x sin lim 0-→-; 解 2cos lim sin lim 00=+=--→-→xe e x e e xx x x x x .(2)22)2(sin ln limx x x -→ππ;解 812csc lim 41)2()2(2cot lim )2(sin ln lim 22222-=---=-⋅-=-→→→x x x x xx x x πππππ.(3)xx x x cos sec )1ln(lim 20-+→;解 x x xx x x x x x x x 22022020cos 1lim cos 1)1ln(cos lim cos sec )1ln(lim -=-+=-+→→→(注: cos x ⋅ln(1+x 2)~x 2) 1sin lim )sin (cos 22lim 00==--=→→xxx x x x x .4. 证明不等式 :当x >0时, 221)1ln(1x x x x +>+++;解 设221)1ln(1)(x x x x x f +-+++=, 则f (x )在[0, +∞)内是连续的. 因为0)1ln(1)11(11)1ln()(22222>++=+-++⋅++⋅+++='x x x x x x x x x x x x f ,所以f (x )在(0, +∞)内是单调增加的, 从而当x >0时f (x )>f (0)=0, 即 01)1ln(122>+-+++x x x x , 也就是 221)1ln(1x x x x +>+++. 5. 判定曲线y =x arctan x 的凹凸性: 解 21arctan x x x y ++=',22)1(2x y +=''.因为在(-∞, +∞)内, y ''>0, 所以曲线y =x arctg x 在(-∞, +∞)内是凹的.6. 求下列函数图形的拐点及凹或凸的区间:(1) y =xe -x ;解 y '=e -x -x e -x , y ''=-e -x -e -x +x e -x =e -x (x -2). 令y ''=0, 得x =2.因为当x <2时, y ''<0; 当x >2时, y ''>0, 所以曲线在(-∞, 2]内是凸的, 在[2, +∞)内是凹的, 拐点为(2, 2e -2). (2) y =ln(x 2+1);解 122+='x xy , 22222)1()1)(1(2)1(22)1(2++--=+⋅-+=''x x x x x x x y . 令y ''=0, 得x 1=-1, x 2=1. 列表得可见曲线在(-∞, -1]和[1, +∞)内是凸的, 在[-1, 1]内是凹的, 拐点为(-1, ln2)和(1, ln2).7. 设f (x )在[0, a ]上连续, 在(0, a )内可导, 且f (a )=0, 证明存在一点ξ∈(0, a ), 使f (ξ)+ξf '(ξ)=0.证明 设F (x )=xf (x ), 则F (x )在[0, a ]上连续, 在(0, a )内可导, 且F (0)=F (a )=0. 由罗尔定理, 在(0, a )内至少有一个点ξ , 使F (ξ )=0. 而F (x )=f (x )+x f '(x ), 所以f (ξ)+ξf '(ξ)=0. 8. 求数列}{n n 的最大项. 解 令xxx x x f 1)(==(x >0), 则x x x f ln 1)(ln =,)ln 1(1ln 11)()(1222x x x x x x f x f -=-='⋅,)ln 1()(21x x x fx -='-.令f '(x )=0, 得唯一驻点x =e .因为当0<x <e 时, f '(x )>0; 当x >e 时, f '(x )<0, 所以唯一驻点x =e 为最大值点.因此所求最大项为333}3 ,2max{=. 第四、五、六章 复习题 1. 求下列不定积分: (1)⎰dx e x x 3;解 C e C e e dx e dx e xx x xxx++=+==⎰⎰13ln 3)3ln()3()3(3. (2)⎰+++dx x x x 1133224; 解 C x x dx x x dx x x x ++=++=+++⎰⎰arctan )113(1133322224. (3)⎰dt tt sin ;解⎰⎰+-==C t t d t dt tt cos 2sin 2sin .(4)⎰-+dx e e xx 1;解 ⎰-+dx e e xx 1C e de e dx e e xx xx x +=+=+=⎰⎰arctan 11122. (5)⎰--dx xx 2491;解dx xx dx xdx xx ⎰⎰⎰---=--22249491491)49(49181)32()32(1121222x d x x d x --+-=⎰⎰C x x +-+=2494132arcsin 21. (6)⎰-+dx x x )2)(1(1;解C x x C x x dx x x dx x x ++-=++--=+--=-+⎰⎰|12|ln 31|1|ln |2|(ln 31)1121(31)2)(1(1. (7)⎰-12x x dx ;解C x C t dt tdt t t t tx x x dx +=+==⋅⋅=-⎰⎰⎰1arccos tan sec tan sec 1sec 12令.或C x x d x dx xx x x dx +=--=-=-⎰⎰⎰1arccos 111111112222.(8)⎰-dx xx 92; 解⎰⎰⎰=-=-tdt t d tt t x dx x x 222tan 3)sec 3(sec 39sec 9sec 39令 C x x C t t dt t+--=+-=-=⎰3arccos 393tan 3)1cos 1(322.(9) ⎰-xdx e x cos ; 解 因为⎰⎰⎰⎰------+=-==xdx e x e xde x e x d e xdx e x x x x x x sin sin sin sin sin cos ⎰⎰-----+-=-=x x x x x xde x e x e x d e x e cos cos sin cos sin ⎰-----=xdx e x e x e x x x cos cos sin ,所以 C x x e C x e x e xdx e x x x x +-=+-=----⎰)cos (sin 21)cos sin (21cos .(10)⎰dx x 2)(arcsin ;解 ⎰⎰-⋅⋅-=dx xx x x x dx x 22211arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰--+=dx x x x x 2arcsin 12)(arcsin 22 C x x x x x +--+=2arcsin 12)(arcsin 22. (11)⎰xdx e x 2sin . 解 ⎰⎰⎰-=-=xdx e e dx x e xdx e x x x x 2cos 2121)2cos 1(21sin 2, 而 dx x e x e xde xdx e x x x x ⎰⎰⎰+==2sin 22cos 2cos 2cos⎰⎰-+=+=xdx e x e x e de x x e x x x x x 2cos 42sin 22cos 2sin 22cos ,C x x e xdx e x x ++=⎰)2sin 22(cos 512cos ,所以 C x x e e xdx e x x x ++-=⎰)2sin 22(cos 10121sin 2(12)dx x x )1(12+⎰;解 C x x dx x x x dx x x ++-=+-=+⎰⎰)1ln(21||ln )11()1(1222.2. 一曲线通过点(e 2, 3), 且在任一点处的切线的斜率等于该点横坐标的倒数, 求该曲线的方程.解 设该曲线的方程为y =f (x ), 则由题意得xx f y 1)(='=',所以 C x dx xy +==⎰||ln 1.又因为曲线通过点(e 2, 3), 所以有=3-2=1 3=f (e 2)=ln|e 2|+C =2+C , C =3-2=1. 于是所求曲线的方程为 y =ln|x |+1.3. 设f (x )在[a , b ]上连续, 在(a , b )内可导且f '(x )≤0, ⎰-=xa dt t f ax x F )(1)(. 证明在(a , b )内有F '(x )≤0.证明 根据积分中值定理, 存在ξ∈[a , x ], 使))(()(a x f dt t f xa -=⎰ξ. 于是有 ))(()(1)(1)(1)()(1)(22a x f a x x f a x x f a x dt t f a x x F xa----=-+--='⎰ξ)]()([1ξf x f ax --=. 由f '(x )≤0可知f (x )在[a , b ]上是单调减少的, 而a ≤ξ≤x , 所以f (x )-f (ξ)≤0. 又在(a , b )内, x -a >0, 所以在(a , b )内0)]()([1)(≤--='ξf x f ax x F . 4. 计算下列定积分:(1)⎰-πθθ03)sin 1(d ; 解⎰⎰⎰⎰-+=+=-πππππθθθθθθθθ02002003cos )cos 1(cos sin )sin 1(d d d d34)cos 31(cos 03-=-+=πθθππ.(2)dx x ⎰-2022;解dt t tdt t t x dx x ⎰⎰⎰+=⋅=-202022)2cos 1(cos 2cos 2sin 22ππ令 2)2sin 21(20ππ=+=t t .6. 求由摆线x =a (t -sin t ), y =a (1-cos t )的一拱(0≤t ≤2π)与横轴 所围成的图形的面积.解:所求的面积为 ⎰⎰⎰-=--==aa a dt t a dt t a t a ydx A 20222020)cos 1()cos 1()cos 1(ππ22023)2cos 1cos 21(a dt t t a a=++-=⎰.7. 证明 由平面图形0≤a ≤x ≤b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为⎰=badx x xf V )(2π.证明 如图, 在x 处取一宽为dx 的小曲边梯形, 小曲边梯形绕y 轴旋转所得的旋转体的体积近似为2πx ⋅f (x )dx , 这就是体积元素, 即 dV =2πx ⋅f (x )dx ,于是平面图形绕y 轴旋转所成的旋转体的体积为 ⎰⎰==babadx x xf dx x xf V )(2)(2ππ.8. 利用题7的结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转体的体积. 解 2002)sin cos (2cos 2sin 2πππππππ=+-=-==⎰⎰x x x x xd xdx x V .9. 求心形线ρ=a (1+cos θ )的全长. 解 用极坐标的弧长公式. θθθθθρθρππd a a d s ⎰⎰-++='+=0222022)sin ()cos 1(2)()(2a d a82cos 40==⎰πθθ.第七章 复习题 1、设m =3i +5j +8k , n =2i -4j -7k 和p =5i +j -4k . 求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解 因为a =4m +3n -p =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k , 所以a =4m +3n -p 在x 轴上的投影为13, 在y 轴上的分向量7j .2. 设a =3i -j -2k , b =i +2j -k , 求(1)a ⋅b 及a ⨯b ; (2)(-2a )⋅3b 及a ⨯2b ; (3)a 、b 夹角的余弦.解 (1)a ⋅b =3⨯1+(-1)⨯2+(-2)⨯(-1)=3,k j i kj i b a 75121 213++=---=⨯.(2)(-2a )⋅3b =-6a ⋅b = -6⨯3=-18,a ⨯2b =2(a ⨯b )=2(5i +j +7k )=10i +2j +14k .(3)21236143||||||) ,cos(^==⋅=b a b a b a . 3. 设a 、b 、c 为单位向量, 且满足a +b +c =0, 求a ⋅b +b ⋅c +c ⋅a . 解 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0, 即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0,于是 23)111(21)(21-=++-=⋅+⋅+⋅-=⋅+⋅+⋅c c b b a a a c c b b a .4、设已知向量a =2i -3j +k , b =i -j +3k 和c =i -2j , 计算: (1)(a ⋅b )c -(a ⋅c )b ; (2)(a +b )⨯(b +c ); (3)(a ⨯b )⋅c .解 (1)a ⋅b =2⨯1+(-3)⨯(-1)+1⨯3=8, a ⋅c =2⨯1+(-3)⨯(-2)=8, (a ⋅b )c -(a ⋅c )b =8c -8b =8(c -b )=8[(i -2j )-(i -j +3k )]=-8j -24k . (2)a +b =3i -4j +4k , b +c =2i -3j +3k , k j kj i c b b a --=--=+⨯+332443)()(.(3)k j i kj i b a +--=--=⨯58311132,(a ⨯b )⋅c =-8⨯1+(-5)⨯(-2)+1⨯0=2.5、一平面过点(1, 0, -1)且平行于向量a =(2, 1, 1)和b =(1, -1, 0), 试求这平面方程. 解 所求平面的法线向量可取为 k j i kj i b a n 3011112-+=-=⨯=,所求平面的方程为(x -1)+(y -0)-3(z +1)=0, 即x +y -3z -4=0.6、用对称式方程及参数方程表示直线⎩⎨⎧=++=+-421z y x z y x .解 平面x -y +z =1和2x +y +z =4的法线向量为n 1=(1, -1, 1), n 2=(2, 1, 1), 所求直线的方向向量为k j i kj i n n s 3211211121++-=-=⨯=.在方程组⎩⎨⎧=++=+-421z y x z y x 中, 令y =0, 得⎩⎨⎧=+=+421z x z x , 解得x =3, z =-2. 于是点(3, 0, -2)为所求直线上的点.所求直线的对称式方程为32123+==--z y x ;参数方程为x =3-2t , y =t , z =-2+3t .7、求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面4x -y +z =1上的投影直线的方程.解 过直线⎩⎨⎧=---=+-0923042z y x z y x 的平面束方程为(2+3λ)x +(-4-λ)y +(1-2λ)z -9λ=0.为在平面束中找出与已知平面垂直的平面, 令(4 -1, 1)⋅(2+3λ, -4-λ, 1-2λ)=0, 即4⋅(2+3λ)+(-1)⋅(-4-λ)+1⋅(1-2λ)=0.解之得1113-=λ. 将1113-=λ代入平面束方程中, 得17x +31y -37z -117=0.故投影直线的方程为⎩⎨⎧=--+=+-011737311714z y x z y x .8、设3||=a , |b |=1, 6) ,(^π=b a , 求向量a +b 与a -b 的夹角.解 |a +b |2=(a +b )⋅(a +b )=|a |2+|b |2+2a ⋅b =|a |2+|b |2+2|a |⋅|b |cos(a ,^ b )76cos 3213=++=π,|a -b |2=(a -b )⋅(a -b )=|a |2+|b |2-2a ⋅b =|a |2+|b |2-2|a |⋅|b |cos(a ,^ b )16cos 3213=-+=π.设向量a +b 与a -b 的夹角为θ, 则721713||||||||||||)()(cos 22=⋅-=-⋅+-=-⋅+-⋅+=b a b a b a b a b a b a b a θ, 72arccos =θ.。
高等数学二答案
高等数学二答案【篇一:高等数学答案(全)上海交大2版】设f(x)?x2?1,求f(x2)、?f(x)?。
解答:f(x2)?(x2)2?1?x4?1,?f(x)??[x2?1]2?x4?2x2?1。
所属章节:第一章第一节难度:一级aex?be?x2.设f(x)?,求f(x)?f(?x)。
a?baex?be?xae?x?be?(?x)ae?x?bex解答:f(x)?,f(?x)?, ?a?ba?ba?baex?be?xae?x?be?(?x)f(x)?f(?x)???ex?e?x。
a?ba?b22所属章节:第一章第一节难度:一级?2x ?1?x?0,1?3.设?(x)??20?x?1,求?(3),?(2),?(0),?(?)。
2?x?1 1?x?3,?1解答:?(3)?2,?(2)?1,?(0)?1,?()?。
2所属章节:第一章第一节难度:一级4.求下列函数的定义域:(1)y?2x11?x;(2),(a?0,a?1); y?logax2?3x?221?x13?2x;(4)y?arcsin. lg(1?x)5(3)y?解答:(1)由x2?3x?2?0解得定义域为???,1???1,2???2,???;(2)由1?x?0,1?x?0解得定义域为??1,1?; 1?x(3)由2?x?0,1?x?0,1?x?1解得定义域为??2,0???0,1?;(4)由3?x?0,3?2x?1解得定义域为[?1,3]。
5所属章节:第一章第一节难度:一级5.下列各题中,函数f (x)与g (x)是否相同?(1)f(x)?lgx2, g(x)?2lg; x(2)f(x)?x,g(x)?(3)f(x)?elnx, g(x)?x.解答:(1)f(x)中的x可为一切实数,g(x)中的x要求大于零,即定义域不同,故函数不同;(2)f(x)将负数对应负数,而g(x)把负数对应正数,对应法则不同,故函数不同;(3)f(x)中的x要求大于零,g(x)中的x可为一切实数,即定义域不同,故函数不同。
高等数学a2教材目录
高等数学a2教材目录前言第一章函数与极限1.1 实数与数集1.2 函数的概念与性质1.3 函数的极限1.4 极限的运算法则1.5 无穷小与无穷大第二章导数与微分2.1 导数的定义2.2 导数的计算2.3 高阶导数与导数的应用2.4 微分与微分近似第三章微分中值定理与导函数的应用3.1 微分中值定理3.2 高阶导数与函数的性质3.3 泰勒公式与函数的近似计算3.4 一元函数的应用第四章不定积分4.1 不定积分的定义与性质4.2 基本积分公式与换元法4.3 分部积分法与有理函数的积分 4.4 特殊函数的积分与定积分的概念第五章定积分及其应用5.1 定积分的定义与性质5.2 定积分的计算方法5.3 定积分中值定理与定积分的应用 5.4 定积分的物理意义与几何应用第六章微分方程6.1 微分方程的基本概念6.2 一阶微分方程的解法6.3 高阶线性微分方程6.4 微分方程的应用第七章无限级数7.1 数项级数7.2 收敛级数的性质7.3 函数项级数7.4 幂级数与傅里叶级数附录答案与解析索引致谢以上为《高等数学A2》教材的目录。
本教材由数学学科权威编写,内容涵盖了函数与极限、导数与微分、微分中值定理与导函数的应用、不定积分、定积分及其应用、微分方程以及无限级数等重要知识点。
每个章节都以清晰的逻辑结构展示相关知识,并附有大量的例题和习题,以帮助读者巩固和拓展所学内容。
该教材不仅适用于高等数学相关专业的学生,也适合具有一定数学基础的人士进行自学和提高。
在本教材中,读者将学习到实数与数集的性质、函数的定义与极限、导数与微分的概念与计算方法、微分中值定理与导函数的应用、不定积分与定积分的计算方法、微分方程的解法以及数项级数与函数项级数的收敛性等重要知识。
通过理论介绍和大量例题的实践操作,读者将逐步掌握高等数学相关概念和运算技巧,提高数学分析和问题解决能力。
本教材不仅内容丰富,而且排版整洁美观,语句通顺,全文表达流畅。
高等数学a试卷及答案
高等数学a试卷及答案【篇一:《高等数学a(上)》试题答案(b卷)2013】class=txt>科目:《高等数学a(上)》试题(b卷)学院:专业班级:姓名:学号:阅卷教师: 2013年月日考试说明:本课程为闭卷考试,可携带。
一、选择题(每题3分,共15分)(选择正确答案的编号,填在各题前的括号内)1.设f(x)?xsinx,则f(x)在(??,??)内为( b). a.周期函数 b.偶函数 c.单调函数 d.有界函数 2、下列正确的是(d )a.极大值一定大于极小值b. 拐点是函数单调性转变的点 c. 最值一定是极值 d. 拐点是凹凸性的转变的点 3、下列各式中,正确的是( d )1xa.lim(1?)?e x?0?xb.lim(1?x?01x)xec.lim(1?)x??ex??1x1d.lim(1?)x?e?1 x??x4、关于函数连续的说法中,哪一个正确d a.函数f(x)在点x?x0处有定义,则在该点连续; b.若limf(x)存在,则函数f(x)在x0处连续;x?x0c.若f(x)在x?x0处有定义,且limf(x)存在,则函数在x0处连续; x?x0d.若f(x0?0)?f(x0?0)?f(x0),则函数在x0处连续。
5、若?f(x)dx?f(x)?c,则?f(sinx)cosxdx=( a ) a . f(sinx)?cb. ?f(sinx)?cc. xf(sinx)?cd. f(sinx)sinx?c二、填空题(每题3分,共15分)1. 设曲线方程为y?x2?sinx,该曲线在点(0,0)处的切线方程__y=-x_________1sinxdx=___0______ 2.??11?x2sinx____0___ 3. limx??xx4. 函数f(x)?x?2的斜渐近线方程为___ y=x ___ x?15.函数xy?1在点(1,1)处的曲率为___ 2_____.三、计算题(每题8分,共56分)1求极限:lim(x?0x?1?1sinxx?1?11)lim1x?0x2xx(x?1?1)22.设f(x)?x(x?1)(x?2)?(x?100),求f?(0).limx?0f(x)?f(0)x(x?1()x?2)?(x?100)lim100! x0x0x1x3. 已知y?x,求dy.dy?d(x)?d(e1xlnxx)?elnxx1lnx1?lnx?d()?xx?dx 2xx4.5.112tdtdt?2?2arctant?c?c 22?1?tt1?tx0cos2xdx 111x120cos2xdx0xsecxdxxtanx00tanxdxtan1lncosx0tan1lncos1.6. 求由曲线y?x2与y?2x围成的平面图形的面积。
2013年考研数学真题及参考答案(数学二)
T T
(Ⅱ)若 , 正交且均为单位向量,证明 f 在正交变换下的标准形为 2 y1 y2 .
2 2
3
2013 年全国硕士研究生入学统一考试数学二试题详解与评注
一、选择题:1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项 符合题目要求的,请将所选项前的字母填在答题纸 指定位置上. ... ⑴ 应选(C). 【分析】本题考查无穷小比较的定义.利用已知条件求出 lim
dx dy
y 0
.
⑾ 设封闭曲线 L 的极坐标方程方程为 r cos 3 ( 是 .
6
6
) ,则 L 所围平面图形的面积
⑿ 曲线
x arctan t ,
2 y ln 1 t 3x
上对应于 t 1 点处的法线方程为
.
⒀ 已知 y1 e
xe 2 x , y2 e x xe 2 x , y3 xe 2 x 是某二阶常系数非齐次线性微分方程
二、填空题:9~14 小题,每小题 4 分,共 24 分.请将答案写在答题纸 指定位置上. ... ⑼ lim(2
x 0
ln(1 x) 1 )x x
.
⑽ 设函数 f ( x)
x
1
1 et dt ,则 y f ( x) 的反函数 x f 1 ( y ) 在 y 0 处的导数
1
e
e
f ( x)dx
又
e
1
1 1 dx dx , 1 e ( x 1) x ln 1 x
高等数学A2选择判断题
向量的运算3. 在长方体ABCD —A 1B 1C 1D 1中,下列关于AC 1→的表达式中错误的是( )A. AA A B A D 11111→+→+→B. AB DD D C →+→+→111C. AD CC D C →+→+→111D. 121111()AB CD A C →+→+→ 答案B 知识点:向量的线性运算4. 如图所示,已知空间四边形每条边和对角线长都等于a ,点E 、F 、G 分别是AB 、AD 、DC 的中点,则a 2是下列哪个向量的数量积?( )A. 2BA AC →→·B. 2AD BD →→· C. 2FG CA →→·D.2EF CB →→·D答案B 知识点:数量积5.设向量214(,,)a =-与向量12(,,)b k =平行,则( )k = A. 12- B.12C. 1D. 1- 答案A 知识点:两向量平行的判定方法 6. 已知114(,,)a =-,122(,,)b =-,则( )a b ⋅=A. 9B. 9-C. 8D. 8- 答案B 知识点:用坐标表示向量的数量积7. 与向量131(,,)和102(,,)同时垂直的向量是( )A. 310(,,)-B. 613(,,)--C. 402(,,)-D. 010(,,) 答案B 知识点:向量积的定义及运算 8.若向量,a b 满足||||||a b a b +=+,则必有( )A. a b ⊥B. 10||,||a b ==C. 1||||a b ==D. ||||a b a b ⋅= 答案D 知识点:向量加法的运算9.设2,c a b d ka b =+=+,其中12||,||,a b a b ==⊥,则当( )k =时c d ⊥. A. 2- B. 2 C. 3 D. 3- 答案A 知识点:向量垂直的判定方法10.与向量211(,,)a =-共线且与a 的数量积是3的向量b 是( ) A. 11122(,,)- B. 11122(,,)-- C. 11122(,,) D. 11122(,,)- 答案D 知识点:向量共线的判定及数量积运算11. 设,,a b c 均为非零向量, a 与非零向量()()c a b a b c ⋅-⋅的关系是( ).A. 不平行也不垂直B.平行不相等C. 垂直D. 相等 答案C 知识点:向量之间关系的判定12.设三向量,,a b c 满足关系式a b a c ⋅=⋅,则( ). A.必有0a b c ==或 B.必有0a b c =-= C.当0a ≠时必有b c = D. 必有()a b c ⊥- 答案D 知识点:数量积运算规律13.,,a b c 为两两不共线的共面向量,且a b ⊥,则c 必等于( ). A. ||||a c b c a b a b ⋅⋅+ B. ||||a cb ca b a b ⋅⋅+ C.22a c b c a b a b ⋅⋅+ D. 22a cb ca b a b⋅⋅+ 答案C 知识点:向量积运算规律14.若,a b 共线,且,b c 共线,则a 与c ( ).A. 一定共线;B. 一定不共线;C. 当0b ≠时,共线;D. 以上结论都不正确. 答案C 知识点:向量共线的判定15.设向量,a b 为非零向量,且a b ⊥,则必有( ). A. ||||||a b a b +=+; B. ||||||a b a b -=-; C. ||||a b a b +=-; D a b a b +=-. 答案C 知识点:向量的加减运算16.设一条直线与三个坐标面的夹角分别为, , λμν,则222c o s c o s c o s λμν++=( )。
2013数学答案
2013数学答案1【答案】A 。
【考点】交集的运算。
【解析】∵{}{}{}{}22S x x 2x=0x R ,T=x x 2x=0x R =0,22,0+∈--∈== ,,,∴S T=0 。
故选A 。
2【答案】C 。
【考点】函数的定义域,对数和分式有意义的条件。
【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据对数和分式有意义的条件,要使()lg x 1x 1+-在实数范围内有意义,必须()()x 1>0x >1111x 10x 1+-⎧⎧⇒⇒-+∞⎨⎨-≠≠⎩⎩,,。
故选C 。
3【答案】D 。
【考点】复数模的计算。
【解析】∵()i x yi =34i x y R ++∈,,,∴()34i i 34i 3i 4x yi====43i i i i 1+⋅+-+-⋅-。
∴复数x yi +。
故选D 。
4【答案】B 。
【考点】三角诱导公式的应用。
【解析】∵51sin =25πα⎛⎫+⎪⎝⎭,∴1cos =5α-,即1cos =5α-。
故选B 。
5【答案】C 。
【考点】程序框图。
【解析】由已知中的程序框图及已知输入n=3,可得:进入循环的条件为i 3£,即i =1,2,3,模拟程序的运行结果,即可得到输出的s 值:当i 1,s 1==时,s s (i 1)1(11)1=+-=+-=; 当i 2,s 1==时,s s (i 1)1(21)2=+-=+-=;当i 3,s 2==时,s s (i 1)2(31)4=+-=+-=;当i 4,s 3==时,不满足条件i 3£,退出循环,则输出的s 4=。
故选C 。
6【答案】B 。
【考点】由三视图判断几何体,三棱锥的体积公式。
【解析】由三视图可知,该三棱锥的底两直角边长是1×1的等腰直角,。
高是2, ∴该三棱锥的体积是1111V SH 1123323==⨯⨯⨯⨯=。
故选B 。
7【答案】B 。
【考点】圆的切线方程,数形结合思想的应用,待定系数法的应用。
《高等数学(二)》 作业及参考答案
《高等数学(二)》作业一、填空题1.点A (2,3,-4)在第 卦限。
2.设22(,)sin,(,)yf x y x xy y f tx ty x=--=则 .3。
4.设25(,),ff x y x y y x y∂=-=∂则。
5.设共域D 由直线1,0x y y x ===和所围成,则将二重积分(,)Df x y d σ⎰⎰化为累次积分得 。
6.设L 为连接(1,0)和(0,1)两点的直线段,则对弧长的曲线积分()Lx y ds +⎰= 。
7.平面2250x y z -++=的法向量是 。
8.球面2229x y z ++=与平面1x y +=的交线在0x y 面上的投影方程为 。
9.设22,z u v ∂=-=∂z而u=x-y,v=x+y,则x。
10.函数z =的定义域为 。
11.设n 是曲面22z x y =+及平面z=1所围成的闭区域,化三重积为(,,)nf x y z dx dy dz ⎰⎰⎰为三次积分,得到 。
12.设L 是抛物线2y x =上从点(0,0)到(2,4)的一段弧,则22()Lx y dx -=⎰。
13.已知两点12(1,3,1)(2,1,3)M M 和。
向量1212M M M M =的模 ;向量12M M 的方向余弦cos α= ,cos β= ,cos γ= 。
14.点M (4,-3,5)到x 轴的距离为 。
15.设sin ,cos ,ln ,dzz uv t u t v t dt=+===而则全导数。
16.设积分区域D 是:222(0)x y a a +≤>,把二重积分(,)Df x y dx dy ⎰⎰表示为极坐标形式的二次积分,得 。
17.设D 是由直线0,01x y x y ==+=和所围成的闭区域,则二重积分Dx d σ⎰⎰= 。
18.设L 为XoY 面内直线x=a 上的一段直线,则(,)Lp x y dx ⎰= 。
19.过点0000(,,)p x y z 作平行于z 轴的直线,则直线方程为 。
高等数学(II-1)
单项选择题1、函数的间断点是()。
A、2、下列结论中不正确的是()。
A、在处连续,则一定在处可微3、下列麦克劳林公式正确的是( )。
A、4、设,则()。
D、5、若,则的取值范围是()。
A、6、当时,下列变量中为无穷小量的是()C、7、设, 当从变到时,函数的增量为( ) 。
B、8、骆驼被称为“沙漠之舟”,其体温随时间的变化而变化,则下列量可以视为常量的是()。
D、骆驼的体重9、函数在点处取得极大值,则必有()。
D、10、( ) 。
B、11、在定义区间的最小值是()。
D、不存在12、( )。
C、413、若是上的连续偶函数,则( ) 。
C、14、定积分值的符号为()。
C、等于零15、曲线所围平面图形的面积为( )。
B、16、= ( ) 。
A、17、设函数,则该函数( )。
B、在两端点处取值不相等,因此不满足罗尔定理的条件18、( )。
B、19、函数在区间上满足罗尔定理的( )。
C、20、 d( )= C、21、若,则下列式子一定成立的有()。
C、22、设在上有定义,函数在点处左、右极限都存在且相等是函数在点处连续的( )。
C、必要条件23、( ) D、24、()是函数的原函数。
D、25、积分的值为()。
C、026、函数,则()。
A、27、若,则()。
C、128、函数在处的导数等于( )。
D、429、若对任意,有,则()。
D、对任意,有(是任意常数)30、设,则=( ) B、31、()。
D、32、若,下列各式正确的是( )。
C、33、是()的一个原函数。
B、34、当时,下列函数是无穷小是( )。
C、35、设,则=( )。
B、36、下列说法正确的是()。
B、若在不可导,则在不连续37、( ) C、138、( )。
B、139、若函数在点连续,则在点( )。
D、有定义40、当=()时,函数,在处连续。
B、141、三次曲线在处取极大值,点是拐点,则()。
B、42、函数导数不存在的点是( )。
C、43、幂函数的定义域是( )。
高等数学A2学习通课后章节答案期末考试题库2023年
高等数学A2学习通课后章节答案期末考试题库2023年1.不是一阶线性微分方程。
( )参考答案:对2.微分方程的通解是 (为任意常数)。
( )参考答案:对3.任意微分方程都有通解。
( )参考答案:错4.函数是微分方程的解。
( )参考答案:错5.是方程的( ),其中,为任意常数。
参考答案:通解6.微分方程的阶数是( )。
参考答案:27.是( )阶微分方程。
参考答案:38.微分方程的通解中包含了它所有的解。
( )参考答案:错9.微分方程是( )阶微分方程。
参考答案:210.若微分方程的解中含有任意常数,则这个解称为通解. ( )参考答案:错11.是一阶线性微分方程。
( )参考答案:错12.的通解中应含( )个独立常数。
参考答案:313.在空间直角坐标系中,方程表示的曲面是( )参考答案:椭圆抛物面14.函数在点处沿曲面在点处的外法线方向的方向导数( ).参考答案:;15.三道题,题号是从2开始的,依次对应答案上的2,3,4题。
参考答案:9.7方向导数与梯度作业答案.pdf16.函数的极值参考答案:极小值 ,极小值17.设有连续的一阶偏导数,又函数分别由下列两式确定=( )参考答案:.18.10.3作业(1).docx参考答案:10.3(一)作业及答案.docx19.设,其中由所围成,则=( ).参考答案:;20.的值为( ).其中区域为: .参考答案:;21.已知函数,,都是对应二阶非齐次线性方程的解,,,是任意常数,则下列判断正确的是( )参考答案:是原方程的通解22.作业10.3(二).docx参考答案:作业10.3(二)及答案.docx23.11.3作业.pdf参考答案:11.3作业及答案.pdf24.()参考答案:每题6分,共计48分25.函数的极值是( )参考答案:极大值为10,无极小值26.若函数,则( )参考答案:-127.点关于平面的对称点是( ).参考答案:;28.对于曲面,下列叙述错误的是( ).参考答案:是由在面上母线绕轴旋转而成;29.在点的某邻域有连续的偏导数及是在该点可微的( ).参考答案:充分条件但非必要条件30.设向量,则=( )参考答案:331.直线和平面的关系为( ).参考答案:平行。
2013-2014-1工科高数(2-1)期末试卷A答案
2013—2014学年第一学期《高等数学(2-1)》期末考试A 卷(工科类)参考答案及评分标准一.(共5小题,每小题3分,共计1 5 分)判断下列命题是否正确?在题后的括号内打“√”或“⨯” ,如果正确,请给出证明,如果不正确请举一个反例进行说明. 1.若)(x f 在),(∞+a 无界,则∞=∞+→)(lim x f x .( ⨯ )------------- ( 1分 )例如:x x x f sin )(=,在),1(∞+无界,但∞≠∞+→x x x sin lim . ------- ( 2分 )2.若)(x f 在0x 点连续,则)(x f 在0x 点必可导.( ⨯ )------------- ( 1分 ) 例如:x x f =)(,在0=x 点连续,但x x f =)( 在 0=x 不可导. ------ ( 2分 ) 3.若0lim =∞→n n n y x ,则0lim =∞→n n x 或.0lim =∞→n n y ( ⨯ )-------------- ( 1分 )例如:,0,1,0,1:n x,1,0,1,0:n y有0lim =∞→n n n y x ,但n n x ∞→lim ,n n y ∞→lim 都不存在. ---------------------------- ( 2分 ) 4.若0)(0='x f ,则)(x f 在0x 点必取得极值.( ⨯ )------------------- ( 1分 )例如:3)(x x f =,0)0(='f ,但3)(x x f =在0=x 点没有极值. ---------( 2分 )5.若)(x f 在],[b a 有界,则)(x f 在],[b a 必可积.( ⨯ )------------- ( 1分 ) 例如:⎩⎨⎧=.,0,1)(为无理数当为有理数,当x x x D ,在]1,0[有界,但)(x D 在]1,0[不可积. ( 2分 )二.(共3小题,每小题7分,共计2 1分)1. 指出函数x x x f cot )(⋅=的间断点,并判断其类型. 解 函数x x x f cot )(⋅=的间断点为:,2,1,0,±±==k k x π ------------------------------------------------------- ( 3分 )当 ,0=k 即 0=x 时, ,1sin cos limcot lim )(lim 0===→→→xxx x x x f x x x 0=∴x 为函数x x x f cot )(⋅=的第一类可去间断点; ----------------------- ( 2分 )当 ,2,1,±±==k k x π时, ,sin cos limcot lim )(lim ∞===→→→xxx x x x f k x k x k x πππ),2,1(, ±±==∴k k x π为函数x x x f cot )(⋅=的第二类无穷间断点 . --------- ( 2分 )2.求极限⎰-+∞→+x x t x dt e t x 022)1(1lim解 ⎰-+∞→+x xt x dt e t x 022)1(1lim⎪⎭⎫⎝⎛∞∞+=⎰+∞→xx t x e x dt e t 202)1(lim-------------------(3分) xxx e x x e x )2()1(lim22++=+∞→----------------------------------------------------------------- ( 3分 ).121lim 22=++=+∞→x x x x ---------------------------------------------------------------(1分) 3.设方程)0,0(>>=y x x y yx 确定二阶可导函数)(x y y =,求22d ydx.解1 对yx x y =两边取对数,得 x yy x ln 1ln 1=,即 x x y y ln ln =,-------------------------------------------------------------- ( 2分 )等式两边关于x 求导,得:x dx dy y ln 1)ln 1(+=+,即yx dx dy ln 1ln 1++=,------- ( 2分 ) ⎪⎭⎫⎝⎛=∴dx dy dx d dxy d 222)ln 1(1)ln 1()ln 1(1y dxdyy x y x +⋅⋅+-+=---------------------------- ( 2分 ) 322)ln 1()ln 1()ln 1(y xy x x y y ++-+=.------------------------------------------------ ( 1分 ) 解2 对yx x y =两边取对数,得 x yy x ln 1ln 1=,----------------- ( 2分 )等式两边关于x 求导,x y dx dy x y dx dy y x y x 11ln 111ln 122⋅+⋅⋅-=⋅⋅+-xx xy yy xy dx dy ln ln 22++=∴ (直接再求导比较繁琐,需化简后再求导)----------------------------------------------------------------------------------------- ( 2分 )由x yy x ln 1ln 1=得x x y y ln ln =, xx xy y y xy dx dy ln ln 22++=y xy xy x xy xy ln ln ++=y xln 1ln 1++=, 以下同解1. 三.(共3小题,每小题7分,共计2 1分)1.求不定积分⎰+dx xx x 23sin 1cos sin . 解 ⎰⎰+-=+)(s i n s i n 1)s i n 1(s i n s i n 1c o s s i n 2223x d xx x dx x x x ------------------------(2分) (令t x =sin ) =⎰+-dt t t t 221)1(=⎰⎪⎭⎫ ⎝⎛++-dt t t t 212 ------------------(2分) C t t +++-=)1ln(222=.)sin 1ln(sin 2122C x x +++-----------------(3分)2.设x 2ln 是函数)(x f 的一个原函数,求⎰'dx x f x )(.解 )(ln 2)ln (2x f xxx ==' ,------------------------------------------------- ( 2分 ) C x dx x f +=∴⎰2ln )(,------------------------------------------------------- ( 2分 ) ⎰⎰='∴)()(x df x dx x f x⎰-=dx x f x f x )()(.ln ln 22C x x +-=-------------------------------------------- ( 3分 )3.求定积分dx x x x )2cos sin (74344+⎰-ππ.解dx x x x )2cos sin (74344+⎰-ππ⎰⎰--+=44743442c o s s i n ππππdx x dx x x ------- ( 1分 )dx x 2cos 0744⎰-+=ππ-------------------------------------------------------(2分)dx x 2cos 274⎰=π----------------------------------------------------------(2分)(令t x =2) dt t 720cos ⎰=π----------------------------------------------------------------(1分).!!7!!6=---------------------------------------------------------------------------(1分) 四.(共2小题,每小题6分,共计1 2分)1.已知一个长方形的长l 以2cm/s 的速度增加,宽w 以3cm/s 的速度增加,则当长为12cm ,宽为5cm 时,它的对角线的增加率是多少?解:设长方形的对角线为y ,则 222w l y += ----------------------------------- ( 2分 )两边关于t 求导,得 dt dww dt dl l dt dy y ⋅+⋅=⋅222, 即 dtdw w dt dl l dt dy y ⋅+⋅=⋅------(1)-------------------------------- ( 2分 ) 已知,2=dt dl ,3=dtdw ,13512,5,1222=+=⇒==y w l 代入(1)式,得 对角线的增加率:3=dt dy(cm/s ). -------------------------------------------------- ( 2分 ) 2.物体按规律2x ct =做直线运动,该物体所受阻力与速度平方成正比,比例系数为1,计算该物体由0x =移至x a =时克服阻力所做的功.解 ct dtdxt v 2)(== ----------------------------------------------------------- ( 2分 ) cx t c t c k x f 444)(2222===, -------------------------------------------------- ( 2分 )⎰=acxdx W 04=22ca . ------------------------------------------------------ ( 2分 )五.(本题10分)已知x x x f arctan 5)(-=,试讨论函数的单调区间,极值,凹凸性,拐点,渐近线解 函数的定义域为.),(+∞-∞22214151)(x x x x f +-=+-=',令0)(='x f 得驻点.2±=x ----------------------------------------------------------------------------------- ( 1分 ),)1(10)(22x xx f +=''令0)(=''x f ,得可能拐点的横坐标:.0=x -------- ( 1分 ) 列表讨论函数的单调区间,极值,凹凸性,拐点:----------------------------------------------------------------------------------------------------- ( 6分 ),1)arctan 51(lim )(lim1=-==∞+→∞+→xxx x f a x x ,25)arctan 5(lim ])([lim 11π-=-=-=∞+→∞+→x x a x f b x x ,1)arctan 51(lim )(lim2=-==∞-→∞-→xxx x f a x x ,25)arctan 5(lim ])([lim 22π=-=-=∞-→∞-→x x a x f b x x 渐近线为:.25π±=x y ---------------------------------------------------------------- ( 2分 ) 六.(共2小题,每小题7分,共计14分) 1. 试求曲线)0(2≥=-x ex y x与x 轴所夹的平面图形绕x 轴旋转所得到的伸展到无穷远处的旋转体的体积 . 解:⎰⎰∞+-∞+==02dx xe dx y V x ππ------------------------------------------------------(4分)[]x x xe x ex -+∞→∞+-+-=+-=)1(lim )1(0πππππππ=-=+-=+∞→01limxx e x ----------------------------------------------(3分)2.求微分方程x y y y 2345-=+'+''的通解.解 特征方程为:,0452=++r r 特征根:.1,421-=-=r r ----------------- ( 2分 ) 对应齐次方程的通解为:.241x xe C eC y --+=------------------------------ ( 2分 )而0不是特征根,可设非齐次方程的特解为B Ax y +=*----------------- ( 1分 )代入原方程可得,.811,21=-=B A .8112*+-=∴x y -------------------- ( 1分 ) 故所要求的通解为.8112241+-+=--x e C eC y x x-------------------------------- ( 1分 )七.(本题7分)叙述罗尔)(Rolle 中值定理,并用此定理证明:方程0cos 2cos cos 21=+++nx a x a x a n在),0(π内至少有一个实根,其中n a a a ,,21为常数.罗尔)(Ro lle中值定理:设)(x f 在],[b a 上连续,在),(b a 内可导,)()(b f a f =,则),(b a ∈∃ξ,使得.0)(='ξf -------------------------------------------------------------- ( 3分 )令nnx a xa x a x f n sin 22sin sin )(21+++= ,-------------------------------------- ( 2分 ) 在],0[π上连续,在),0(π内可导,且nx a x a x a x f n cos 2cos cos )(21+++=' ,0)()0(==πf f ,由罗尔中值定理,),0(πξ∈∃,使得)(ξf '0cos 2cos cos 21=+++=ξξξn a a a n ,即方程0cos 2cos cos 21=+++nx a x a x a n 在),0(π内至少有一个实根. ---- ( 2分 )各章所占分值如下:第 一 章 函数与极限 13 %; 第 二 章 一元函数的导数与微分 16 %; 第 三 章 微分中值定理与导数的应用 20 %; 第 四 章 不定积分 14 %; 第 五 章 定积分及其应用 30 % . 第 六 章 常微分方程 7 % .。
高数A(一)第二章答案
《高等数学教程》第二章 习题答案习题2-1 (A)1.63. 4. (1) ;)(0x f ' (2) ;)(0x f '- (3) ;)0(f ' (4) .)(20x f '5. (1);54x (2);3231-x (3) ;3.231.x (4) 32--x ; (5) 2527x ; (6) 1013x 103--.6. (1) 19.6 米; 19.6 米/秒 .7. 切线方程 ,0632=--+πy x法线方程 .03232=-+-πy x 8.(2,4).9. (1)在0=x 连续且可导; (2)在0=x 连续且可导. 10. ;0)0(='+f ;-1)0(='-f )(x f 在点0=x 处不可导.习题2-1 (B)4.e1. 7. 0)0(='f .习题2-2 (A)1.(1) 33464xx x --; (2) 21232121----x x ; (3) x x sin 5cos 3+;(4) x x x x x x tan sec cos sin 22++; (5) 1ln +x ; (6)x x x x x22csc sec tan 21-+; (7) 2ln log 22xx x +; (8) b a x --2; (9)2)cos 1(1sin cos x x x +++;(10)2sin cos x xx x -; (11)2ln 1xx- (12)3)2(xe x x-; (13) x x x x x x x x sin ln cos cos ln 22⋅⋅-+⋅⋅;(14) x x cos 2;2. (1) 218332ππ-; (2) )42(22π-; (3) 181-;(4) 1517)2(,253)0(='='f f . 3. 3t 2t ==或.4. 切线方程 x y 2=,法线方程 x y 21-=.5. (1) 410; (2) 0 ; (3) 410- .13.(1)4)32(10+x ; (2) )31(cos 3x --; (3)212x x+; (4) a a e xxln +; (5)22)110(ln10102e 2+⋅+-x x x x x ; (6) 4x12-x ; (7) 222sin x a x x ---; (8) )(sec 3322x x ;(9) x2x ee +1; (10) a x x x 2ln )1(12+++. 14.(1) 322)41(38-+x x ; (2) )2(cos 2ln 2x x ⋅(3) x e x e xx 3sec 33tan 21222--+-; (4) 122-x x x ;(5)x xarctan 122+; (6)xxx-33sin 3ln 3cos 3;(7)221xx -; (8)22xa +1;(9) sec x ; (10) csc x .15.(1) )(cos 22cos 22x x x-; (2) csc x ; (3)2ln 22)1(22arctanx xx x x e ++; (4))(ln ln ln 1x x x ;(5)22)arccos (12x x x-; (6) -2sec2x .16.(1) cosh(cosh x )sinh x (2))(ln cosh 12x x ; (3) (3sinh x +2)sinh x cosh x (4) ⎪⎭⎫ ⎝⎛+a x a 1x e x cosh 2sinh 22cosh ; (5) )1(cosh 222x x --; (6) 22224++x x x;(7)1242-x x e e ; (8) x 3tanh .17. (1))32(2x x +; (2) )3sin 93cos 7(x x e x --;(3) 2ln 2cos 2sin 2ln 2sin xxxx +; (4)222)arcsin (1arcsin 1x x x -x x --;(5)1ln 1+-n x x n ; (6) 3xx arctan 962+;(7) x cosh 12; (8) 222arctan2x)()4x 1()4x 1(2arctan2x )4x 1(4++-+.习题2-2 (B)1. (1)22)1(2x x-; (2) 23323)2()321()(-)2()211(x x-x-x x x x-x++;(3) )cos (cos )cos sin ()cos (sin )sin (sin αx x αx x x x x α++++-;(4) 23)cos 1(sin 2sin )cos 1(x xx x +++; (5) 22)tan (sec 2-tan 2x x x x x +;(6) )sec 2()ln 2(cos )tan (cos 1)tan ()ln 2(sinx 222x x x x x x x xx x x +-++-+--;(7) )49283(224+-x x x ; (8))ln (1x x 2-+.2.2)()(d xx g x g x dx y -'=. 3. 切线方程:022=--y x 和 022=+-y x .6. (1) 400英尺;(2) v(2) = 96英尺/秒 ; v(8) = - 96英尺/秒 ; (3) 10秒 7. (1) )()(e ()()(x x x f x f x e f x f e )e f e '+'; (2) )()]([x f x f f '';(3) x x f x x f )sin2(cos )sin2(sin 22'-'; (4) )(n n 1n b ax f x a -+'. 8. (1))()()()()()(d 22x x x x x x dx y ψϕψϕϕψ+'-'=. (2))()()()()()(d 22x x x x x x dx y ψϕψϕϕψ+'+'=. 9. x21)(='x f ; 21)21(='f .10. x xx f 121)(3---='. 12. (1) 211x +; (2)xx x xxx +++++2)21(1211; (3) 242x -;(4) xx x 2455ln 212⋅++; (5) a b a b x b b a a x a b xa b ln 11⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+-;(6) ()2111ln ln a aa x axa xa a x a a x a a +-+-++; (7) 222-1)(1)-(12xx x +;(8) x e x x 1sin 222sin-; (9) 3/22)(1arcsin x x x -; (10) xx x x 21254e11ln55151++--. 13. )1(sin )1(sin 1cos 22x f x f x x'-. 14.)(22x xcos dx y d =; )()(22x cos x d y d =; )(32)(23x cos x x d y d =. 15. )2arcsin()]([x x f ='ϕ; 411)]([xx f -='ϕ; 412])]([[xx x f -='ϕ.16.1sin cos 222+πππe e e .17.)()1(2x 2x xe sin x xe dx yd +=. 18. 2e .习题2-3 (A)1. (1) 214x-; (2) x e 214-; (3) x x x sin cos 2-; (4) x exsin 22-; (5) 2/3222)(x a a --; (6) 232)1(/x x +-; (7) )23(222x xe x +; (8) 3)22(xx x e 2x +--; (9) x x tan sec 22; (10) 212tan 2xxx arc ++.习题2-3 (B)1. (1) n! (2) 1)1(!2)1(+--n nx n (3) )2(!)2()1(1≥---n xn n n ;(4) ]2)1(2[21π-+n x sin -n ; (5) )(n x e x +;(6) ])1(1)2(1[!)1(11++----n n n x x n ; (7) ])(1)()1([!)1(1nn n nbx a bx a b n -++---; (8) n m x n mm m m -++---1)1()11()21()11(1 ;(9) ]22[2π⋅+-n x cos n(10) 11)21(!2+--n n x n 2. (1) x cos e y x 4)4(-=; (2) x cosh xsinhx y 100)100(+=; (3) )2sin 212252cos 502sin (2250)0(x x x x x y 5++-=; 3. (1) )()(222x f 4x x f 2''+'; (2) 22x f x f x f x f )]([)]([)()('-''. 5. 21+=x y , 3x y )2(2+=''. 7. 0=+y dt yd 22.8. 0=+y dt yd 22.习题2-4 (A)1.(1) x y y -; (2) ax y x ay 22--; (3) yy xe e +-1; (4) y x y x e x y e ++-- (5) )(1)(11xy cos x yxy cos y x +-+ (6) )(1)(2222y x f 2y y x f 2x +'-+'. 3. 切线方程:022=-+a y x ; 法线方程:0=-y x .4. (1) ]1)1([)1(222x2xsinxx cos ln cosx x sinx +++⋅+; (2) ]2cot 2sec cos 22tan ln sin [)tan (2cos x x x x x x x ⋅⋅+⋅-;(3) ]163112[)1(3)1(232x xx x x x x 2++--++-+; (4)])(251121[2)1(3122x x x x x x x 35-+++-+; (5) ])1(21[121xx xe e cotx x e sinx x --+-; (6) )ln 1()ln 1lnln ()ln (21x x xx x x x -++-;(7) )1(1+++-lnx x ln x x x ππππ;(8) ⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛x a b b a ln a x x b b a ba x .5. (1)t 2a 3b dx y d =; (2) t tdx y cos 2cos2d =; (3)ϕtan d -=dxy ; (4) θθθθθθcos -sin -1sin -cos d =dx y . 6. (1) 切线方程:042=-+y x ; 法线方程:032=-+y x . (2) 切线方程:01234=-+a y x ; 法线方程:0643=+-a y x .习题2-4 (B)1. (1) )(ln )()(ln )()(ln )()(2x x x ψx x x ψx ψϕϕϕϕ'-';(2) )()()(ln )()()()()(2)(x x x x x x x x x ψϕψψϕϕψψϕ'-'.2. ye e x y d dx yx y x --=++.3. (1) θθa sec dx y d 222=; (2) )(1t f dxy d 22''=;(3) )1(2222t t 6dyx d +=; (4) )1(832533t t dx y d +-=;(5) 343381tt dx y d -=; 4.4π. 5. 2e .6. 0 .8. (1) a (1)= - 6 (m/s 2) ; a (3)= 6 (m/s 2 ). (2) |v(2)| = 3 (m/s) ;9. 144π (m 2/s)10. 20402516.π≈(m/min). 11.640225144.π=(cm/min).12. 70 英里/小时. 习题2-5 (A)2. (a ) 0dy y 0dy 0y >->>∆∆,,;(b ) 0dy y 0dy 0y <->>∆∆,,; (c ) 0dy y 0dy 0y <-<<∆∆,,; (d ) 0dy y 0dy 0y >-<<∆∆,,.3. (1) dx x x)12(3+-; (2) dx x x x )2cos 22(sin +; (3) dx e x x 2x )1(2+; (4)dx xx412+-; (5) dx x x e x )]cos(3)[sin(3----; (6) dx x x x )21(sec )21(tan 8223++;(7)dx x xx 222)]1([ln 16---; (8)dx x x x xxx +++++2)211(211.4. (1)dx xy x +--182; (2) dx y x csc )(2+-; 5. (1) C x +2; (2) C x +223; (3) C t sin +; (4) C t cos 1+-ωω;(5) C x ++)(1ln ; (6) C e x +--221; (7) C x +2; (8) C x +3tan 31.习题2-5 (B)1. h R 0π2.2. 7683,4,0010,.V l .r l r V 2='===∆π, 0037680.dV V =≈∆; 用铜约为033550.(克).3. 0021021603.π-≈-. 4. 050.T =∆(秒),设摆长约需加长 d l , d l 2292140050..≈⨯=π(厘米) .5. R 约增加了43.63 cm 2, 扇形面积约增加了 104.72 cm 2 .6. (1) 0. 87476 ; (2) - 0. 96509 .7. (1) 7430''o ; (2) 260'o .8. (3) 01309054tan .≈'; 0020)0021(ln ..≈.9. (1) 9.9867; (2) 2.0052 .总复习题二一、1. B 2. D 3. A 4. A 5. D 二、1. 充分; 必要; 充要.2. t 2e t t f =)(, t 2e 2t t f )1()(+='.3.1)1='-0(x f . 4. 1+=x y . 5. b. 6. [10, 20] .三、1. 212xx y +='.2. (1))]}([)]([)]([)({)]([)(2222222222x f sin x f x f cos x f x 4x f cos x f dx yd 2'-''+'=;(2) )(4)(2)()(2)]([2222222x f x x f x f x f x f dxyd ''+'+''+'=.3.xx ydx y d ln 2-=. 4. 32222)1ln ()1ln ()1ln (++-+=y xy x x y y dx y d . 5. 322)1(f f dx y d '-''=. 6. ⎪⎩⎪⎨⎧>-<≤<='1,110,20,3)(2x x x x x x f7. (1)⎪⎪⎩⎪⎪⎨⎧=-''≠++-'='-0,21)0(0,)1()()()(2x g x x e x x g x g x x f x;(2) )(x f ' 在 ),(∞+-∞上是连续函数。
2014级华东交通大学高等数学期中考试试卷及参考答案
华东交大2014—2015学年第一学期期中考试承诺:我将严格遵守考场纪律,知道考试违纪、作弊的严重性,还知道请他人代考或代他人考者将被开除学籍和因作弊受到记过及以上处分将不授予学士学位,愿承担由此引起的一切后果。
专业 班级 学号 学生签名:试卷编号: (A )卷《高等数学(A)Ⅰ》 课程 (工科本科14级) 课程类别:必 闭卷(√) 考试时间:2014.11.16题号 一二三 四 总分12 3 4 5 6 7 1 2 1分值 18 8 888888998阅卷人 (全名)考生注意事项:1、本试卷共 6 页,总分 100 分,考试时间 120 分钟。
2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。
一、填空题(每题3分,共18分)_________)21()1( 3)1( 1lim=--='→xx f f f x 则,设、________]3 0[29)( 23=+-=ξ上满足罗尔定理的,在函数、x x x f _______cos sin 3='+=y x x x y 则,设、 4.已知21lim 01x x ax b x →∞⎛⎫+--= ⎪+⎝⎭,则a = ,b = ;5.函数)( x f y =在点 x 处可导,且2)(=' x f ,则当 0→∆x 时,无穷小dy 与x ∆的比较结果是_________;_____ 00 02)( 6==⎩⎨⎧≥+<+=a x x x a x e x f x 则处连续,在,,设、二、计算题(每题 8分,共56分)1.设3arctan 6x t t y t t =+⎧⎨=+⎩,求212d d t yx =.得分 评阅人得分 评阅人2、. 6)12(2limb a b ax x x x x 、求,设=---+∞→3、设23e xy x =,求(10)()y x .])12)(12(1531311[lim 4+-++⨯+⨯∞→n n n 求极限、. )(cos 5sin dy x y x 求,设、=6、设2[()],u f x y ϕ=+其中,x y 满足方程,y y e x +=函数,f ϕ均二阶可导,求22du d ,d d ux x.7、设函数()f x 在点0x =处有定义,(0)1f =,且2ln(1)sin ()lim0e 1x x x x f x →-+⋅=-,求(0)f '.三、应用题(每题 9分,共18分)1、求方程1sin =-+y x e xy 中的隐函数)(x y y =的导数。
高等数学a2教材pdf
高等数学a2教材pdf在现代教育领域中,教材是学习的重要辅助工具之一。
而高等数学作为大学本科阶段的重要课程,其教材对于学生的学习起着至关重要的作用。
本文将介绍关于高等数学A2教材PDF的相关信息,帮助学生更好地学习和掌握高等数学知识。
一、高等数学A2教材PDF的重要性高等数学A2教材PDF是一种电子版书籍,具有以下几个重要的特点和优势:1. 方便携带:PDF格式的教材可以方便地存储在电子设备中,如手机、平板电脑或电脑上,随时随地进行学习。
2. 节约成本:相比传统纸质教材,PDF格式的教材无需印刷和纸张费用,能够节省学生的经济负担。
3. 搜索和标注功能:高等数学教材PDF可以通过搜索功能迅速找到需要的内容,同时还可以进行标注和批注,有助于学生更好地整理和回顾知识点。
4. 多媒体辅助:在电子版教材中,可以嵌入各种多媒体资源,如动画、音频和视频,提供丰富的学习资源,有助于增强学习效果。
二、选择高等数学A2教材PDF的方法选择适合自己的高等数学A2教材PDF是非常重要的,以下是一些选择教材的方法和建议:1. 参考教授推荐:教授通常会根据教学内容和教学进度推荐相应的教材,可以咨询教授或查阅课程大纲了解相关信息。
2. 网络资源:在互联网上,有很多网站提供高等数学A2教材PDF的下载,可以通过搜索引擎或教育平台来获取相关资源。
3. 学生评价:可以向其他学生或学长学姐咨询,了解他们对不同教材的评价和使用感受,借鉴其经验来选择适合自己的教材。
4. 内容适配性:在选择教材时,要根据自己的学习需求和理解能力,选择与教学进度和难度相符的教材,以便更好地理解和掌握高等数学知识。
三、如何有效使用高等数学A2教材PDF虽然便捷,但如何有效使用是至关重要的,下面是一些建议:1. 制定学习计划:制定一个合理的学习计划,明确每天的学习目标和时间安排,保证有足够的时间专注于学习高等数学。
2. 有重点地学习:在学习过程中,要有重点地学习,关注教材中的重要知识点和难点,将注意力集中在关键内容上,做好笔记和总结。
2013级-数学分析(3)答案A卷
昆明学院2014-2015学年 上 学期期末考试卷参考答案或评分标准考试科目 数 学 分 析 (三) (A 卷)命题教师: 劉啟寬 审核教师:说明:1.页面要求:纸型:A4;页边距:上、下、左、右各1.5cm 。
2.试题内容用小四号宋体,行距1.5倍。
3.课程名称以课表上的名称为准。
4.每道题需标明分数、解题步骤与评分标准,评分标准需给出主要步骤或基本要点的得分比例。
一. 计算题(每小题9分,共计90分) 1、解: 1y fyx x-∂=∂ ………………………………………………4分ln y fx x y∂=∂………………………………………………4分 (1,1)1,(1,1)0x y f f ''∴==……………………………。
…1分 2、解:12zf y f x∂''=+∂。
4分 2111221222()()zy f y f f y f x∂''''''''=+++∂。
4分21112222y f yf f ''''''=++。
1分3:解:令 (,,)F x y z z xy =-。
2分 ,,1x y z F y F x F '''=-=-=。
2分{}111N =--。
2分切平面:1x y z +-=。
3分 4、解:令 (,,)(1)L x y xy x y λλ=-+-。
2分由 0010Ly x Lx y Lx y λλλ⎧∂=-=⎪∂⎪∂⎪=-=⎨∂⎪⎪∂=+-=⎪∂⎩。
2分 得 1212x y ⎧=⎪⎪⎨⎪=⎪⎩。
2分又 11,(,)22022x xx z y xy z y xy '''''''=+=+=-<。
2分函数z xy =在点11(,)22处取得极大值111(,)224f =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华东交通大学2013—2014学年第二学期考试卷
高等数学(A)Ⅱ课程 工科 类别:必 闭卷(√)试卷编号: (A)卷
考生注意事项:1、本试卷共 4 页,总分 100 分,考试时间 120 分钟。
2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。
3、考试独立完成,发现雷同试卷一律按零分处理。
一、填空题(共6题,每题2分,共12分)
ln 1x x y z
x z y y =∂∂=则,设、
)d (d d ) (d 2 1 0
1 0
2
⎰
⎰⎰
⎰=y
y
x
x x y x f y
y y x f x
,,交换积分次序、
3
4 d 1 3222π
==++Ω⎰⎰⎰
Ω
v z y x 则
围成,由球面设、
4
1
d )1 1()0 0( 42==⎰
C
x xy A O x y C 则
,,到,从点为曲线设、
∑
∞
=+-=+=01
2
)1( )(21
)( 5n n n n x x f x x x f 的幂级数为展开成函数、 044 2 6=+'-''y y y 则该方程为,的实根方程的特征方程有相同设二阶常系数线性齐次、
二、计算题(58分)
1、多元函数微分学应用(共2题,每题6分,共12分)
切平面方程
处的
,,在点求曲面)2 1 1()1(32-+=y x z 的极值求函数x y xy x y x f 3),( )(222++-=
23 2 y z x z y x ='=',
解: y x f y x f y x 2 32 +-='+-=',解: }1 3 2{ --=∴
,,法向量n )1 2( 020
32--⎩
⎨⎧=+-=+-,得解y x y x 0
)2()1(3)1(2 =---++-z y x 故切平面方程为
2 1 2 =''-=''=''yy xy xx
f f f ,,又 0332 =++-z y x 即 02 03C 2>=<-=-A A B 且,
故 3)1 2(-=--,因此所求极小值为
f
2、重积分(共2题,每题6分,共12分)
围成和由抛物线其中,利用直角坐标求2 d d )1(x y x y D y x y x I D
==
=
⎰⎰
⎰
⎰=x
x y y x x
I 1 0
2
d
d 解: ⎰
⎰=y
y x y x y
I 1
2
d d
⎰
-=
1 0
34
3)d (3
2
x x x x ⎰
-=
1
4)d (2
1y y y y
556)51114(32105411
=-=x x 55
6
)11252(2110
211
25
=-=y y
围成、及平面由柱面其中,利用柱面坐标求1 04 d )2(2222===+Ω+=
⎰⎰⎰
Ω
z z y x v y x I
⎰
⎰⎰
=1
22 0 2 0
d d d z r r
I π
θ解:
⎰
⎰
=2 0
22 0 d d r r π
θ
⎰
=π
θ2 0
d 3
8
3
16π
=
3、曲线积分(共2题,每题6分,共12分)
的一段弧,与,上点为抛物线其中,求曲线积分)2 2()0 0( 2 d )(12A O x y C s y C
=⎰
y x y x y ='∴= 2
2,解: x
y 21=
'
⎰
⎰
+=
2
2
d 1d
y y y s y C
故
⎰
⎰
+
=
2
d 2112d x x
x s y C
2
023
22 0 22)1(31)d (1121y y y y +=++=⎰ ⎰
++=2 0 )2d(12121x x 20
23)21(31x +=
)155(31-= )155(3
1
-=
所做的功
,,求此过程力,,,移动到点,,从点:一质点沿曲线} { )1 1 1()0 0 0( )2(32
x y z F A O t
z t y t x L -=⎪⎩⎪⎨⎧=== ⎰+-=L
z x y y x z W d d d 解:
⎰⋅+⋅-=1
223
d )32(t t t t t t
2
1
2
1d 210
41
3=
=
=⎰
t t t
4、无穷级数(共2题,第(1)题4分,第(2)题6分,共10分)
的敛散性判断级数
∑
∞
=+1
5
1)1(n n n
2/351
1 n
n n <+ 解:
收敛又∑∞
=12
/31
n n
收敛∑
∞
=+∴1
5
1
1
n n 装 的收敛域求幂级数
∑
∞
=12
1)2(n n
x n
1)1(lim
/1)1/(1lim
2
2
2
2
=+=+=∞
→∞
→n n n n n n ρ 解:
1 =∴R
收敛级数时,当∑
∞
=--=12
)1( 1n n
n
x 收敛级数
时,当∑∞
==1
2
1
1n n
x
订 ]1 1[,故收敛域为
-
5、微分方程(共2题,每题6分,共12分)
的通解求微分方程x
y
x y y 2)1(+='
x
y
u =
令解: x x u u
d 1d 21 =则原方程化为
C x u +=ln 两边积分得 2)(ln ln
C x x y C x x
y
+=+=即,所求通解为
线 的通解求微分方程x y c o s )2(=''' 1s i n d c o s C x x x y +==''⎰
解:
211c o s d )(s i n
C x C x x C x y ++-=+='⎰
322
1212
s i n d )c o s ( C x C x C x x C x C x y +++-=++-=⎰
通解 、
三、综合题(共2题,每题10分,共20分)
的通解求微分方程、1234 1+=+'+''x y y y
034 2=++r r 特征方程为解: 3 1 21-=-=⇒r r 、 x x C C Y 321e e --+=故齐次方程的通解为 b ax y +=*设特解 12343 *+=++x b a ax y 代入原方程得把 ⎩⎨⎧=+=⇒1
3423b a a 95
32-==⇒b a 、
9
5
32*-=⇒x y
9
5
32e e 321-++=--x C C y x x 故通解为
)
1 1(2)0 0(
d )
e (d )2e ( 22
2
,到点沿曲线,从点其中,求曲线积分、A x y x O C y y x x x I C
y y =++++=
⎰
y x Q x P y
y
+=+=e 2e ,令解:,y y x
Q
y P e e =∂∂=∂∂,则 无关故曲线积分与积分路线, y
P
x Q ∂∂=∂∂⇒
⎰⎰+++=
BA
OB
y Q x P y Q x P I d d d d 因此 ⎰⎰+++=BA
OB
y Q x P y Q x P I d d d d
⎰⎰+++=1
0 1
0 d )e (d )21(y y x x y
⎰⎰++=1
1 0 d )2e (d x x y y
102102)21e ()(y x x y
+
++= 102102)e (2
1x x y ++= 23e += 2
3
e +=
四、证明题(共2题,第1题6分,第2题4分,共10分)
z y
z y x z x u f x y f x z -=∂∂+∂∂= )( )(1 1证明:可导,其中,设、
f x
y f x x z '--=∂∂321 证: , f x y z '=∂∂21
z f x f x
y f x y f x y z y x z x -=-='+'--=∂∂+∂∂∴1
1 22
发散证明级数,常数收敛,设级数
、∑∑∞
=∞=+≠1
1
)( 0 2n n
n n a u
a u
0lim 1
=∴∞
→∞
=∑n
n n n u u 收敛,
证:
发散故
,∑∞
=∞
→+≠=+=+⇒1
)( 00)(lim n n
n n a u
a a a u。