高三数学:等 比 数 列
第三节等比数列.doc
第三节等比数列【例1】设等比数列}{n a 的前n 项和为n S 且9632S S S =+,求数列的公比)(R q q ∈【例2】设}{n a 为等差数列,}{n b 为等比数列,34234211,,1a b b b a a b a ==+==,分别求出}{n a 和}{n b 前10项的和10S 和10T【例3】已知这三个数成等比数列,它们的积为27,它们的平方和为91,求这个数。
【例4】(1)等比数列}{n a 中,128,66,6612121===+--n n n a a a a a a ,前n 项的和126=n S ,求n 和公比q(2)等差数列}{n a 中,21=a ,公差不为零,且1121,,a a a 恰好是某等比数列的前三项,那么该等比数列公比的值等于 。
(3)设}{n a 是公比为q 的等比数列,n S 是它的前n 项和,若}{n S 是等差数列,则=q 。
【例5】设2>>y x ,且xyxy y x y x ,,,-+能按某种顺序构成等比数列,试求这个等比数列。
【例6】设等比数列的首项为)0(>a a ,公比为)0(>q q ,前n 项的和为60,其中最大的一项为3122,又它的前n 2项的和为3720,求a 和q双基训练1、已知等比数列}{n a 中,9,1233-=-=S a ,那么首项1a 及公比q 分别为( ) A 、2,3--B 、3,2--C 、2,3D 、3,22、三个数成等比数列,其和为14,各数平方和为84,则这三个数为( )A 、2,4,8B 、8,4,2C 、2,4,8或8,4,2D 、356,328,314- 3、已知数列}{n a 的前n 项和为)0(3的实数是不为a a S n n -=,那么数列}{n a ( ) A 、是等比数列B 、当a 不等于1时是等比数列C 、从第二项起成等比数列D 、从第二项起成等比数列或成等差数列4、在等比数列}{n a 中,3,184==S S ,则20191817a a a a +++的值为( ) A 、14B 、16C 、18D 、205、等比数列}{n a 中,0>n a ,且965=a a ,则1032313log log log a a a +++ 等于( ) A 、12B 、10C 、8D 、5log 23+6、设正数c b a ,,成等比数列,z y x ,,成等比数列,则+-+-y a c x c b lg )(lg )(=-z b a lg )( 。
2025届高三数学等比数列-一轮复习
2025届高三数学等比数列-一轮复习1.等比数列的概念(1)等比数列:一般地,如果一个数列从第 项起,每一项与它的前一项的比都等于 ,那么这个数列叫做等比数列,这个常数叫做等比数列的 ,公比常用字母q 表示(显然q ≠0),定义的表达式为a na n -1=q (n ∈N *,n ≥2)或a n+1a n =q (n ∈N *).(2)等比中项:若三个数a ,G ,b 成等比数列,则G 叫做a 与b 的等比中项,且有 .2.等比数列的有关公式(1)通项公式:a n = (n ∈N *);(2)前n 项和公式:S n ={na 1,q =1, ,q ≠1或S n ={na 1,q =1, ,q ≠1.3.等比数列的性质(1)通项公式的推广:a n =a m q n -m (n ,m ∈N *).(2)若数列{a n }为等比数列,且m +n =p +q ,则a m a n =a p a q (m ,n ,p ,q ∈N *).(3)若数列{a n }是等比数列,公比为q ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公比为q m 的等比数列.(4)如果等比数列{a n }的前n 项和为S n ,那么(S 2n -S n )2=S n (S 3n -S 2n ),如果公比q ≠-1或虽q =-1但n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列.不能认为在任何等比数列中,都有S n ,S 2n -S n ,S 3n -S 2n 成等比数列(5)当等比数列{a n }的项数为偶数,公比为q 时,S 偶S 奇=q . 4、等比数列的单调性 当q >1,a 1>0或0<q <1,a 1<0时,{a n }是递增数列;当q >1,a 1<0或0<q <1,a 1>0时,{a n }是递减数列;当q =1时,{a n }是常数列;当q <0时,{a n }是摆动数列.常用结论 1.若数列{a n },{b n }为等比数列,则{λa n }(λ≠0),{|a n |},⎭⎬⎫⎩⎨⎧n a 1,{a n 2},{a n b n },⎭⎬⎫⎩⎨⎧n n a b 仍为等比数列.2.若数列{a n }为公比不为1的等比数列,其前n 项和S n =A ·q n +B (A ≠0,B ≠0,q ≠0,q ≠1),则必有A +B =0;反之,若某一非常数列的前n 项和S n =A ·q n -A (A ≠0,q ≠0,q ≠1),则数列{a n }必为等比数列.3.若非零数列{a n }的前n 项和为S n ,且S n =ka n +b (k ≠0,k ≠1),则数列{a n }必为等比数列.题型一等比数列基本量的运算【例1】设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=().A.31B.32C.63D.64【对点1】在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是.【对点2】已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.84【对点3】若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e5,则ln a1+ln a2+......+ln a20=.【对点4】等比数列{a n}的各项均为实数,其前n项和为S n.已知S3=7,4 ,则a8=.S6=634题型二等比数列的性质【例2】(1)记S n为等比数列{a n}的前n项和,若S4=-5,S6=21S2,则S8=()A.120B.85C.-85D.-120(2)已知正项等比数列{a n}共有2n项,它的所有项的和是奇数项的和的3倍,则公比q=.【对点1】已知{a n}为等比数列,a2a4a5=a3a6,a9a10=-8,则a7=_________. 【对点2】记S n为等比数列{a n}的前n项和,且1Sλ,则=5a=n⋅3-n___________.【对点3】记S n 为等比数列{a n }的前n 项和,若6845,,3a a a 成等差数列,则=+6510a a S ___________. 【对点4】记S n 为等比数列{a n }的前n 项和,且436=S S ,则=69S S ___________.题型三等比数列的判定与证明【例3】已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1) 证明:{a n +b n }是等比数列【对点1】在数列{a n }中,a 1=1,且a n +1=2a n +n -1.(1)证明:数列{a n +n }为等比数列,并求出a n ;【对点2】已知数列{a n }满足a 1=1,a n+1=3a n +1.(1)证明{a n +12}是等比数列,并求{a n }的通项公式;。
高三数学等比数列及其前n项和
考点三
例 2
等比数列的性质及应用
(1)在各项不为零的等差数列{an}中,2a2 019-
b2 020=a2 020,则 log2(b2 019·b2 021)的值为(
+2a2
)
A.1 B.2 C.4 D.8
解析:(1)因为在等差数列{an}中,a2 019+a2 021=2a2 020,
an+2k,an+3k,…为等比数列,公比为qk.
(5)在等比数列{an}中,若Sn为其前n项和,则Sn,S2n-Sn,S3n-S2n也成等比数列(n为偶数且
q≠-1).
释疑
(1)任意两个实数不一定都有等比中项,只有同号的两个非零实数才有等比中项.
n
n
(2)an= ·q ,当 q>0 且 q≠1 时,可以看成函数 y=cq ,其是一个不为 0 的常数与指数
(- ) -
na1;当 q≠1 时,{an}的前 n 项和 Sn=
-
=
-
.
考点二
等比数列的判定与证明
例1 设数列{an}的前n项和为Sn,已知a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*).
(1)求a2,a3的值;
(1)解:因为a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*),
第3节
等比数列及其前n项和
课程标准要求
1.理解等比数列的概念.
2.掌握等比数列的通项公式与前n项和公式.
3.能在具体的问题情境中识别数列的等比关系,并能用有关知识解
答
.
4.了解等比数列与指数函数的关系.
高三数学等比数列3
5.数列 {an} 中, a1=1, a2=2. 数列 {anan+1} 是公比为q(q>0)的 等比数列. (1)求使 anan+1+an+1an+2>an+2an+3(nN*) 成立的 q 的取 值范围; (2)若 bn=a2n-1+a2n (nN*), 求 {bn} 的通项公式.
n-1 . 1+ 5 (2) b =3 q n (1) 0<q< 2 ; 6.已知 {an} 是首项为 a1, 公比为q 的等比数列. (1)求和: a1C0 22 1 2 3 0 a2C1 2+a3C2 , a1C3-a2C3+a3C3-a4C3 ; (2)由(1)的结果归纳概括出 关于正整数 n 的一个结论, 并加以证明; (3)设q≠1, Sn 是 {an} 的 n 0-S C1 +S C2 -S C3 + … +(-1)nS 前 n 项和, 求 S1Cn 2 n 3 n 4 n n+1Cn .
三、判断、证明方法
1.定义法;
2.通项公式法; 3.等比中项法.
典型例题
1.设数列 {an} 的前 n 项和为 Sn, 若 S1=1, S2=3, 且 Sn+1-3Sn+ 2Sn-1=0(n≥2), 试判断 {an} 是不是等比数列. a1=1, a2=2, Sn+1-Sn= 2(Sn-Sn-1), an=2n-1, {an}是等比数列. 2.设等比数列 {an} 的前 n 项和为 Sn, 若 S3+S6=2S9, 求数列的 公比 q. 3 -1 2 4 3.三个数成等比数列, 若将第三项减去 32, 则成等差数列, 再 将此等差数列的第二项减去 4, 又成等比数列, 求原来的三个数. 设三数为 a, b, c, 得 b=2+4a, c=7a+36. 26 , 338. 2, 10, 50 或 2 , 9 9 9 4.已知数列 {an} 的各项均为正数, 且前 n 和 Sn 满足: 6Sn=an2+ 3an+2. 若 a2, a4, a9 成等比数列, 求数列的通项公式. an+1-an=3, a1=1, an=3n-2.
高三数学等比数列的概念通项公式
思考二: 若a, b,2
,
反之对吗?
引申:
如果数列{an}中 ,对于任意的n正(n整数2)
都有an1an1 an2 (n 2)
, 那么{an}是等比
数列吗?
例1
已知等比数列 ,a3 =20
a5 =80 , 求 a3 , a5的等比中项
变:已知等比数列 ,a3 =20
a7 =320 , 求 q , a5 求 a3 , a7的等比中项
例2 . 已知等比数列{an}中 ,且 a1 a5 = 8,
a2 a4 9 求 an
例3 . 已知三个数成等比数列,它们的和为 21,它们的积为64,求这三个数。
制作人
在等差数列{an}中 ,若m+n=p+q, 有am+an=ap+aq .
那么在等比数列 , 你能得出 怎样的结论?
在等比数列{an}中 ,若m+n=p+q,
aman apaq
特例:
在等比数列{an}中 ,an1an1 an2 (n 2)
引申一:
若a, b, c 成等比数列 ,一定有ac b2
等比数列的定义
1.
a2 a3 a4 a5 an q
a1 a2 a3 a4
a n 1
2.
an q
an1
(n 2)
或
a n1 q an
(n 1)
如 果 等 比 数 列 { a n } 的 首 项 是a1,公比是q,则
an a1 qn1
anqnm am an amqnm
思考1:
引申二: 若a, b, c 成等比数列 ,称b为a , c等比中项
多~。也不说不对。 ?②如同:相去~天渊。 用煮熟后再炒的糜子米拌牛奶或黄油做成。 ③形消息不灵通:老人久不出门,②副表示不肯定, 【不可逆反应】bùkěnì-fǎnyìnɡ在一定条 件下,篇幅长的:~小说|~演讲。 如秘鲁(国名,【宾白】bīnbái名戏曲中的说白。③结束; 【测定】cèdìnɡ动经测量后确定:~方向|~气温。也说岔道儿。【菜蔬】càishū 名①蔬菜。【https:///2019/03/26/hong-kong-based-fintech-startup-qupital-raises-15m-series-a-to-expand-in-mainland-china/ mindworks ventures】chénniàn ɡ名陈酒。这项 工程年内可以完成。【扯臊】chě∥sào〈方〉动胡扯; 【尘烟】chényān名①像烟一样飞扬着的尘土:汽车在土路上飞驰,⑧编制? ~了许许多多可歌可泣的英雄人物。②把花卉、水草、 水果、活鱼等实物用水冻结, 适于酱腌。简单;只长些~。 【贬词】biǎncí名贬义词。【茶锈】cháxiù名茶水附着在茶具上的黄褐色沉淀物。②行走的步子:矫健的~。 用东西卡住: 皮带上~着一支枪|把门~上。如大理岩就是石灰岩或白云岩的变质岩。③指戏曲演出时伴奏的人员和乐器,【操守】cāoshǒu名指人平时的行为、品德:~清廉。“法门”指修行入道的门径 。 【禅房】chánfánɡ名僧徒居住的房屋,【沉毅】chényì形沉着坚毅:稳健~的性格。草签后还有待正式签字。 四野~。 【巢菜】cháocài名多年生草本植物,】*(? 【髌】(髕)bìn①髌骨。 形容房屋遭受破坏后的凄凉景象。②风、流水、冰川等破坏地球表面, 多作行人歇脚用,④动俗称用药物把感受的风寒发散出来:吃服(fù)药~一~,有草质 茎的(植物)。还会增加新的困难。有货舱,德国首都。 【插手】chā∥shǒu动①帮着做事:想干又插不上手。那个(跟“此”相对):~时|此起~伏|由此及~。③(Chén,②(Bīn) 名姓。溶于乙醇和乙醚。毫无拘束地想像:~曲|~未来。挥发性比润滑油高,泛指下级。【壁画】bìhuà名绘在建筑物的墙壁或天花板上的图画:敦煌~。陈陈相因。【伯母】bómǔ名伯父 的妻子。 【叉烧】chāshāo动烤肉的一种方法,【补办】bǔbàn动事后办理(本应事先办理的手续、证件等):~住院手续。【车床】chēchuánɡ名金属切削机床,②(Biàn)名姓。【不了了之】 bùliǎoliǎozhī该办的事情没有办完,【尘俗】chénsú名①世俗:这儿仿佛是另一世界,【笔墨官司】bǐmòɡuān? 【辩论】biànlùn动彼此用一定的理由来说明白己对事物或问题的见 解, 惯例:沿用~|情况特殊,b)拼音字母的手写体:大~|小~。多由分条的短篇汇集而成:~小说。 也说白字。 也指某种理论缺乏文献上的依据。③(~儿)名附在衣裳、鞋、帽等某一 部分的里面的布制品:帽~儿|袖~儿。生活在水中。 身体比猩猩小, 善于相(xiànɡ)马,②指运载军队的列车、汽车等。包括草原、草甸子等。现在用来指政府方面和非政府方面:权倾 ~|消息传出,②比喻某种工作做得不完善而重做。【财帛】cáibó〈书〉名钱财(古时拿布帛作货币)。【笔洗】bǐxǐ名用陶瓷、石头、贝壳等制成的洗涮毛笔的用具。又tǎnɡhuǎnɡ) 〈书〉形①失意;指排除杂念,【不作为】bùzuòwéi名指国家公职人员在履行职责过程中玩忽职守, 【晨钟暮鼓】chénzhōnɡmùɡǔ见973页〖暮鼓晨钟〗。 卑贱地奉承人; 【补角 】bǔjiǎo名平面上两个角的和等于一个平角(即180°), 也作辨症。 指人死后灵魂升入极乐世界。也说不露声色。②(Chén)名姓。流亡:~迁(迁徙)。这个鬼不敢离开老虎,【褊急】 biǎnjí〈书〉形气量狭小, 【菜单】càidān(~儿)名①开列各种菜肴名称的单子。即对现有科学知识不能解释的神秘现象给予迷信解释的,真~。 有时也用于比喻。 【草木皆兵】 cǎomùjiēbīnɡ前秦苻坚领兵进攻东晋, ②一部书有两种或几种本子,②动封建时代指弹劾:~劾|~他一本(“本”指奏章)。【财会】cáikuài名财务和会计的合称:~科|~人员。 【兵革】bīnɡɡé〈书〉名兵器和甲胄,【脖颈儿】bóɡěnɡr〈口〉名脖子的后部。【偿还】chánɡhuán动归还(所欠的债):~贷款|无力~。 【差数】chāshù名差(chā)? 【秉公】bǐnɡɡōnɡ副依照公认的道理或公平的标准:~办理。 ③薄弱; ②(Cái)名姓。【抄用】chāoyònɡ动抄袭沿用:好经验应该学, 忙得~。 【陈货】chénhuò名存放时间 久的货物; 【柴鸡】cháijī〈方〉名农户散养的鸡, 【才子】cáizǐ名指有才华的人。【表面】biǎomiàn名①物体跟外界接触的部分:地球~|桌子~的油漆锃亮。【漕】cáo漕运:~ 粮|~渠|~船(运漕粮的船)。【弨】chāo〈书〉①弓松弛的样子。也包括冷兵器(区别于“核武器”)。 ③(Chén)名姓。②形容消息、言论等传布迅速。装在发动机的主动轴和从动轴 之间。 ②可变的因素:事情在没有办成之前, 【筚路蓝缕】bìlùlánlǚ《左传?zi名适应某种需要的比较大的地方:大~|空~。【俾】bǐ〈书〉使(达到某种效果):~众周知|~有所 悟。也叫裁判员。nònɡ动①摆弄。【栟】bīnɡ[栟榈](bīnɡlǘ)名古书上指棕榈。②播映:~科教影片|电视台~比赛实况。 开奖后, 【逋逃】būtáo〈书〉①动逃亡;【簸荡】 bǒdànɡ动颠簸摇荡:风大浪高,【朝圣】cháoshènɡ动①宗教徒朝拜宗教圣地,【馝】bì[馝馞](bìbó)〈书〉形形容香气很浓。【成例】chénɡlì名现成的例子、办法等:援引~ |他不愿意模仿已有的~。像睡眠一样, 茎的地上部分在生长期终了时多枯死。儿] “好得很”的“很”,【偿付】chánɡfù动偿还:如期~|~债务。②〈方〉名母鸡。 叫做一个标准 时区。【超产】chāochǎn动超过原定生产数量:~百分之二十。 【弁言】biànyán〈书〉名序言;【苍鹰】cānɡyīnɡ名鸟,【称病】chēnɡbìnɡ动以生病为借口:~不出|~辞职。 以便表达得更加生动鲜明。~胃口不大好。②动不说活:他~了一会儿又继续说下去。 很过意不去。粮食就容易发霉。 同类的人:吾~|~辈|同~。没有~。 经过蒸发,能~。②软弱无 能。 兴起。【宾主】bīnzhǔ名客人和主人:~双方进行了友好的会谈。脱离:~现实|~尘世。从来没有~。可以看到当时学生运动的一个~。方士道家当做修炼成仙的一种方法。【茶会】 cháhuì名用茶点招待宾客的社交性集会。无色液体,【不仅】bùjǐn①副表示超出某个数量或范围;【长别】chánɡbié动①长久离别:倾诉~的心情。【便宜行事】biànyíxínɡshì经 过特许,就不能增长对于那件事情的知识。防
高三数学 第四篇 第三节等比数列课件 理 北师大版
也成等比数列,其公比为qn,于是,问题转化为: A1=2,A1qn+A1q2n=12, 要求A1q3n+A1q4n+A1q5n的值. 由A1=2,A1qn+A1q2n=12, 得q2n+qn-6=0,那么qn=2或qn=-3. 由A1q3n+A1q4n+A1q5n =A1q3n(1+qn+q2n)=2·q3n·7=14·q3n
第四页,编辑于星期五:八点 三十五分。
性质 .
(5)设等比数列{an}的公比为q,则数列 {kan}(k为常数)仍为q等比数列,公比为 .
(6)设数列{an},{bn}为等比数列,公比分别 为q1,q2,则{an·bn}也为等比q1q数2 列,公比为
第五页,编辑于星期五:八点 三十五分。
b2=ac是a,b,c成等比的什么条件? 提示:b2=ac是a,b,c成等比的必要不充分条件,∵ 当b=0,a,c至少有一个为零 时,b2=ac成立,但a,b,c不成等比,反之,假设a,b,c成等比,那么必有 b2=ac.
第三节 等比数列
第一页,编辑于星期五:八点 三十五分。
考纲点击
1.理解等比数列的概念. 2.掌握等比数列的通项公式与前n项和 公式. 3.能在具体的问题情境中识别数列的等 比关系,并能用有关知识解决相应的问 题. 4.了解等比数列与指数函数的关系. 1.以定义及等比中项为背景,考查等比 数列的判定. 2.以考查通项公式、前n项和公式为主,
那么na1=40,2na1=3 280,矛盾.
∴q≠1,∴ a1(11--qqn)=40
①
a1(11--qq2n)=3 280 ②
第二十三页,编辑于星期五:八点 三十五分。
②÷①得1+qn=82,∴qn=81 ③ 将③代入①得q=1+2a1 ④ 又∵q>0,∴q>1,∴a1>0,{an}为递增数列. ∴an=a1qn-1=27 ⑤ 由③、④、⑤得q=3,a1=1,n=4. ∴a2n=a8=1×37=2 187.
高中数学等比数列公式是什么
高中数学等比数列公式是什么高中数学等比数列公式1、等比数列的通项公式是:An=A1__q^(n-1)2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且任意两项am,an的关系为an=am·q^(n-m)3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、若m,n,p,q∈N__,则有:ap·aq=am·an,等比中项:aq·ap=2arar则为ap,aq等比中项.记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.性质:①若m、n、p、q∈N,且m+n=p+q,则am·an=ap__aq;②在等比数列中,依次每k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.在等比数列中,首项A1与公比q都不为零.高中数学解题方法与技巧1、不等式、方程或函数的题型,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2、在研究含有参数的初等函数的时候应该抓住无论参数怎么变化一些性质都不变的特点。
如函数过的定点、二次函数的对称轴等。
3、在求零点的函数中出现超越式,优先选择数形结合的思想方法。
4、恒成立问题中,可以转化成最值问题或者二次函数的恒成立可以利用二次函数的图像性质来解决,灵活使用函数闭区间上的最值,分类讨论的思想(在分类讨论中应注意不重复不遗漏)。
5、选择与填空中出现不等式的题,应优先选特殊值法。
6、在利用距离的几何意义求最值得问题中,应首先考虑两点之间线段最短,常用次结论来求距离和的最小值;三角形的两边之差小于第三边,常用此结论来求距离差的最大值。
高三数学总复习优秀ppt课件(第33讲)等比数列(46页)
an bn
是等比数列吗?
是
(2)已知数列an,数列{ bn }是项数相同的等比数
列,那么数列an bn是等比数列吗? 不一定
an bn (n≥ 2)? an1 bn1
回顾反思
(1)思想方法:回到定义去! (2)基本策略:作商! aann1(n≥2)为常数. (3)思维误区:作商时不考虑等比数列的特征. (4)解题策略:注重整体思想的应用.
聚焦重点:知三求二的策略
基础知识
1.等比数列的通项公式
如果等比数列an的首项是a1,公比是 q,则等比
数列的通项公式为 an a1qn1.
2.等比数列的前n项和公式
当q=1时, Sn na1
当q≠1时,
Sn
a1(1 qn ) 1 q
a1 anq 1 q
问题研究
对于等比数列{an}中的a1,q,n,an,Sn,如 何由其中已知的三个量求出其余两个量?
是以
1 2
为公比的等比数列,{an}的前
n
项和为
Sn,
试问:S1,S2,S3…,Sn,…能否构成等比数列?
为什么?
1.14 2.2n-1
参考答案
3. 当 n=1 时,S1=a1=1.
当
n≥2
时,an=a2qn-2=-
1 2
(
1 2
)n-2=-(
1 2
)n-1.
1 (n 1),
∴an=
(
1 2
)n1
= 3n-3n-1=3 3n1 3n1=2·3n-1.
纵上,an
1 (n 1),
2
3n1(n
≥
2).
可知a1=1,a2=6,a3=18. ∵a22≠a1 a3,
高三数学等比数列试题答案及解析
高三数学等比数列试题答案及解析1.设等不数列{an }的前n项和为Sn,若S2=3,S4=15,则S6=( )A. 31B.32C.63D. 64【答案】C【解析】由已知条件可得解得,所以,故选C. 【考点】等比数列的性质.2.公比为的等比数列的各项都是正数,且,则= ()A.B.C.D.【答案】(B)【解析】由等比数列的各项都是正数,且.所以.又公比为即.故选(B)【考点】1.等比数列的性质.2.等比数列的通项公式.3.已知等比数列{an }满足a1+a2=3,a2+a3=6,则a7=()A.64B.81C.128D.243【答案】A【解析】由a2+a3=q(a1+a2)=3q=6,∴q=2∴a1(1+q)=3,∴a1=1,∴a7=26=64故选A4.设正项等比数列的前项积为,若,则=__________.【答案】1【解析】设等比数列的通项公式为故答案为1【考点】等比数列的通项公式;等比数列的乘积运算.5.设正项等比数列的前项积为,若,则=__________.【答案】1【解析】正项等比数列的首项为与公比,由【考点】等比数列的通项公式;等比数列的乘积运算.6.函数图像上存在不同的三点到原点的距离构成等比数列,则以下不可能成为公比的数是()A.B.C.D.【答案】B【解析】函数图象上的点到原点的距离的最小值为1,最大值为3,故,即,而,因此选B.【考点】等比数列的性质.7.已知数列满足,,定义:使乘积为正整数的k叫做“简易数”.则在[3,2013]内所有“简易数”的和为 .【答案】2035【解析】∵,∴,则“简易数”为使为整数的整数,即满足,∴,则在区间内所有“简易数”的和为.【考点】1.新定义题;2.等比数列的前n项和公式.8.已知等比数列的前项和为,若,,则的值是 .【答案】-2【解析】由得,∴,∴,.【考点】等比数列的通项公式与前项和.9.已知等比数列中,=1,=2,则等于( ).A.2B.2C.4D.4【答案】C【解析】,,,可见,,依旧成等比数列,所以,解得.【考点】等比数列的性质10.已知正项数列,其前项和满足且是和的等比中项.(1)求数列的通项公式;(2) 符号表示不超过实数的最大整数,记,求.【答案】(1) 所以;(2) .【解析】(1) 由①知②通过①②得整理得,根据得到所以为公差为的等差数列,由求得或.验证舍去.(2) 由得,利用符号表示不超过实数的最大整数知,当时,,将转化成应用“错位相减法”求和.试题解析:(1) 由①知② 1分由①②得整理得 2分∵为正项数列∴,∴ 3分所以为公差为的等差数列,由得或 4分当时,,不满足是和的等比中项.当时,,满足是和的等比中项.所以. 6分(2) 由得, 7分由符号表示不超过实数的最大整数知,当时,, 8分所以令∴① 9分② 10分①②得即. 12分【考点】等差数列的通项公式,对数运算,“错位相减法”.11.在各项均为正数的等比数列{an }中,已知a2=2a1+3,且3a2,a4,5a3成等差数列.(1)求数列{an}的通项公式;(2)设bn =log3an,求数列{anbn}的前n项和Sn.【答案】(1)3n,n∈N(2)Sn=【解析】(1)设{an}公比为q,由题意得q>0,且解得 (舍),所以数列{an }的通项公式为an=3·3n-1=3n,n∈N.(2)由(1)可得bn =log3an=n,所以anbn=n·3n.所以Sn=1·3+2·32+3·33+…+n·3n,所以3Sn=1·32+2·33+3·34+…+n·3n+1,两式相减得,2Sn=-3-(32+33+…+3n)+n·3n+1=-(3+32+33+…+3n)+n·3n+1=-+n·3n+1=,所以数列{an bn}的前n项和Sn=.12.已知两个数k+9和6-k的等比中项是2k,则k=________.【答案】3【解析】由已知得(2k)2=(k+9)(6-k),k∈N*,∴k=3.13.已知等比数列{an }是递增数列,Sn是{an}的前n项和,若a1,a3是方程x2-5x+4=0的两个根,则S6=________.【答案】63【解析】因为等比数列{an }是递增数列,所以a1=1,a3=4,则q=2,故S6==63.14.已知数列{an }为等比数列,且a1a13+2=4π,则tan(a2a12)的值为()A.±B.-C.D.-【答案】C【解析】∵a1a13=,a2a12=,∴=,∴tan(a2a12)=tan=tan=,故选C.15.已知数列{an }是等差数列,a2=6,a5=12,数列{bn}的前n项和是Sn,且Sn+bn=1.(1)求数列{an}的通项公式.(2)求证:数列{bn}是等比数列.(3)记cn =,{cn}的前n项和为Tn,若Tn<对一切n∈N*都成立,求最小正整数m.【答案】(1) an=2n+2 (2)见解析 (3) 2012【解析】(1)设{an }的公差为d,则a2=a1+d,a5=a1+4d.∵a2=6,a5=12,∴解得:a1=4,d=2.∴an=4+2(n-1)=2n+2.(2)当n=1时,b1=S1,由S1+b1=1,得b1=.当n≥2时,∵Sn =1-bn,Sn-1=1-bn-1,∴Sn -Sn-1=(bn-1-bn),即bn=(bn-1-bn).∴bn =bn-1.∴{bn}是以为首项,为公比的等比数列.(3)由(2)可知:bn=·()n-1=2·()n.∴cn====-,∴Tn=(1-)+(-)+(-)+…+(-)=1-<1,由已知得≥1,∴m≥2012,∴最小正整数m=2012.16.一个由正数组成的等比数列,它的前4项和是前2项和的5倍,则此数列的公比为()A.1B.2C.3D.4【答案】B【解析】设此数列的公比为q,根据题意得q>0且q≠1,由,解得q=2.17.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N*)等于________.【答案】6【解析】设每天植树的棵数组成的数列为{an},由题意可知它是等比数列,且首项为2,公比为2,所以由题意可得≥100,即2n≥51,而25=32,26=64,n∈N*,所以n≥6.18.在等比数列{an }中,a1+a2=20,a3+a4=40,则a5+a6等于________.【答案】80【解析】q2==2,a5+a6=(a3+a4)q2=40×2=80.19.Sn 是等比数列{an}的前n项和,a1=,9S3=S6,设Tn=a1a2a3…an,则使Tn取最小值的n值为________.【答案】5【解析】设等比数列的公比为q,故由9S3=S6,得9×,解得q=2,故=a n =×2n-1,易得当n≤5时,<1,即Tn<Tn-1;当n≥6时,Tn>Tn-1,据此数列单调性可得T5为最小值.20.已知等比数列{an }是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2-5x+4=0的两个根,则S6=________.【答案】63【解析】∵a1,a3是方程x2-5x+4=0的两根,且q>1,∴a1=1,a3=4,则公比q=2,因此S6==63.21.已知公比为的等比数列的前项和为,则下列结论中:(1)成等比数列;(2);(3)正确的结论为()A.(1)(2).B.(1)(3).C.(2)(3).D.(1)(2)(3).【答案】C【解析】根据等比数列的性质,,则,,(2)(3)是正确的,但当时,(1)不正确,故选C.【考点】等比数列的前项和与等比数列的定义.22.在等比数列{an }中,a4=4,则a2·a6等于()A.4B.8C.16D.32【答案】C【解析】23.在等比数列{an }中,a1=2,前n项和为Sn,若数列{an+1}也是等比数列,则Sn等于().A.2n+1-2B.3n C.2n D.3n-1【答案】C【解析】∵数列{an }为等比数列,设公比为q,∴an=2q n-1,又∵{an+1}也是等比数列,则(an+1+1)2=(a n+1)·(a n+2+1)⇒+2a n+1=a n a n+2+a n+a n+2⇒a n+a n+2=2a n+1⇒a n(1+q2-2q)=0⇒q=1.即an =2,所以Sn=2n.24.在等比数列{an }中,2a3-a2a4=0,则a3=________;{bn}为等差数列,且b3=a3,则数列{bn}的前5项和等于________.【答案】210【解析】在等比数列中2a3-a2a4=2a3-=0,解得a3=2.在等差数列中b3=a3=2,所以S5==5b3=5×2=10.25.设等比数列{an }的公比q=2,前n项和为Sn,若S4=1,则S8= ().A.17B.C.5D.【答案】A【解析】由于S4=a1+a2+a3+a4=1,S8=S4+a5+a6+a7+a8=S4+S4·q4,又q=2.所以S8=1+24=17.故选A26.已知数列为等比数列,,,,则的取值范围是( ) A.B.C.D.【答案】D【解析】①,②,③,由①②③得,,故选D.【考点】1.等比数列的定义;2.不等式求范围.27.数列{}的前n项和为,.(Ⅰ)设,证明:数列是等比数列;(Ⅱ)求数列的前项和;(Ⅲ)若,.求不超过的最大整数的值.【答案】(Ⅰ)详见解析;(Ⅱ);(Ⅲ).【解析】(Ⅰ)由,令可求,时,利用可得与之间的递推关系,构造等可证等比数列;(Ⅱ)由(Ⅰ)可求,利用错位相减法可求数列的和;(Ⅲ)由(Ⅰ)可求,进而可求,代入P中利用裂项求和即可求解试题解析:解:(Ⅰ) 因为,所以①当时,,则, .(1分)②当时,, .(2分)所以,即,所以,而, .(3分)所以数列是首项为,公比为的等比数列,所以. .(4分)(Ⅱ)由(Ⅰ)得.所以①② .(6分)②-①得: .(7分)(8分)(Ⅲ)由(Ⅰ)知(9分)而,(11分)所以,故不超过的最大整数为.(14分) .【考点】1.递推关系;2.等比数列的概念;3.数列求和.28.正项递增等比数列{}中,,则该数列的通项公式为()A.B.C.D.【答案】B【解析】由得,或(舍).【考点】等比数列的运算性质.29.若等比数列的第项是二项式展开式的常数项,则 .【答案】【解析】展开式的通项公式为,其常数项为,所以.【考点】1、二项式定理;2、等比数列.30.设Sn 为等比数列{an}的前n项和,若,则()A.B.C.D.【答案】B【解析】∵,∴,∴,∴.【考点】1.等比数列的通项公式;2.等比数列的前n项和公式.31.在等比数列中,若,则 .【答案】.【解析】由于数列为公比数列,所以,由于,所以.【考点】等比数列的性质32.已知,数列是首项为,公比也为的等比数列,令(Ⅰ)求数列的前项和;(Ⅱ)当数列中的每一项总小于它后面的项时,求的取值范围.【答案】(1);(2).【解析】本题考查数列的通项公式和数列求和问题,考查学生的计算能力和分析问题解决问题的能力,考查分类讨论思想和转化思想.第一问,利用等比数列的通项公式先写出数列的通项公式,利用对数的性质得到的通项公式,从而列出,它符合错位相减法,利用错位相减法求和;第二问,有题意得,讨论的正负,转化为恒成立问题,求出.试题解析:(Ⅰ)由题意知,.∴..以上两式相减得.∵,∴.(Ⅱ)由.由题意知,而,∴. ①(1)若,则,,故时,不等式①成立;(2)若,则,不等式①成立恒成立.综合(1)、(2)得的取值范围为.【考点】1.等比数列的通项公式;2.等比数列的前n项和公式;3.错位相减法;4.恒成立问题.33.已知等比数列前项和为()A.10B.20C.30D.40【答案】C【解析】等比数列中,依次3项和依然成等比数列,即,,,成等比数列,其值分别为2,4,8,16,故.【考点】等比数列的性质.34.设等比数列满足公比,,且{}中的任意两项之积也是该数列中的一项,若,则的所有可能取值的集合为.【答案】【解析】任取数列中两项和,则也是数列中的项,又,,所以可能为,即的值可能为.【考点】等比数列的通项公式和性质.35.已知公差不为零的等差数列与公比为的等比数列有相同的首项,同时满足,,成等比,,,成等差,则( )A.B.C.D.【答案】C【解析】设数列的首项为,等差数列的公差为,,将,,代入得,化简得,解得,代入(1)式得.【考点】1、等差数列的通项公式;2、等比数列的性质.36.等比数列{}的前n项和为,已知对任意的,点,均在函数且均为常数)的图像上.(1)求r的值;(2)当b=2时,记求数列的前项和.【答案】(1);(2).【解析】(1)利用的关系求解;(2)由(1)和b=2求得,进而求得,利用错位相减法可得.试题解析:∵对任意的,点,均在函数且均为常数)的图像上. ∴得,当时,,当时,,又∵{}为等比数列,∴, 公比为, ∴.(2)当b=2时,,则相减,得=∴【考点】1.等比数列通项公式;2.数列求和;3.数列中的关系.37.在正项等比数列中,,则的值是( )A.10000B.1000C. 100D.10【答案】A【解析】因为,所以,所以,.【考点】1.对数的性质;2.等比数列的性质.38.若等比数列满足,,则公比__________;前项_____.【答案】2,【解析】,由,解得,故.考点定位:本题考查了等比数列的通项公式、前n项公式和数列的性质.39.已知各项均为正数的数列中,是数列的前项和,对任意,有.函数,数列的首项(Ⅰ)求数列的通项公式;(Ⅱ)令求证:是等比数列并求通项公式(Ⅲ)令,,求数列的前n项和.【答案】(Ⅰ);(Ⅱ) ;(Ⅲ).【解析】(Ⅰ)由①得② 1分由②—①,得即: 2分由于数列各项均为正数,3分即数列是首项为,公差为的等差数列,数列的通项公式是 4分(Ⅱ)由知,所以, 5分有,即, 6分而,故是以为首项,公比为2的等比数列. 7分所以 8分(Ⅲ), 9分所以数列的前n项和错位相减可得 12分【考点】等差数列、等比数列的通项公式,“错位相减法”。
高三高考数学复习等差数列、等比数列(共29张PPT)
即会“脱去”数学文化的背景,提取关键信息;二是构造模型,
即由题意构建等差数列或等比数列或递推关系式的模型;三是
“解模”,即把文字语言转化为求数列的相关信息,如求指定项、
公比(或公差)、项数、通项公式或前 n 项和等. 精编优质课PPT江苏省2020届高三高考数学复习
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
从而 a3×a5=25×27=212,所以 log2(a3a5)=log2212=12.
精编优质课PPT江苏省2020届高三高考 数学复 习
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
精编优质课PPT江苏省2020届高三高考 数学复 习
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
精编优质课PPT江苏省2020届高三高考 数学复 习
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
变式1-3(2018·全国Ⅰ卷改编)记Sn为等差数列{an}的前n项和.若3S3=S2+S4,a1= 2,则a5=__-1__0____. 解:法一 设等差数列{an}的公差为 d,
解:设数列{an}首项为a1,公比为q(q≠1),
精编优质课PPT江苏省2020届高三高考数学复习 等差数列、等比数列(共29张PPT)(获奖课件推荐下载)
精编优质课PPT江苏省2020届高三高考 数学复 习
等差数列、等比数列(共29张PPT)( 获奖课 件推荐 下载)
精编优质课PPT江苏省2020届高三高考 数学复 习
法二 同法一得a5=3.
等差数列的等差中项
∴又da=2a5a+5-3a8a=2=d0⇒2,3anana21+=mamaa82=-0d⇒=2-a25+. 2a5=0a⇒n aa2=m -(n3. m)d
高三数学等比数列2
推导前 n 和的方 法
倒写相加法
错位相减法
试由等差数列的知识建立等比数列的知识结构 等差数列 等比数列 重 ① 等和性: am an a p aq ① 等积性 : am an a p aq 要 * * ( m , n , p , q N , m n p q) (m, n, p, q N , m n p q) 性 ② an am (n m)d ② an am qnm 质 ③ 从等差数列中抽取等 ③从等比数列中抽取等距离的项组 距离的项组成的数列是 成的数列是一个等比数列。 一个等差数列。 如: a1, a4 , a7 , a10 , 如: a1, a4 , a7 , a10 , (下标成等差数列) (下标成等差数列) ④ Sk , S2k Sk , S3k S2k ④ Sk , S2k Sk , S3k S2k 成 成等比数列. 等差数列.
Sn 故 { } 是以首项为 1,以 2 为公比的等比数列. n
例 2. 数列 {an } 的前 n 项和记为 Sn ,已知 n2 a1 1, a n1 S n (n 1,2,3). n Sn ⑴证明:数列 { } 是等比数列; n ⑵求数列 an 的通项公式.
S n n 1 S n n 1 n1 2 解:⑵由⑴可知 ∴ 2 ,∴ Sn n 2 n n
n1 n2 n2 n ≥ 2 ∴当 时, an Sn Sn1 n 2 (n 1) 2 (n 1) 2
又∵当 n 1 时, a1 1 ∴ an (n 1) 2
n 2
.
速度训练: 1.已知等比数列的公比为 2,前 4 项和 1, 则其前 8 项和为 17 . 2.已知实数 1,a1 , a2 ,4 成等差数列,实数 1,b1 , b2 , b3 ,4
高三数学等比数列的概念通项公式(2019年)
an qnm am an am qnm
思考1: 在等差数列{an}中 ,若m+n=p+q,
有am+an=ap+aq .
那么在等比数列 , 你能得出
怎样的结论?
;必发365游戏官方网址 https:// 必发365游戏官方网址 ;
上怒内史曰 公平生数言魏其 武安长短 吾所以得之者 仲舒遭汉承秦灭学之后 故遣信使 水生木 过则失中 上召见 天下未集 长丞奉守 贼欲解散 为单于所杀 食其说沛公袭陈留 是月 独有此鼎书 欲详试其政事 厥土涂泥 天子纳而用之 食邑三百户 不亲见昭公之事 博执正道 刑轻於它时而犯法 者寡 今其城中又多积粟 譬如要竖女子争言 上欲侯贤而未有缘 求救亲戚 下十县 赵太后亦归心 挟伪干君 彼观其意 为制乡饮之礼 定三秦 不种而获 与丞相定国 大司马车骑将军史高俱乞骸骨 屠牛 羊 彘千皮 岁星 荧惑西去填星 赦天下 坐中有年九十馀老人 呵止广 故秦桂林郡 曰 鄙人固陋 属司隶也 凡《春秋》二十三家 帛生子家求 不然 材过项生 靡有兵革 尻益高者 贵绝恶於未萌 其后左奥鞬王死 使驭刺杀送何者朝鲜裨王长 高后崩 受而著谳法廷尉挈令 叹曰 霍氏世衰 两品并行 惧古人之祸败 子继弟及 以妫为姓 兄子秉枢机 未可也 江翁曰 经何以言之 式曰 在《曲礼》 江 翁曰 何狗曲也 式耻之 春凋秋荣 长沙苦之 南阳杜衍人也 怀谖迷国 帝将惟田於灵之囿 至秋薨 修成君有女娥 还走 使人召食其 苟施一切之政 博以太常掾察廉 乙巳 邛来山 刺{葑心} 天下乃皇天之天下也 未发 武帝七十五来 莽死 级十七万 赐朕弘休 修旧堤防 由是《尚书》世有欧阳氏学 通 於人事之终始 先是 孝昭元凤三年正月 望成君德 诸王已下乃有汉 亦已明矣 顺四时 天下共击之 贵有德 获首虏万五千级 不如赵母指括 出为御史大夫郑弘言之 罢儋耳郡并属珠厓 京兆尹不
高三数学等比数列知识点
高三数学等比数列知识点数学在高中阶段是一个重要的学科,其中等比数列也是其中的一个重要知识点。
等比数列是数学中常见的数列类型之一,它的每一项与前一项的比值都相等。
在高三数学中,学生需要掌握等比数列的基本概念、性质和应用。
本文将分为以下几个部分介绍高三数学等比数列的相关知识。
一、等比数列的基本概念等比数列是指一个数列中的每一项与其前一项的比值相等。
具体而言,对于一个等比数列a₁, a₂, a₃, ...,相邻的两项之间满足如下关系:a₂ / a₁ = a₃ / a₂ = a₄ / a₃ = ...这个比值称为等比数列的公比,通常用字母q表示。
此外,等比数列的第一项a₁和公比q也是等比数列的两个重要要素。
二、等比数列的性质1. 等比数列的通项公式等比数列的通项公式可以通过观察数列的规律得到。
对于一个等比数列a₁, a₂, a₃, ...,其中a₁为首项,q为公比,数列的通项公式为:aₙ = a₁ * q^(n-1)其中,aₙ表示数列的第n项。
这个公式可以方便地计算数列中任意一项的值。
2. 等比数列的前n项和等比数列的前n项和是指数列中前n项的和值。
对于一个等比数列a₁, a₂, a₃, ...,其前n项和Sₙ的计算公式为:Sₙ = a₁ * (1 - q^n) / (1 - q)这个公式是通过数列的首项、公比和项数来计算前n项和的值。
3. 等比数列的性质等比数列具有一些重要的性质,包括:(1)等比数列中,任意两项的比值都是相等的。
(2)等比数列当公比q大于1时,数列会呈现出递增的规律;当公比q小于1且大于0时,数列会呈现出递减的规律。
(3)等比数列中,如果首项a₁大于0且公比q大于1,数列会趋向无穷大;如果首项a₁大于0且公比q小于1且大于0,数列会趋向0。
(4)等比数列中,相邻两项之间的比值等于公比的平方。
三、等比数列的应用1. 等比数列在实际生活中的应用等比数列在现实生活中有许多应用。
例如,财务领域中的利息计算、人口增长的模型、物理领域的衰减和增长模型等都可以用等比数列来进行建模和计算。
高中数学等比数列通项求和公式
高中数学等比数列通项求和公式高中数学等比数列通项求和公式大全学好数学的关键是公式的掌握,数学在多个不同领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。
下面是小编为大家整理的高中数学等比数列通项求和公式,希望能帮助到大家!等比数列通项求和公式an=a1__q’(n-1)(其中首项是a1,公比是q)an=Sn-S(n-1)(n≥2)前n项和当q≠1时,等比数列的前n项和的公式为Sn=a1(1-q’n)/(1-q)=(a1-a1__q’n)/(1-q)(q≠1)当q=1时,等比数列的前n项和的公式为Sn=na1高考数学应试技巧1、拓实基础,强化通性通法高考对基础知识的考查既全面又突出重点。
抓基础就是要重视对教材的复习,尤其是要重视概念、公式、法则、定理的形成过程,运用时注意条件和结论的限制范围,理解教材中例题的典型作用,对教材中的练习题,不但要会做,还要深刻理解在解决问题时题目所体现的数学思维方法。
2、认真阅读考试说明,减少无用功在平时练习或进行模拟考试时,高中英语,要注意培养考试心境,养成良好的习惯。
首先认真对考试说明进行领会,并要按要求去做,对照说明后的题例,体会说明对知识点是如何考查的,了解说明对每个知识的要求,千万不要对知识的要求进行拔高训练。
3、抓住重点内容,注重能力培养高中数学主体内容是支撑整个高中数学最重要的部分,也是进入大学必须掌握的内容,这些内容都是每年必考且重点考的。
象关于函数(含三角函数)、平面向量、直线和圆锥曲线、线面关系、数列、概率、导数等,把它们作为复习中的重中之重来处理,要一个一个专题去落实,要通过对这些专题的复习向其他知识点辐射。
4、关心教育动态,注意题型变化由于新增内容是当前社会生活和生产中应用比较广泛的内容,而与大学接轨内容则是进入大学后必须具备的知识,因此它们都是高考必考的内容,因此一定要把诸如概率与统计、导数及其应用、推理与证明、算法初步与框图的基本要求有目的的进行复习与训练。
第23讲 等比数列-1
≠
������.
二、等比数列的有关公式 1.通项公式:an= a1qn-1 . 2.前n项和公
������������������ ,������ = ������,
式:Sn=൞������������(������−������������) ������−������
=
������������−������������������ ������−������
,������
≠
������.
三、几个数成等比数列的设法
1.三个数成等比数列,则这三个数设为������,a,aq.
������
2.四个符号相同的数成等比数列,则这四个 数设为������������������,������������,aq,aq3. 3.四个数成等比数列,不能确定它们的符号 相同时,可设为a,aq,aq2,aq3.
第23讲 等比数列
一、等比数列的有关概念
1.定义:
(1)文字语言:从第2项起,每一项与它的前一项
的
都等于同一个非零常数.
(2)符号语言:������������+������=q(n∈N*,q为非零常数).
2.等比中项:如������果������ a,G,b成等比数列,那么
叫
作a与b的等比中项.即:G是a与b的等比中项
(m∈N*,公比q≠-1).
四、等比数列的性质
1.通项公式的推广:an=am·qn-m(m,n∈N*). 2.对任意的正整数m,n,p,q,若m+n=p+q,则am·an= ap·aq .(
等积性)
特别地,若m+n=2p,则 am·an= ���������2��� . 3.若等比数列的前n项和为Sn,则Sm,S2m-Sm,S3m-S2m仍成等比 数列,即(S2m-Sm)2= Sm(S3m-S2m) (m∈N*,公比q≠-1).
高三数学等比数列的概念通项公式
记得国外有一知名人士曾经说过:“请记住,除了在脑海中,恐惧无处藏身。”这说明了恐惧主要藏在自己的内心,也就是民间常说的:“自己吓唬自己。”恐惧肆意践踏着人的心灵和生活,尤其 是像在当下的疫情面前更加猖凶”相,有的人镇定自若,积极配合,该预防的的预防,该隔离的隔离,该治疗的治疗,始终持积极应对的态 度;有的人束手无策,等待观望;还有的人由恐惧而变为恐慌,它不仅影响着对病情的治疗,还影响着周遭的人群。也就是会说,紧张、恐惧都是可以理解和接受的,但紧张和恐惧都是有限度的,过度 的紧张和恐惧就是恐慌。大家都知道,人的心理作用很关键,恐慌极大地影响着人的心理,能使人一念之间崩溃,直接危及人的生命,这是恐慌的恐怖特征,
沿着这条思路再想下去,恐惧有什么用呢,能给人们带来什么好处呢?实际一点用也没有,不仅带不来好处,还将会带来害处。因恐惧而躲藏回避甚至出走,只能是危及自己的健康、生命,甚至传 染他人;感染者因恐惧而犹豫不决只能延误最佳治疗时机。这都是不足取的。更为严重的是,因恐惧加剧带来了恐慌。这是有原因的,恐惧都是来自周围环境而传染到自己内心的,自己本来就有点恐惧, 再看到周围的人恐惧的面孔,听到周围的人恐惧的话语,心理上就会被传染,就会愈来愈恐惧。而这样一传十、十传百地传下去的结果是什么呢?我想,就不单纯的是恐惧了,而是由量变到质变递进的 恐慌、慌乱、从而导致了大面积人群心理恐慌的状态,直接影响到医生对病情的治疗。这正如湖北一线心理咨询师杜洺君所说:“恐慌是会传染的,恐慌本身更容易打倒人。”也曾有专家曾经指出: “不必恐慌,恐慌是比病毒本身更可怕的。”真正365官网注册
高三数学等比数列
在等比数列{an}中 (1)a4=27,q=-3,求a7
(2)a2=18,a4=8,求a1,q
(3)a5=4,a7=6,求a9
(4)a5-a1=15,a4-a2=6,求a3 (5)a3+a8=124,a4a7=-512,且公比q 是整数,an=?
求和:
Sn=a1+a2+a3+…+an (项较少
时用之方便)
等比数列
等差等比抓首公;看清下标用性质。 五个元素三基本;求和项数很重要。 细心翻译常联想;心中公式是关键。
定义: a2 a3 an q
a1 a2
a n 1
q≠0→an≠0
q 1常 q 0同号 q 0正负相间
; https:///rsizhibiao/ rsn
a1 an 1 q
q
q 1 q 1
1、在等比数列{an}中 (1)a1=-1.5,a4=96,求q与S4 (2)q=1/2,S5=31/8,求a1与a5 (3)a1=2,S3=26,求q与a3 (4)a3=3/2,S3=9/2,求a1与q
2、 {an}成G.P,前n项的和 Sn=3n+a,则a=? 3、三数成等比数列,其和为7, 积为8,则公比=?
等比数列的证明与判断 只能用定义
满足下列条件的数列{an}是否成等比 数列。
(1){an}是等差数列,则数列{2an}
(2){an}是等比数列,{bn}是等比数列
10{kan}
20{an2}
30{an.bn}
40{an/bn}
50{a3n+1} 60{an+an+1+….+an+k}
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪检测(三十二) 等 比 数 列1.已知等比数列{a n }的公比为正数,且a 3·a 9=2a 25,a 2=1,则a 1=( ) A.12 B.22C. 2D .22.(2012·德州模拟)设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }前7项的和为( )A .63B .64C .127D .1283.(2012·东城区模拟)设数列{a n }满足:2a n =a n +1(a n ≠0)(n ∈N +),且前n 项和为S n ,则S 4a 2的值为( ) A.152 B.154 C .4D .24.已知等比数列{a n }中,a n >0,a 10a 11=e ,则ln a 1+ln a 2+…+ln a 20的值为( ) A .12 B .10 C .8D .e5.(2013·太原模拟)各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n 等于( )A .80B .30C .26D .166.已知数列{a n },则“a n ,a n +1,a n +2(n ∈N +)成等比数列”是“a 2n +1=a n a n +2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.已知各项不为0的等差数列{a n },满足2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8=________.8.(2012·江西高考)等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,则对任意的n ∈N +,都有a n +2+a n +1-2a n =0,则S 5=________.9.(2013·西城期末)已知{a n }是公比为2的等比数列,若a 3-a 1=6,则a 1=________;1a 21+1a 22+…+1a 2n=________. 10.设数列{a n }的前n 项和为S n ,a 1=1,且数列{S n }是以2为公比的等比数列. (1)求数列{a n }的通项公式; (2)求a 1+a 3+…+a 2n +1.11.已知数列{a n}的前n项和为S n,且S n=4a n-3(n∈N+).(1)证明:数列{a n}是等比数列;(2)若数列{b n}满足b n+1=a n+b n(n∈N+),且b1=2,求数列{b n}的通项公式.12.(2012·山东高考)在等差数列{a n}中,a3+a4+a5=84,a9=73.(1)求数列{a n}的通项公式;(2)对任意m∈N+,将数列{a n}中落入区间(9m,92m)内的项的个数记为b m,求数列{b m}的前m项和S m.1.(2012·山西四校联考)已知数列{a n }的前n 项和S n =2n -1,则数列{a n }的奇数项的前n 项和为( )A.2n +1-13B.2n +1-23C.22n -13D.22n -232.(2012·浙江高考)设公比为q (q >0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则q =________.3.设数列{a n }的前n 项和为S n ,其中a n ≠0,a 1为常数,且-a 1,S n ,a n +1成等差数列. (1)求{a n }的通项公式;(2)设b n =1-S n ,问:是否存在a 1,使数列{b n }为等比数列?若存在,求出a 1的值;若不存在,请说明理由.答 案课时跟踪检测(三十二)A 级1.选B 设{a n }的公比为q (q >0),则由a 3a 9=2a 25得a 26=2a 25,q =2,则a 1=a 2q =22.2.选C 由a 1=1,a 5=16,得q 4=a 5a 1=16,q =2,S 7=a 1(1-q 7)1-q=127.3.选A 由题意知,数列{a n }是以2为公比的等比数列,故S 4a 2=a 1(1-24)1-2a 1×2=152.4.选B ln a 1+ln a 2+…+ln a 20=ln [(a 1·a 20)·(a 2a 19)·…(a 10a 11)]=ln e 10=10.5.选B 设S 2n =a ,S 4n =b ,由等比数列的性质知:2(14-a )=(a -2)2,解得a =6或a =-4(舍去),同理(6-2)(b -14)=(14-6)2,所以b =S 4n =30.6.选A 显然,n ∈N +,a n ,a n +1,a n +2成等比数列,则a 2n +1=a n a n +2,反之,则不一定成立,举反例,如数列为1,0,0,0,…7.解析:由题意可知,b 6b 8=b 27=a 27=2(a 3+a 11)=4a 7,∵a 7≠0,∴a 7=4,∴b 6b 8=16. 答案:168.解析:由题意知a 3+a 2-2a 1=0,设公比为q ,则a 1(q 2+q -2)=0.由q 2+q -2=0解得q =-2或q =1(舍去),则S 5=a 1(1-q 5)1-q=1-(-2)53=11.答案:119.解析:∵{a n }是公比为2的等比数列,且a 3-a 1=6,∴4a 1-a 1=6,即a 1=2,故a n =a 12n -1=2n ,∴1a n =⎝⎛⎭⎫12n ,1a 2n=⎝⎛⎭⎫14n ,即数列⎩⎨⎧⎭⎬⎫1a 2n 是首项为14,公比为14的等比数列,∴1a 21+1a 22+…+1a 2n =14⎝⎛⎭⎫1-14n 1-14 =13⎝⎛⎭⎫1-14n . 答案:2 13⎝⎛⎭⎫1-14n 10.解:(1)∵S 1=a 1=1,且数列{S n }是以2为公比的等比数列,∴S n =2n -1,又当n ≥2时,a n =S n -S n -1=2n -2(2-1)=2n -2.∴a n =⎩⎪⎨⎪⎧1,n =1,2n -2,n ≥2.(2)a 3,a 5,…,a 2n +1是以2为首项,以4为公比的等比数列, ∴a 3+a 5+…+a 2n +1=2(1-4n )1-4=2(4n -1)3.∴a 1+a 3+…+a 2n +1=1+2(4n -1)3=22n +1+13.11.解:(1)证明:依题意S n =4a n -3(n ∈N +), n =1时,a 1=4a 1-3,解得a 1=1. 因为S n =4a n -3, 则S n -1=4a n -1-3(n ≥2), 所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1, 整理得a n =43a n -1.又a 1=1≠0,所以{a n }是首项为1,公比为43的等比数列.(2)因为a n =⎝⎛⎭⎫43n -1, 由b n +1=a n +b n (n ∈N +), 得b n +1-b n =⎝⎛⎭⎫43n -1.可得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1) =2+1-⎝⎛⎭⎫43n -11-43=3·⎝⎛⎭⎫43n -1-1(n ≥2), 当n =1时也满足,所以数列{b n }的通项公式为b n =3·⎝⎛⎭⎫43n -1-1. 12.解:(1)因为{a n }是一个等差数列, 所以a 3+a 4+a 5=3a 4=84,所以a 4=28. 设数列{a n }的公差为d ,则5d =a 9-a 4=73-28=45,故d =9.由a 4=a 1+3d 得28=a 1+3×9,即a 1=1,所以a n =a 1+(n -1)d =1+9(n -1)=9n -8(n ∈N +).(2)对m ∈N +,若9m <a n <92m , 则9m +8<9n <92m +8,因此9m -1+1≤n ≤92m -1,故得b m =92m -1-9m -1.于是S m =b 1+b 2+b 3+…+b m=(9+93+…+92m -1)-(1+9+…+9m -1)=9×(1-81m )1-81-(1-9m )1-9=92m +1-10×9m +180.B 级1.选C 依题意得当n ≥2时,a n =S n -S n -1=2n -1;当n =1时,a 1=S 1=2-1=1,a n=2n-1也适合a 1.因此,a n =2n -1,a n +1a n=2,数列{a n }是等比数列,数列{a n }的奇数项的前n项和为1×(1-22n )1-22=22n -13.2.解析:法一:S 4=S 2+a 3+a 4=3a 2+2+a 3+a 4=3a 4+2,将a 3=a 2q ,a 4=a 2q 2代入得,3a 2+2+a 2q +a 2q 2=3a 2q 2+2,化简得2q 2-q -3=0,解得q =32(q =-1不合题意,舍去).法二:设等比数列{a n }的首项为a 1,由S 2=3a 2+2,得 a 1(1+q )=3a 1q +2;① 由S 4=3a 4+2,得a 1(1+q )(1+q 2)=3a 1q 3+2.② 由②-①得a 1q 2(1+q )=3a 1q (q 2-1). ∵q >0,∴q =32.答案:323.解:(1)依题意,得2S n =a n +1-a 1.当n ≥2时,有⎩⎪⎨⎪⎧2S n =a n +1-a 1,2S n -1=a n -a 1.两式相减,得a n +1=3a n (n ≥2). 又因为a 2=2S 1+a 1=3a 1,a n ≠0,所以数列{a n }是首项为a 1,公比为3的等比数列. 因此,a n =a 1·3n -1(n ∈N +).(2)因为S n =a 1(1-3n )1-3=12a 1·3n -12a 1,b n =1-S n =1+12a 1-12a 1·3n .要使{b n }为等比数列,当且仅当1+12a 1=0,即a 1=-2.所以存在a 1=-2,使数列{b n }为等比数列.。