1.1.1 集合的含义与表示(二) 学案(人教A版必修1)

合集下载

高中数学人教A版必修1《1.1.1集合的含义与表示》教案2

高中数学人教A版必修1《1.1.1集合的含义与表示》教案2

必修一《1.1.1集合的含义与表示》教学案教学目的:要求学生初步理解集合的概念,理解元素与集合间的关系,掌握集合的表示法,知道常用数集及其记法.教学重难点:1、元素与集合间的关系2、集合的表示法教学过程:一、集合的概念实例引入:⑴1~20以内的所有质数;⑵我国从2001~2013的13年内所发射的所有人造卫星;⑶金星汽车厂2013年生产的所有汽车;⑷2014年1月1日之前与我国建立外交关系的所有国家;⑸所有的正方形;⑹2014年9月入学的高一学生全体.结论:一般地,我们把研究对象统称为元素;把一些元素组成的总体叫做集合,也简称集.二、集合元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写练习:判断下列各组对象能否构成一个集合⑴2,3,4⑵ (2,3),(3,4) ⑶三角形⑷2,4,6,8,…⑸1,2,(1,2),{1,2}⑹我国的小河流⑺方程x2+4=0的所有实数解⑻好心的人⑼著名的数学家⑽方程x2+2x+1=0的解三、集合相等构成两个集合的元素一样,就称这两个集合相等四、集合元素与集合的关系集合元素与集合的关系用“属于”和“不属于”表示:∈(1)如果a是集合A和元素,就说a属于A,记作a A∉(2)如果a不是集合A和元素,就说a不属于A,记作a A五、常用数集及其记法非负整数集(或自然数集),记作N;除0的非负整数集,也称正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.练习:(1)已知集合M={a,b,c}中的三个元素可构成某一三角形的三条边,那么此三角形一定不是( )A直角三角形B锐角三角形C钝角三角形D等腰三角形(2)说出集合{1,2}与集合{x=1,y=2}的异同点?六、集合的表示方式(1)列举法:把集合中的元素一一列举出来,写在大括号内;(2)描述法:用集合所含元素的共同特征表示的方法.(具体方法)例1、用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成.例2、试分别用列举法和描述法表示下列集合:(1)由大于10小于20的的所有整数组成的集合;(2)方程x2-2=2的所有实数根组成的集合.注意:(1)描述法表示集合应注意集合的代表元素(2)只要不引起误解集合的代表元素也可省略七、小结集合的概念、表示;集合元素与集合间的关系;常用数集的记法.。

最新人教版数学必修一《1.1.1-2集合的含义及其表示》导学案

最新人教版数学必修一《1.1.1-2集合的含义及其表示》导学案

最新人教版数学精品教学资料1.1.1 集合的含义及其表示方法(2)教案【教学目标】1、集合和元素的表示法;2、掌握一些常用的数集及其记法3、掌握集合两种表示法:列举法、描述法。

【教学重难点】集合的两种表示法:列举法和描述法。

【教学过程】 一、导入新课 复习提问:集合元素的特征有哪些?怎样理解,试举例说明,集合与元素关系是什么?如何用数不符号表示?那么给定一个具体的集合,我们如何表示它呢?这就是今天我们学习的内容—集合的表示 (板书课题)我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合二、新课讲授 (1)、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法。

例:“中国的直辖市”构成的集合,写成{北京,天津,上海,重庆} 由“maths 中的字母” 构成的集合,写成{m,a,t,h,s} 由“book 中的字母” 构成的集合,写成{b,o,k} 注:(1) 有些集合亦可如下表示:从51到100的所有整数组成的集合: {51,52,53,…,100}所有正奇数组成的集合:{1,3,5,7,…}(2) a 与{a}不同:a 表示一个元素,{a}表示一个集合,该集合只有一个元素。

(3) 集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

学生自主完成P4 例题1(2)、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法。

格式:{x ∈A| P (x )}含义:在集合A 中满足条件P (x )的x 的集合。

例:不等式12x +<-的解集可以表示为:{|12}x R x ∈+<-或{|3,}x x x R <-∈ “中国的直辖市”构成的集合,写成{x x为中国的直辖市};“方程x 2+5x-6=0的实数解” {x ∈R| x 2+5x-6=0}={-6,1} 学生自主完成P5例题2 三、例题讲解例题1.用列举法表示下列集合: (1)小于5的正奇数组成的集合;(2)能被3整除且大于4小于15的自然数组成的集合; (3)方程x 2-9=0的解组成的集合; (4){15以内的质数}; (5){x|x36∈Z ,x ∈Z }.变式训练1用列举法表示下列集合:(1)x 2-4的一次因式组成的集合; (2){y|y=-x 2-2x+3,x ∈R ,y ∈N }; (3)方程x 2+6x+9=0的解集; (4){20以内的质数};(5){(x,y)|x 2+y 2=1,x ∈Z ,y ∈Z }; (6){大于0小于3的整数}; (7){x ∈R |x 2+5x-14=0};(8){(x,y)|x ∈N 且1≤x<4,y -2x=0}; (9){(x,y)|x+y=6,x ∈N ,y ∈N }.分析:让学生思考用描述法的形式如何表示平面直角坐标系中的点?如何表示数轴上的点?如何表示不等式的解?学生板书,教师在其他学生中间巡视,及时帮助思维遇到障碍的同学.必要时,教师可提示学生:(1)集合中的元素是点,它是坐标平面内的点,集合元素代表符号用有序实数对(x,y)来表示,其特征是满足y=x 2;(2)集合中元素是点,而数轴上的点可以用其坐标表示,其坐标是一个实数,集合元素代表符号用x 来表示,其特征是对应的实数绝对值大于6;(3)集合中的元素是实数,集合元素代表符号用x 来表示,把不等式化为x<a 的形式,则这些实数的特征是满足x<a.解:(1)二次函数y=x 2上的点(x,y)的坐标满足y=x 2,则 二次函数y=x 2图象上的点组成的集合表示为{(x,y)|y=x 2};(2)数轴上离原点的距离大于6的点组成的集合等于绝对值大于6的实数组成的集合,则 数轴上离原点的距离大于6的点组成的集合表示为{x ∈R ||x|>6};(3)不等式x-7<3的解是x<10,则 不等式x-7<3的解集表示为{x|x<10}.点评:本题主要考查集合的描述法表示.描述法适用于元素个数是有限个并且较多或无限个的集合.用描述法表示集合时,集合元素的代表符号不能随便设,点集的元素代表符号是(x,y),数集的元素代表符号常用x.集合中元素的公共特征属性可以用文字直接表述,最好用数学符号表示,必须抓住其实质.变式训练2用描述法表示下列集合: (1)方程2x+y=5的解集;(2)小于10的所有非负整数的集合; (3)方程ax+by=0(ab≠0)的解;(4)数轴上离开原点的距离大于3的点的集合; (5)平面直角坐标系中第Ⅱ、Ⅳ象限点的集合;(6)方程组⎩⎨⎧==+1y -x 1,y x 的解的集合;(7){1,3,5,7,…};(8)x 轴上所有点的集合; (9)非负偶数;(10)能被3整除的整数. 答案:(1)、{(x,y)|2x+y=5}; (2)、{x|0≤x<10,x ∈Z };(3)、{(x,y)|ax+by=0(ab≠0)}; (4)、{x||x|>3}; (5)、{(x,y)|xy<0}; (6)、{(x,y)|⎩⎨⎧==+1y -x 1y x };(7)、{x|x=2k-1,k ∈N *};(8)、{(x,y)|x∈R,y=0};(9)、{x|x=2k,k∈N};(10)、{x|x=3k,k∈Z}.四、课堂小结1.描述法表示集合应注意集合的代表元素{(x,y)|y= x2+3x+2}与{y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

人教A版高中数学数学必修一学案(1-2)1.1.1集合的含义与表示(2课时)

人教A版高中数学数学必修一学案(1-2)1.1.1集合的含义与表示(2课时)

人教A版数学必修一学案(1)§1.1.1集合的含义与表示(一)●学习目标1.使学生理解集合的含义,知道常用数集及其记法;2.使学生初步了解“属于”关系和集合相等的意义,初步了解有限集、无限集、空集的意义;●课前自学1.“集合”是日常生活中的一个常用词,现代汉语解释为: ;2.初中学过了集合,比如数集有;点集有 .3.圆是的集合;线段的垂直平分线是的集合.4.阅读课本P2八个例子中(1)(3)(5)(7)回答以下问题【思考1】上述每个问题都由若干个对象组成,每组对象的全体能否构成集合?,若能构成,则集合中的每个元素分别是【思考2】设集合A表示“1~20以内的所有素数”,请写出,那么3,4,5,6这四个元素有在集合A中,有不在集合A中。

【结论】集合与元素的关系:5.所有的自然数,正整数,整数,有理数,实数能否分别构成集合?若能则符号表示为6.判断以下元素的全体是否组成集合,并说明理由:(1)高个子的人;(2)小于2004的数;(3)和2004非常接近的数●课堂探究1.集合中的元素个数的多少是否有限制? ;2.某单位所有的“帅哥”能否构成一个集合? ;由此说明3.某班的全体同学组成一个集合,调整座位后这个集合有没有变化? ;由此说明4.在一个给定的集合中能否有相同的元素? ;由此说明【结论】集合中的元素的特征有5.方程012=+x 的所有实数根能否组成集合呢?●课中练习1.判断下列说法是否正确:(1)所有老人组成一个集合 ( ) ; (2)方程0962=+-x x 的解集是{3,3} ( );(3){4,3,2}与{3,2,4}表示同一个集合 ( ) ; (4)集合N 中最小的元素是1 ( );(5)若N a ∉-,则N a ∈ ( )2. 用符号“∈”或“∉”填空(1) 3.14 Q ; (2)π Q; (3) 0 N + ; (4) (-2)0 N +;(5) 0 N ; (8)-1 N +3. 下列说法不正确的是( )A.0∈N +B. 0∈NC. 3∉Q D.0∈φ●课后作业1. 判断以下元素的全体是否组成集合:(1)高一(1)班所有学号中含有“2”的同学.( ) (2)美丽的小鸟.( )(3)不超过20的非负整数 ( ) (4)著名的数学家 ( )(5)某校2009年在校的所有高个子同学( ) (6)直角坐标系平面内第一象限的一些点( )2.用适当的符号填空:(1)-1 N, -2 Z 31 R (2)0 N -21 Q π R2 Q{}2≤x x (2,4) {}2),(x y y x =(4)3.14 Q ; ;0 N (5)32 }11|{<x x ;5 },1|{2N n n x x ∈+= (6)0 {0};0 φ; φ }{φ 3.下列各集合:①},01|{2R x x x ∈=+;②},15|{Z x x x ∈<-;③⎭⎬⎫⎩⎨⎧∈∈Q x N x x,2;④},,0|),{(22R y R x y x y x ∈∈=+中,空集为 ;有限集为 ;无限集为 .4.已知集合{}4,433,222-+-+-=x x x x M ,若M ∈2,求满足条件的实数x 组成的集合。

人教A版数学必修一教案:§1.1.1集合的含义与表示

人教A版数学必修一教案:§1.1.1集合的含义与表示

第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力 .函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识 .1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集 .7. 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用 .8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法 .9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。

高中数学 1.1.1 集合的含义与表示学案 新人教A版必修1

高中数学 1.1.1 集合的含义与表示学案 新人教A版必修1

1.1.1集合的含义与表示一.学习目标:l.知识与技能(1)通过三张图片,了解集合的含义,理解元素与集合之间的属于关系;(2)掌握集合中元素的三要素:确定性.互异性.无序性;(3)熟练应用常用数集及其专用记号;会用集合语言表示有关数学对象.二. 学习重点、难点:重点:集合的含义与表示方法.难点:集合的三要素:确定性、互异性、无序性.三.自学指导:(一)创设情景,揭示课题1.教师首先提出问题:通过PPT 图片,启发引导学生找到三张图片的共同特征,并引导学生举出一些集合的例子。

通过举例说明和互相交流.做好教师对学生的活动的梳理引导,并给予积极评价.2.用6分钟时间预习教材P2~P5,完成下列内容:(1)、集合:一般地,我们把 统称为元素,把一些元素组成的 叫做集合,简称为: 。

(2)、集合元素的三要素(三特征): 、 、 ;若两个集合相等,那么必须有: 。

(3)、元素与集合的关系:若a 是集合A 的元素,则记作:a A ;若a 不是集合A 的元素,则记作:a A 。

(4)、常用数集的记法:自然数集: ; 有理数集: ; 整数集: ;实数集: ; 正实数集: ; 正整数集: .(5)集合的表示方法列举法:把集合中的元素 ,并用 括起来表示集合的方法叫列举法描述法:用集合所含元素的 表示集合的方法称为描述法,具体方法是: 在 内写上表示这个集合元素的 及取值(或变化)范围,再画 , 最后在 后写出这个集合中元素所具有的共同特征。

四.教学过程:(一)、问题导学:检查自学指导内容,并分组探讨一下问题:a.如何判断所给对象是否组成集合?b.集合中元素的特征性质有哪些?如何判断两个集合是相等的?判断集合A={-2,2}与集合2{|40}B x R x =∈-=一样吗?c.试着总结集合的表示方法有哪些?并试比较各自的特点和适用的对象。

(二).自学检测:完成以下练习:1.下面给出的四类对象中,能组成集合的是( )A.高一某班个子较高的同学B.比较著名的科学家C.无限接近于4的实数D.到一个定点的距离等于定长的点的全体2.用符号∈或∉填空:(1)0 *N ;(2;(3)23 Q ;(4)π Q 。

高中数学1.1.1集合的含义与表示教案新人教A版必修1

高中数学1.1.1集合的含义与表示教案新人教A版必修1

(4) 小于 10 的所有自然数组成的集合;
高中数学 1.1.1 集合的含义与表示教案 新人教 A 版必修 1
高中数学 1.1.1 集合的含义与表示教案 新人教 A 版必修 1
(5)
方程
2
x
x 的所有 实数根组成的集合;
(6) 由 1~20 以内的所有质数组成的集合。
问题 6:能否用列举法表示不等式 x-7<3 的解集 ? 由此引出描述法。
x+3<6 的解集 ?(可表示为 :x<3 )
(III) 讲授新课
一、集合的表示方法
问题 4 中,方法 1 为图示法,方法 2 为列举法 .
1. 列举法: 把集合中的元素一一列举出来 , 写在大括号里的方法 .
说明: (1) 书写时,元素与元素之间用逗号分开;
(2) 一般不必考虑元素之间的顺序;
(3) 在表示数列之类的特殊集合时 , 通常仍按惯用的次序;
高中数学 1.1.1 集合的含义与表示教案 新人教 A 版必修 1
R:全体实数的集合。 ( III )课堂练习
1. 课本 P2、 3 中的思考题
2. 补充练习:
(1) 考察下列对象是否能形成一个集合?
① 身材高大的人
②所有的一元二次方程
③ 直角坐标平面上纵横坐标相等的点
④细长的矩形的全体
Байду номын сангаас
⑤ 比 2 大的几个数
(4){x
N∣ 3<x<4};
f. 判断下列关系式是否正确 ?
(1) 2 (4) 2
Q;
(2) N
{{2},{1}}; (5)
R;
(3) 2
菱形 { 四边形与三角形 }; (6) 2

2017人教a版数学必修一1.1.1集合的含义与表示2课时导

2017人教a版数学必修一1.1.1集合的含义与表示2课时导

海南省海口市第十四中学高中数学必修一导学案 1.1.1集合的含义与表示(2课时)二. 教学重点.难点重点:集合的含义与表示方式.难点:表示法的恰被选择.三. 学法学法:学生通过阅读教材,自主学习.试探.交流.讨论和归纳,从而更好地完本钱节课的教学目标.四. 学习流程(一)知识连线:一、一般地,咱们把____________统称为元素,把________________________叫做集合。

二、集合中元素的特性:________、________、________。

3、只要________________________________,咱们就称这两个集合是相等的。

4、元素与集合的关系有两种:________、________。

若是a是集合A的元素,就说________________,记作________。

.若是a不是集合A的元素,就说________________,记作___________。

五、集合的表示方式有:________、________、________。

数集自然数集正整数集整数集有理数集实数集符号7、下面两个集合中表示同一集合的是:()A、P={1,-5,3};Q={3,1,-5};B、P={1,3};Q={(1,3)};C、P={π};Q={}; D 、P={2,3,5,7};Q={2,3,5,9};八、用符号“∈”或“ ”填空:(1)2__{2,3,5};(2)4__{x︱2x=9}(3) 若A={x ∈N ︱1≤x ≤10},则5__A, ,(4)若A={x ︱1≤x ≤10},则5__A, ,9、选择适当方式表示下列集合:(1)二次函数y = 32-x 的函数值组成的集合; (2)大于1且小于8的整数(3)不等式230x ->的解集 (4)由方程082=-x 的所有实数根组成的集合(5)直线y=x+3与抛物线y=2x 的交点组成的集合(6)方程0)2(12=-+-y x 的解集(三)、知识提升:10已知集合A={x ∈R ︱a x ax ,0122=++∈R} 只有一个元素,则a 的值为______1一、设集合A={2,3,322-+a a },已知5∈A ,求a 的值1二、设集合A={a +2,2a ,332++a a },若1∈A ,求a 的值(四)、知识总结:一、本节课咱们学习哪些知识?二、选择集合的表示法时应注意些什么?(五)、作业布置1.讲义第12页习题(A组)第二、4题。

人教A版必修1 数学:1.1.1 集合的含义与表示 学案2

人教A版必修1 数学:1.1.1 集合的含义与表示  学案2

集合的含义与表示【学习目标】一、知识与技能:(1)初步理解集合的含义,知道常用的数集及其记法。

(2)初步了解“属于”关系的意义。

(3)初步了解有限集、无限集、空集的意义。

二、过程与方法:(1)通过实例,初步体会元素与集合的“属于”关系,从观察分析集合的元素入手,正确地理解集合。

(2)观察关于集合的几组实例,并举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义。

(3)学会借助实例分析,探究数学问题(如集合中元素的确定性、互异性和无序性)。

三、情感、态度与价值观:(1)在学习运用集合语言过程中,增强认识事件的能力,初步培养实事求是,扎实严谨的科学态度。

(2)探索利用直观图示理解抽象概念,体会数形结合的思想。

【学习重难点】1.学习重点:集合的含义与表示方法,用集合语言表达数学对象或数学内容。

2.学习难点:区别元素与集合等概念及其符号表示。

【学习过程】一、集合的概念一般地,把一些__________不同的对象看成一个整体,就说这个__________是由这些对象的全体构成的集合。

1.集合是现代数学中不加定义的基本概念,学习这个概念应注意以下两点:(1)集合是一个“整体”(2)构成集合的对象必须是“确定”的且“不同”的。

“确定”是指构成集合的对象具有非常明确的特征,这个特征不是模棱两可的。

一般地,判定一组对象a1,a2,a3,…,an能否构成集合,就是要看判定的对象a1,a2,a3,…,an是否具有一个确定的特性,如果有,能构成集合;如果没有,就不能构成集合。

“不同”是指构成集合的各个对象互不相同,即相同的对象归入一个集合时,该对象只能出现一次。

例1:下列各组对象中,哪些能组成集合?哪些不能组成集合? (1)参加2010年全国高考的山东考生。

(2)所有数学难题。

(3)数组2,2,4,6.(4)参加2010年广州亚运会的运动员。

(5)全国所有大湖。

2.元素的概念构成集合的每个对象叫做这个集合的元素。

高中数学 1.1.1 集合的含义与表示2教案 新人教a版必修1

高中数学 1.1.1 集合的含义与表示2教案 新人教a版必修1

1.1.1 集合的含义与表示(第二课时)教学目标:1.掌握集合的两种常用表示方法(列举法和描述法)。

.2.通过实例能使学生选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。

教学重点:集合的两种常用表示方法(列举法和描述法)教学难点:集合的两种常用表示方法(列举法和描述法)的理解 教学方法:尝试指导法和讨论法教学过程:(I )复习回顾问题1:集合元素的特征有哪些?怎样理解,试举例说明.问题2:集合与元素关系是什么?如何表示?问题3:常用的数集有哪些?如何表示?(II )引入问题问题4:在初中学正数和负数时,是如何表示正数集合和负数集合的? 如表示下列数中的正数 4.8,-3,2,-0.5,1,+73,3.1 方法1:方法2: {4.8,2,31,+73,3.1} 问题5:在初中学习不等式时,如何表示不等式x+3<6的解集?(可表示为:x<3) (III) 讲授新课一、集合的表示方法问题4中,方法1为图示法,方法2为列举法.1. 列举法:把集合中的元素一一列举出来,写在大括号里的方法.说明: (1)书写时,元素与元素之间用逗号分开;(2)一般不必考虑元素之间的顺序;(3)在表示数列之类的特殊集合时,通常仍按惯用的次序;(4)在列出集合中所有元素不方便或不可能时,可以列出该集合的一部分元素,以提供某种规律,其余元素以省略号代替;例1.用列举法表示下列集合:2. 描述法:用集合所含元素的共同特征表示集合的方法(即把集合中元素的公共属性描述出来, 写在大括号里的方法)。

表示形式:A={x ∣p},其中竖线前x 叫做此集合的代表元素;p 叫做元素x 所具有的公共属性;A={x ∣p}表示集合A 是由所有具有性质P 的那些元素x 组成的,即若x 具有性质p ,则x ∈A ;若x ∈A,则x 具有性质p 。

说明: (1)有些集合的代表元素需用两个或两个以上字母表示; (2)应防止集合表示中的一些错误。

高中数学 1.1.1 集合的含义与表示(第2课时)教案 新人教版必修1

高中数学 1.1.1 集合的含义与表示(第2课时)教案 新人教版必修1
注:(1)大括号不能缺失.
(2)有些集合种元素个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可如下表示:从1到100的所有整数组成的集合:{1,2,3,…,100}
自然数集N:{1,2,3,4,…,n,…}
(3)区分a与{a}:{a}表示一个集合,该集合只有一个元素.a表示这个集合的一个元素.
例2 用描述法表示下列集合:
由适合x2-x-2>0的所有解组成的集合;
到定点距离等于定长的点的集合;
抛物线y=x2上的点;
(4)抛物线y=x2上点的横坐标;
(5)抛物线y=x2上点的纵坐标;
学生独立思考、讨论、交流后,展示结论,教师给予积极评价.
巩固所学知识,家生学生对列举法及特征性质描述法的理解和掌握.
(4)用列举法表示集合时不必考虑元素的前后次序.相同的元素不能出现两次.
2、特征性质描述法:
在集合I中,属于集合A的任意元素x都具有性质p(x),而不属于集合A的元素都不具有性质p(x),则性质p(x)叫做集合A的一个特征性质,于是集合A可以表示如下:
{x∈I| p(x) }
例如,不等式 的解集可以表示为: 或 ,
教学过程:
教学环节
教学内容
师生互动
设计意图
复习
1.回忆集合的概念
2.集合中元素有那些性质?
教师提问,学生回答
通过复习回顾,为引入集合表示方法作铺垫.











集合的表示方法
1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法.
例如,24所有正约数构成的集合可以表示为{1,2,3,4,6,8,12,24}

人教A版高中数学必修一全册导学案集合的含义与表示(2)

人教A版高中数学必修一全册导学案集合的含义与表示(2)

课题:1.1.1集合的含义与表示(1)三维目标:知识与技能:了解集合的含义,体会元素与集合的属于关系;掌握常用数集及其记法、集合中元素的三个特征。

过程与方法:通过实例了解,体会元素与集合的属于关系。

情感态度与价值观:培养学生的应用意识。

二、学习重、难点:重点:掌握集合的基本概念。

难点:元素与集合的关系。

学法指导:认真阅读教材P 1-P 3,对照学习目标,完成导学案,适当总结。

知识链接:军训前学校通知:8月13日8点,高一年级在操场集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?初中时你听说过“集合”这一词吗?你在学习那些知识点中提到了“集合” 这一词?(试举几例)学习过程:阅读教材P 2 页8个例子问题1:总结出集合与元素的概念:问题2:集合中元素的三个特征:问题3:集合相等:问题4:课本P 3的思考题,并再列举一些集合例子和不能构成集合的例子。

2、集合与元素的字母表示: 集合通常用大写的拉丁字母A ,B ,C …表示,集合的元素用小写的拉丁字母a,b,c,…表示。

问题5:元素与集合之间的关系?A 例1:设A 表示“1----20以内的所有质数”组成的集合,则3、4与A 的关系?问题6:常用数集及其记法: B 例2:若+∈N x ,则N x ∈,对吗?六、达标检测:A 1.判断以下元素的全体是否组成集合:(1)大于3小于11的偶数; ( ) (2)我国的小河流; ( ) (3)非负奇数; ( ) (4)本校2009级新生; ( ) (5)血压很高的人; ( ) (6)著名的数学家; ( ) (7)平面直角坐标系内所有第三象限的点 ( ) A 2.用“∈”或“∉”符号填空:(1)8 N ; (2)0 N ; (3)-3 Z ; (4; (5)设A 为所有亚洲国家组成的集合,则中国 A ,美国 A ,印度 A ,英国 A ;B 3.下面有四个语句:①集合N 中最小的数是1;②若N a ∉-,则N a ∈;③若N a ∈,N b ∈,则b a +的最小值是2;④x x 442=+的解集中含有2个元素;其中正确语句的个数是( )A.0B.1C.2D.3B 4.已知集合S 中的三个元素a,b,c 是∆ABC 的三边长,那么∆ABC 一定不是 ( )A 锐角三角形B 直角三角形C 钝角三角形D 等腰三角形B 5. 已知集合A 含有三个元素2,4,6,且当A a ∈,有6-a ∈A ,那么a 为 ( )A .2 B.2或4 C.4 D.0B 6. 设双元素集合A 是方程x 2-4x+m=0的解集,求实数m 的取值范围。

人教版高中数学必修1学案:1.1.1集合的含义与表示(2)

人教版高中数学必修1学案:1.1.1集合的含义与表示(2)

1.1.1集合的含义与表示(2)一、三维目标:知识与技能:掌握表示集合的两种表示方法,能够运用集合的两种表示方法表示一些简单集合。

过程与方法:通过集合表示方法的学习,体会集合的表示方法的区别与联系。

情感态度与价值观:提高学生分析问题和解决问题的能力。

二、学习重、难点:重点:集合的两种表示方法。

难点:对描述法的理解。

三、学法指导:学生通过阅读教材,自主学习、思考、交流、讨论和概括,从而更好地完成本节课的教学目标。

四、知识链接:1.集合中元素的特征是:2.常用数集及其记法:五、学习过程:1、阅读教材P3页,回答问题:问题1.列举法的定义:问题2. {1,2,3}与{3,2,1}表示的集合的关系?例1.请用列举法表示下列集合:(1)小于5的正奇数。

(2)能被3整除且大于4小于15的自然数。

x-=的解的集合。

(3)方程290问题3.用列举法能表示元素个数无限个的集合吗?举例说明?问题4. 什么样的集合适合用列举法表示?2、阅读教材P4页,回答问题:问题5.描述法的定义:B例2.试分别用列举法和描述法表示下列集合:(1)方程x2-3=0的所有实数根组成的集合。

(2)由大于10小于30的所有整数组成的集合。

问题6.什么样的集合适合用描述法表示?一个集合是否既能用列举法表示,又能用描述法表示?并举例说明。

问题7.集合x x |{>3}与集合t t |{>3}是否表示同一个集合?六、达标检测:A 1.教材12页A 组3,4题B 2.方程组25x y x y +=⎧⎨-=⎩的解集用列举法表示为________;用描述法表示为 。

B 3.{(,)|6,,}x y x y x N y N +=∈∈用列举法表示为 。

B 4.已知},,13|{Z k k x x A ∈-==用∈或∉符号填空:(1)5 A (2)—7 A B 5.集合M={(x,y )|xy>0,x ∈R,y ∈R}是指A 第一象限内的点集B 第三象限内的点集C 第一、三象限内的点集D 第二、四象限内的点集B 6.用列举法将集合{(x,y )|x ∈{1,2},y ∈{1,2}}可以表示为A.{{1,1},{1,2},{2,1},{2,2}}B.{1,2}C.{(1,1),(1,2),(2,1),(2,2)}D.{(1,2)}B 7.已知集合A={-2,-1,0,1},集合B={y|y=|x|, x ∈A},则B=B 8.已知集合A={(x,y )|y=2x+1},B={(x,y )|y=x+3},a ∈A 且a ∈B 则a 为C 9.试选择适当的方法表示下列集合:(1)由所有小于10的既是奇数又是素数的自然数组成的集合;(2)不等式x-3>2的解的集合;(3)二次函数y=x 2-10图像上的所有的点组成的集合;七、学习小结: 本节课介绍了集合的常用表示方法,包括列举法、描述法。

数学高一-1.1集合的含义与表示(二)学案(必修1)

数学高一-1.1集合的含义与表示(二)学案(必修1)

§1 集合的含义与表示(二)自主学习1.掌握集合的表示方法,能在具体问题中选择适当的方法表示集合.2.通过实例和阅读自学体会用列举法和描述法表示集合的方法和特点,培养自主探究意识和自学能力.1.集合的常用表示法有列举法和描述法.2.列举法:把集合中的元素一一列举出来写在大括号内的方法. 3.描述法:用确定的条件表示某些对象是否属于这个集合的方法.4.不含有任何元素的集合叫做空集,记作∅.5.集合的分类⎩⎪⎨⎪⎧ (1)有限集;(2)无限集;(3)空集.对点讲练用列举法表示集合【例1】 用列举法表示下列集合:(1)已知集合M =⎩⎨⎧⎭⎬⎫x ∈N |61+x ∈Z ,求M ; (2)方程组⎩⎪⎨⎪⎧x +y =2x -y =0的解集; (3)由|a |a +b |b |(a ,b ∈R )所确定的实数集合. 点拨 解答本题可先弄清集合元素的性质特点,然后再按要求改写.解 (1)∵x ∈N ,且61+x∈Z ,∴1+x =1,2,3,6, ∴x =0,1,2,5,∴M ={0,1,2,5}.(2)由⎩⎪⎨⎪⎧ x +y =2x -y =0,得⎩⎪⎨⎪⎧x =1y =1, 故方程组的解集为{(1,1)}.(3)要分a >0且b >0,a >0且b <0,a <0且b >0,a <0且b <0四种情况考虑,故用列举法表示为{-2,0,2}.规律方法 (1)列举法表示集合,元素不重复、不计次序、不遗漏,且元素与元素之间用“,”隔开.(2)列举法适合表示有限集,当集合中元素的个数较少时,用列举法表示集合较为方便,而且一目了然.变式迁移1 用列举法表示下列集合:(1)A ={x ||x |≤2,x ∈Z };(2)B ={x |(x -1)2(x -2)=0};(3)M ={(x ,y )|x +y =4,x ∈N *,y ∈N *};(4)已知集合C =⎩⎨⎧⎭⎬⎫61+x ∈Z |x ∈N ,求C . 解 (1)∵|x |≤2,x ∈Z ,∴-2≤x ≤2,x ∈Z ,∴x =-2,-1,0,1,2.∴A ={-2,-1,0,1,2}.(2)∵1和2是方程(x -1)2(x -2)=0的根,∴B ={1,2}.(3)∵x +y =4,x ∈N *,y ∈N *,∴⎩⎪⎨⎪⎧ x =1,y =3,或⎩⎪⎨⎪⎧ x =2,y =2,或⎩⎪⎨⎪⎧x =3,y =1. ∴M ={(1,3),(2,2),(3,1)}.(4)结合例1(1)知,61+x=6,3,2,1, ∴C ={6,3,2,1}.用描述法表示集合【例2】 用描述法表示下列集合:(1)所有正偶数组成的集合;(2)方程x 2+2=0的解的集合;(3)不等式4x -6<5的解集;(4)函数y =2x +3的图像上的点集.解 (1)文字描述法:{x |x 是正偶数}.符号描述法:{x |x =2n ,n ∈N *}.(2){x |x 2+2=0,x ∈R }.(3){x |4x -6<5,x ∈R }.(4){(x ,y )|y =2x +3,x ∈R ,y ∈R }.规律方法 用描述法表示集合时,要注意代表元素是什么?同时要注意代表元素所具有的性质.变式迁移2 用描述法表示下列集合:(1)函数y =ax 2+bx +c (a ≠0)的图像上所有点的集合;(2)一次函数y =x +3与y =-2x +6的图像的交点组成的集合;(3)不等式x -3>2的解集.解 (1){(x ,y )|y =ax 2+bx +c ,x ∈R ,a ≠0}. (2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )|⎩⎪⎨⎪⎧ y =x +3y =-2x +6=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )|⎩⎪⎨⎪⎧ x =1y =4. (3){x ∈R |x -3>2}.列举法和描述法的灵活运用【例3】 用适当的方法表示下列集合:(1)比5大3的数;(2)方程x 2+y 2-4x +6y +13=0的解集;(3)二次函数y =x 2-10图像上的所有点组成的集合.点拨 对于(1),比5大3的数就是8,宜用列举法;对于(2),方程为二元二次方程,可将方程左边因式分解后求解,宜用列举法;对于(3),所给二次函数图像上的点有无数个,宜采用描述法.解 (1)比5大3的数显然是8,故可表示为{8}.(2)方程x 2+y 2-4x +6y +13=0可化为(x -2)2+(y +3)2=0,∴⎩⎪⎨⎪⎧ x =2y =-3,∴方程的解集为{(2,-3)}. (3)“二次函数y =x 2-10的图像上的点”用描述法表示为{(x ,y )|y =x 2-10}.规律方法 用列举法与描述法表示集合时,一要明确集合中的元素;二要明确元素满足的条件;三要根据集合中元素的个数来选择适当的方法表示集合.变式迁移3 用适当的方法表示下列集合:(1)由所有小于10的既是奇数又是素数的自然数组成的集合;(2)由所有周长等于10 cm 的三角形组成的集合;(3)从1,2,3这三个数字中抽出一部分或全部数字(没有重复)所组成的自然数的集合;(4)二元二次方程组⎩⎪⎨⎪⎧y =x y =x 2的解集. 解 (1)列举法:{3,5,7}.(2)描述法:{周长为10 cm 的三角形}.(3)列举法:{1,2,3,12,13,21,31,23,32,123,132,213,231,312,321}.(4)列举法:{(0,0),(1,1)}.1.在用列举法表示集合时应注意以下四点:(1)元素间用“,”分隔;(2)元素不重复;(3)不考虑元素顺序;4)对于含有较多元素的集合,如果构成该集合的元素有明显规律,可用列举法, 必须把元素间的规律显示清楚后方能用省略号.2.使用描述法时应注意以下四点:(1)写清楚该集合中元素的代号(字母或用字母表示的元素符号);(2)说明该集合中元素的特征;(3)不能出现未被说明的字母;(4)用于描述的语句力求简明、确切.课时作业一、选择题1.集合{1,3,5,7,9}用描述法表示应是( )A .{x |x 是不大于9的非负奇数}B .{x |x ≤9,x ∈N }C .{x |1≤x ≤9,x ∈N }D .{x |0≤x ≤9,x ∈Z }答案 A2.在直角坐标系内,坐标轴上的点的集合可表示为( )A .{(x ,y )|x =0,y ≠0}B .{(x ,y )|x ≠0,y =0}C .{(x ,y )|xy =0}D .{(x ,y )|x =0,y =0}答案 C3.下列语句:①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x -1)2(x -2)2=0的所有解的集合可表示为{1,1,2};④集合{x |4<x <5}可以用列举法表示.正确的是( )A .只有①和④B .只有②和③C .只有②D .以上语句都不对答案 C4.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪65-a ∈N +,则A 为( ) A .{2,3} B .{1,2,3,4}C .{1,2,3,6}D .{-1,2,3,4}答案 D解析 由65-a∈N +可知,5-a 为6的正因数,所以5-a 可以等于1,2,3,6,相应的a 分别等于4,3,2,-1,即A ={-1,2,3,4}.5.下列集合中表示同一集合的是( )A .M ={(3,2)},N ={(2,3)}B .M ={3,2},N ={2,3}C .M ={(x ,y )|x +y =1},N ={y |x +y =1}D .M ={1,2},N ={(1,2)}答案 B二、填空题6.下列可以作为方程组⎩⎪⎨⎪⎧x +y =3x -y =-1的解集的是__________(填序号). ①{x =1,y =2}; ②{1,2};③{(1,2)}; ④{(x ,y )|x =1或y =2};⑤{(x ,y )|x =1且y =2};⑥{(x ,y )|(x -1)2+(y -2)2=0}.答案 (3)(5)(6)7.已知a ∈Z ,A ={(x ,y )|ax -y ≤3}且(2,1)∈A ,(1,-4)∉A ,则满足条件的a 的值为________.答案 0,1,2解析 ∵(2,1)∈A 且(1,-4)∉A ,∴2a -1≤3且a +4>3,∴-1<a ≤2,又a ∈Z ,∴a 的取值为0,1,2.8.已知集合M ={x ∈N |8-x ∈N },则M 中的元素最多有________个.答案 9三、解答题9.用另一种方法表示下列集合.(1){绝对值不大于2的整数};(2){能被3整除,且小于10的正数};(3){x |x =|x |,x <5且x ∈Z };(4){(x ,y )|x +y =6,x ∈N *,y ∈N *};(5){-3,-1,1,3,5}.解 (1){-2,-1,0,1,2}.(2){3,6,9}.(3)∵x =|x |,∴x ≥0,又∵x ∈Z 且x <5,∴x =0或1或2或3或4.∴集合可以表示为{0,1,2,3,4}.(4){(1,5),(2,4),(3,3),(4,2),(5,1)}.(5){x |x =2k -1,-1≤k ≤3,k ∈Z }.10.用描述法表示图中阴影部分(含边界)的点的坐标的集合.解 用描述法表示为(即用符号语言表示):⎩⎨⎧⎭⎬⎫(x ,y )|-1≤x ≤32,-12≤y ≤1,且xy ≥0. 探究驿站11.对于a ,b ∈N +,现规定:a *b =⎩⎪⎨⎪⎧a +b (a 与b 的奇偶性相同)a ×b (a 与b 的奇偶性不同). 集合M ={(a ,b )|a *b =36,a ,b ∈N +}(1)用列举法表示a,b奇偶性不同时的集合M;(2)当a与b的奇偶性相同时集合M中共有多少个元素?解(1)当a,b奇偶性不同时,a*b=a×b=36,则满足条件的(a,b)有(1,36),(3,12),(4,9),(9,4),(12,3),(36,1),故集合M可表示为:M={(1,36),(3,12),(4,9),(9,4),(12,3),(36,1)}.(2)当a与b的奇偶性相同时a*b=a+b=36,由于两奇数之和为偶数,两偶数之和仍为偶数,故36=1+35=2+34=3+33=…=17+19=18+18=19+17=…=35+1,所以当a,b奇偶性相同时这样的元素共有35个.。

高中数学 1.1.1 集合的含义与表示(2)导学案 新人教A版必修1

高中数学 1.1.1  集合的含义与表示(2)导学案 新人教A版必修1

§1.1.1 集合的含义与表示(2)2. 能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;3. 掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.45 复习1:一般地,指定的某些对象的全体称为 .其中的每个对象叫作 . 集合中的元素具备 、 、 特征.集合与元素的关系有 、 .复习2:集合2{21}A x x =++的元素是 ,若1∈A ,则x = .复习3:集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?四个集合有何关系?二、新课导学※ 学习探究思考:① 你能用自然语言描述集合{2,4,6,8}吗?② 你能用列举法表示不等式13x -<的解集吗?探究:比较如下表示法① {方程210x -=的根};② {1,1}-;③ 2{|10}x R x ∈-=.新知:用集合所含元素的共同特征表示集合的方法称为描述法,一般形式为{|}x A P ∈,其中x 代表元素,P 是确定条件.试试:方程230x -=的所有实数根组成的集合,用描述法表示为 . ※ 典型例题例1 试分别用列举法和描述法表示下列集合:(1)方程2(1)0x x -=的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.练习:用描述法表示下列集合.(1)方程340x x +=的所有实数根组成的集合;(2)所有奇数组成的集合.小结:用描述法表示集合时,如果从上下文关系来看,x R ∈、x Z ∈明确时可省略,例如 {|21,}x x k k Z =-∈,{|0}x x >.例2 试分别用列举法和描述法表示下列集合:(1)抛物线21y x =-上的所有点组成的集合;(2)方程组3222327x y x y +=⎧⎨+=⎩解集.变式:以下三个集合有什么区别.(1)2{(,)|1}x y y x =-;(2)2{|1}y y x =-;(3)2{|1}x y x =-.反思与小结:① 描述法表示集合时,应特别注意集合的代表元素,如2{(,)|1}x y y x =-与2{|1}y y x =-不同.② 只要不引起误解,集合的代表元素也可省略,例如{|1}x x >,{|3,}x x k k Z =∈. ③ 集合的{ }已包含“所有”的意思,例如:{整数},即代表整数集Z ,所以不必写{全体整数}.下列写法{实数集},{R }也是错误的.④ 列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法.※ 动手试试练1. 用适当的方法表示集合:大于0的所有奇数.练2. 已知集合{|33,}A x x x Z =-<<∈,集合2{(,)|1,}B x y y x x A ==+∈. 试用列举法分别表示集合A 、B .三、总结提升※ 学习小结1. 集合的三种表示方法(自然语言、列举法、描述法);2. 会用适当的方法表示集合;※ 知识拓展1. 描述法表示时代表元素十分重要. 例如:(1)所有直角三角形的集合可以表示为:{|}x x 是直角三角形,也可以写成:{直角三角形};(2)集合2{(,)|1}x y y x =+与集合2{|1}y y x =+是同一个集合吗?2. 我们还可以用一条封闭的曲线的内部来表示一个集合,即:文氏图,或称Venn 图.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 设{|16}A x N x =∈≤<,则下列正确的是( ).A. 6A ∈B. 0A ∈C. 3A ∉D. 3.5A ∉2. 下列说法正确的是( ).A.不等式253x -<的解集表示为{4}x <B.所有偶数的集合表示为{|2}x x k =C.全体自然数的集合可表示为{自然数}D. 方程240x -=实数根的集合表示为{(2,2)}-3. 一次函数3y x =-与2y x =-的图象的交点组成的集合是( ).A. {1,2}-B. {1,2}x y ==-C. {(2,1)}-D. 3{(,)|}2y x x y y x =-⎧⎨=-⎩4. 用列举法表示集合{|510}A x Z x =∈≤<为.5.集合A ={x |x =2n 且n ∈N }, 2{|650}B x x x =-+=,用∈或∉填空:4 A ,4 B ,5 A ,5 B .{(,)|6,,}x y x y x N y N +=∈∈ ,试用列举法表示集合A .(2)设A ={x |x =2n ,n ∈N ,且n <10},B ={3的倍数},求属于A 且属于B 的元素所组成的集合.2. 若集合{1,3}A =-,集合2{|0}B x x ax b =++=,且A B =,求实数a 、b .。

高中数学 1.1 集合 1.1.1 集合的含义与表示 第2课时 集合的表示学案 新人教A版必修1

高中数学 1.1 集合 1.1.1 集合的含义与表示 第2课时 集合的表示学案 新人教A版必修1

第2课时集合的表示学习目标:1.初步掌握集合的两种表示方法——列举法、描述法,感受集合语言的意义和作用.(重点)2.会用集合的两种表示方法表示一些简单集合.(重点、难点)[自主预习·探新知]1.列举法把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法用集合所含元素的共同特征表示集合的方法称为描述法.一般形式为A={x∈I|p},其中x叫做代表元素,I是代表元素x的取值范围,p是各元素的共同特征.思考:(1)不等式x-2<3的解集中的元素有什么共同特征?(2)如何用描述法表示不等式x-2<3的解集?[提示](1)元素的共同特征为x∈R,且x<5.(2){x|x<5,x∈R}.[基础自测]1.思考辨析(1)由1,1,2,3组成的集合可用列举法表示为{1,1,2,3}.( )(2)集合{(1,2)}中的元素是1和2.( )(3)集合A={x|x-1=0}与集合B={1}表示同一个集合.( )[答案](1)×(2)×(3)√2.方程x2=4的解集用列举法表示为( )A.{(-2,2)} B.{-2,2}C.{-2} D.{2}B[由x2=4得x=±2,故用列举法可表示为{-2,2}.]3.用描述法表示函数y=3x+1图象上的所有点的是( )【导学号:37102022】A.{x|y=3x+1} B.{y|y=3x+1}C.{(x,y)|y=3x+1} D.{y=3x+1}C[该集合是点集,故可表示为{(x,y)|y=3x+1},选C.]4.不等式4x-5<7的解集为________.{x|4x-5<7} [用描述法可表示为{x|4x-5<7}.][合作探究·攻重难]用列举法表示集合用列举法表示下列给定的集合:(1)不大于10的非负偶数组成的集合A.(2)小于8的质数组成的集合B.(3)方程2x 2-x -3=0的实数根组成的集合C .(4)一次函数y =x +3与y =-2x +6的图象的交点组成的集合D .[解] (1)不大于10的非负偶数有0,2,4,6,8,10,所以A ={0,2,4,6,8,10}. (2)小于8的质数有2,3,5,7, 所以B ={2,3,5,7}.(3)方程2x 2-x -3=0的实数根为-1,32.所以C =⎩⎨⎧⎭⎬⎫-1,32.(4)由⎩⎪⎨⎪⎧y =x +3,y =-2x +6,得⎩⎪⎨⎪⎧x =1,y =4.所以一次函数y =x +3与y =-2x +6的交点为(1,4), 所以D ={(1,4)}.个步骤求出集合的元素把元素一一列举出来,且相同元素只能列举一次 用花括号括起来提醒:二元方程组的解集,函数的图象点形成的集合都是点的集合,一定要写成实数对的形式,元素与元素之间用“”隔开,,,-[跟踪训练]1.用列举法表示下列集合:(1)方程组⎩⎪⎨⎪⎧x +y =2,x -y =0的解集;(2)A ={(x ,y )|x +y =3,x ∈N ,y ∈N }.【导学号:37102023】[解] (1)由⎩⎪⎨⎪⎧x +y =2,x -y =0,解得⎩⎪⎨⎪⎧x =1,y =1,故该方程组的解集为{(1,1)}. (2)因为x ∈N ,y ∈N ,x +y =3,所以⎩⎪⎨⎪⎧x =0,y =3或⎩⎪⎨⎪⎧x =1,y =2或⎩⎪⎨⎪⎧x =2,y =1或⎩⎪⎨⎪⎧x =3,y =0.故A ={(0,3),(1,2),(2,1),(3,0)}.用描述法表示集合用描述法表示下列集合: (1)比1大又比10小的实数的集合;(2)平面直角坐标系中第二象限内的点组成的集合;(3)被3除余数等于1的正整数组成的集合. [解] (1){x ∈R |1<x <10}.(2)集合的代表元素是点,用描述法可表示为{(x ,y )|x <0,且y >0}. (3){x |x =3n +1,n ∈N }. 描述法表示集合的个步骤[跟踪训练]2.用描述法表示下列集合:图1­1­1(1)函数y =-2x 2+x 图象上的所有点组成的集合; (2)不等式2x -3<5的解组成的集合;(3)如图1­1­1中阴影部分的点(含边界)的集合; (4)3和4的所有正的公倍数构成的集合.【导学号:37102024】[解] (1)函数y =-2x 2+x 的图象上的所有点组成的集合可表示为{(x ,y )|y =-2x 2+x }. (2)不等式2x -3<5的解组成的集合可表示为{x |2x -3<5},即{x |x <4}.(3)图中阴影部分的点(含边界)的集合可表示为{(x ,y )|-1≤x ≤32,-12≤y ≤1,xy ≥0}.(4)3和4的最小公倍数是12,因此3和4的所有正的公倍数构成的集合是{x |x =12n ,n ∈N *}.集合表示方法的综合应用 [探究问题] 1.下面三个集合:①{x |y =x 2+1};②{y |y =x 2+1};③{(x ,y )|y =x 2+1}. (1)它们各自的含义是什么? (2)它们是不是相同的集合?提示:(1)集合①{x |y =x 2+1}的代表元素是x ,满足条件y =x 2+1中的x ∈R ,所以实质上{x |y =x 2+1}=R ;集合②的代表元素是y ,满足条件y =x 2+1的y 的取值范围是y ≥1,所以实质上{y |y =x 2+1}={y |y ≥1};集合③{(x ,y )|y =x 2+1}的代表元素是(x ,y ),可以认为是满足y =x 2+1的数对(x ,y )的集合,也可以认为是坐标平面内的点(x ,y )构成的集合,且这些点的坐标满足y =x 2+1,所以{(x ,y )|y =x 2+1}={P |P 是抛物线y =x 2+1上的点}.(2)由(1)中三个集合各自的含义知,它们是不同的集合. 2.设集合A ={x |ax 2+x +1=0}. (1)构成集合A 的元素是什么?(2)方程ax 2+x +1=0是关于x 的一元二次方程吗,为什么? 提示:(1)构成集合A 的元素是方程ax 2+x +1=0的根.(2)不一定.当a =0时,方程是关于x 的一元一次方程;当a ≠0时,方程是关于x 的一元二次方程.集合A ={x |kx 2-8x +16=0},若集合A 中只有一个元素,求实数k 的值组成的集合. 思路探究:A 中只有一个元素――→等价转化方程kx 2-8x +16=0只有一解――→分类讨论求实数k 的值[解] (1)当k =0时,方程kx 2-8x +16=0变为-8x +16=0,解得x =2,满足题意; (2)当k ≠0时,要使集合A ={x |kx 2-8x +16=0}中只有一个元素,则方程kx 2-8x +16=0只有一个实数根,所以Δ=64-64k =0,解得k =1,此时集合A ={4},满足题意. 综上所述,k =0或k =1,故实数k 的值组成的集合为{0,1}.[当 堂 达 标·固 双 基]1.不等式x -3<2且x ∈N *的解集用列举法可表示为( )【导学号:37102025】A .{0,1,2,3,4}B .{1,2,3,4}C .{0,1,2,3,4,5}D .{1,2,3,4,5}B [由x -3<2可知x <5,又x ∈N *,故x 可以为1,2,3,4,故选B.] 2.若集合A ={(1,2),(3,4)},则集合A 中元素的个数是( ) A .1 B .2 C .3D .4B [集合A 中有两个元素:(1,2),(3,4).] 3.如果A ={x |x >-1},那么( )【导学号:37102026】A .-2∈AB .{0}∈AC .-3∈AD .0∈AD [∵0>-1,故0∈A ,选D.]4.设集合A ={x |x 2-3x +a =0},若4∈A ,则集合A 用列举法表示为________. {-1,4} [∵4∈A ,∴16-12+a =0,∴a =-4, ∴A ={x |x 2-3x -4=0}={-1,4}.] 5.用适当的方法表示下列集合:(1)方程组⎩⎪⎨⎪⎧2x -3y =14,3x +2y =8的解集;(2)所有的正方形;(3)抛物线y =x 2上的所有点组成的集合.【导学号:37102027】[解] (1)解方程组⎩⎪⎨⎪⎧2x -3y =14,3x +2y =8,得⎩⎪⎨⎪⎧x =4,y =-2,故解集为{(4,-2)}.(2)集合用描述法表示为{x |x 是正方形},简写为{正方形}. (3)集合用描述法表示为{(x ,y )|y =x 2}.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.1 集合的含义与表示(二)自主学习1.掌握集合的表示方法,能在具体问题中选择适当的方法表示集合.2.通过实例和阅读自学体会用列举法和描述法表示集合的方法和特点,培养自主探究意识和自学能力.1.把集合的元素一一列举出来,并用花括号“{ }”括起来表示集合的方法叫做列举法.2.用集合所含元素的共同特征表示集合的方法称为描述法.3.不等式x -7<3的解集为{x |x <10}.4.所有偶数的集合可表示为{x ∈Z |x =2k ,k ∈Z }。

5.方程(x +1)(x -3)=0的所有实数根组成的集合为{-1,3}对点讲练用列举法表示集合【例1】 用列举法表示下列集合:(1)已知集合M =⎩⎨⎧⎭⎬⎫x ∈N |61+x ∈Z ,求M ; (2)方程组⎩⎪⎨⎪⎧x +y =2x -y =0的解集; (3)由|a |a +b |b |(a ,b ∈R )所确定的实数集合. 分析 解答本题可先弄清集合元素的性质特点,然后再按要求改写.解 (1)∵x ∈N ,且61+x∈Z , ∴1+x =1,2,3,6,∴x =0,1,2,5,∴M ={0,1,2,5}.(2)由⎩⎪⎨⎪⎧ x +y =2x -y =0,得⎩⎪⎨⎪⎧x =1y =1,故方程组的解集为{(1,1)}.(3)要分a >0且b >0,a >0且b <0,a <0且b >0,a <0且b <0四种情况考虑,故用列举法表示为{-2,0,2}.规律方法 (1)列举法表示集合,元素不重复、不计次序、不遗漏,且元素与元素之间用“,”隔开.(2)列举法适合表示有限集,当集合中元素的个数较少时,用列举法表示集合较为方便,而且一目了然.变式迁移1 用列举法表示下列集合:(1)A ={x ||x |≤2,x ∈Z }; (2)B ={x |(x -1)2(x -2)=0};(3)M ={(x ,y )|x +y =4,x ∈N *,y ∈N *}; (4)已知集合C =⎩⎨⎧⎭⎬⎫61+x ∈Z |x ∈N ,求C . 解 (1)∵|x |≤2,x ∈Z ,∴-2≤x ≤2,x ∈Z ,∴x =-2,-1,0,1,2.∴A ={-2,-1,0,1,2}.(2)∵1和2是方程(x -1)2(x -2)=0的根,∴B ={1,2}.(3)∵x +y =4,x ∈N *,y ∈N *,∴⎩⎪⎨⎪⎧ x =1,y =3,或⎩⎪⎨⎪⎧ x =2,y =2,或⎩⎪⎨⎪⎧x =3,y =1. ∴M ={(1,3),(2,2),(3,1)}.(4)结合例1(1)知,61+x=6,3,2,1, ∴C ={6,3,2,1}.用描述法表示集合【例2】 用描述法表示下列集合:(1)所有正偶数组成的集合; (2)方程x 2+2=0的解的集合;(3)不等式4x -6<5的解集; (4)函数y =2x +3的图象上的点集.解 (1)文字描述法:{x |x 是正偶数}.符号描述法:{x |x =2n ,n ∈N *}.(2){x |x 2+2=0,x ∈R }.(3){x |4x -6<5,x ∈R }.(4){(x ,y )|y =2x +3,x ∈R ,y ∈R }.规律方法 用描述法表示集合时,要注意代表元素是什么?同时要注意代表元素所具有的性质.变式迁移2 用描述法表示下列集合:(1)函数y =ax 2+bx +c (a ≠0)的图象上所有点的集合;(2)一次函数y =x +3与y =-2x +6的图象的交点组成的集合;(3)不等式x -3>2的解集.解 (1){(x ,y )|y =ax 2+bx +c ,x ∈R ,a ≠0}.(2)⎩⎨⎧⎭⎬⎫(x ,y )|⎩⎪⎨⎪⎧ y =x +3y =-2x +6=⎩⎨⎧⎭⎬⎫(x ,y )|⎩⎪⎨⎪⎧x =1y =4. (3){x ∈R |x -3>2}.列举法和描述法的灵活运用【例3】 用适当的方法表示下列集合:(1)比5大3的数; (2)方程x 2+y 2-4x +6y +13=0的解集;(3)二次函数y =x 2-10图象上的所有点组成的集合.分析 对于(1),比5大3的数就是8,宜用列举法;对于(2),方程为二元二次方程,可将方程左边因式分解后求解,宜用列举法;对于(3),所给二次函数图象上的点有无数个,宜采用描述法.解 (1)比5大3的数显然是8,故可表示为{8}.(2)方程x 2+y 2-4x +6y +13=0可化为(x -2)2+(y +3)2=0,∴⎩⎪⎨⎪⎧x =2y =-3,∴方程的解集为{(2,-3)}. (3)“二次函数y =x 2-10的图象上的点”用描述法表示为{(x ,y )|y =x 2-10}.规律方法 用列举法与描述法表示集合时,一要明确集合中的元素;二要明确元素满足的条件;三要根据集合中元素的个数来选择适当的方法表示集合.变式迁移3 用适当的方法表示下列集合:(1)由所有小于10的既是奇数又是素数的自然数组成的集合;(2)由所有周长等于10 cm 的三角形组成的集合;(3)从1,2,3这三个数字中抽出一部分或全部数字(没有重复)所组成的自然数的集合;(4)二元二次方程组⎩⎪⎨⎪⎧y =x y =x 2的解集. 解 (1)列举法:{3,5,7}.(2)描述法:{周长为10 cm 的三角形}.(3)列举法:{1,2,3,12,13,21,31,23,32,123,132,213,231,312,321}.(4)列举法:{(0,0),(1,1)}.1.在用列举法表示集合时应注意以下四点:(1)元素间用“,”分隔;(2)元素不重复;(3)不考虑元素顺序;(4)对于含有较多元素的集合,如果构成该集合的元素有明显规律,可用列举法 但是须把元素间的规律显示清楚后方能用省略号.2.使用描述法时应注意以下四点:(1)写清楚该集合中元素的代号(字母或用字母表示的元素符号);(2)说明该集合中元素的特征;(3)不能出现未被说明的字母;(4)用于描述的语句力求简明、确切.课时作业一、选择题1.集合{1,3,5,7,9}用描述法表示应是( )A .{x |x 是不大于9的非负奇数}B .{x |x ≤9,x ∈N }C .{x |1≤x ≤9,x ∈N }D .{x |0≤x ≤9,x ∈Z }答案 A2.在直角坐标系内,坐标轴上的点的集合可表示为( )A .{(x ,y )|x =0,y ≠0}B .{(x ,y )|x ≠0,y =0}C .{(x ,y )|xy =0}D .{(x ,y )|x =0,y =0}答案 C3.下列语句:①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x -1)2(x -2)2=0的所有解的集合可表示为{1,1,2};④集合{x |4<x <5}可以用列举法表示.正确的是( )A .只有①和④B .只有②和③C .只有②D .以上语句都不对 答案 C4.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪65-a ∈N *,则A 为( )A .{2,3}B .{1,2,3,4}C .{1,2,3,6}D .{-1,2,3,4}答案 D解析 由65-a∈N *可知,5-a 为6的正因数,所以5-a 可以等于1,2,3,6,相应的a 分别等于4,3,2,-1,即A ={-1,2,3,4}.5.下列集合中表示同一集合的是( )A .M ={(3,2)},N ={(2,3)}B .M ={3,2},N ={2,3}C .M ={(x ,y )|x +y =1},N ={y |x +y =1}D .M ={1,2},N ={(1,2)} 答案 B二、填空题6.下列可以作为方程组⎩⎪⎨⎪⎧x +y =3x -y =-1的解集的是__________(填序号). (1){x =1,y =2}; (2){1,2}; (3){(1,2)}; (4){(x ,y )|x =1或y =2};(5){(x ,y )|x =1且y =2}; (6){(x ,y )|(x -1)2+(y -2)2=0}.答案 (3)(5)(6)7.已知a ∈Z ,A ={(x ,y )|ax -y ≤3}且(2,1)∈A ,(1,-4)∉A ,则满足条件的a 的值为________.答案 0,1,2解析 ∵(2,1)∈A 且(1,-4) ∉A ,∴2a -1≤3且a +4>3,∴-1<a ≤2,又a ∈Z ,∴a 的取值为0,1,2.8.已知集合M ={x ∈N |8-x ∈N },则M 中的元素最多有________个.答案 9三、解答题9.用另一种方法表示下列集合.(1){绝对值不大于2的整数}; (2){能被3整除,且小于10的正数};(3){x |x =|x |,x <5且x ∈Z }; (4){(x ,y )|x +y =6,x ∈N *,y ∈N *};(5){-3,-1,1,3,5}.解 (1){-2,-1,0,1,2}.(2){3,6,9}.(3)∵x =|x |,∴x ≥0,又∵x ∈Z 且x <5,∴x =0或1或2或3或4.∴集合可以表示为{0,1,2,3,4}.(4){(1,5),(2,4),(3,3),(4,2),(5,1)}.(5){x |x =2k -1,-1≤k ≤3,k ∈Z }.10.用描述法表示图中阴影部分(含边界)的点的坐标的集合.解 用描述法表示为(即用符号语言表示):⎩⎨⎧⎭⎬⎫(x ,y )|-1≤x ≤32,-12≤y ≤1,且xy ≥0. 【探究驿站】11.对于a ,b ∈N +,现规定:a *b =⎩⎪⎨⎪⎧a +b (a 与b 的奇偶性相同)a ×b (a 与b 的奇偶性不同). 集合M ={(a ,b )|a *b =36,a ,b ∈N +}(1)用列举法表示a ,b 奇偶性不同时的集合M ;(2)当a 与b 的奇偶性相同时集合M 中共有多少个元素?解 (1)当a ,b 奇偶性不同时,a *b =a ×b =36,则满足条件的(a ,b )有(1,36),(3,12),(4,9),(9,4),(12,3),(36,1),故集合M 可表示为: M ={(1,36),(3,12),(4,9),(9,4),(12,3),(36,1)}.(2)当a 与b 的奇偶性相同时a *b =a +b =36,由于两奇数之和为偶数,两偶数之和仍为偶数,故36=1+35=2+34=3+33=…=17+19=18+18=19+17=…=35+1, 所以当a ,b 奇偶性相同时这样的元素共有35个.。

相关文档
最新文档