八年级下册期中考试数学试卷(有答案)
八年级下学期数学期中考试试卷含答案(共5套,人教版)
人教版八年级第二学期期中考试试卷数学试题校区 班级 姓名本试卷考试时间为:90分钟 满分为:100分一、选择题(每题3分,共24分)1.下列各组数据中的三个数,可作为三边长构成直角三角形的是A .4,5,6B .2,3,4C .11,12,13D .8,15,17 2.方程0)1()23(22=++--x x x 的一般形式是A .0552=+-x x B . 0552=++x x C . 05-52=+x x D . 052=+x 3.用配方法解方程2410x x --=,方程应变形为A .2(2)3x +=B .2(2)5x += C .122=-)(x D .2(2)5x -=4.2016年国内某地产公司投资破8亿元,连续两年增长后,2018年国内地产投资破9.5亿元, 设这两年平均地产投资年平均增长率为x ,根据题意,所列方程中正确的是A .819.52=+)(xB .8-19.52=)(xC .9.5218=+)(xD .9.5182=+)(x 5.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,且DE ∥AC ,CE ∥BD ,若AC =2,则四边形OCED的周长为A .16B .8C .4D .25题图 6题图 7题图6.如图,△ABC 中,AB =AC =12,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长是A .20B .16C .13D .127.如图,在平行四边形ABCD 中,AB=3,AD =5,∠BCD 的平分线交BA 的延长线于点E ,则AE 的长为 A .3 B .2.5 C .2 D .1.58.为了研究特殊四边形,李老师制作了这样一个教具(如下左图):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、 B 与D 两点之间分别用一根橡皮筋拉直固定. 课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如下右图). 观察所得到的四边形,下列判断正确的是 A .∠BCA =45° B .BD 的长度变小 C .AC =BD D .AC ⊥BDA BCDDCBA →二、填空题(每题3分,共24分)9.若关于x 的方程042=-+-a x x 有两个不相等的实数根,写出一个满足条件的整数a 的值:a =____________.10.如下图,作一个以数轴的原点为圆心,长方形对角线为半径的圆弧,交数轴于点A ,则点A 表示的数是____________.11.在平面直角坐标系中,四边形AOBC 是菱形。
2024年人教版八年级数学下册期中考试卷(附答案)
2024年人教版八年级数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在直角三角形中,如果一个角是30度,那么它的对边长度是斜边长度的多少?A. 1/2B. 1/3C. 1/4D. 1/63. 下列哪个选项是平行四边形的性质?A. 对边相等B. 对角相等C. 对角线互相平分D. 所有选项都正确4. 下列哪个选项是正方形的性质?A. 对边平行B. 四个角都是直角C. 对角线相等D. 所有选项都正确5. 下列哪个选项是圆的性质?A. 半径相等B. 直径相等C. 圆心到圆上任意一点的距离相等D. 所有选项都正确二、判断题5道(每题1分,共5分)1. 勾股定理只适用于直角三角形。
()2. 平行四边形的对角线互相平分。
()3. 正方形的对角线相等且互相垂直。
()4. 圆的半径是圆心到圆上任意一点的距离。
()5. 圆的直径是圆上任意两点之间的距离。
()三、填空题5道(每题1分,共5分)1. 勾股定理的表达式是:a^2 + b^2 = ______。
2. 平行四边形的对角线互相平分,所以它的对角线长度是______。
3. 正方形的四个角都是______度。
4. 圆的半径是圆心到圆上______的距离。
5. 圆的直径是圆上______点之间的距离。
四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。
2. 简述平行四边形的性质。
3. 简述正方形的性质。
4. 简述圆的性质。
5. 简述圆的直径和半径之间的关系。
五、应用题:5道(每题2分,共10分)1. 在直角三角形ABC中,已知AC = 6cm,BC = 8cm,求AB的长度。
2. 在平行四边形ABCD中,已知AB = 10cm,BC = 8cm,求CD的长度。
八年级下学期期中考试数学试卷(含有答案)
八年级下学期期中考试数学试卷(含有答案)一.单选题。
(每小题4分,共40分)1.已知x >y ,则下列不等式中,不成立的是( )A.3x >3yB.x -9>y -9C.﹣x >﹣yD.﹣x2<﹣y2 2.下列各式从左到右的变形是因式分解的是( )A.(x -3)(x+1)=x 2-2x -3B.x 2-xy=x (x -y )C.ab+bc+d=b (a+c )+dD.6x 2y=3xy•2x 3.若分式x -1x的值为0,则x 的值是( )A.1B.﹣1C.0D.24.把多项式2a 2-4a 分解因式,应提取的公因式是( ) A.a B.2 C.a 2 D.2a5.已知两个不等式的解集在数轴上如图所示,那么组成的不等式组的解集是( ) A.x >1 B.x ≥﹣1 C.﹣3<x ≤﹣1 D.x >﹣3(第5题图) (第6题图) (第10题图) 6.如图,将△COD 绕点O 按顺时针方向旋转一定角度后得到△AOB ,旋转角为( ) A.∠AOB B.∠BOC C.∠AOC D.∠COD 7.在下列分式的变形中,从左到右一定正确的是( ) A.a b =a+1b+1 B.2a 2b =ab C.a b =a 2b 2 D.a b =acbc 8.下列各式中能用平方差公式因式分解是( )A.﹣4a 2+b 2B.x 2+4C.a 2+c 2-2acD.﹣a 2-b 2 9.如果把xyx+y 中x ,y 的值都扩大2倍,那么这个分式的值( ) A.不变 B.缩小到原来的12 C.扩大4倍 D.扩大2倍10.如图,一次函数y=kx+b 的图象经过点A (﹣1,﹣2)和B (﹣2,0),一次函数y=2x 的图象经过点A ,则不等式2x ≤kx+b 的解集为( )A.x ≤﹣1B.x ≤﹣2C.x ≥1D.﹣2≤x <﹣1 二.填空题。
(每小题4分,共24分) 11.因式分解:a 3-4a 2= 。
12.要使分式2x -5有意义,则x 的取值范围应满足的条件是 .13.已知x+y=5,xy=2,则x 2y+xy 2的值是 .14.如图,将周长为8的△DEF 沿EF 方向平移3个单位长度得到△ABC ,则四边形ABFD 的周长为 .(第14题图)15.若a+1a =4,则a 2+1a 2= . 16.若1a +1b =5,则分式2a -5ab+2b﹣a+3ab -b的值为 .(填序号)①第3分时,汽车的速度是40千米/时;②从第3分到第6分,汽车行驶了120千米;③第12分时,汽车的速度是0千米/时;④从第9分到12分,汽车的速度从60千米/时减少到0千米/时. 三、解答题。
北师大版八年级下册数学期中考试试题(含答案)
北师大版八年级下册数学期中考试试卷一、单选题1.下列图形既是轴对称图形又是中心对称图形的是A .B .C .D .2.若a <b ,则下列结论不一定成立的是A .11a b -<-B .22a b <C .33a b ->-D .22a b <3.在三角形内部,且到三角形三边距离相等的点是A .三角形三条中线的交点B .三角形三条高线的交点C .三角形三条角平分线的交点D .三角形三边垂直平分线的交点4.不等式组2131x x +≥-⎧⎨<⎩的解集在数轴上表示正确的是A .B .C .D .5.用反证法证明命题:“已知△ABC ,AB =AC ,求证:∠B <90°.”第一步应先假设A .∠B≥90°B .∠B >90°C .∠B <90°D .AB≠AC6.在△ABC 中,若∠A ∶∠B ∶∠C =3∶1∶2,则其各角所对边长之比等于A 1∶2B .1∶2C .12D .2∶17.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE8.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是().A.B.C.D.9.不等式组32210x ax+>⎧⎨-≤⎩,有解,则a的取值范围是A.a≤3B.a<3.5C.a<4D.a≤510.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为A.4B.6C.D.8二、填空题11.不等式3x+2<8的解集是_____.12.“全等三角形的对应边相等”的逆命题是:__.13.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,则x<________.14.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B 关于原点O对称,则ab=_____.15.如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于点D、E,若∠DAE=50°,则∠BAC=____.16.若关于x ,y 的二元一次方程组3+1+33x y a x y =⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为______.17.安排学生住宿,若每间住4人,则还有15人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为___________18.如图,直线y =-x +m 与y =nx +b (n≠0)的交点的横坐标为-2,有下列结论:①当x =-2时,两个函数的值相等;②b =4n ;③关于x 的不等式nx +b >0的解集为x >-4;④x >-2是关于x 的不等式-x +m >nx +b 的解集,其中正确结论的序号是____.(把所有正确结论的序号都填在横线上)三、解答题19.(1)解不等式4x 32x 1-<+,并把解集表示在数轴上.(2)解不等式组()322442x x x x +>⎧⎨--≥⎩,并写出它的整数解.20.如图,在平面直角坐标系中, ABC 的三个顶点坐标分别为A(1,1),B(4,0),C(4,4)(1)图中线段AB 的长度为________;(2)按下列要求作图:①将 ABC 向左平移4个单位,得到 111A B C ;②将 111A B C 绕点1B 逆时针旋转90º,得到 222A B C21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.22.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.23.已知关于x,y的不等式组523414x k xx x+≤-⎧⎪⎨⎛⎫-≥-⎪⎪⎝⎭⎩,(1)若该不等式组的解为233x≤≤,求k的值;(2)若该不等式组的解中整数只有1和2,求k的取值范围.24.甲、乙两家超市以相同的价格出售同样的商品,五一期间,为了吸引顾客,各自推出了不同的优惠方案,在甲超市累计购买商品超出了400元后,超过部分按原价七折优惠;在乙超市购买商品只按原价的八折优惠;设顾客累计购物x元(x>400)在甲,乙两个超市所支付的费用分别为y1元,y2元.(1)写出y1,y2与x之间的关系式.(2)试比较顾客到哪家超市购物更优惠?说明你的理由.25.如图1,一副三角板的两个直角重叠在一起,∠A=30°,∠C=45°△COD固定不动,△AOB绕着O点逆时针旋转α°(0°<α<180°)(1)若△AOB绕着O点旋转图2的位置,若∠BOD=60°,则∠AOC=________;(2)若0°<α<90°,在旋转的过程中∠BOD+∠AOC的值会发生变化吗?若不变化,请求出这个定值;(3)若90°<α<180°,问题(2)中的结论还成立吗?并说明理由;参考答案1.D2.D3.C4.D5.A6.D7.C8.A9.C10.B11.x<2【解析】利用不等式的基本性质,将两边不等式同时减去2再除以3即可.【详解】解:不等式3x+2<8,移项得,3x<6,系数化为1得,x<2,故答案为:x<2.12.三边对应相等的三角形是全等三角形【详解】命题“全等三角形的对应边相等”的题设是:如果两个三角形是全等三角形,结论是:这两个三角形的对应边相等则此命题的逆命题是:三边对应相等的三角形是全等三角形故答案为:三边对应相等的三角形是全等三角形.13.1【详解】解: 由一次函数y=kx+b的图象可知,当x<1时,函数的图象在x轴上方,当y>0时,x<1.故答案为:1.14.12【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,∴a=﹣4,b=﹣3,则ab=12,故答案为12.15.115°.【详解】解:∵DM,EN分别垂直平分AB和AC,∴DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∠DAB+∠B+∠EAC+∠C+∠DAE=180°,∵∠DAE=50°,∴2(∠B+∠C)=130°,解得,∠B+∠C=65°,∴∠BAC=115°.故答案为115°.16.a<4【详解】解:31(1){33(2)x y ax y+=++=将(1)+(2)得444x y a+=+,则4144a ax y++==+<2∴a<4.17.8、9、10【解析】若每间住4人,则余15人无住处,设有x间宿舍,则有学生4x+15人;若每间住6人,则恰有一间不空也不满,说明人数应在1和5之间.即学生人数与(x-1)间宿舍住的人数的差,应该大于或等于1,并且小于或等于5.根据这个不等关系就可以列出不等式组.【详解】设有x间宿舍,则有学生4x+15人,∴第n间宿舍有4x+15-6(x-1)=21-2x,∵第n间宿舍不空也不满,∴1≤21-2x≤5,解得:8≤x≤10,∴宿舍的房间数量可能为8、9、10,故答案为8、9、10.18.①②③【解析】①由两直线交点的横坐标为-2,即可得出当x=-2时,两个函数的值相等,结论①正确;②由点(-4,0)在直线y=nx+b 上,可得出b=4n ,结论②正确;③当x >-4时,直线y=nx+b 在x 轴上方,由此可得出关于x 的不等式nx+b >0的解集为x >-4,结论③正确;④观察函数图象,根据函数图象的上下位置关系可得出x >-2是关于x 的不等式-x+m <nx+b 的解集,结论④错误.综上所述即可得出结论.【详解】解:①∵直线y=-x+m 与y=nx+b (n≠0)的交点的横坐标为-2,∴当x=-2时,两个函数的值相等,结论①正确;②∵点(-4,0)在直线y=nx+b 上,∴-4n+b=0,∴b=4n ,结论②正确;③∵当x >-4时,直线y=nx+b 在x 轴上方,∴关于x 的不等式nx+b >0的解集为x >-4,结论③正确;④∵当x >-2时,直线y=nx+b 在直线y=-x+m 的上方,∴x >-2是关于x 的不等式-x+m <nx+b 的解集,结论④错误.故答案为:①②③.19.(1)2x <,数轴见解析;(2)13x -< ,整数解为0,1,2,3【解析】(1)先求出不等式的解集,再在数轴上表示出来即可.(2)先求出每个不等式的解集,再求出不等式组的解集,即可求得整数解.【详解】解:(1)移项得,4213x x -<+,合并同类项得,24x <,系数化为1得,2x <.在数轴上表示为:(2)()322442x x x x +>⎧⎪⎨--⎪⎩①② ,解①得:1x >-,解②得:3x ,故不等式的解集为:13x -< ,整数解为0,1,2,3.20.(1;(2)①见解析,②见解析【解析】(1)根据两点间距离公式求解即可得到AB 的值;(2)①根据平移的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可;②分别作出A 1,C 1的对应点A 2,C 2即可.【详解】解:(1)∵A(1,1),B(4,0)∴AB ==;(2)作图如下:21.见解析.【详解】解:如图所示,∠AOB 的平分线与线段CD 的垂直平分线的交点P 就是所求的点:22.证明见解析.【详解】试题分析:直接利用平行线的性质得出∠1=∠3,进而利用角平分线的定义结合互余的性质得出∠B=∠BDE,即可得出答案.试题解析:∵DE∥AC,∴∠1=∠3,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠3,∵AD⊥BD,∴∠2+∠B=90°,∠3+∠BDE=90°,∴∠B=∠BDE,∴△BDE是等腰三角形.考点:等腰三角形的判定;平行线的性质.23.(1)k=﹣4;(2)﹣4<k≤﹣1.【详解】分析:(1)求出不等式组的解集,把问题转化为方程即可解决问题;(2)根据题意把问题转化为不等式组解决;详解:(1)523414x k xx x①②+≤-⎧⎪⎨⎛⎫-≥-⎪⎪⎝⎭⎩由①得:53k x-≤,由②得:23 x≥∵不等式组的解集为23 3x≤≤,∴533k -=,解得k=−4(2)由题意5233k -≤<,解得4 1.k -<≤-点睛:考查一元一次不等式组的整数解,解一元一次不等式组,掌握不等式组解集的求法是解题的关键.24.(1)y 1=0.7x+120;y 2=0.8x ;(2)当x=1200时,甲乙两家超市购买一样优惠;当400<x<1200时,乙超市购买更优惠;当x>1200时,甲超市购买更优惠.理由见解析.【分析】(1)根据题意写出y 1,y 2与x 之间的关系式;(2)分y 1=y 2,y 1>y 2,y 1<y 2三种情况列出方程或不等式,解方程或不等式即可.【详解】解:(1)y 1=400+(x-400)×0.7=0.7x+120,y 2=0.8x ;(2)由y 1=y 2,即0.7x+120=0.8x ,解得x=1200,由y 1>y 2,即0.7x+120>0.8x ,解得x <1200,由y 1<y 2得,0.7x+120<0.8x ,解得x >1200,因为x >400,所以,当x=1200时,甲,乙哪个超市购买所支付的费用相同,当400<x <1200时,乙超市购买更合算,当x >1200时,甲超市购买购买更合算.25.(1)120°;(2)∠BOD+∠AOC=180°,理由略.【详解】解:(1)如图2中,∵∠BOD=60°,∠DOC=∠AOB=90°,∴∠AOD=∠BOC=30°,∴∠AOC=∠AOD+∠DOC=30°+90°=120°,故答案为120°.(2)结论:即在旋转的过程中∠BOD+∠AOC=180°,不发生变化.理由:如图2中,若0°<α<90°,∵∠AOD=α,∴∠AOC=∠AOD+∠DOC=90°+α,∠BOD=∠DOC-∠AOD=90°-α,∴∠BOD+∠AOC=90°+α+90°-α=180°,即在旋转的过程中∠BOD+∠AOC=180°,不发生变化.(3)结论仍然成立.理由:如图3中,∵∠AOB=∠COD=90°,又∵∠BOD+∠AOC+∠AOB+∠COD=360°,∴∠BOD+∠AOC=360°-∠AOB-∠COD=360°-90°-90°=180°.。
数学八下期中考试题及答案
数学八下期中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.5B. √2C. 0.33333...D. 3答案:B2. 一个正数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A3. 已知一个三角形的两边长分别为3和4,第三边长x满足的条件是:A. 1 < x < 7B. 0 < x < 7C. 1 < x < 5D. 0 < x < 5答案:A4. 函数y=2x+3的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C5. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A6. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 0D. 5或-5答案:D7. 下列哪个选项是偶数?A. 2B. 3C. 5D. 7答案:A8. 一个数的倒数是1/3,那么这个数是:A. 3B. 1/3C. 3/1D. 1答案:A9. 一个数的平方是9,那么这个数可能是:A. 3B. -3C. 9D. 3或-3答案:D10. 一个数的立方是-8,那么这个数是:A. 2B. -2C. 8D. -8答案:B二、填空题(每题4分,共20分)1. 一个数的平方根是4,那么这个数是______。
答案:162. 一个数的立方根是2,那么这个数是______。
答案:83. 一个数的倒数是2,那么这个数是______。
答案:1/24. 一个数的绝对值是5,那么这个数可能是______。
答案:5或-55. 一个数的相反数是-7,那么这个数是______。
答案:7三、解答题(共50分)1. 解方程:2x - 3 = 7。
(10分)答案:x = 52. 计算:(3x^2 - 2x + 1) - (x^2 + 3x - 4)。
(10分)答案:2x^2 - 5x + 53. 已知一个三角形的两边长分别为5和12,求第三边长的取值范围。
八年级数学下册期中考试卷含答案
八年级数学下册期中考试卷含答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)11的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3B .m ≤3且m ≠2C .m <3D .m <3且m ≠25A(a,b)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 7.已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于( ) A .1 B .2 C .3D .48.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4)AOB DEOF S S 四边形∆=中正确的有( )A .4个B .3个C .2个D .1个9.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ).A .BD =DC ,AB =AC B .∠ADB =∠ADC ,BD =DCC .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC10.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A .20°B .35°C .40°D .70°二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x <52(1)x -+|x-5|=________.282=_______.364________.4.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________。
2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)
20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。
2. 3x+5y=10,求y的值。
3. 4x2y=6,求x的值。
4. 5x+3y=15,求y的值。
5. 2x4y=8,求x的值。
6. 3x+5y=10,求y的值。
7. 4x2y=6,求x的值。
8. 5x+3y=15,求y的值。
9. 2x4y=8,求x的值。
10. 3x+5y=10,求y的值。
三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。
八年级数学下册期中考试卷(附答案)
八年级数学下册期中考试卷(附答案)一、选择题(本大题共10小题,每小题4分,总计40分) 139x +x 的取值范围是( ) A .3x ≥-B .3x ≥-且2x ≠C .3x >-且2x ≠D .3x ≤-且2x ≠2.如图,从一个大正方形中裁去面积为6cm 2和15cm 2的两个小正方形,则留下阴影部分的面积为( )A .2610B .221cmC .2215D .263.对于任意实数x ,多项式257x x -+的值是( ) A .负数B .非正数C .正数D .无法确定正负的数4.关于x 的一元二次方程224(41)0x m x m +++=有实数根,则m 的最小整数值为( ) A .1B .0C .-1D .-25.已知ABC 的三边长分别为a ,b ,c ,且关于x 的一元二次方程2()20c b x ax c b +-+-=有两个相等的实数根,若2|5|(5)0a b -+-=,则ABC 的形状为( ) A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形6.我国南宋数学家杨辉所著的《田亩比类乘除算法》中有这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?”意思是:一块矩形田地的面积为864平方步,只知道它的宽比长少12步,问它的长和宽各多少步?设这块田地的宽为x 步,则所列的方程正确的是( )A .()12864x x +-=B .()12864x x ++=C .()12864x x -=D .()12864x x +=7.如图,长方形纸片ABCD 中, 点E 是CD 的中点,连接AE ; 按以下步骤作图:①分别 以点A 和E 为圆心, 以大于12AE 的等长为半径作弧,两弧相交于点M 和N ;②作直线MN ,且直线MN 刚好经过点B .若2DE =,BC 则的长度是( )A .2B 3C .23D .48.满足下列条件时,ABC 不是直角三角形的是( ) A .::3:4:5A B C ∠∠∠= B .22A B C ∠=∠=∠ C .34AB =3BC =,5AC =D .20A ∠=︒,70B ∠=︒9.将三个大小不同的正方形如图放置,顶点处两两相接,若正方形A 的边长为4,正方形C 的边长为3,则正方形B 的面积为( )A .25B .5C .16D .1210.我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形与中间的小正方形EFGH 拼成的一个大正方形ABCD ,连接AC ,交BE 于点P ,如图所示,若正方形ABCD 的面积为28,7AE EB +=,则CFP AEP S S -的值是( )A .3B .3.5C .4D .7二、填空题(本大题共4小题,每小题5分,总计20分)1122x x -4x +x =_______.12.若m ,n 分别是一元二次方程2410x x -+=的两个根,则23m m n -+的值为______. 13.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为20cm ,在容器内壁离容器底部4cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为25cm ,则该圆柱底面周长为 _____.14.对于一元二次方程20ax bx c ++=(a ≠0),下列说法: ①若0a b c ++=,则240b ac -≥;②若方程20ax c +=有两个不相等的实根,则方程20ax bx c ++=必有两个不相等的实根; ③若c 是方程20ax bx c ++=的一个根,则一定有10ac b ++=成立; ④若0x 是一元二次方程20ax bx c ++=的根,则()2204b ac a x b -=+. 其中正确的是_________.三、(本大题共2小题,每小题8分,总计16分) 15.计算: 804595-(2)221(31)(2)123-⎛⎫+--- ⎪⎝⎭16.已知:53x +=53y -=,求代数式22x y -的值. 四、(本大题共2小题,每小题8分,总计16分)17.已知关于x 的方程2(2)20x k x k -++=. (1)求证:无论k 取任意实数值,方程总有实数根.(2)若等腰三角形ABC 的一边1a =,另两边长b 、c 恰是这个方程的两个根,求ABC 的周长. 18.密云水库是首都的“生命之水”,作为北京重要的水源地,保持水质成为重中之重.如图所示,点A 和点B 分别表示两个水质监测站,点C 表示某一时刻监测人员乘坐的监测船的位置.其中,B 点在A 点的西南方向,船只C 在A 点南偏东25°方向和B 点北偏东75°方向的交汇处,求此时从船只C 看A 、B 两个水质监测站的视角ACB ∠的度数.五、(本大题共2小题,每小题10分,总计20分) 19.a b a b ,因为22a ba b aba b =-=-,所以构造“对偶式”再将其相乘可以有效地将a b和a b ()()22222322222222++==+--+像这样,通过分子、分母同乘一个式子把分母中的根号化去,叫做分母有理化.根据以上材料,理解并运用材料提供的方法,解答下列问题: (1)对偶式23+23之间的关系是___________;A .互为相反数B .互为倒数C .绝对值相等 (2)已知5252x y ==-+22x y xy +的值; (3)2482x x --=.248x x t --=) 20.某大型批发商场平均每天可售出某款商品3000件,售出1件该款商品的利润是10元. 经调查发现,若该款商品的批发价每降低1元,则每天可多售出1000件.为了使每天获得的利润更多,该批发商场决定降价x 元销售该款商品.(1)当x 为多少元时,该批发商场每天卖出该款商品的利润为40000元?(2)若按照这种降价促销的策略,该批发商场每天卖出该款商品的利润能达50000元吗?若能,请求出x 的值,若不能,请说明理由.六、(本大题共1小题,每小题12分,总计12分)21.定义:如果一元二次方程()200ax bx c a ++=≠满足0a b c ++=,那么我们称这个方程为“凤凰”方程.(1)若()200ax bx a a ++=≠有两个相等的正实数根,请你判断这个方程是否为“凤凰”方程? (2)已知关于x 的方程()22130m x x nx +-+=是“凤凰”方程,且两个实数根都是整数,求整数m的值.七、(本大题共1小题,每小题12分,总计12分)22.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.八、(本大题共1小题,每小题14分,总计14分)23.如图1,长方形ABCD中,6AB=,8AD=,E为AD边上一点,3DE=,动点P从点B出发,沿B C D→→以1个单位/s作匀速运动,设运动时间为t.(1)当t为_________s时,ABP与CDE全等;(2)如图2,EF为AEP△的高,当点Р在BC边上运动时,EF的最小值是_________;(3)当点P在EC的垂直平分线上时,求出t的值.参考答案:题号 1 2 3 4 5 6 7 8 9 10答案 B A C B D D C A A B 1-12.313.30cm14.①②15.(1804595 -453535-=25=(2)221(31)(2)123-⎛⎫+--- ⎪⎝⎭19221=+9=.16.解:∵53x +=53y -=, ∴5x y +=3x y -=∴()()225315x y x y x y -=+-=17.(1)解:∵()()2222424420k k k k k ∆=+-⨯=-+=-≥, ∴无论k 取任意实数值,方程总有实数根.(2)解:①当1a =的边为等腰三角形的底边时,b c =, 此时方程有两个相等的实数根, ∴()220k ∆=-=,解得2k =,此时方程为2440x x -+=,解得122x x ==, ∴ABC 的周长为5;②当1a =的边为等腰三角形的腰时,1b a ==或1c a ==, 此时方程有一个根为1,代入方程,可得()1220k k -++=,解得1k =, 此时方程为2320x x -+=,解得11x =,22x =, ∵1、1、2不能满足两边之和大于第三边, ∴此情况舍去.综上所述:ABC 的周长为5.18.解:解:∵B 点在A 点的西南方向,船只C 在A 点南偏东25°方向和B 点北偏东75°方向,∴452570BAC ∠=︒+︒=︒,754530ABC ∠=︒-︒=︒, ∴180180703080ACB BAC ABC ∠=︒-∠-∠=︒-︒-︒=︒.答:从船只C 看A 、B 两个水质监测站的视角ACB ∠的度数是80°. 19.(1)解:∵((2323431⨯=-=, ∴对偶数23+23之间的关系是互为倒数,故选:B ; (2)由题意得()()5252525252x +=--+,()()5252525252y -==+-+,∴251x y xy +==,, ∴22x y xy +()xy x y =+ 5=(3248x x t --=2482x x --=,得()2482x x t ---=,解得8t =,2488x x --2482x x --②, ∴①+②,得22410x -, 两边同时平方得()424100x -=, 解得=1x -,经检验,=1x -是原方程的解.20.(1)解:该批发商场决定降价x 元销售该款商品,依题意得,()()300010001040000x x +-=,即27100x x -+= 解得:122,5x x ==,答:当x 为2或5时,该饮料批发商店每天卖出该款饮料的利润为40000元 (2)解:()()300010001050000x x +-=, 即27200x x -+=∵24494200b ac ∆=-=-⨯<,原方程无解,∴按照这种降价促销的策略,该饮料批发商店每天卖出该款饮料的利润不能达到50000元. 21.解: (1)解:∵()200ax bx a a ++=≠有两个相等的实数根, ∴()()224220b a b a b a ∆=-=+-=,∵这两个相等的实数根为正数,∴02bx a-=>, ∴a ,b 异号, ∴20b a -≠,∴20b a +=,即0a b a ++=, ∴这个方程是“凤凰”方程; (2)解:方程整理得:()230m x nx m -++=,∵此方程是“凤凰”方程, ∴3230m n m m n -++=+-=, ∴32n m =-,∵()()2222243412324129n m m n m m m m m ∆=--=-+=--+=, ∴()()32393233262626m n n m x m m m --±-±-±-±===---,∴1=1x ,23mx m =-, ∵两个实数根都是整数, ∴整数m 的值为0或2或4或6. 22.解:(1)如图1,三角形为所求;(2)如图2,三角形为所求;(3)如图3,正方形为所求.23.(1)解:如图,∵四边形ABCD是长方形,∴90AB CD B D=∠=∠=︒,,当点P在BC边上,且3BP DE==时,ABP CDE△≌△,∵BP t=,∴3t=;当点P在CD边上,若点P与点C重合,满足90AB CD B D=∠=∠=︒,,此时BP DE>,∴ABP与CDE不全等,若点P与点D重合,满足90AB CD BAD D=∠=∠=︒,,此时AP DE>,∴ABP与CDE不全等,综上所述,当3t=时,ABP CDE△≌△;故答案为:3;(2)解:∵6AB=,8AD=,3DE=,∴835AE AD DE=-=-=,当点P在BC边上运动,165152AEPS=⨯⨯=△,∵EF为AEP△的高,∴1152AEPAP EF S⋅==△,∴AP•EF=40,∴EF随AP的增大而减小,∴22222525AP BP AB BP BP +=+=+ ∴AP 随BP 的增大而增大,当点P 与点C 重合时BP 最大,此时AP 也最大,而EF 则最小, 如图,点P 与点C 重合,∵9068B AB BC AD ∠=︒===,,, ∴226810AC =+=, ∵1122PAE AC EF AE AB S ⋅=⋅=△, ∴1065EF =⨯, 解得3EF =, ∴EF 的最小值为3, 故答案为:3;(3)解:设EC 的垂直平分线为直线MN ,如图,点P 在BC 边上,且在直线MN 上,连接PE ,则8PE PC t ==-,作PG AD ⊥于点G ,则90∠=︒PGE , ∵AD BC ∥,PG AD CD AD ⊥⊥,, ∴6PG CD ==, 同理AG BP t ==,5GE t =-,∵222GE PG PE +=, ∴222(5)6(8)t t -+=-,第 11 页 共 11 页 解得12t =; 如图,点P 在CD 边上,且在直线MN 上,连接PE ,则8PE PC t ==-,14PD t =-,∵222DE PD PE +=, ∴2223(14)(8)t t +-=-, 解得474t =,综上所述,t 的值为12或474.。
八年级数学下册期中测试卷及完整答案
八年级数学下册期中测试卷及完整答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是()A.2-B.2 C.12D.12-2.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±3 3.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>04.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣345.已知32xy=⎧⎨=-⎩是方程组23ax bybx ay+=⎧⎨+=-⎩的解,则+a b的值是()A.﹣1 B.1 C.﹣5 D.56.估计()-⋅1230246的值应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间7.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.39.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .6410.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的不等式组5310x a x -≥-⎧⎨-<⎩无解,则a 的取值范围是________. 2.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为__________.3.分解因式:3x -x=__________.4.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为________.5.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =________.6.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是________.三、解答题(本大题共6小题,共72分)1.解分式方程(1)21324x x x -+-=0 (2)13222x x x-+=--2.先化简,再求值:a 3a 2++÷22a 6a 9a -4++-a 1a 3++,其中a=(3-5)0+-113⎛⎫ ⎪⎝⎭-2(-1).3.已知关于x 的方程x 2-(m +2)x +(2m -1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.4.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.5.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?6.某开发公司生产的 960 件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用 20 天,而甲工厂每天加工的数量是乙工厂每天加工的数量的23,公司需付甲工厂加工费用为每天 80 元,乙工厂加工费用为每天120 元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天 15 元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、B5、A6、B7、D8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、a ≥22、﹣33、x (x+1)(x -1)4、25、2456、85三、解答题(本大题共6小题,共72分)1、(1)x=﹣1;(2)x=23.2、-33a +,;12-.3、(1)略;(2)4或4+.4、(1)DE=3;(2)ADB S 15∆=.5、略6、(1)甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品. (2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.。
人教版八年级下册数学期中考试试卷含答案
人教版八年级下册数学期中考试试题一、单选题1)A .3B .2C .2D2④中,最简二次根式是()A .①②B .③④C .①③D .①④3x 的取值范围是()A .x >12B .x≥12C .x <12D .x >04.下列各组数中,能够组成直角三角形的是()A .3,4,5B .4,5,6C .5,6,7D .6,7,85.如图,已知四边形ABCD 是平行四边形,下列结论中错误的是()A .当AB=BC 时,它是菱形B .当AC ⊥BD 时,它是菱形C .当AC=BD 时,它是矩形D .当∠ABC=90°时,它是正方形6.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是()A .4B .6C .8D .107.如图,在平行四边形ABCD 中,∠A +∠C =160°,则∠B 的度数是()A .130°B .120°C .100°D .90°8.若1≤x≤4,则化简1x -)A .25x -B .3C .32x-D .—39.如图,在四边形ABCD 中,AB ∥CD ,要使四边形ABCD 是平行四边形,下列可添加的条件不正确的是()A .AD =BCB .AB =CDC .AD ∥BC D .∠A =∠C10.如图,△ABC 和△DCE 都是边长为3的等边三角形,点B ,C ,E 在同一条直线上,连接BD ,则BD 长()A B .C .D .二、填空题11.若最简二次根式132-+b a 与a b -4是同类二次根式,则a+b =___.12=______.13.如图,在平面直角坐标系xOy 中,若菱形ABCD 的顶点A ,B 的坐标分别为(﹣3,0),(2,0),点D 在y 轴上,则点C 的坐标是_______.14.如图,已知△ABC 中,AB =5cm ,BC =12cm ,AC =13cm ,那么AC 边上的中线BD 的长为____________cm.15.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过顶点B 、D 作DE a ⊥于点E 、BF a ⊥于点F ,若4DE =,3BF =,则EF 的长为______.16.如图,菱形ABCD 的边长为2,∠ABC=45°,则点D 的坐标为_____.三、解答题17.计算:(1)37-()37()2(22)(2)221()-01π-()-|2218.38a -172a -42a x x a --有意义,x 的取值范围是什么?19.如图,点B 、E 、C 、F 在一条直线上,AB =DF ,AC =DE ,BE =FC .(1)求证:△ABC ≌△DFE ;(2)连接AF、BD,求证:四边形ABDF是平行四边形.20.如图,在四边形ABCD中,AD∥BC且AD=9cm,BC=6cm,点P、Q分别从点A、C同时出发,点P以1cm/s的速度由A向D运动,点Q以2cm/s的速度由C向B运动.问几秒后直线PQ将四边形ABCD截出一个平行四边形?21.如图,E,F,G,H分别是边AB,BC,CD,DA的中点.(1)判断四边形EFGH的形状,并证明你的结论;(2)当BD,AC满足什么条件时,四边形EFGH是正方形.(不要求证明)22.如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.23.在平面内,正方形ABCD与正方形CEFH如图放置,连接DE,BH,两线交于M,求证:(1)BH=DE;(2)BH⊥DE.24.如图,在菱形ABCD中,AC为对角线,点E、F分别是边BC、AD的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.25.如图,在Rt△ABC中,∠B=90°,BC3C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,△DEF为直角三角形?请说明理由.参考答案1.B【详解】B.2.C【解析】判断一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】是最简二次根式;=,被开方数含分母,不是最简二次根式;5=①③是最简二次根式.故选C.【点睛】本题考查了最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3.A【详解】由题意得,2x﹣1>0,解得12x .故选A.点睛:分析:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.根据被开方数大于等于0,分母不等于0列式计算即可得解.4.A【解析】解:A、∵32+42=9+16=25;52=25,∴32+42=52,则此选项线段长能组成直角三角形;B、∵42+52=16+25=41;62=36,∴42+52≠62,则此选项线段长不能组成直角三角形;C、∵52+62=25+36=61;72=49,∴52+62≠72,则此选项线段长不能组成直角三角形;D、∵62+72=36+49=85;82=64,∴62+72≠82,则此选项线段长不能组成直角三角形.故选:A.5.D【解析】A.根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B.∵四边形ABCD是平行四形,当AC⊥BD时,它是菱形,故B选项正确;C.根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,故C选项正确;D.有一个角是直角的平行四边形是矩形,不一定是正方形,故D选项错误;综上所述,符合题意是D选项;故选D.6.C【解析】∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=12AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=8.故选C.7.C【解析】【分析】根据平行四边形的性质可得:∠A=∠C,∠A+∠B=180°,再根据∠A+∠C=160°计算出∠A 的度数,进而可算出∠B的度数.【详解】∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180︒,∵∠A+∠C=160︒,∴∠A=80︒,∴∠B=180︒−80︒=100︒.故选C.【点睛】本题考查平行四边形的性质,对角相等,对边平行.8.A【解析】分析:根据x 的取值范围可知1-x <0,x-4<0,再根据绝对值的性质和二次根式的性质化简即可.详解:因为2816x x -+=(x-4)2∴原式可化为1x --因为1≤x≤4所以1-x <0,x-4<0,所以1x -=1x --=x-1-(4-x )=x-1-4+x =2x-5故选A.点睛:此题主要考查了的非负数的化简,关键是利用绝对值的性质和二次根式的性质求解即可.9.A 【解析】【分析】根据平行四边形的判定方法,逐项判断即可.【详解】解:A 、当AB ∥CD ,AD =BC 时,四边形ABCD 可能为等腰梯形,所以不能证明四边形ABCD 为平行四边形;B 、AB ∥CD ,AB =DC ,一组对边分别平行且相等,可证明四边形ABCD 为平行四边形;C 、AB ∥CD ,AD ∥BC ,两组对边分别平行,可证明四边形ABCD 为平行四边形;D 、∵AB ∥CD ,∴∠A +∠D =180°,∵∠A =∠C ,∴∠C +∠D =180°,∴AD ∥BC ,∴四边形ABCD 为平行四边形;故选:A .【点睛】本题主要考查平行四边形的判定方法,熟练掌握平行四边形的判定方法是解题的关键.10.C 【解析】【分析】根据等边三角形的性质、等腰三角形的性质和三角形的外角的性质可以发现∠BDE=90°,再进一步根据勾股定理进行求解.【详解】解:∵△ABC 和△DCE 都是边长为3的等边三角形,∴∠DCE=∠CDE=60°,BC=CD=3.∴∠BDC=∠CBD=30°.∴∠BDE=90°.∴=故选:C .【点睛】此题综合运用了等边三角形的性质、等腰三角形的性质、三角形的外角的性质和勾股定理.11.2【解析】【分析】根据同类二次根式的定义:被开方数相同的二次根式,列方程,即可解答.【详解】解:∵最简二次根式132-+b a 与a b -4是同类二次根式,∴31224b a b a -=⎧⎨+=-⎩,解得:11a b =⎧⎨=⎩,则a+b =2,故答案为:2.【点睛】本题考查了同类二次根式:把各二次根式化为最简二次根式后若被开方数相同,那么这样的二次根式叫同类二次根式.12.1【解析】【详解】分析:先根据二次根式的性质进行化简,再合并同类二次根式即可得解.=21|211=-=|.故答案为1.(0)0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩.13.(5,4).【解析】【分析】利用菱形的性质以及勾股定理得出DO 的长,进而求出C 点坐标.【详解】解:∵菱形ABCD 的顶点A ,B 的坐标分别为(﹣3,0),(2,0),点D 在y 轴上,∴AB=5,∴DO=4,∴点C 的坐标是:(5,4).故答案为(5,4).14.132【解析】【分析】先根据勾股定理的逆定理判断形状,即可得到结果.【详解】52+122=132∴△ABC 是直角三角形,∴AC边上的中线BD的长为132 cm.【点睛】解答本题的关键是熟练掌握勾股定理的逆定理:两边的平方和等于第三边的平方,那么这样的三角形是直角三角形.同时熟记直角三角形斜边的中线等于斜边的一半.15.1或7【解析】【分析】如图1或2,证明△ABF≌△DAE,得到BF=AE=3,AF=DE=4,即可解决问题.【详解】如图1,∵四边形ABCD为正方形,∴∠BAD=90°,AB=AD;∵BF⊥EF,DE⊥EF,∴∠FBA+∠FAB=∠FAB+∠DAE,∴∠FBA=∠DAE;在△ABF与△DAE中,∠FBA=∠DAE,AB=AD,∠BAF=∠ADE,∴△ABF≌△DAE(ASA),∴BF=AE=3,AF=DE=4,∴EF=3+4=7;如图2,同理可证△ABF≌△DAE,∴BF=AE=3,AF=DE=4,∴EF=4−3=1;故答案为:7或1.【点睛】该题以正方形为载体,以考查正方形的性质、全等三角形的判定及其性质的应用为核心构造而成;解题的关键是深入把握题意,准确找出图形中隐含的等量关系.16.(22+,2).【解析】【分析】直接利用菱形的性质结合锐角三角三角函数关系得出D 点坐标即可.【详解】解:过点D 作DE x ⊥轴,垂足为E .∵菱形的边长为2,∠ABC=45°,∴CO=DC=2,∠DCE=45°,在Rt CDE △中,,CE DE =2224CE DE CD +==2,CE DE ∴==22,OE OC CE ∴=+=+∴点D 坐标为()22,2.+故答案为()22,2.+17.(1)2(2)2【解析】【详解】分析:(1)根据平方差公式和二次根式的性质,进行二次根式的求和运算求解即可;(2)根据完全平方公式,零次幂的性质,绝对值的性质求解即可.详解:(1)3(3(2-2(2)21)-01π-()-|2点睛:此题主要考查了实数的运算,关键是利用乘方公式、二次根式的性质、零次幂的性质和绝对值的性质进行计算.18.a =5;5≤x ≤10【解析】【详解】试题分析:先根据二次根式的定义,列方程求出a 次根式的定义列出不等式组,求出x 的取值范围即可.∴3a -8=17-2a∴a =52020{50x x -≥-≥解得:510x ≤≤.19.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由SSS 证明△ABC ≌△DFE 即可;(2)连接AF 、BD ,由全等三角形的性质得出∠ABC=∠DFE ,证出AB ∥DF ,即可得出结论.【详解】详解:证明:()1BE FC = ,BC EF ∴=,在ABC 和DFE 中,AB DF AC DE BC EF =⎧⎪=⎨⎪=⎩,ABC ∴≌()DFE SSS ;()2解:如图所示:由()1知ABC ≌DFE ,ABC DFE ∴∠=∠,//AB DF ∴,AB DF = ,∴四边形ABDF 是平行四边形.点睛:本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.20.2或3秒【解析】【分析】设点P,Q 运动的时间为ts ,分别表示出CQ 、BQ 、AP 、PD 的长,然后分为BQ=AP 和CQ=PD 两种情况构成平行四边形求解即可.【详解】设点P,Q 运动的时间为ts.依题意得:CQ=2t ,BQ=6-2t ,AP=t,PD=9-t.①当BQ=AP 时,四边形APQB 是平行四边形.即6-2t=t,解得t=2.②当CQ=PD时,四边形CQPD是平行四边形,即2t=9-t,解得t=3.∴经过2或3秒后,直线PQ将四边形ABCD截出一个平行四边形.【点睛】此题考查了平行四边形的判定方法及有关面积问题.关键把握“化动为静”的解题思想和分类讨论思想.21.(1)四边形EFGH是平行四边形,证明见解析;(2)当BD=AC且BD⊥AC时,四边形EFGH是正方形.【解析】【分析】(1)根据三角形中位线的性质得出EF∥HG,且EF=HG,从而得出平行四边形;(2)要使邻边相等则需要满足BD=AC,要使有一个角为直角则需要满足BD⊥AC,从而得出正方形.【详解】解:(1)四边形EFGH是平行四边形.∵E,F分别是边AB、BC的中点,∴EF∥AC,且EF=12 AC同理:HG∥AC,且HG=12 AC∴EF∥HG,且EF=HG∴四边形EFGH是平行四边形.(2)同(1)得到四边形EFGH为平行四边形,且EH=GH=12AC=12BD,∠EHG=90°,∴平行四边形EFGH为正方形.【点睛】此题考查了中点四边形,以及正方形的判定,熟练掌握中位线定理是解本题的关键.22.(1)见解析;(2)当BC=AF时,四边形ABFC是矩形,理由见解析【解析】【分析】(1)根据平行四边形的性质得到两角一边对应相等,利用AAS判定△ABE≌△FCE,从而得到AB=CF;(2)由已知可得四边形ABFC是平行四边形,BC=AF,根据对角线相等的平行四边形是矩形,可得到四边形ABFC 是矩形.【详解】(1)证明:∵四边形ABCD 是平行四边形∴AB ∥CD ,AB=CD∴BAE CFE ∠=∠,ABE FCE∠=∠∵E 为BC 的中点∴BE=EC∴△ABE ≌△FCE∴AB=CF.(2)解:当BC=AF 时,四边形ABFC 是矩形.理由如下:∵AB ∥CF ,AB=CF∴四边形ABFC 是平行四边形∵BC=AF∴四边形ABFC 是矩形.23.(1)证明见解析(2)证明见解析【解析】【详解】试题分析:(1)根据正方形的性质可得BC =CD ,CE =CH ,∠BCD =∠ECH =90°,然后求出∠BCH =∠DCE ,再利用“边角边”证明△BCH 和△DCE 全等,根据全等三角形对应边相等证明即可;(2)根据全等三角形对应角相等可得∠CBH =∠CDE ,然后根据三角形的内角和定理求出∠DMB =∠BCD =90°,再根据垂直的定义证明即可.试题解析:(1)在正方形ABCD 与正方形CEFH 中,BC =CD ,CE =CH ,∠BCD =∠ECH=90°,∴∠BCD +∠DCH =∠ECH +∠DCH ,即∠BCH =∠DCE ,在△BCH 和△DCE 中,{BC CDBCH DCE CE CH∠∠===,∴△BCH≌△DCE(SAS),∴BH=DE;(2)由(1)知△BCH≌△DCE∴∠CBH=∠EDC设BH,CD交于点N,则∠BNC=∠DNH∴∠CBH+∠BNC=∠EDC+∠DNH=90°∴∠DMN=180°-90°=90°∴BH⊥DE.【点睛】本题考查了全等三角形的判定与性质,正方形的性质,熟记性质并确定出全等三角形是解题的关键,也是本题的难点.24.(1)见详解;(2)【解析】【分析】(1)首先根据菱形的性质,得到AB=BC=AD=CD,∠B=∠D,结合点E、F分别是边BC、AD的中点,即可证明出△ABE≌△CDF.(2)证明出△ABC是等边三角形,结合题干条件在Rt△AEB中,∠B=60°,AB=4,即可求出AE的长.【详解】解:(1)证明:∵四边形ABCD是菱形,∴AB=BC=AD=CD,∠B=∠D.∵点E、F分别是边BC、AD的中点,∴BE=DF.在△ABE和△CDF中,∵AB=CD,∠B=∠D,BE=DF,∴△ABE≌△CDF(SAS).(2)∵∠B=60°,AB=BC,∴△ABC是等边三角形.∵点E是边BC的中点,∴AE ⊥BC .在Rt △AEB 中,∠B=60°,AB=4,∴.25.(1)证明见解析;(2)能,103t =;(3)52t =或4时,△DEF 为直角三角形.【解析】【分析】()1在DFC △中,90DFC ∠= ,30C ∠= ,根据30°角直角三角形的性质及已知条件即可证得结论;()2先证得四边形AEFD 为平行四边形,使▱AEFD 为菱形则需要满足的条件为AE=AD ,由此即可解答;() 390EDF ①∠=时,四边形EBFD 为矩形.在Rt △AED 中求可得2AD AE =,由此即可解答;90DEF ∠= ②时,由()2知//EF AD ,则得90ADE DEF ∠=∠= ,求得cos60AD AE =⋅ ,由此列方程求解即可;90EFD ∠= ③时,此种情况不存在.【详解】()1在DFC △中,90DFC ∠= ,30C ∠= ,2DC t =,DF t ∴=.又AE t = ,AE DF ∴=.()2能,AB BC ⊥ ,DF BC ⊥,//AE DF ∴.又AE DF =,∴四边形AEFD 为平行四边形.tan305AB BC =⋅== ,210AC AB ∴==.102AD AC DC t ∴=-=-.若使▱AEFD 为菱形,则需AE AD =,即102t t =-,103t =.即当103t =时,四边形AEFD 为菱形.()390EDF ∠= ①时,四边形EBFD 为矩形.在Rt AED △中,30ADE C ∠=∠= ,2AD AE ∴=.即1022t t -=,52t =.90DEF ∠= ②时,由()2四边形AEFD 为平行四边形知//EF AD ,90ADE DEF ∴∠=∠= .9060A C ∠=-∠= ,cos60AD AE ∴=⋅ .即11022t t -=,4t =.90EFD ∠= ③时,此种情况不存在.综上所述,当52t =秒或4秒时,DEF 为直角三角形.【点睛】本题考查了菱形的性质,考查了菱形是平行四边形,考查了菱形的判定定理,以及菱形与矩形之间的联系.难度适宜,计算繁琐.。
八年级数学下册期中考试卷(有答案)
1八年级数学下册期中考试卷(有答案)(满分120分,考试时间120分钟)一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,将正确项编号填在题后括号内. 1. 下列格式中是二次根式的是( )A.38 B. 1- C. 2 D. )0(<x x2. 下列各组数中,不能满足勾股定理的是( )A. 3,4,5B. 6,8,10C. 5,12,13D. 7,5,10 3. 已知一个平行四边形两邻边的长分别为4和7,那么它的周长为( ) A. 11 B. 18 C. 22 D. 28 4. 如图,矩形ABCD 的两条对角线相交于点O ,∠AOB = 60°, AO = 4,则AB 的长是( ) A. 4B. 5C. 6D. 85. 若代数式1-a 在实数范围内有意义,则a 的取值范围是( ) A. 0>a B. a ≥1 C. 0<a D. a ≤06. 下列二次根式中,属于最简二次根式的是( ) A.48 B.baC.44+aD.14 7. 在平行四边形、矩形、菱形、正方形中是轴对称图形的有( ) A. 4个 B. 3 个 C. 2个 D. 1个 8. 如图,在△ABC 中,AB = 8,BC = 10,AC = 6, 则BC 边上的高AD 为( ) A. 8 B. 9 C.524D. 109. 计算2343122÷⨯的结果是( ) A.22B. 33C. 32D. 2310. 顺次连接矩形四边中点得到的四边形一定是( )A. 正方形B. 矩形C. 平行四边形D. 菱形第4题图第11题图第8题图AB CD211. 如图△ABC 中,AB = AC ,点D ,E 分别是边AB ,AC 的中点,点G ,F 在BC 边上,四边形DEFG 是正方形. 若DE = 2cm ,则 AC 的长为 ( ) A. 2cmB. 52cmC. 4cmD. 8cm12. 如图在矩形ABCD 中,BC = 8,CD = 6,将△BCD 沿对角线BD 翻折,点C 落在点C ′处,BC ′交AD 于点E , 则△BD E 的面积为( )A. 475 B. 421C. 21D. 24二、填空题:本大题共6小题,每小题3分,共18分. 13. 化简:(3 )2 = .14. 已知菱形的两条对角线长分别是4和8,则菱形的面积为 . 15.“内错角相等,两直线平行.”的逆命题是.16. 计算2)252(-的结果是_______.17. 若直角三角形的两直角边长为a 、b ,且满足067=-+-b a ,则该直角三角形的斜边长为_______.(结果保留根号)18. 如图,正方形ABCD 的边长为5,E 是AB 上一点,且BE ∶AE = 1∶4,若P 是对角线AC 上一动点,则PB + PE 的最小值是_______.(结果保留根号)三、解答题:本大题共8小题,共66分. 解答应写出文字说明,证明过程或演算步骤. 19.(本小题满分6分)计算:23218+-第12题图第18题图320.(本小题满分6分)计算:3)8512(+21.(本小题满分8分)先化简再求值.yx y x +•⎪⎪⎭⎫ ⎝⎛+611,其中13,13-=+=y x .22.(本小题满分8分)如图,E 、F 是平行四边形ABCD 的对角线AC 上的两点,AE = CF .求证:四边形DEBF 是平行四边形.第22题图423.(本小题满分8分)如图,在△ABC 中,AD 是BC 边上的高,∠B = 45°,∠C = 60°,AD = 2,求BC 的长.(结果保留根号)24.(本小题满分10分)如图,在△ABC 中,AB = 5,BC = 6,BC 边上的中线AD = 4. 求AC 的长.D CBA第24题图D第23题图525.(本小题满分10分)如图,在平行四边形ABCD 中,M 、N 分别是边AD 、BC 边上的中点,且△ABM ≌△DCM ;E 、F 分别是线段BM 、CM 的中点. (1)求证:平行四边形ABCD 是矩形。
八年级数学下册期中测试卷及答案【完整版】
八年级数学下册期中测试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k <2.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒4.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3B .M =﹣1,N =3C .M =2,N =4D .M =1,N =46.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm7.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-8.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .9.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10.如图,AB ∥EF ,CD ⊥EF ,∠BAC=50°,则∠ACD=( )A .120°B .130°C .140°D .150°二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.3.因式分解:a 2-9=_____________.4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.6.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x =+-- (2)2531242x x x-=---2.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)10a b -+=.3.已知28x px ++与23x x q -+的乘积中不含3x 和2x 项,求,p q 的值.4.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长;(2)求△ADB 的面积.5.如图,某市有一块长为()3a b +米,宽为()2a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当3,2a b ==时的绿化面积?6.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系. 销售量y (千克) …34.8 32 29.6 28 … 售价x (元/千克) … 22.6 24 25.2 26 …(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、B7、D8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、03、(a+3)(a ﹣3)4、135°5、56、42.三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32x =- 2、1a b-+,-1 3、3p =,1q =.4、(1)DE=3;(2)ADB S 15∆=.5、(5a 2+3ab )平方米,63平方米6、(1)当天该水果的销售量为33千克;(2)如果某天销售这种水果获利150元,该天水果的售价为25元.。
八年级数学(下)期中试卷(含答案)
八年级数学(下)期中试卷(含答案)一、选择题:将你认为正确的答案选出填入答题表中,每小题3分,共27分1.在代数式,, +,,中,分式有()A.1个B.2个C.3个D.4个2.若分式的值为零,则x的值为()A.0 B.﹣2 C.2 D.﹣2或23.有一种细菌的直径为0.000 000 012米,将这个数用科学记数法表示为()A.12×108B.12×10﹣8C.1.2×10﹣8D.1.2×10﹣94.下列命题是假命题的是()A.平行四边形的对角线互相平分B.平行四边形的对角相等C.平行四边形是轴对称图形D.平行四边形是中心对称图形5.在平面直角坐标系中,在第四象限内有一点P,且点P到x轴的距离是4,到y轴的距离是5,则点P的坐标为()A.(4,﹣5)B.(4,5)C.(﹣5,﹣4)D.(5,﹣4)6.将分式方程=去分母后得到的整式方程,正确的是()A.x﹣2=2x B.x2﹣2x=2x C.x﹣2=x D.x=2x﹣47.对于函数y=(k>0),下列说法正确的是()A.y随x的增大而减小B.y随x的增大而增大C.当x<0时,y随x的增大而减小D.图象在第二、四象限内8.已知正比例函数y=kx(k≠0),函数值随x的增大而增大,则一次函数y=﹣kx+k的图象大致是()A. B.C.D.9.若直线y=2x+1经过点(m,n),则代数式4m﹣2n+1的值是()A.﹣1 B.1 C.2 D.﹣2二、填空题:将下列所需填的答案填入下表,每小题3分,共18分10.根据分式的基本性质填空:=.11.若分式方程=有增根,则这个增根是x=.12.写出同时具备下列两个条件的一次函数表达式(写出一个即可)(1)y随x的增大而减小;(2)图象经过点(0,2)13.直线y=﹣2x+6与两坐标轴围成的三角形面积是.14.点P(﹣5,﹣4)到x轴的距离是单位长度.15.已知如图,点P是反比例函数上的任意一点,过点P作x轴的垂线,垂足为A,连接OP.若△PAO的面积是3,那么该反比例函数在第二象限的表达式为.三、解答题:75分16.计算:(1)﹣(2)()3÷(﹣)2.17.先化简,再求值:(﹣)×,其中x=2.18.解方程(1)(2)+=.19.已知一个一次函数的图象与一个反比例函数的图象交于点P(﹣2,1)、Q(1,m).(1)分别求出这两个函数的表达式.(2)在同一平面直角坐标系中画出这两个函数的图象,根据图象回答,当x取何值时,一次函数的值大于反比例函数的值?20.计算×+1,并从0,1,2三个数中选一个合适的数代入求值.21.已知点P(2m+4,m﹣1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,﹣3)点,且与x轴平行的直线上.22.甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路匀速驶向C城.已知A、C两城的距离为360km,B、C两城的距离为320km,甲车比乙车的速度快10km/h,结果两辆车同时到达C城.设乙车的速度为xkm/h.(1)根据题意填写下表:行驶的路程(km)速度(km/h)所需时间(h)甲车360乙车320 x(2)求甲、乙两车的速度.23.小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?参考答案与试题解析一、选择题:将你认为正确的答案选出填入答题表中,每小题3分,共27分1.在代数式,, +,,中,分式有()A.1个B.2个C.3个D.4个【分析】依据分式的定义进行判断即可.【解答】解:分母中不含字母,故不是分式;分母中含有字母是分式;+分母不含字母,故不是分式;分母中含有字母是分式;中π是数字,不是字母,故不是分式.故选;B.【点评】本题主要考查的是分式的定义,掌握分式的定义是解题的关键.2.若分式的值为零,则x的值为()A.0 B.﹣2 C.2 D.﹣2或2【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【解答】解:由分子x2﹣4=0解得:x=±2.当x=2时分母x2﹣2x=4﹣4=0,分式没有意义;当x=﹣2时分母x2﹣2x=4+4=8≠0.所以x=﹣2.故选B.【点评】要注意分母的值一定不能为0,分母的值是0时分式没有意义.3.有一种细菌的直径为0.000 000 012米,将这个数用科学记数法表示为()A.12×108B.12×10﹣8C.1.2×10﹣8D.1.2×10﹣9【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 012=1.2×10﹣8.故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.下列命题是假命题的是()A.平行四边形的对角线互相平分B.平行四边形的对角相等C.平行四边形是轴对称图形D.平行四边形是中心对称图形【分析】根据平行四边形的对角相等,对角线互相平分可判断出A、B正确;再由平行四边形是中心对称图形可对C、D进行判断.【解答】解:A、∵平行四边形的对角线互相平分,∴此命题是真命题;B、∵平行四边形的对角相等,∴此命题是真命题;C、∵平行四边形是中心对称图形,不是轴对称图形,∴此命题是假命题;D、∵平行四边形是中心对称图形,∴此命题是真命题.故选C.【点评】本题考查的是命题与定理,熟知平行四边形的性质是解答此题的关键.5.在平面直角坐标系中,在第四象限内有一点P,且点P到x轴的距离是4,到y轴的距离是5,则点P的坐标为()A.(4,﹣5)B.(4,5)C.(﹣5,﹣4)D.(5,﹣4)【分析】根据第四象限内点的横坐标是正数,纵坐标是负数以及点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【解答】解:∵第四象限的点P到x轴的距离是4,到y轴的距离是5,∴点P的横坐标是5,纵坐标是﹣4,∴点P的坐标为(5,﹣4).故选D.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.6.将分式方程=去分母后得到的整式方程,正确的是()A.x﹣2=2x B.x2﹣2x=2x C.x﹣2=x D.x=2x﹣4【分析】分式方程两边乘以最简公分母x(x﹣2)即可得到结果.【解答】解:去分母得:x﹣2=2x,故选:A.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.对于函数y=(k>0),下列说法正确的是()A.y随x的增大而减小B.y随x的增大而增大C.当x<0时,y随x的增大而减小D.图象在第二、四象限内【分析】根据反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大进行解答.【解答】解:函数y=(k>0),图象是双曲线,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小.故选:C.【点评】此题主要考查了反比例函数的性质,关键是熟练掌握性质.8.已知正比例函数y=kx(k≠0),函数值随x的增大而增大,则一次函数y=﹣kx+k的图象大致是()A. B.C.D.【分析】由于正比例函数y=kx(k≠0)函数值随x的增大而增大,可得k>0,﹣k<0,然后,判断一次函数y=﹣kx+k的图象经过象限即可.【解答】解:∵正比例函数y=kx(k≠0)函数值随x的增大而增大,∴k>0,∴﹣k<0,∴一次函数y=﹣kx+k的图象经过一、二、四象限;故选A【点评】本题主要考查了一次函数的图象,掌握一次函数y=kx+b,当k>0,b>0时,图象过一、二、三象限;当k>0,b<0时,图象过一、三、四象限;k<0,b>0时,图象过一、二、四象限;k<0,b<0时,图象过二、三、四象限.9.若直线y=2x+1经过点(m,n),则代数式4m﹣2n+1的值是()A.﹣1 B.1 C.2 D.﹣2【分析】先把点(m,n)代入函数y=2x+1求出2m﹣n的值,再代入所求代数式进行计算即可.【解答】解:∵点(m,n)在函数y=2x+1的图象上,∴2m+1=n,即2m﹣n=﹣1,∴4m﹣2n+1=2(2m﹣n)+1=2×(﹣1)+1=﹣1.故选A.【点评】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.二、填空题:将下列所需填的答案填入下表,每小题3分,共18分10.根据分式的基本性质填空:=.【分析】根据分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,可得答案.【解答】解:分子除以(a﹣2),分母也除以(a﹣2),得=,故答案为:a﹣2.【点评】本题考查了分式的性质,分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变.11.若分式方程=有增根,则这个增根是x=2.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.【解答】解:∵分式方程=有增根,∴x﹣2=0∴原方程增根为x=2,故答案为2.【点评】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值12.写出同时具备下列两个条件的一次函数表达式(写出一个即可)y=﹣x+2(1)y随x的增大而减小;(2)图象经过点(0,2)【分析】设一次函数的解析式为y=kx+b,由一次函数的单调性即可得出k的取值范围,随便选取一个k值,再将点(0,2)代入一次函数解析式求出b值即可.【解答】解:设一次函数的解析式为y=kx+b,∵y随x的增大而减小,∴k<0.令k=﹣1,则函数解析式为y=﹣x+b,又∵点(0,2)在一次函数y=﹣x+b的图象上,∴2=b,∴一次函数的解析式为y=﹣x+2.故答案为:y=﹣x+2.【点评】本题考查了待定系数法求函数解析式以及一次函数的性质,解题的关键是由点的坐标利用待定系数法求出函数解析式.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的单调性求出一次项系数k的取值范围是关键.13.直线y=﹣2x+6与两坐标轴围成的三角形面积是9.【分析】首先求出直线y=﹣2x+6与x轴、y轴的交点的坐标,然后根据三角形的面积公式,得出结果.【解答】解:∵直线y=﹣2x+6中,﹣=﹣=3,b=6,∴直线与x轴、y轴的交点的坐标分别为A(3,0),B(0,6),∴故S△AOB=×3×6=9.故答案为:9.【点评】本题考查的是一次函数图象上点的坐标特点,即一次函数y=kx+b与x轴的交点为(﹣,0),与y轴的交点为(0,b).14.点P(﹣5,﹣4)到x轴的距离是4单位长度.【分析】求得P的纵坐标绝对值即可求得P点到x轴的距离.【解答】解:∵|﹣4|=4,∴P点到x轴的距离是4,故答案为4.【点评】此题主要考查点的坐标;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值.15.已知如图,点P是反比例函数上的任意一点,过点P作x轴的垂线,垂足为A,连接OP.若△PAO的面积是3,那么该反比例函数在第二象限的表达式为y=﹣(x<0).【分析】设比例函数的解析式为y=(k≠0),再根据反比例函数的图象在第二象限判断出k的符号,由反比例函数系数k的几何意义求出k的值即可.【解答】解:设比例函数的解析式为y=(k≠0),∵反比例函数的图象在第二象限,∴k<0,∵PA⊥x轴,S△PAO=3,∴=3,即k=﹣6,∴该反比例函数在第二象限的表达式为:y=﹣(x<0).故答案为:y=﹣(x<0).【点评】本题考查的是反比例函数系数k的几何意义,即反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.三、解答题:75分16.计算:(1)﹣(2)()3÷(﹣)2.【分析】(1)先通分,然后进行通分母的减法运算;(2)先进行乘方运算,然后把除法运算化为乘法运算,再约分即可.【解答】解:(1)原式=﹣=;(2)原式=÷==.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.(2)最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.17.先化简,再求值:(﹣)×,其中x=2.【分析】先把括号内根据分式的通分法则进行计算,根据约分法则把原式化简,代入已知数据计算即可.【解答】解:原式=×=×=,当x=2时,原式=1.【点评】本题考查的是分式的化简求值,掌握分式的通分法则和约分法则是解题的关键.18.解方程(1)(2)+=.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x2﹣3x=x2﹣8x+12,解得:x=,经检验x=是分式方程的解;(2)去分母得:6+3(x+1)=x+1,去括号得:6+3x+3=x+1,移项合并得:2x=﹣8,解得:x=﹣4,经检验x=﹣4是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.19.已知一个一次函数的图象与一个反比例函数的图象交于点P(﹣2,1)、Q(1,m).(1)分别求出这两个函数的表达式.(2)在同一平面直角坐标系中画出这两个函数的图象,根据图象回答,当x取何值时,一次函数的值大于反比例函数的值?【分析】(1)设出反比例函数关系式,利用代定系数法把P(﹣2,1)代入函数解析式即可.由于Q点也在反比例函数图象上,所以把Q点坐标代入反比例函数解析式中即可得到Q点坐标,求出m的值,利用待定系数法求一次函数解析式;(2)根据图象可得到答案,注意反比例函数图象与y轴无交点,所以分开看.【解答】解:(1)设反比例函数的解析式为y=∵反比例函数经过点P(﹣2,1),∴a=﹣2×1,∴a=﹣2,∴反比例函数的解析式为y=﹣,∵Q(1,m)在反比例函数图象上,∴m=﹣2,设一次函数的解析式为y=kx+b∵P(﹣2,1),Q(1,﹣2)在一次函数图象上∴,∴,∴一次函数的解析式为y=﹣x﹣1;(2)如图所示:由图可知:当0<x<1或x<﹣2时一次函数的值大于反比例函数的值.【点评】此题主要考查了利用待定系数法求反比例函数解析式与一次函数解析式,画函数图象,正确的识别图形是解题的关键.20.计算×+1,并从0,1,2三个数中选一个合适的数代入求值.【分析】把分式的分子分母因式分解,再约分,根据分式有意义的条件,选择x的值,再计算即可.【解答】解:原式=+1=+1=x,∵2x≠0且x(x﹣2)≠0,∴x≠0,2,∴x=1,∴原式=×1=.【点评】本题考查了分式的化简求值,以及分式有意义的条件:分母不为0,掌握分式的通分和约分是解题的关键.21.已知点P(2m+4,m﹣1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,﹣3)点,且与x轴平行的直线上.【分析】(1)根据横纵坐标的大小关系得出m﹣1﹣(2m+4)=3,即可得出m的值,进而得出P点坐标;(2)根据平行于x轴点的坐标性质得出m﹣1=﹣3,进而得出m的值,进而得出P点坐标.【解答】解:(1)∵点P(2m+4,m﹣1),点P的纵坐标比横坐标大3,∴m﹣1﹣(2m+4)=3,解得:m=﹣8,∴2m+4=﹣12,m﹣1=﹣9,∴点P的坐标为:(﹣12,﹣9);(2)∵点P在过A(2,﹣3)点,且与x轴平行的直线上,∴m﹣1=﹣3,解得:m=﹣2,∴2m+4=0,∴P点坐标为:(0,﹣3).【点评】此题主要考查了坐标与图形的性质,根据已知得出关于m的等式是解题关键.22.甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路匀速驶向C城.已知A、C两城的距离为360km,B、C两城的距离为320km,甲车比乙车的速度快10km/h,结果两辆车同时到达C城.设乙车的速度为xkm/h.(1)根据题意填写下表:行驶的路程(km)速度(km/h)所需时间(h)甲车360 x+10乙车320 x(2)求甲、乙两车的速度.【分析】(1)设乙的速度是x千米/时,那么甲的速度是(x+10)千米/时,根据时间=可求甲、乙两辆汽车所需时间;(2)路程知道,且同时到达,可以时间做为等量关系列方程求解.【解答】解:(1)甲的速度是(x+10)千米/时,甲车所需时间是,乙车所需时间是;行驶的路程(km)速度(km/h)所需时间(h)甲车360 x+10乙车320 x(2)乙的速度是x千米/时,甲的速度是(x+10)千米/时,依题意得:=,解得x=80,经检验:x=80是原方程的解,x+10=90,答:甲的速度是90千米/时,乙的速度是80千米/时.【点评】本题考查理解题意能力,关键是以时间做为等量关系,根据时间=,列方程求解.23.小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为15分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?【分析】(1)直接根据图象上所给的数据的实际意义可求解;(2)由图象可知,s是t的正比例函数,设所求函数的解析式为s=kt(k≠0),把(45,4)代入解析式利用待定系数法即可求解;(3)由图象可知,小聪在30≤t≤45的时段内s是t的一次函数,设函数解析式为s=mt+n (m≠0)把(30,4),(45,0)代入利用待定系数法先求得函数关系式,再根据求函数图象的交点方法求得交点坐标即可.【解答】解:(1)∵30﹣15=15,4÷15=∴小聪在天一阁查阅资料的时间和小聪返回学校的速度分别是15分钟,千米/分钟.(2)由图象可知,s是t的正比例函数设所求函数的解析式为s=kt(k≠0)代入(45,4),得4=45k解得k=∴s与t的函数关系式s=t(0≤t≤45).(3)由图象可知,小聪在30≤t≤45的时段内s是t的一次函数,设函数解析式为s=mt+n (m≠0)代入(30,4),(45,0),得解得∴s=﹣t+12(30≤t≤45)令﹣t+12=t,解得t=当t=时,S=×=3.答:当小聪与小明迎面相遇时,他们离学校的路程是3千米.【点评】主要考查了一次函数的实际运用和读图能力.从图象中获得所需的信息是需要掌握的基本能力,还要会熟练地运用待定系数法求函数解析式和使用方程组求交点坐标的方法.。
江苏苏州2024年八年级下学期期中数学试题+答案
初二年级调研试卷数学2024.04本卷由选择题、填空题和解答题组成,共27题,满分130分,调研时间120分钟. 注意事项:1.答题前,考生务必将学校、班级、姓名、调研号等信息填写在答题卡相应的位置上.2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效;如需作图,先用2B 铅笔画出图形,再用0.5毫米,黑色墨水签字笔描黑,不得用其他笔答题.3.考生答题必须答在答题卡相应的位置上,答在试卷和草稿纸上一律无效;一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将答案填涂在答题卡相应位置上)1.下面四个图形分别是苏州博物馆、苏州轨道交通、苏州银行和苏州电视台的标志,在这四个图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.从装有红球、白球、黑球的不透明袋子中任意摸出一个球,该球是红球,这个事件是( )A .必然事件B .随机事件C .不可能事件D .都有可能 3.若分式221x x ++有意义,则x 的取值范围是( ) A .2x >− B .12x >− C .2x ≠− D .12x ≠− 4.国际奥委会于2001年7月13日在莫斯科举行会议,通过投票确定2008年奥运会举办城市.在第二轮投票中,北京获得总计105张选票中的56票,得票率超过50%,取得了2008年奥运会举办权.在第二轮投票中,北京得票的频数是( )A .50%B .56105C .56D .105 5.1x =是关于x 的一元二次方程220x ax b ++=的解,则24a b +的值是( )A .1−B .1C .2−D .26.“孔子周游列国”是流传很广的故事.相传有一次他和学生到离他们住的驿站30里的书院参观,学生步行出发1小时后,孔子坐牛车出发,牛车的速度是步行的1.5倍,孔子和学生们同时到达书院.设学生步行的速度为每小时x 里,则可列方程为( )A .303011.5x x =+ B .30301.51x x =+ C .303011.5x x =− D .30301.51x x =−7.如果关于x 的一元二次方程210kx x −+=有实数根,则k 的取值范围是( ) A .14k >且0k ≠ B .14k <且0k ≠ C .14k ≤且0k ≠ D .14k < 8.如图,在矩形ABCD 中,点E 是CD 的中点,点F 在BD 上,3BF DF =,若4,3AB BC ==,则EF 的长为( )(第8题)A .1B .54C .32D .52二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上........) 9.根据市生态环境局发布的数据,2023年上半年,全市环境空气质量优良天数比率为80.7%.要调查市区环境空气质量状况,适合的调查方式是___________(填“普查”或“抽样调查”)。
八年级数学下册期中考试题(及答案)
八年级数学下册期中考试题(及答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.一次函数24y x =+的图像与y 轴交点的坐标是( )A .(0,-4)B .(0,4)C .(2,0)D .(-2,0)3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定 4.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣34 5.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( )A .k<5B .k<5,且k ≠1C .k ≤5,且k ≠1D .k>56.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .37.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE ⊥AB 于 E ,PF ⊥AC 于 F ,M 为 EF 中点,则 AM 的最小值为( )A .1B .1.3C .1.2D .1.58.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图,AB ∥CD ,点E 在线段BC 上,CD=CE,若∠ABC=30°,则∠D 为( )A .85°B .75°C .60°D .30°10.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .19二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__________. 3.9的算术平方根是________.4.如图,▱ABCD 中,AC 、BD 相交于点O ,若AD=6,AC+BD=16,则△BOC 的周长为________.5.如图,O 为数轴原点,A ,B 两点分别对应-3,3,作腰长为4的等腰△ABC ,连接OC ,以O 为圆心,CO 长为半径画弧交数轴于点M ,则点M 对应的实数为__________ .6.如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,AE=DF=2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为_______.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简:221-21-11a a a a a a ⎛⎫++÷ ⎪++⎝⎭,再从-1,0,1中选取一个数并代入求值.3.已知5a+2的立方根是3,3a +b -1的算术平方根是4,c 是13的整数部分,求3a-b+c 的平方根.4.如图,在▱ABCD 中,对角线 AC ,BD 相交于点 O ,过点 O 的一条直线分别交 AD ,BC 于点 E ,F .求证:AE=CF .5.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.6.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、B5、B6、A7、C8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、x(x+2)(x﹣2)2、-1或5或1 3 -3、3.4、1456、三、解答题(本大题共6小题,共72分)1、2x=2、13、3a-b+c的平方根是±4.4、略.5、(1)略;(2)112.5°.6、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.。
八年级 下册期中数学试卷附答案
八年级(下)期中数学试卷一、选择题(共6小题,每小题2分,满分12分)1.(2分)下列无理数中,在﹣2与1之间的是()A.﹣B.﹣C.D.2.(2分)下列运算中错误的是()A.•=B.÷=2 C. +=D.(﹣)2=3(2分)已知直角三角形的一个锐角为60度,斜边长为2,那么此直角三角形的周长是()3.A.2.5 B. 3 C. +2 D. +34.(2分)如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE 的长等于()A.8cm B.6cm C.4cm D.2cm5.(2分)如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD6.(2分)给出下列命题:①在直角三角形ABC中,已知两边长3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形;④△ABC中,若a:b:c=1::2,则这个三角形是直角三角形;其中,正确命题的个数为()A.1个B.2个C.3个D.4个二、填空题7.(3分)比较大小:.(填“>、<、或=”)8.(3分)若有意义,则x的取值范围是.9.(3分)若+(b+4)2=0,则点M(a,b)关于y轴的对称点的坐标为.10.(3分)古埃及人画直角方法:把一根长绳打上等距离的13个结,然后用桩钉成如图所示的一个三角形,其中一个角便是直角,请说明这种做法的根据.11.(3分)某地需要开辟一条隧道,隧道AB的长度无法直接测量.如图所示,在地面上取一点C,使点C均可直接到达A,B两点,测量找到AC和BC的中点D,E,测得DE的长为1200m,则隧道AB的长度为米.12.(3分)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是.13.(3分)如图所示,直线经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a 于点F,DE⊥a于点E.若DE=5,BF=3,则EF的长为.14.(3分)观察下列各式:①;②=3;③,…请用含n(n≥1)的式子写出你猜想的规律:.三、解答题(共4小题,满分20分)15.(5分)计算:×﹣6﹣3÷2.16.(5分)已知a=﹣1,b=+1,求a2+b2的值.17.(5分)如图是一个外轮廓为长方形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离.18.(5分)已知一个三角形的面积为12,一条边AB上的高是AB的,求AB的长.四、解答题(共4小题,满分28分)19.(7分)如图,Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在斜边AC上,与点B′重合,AD为折痕,求DB′的长.20.(7分)如图所示,在△ABC中,∠ABC=90°,AB=8,BC=6,若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,求线段DF的长.21.(7分)如图,矩形ABCD的对角线AC、BD交于点O,CE∥BD,DE∥AC.(1)证明:四边形OCED为菱形;(2)若AC=4,求四边形CODE的周长.22.(7分)一架方梯AB长25米,如图所示,斜靠在一面上:(1)若梯子底端离墙7米,这个梯子的顶端距地面有多高?(2)在(1)的条件下,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?五、解答题(共4小题,满分36分)23.(8分)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是A.矩形 B.菱形 C.正方形 D.无法确定(2)若四边形ABEF的周长为40,AE,BF相交于点O,且BF=10,试求①∠ABC的度数;②AE的长.24.(8分)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.25.(10分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.26.(10分)【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.求证:AM=AD+MC.【探究展示】(2)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,试判断AM=AD+MC是否成立?若成立,请给出证明,若不成立,请说明理由;【拓展延伸】(3)若(2)中矩形ABCD两边AB=6,BC=9,求AM的长.八年级(下)期中数学试卷参考答案与试题解析一、选择题(共6小题,每小题2分,满分12分)1.(2分)下列无理数中,在﹣2与1之间的是()A.﹣B.﹣C.D.【解答】解:A.,不成立;B.﹣2,成立;C.,不成立;D.,不成立,故选:B.2.(2分)下列运算中错误的是()A.•=B.÷=2 C. +=D.(﹣)2=3【解答】解:A、==,所以,A选项的计算正确;B、===2,所以B选项的计算正确;C、与不是同类二次根式,不能合并,所以C选项的计算错误;D、(﹣)2=3,所以D选项的计算正确.故选:C.(2分)已知直角三角形的一个锐角为60度,斜边长为2,那么此直角三角形的周长是()3.A.2.5 B.3 C. +2 D. +3【解答】解:解:如图所示,Rt△ABC中,∠A=30°,AB=2,故BC=AB=×2=1,AC===,故此三角形的周长是+3.故选:D.4.(2分)如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE 的长等于()A.8cm B.6cm C.4cm D.2cm【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=12cm,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=8cm,∴CE=BC﹣BE=4cm;故选:C.5.(2分)如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD【解答】解:∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠CDA=∠BAD=90°,AC=BD,OA=AC,OB=BD,∴OA=OB,∴A、B、C正确,D错误,故选:D.6.(2分)给出下列命题:①在直角三角形ABC中,已知两边长3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形;④△ABC中,若a:b:c=1::2,则这个三角形是直角三角形;其中,正确命题的个数为()A.1个B.2个C.3个D.4个【解答】解:在直角三角形ABC中,已知两边长为3和4,则第三边长为5或,①是假命题;三角形的三边a、b、c满足a2+c2=b2,则△ABC是∠B为直角的直角三角形,②是假命题;△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形,③是真命题;△ABC中,若 a:b:c=1::2,则这个三角形是直角三角形,④是真命题,故选:B.二、填空题7.(3分)比较大小:<.(填“>、<、或=”)【解答】解:∵()2=12,( 3)2=18,而12<18,∴2<3.故答案为:<.8.(3分)若有意义,则x的取值范围是x≥.【解答】解:要是有意义,则2x﹣1≥0,解得x≥.故答案为:x≥.9.(3分)若+(b+4)2=0,则点M(a,b)关于y轴的对称点的坐标为(﹣3,﹣4).【解答】解:由+(b+4)2=0,得a﹣3=0,b+4=0.解得a=3,b=﹣4,M(3,﹣4)关于y轴的对称点的坐标为(﹣3,﹣4),故答案为:(﹣3,﹣4).10.(3分)古埃及人画直角方法:把一根长绳打上等距离的13个结,然后用桩钉成如图所示的一个三角形,其中一个角便是直角,请说明这种做法的根据勾股定理的逆定理.【解答】解:设相邻两个结点之间的距离为a,则此三角形三边的长分别为3a、4a、5a,∵(3a)2+(4a)2=(5a)2,∴以3a、4a、5a为边长的三角形是直角三角形.故答案为勾股定理的逆定理.11.(3分)某地需要开辟一条隧道,隧道AB的长度无法直接测量.如图所示,在地面上取一点C,使点C均可直接到达A,B两点,测量找到AC和BC的中点D,E,测得DE的长为1200m,则隧道AB的长度为2400 米.【解答】解:∵D为AC的中点,E为BC的中点,∵DE为△ABC的中位线,又∵DE=1200m,∴AB=2DE=2400m.故答案是:2400.12.(3分)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是(5,4).【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,∴AB=5,∴DO=4,∴点C的坐标是:(5,4).故答案为:(5,4).13.(3分)如图所示,直线经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a 于点F,DE⊥a于点E.若DE=5,BF=3,则EF的长为8 .【解答】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠BAF+∠EAD=90°,∵∠BAF+∠ABF=90°,∴∠ABF=∠EAD,∵∠AED=∠AFB=90°,∴△AFB≌△DEA,∴AF=ED=5,AE=BF=3,∴EF=AF+AE=5+3=8,故答案为:814.(3分)观察下列各式:①;②=3;③,…请用含n (n≥1)的式子写出你猜想的规律:=(n+1).【解答】解:从①②③三个式子中,我们可以发现计算出的等号后面的系数为等号前面的根号里的整数加分数的分子,根号里的还是原来的分数,即=(n+1).三、解答题(共4小题,满分20分)15.(5分)计算:×﹣6﹣3÷2.【解答】解:原式=﹣2﹣=4﹣2﹣=.16.(5分)已知a=﹣1,b=+1,求a2+b2的值.【解答】解:∵a=﹣1,b=+1,∴a2+b2=(﹣1)2+(+1)2=2﹣2+1+2+2+1=6.17.(5分)如图是一个外轮廓为长方形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离.【解答】解:如图,AC=150﹣60=90(mm),BC=180﹣60=120(mm)(2分)在△ABC中,∠ACB=90°,AC=90mm,BC=120mm,(3分)由勾股定理,得:AB==150(mm),(5分)答:两圆孔中心A和B的距离为150mm.(6分)18.(5分)已知一个三角形的面积为12,一条边AB上的高是AB的,求AB的长.【解答】解:设AB=x,则AB边上的高是x,根据题意得:×x×x=12,解得:x=6或﹣6(不合题意舍去),即AB的长为6.四、解答题(共4小题,满分28分)19.(7分)如图,Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在斜边AC上,与点B′重合,AD为折痕,求DB′的长.【解答】解:在Rt△ABC中,∠B=90°,AB=3,BC=4,∴AC==5,∵将△ABC折叠,使点B恰好落在斜边AC上,与点B′重合,∴AB′=AB=3,DB′=BD,∠AB′D=∠CB′D=90°,∴CB′=2,设B′D=BD=x,则CD=4﹣x,∵DB′2+CB′2=CD2,∴x2+22=(4﹣x)2,解得x=,∴DB′=.20.(7分)如图所示,在△ABC中,∠ABC=90°,AB=8,BC=6,若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,求线段DF的长.【解答】解:∵∠ABC=90°,AB=8,BC=6,∴AC==10,∵DE是△ABC的中位线,∴DE=BC=3,DE∥BC,EC=AC=5,∵CF是∠ACM的平分线,∴∠ECF=∠MCF,∵DE∥BC,∴∠EFC=∠MCF,∴∠ECF=∠EFC,∴EF=EC=5,∴DF=DE+EF=3+5=8.21.(7分)如图,矩形ABCD的对角线AC、BD交于点O,CE∥BD,DE∥AC.(1)证明:四边形OCED为菱形;(2)若AC=4,求四边形CODE的周长.【解答】(1)证明:∵CE∥BD,DE∥AC,∴四边形CODE为平行四边形又∵四边形 ABCD 是矩形∴OD=OC∴四边形CODE为菱形;(2)解:∵四边形 ABCD 是矩形∴OC=OD=AC又∵AC=4∴OC=2由(1)知,四边形CODE为菱形∴四边形CODE的周长为=4OC=2×4=8.22.(7分)一架方梯AB长25米,如图所示,斜靠在一面上:(1)若梯子底端离墙7米,这个梯子的顶端距地面有多高?(2)在(1)的条件下,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?【解答】解:(1)在Rt△AOB中,AB=25米,OB=7米,OA===24(米).答:梯子的顶端距地面24米;(2)在Rt△AOB中,A′O=24﹣4=20米,OB′===15(米),BB′=15﹣7=8米.答:梯子的底端在水平方向滑动了8米.五、解答题(共4小题,满分36分)23.(8分)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是 BA.矩形 B.菱形 C.正方形 D.无法确定(2)若四边形ABEF的周长为40,AE,BF相交于点O,且BF=10,试求①∠ABC的度数;②AE的长.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC.∵AB=AF,∴四边形ABEF是菱形.故答案为:B;(2)①∵四边形ABEF是菱形,且周长为40,∴AB=AF=40÷4=10.∵BF=10,∴△ABF是等边三角形,∴∠ABF=60°,∴∠ABC=2∠ABF=120°;②∵AF=10,∴OF=5.∵AE垂直平分BF,∴AO==5,∴AE=2AO=10.24.(8分)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证: BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【解答】(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN=AD,在RT△ABC中,∵M是AC中点,∴BM=AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=AC=1,∴BN=25.(10分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.【解答】(1)证明:①∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S菱形ADCF=AC▪DF=×4×5=10.26.(10分)【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.求证:AM=AD+MC.【探究展示】(2)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,试判断AM=AD+MC是否成立?若成立,请给出证明,若不成立,请说明理由;【拓展延伸】(3)若(2)中矩形ABCD两边AB=6,BC=9,求AM的长.【解答】解:(1)如图1,延长AE,BC相交于N,∵四边形ABCD是正方形,∴AD∥BC,∴∠DAE=∠ENC,∵AE平分∠DAE,∴∠∠DAE=∠MAE,∴∠ENC=∠MAE,在△ADE和△NCE中,,∴△ADE≌△NCE,∴AD=CN,∴AM=MN=NC+MC=AD+MC;(2)结论AM=AD+CM仍然成立,理由:如图2,延长AE,BC相交于N,∵四边形ABCD是矩形,∴AD∥BC,∴∠DAE=∠ENC,∵AE平分∠DAE,∴∠DAE=∠MAE,∴∠ENC=∠MAE,在△ADE和△NCE中,,∴△ADE≌△NCE,∴AD=CN,∴AM=MN=NC+MC=AD+MC;(3)设MC=x,则BM=BC﹣CN=9﹣x,由(2)知,AM=AD+MC=9+x,在Rt△ABC中,AM2﹣BM2=AB2,(9+x)2﹣(9﹣x)2=36,∴x=1,∴AM=AD+MC=10.。
八年级下册期中数学试题附答案
八年级(下)期中数学试卷一、选择题(共8小题,每小题2分,满分16分)1.函数中自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠1C.x≠1D.x≥﹣2或x≠12.下列二次根式是最简二次根式的是()A.B.C.D.3.以下各式中计算正确的是()A.﹣=﹣6 B.(﹣)2=﹣3 C.=±16D.=a4.如图,直角三角形ABC的周长为24,且AB:BC=5:3,则AC=()A. 6 B. 8 C. 10 D. 125.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相平分且相等的四边形是正方形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形6.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?()A. 10 B. 11 C. 12 D. 137.如图,在▱ABCD中,AB=10,AD=8,AC⊥BC,下列计算错误的是()A. BC=8 B. BD=15C. AC=6 D.▱ABCD的面积是488.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判别这个四边形是正方形()A.①②B.①③C.①④D.④⑤二、填空题(共8小题,每小题2分,满分16分)9.= .10.计算:= .11.若是整数,则正整数n的最小值是.12.如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2= 时∠ACB=90°.13.矩形的两条对角线的夹角是60°,一条对角线与短边的和为15,其对角线长为.14.三角形的三边长为6cm、8cm、10cm,则它的中位线构成的三角形面积是.15.已知,如图,四边形ABCD是正方形,BE=AC,则∠BED=度.16.如图,一张纸片的形状为直角三角形,其中∠C=90°,AC=12cm,BC=16cm,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为cm.三、解答题(共2小题,每小题6分,满分12分)17.计算:2﹣+|1﹣|18.计算:﹣÷+(3﹣)(3).四、解答题(共2小题,每小题8分,满分16分)19.已知,a=+1,b=﹣1,求分式的值.20.某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶路程s(千米)与时间t(分)之间的关系.(1)学校离他家多远?从出发到学校,用了多少时间?(2)王老师吃早餐用了多少时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?五、解答题(共4小题,满分40分)21.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.22.小红同学要测量A、C两地的距离,但A、C之间有一水池,不能直接测量,于是她在A、C同一水平面上选取了一点B,点B可直接到达A、C两地.她测量得到AB=80米,BC=20米,∠ABC=120°.请你帮助小红同学求出A、C两点之间的距离.(参考数据≈4.6)23.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥A B,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.八年级(下)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题2分,满分16分)1.函数中自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠1C.x≠1D.x≥﹣2或x≠1考点:函数自变量的取值范围.专题:函数思想.分析:根据二次根式的性质和分式的意义,被开方数≥0,分母不等于0,就可以求解.解答:解:根据题意得:被开方数x+2≥0,解得x≥﹣2,根据分式有意义的条件,x﹣1≠0,解得x≠1,故x≥﹣2且x≠1.故选:B.点评:考查了函数自变量的取值范围,注意函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.2.下列二次根式是最简二次根式的是()A.B.C.D.考点:最简二次根式.分析:检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:A、,被开方数含分母,不是最简二次根式;B、,被开方数含分母,不是最简二次根式;C是最简二次根式;D、=2,被开方数含能开得尽方的因数,不是最简二次根式;故选:C.点评:本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3.以下各式中计算正确的是()A.﹣=﹣6 B.(﹣)2=﹣3 C.=±16D.=a考点:二次根式的性质与化简.分析:分别利用二次根式的性质化简求出即可.解答:解:A、﹣=﹣=﹣6,故此选项正确;B、(﹣)2=3,故此选项错误;C、=16,故此选项错误;D、=|a|,故此选项错误;故选:A.点评:此题主要考查了二次根式的化简,正确利用二次根式的性质得出是解题关键.4.如图,直角三角形ABC的周长为24,且AB:BC=5:3,则AC=()A. 6 B. 8 C. 10 D. 12考点:勾股定理.分析:可先设AB=5x,BC=3x,在该三角形中,由勾股定理可求出AC关于x的代数式,由于直角三角形ABC的周长=AC+AB+BC=24,据此列出方程求出x的值,代入AC的关于x的代数式中,即可求出AC的值.解答:解:设AB=5x,BC=3x,在Rt△ACB中,由勾股定理得:AC2=AB2﹣BC2,AC===4x,直角三角形ABC的周长为:5x+4x+3x=24,x=2,所以,AC=2×4=8,故选B.点评:本题主要考查了勾股定理的运用,关键在于用含有x的式子分别表示出三边的值,代入周长公式求解,属于常考的考点.5.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相平分且相等的四边形是正方形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形考点:命题与定理.分析:根据矩形的判定方法对A进行判断;根据正方形的判定方法对B进行判断;根据菱形的判定方法对C、D进行判断.解答:解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线互相垂直平分且相等的四边形是正方形,所以B选项错误;C、对角线互相垂直平分的四边形是菱形,所以C选项错误;D、对角线互相垂直平分的四边形是菱形,所以D选项正确.故选D.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?()A. 10 B. 11 C. 12 D. 13考点:勾股定理;直角三角形斜边上的中线.分析:根据在直角三角形中,斜边上的中线等于斜边的一半这一性质可求出AB的长,再根据勾股定理即可求出BE的长.解答:解:∵BE⊥AC,∴△AEB是直角三角形,∵D为AB中点,DE=10,∴AB=20,∵AE=16,∴BE==12,故选C.点评:本题考查了勾股定理的运用、直角三角形的性质:直角三角形中,斜边上的中线等于斜边的一半,题目的综合性很好,难度不大.7.如图,在▱ABCD中,AB=10,AD=8,AC⊥BC,下列计算错误的是()A. BC=8 B. BD=15C. AC=6 D.▱ABCD的面积是48考点:平行四边形的性质.分析:利用平行四边形的性质结合勾股定理和平行四边形的面积求法分别分析得出即可.解答:解:∵四边形ABCD是平行四边形,∴AD=BC=8,∴选项A正确,不合题意;∵AB=10,BC=8,AC⊥BC,∴AC=6,故选项C正确,不合题意,故▱ABCD的面积是:6×8=48,AC与BD相交于点O,∴AO=CO=3,∴BO==,∴BD=2,故选项B错误,符合题意;故选:B.点评:此题主要考查了平行四边形的性质以及勾股定理等知识,利用勾股定理得出AC的长是解题关键.8.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判别这个四边形是正方形()A.①②B.①③C.①④D.④⑤考点:正方形的判定;平行四边形的性质.分析:要判定是正方形,则需能判定它既是菱形又是矩形.解答:解:由①得对角线相等的平行四边形是矩形,加上④得,有一组邻边相等的矩形是正方形,故选C.点评:本题考查了正方形的判定方法,是基础知识较简单.二、填空题(共8小题,每小题2分,满分16分)9.= 2.考点:二次根式的乘除法.专题:计算题.分析:根据二次根式的除法法则进行运算,然后将二次根式化为最简即可.解答:解:原式===2.故答案为:2.点评:本题考查了二次根式的除法运算,属于基础题,掌握二次根式的除法法则及二次根式的化简是关键.10.计算:= .考点:分母有理化.专题:计算题.分析:根据﹣1的有理化因式为+1,进行计算即可.解答:解:原式=,=+1,故答案为+1.点评:主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.11.若是整数,则正整数n的最小值是 3 .考点:二次根式的定义.分析:首先化简二次根式,进而得出n的最小值.解答:解:原式=5,则正整数n的最小值是3时,原式是整数.故答案为:3.点评:此题主要考查了二次根式的定义,正确化简二次根式得出是解题关键.12.如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2= 16 时∠ACB=90°.考点:勾股定理的逆定理.分析:先设Rt△ABC的三边分别为a、b、c,再分别用a、b、c表示S1、S2、S3的值,由勾股定理即可得出S2的值.解答:解:设Rt△ABC的三边分别为a、b、c,∴S1=a2=9,S2=b2,S3=c2=25,∵△ABC是直角三角形,∴a2+b2=c2,即S1+S2=S3,∴S2=S3﹣S1=16.故答案为:16.点评:本题考查的是勾股定理的应用及正方形的面积公式,熟知勾股定理是解答此题的关键.13.矩形的两条对角线的夹角是60°,一条对角线与短边的和为15,其对角线长为10 .考点:矩形的性质.分析:根据四边形ABCD是矩形,得到OA=OC,OB=OD,AC=BD,推出OA=OB,再由两条对角线的夹角是60°,得出△OAB是等边三角形,即可求对角线长.解答:解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴OA=OB,∵∠AOB=60°,∴△OAB是等边三角形,∴AB=OB=OA=×15=5,∴AC=BD=2×5=10.故答案为:10.点评:本题主要考查对矩形的性质,等边三角形的性质和判定等知识点的理解和掌握,能根据性质得到等边三角形OAB是解此题的关键,题型较好,难度适中.14.三角形的三边长为6cm、8cm、10cm,则它的中位线构成的三角形面积是6cm2.考点:三角形中位线定理;勾股定理的逆定理.分析:可先依据题意作出简单的图形,进而结合图形,由题中数据可得三角形是一直角三角形,进而再由中位线的性质即可求解.解答:解:由题中数据可得三角形是一直角三角形,如图,设BC=6cm,AB=8cm,AC=10cm,∵DE、EF、DF分别是三角形的中位线,∴DE=3cm,EF=4cm,DF=5cm,∵DE2+EF2=DF2,故△DEF是直角三角形,S△DEF=DE×EF=6c m2.故答案为:6cm2.点评:本题主要考查了中位线的性质以及勾股定理的运用,要求同学们熟练掌握中位线的性质及勾股定理的逆定理.15.已知,如图,四边形ABCD是正方形,BE=AC,则∠BED=22.5 度.考点:正方形的性质;等腰三角形的性质.分析:连接BD,根据正方形的对角线平分一组对角可得∠ABD=45°,再根据正方形的对角线相等可得AC=BD,然后求出BD=BE,再根据等边对等角可得∠BDE=∠BED,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解.解答:解:如图,连接BD,∵四边形ABCD是正方形,∴∠ABD=45°,AC=BD,∵BE=AC,∴BD=BE,∴∠BDE=∠BED,根据三角形的外角性质,∠ABD=∠BDE+∠BED,∴∠BED=∠ABD=×45°=22.5°.故答案为:22.5.点评:本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,正方形的对角线相等的性质,等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线构造出等腰三角形是解题的关键.16.如图,一张纸片的形状为直角三角形,其中∠C=90°,AC=12cm,BC=16cm,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为 6 cm.考点:翻折变换(折叠问题).专题:计算题.分析:在Rt△ABC中根据勾股定理得AB=20,再根据折叠的性质得AE=AC=12,DE=DC,∠AED=∠C=90°,所以BE=AB﹣AE=8,设CD=x,则BD=16﹣x,然后在Rt△BDE中利用勾股定理得到82+x2=(16﹣x)2,再解方程求出x即可.解答:解:在Rt△ABC中,∵AC=12,BC=16,∴AB==20,∵△ACB沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,∴AE=AC=12,DE=DC,∠AED=∠C=90°,∴BE=AB﹣AE=20﹣12=8,设CD=x,则BD=16﹣x,在Rt△BDE中,∵BE2+DE2=BD2,∴82+x2=(16﹣x)2,解得x=6,即CD的长为6cm.故答案为6.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.三、解答题(共2小题,每小题6分,满分12分)17.计算:2﹣+|1﹣|考点:二次根式的加减法.分析:先把各根式化为最减二次根式,再合并同类项即可.解答:解:原式=﹣2+﹣1=﹣1.点评:本题考查的是二次根式的加减,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.18.计算:﹣÷+(3﹣)(3).考点:二次根式的混合运算.专题:计算题.分析:先进行二次根式的除法运算,再利用平方差公式进行乘法运算,然后把各二次根式化为最简二次根式后合并即可.解答:解:原式=4﹣+9﹣3=4﹣3+6=+6.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.四、解答题(共2小题,每小题8分,满分16分)19.已知,a=+1,b=﹣1,求分式的值.考点:分式的化简求值.专题:计算题.分析:由a与b的值,求出a+b与ab的值,原式变形后代入计算即可求出值.解答:解:∵a=+1,b=﹣1,∴a+b=2,ab=1,则原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶路程s(千米)与时间t(分)之间的关系.(1)学校离他家多远?从出发到学校,用了多少时间?(2)王老师吃早餐用了多少时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?考点:函数的图象.分析:(1)由于骑摩托车前往学校,途中在路旁一家饭店吃早餐,那么行驶路程s(千米)与时间t(分)之间的关系图象中有一段平行x轴的线段,然后学校,根据图象可以直接得到结论;(2)根据图象中平行x轴的线段即可确定王老师吃早餐用了多少时间;(3)根据图象可以分别求出吃早餐以前的速度和吃完早餐以后的速度,然后比较即可得到结果.解答:解:(1)依题意得:学校离王老师家有10千米,从出发到学校王老师用了25分钟;(2)依题意得:王老师吃早餐用了10分钟;(3)吃早餐以前的速度为:5÷10=0.5km/分钟,吃完早餐以后的速度为:(10﹣5)÷(25﹣20)=1km/分钟=60km/小时,∴王老师吃完早餐以后速度快,最快时速达到60km/小时.点评:此题是一个信息题目,根据函数图象中的信息找出所需要的数量关系,然后利用数量关系即可解决问题.五、解答题(共4小题,满分40分)21.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.考点:三角形中位线定理;直角三角形斜边上的中线;平行四边形的判定.专题:证明题;几何综合题.分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥AB,DE∥AC,再根据平行四边形的定义证明即可;(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.解答:证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半的性质,平行四边形的判定与性质,熟记各性质并准确识图是解题的关键.22.小红同学要测量A、C两地的距离,但A、C之间有一水池,不能直接测量,于是她在A、C同一水平面上选取了一点B,点B可直接到达A、C两地.她测量得到AB=80米,BC=20米,∠ABC=120°.请你帮助小红同学求出A、C两点之间的距离.(参考数据≈4.6)考点:勾股定理的应用.分析:首先过C作CD⊥AB交AB延长线于点D,然后可得∠BCD=30°,再根据直角三角形的性质可得BD=10米,然后利用勾股定理计算出CD长,再次利用勾股定理计算出AC长即可.解答:解:过C作CD⊥AB交AB延长线于点D,∵∠ABC=120°,∴∠CBD=60°,在Rt△BCD中,∠BCD=90°﹣∠CBD=30°,∴BD=BC=×20=10(米),∴CD==10(米),∴AD=AB+BD=80+10=90米,在Rt△ACD中,AC==≈92(米),答:A、C两点之间的距离约为92米.点评:此题主要考查了勾股定理的应用,关键是正确掌握直角三角形中,两直角边的平方和等于斜边的平方.23.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.考点:全等三角形的判定与性质;勾股定理;菱形的判定与性质.专题:几何综合题;开放型.分析:(1)首先利用SSS定理证明△ABC≌△ADC可得∠BCA=∠DCA即可证明△CBF≌△CDF.(2)由△ABC≌△ADC可知,△ABC与△ADC是轴对称图形,得出OB=OD,∠COB=∠COD=90°,因为OC=OA,所以AC与BD互相垂直平分,即可证得四边形ABCD是菱形,然后根据勾股定理全等AB长,进而求得四边形的面积.(3)首先证明△BCF≌△DCF可得∠CBF=∠CDF,再根据BE⊥CD可得∠BEC=∠DEF=90°,进而得到∠EFD=∠BCD=∠BAD.解答:(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.点评:此题主要考查了全等三角形的判定与性质,以及菱形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.考点:正方形的判定;平行四边形的判定与性质;菱形的判定.专题:几何综合题.分析:(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.解答:(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥A B,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.点评:本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级(下)期中数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对应题目上.(注意:在试题卷上作答无效).1.下列各式中,属于分式的是()A.B.C.D.﹣2.在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.下列计算正确的是()A.2﹣2=﹣4B.2﹣2=4C.2﹣2=D.2﹣2=﹣4.下列约分中,正确的是()A.=x3B.=0C.D.5.王大爷饭后出去散步,从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中.下面图形表示王大爷离时间x(分)与离家距离y(米)之间的关系是()A.B.C.D.6.如果分式的值为零,则a的值为()A.±1B.2C.﹣2D.以上全不对7.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S=1,则S1+S2阴影=()A.3B.4C.5D.68.如图,直线y=x﹣1与x轴交于点B,与双曲线y=(x>0)交于点A,过点B作x轴的垂线,与双曲线y=交于点C,且AB=AC,则k的值为()A.2B.3C.4D.6二、填空题:(每小题3分,共24分)请把答案直接填在答题卡对应题中横线上.9.当x时,分式有意义.10.点P(3,﹣4)关于原点对称的点的坐标是.11.若函数y=(a+3)x+a2﹣9是正比例函数,则a=.12.用科学记数法表示:0.000204=.13.反比例函数y=的图象经过点(﹣2,3),则k的值为.14.若关于x的方程有增根,m.15.符号“”称为二阶行列式,规定它的运算法则为:=ad﹣bc,请你根据上述规定求出下列等式中x的值.若,那么x=.16.如图,过x轴正半轴上的任意一点P作y轴的平行线交反比例函数y=和y=﹣的图象于A,B两点,C是y轴上任意一点,则△ABC的面积为.三、解答题:本大题共8小题,共72分.解答应写出文字说明,证明过程或演算步骤.17.(10分)计算:①﹣4×()﹣2+|﹣5|+(π﹣3)0②﹣.18.(10分)解下列分式方程(1)=1(2)=19.(7分)先化简,再求值:,当a=﹣3时,求代数式的值.20.(7分)蓬溪芝溪玉液酒厂接到生产480件芝溪玉液酒的订单,为了尽快完成任务,该厂实际每天生产的件数比原来每天多50%,提前10天完成任务.原来每天生产多少件?21.(8分)“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)小明在书店停留了多少分钟?(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?(4)我们认为骑单车的速度超过300米/分钟就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?22.(8分)某商场欲购进一种商品,当购进这种商品至少为10kg,但不超过30kg时,成本y(元/kg)与进货量x(kg)的函数关系如图所示.(1)求y关于x的函数解析式,并写出x的取值范围.(2)若该商场购进这种商品的成本为9.6元/kg,则购进此商品多少千克?23.(10分)如图,直线y=x﹣2分别交x轴、y轴于A、B两点,O是原点.(1)求△AOB的面积.(2)过△AOB的顶点B画一条直线把△AOB分成面积相等的两部分,求出直线解析式.24.(12分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y =的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)直接写出一次函数的值小于反比例函数值的x的取值范围.参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对应题目上.(注意:在试题卷上作答无效).1.下列各式中,属于分式的是()A.B.C.D.﹣【分析】根据分式的定义,可得答案.【解答】解:A、是整式,故A错误;B、是分式,故B正确;C、是整式,故C错误;D、﹣是整式,故D错误;故选:B.【点评】本题考查了分式的定义,分母中含有字母的式子是分式,否则是整式,注意π是常数不是字母.2.在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】横坐标小于0,纵坐标大于0,则这点在第二象限.【解答】解:∵﹣2<0,3>0,∴(﹣2,3)在第二象限,故选:B.【点评】本题考查了点的坐标,四个象限内坐标的符号:第一象限:+,+;第二象限:﹣,+;第三象限:﹣,﹣;第四象限:+,﹣;是基础知识要熟练掌握.3.下列计算正确的是()A.2﹣2=﹣4B.2﹣2=4C.2﹣2=D.2﹣2=﹣【分析】2﹣2表示2的平方的倒数,依据表示的意义即可求解.【解答】解:2﹣2==.故选:C.【点评】本题只需熟练掌握:负整数指数幂应把其化为正整数指数幂的倒数,进行计算即可.4.下列约分中,正确的是()A.=x3B.=0C.D.【分析】根据分式的基本性质,分别对每一项进行解答,即可得出答案.【解答】解:A、=x4,故本选项错误;B、=1,故本选项错误;C、==,故本选项正确;D、=,故本选项错误;故选:C.【点评】本题考查了约分,约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.5.王大爷饭后出去散步,从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中.下面图形表示王大爷离时间x(分)与离家距离y(米)之间的关系是()A.B.C.D.【分析】对四个图依次进行分析,符合题意者即为所求.【解答】解:A、从家中走20分钟到离家900米的公园,与朋友聊天20分钟后,用20分钟返回家中,故本选项错误;B、从家中走20分钟到离家900米的公园,与朋友聊天0分钟后,用20分钟返回家中,故本选项错误;C、从家中走30分钟到离家900米的公园,与朋友聊天0分钟后,用20分钟返回家中,故本选项错误;D、从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中,故本选项正确.故选:D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.6.如果分式的值为零,则a的值为()A.±1B.2C.﹣2D.以上全不对【分析】根据分式的值为零的条件可得:|a|﹣2=0且a+2≠0,从而可求得a的值.【解答】解:由题意得:|a|﹣2=0且a+2≠0,解得:a=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式的值为零需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.7.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S=1,则S1+S2阴影=()A.3B.4C.5D.6【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故选:D.【点评】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.8.如图,直线y=x﹣1与x轴交于点B,与双曲线y=(x>0)交于点A,过点B作x轴的垂线,与双曲线y=交于点C,且AB=AC,则k的值为()A.2B.3C.4D.6【分析】由题意得:BC垂直于x轴,点A在BC的垂直平分线上,则B(2,0)、C(2,),A (4,),将A点代入直线y=x﹣1求得k值.【解答】解:由于AB=AC,BC垂直于x轴,则点A在BC的垂直平分线上,由直线y=x﹣1,可得B(2,0),A、C均在双曲线y=上,则C(2,),A(4,),将A点代入直线y=x﹣1得:k=4.故选:C.【点评】本题考查了反比例函数系数k的几何意义,这里AB=AC是解决此题的突破口,题目比较好,有一定的难度.二、填空题:(每小题3分,共24分)请把答案直接填在答题卡对应题中横线上.9.当x≠1时,分式有意义.【分析】根据分式有意义的条件:分母≠0可得:x﹣1≠0,解可得答案.【解答】解:分式有意义,则x﹣1≠0,解得:x≠1,故答案为:≠1.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.10.点P(3,﹣4)关于原点对称的点的坐标是(﹣3,4).【分析】根据关于关于原点对称的点,横坐标与纵坐标都互为相反数.填空即可.【解答】解:点P(3,﹣4)关于原点对称的点的坐标是(﹣3,4),故答案为(﹣3,4).【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.若函数y=(a+3)x+a2﹣9是正比例函数,则a=3.【分析】由正比例函数的定义可得a2﹣9=0,a+3≠0,再解可得a的值.【解答】解:∵函数y=(a+3)x+a2﹣9是正比例函数,∴a2﹣9=0,a+3≠0,解得:a=3.故答案为:3.【点评】此题主要考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.12.用科学记数法表示:0.000204= 2.04×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:用科学记数法表示:0.000204=2.04×10﹣4.故答案为:2.04×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.反比例函数y=的图象经过点(﹣2,3),则k的值为﹣6.【分析】将点(﹣2,3)代入解析式可求出k的值.【解答】解:把(﹣2,3)代入函数y=中,得3=,解得k=﹣6.故答案为:﹣6.【点评】主要考查了用待定系数法求反比例函数的解析式.先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.14.若关于x的方程有增根,m3.【分析】分式方程去分母转化为整式方程,将x=5代入整式方程即可求出m的值.【解答】解:去分母得:2﹣x+m=0,将x=5代入得:2﹣5+m=0,解得:m=3.故答案为:3.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.15.符号“”称为二阶行列式,规定它的运算法则为:=ad﹣bc,请你根据上述规定求出下列等式中x的值.若,那么x=4.【分析】根据已知得出分式方程﹣=1,求出分式方程的解,再代入x﹣1和1﹣x进行检验即可.【解答】解:∵,∴﹣=1,方程两边都乘以x﹣1得:2+1=x﹣1,解得:x=4,检验:当x=4时,x﹣1≠0,1﹣x≠0,即x=4是分式方程的解,故答案为:4.【点评】本题考查了分式方程的应用,解此题的关键是根据材料得出分式方程,题目具有一定的代表性,是一道比较好的题目.16.如图,过x轴正半轴上的任意一点P作y轴的平行线交反比例函数y=和y=﹣的图象于A,B两点,C是y轴上任意一点,则△ABC的面积为3.【分析】设P(a,0),由直线APB与y轴平行,得到A和B的横坐标都为a,将x=a代入反比例函数y=和y=﹣中,分别表示出A和B的纵坐标,进而由AP+BP表示出AB,三角形ABC 的面积=×AB×OP,求出即可.【解答】解:设P(a,0),a>0,则A和B的横坐标都为a,将x=a代入反比例函数y=中得:y=,故A(a,);将x=a代入反比例函数y=﹣中得:y=﹣,故B(a,﹣),∴AB=AP+BP=+=,=AB•OP=××a=3.则S△ABC故答案为3.【点评】此题考查了反比例函数系数k的几何意义,以及坐标与图形性质,其中设出P的坐标,表示出AB是解本题的关键.三、解答题:本大题共8小题,共72分.解答应写出文字说明,证明过程或演算步骤.17.(10分)计算:①﹣4×()﹣2+|﹣5|+(π﹣3)0②﹣.【分析】(1)根据负整数指数幂、绝对值、零指数幂可以解答本题;(2)先对原式通分然后再化简即可解答本题.【解答】解:①﹣4×()﹣2+|﹣5|+(π﹣3)0=3﹣4×4+5+1=3﹣16+5+1=﹣7;②﹣=====.【点评】本题考查实数的运算、分式的加减法、负整数指数幂、零指数幂,解题的关键是明确它们各自的计算方法.18.(10分)解下列分式方程(1)=1(2)=【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:4﹣1=x﹣1,解得:x=4,经检验x=4是分式方程的解;(2)去分母得:4+x2+5x+6=x2﹣3x+2,解得:x=﹣1,经检验x=﹣1是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(7分)先化简,再求值:,当a=﹣3时,求代数式的值.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:原式=﹣•=﹣=,当a=﹣3时,原式==﹣.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌分式的混合运算顺序和运算法则.20.(7分)蓬溪芝溪玉液酒厂接到生产480件芝溪玉液酒的订单,为了尽快完成任务,该厂实际每天生产的件数比原来每天多50%,提前10天完成任务.原来每天生产多少件?【分析】直接根据题意表示出原计划和实际生产的件数,进而利用提前10天完成任务得出等式求出答案.【解答】解:设原来每天生产x件,根据题意可得:=+10,解得:x=16,检验得:当x=16是原方程的根,答:原来每天生产16件.【点评】此题主要考查了分式方程的应用,根据题意利用生产的天数得出等式是解题关键.21.(8分)“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)小明在书店停留了多少分钟?(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?(4)我们认为骑单车的速度超过300米/分钟就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?【分析】(1)根据函数图象的纵坐标,可得答案;(2)根据函数图象的横坐标,可得到达书店时间,离开书店时间,根据有理数的减法,克的答案;(3)根据函数图象的纵坐标,可得相应的路程,根据有理数的加法,可得答案;(4)根据函数图象的纵坐标,可得路程,根据函数图象的横坐标,可得时间,根据路程与时间的关系,可得速度.【解答】解:(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500米;(2)根据题意,小明在书店停留的时间为从(8分)到(12分),故小明在书店停留了4分钟.(3)一共行驶的总路程=1200+(1200﹣600)+(1500﹣600)=1200+600+900=2700米;共用了14分钟.(4)由图象可知:0~6分钟时,平均速度==200米/分,6~8分钟时,平均速度==300米/分,12~14分钟时,平均速度==450米/分,所以,12~14分钟时速度最快,不在安全限度内.【点评】本题考查了函数图象,观察函数图象的纵坐标得出路程,观察函数图象的横坐标得出时间,又利用了路程与时间的关系.22.(8分)某商场欲购进一种商品,当购进这种商品至少为10kg,但不超过30kg时,成本y(元/kg)与进货量x(kg)的函数关系如图所示.(1)求y关于x的函数解析式,并写出x的取值范围.(2)若该商场购进这种商品的成本为9.6元/kg,则购进此商品多少千克?【分析】(1)设出成本y(元/kg)与进货量x(kg)的函数解析式,由图象上的点的坐标利用待定系数法即可求得结论;(2)令成本y=9.6,得出关于x的一元一次方程,解方程即可得出结论.【解答】解:(1)设成本y(元/kg)与进货量x(kg)的函数解析式为y=kx+b,由图形可知:,解得:.故y关于x的函数解析式为y=﹣0.1x+11,其中10≤x≤30.(2)令y=﹣0.1x+11=9.6,即0.1x=1.4,解得:x=14.故该商场购进这种商品的成本为9.6元/kg,则购进此商品14千克.【点评】本题考查了一次函数的图象以及用待定系数法求函数解析式,解题的关键:(1)设出解析式在图象上找出点的坐标利用待定系数法去求系数;(2)令y=9.6,得出关于x的一元一次方程.本题属于基础题,难度不大,解决该类题型的方法是利用图象得出点的坐标,结合待定系数法求出结论.23.(10分)如图,直线y=x﹣2分别交x轴、y轴于A、B两点,O是原点.(1)求△AOB的面积.(2)过△AOB的顶点B画一条直线把△AOB分成面积相等的两部分,求出直线解析式.【分析】(1)分别令直线解析式中x=0、y=0求出相对于的y、x值,由此即可得出点A、B的坐标,再利用三角形的面积公式即可得出结论;(2)找出线段OA的中点C,连接BC,设直线BC的解析式为y=kx+b(k≠0),由点A的坐标可得出点C的坐标,结合点B、C的坐标利用待定系数法即可得出结论.【解答】解:(1)令y=x﹣2中x=0,则y=﹣2,∴点B(0,﹣2);令y=x﹣2中y=0,则x﹣2=0,解得:x=3,∴点A(3,0).S=OA•OB=×2×3=3.△AOB(2)作出线段AO的中点C,连接BC,如图所示.∵点A(3,0),∴点C(,0).设直线BC的解析式为y=kx+b(k≠0),将点B(0,﹣2)、C(,0)代入y=kx+b中,得:,解得:,∴直线BC的解析式为y=x﹣2.【点评】本题考查了一次函数图象上点的坐标特征、三角形的面积公式以及待定系数法求出函数解析式,解题的关键是:(1)求出点A、B的坐标;(2)利用待定系数法求出函数解析式.本题属于基础题,难度不大,解决该题型题目时,找出点的坐标,再利用待定系数法求出函数解析式是关键.24.(12分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y =的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)直接写出一次函数的值小于反比例函数值的x的取值范围.【分析】(1)先把B点坐标代入代入y=,求出m得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后利用待定系数法求一次函数解析式;+S (2)根据x轴上点的坐标特征确定C点坐标,然后根据三角形面积公式和△AOB的面积=S△AOC进行计算;△BOC(3)观察函数图象得到当﹣4<x<0或x>2时,一次函数图象都在反比例函数图象下方.【解答】解:∵B(2,﹣4)在反比例函数y=的图象上,∴m=2×(﹣4)=﹣8,∴反比例函数解析式为:y=﹣,把A(﹣4,n)代入y=﹣,得﹣4n=﹣8,解得n=2,则A点坐标为(﹣4,2).把A(﹣4,2),B(2,﹣4)分别代入y=kx+b,得,解得,∴一次函数的解析式为y=﹣x﹣2;(2)∵y=﹣x﹣2,∴当﹣x﹣2=0时,x=﹣2,∴点C的坐标为:(﹣2,0),△AOB的面积=△AOC的面积+△COB的面积=×2×2+×2×4=6;(3)由图象可知,当﹣4<x<0或x>2时,一次函数的值小于反比例函数的值.【点评】本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.。