2.3离散型随机变量
人教课标版高中数学选修2-3:《离散型随机变量的均值与方差(第2课时)》教案-新版
2.3 离散型随机变量的均值与方差(第2课时)一、教学目标 1.核心素养通过对离散型随机变量的方差的学习,更进一步提高了学生的数学建模能力和数学运算能力. 2.学习目标(1)通过实例,理解取得有限值的离散型随机变量的方差的概念 (2)能计算简单离散型随机变量的方差 (3)并能够解决一些实际问题. 3.学习重点离散型随机变量的方差的概念、公式及其应用. 4.学习难点灵活利用公式求方差.. 二、教学设计 (一)课前设计 1.预习任务 任务1阅读教材P64-P67,思考:方差、标准差的定义是什么?它们各自反应了什么? 任务2若随机变量X 服从两点分布,则方差为多少?若服从二项分布呢? 任务3根据方差的计算过程,可得到它的什么性质? 2.预习自测(1)已知随机变量x 的分布列则()X D =__________.(2)若随机变量⎪⎭⎫⎝⎛3210~,B X ,则方差DX=________.(二)课堂设计 1.知识回顾(1)均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为则称 n n p x p x p x E +++=...2211ξ为ξ的均值或数学期望,简称期望.(2)均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平. (3)均值或期望的一个性质:若b aX Y +=,其中b a ,是常数(X 是随机变量),则Y 也是随机变量, 且有b aEX b aX E +=+)(①当0=a 时,b b E =)(,即常数的数学期望就是这个常数本身;②当1=a 时,b EX b X E +=+)(,即随机变量X 与常数之和的期望等于X 的期;③当0=b 时,aEX aX E =)(,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.(4)①若X 服从两点分布,则p X E =)(; ②若ξ~),,(p n B 则np X E =)(. 2.问题探究问题探究一 随机变量方差的定义要从两名同学中挑选出一名同学代表班级参加射击比赛,根据以往的成绩记录,第一名同学击中目标靶的环数的分布列为如果每班只能一人参加年级比赛,你觉得应该让甲乙谁代表班级参赛? 通过计算分析: E (X 1)=5, E (X 2)=5,所以从均值比较不出两名同学的水平高低.数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示随机变量在随机试验中取值的平均值.但有时两个随机变量只用这一个特征量是无法区别它们的,还需要对随机变量取值的稳定与波动、集中与离散的程度进行刻画.但显然两名同学的水平是不同的,要进一步去分析成绩的稳定性. 我们可以定义离散型随机变量的方差.(给出定义)方差:对于离散型随机变量X ,如果它所有可能取的值是n x x x ,....,,21,且取这些值的概率分别是n p p p ,....,,21,那么,n n p X E x p X E x p X E x X D ⋅-++⋅-+⋅-=2222121))((...))(())(()(称为随机变量X 的方差,式中的)(X E 是随机变量X 的均值.标准差:)(X D 的算术平方根)(X D 叫做随机变量X 的标准差,记作)(X σ.随机变量X 的方差、标准差都反映了随机变量取值的稳定与波动、集中与离散的程度;数值越大,说明随机变量取值波动越大,越不稳定;请分别计算探究中两名同学各自的射击成绩的方差.(进一步探究认识用随机变量方差来反映取值的稳定情况)第一名同学5.1)(,8)(==X D X E 第二名同学82.0)(,8)(==X D X E结论:第一名同学的射击成绩稳定性较差,第二名同学的射击成绩稳定性较好,稳定于8环左右.对“探究”的再思考(1)如果其他班级参赛选手的射击成绩都在9环左右,本班应该派哪一名选手参赛? (2)如果其他班级参赛选手的射击成绩都在8环左右,本班应该派哪一名选手参赛? 问题探究二 常见随机变量方差及随机变量方差的性质 ①若X 服从两点分布,则)1()(p p X D -= 若),(~p n B X ,则)1()(p np X D -=.②方差的性质:)()(2X D a b aX D =+;22))(()()(X E X E X D -=. 3.运用新知例1有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为X ,求)(X E ,)(X D .【知识点:期望、方差】解:因为商品数量相当大,抽200件商品可以看作200次独立重复试验,所以X ~B(200,1%).因为np X E =)(,)1()(p np X D -=,这里n =200,p =1%.所以)(X E =200×1%=2,)(X D =200×1%×99%=1.98. 例2已知随机变量X 的分布列为若E (X )=23. (1)求D (X )的值;(2)若Y =3X -2【知识点:离散型随机变量期望、方差及方差的性质】 解:由12+13+p =1,得p =16.又E (X )=0×12+1×13+16x =23, ∴x =2.(1)D (X )=(0-23)2×12+(1-23)2×13+(2-23)2×16=1527=59. (2)∵Y =3X -2,∴D (Y )=D (3X -2)=9D (X ).==练习1 设X ~B (n ,p ),且E (X )=12,D (X )=4,则n 与p 的值分别为( ) A .18,13 B .12,23C .18,23D .12,13 【知识点:离散型随机变量方差及方差的性质】答案:由X ~B (n ,p ),则4)(,12)(====npq X D np X E ,所以32,18==p n . 练习2 设p 为非负实数,随机变量X 的概率分布为:求E (X )与D (X )的最大值. 解:根据题意,得⎩⎪⎨⎪⎧0≤p <1,0≤12-p <1,解得0≤p ≤12.因为E (X )=-1×(12-p )+0×p +1×12=p , 所以当p =12时,E (X )取得最大值,为12.因为D (X )=(-1-p )2(12-p )+(0-p )2p +(1-p )2×12=-p 2-p +1=-(p +12)2+54,故当p =0时,D (X )取得最大值为1.【知识点:离散型随机变量期望、方差及二次函数的性质】 4.课堂总结 重点难点突破(1)求离散型随机变量均值与方差的方法步骤: ①理解X 的意义,写出X 可能取的全部值; ②求X 取每个值的概率; ③写出X 的分布列; ④由方差的定义求)(X D .(2)方差的性质:(1))()(2X D a b aX D =+;22))(()()(X E X E X D -=. (2)若X 服从两点分布,则()=(1)D X p p -; (3)若ξ~),,(p n B 则(1)D np p ξ=-;(4)方差DX 表示,DX 越大,表示,说明X 的取值越分散;DX 越小,表示,说明X 的取值越集中稳定.(5)方差公式的几种形式:22122))(()())(())(()(X E X E p X E x X E X E X D i ni i -=⋅-=-=∑=.方差的意义数学期望反映了随机变量取值的平均水平,但有时只知道数学期望还不能解决问题,还需要知道随机变量的取值在均值周围变化的情况,即方差.①随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量稳定于均值的程度,它们从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要的理论依据,一般先比较均值,若均值相同,再用方差来决定.②随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;③标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛. 5.随堂检测1.若随机变量X 满足P (x =c )=1,其中c 为常数,则()X E =________,()X D _______.2.已知随机变量X 的分布列为则()X E 与()X D 的值为( )(A) 0.6和0.7 (B)1.7和0.3 (C) 0.3和0.7 (D)1.7和0.213.已知()5.0100~,B X 则()X E =___,()X D =____. ()12-X E =____,()12-X D =____.4.有一批数量很大的商品,其中次品占1%,现从中任意地连续取出200件商品,设其次品数为X ,则()X E =_____, ()X D =_______.5.已知甲、乙两名射手在同一条件下射击,所得环数x 1、x 2的分布列如下:试比较两名射手的射击水平.如果其他对手的射击成绩都在8环左右,应派哪一名选手参赛?如果其他对手的射击成绩都在9环左右,应派哪一名选手参赛?(三)课后作业 基础型 自主突破1.已知随机变量ξ满足P (ξ=1)=0.3,P (ξ=2)=0.7,则E (ξ)和D (ξ)的值分别为( )A .0.6和0.7B .1.7和0.09C .0.3和0.7D .1.7和0.21 2.已知X 的分布列为则D (X )等于( )A .0.7B .0.61C .-0.3D .0 3.D (ξ-D (ξ))的值为( )A .无法求B .0C .D (ξ) D .2D (ξ) 能力型 师生共研4.甲、乙两台自动车床生产同种标准产品1 000件,ξ表示甲机床生产1 000件产品中的次品数,η表示乙机床生产1 000件产品中的次品数,经过一段时间的考察,ξ,η的分布列分别是:据此判定()A.甲比乙质量好B.乙比甲质量好C.甲与乙的质量相同D.无法判定5.若ξ是离散型随机变量,P(ξ=X1)=23,P(ξ=X2)=13,且X1<X2,又已知E(ξ)=43,D(ξ)=29,则X1+X2的值为()A.53 B.73C.3 D.1136.设ξ~B(n,p),则有()A.E(2ξ-1)=2np B.D(2ξ+1)=4np(1-p)+1 C.E(2ξ+1)=4np+1D.D(2ξ-1)=4np(1-p)7.若随机变量X1~B(n,0.2),X2~B(6,p),X3~B(n,p),且E(X1)=2,D(X2)=32,则σ(X3)的值是()A.0.5 B. 1.5 C. 2.5 D.3.5自助餐1.已知离散型随机变量X的分布列如下表.E(X)=0,D(X)=1,则a=________,b=________.2.变量ξ的分布列如下:其中a,b,c成等差数列.若E(ξ)=13,则D(ξ)的值是________.3.抛掷一枚质地均匀的骰子,用X表示掷出偶数点的次数.(1)若抛掷一次,求E(X)和D(X);(2)若抛掷10次,求E(X)和D(X).4.有三张形状、大小、质地完全一致的卡片,在每张卡片上写上0,1,2,现从中任意抽取一张,将其上数字记作x,然后放回,再抽取一张,其上数字记作y,令ξ=x·y.求:(1)ξ所取各值的分布列;(2)随机变量ξ的数学期望与方差.(四)参考答案预习自测 1.1.2 2.920 随堂检测 1.c ,0 2. D3.50, 25, 99, 1004. 2,1.985. 解:92.0106.092.081=⨯+⨯+⨯=ξE ,94.0102.094.082=⨯+⨯+⨯=ξE∴甲、乙两射手的射击平均水平相同.又8.0,4.021==ξξD D∴甲射击水平更稳定.如果对手在8环左右,派甲;如果对手在9环左右,派乙. 课后作业 基础型 1.D 2.B 3.C 能力型 4.A 5.C 6.D 7.C 自助餐 1.512, 14 2.593.解:(1)X 服从两点分布,∴E (X )=p =12.D (X )=p (1-p )=12×(1-12)=14. (2)由题意知,X ~B (10,12). ∴E (X )=np =10×12=5, D (X )=npq =10×12×(1-12)=52.4.解:(1)随机变量ξ的可能取值有0,1,2,4,“ξ=0”是指两次取的卡片上至少有一次为0,其概率为 P (ξ=0)=1-23×23=59;“ξ=1”是指两次取的卡片上都标着1,其概率为 P (ξ=1)=13×13=19;“ξ=2”是指两次取的卡片上一个标着1,另一个标着2,其概率为P (ξ=2)=2×13×13=29; “ξ=4”是指两次取的卡片上都标着2,其概率为P (ξ=4)=13×13=19. 则ξ的分布列为(2)E (ξ)=0×59+1×19+2×29+4×19=1,D (ξ)=(0-1)2×59+(1-1)2×19+(2-1)2×29+(4-1)2×19=169.。
新人教版 选修2-3 离散型随机变量的方差
如果现在要从两名同学中挑出一名,代表班级参加 射击比赛,请问应该派哪名同学参赛?
问题2:如果其他对手的射击成绩都在9环左右, 应派哪一名选手参赛?
问题3:如果其他对手的射击成绩都在7环左右, 应派哪一名选手参赛?
1、若随机变量X满足P(X=c)=1,其中c为 常数,求EX和DX。 离散型随机变量X的分布列为: 解: X P c 1
EX=c×1=c DX=(c-c)2×1=0
例2:随机抛掷一枚质地均匀的骰子,求向上一面的点 数X的均值、方差和标准差
离散型随机变量取值的方差 一般地,若离散型随机变量X的概率分布为:
X P
则称
n
x1
p1
p2
x2
· · · · · ·
pi
xi
· · · xn · · · pn
DX ( x1 EX )2 p1 ( xi EX )2 pi ( xn EX )2 pn
( xi EX ) pi 为随机变量X的方差。
一、复习回顾
1、离散型随机变量的数学期望
X P
x1
p1
p2
x2
· · · · · ·
pi
xi
· · · xn · · · pn
EX x1 p1 x2 p2 xi pi xn pn
数学期望是反映离散型随机变量取值的平均水平 2、数学期望的性质
E (aX b) aEX b
人教课标版高中数学选修2-3《离散型随机变量的均值与方差(第1课时)》教案-新版
2.3 离散型随机变量的均值与方差(第1课时)一、教学目标1.核心素养通过对离散型随机变量的均值的学习,更进一步提高了学生的数学建模能力和数学运算能力.2.学习目标(1)通过实例,理解取得有限值的离散型随机变量的均值的概念;(2)能计算简单离散型随机变量的期望,并能解决一些实际问题.3.学习重点离散型随机变量的期望的概念、公式及其应用.4.学习难点灵活利用公式求期望.二、教学设计1.预习任务任务1阅读教材P60-P63,思考:何为加权平均、权数?随机变量的均值(数学期望)的定义是什么?它反应了什么?任务2根据数学期望的计算过程,可得到它的什么性质?任务3何为两点分布?如果随机变量服从两点分布,则其数学期望有什么特点?任务4随机变量均值与样本的平均值有何联系与区别?2.预习自测1.已知X的分布列为则E(X)等于()A.0.7 B.0.61 C.-0.3 D.02.设E(X)=10,E(Y)=3,则E(3X+5Y)=()A.45 B.40 C.30 D.153.若X ~B (4,12),则E (X )的值为( )A .4B .2C .1 D.12 (二)课堂设计 1.知识回顾(1)何为离散型随机变量. (2)离散型性随机变量的分布列. (3)何为样本平均值?怎么计算?.(4)我们预习本课的数学期望是怎么定义的?怎么计算? 2.创设情境 引入新知前面我们学习了离散性随机变量分布列的概念,研究了一些简单离散型随机变量的分布,建立了二项分布、超几何分布等应用广泛的概率模型.离散型随机变量的分布列刻画了随机变量取值的概率规律,但往往还需要进一步了解离散型随机变量取值的特征.比如:某商店为了满足市场需求,要将单价分别为18元/kg ,24元/kg 、36元/kg ,如果按照3:2:1的比例对糖果进行混合销售,其中混合糖果中每颗质量都相等,如何对每千克糖果定价才合理?通过师生探究发现:当定价为混合糖果的平均价格时才合理.进而求混合糖果的平均价格,从而得出如下结论:根据混合糖果中3种糖果的比例可知在1kg 的混合糖果中,3种糖果的质量分别是63kg ,62 kg 和61kg ,则混合糖果的合理价格应该是18×63+24×62+36×61=23(元/kg ). 问题1:上述分式中36,26和61的意义是什么?在学生思考后,教师指出:上面的平均值其实是一种加权平均数,其中36,26和61表示一种权重系数,简称为权数.在计算平均数时,权数可以表示总体中的各种成分所占的比例.权数越大的数据在总体中所占的比例越大,它对加权平均数的影响越大.加权平均数是不同比重数据的平均数.加权平均数就是把原始数据按照合理的比例来计算.通过交流,使学生达成共识:36,26和61分别表示价格为18元/kg 、24元/kg 何36元/kg 的糖果在混合糖果中所占的比例.问题2:如果每一颗糖果的质量都相等,则在搅拌均匀的混合糖果中, 任取一颗恰好是18元/kg 的糖果的概率是多少?恰好是24元/kg 的糖果的概率是多少?恰好是36元/kg 的糖果的概率是多少?学生讨论,得出共识:在混合糖果中,任取一颗恰好是18元/kg 的糖果的概率是36,恰好是24元/kg 的糖果的概率是26,恰好是36元/kg 的糖果的概率是61.问题3:假如从混合糖果中随机的选取一颗,记X 为该糖果原来的单价,你能写出X 的分布列吗?学生不难得出随机变量X 的分布列为:问题4:能否将混合糖果的平均价格用X 的取值及其相应的概率来表示呢?由之前的知识,学生得出: 每千克混合糖果的平均价格为:18×63+24×62+36×61=23(元/kg ) 即18×P(X=18)+24×P(X=24)+36×P(X=36)=23(元/kg ) 教师总结:这里混合糖果的平均价格为随机变量X 的取值与其相应概率乘积之和.混合糖果的平均价格既为随机变量X 的均值.(设计意图:用实际问题为背景,从求学生熟悉的样本平均数为出发点,设置问题串,层层递进,逐步深入,最终得出结论:离散型随机变量X 取值的平均值为离散型随机变量X 的所有取值与其相应概率乘积之和.这样不但可以使学生直观感受到数学与生活的联系,而且可以激发学生的学习兴趣与热情.同时有利于学生进行知识迁移,为下面概括抽象得出科学定义做好铺垫.) 3.概括抽象 构建概念问题5:能否用数学语言表述离散型随机变量的均值这一概念的定义? 可以使学生自行定义,教师作出修正,最终形成正式的定义:若离散型随机变量X 的分布列为:则称E(X)=x1p1+x2p2+…+xnpn为随机变量X的均值或数学期望.数学期望又简称为期望.它反映了离散型随机变量取值的平均水平.(设计意图:使学生经历离散型随机变量均值概念的形成过程,体验从具体问题中概括、抽象,形成定义的思想方法,体会概括、抽象是一种常用的数学逻辑方法,使学生学会科学定义的方法.这里渗透了从特殊到一般的数学思想方法)问题6:离散型随机变量ξ的期望与ξ可能取值的算术平均数相同吗?通过师生共同分析得出结论,期望的计算是从概率分布出发,因而它是概率意义下的平均值.随机变量ξ取每个值时概率不同导致了期望不同于初中所学的算术平均数.(设计意图:期望源于平均值,但又不同于平均值,通过比较,进一步加深对数学期望的理解.)问题7:能给出两点分布与二项分布的均值吗?根据均值的计算公式,学生不难得出:4.例题分析应用新知例1:设随机变量X的分布列如下所示,已知E(X)=1.6,则a-b=()A.0.2B.0.1 C【知识点:期望】详解:a+b=0.8,且E(X)=0×0.1+1×a+2×b+3×0.1=1.6.即a+b=0.8,且a+2b=1.3,∴a=0.3,b=0.5,a-b=-0.2.点拨:本题主要考查离散型随机变量的均值的计算公式,且要熟知离散型随机变量的概率之和为1.例2:有一批数量很大的产品,其次品率是15℅.对这批产品进行抽查,每次抽出1件,如果抽出次品,则抽查终止,否则继续抽查,直到抽到次品,但抽查次数最多不超过10次.求抽查次数ξ的期望.【知识点:期望】详解:解决这个实际问题的难点是求ξ的分布列,一般地,在产品抽查中已说明产品数量很大时,各次抽查结果可以认为是相互独立的.并且取1~10的整数,前k-1次取到正品,而第k 次取到次品的概率是P (ξ=k )=15.085.01⨯-k (k=1,2,3,…,9),P (ξ=10)=185.09⨯.然后学生运用数学期望的定义来解题点拨:求离散型随机变量期望的步骤: (1)确定离散型随机变量ξ的取值.(2)写出分布列,并检查分布列的正确与否. (3)求出期望.例3:某同学代表班级参加设计比赛,每连续设计10次,其中有3次中10环,5次中9环,2次中8环.①求次同学射击一次中靶的环数的均值是多少?②如果把该同学射击一次所得的环数的2倍再加上5记为该同学的设计成绩Y ,即Y=2X+5,那么试求Y 的均值. 【知识点:分布列、期望及性质】详解:(1)击靶数的分布列,根据期望的计算公式可得出E(X)=9.1(2)写出得分Y 的分布列,并求出E (Y )=23.2点拨:当X 为随机变量时,若Y=aX+b(a,b 为常数),则Y 也为随机变量,并称随机变量X 和Y 具有线性关系.X 与Y 的均值也具有线性关系,且E(Y=aX+b)=aE(X)+b 练习:设E (X )=10,E (Y )=3,则E (3X +5Y )=( ) A .45 B .40 C .30 D .15【知识点:离散型随机变量期望的性质】 详解:E(3X+5Y)=3E(X)+5E(Y)=45.点拨:随机变量X 和Y 具有线性关系.X 与Y 的均值也具有线性关系,且E(Y=aX+b)=aE(x)+b 5.课堂总结均值或数学期望:一般地,若离散型随机变量ξ的概率分布为则称=ξE 为ξ的均值或数学期望,简称期望.均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平.均值或期望的一个性质:若b aX Y +=,其中b a ,是常数(X 是随机变量),则Y 也是随机变量,且有()()E aX b aE X b +=+.(1)当0=a 时,()E b b =,即常数的数学期望就是这个常数本身;(2)当1=a 时,()()E X b E X b +=+,即随机变量X 与常数之和的期望等于X 的期;(3)当0=b 时,E aX aE X =()(),即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.①若X 服从两点分布,则)(X E =p ; ②若ξ~),,(p n B 则)(X E =np . 6. 随堂检测1.随机抛掷一个骰子,所得点数η的均值为( ) A.16 B.13 C.12 D.3.52.若X ~B (4,12),则E (X )的值为( ) A .4 B .2 C .1 D .123.若X 是一个随机变量,则E (X -E (X ))的值为( ) A .无解 B .0 C .E (X ) D .2E (X ) (三)课后作业 (一)基础型1.若随机变量ξ~B (n,0.6),且E (ξ)=3,则P (ξ=1)的值是( ) A .2×0.44 B .2×0.45 C .3×0.44 D .3×0.642.今有两台独立工作在两地的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达数为ξ,则E (ξ)的值为( ) A .0.765 B .1.75 C .1.765 D .0.223.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为ξ,则ξ的期望是( ) A .7.8 B .8 C .16 D .15.64.若X 是一个随机变量,则E (X -E (X ))的值为( ) A .无解 B .0 C .E (X ) D .2E (X ) (二)能力型5.两封信随机投入A 、B 、C 三个空邮箱,则A 邮箱的信件数ξ的数学期望是( )A.13 B.23 C.43 D.346.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100 B.200 C.300 D.4007.某一供电网络,有n个用电单位,每个单位在一天中使用电的机会是p,供电网络中一天平均用电的单位个数是()A.np(1-p) B.Np C.n D.p(1-p)8.甲、乙两台自动车床生产同种标准产品1 000件,ξ表示甲机床生产1 000件产品中的次品数,η表示乙机床生产1 000件产品中的次品数,经过一段时间的考察,ξ,η的分布列分别是:据此判定()A.甲比乙质量好B.乙比甲质量好C.甲与乙的质量相同D.无法判定9.在10件产品中,有3件一等品,4件二等品,3件三等品.从这10件产品中任取3件,求:(1)取出的3件产品中一等品件数X的分布列和数学期望;(2)取出的3件产品中一等品件数多于二等品件数的概率.10.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.(1)求ξ的分布列;(2)求ξ的数学期望;(3)求“所选3人中女生人数ξ≤1”的概率.11.某安全生产监督部门对5家小型煤矿进行安全检查(简称安检),若安检不合格,则必须整改,若整改后经复查仍不合格,则强制关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8.计算(结果精确到0.01):(1)恰好有两家煤矿必须整改的概率;(2)平均有多少家煤矿必须整改;(3)至少关闭一家煤矿的概率.12.为了拉动经济增长,某市决定新建一批重点工程,分为基础设施工程、民生工程和产业建设工程三类.这三类工程所含项目的个数分别占总数的12、13、16.现有3名工人独立地从中任选一个项目参与建设.(1)求他们选择的项目所属类别互不相同的概率;(2)记ξ为3人中选择的项目属于基础设施工程或产业建设工程的人数,求ξ的分布列及数学期望.(三)探究型13.设l为平面上过点(0,1)的直线,l的斜率等可能地取-22,-3,-52,0,52,3,22,用ξ表示坐标原点到l的距离,则随机变量ξ的数学期望E(ξ)=________.14.马老师从课本上抄录一个随机变量ξ的概率分布如下表:请小牛同学计算ξ“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E(ξ)=________.15.某企业2014年工作计划中,对每位员工完成工作任务的奖励情况作出如下规定:有一季度完成任务者得奖金300元;有两季度完成任务者得奖金750元;有三季度完成任务者得奖金1 260元;对四个季度均完成任务的员工,奖励 1 800元;若四个季度均未完成任务则没有奖金.假若每位员工在每个季度里完成任务与否都是等可能的,求企业每位员工在2014年所得奖金的数学期望.(四)自助餐1.已知某一随机变量X的概率分布列如下表,E(X)=6.3,则a值为()A.5 B.6 C.7 D.82.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没有卖出的鲜花以每束1.6元处理.根据前5年节日期间对这种鲜花销售情况需求量X(束)的统计(如下表),若进这种鲜花500束在今年节日期间销售,则期望利润是()A.706元B.690元3.如果袋中有6个红球,4个白球,从中任取1球,记住颜色后放回,连续摸取4次,设ξ为取得红球的次数,那么ξ的期望E(ξ)=()A.34 B.125 C.197 D.134.有10件产品,其中3件是次品,从中任取2件,若X表示取到次品的个数,则E(X)等于()A.35 B.815 C.1415 D.15.某人从家乘车到单位,途中有3个交通岗亭.假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯的次数的期望为()A.0.4 B.1.2 C.0.43 D.0.66.袋子装有5只球,编号为1,2,3,4,5,从中任取3个球,用X表示取出的球的最大号码,则E(X)=()A.4 B.5 C.4.5 D.4.757.设15 000件产品中有1 000件次品,从中抽取150件进行检查,由于产品数量较大,每次检查的次品率看作不变,则查得次品数的数学期望为()A.15 B.10 C.20 D.58.某班有14的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数X~B(5,14),则E(-X)的值为()A.14B.-14C.54D.-549.设随机变量X的分布列为P(X=k)=p k(1-p)1-k(k=0,1,0<p<1),则E(X)=________.10.一个人有n把钥匙,其中只有一把能打开他的房门,他随意地进行试开,并将试开不对的钥匙除去,则打开房门所试开次数ξ的数学期望是________.11.某公司有5万元资金用于投资开发项目,如果成功,一年后可获得12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:12.一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2,将这个小正方体抛掷2次,则向上的数之积的数学期望是________.13.若事件在一次试验中发生次数的方差等于0.25,则该事件在一次试验中发生的概率为________. (四)参考答案 预习自测 1.C 2.A 3.B 随堂检测 1.D 2.B 3.B 课后作业 基础型 1.C 2.B 3.A 4.B 能力型 5.B 6.B 7.B 8.A9.解:(1)由于从10件产品中任取3件的结果数为C 310,从10件产品中任取3件,其中恰有k 件一等品的结果数为C k 3C 3-k 7,那么从10件产品中任取3件,其中恰有k 件一等品的概率为 P (X =k )=C k 3C 3-k7C 310,k =0,1,2,3.所以随机变量X 的分布列是X 的数学期望E (X )=0×724+1×2140+2×740+3×1120=910.(2)设“取出的3件产品中一等品件数多于二等品件数”为事件A ,“恰好取出1件一等品和2件三等品”为事件A 1,“恰好取出2件一等品”为事件A 2,“恰好取出3件一等品”为事件A 3.由于事件A 1,A 2,A 3彼此互斥,且A =A 1∪A 2∪A 3,而P (A 1)=C 13C 23C 310=340,P (A 2)=P (X =2)=740,P (A 3)=P (X =3)=1120,所以取出的3件产品中一等品件数多于二等品件数的概率为 P (A )=P (A 1)+P (A 2)+P (A 3)=340+740+1120=31120. ∴σ(X 3)=D X 3=10×12×12= 2.5.10. 解:(1)ξ可能取的值为0,1,2.P (ξ=k )=C k 2·C 3-k4C 36,k =0,1,2.所以,ξ的分布列为(2)由(1),ξ的数学期望为 E (ξ)=0×15+1×35+2×15=1.(3)由(1),“所选3人中女生人数ξ≤1”的概率为 P (ξ≤1)=P (ξ=0)+P (ξ=1)=45.11. 解:(1)每家煤矿必须整改的概率是1-0.5,且每家煤矿是否整改是相互独立的,所以恰好有两家煤矿必须整改的概率是P 1=C 25×(1-0.5)2×0.53=516≈0.31.(2)由题设,必须整改的煤矿数ξ服从二项分布B (5,0.5),从而ξ的数学期望E (ξ)=5×0.5=2.50,即平均有2.50家煤矿必须整改.(3)某煤矿被关闭,即该煤矿第一次安检不合格,整改后经复查仍不合格,所以该煤矿被关闭的概率是P 2=(1-0.5)×(1-0.8)=0.1,从而该煤矿不被关闭的概率是0.9.由题意可知,每家煤矿是否被关闭是相互独立的,故至少关闭一家煤矿的概率是P 3=1-0.95≈0.41.12. 解:记第i 名工人选择的项目属于基础设施工程、民生工程和产业建设工程分别为事件A i ,B i ,C i ,i =1,2,3,由题意知A 1,A 2,A 3相互独立,B 1,B 2,B 3相互独立,C 1,C 2,C 3相互独立,A i ,B j ,C k (i ,j ,k =1,2,3,且i ,j ,k 互不相同)相互独立,且P (A i )=12,P (B i )=13, P (C i )=16.(1)他们选择的项目所属类别互不相同的概率 P =3!P (A 1B 2C 3)=6P (A 1)P (B 2)P (C 3)=6×12×13×16=16.(2)解法一 设3名工人中选择的项目属于民生工程的人数为η, 由已知,η~B (3,13),且ξ=3-η, 所以P (ξ=0)=P (η=3)=C 33(13)3=127, P (ξ=1)=P (η=2)=C 23(13)2(23)=29, P (ξ=2)=P (η=1)=C 13(13)(23)2=49, P (ξ=3)=P (η=0)=C 03(23)3=827. 故ξ的分布列是ξ的数学期望E (ξ)=0×127+1×29+2×49+3×827=2.解法二 记第i 名工人选择的项目属于基础设施工程或产业建设工程分别为事件D i ,i =1,2,3. 由已知,D 1,D 2,D 3相互独立,且 P (D i )=P (A i +C i )=P (A i )+P (C i )=12+16=23.所以ξ~B (3,23),即P (ξ=k )=C k 3(23)k (13)3-k,k =0,1,2,3. 故ξ的分布列是ξ的数学期望E (ξ)=3×23=2. 探究型 13.47 14.215.解:P (X =0)=C 04(12)0(12)4=116;P (X =300)=C 14(12)1(12)3=14; P (X =750)=C 24(12)2(12)2=38;P (X =1 260)=C 34(12)3(12)1=14;P (X =1 800)=C 44(12)4(12)0=116. 故X 的分布列为E (X )=0×116+300×14+750×38+1 260×14+1 800×116=783.75(元). 自助餐 1.C 2.A 3.B 4.A 5.B 6.C 7.B 8.D 9.p 10.n +12 11.4 760 12.49 13.0.5。
第二章 2.3 2.3.2 离散型随机变量的方差(优秀经典课时作业练习及答案详解)
[A 组 学业达标]1.下面说法中正确的是( )A .离散型随机变量的均值E (ξ)反映了取值的概率的平均值B .离散型随机变量的方差D (ξ)反映了取值的平均水平C .离散型随机变量的均值E (ξ)反映了取值的平均水平D .离散型随机变量的方差D (ξ)反映了取值的概率的平均值 解析:由E (ξ)与D (ξ)的意义知选C. 答案:C2.已知随机变量X 的分布列为P (X =k )=13,k =3,6,9.则D (X )等于( )A .6B .9C .3D .4解析:由题意得E (X )=3×13+6×13+9×13=6.D (X )=(3-6)2×13+(6-6)2×13+(9-6)2×13=6.答案:A3.设随机变量X ~B (n ,p ),且E (X )=1.6,D (X )=1.28,则( ) A .n =8,p =0.2 B .n =4,p =0.4 C .n =5,p =0.32D .n =7,p =0.45解析:由已知有⎩⎪⎨⎪⎧np =1.6,np (1-p )=1.28,解得n =8,p =0.2.答案:A4.甲、乙两人对同一目标各射击一次,甲命中目标的概率为23,乙命中目标的概率为45,设命中目标的人数为X ,则D (X )等于( )A.86225 B.259675 C.2215D.1522解析:X 取0,1,2,P (X =0)=13×15=115,P (X =1)=25,P (X =2)=815,所以E (X )=2215,D (X )=86225.答案:A5.设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时,A .D (ξ)减小 B .D (ξ)增大C .D (ξ)先减小后增大 D .D (ξ)先增大后减小解析:由分布列可知E (ξ)=0×1-p 2+1×12+2×p 2=p +12,所以方差D (ξ)=⎝⎛⎭⎫0-p -122×1-p 2+⎝⎛⎭⎫1-p -122×12+⎝⎛⎭⎫2-p -122×p 2=-p 2+p +14,所以D (ξ)是关于p 的二次函数,开口向下,所以D (ξ)先增大后减小.答案:D6.若D (ξ)=1,则D (ξ-D (ξ))=________. 解析:D (ξ-D (ξ))=D (ξ-1)=D (ξ)=1. 答案:17.若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为________.解析:∵D (x )=8, ∴D (2x -1)=4D (x )=2D (x )=16.答案:168.已知离散型随机变量X 的可能取值为x 1=-1,x 2=0,x 3=1,且E (X )=0.1,D (X )=0.89,则对应x 1,x 2,x 3的概率p 1,p 2,p 3分别为________,________,________.解析:由题意知,-p 1+p 3=0.1, 1.21p 1+0.01p 2+0.81p 3=0.89.又p 1+p 2+p 3=1,解得p 1=0.4,p 2=0.1,p 3=0.5. 答案:0.4 0.1 0.59.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,求D (ξ)的值.解析:设P (ξ=1)=a ,P (ξ=2)=b ,则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎨⎧a =35,b =15,所以D (ξ)=15+35×0+15×1=25.10.甲、乙两人进行定点投篮游戏,投篮者若投中,则继续投篮,否则由对方投篮,第一次由甲投篮;已知每次投篮甲,乙命中的概率分别为13,34.(1)求第三次由乙投篮的概率.(2)在前3次投篮中,乙投篮的次数为ξ,求ξ的分布列、期望及标准差. 解析:(1)P =13×23+23×34=1318.(2)P (ξ=0)=13×13=19;P (ξ=1)=13×23+23×14=718.P (ξ=2)=23×34=12.故ξ的分布列为:E (ξ)=0×19+1×718+2×12=2518,D (ξ)=⎝⎛⎭⎫0-25182×19+⎝⎛⎭⎫1-25182×718+⎝⎛⎭⎫2-25182×12=149324,所以D (ξ)=14918.[B 组 能力提升]11.已知随机变量ξ满足P (ξ=1)=0.3,P (ξ=2)=0.7,则E (ξ)和D (ξ)的值分别为( ) A .0.6和0.7 B .1.7和0.09 C .0.3和0.7D .1.7和0.21 解析:E (ξ)=1×0.3+2×0.7=1.7,D (ξ)=(1-1.7)2×0.3+(2-1.7)2×0.7=0.21. 答案:D12.若随机变量X 的分布列为P (X =m )=13,P (X =n )=a ,若E (X )=2,则D (X )的最小值等于( )A .0B .1C .4D .2解析:由分布列的性质,得a +13=1,a =23.∵E (X )=2,∴m 3+2n3=2.∴m =6-2n .∴D (X )=13×(m -2)2+23×(n -2)2=23×(n -2)2+13×(6-2n -2)2=2n 2-8n +8=2(n -2)2.∴n =2时,D (X )取最小值0. 答案:A13.已知某随机变量X 的分布列如表(p ,q ∈R ):X 1 -1 Ppq且X 的数学期望E (X )=12,那么X 的方差D (X )=________.解析:根据题意可得⎩⎪⎨⎪⎧p +q =1,p -q =12,解得p =34,q =14,故X 的方差D (X )=⎝⎛⎭⎫1-122×34+⎝⎛⎭⎫-1-122×14=34.答案:3414.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,均值E (X )及方差D (X ).解析:(1)设A 1表示事件“日销售量不低于100个”,A 2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天的日销售量不低于100个且另1天的日销售量低于50个”.因此P (A 1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能取的值为0,1,2,3,相应的概率为P(X=0)=C03×(1-0.6)3=0.064,P(X=1)=C13×0.6×(1-0.6)2=0.288,P(X=2)=C23×0.62×(1-0.6)=0.432,P(X=3)=C33×0.63=0.216,则X的分布列为:因为X~B(3,0.6)方差D(X)=3×0.6×(1-0.6)=0.72.。
离散型随机变量的方差
2.3离散型随机变量 的方差
复习回顾 1、离散型随机变量 X 的均值(数学期望)
EX xi pi 反映了离散型随机变量取值的平均水平.
i 1
n
E (aX b) aEX b
3、特殊分布的均值 (1)若随机变量X服从两点分布,则 EX p (2)若 X ~ B(n, p) ,则 (3)若X֘
1 1.已知随机变量ξ的分布列为:P(ξ=k)= ,k=1,2,3, 3 A 则D(3ξ+5)=( ) A.6 B.9 C.3 D.4
2 .设ξ ~B(n,p),且Eξ = 12, Dξ= 4 ,则n与p 的值分别 为( )C 1 2 A.18, B.12, 3 3 2 1 C.18, D.12, 3 3
1
5 .已知离散型随机变量 X 的分布列如下表.若 EX =0 , DX=1,则a=________,b=________.
X P
-1 a
0 b
1 c
2 1 12
11 1 解析:由题知 a+b+c= ,-a+c+ =0,12×a+12× 12 6 1 5 1 2 c+2 × =1,解得 a= ,b= . 12 12 4
甲单位不同职位月工资X1/元 1200
获得相应职位的概率P1
0.4
1400 0.3 1400 0.3
1600 0.2 1800 0.2
1800 0.1 2200 0.1
乙单位不同职位月工资X2/元 1000
获得相应职位的概率P2
0.4
根据工资待遇的差异情况,你愿意选择哪家单位? 解: EX 1400 , DX2 112000 , EX 2 1400 DX1 40000 1 在两个单位工资的数学期望相等的情况下,如果认为自 己能力很强,应选择工资方差大的单位,即乙单位;如果认为 自己能力不强,就应选择工资方差小的单位,即甲单位.
高中数学 第二章 随机变量及其分布 2.3 离散型随机变量的均值与方差 2.3.2 离散型随机变量的
2.3.2 离散型随机变量的方差课堂导学三点剖析一、随机变量的方差与标准差的求法【例1】 设X 是一个离散型随机变量,其分布列如下表,试求EX ,DX.解析:由于离散型随机变量的分布列满足 (1)p i ≥0,i=1,2,3,...; (2)p 1+p 2+...+p n + (1)故⎪⎪⎩⎪⎪⎨⎧≤≤-≤=+-+112101)21(2122q q q q 解得 q=1-22 故X 的分布列为∴EX=(-1)×2+0×(2-1)+1×(22-)=-2321++(-2)=1-2 DX=[-1-(1-2)]2×21+(1-2)2×(2-1)+[1-(1-2)]2×(223-)=(2-2)2×21+(2-1)3+2(223-)=2-1温馨提示解本题时,要防止机械地套用均值与方差的计算公式,即EX=(-1)×21+0×(1-2q)+1×q 2=q 2-21; DX=[-1-(q 2-21)]2×21+(q 2-21)2×(1-2q)+[1-(q 2-21)]2×q 2这是由于忽略了随机变量分布列的性质所出现的误解,求离散型随机变量的均值与方差,应明确随机变量的分布列,若分布列中的概率值是待定常数时,应先求出待定常数后,再求其均值与方差.二、两点分布、二项分布的方差【例2】 设一次试验的成功率为p ,进行100次独立重复试验,求当p 为何值时,成功次数的标准差的值最大?并求其最大值.思路分析:根据题意,可知本题主要考查服从二项分布的随机变量的标准差公式,所以解本题的关键就是找出几个变量之间的关系.解:设成功次数为随机变量X ,由题意可知X —B (100,p ),那么σX=)1(100p p DX -=,因为DX=100p(1-p)=100p-100p 2(0≤p≤1)把上式看作一个以p 为自变量的一元二次函数,易知当p=21时,DX 有最大值25.所以DX 的最大值为5,即当p=21时,成功次数的标准差的最大值为5. 温馨提示要求成功次数标准差的最大值,就需先建立标准差关于变量p 的函数关系式,另外要注意利用分布列的性质求出定义域0≤p≤1. 三、方差的应用【例3】 海关大楼顶端镶有A 、B 两面大钟,它们的日走时误差分别为X 1、X 2(单位:s ),根据这两面大钟日走时误差的均值与方差比较这两面大钟的质量. 解:∵EX 1=0,EX 2=0 ∴EX 1=EX 2∵DX 1=(-2-0)2×0.05+(-1-0)2×0.05+(0-0)2×0.8+(1-0)2×0.05+(2-0)2×0.05=0.5DX 2=(-2-0)2×0.1+(-1-0)2×0.2+(0-0)2×0.4+(1-0)2×0.2+(2-1)2×0.1=1.2 ∴DX 1<DX 2由上可知,A 面大钟的质量较好. 温馨提示随机变量X 的方差的意义在于描述随机变量稳定与波动或集中与分散的状况.标准差σX=DX 则体现随机变量取值与其均值的偏差,在实际问题中,若有两个随机变量X 1、X 2,且EX 1=EX 2或EX 1与EX 2比较接近时,我们常用DX 1与DX 2来比较这两个随机变量,方差值大的,则表明X 较为离散,反之则表明X 较为集中.同样,标准差的值较大,则标明X 与其均值的偏差较大,反之,则表明X 与其均值的偏差较小. 各个击破【类题演练1】若随机事件A 在一次试验中发生的概率为2a.随机变量ξ表示在一次试验中发生的次数.求方差Dξ的最值.解析:由题意得ξ的分布列为∴Eξ=0×(1-2a)+1×2a=2a∴Dξ=(0-2a)2(1-2a)+(1-2a)22a =(1-2a)2a(2a+1-2a) =2a(1-2a)=-4[a-41]2+41 由分布列的性质得0≤1-2a≤1 且0≤2a≤1 ∴0≤a≤21∴当a=41时Dξ最大值为41; 当a=0或21时Dξ的最小值为0.【变式提升1】某射击手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进入下一组的练习,否则一直打完5发子弹才能进入下一组练习,若该射手在某组练习中射击命中一次,并且已知他射击一次的命中率为0.8,求在这一组练习中耗用子弹数ξ的分布列,并求出ξ的期望Eξ与方差Dξ(保留两位小数).解析:该组练习耗用的子弹数ξ为随机变量,ξ可以取值为1,2,3,4,5. ξ≈1表示一发即中,故概率为 P (ξ=1)=0.8ξ=2,表示第一发未中,第二发命中, 故P (ξ=2)=(1-0.8)×0.8=0.16;ξ=3,表示第一、二发未中,第三发命中,故P (ξ=3)=(1-0.8)2×0.8=0.032;ξ=4,表示第一、二、三发未中,第四发命中,故P (ξ=4)=(1-0.8)3×0.8=0.006 4;ξ=5,表示第一、二、三、四发未中,第五发命中,4Dξ=(1-1.25)2×0.8+(2-1.25)2×0.16+(3-1.25)2×0.032+(4-1.25)2×0.0064+(5-1.25)2×0.001 6=0.31.【类题演练2】若随机变量A 在一次试验中发生的概率为p(0<p <1),用随机变量ξ表示A 在1次试验中发生的次数. (1)求方差Dξ的最大值; (2)求ξξE D 12-的最大值. 解析:随机变量ξ的所有可能取值为0,1,并且有P (ξ=1)=p ,P (ξ=0)=1-p ,从而Eξ=0×(1-p)+1×p=p,Dξ=(0-p)2×(1-p)+(1-p)2×p=p -p 2. (1)Dξ=p -p 2=-(p-21)2+41,∵0<p <1, ∴当p=21时,Dξ取得最大值为41. (2)ξξE D 12-=)12(21)(22p p p p p +-=--, ∵0<p <1,∴2p+p1≥22. 当且仅当2p=p1,即p=22时,ξξE D 12-取得最大值2-22.【变式提升2】证明:事件在一次实验中发生的次数的方差不超过14.证明:设事件在一次试验中发生的次数为ξ,ξ的可能取值为0或1,又设事件在一次试验中发生的概率为p ,则p (ξ=0)=1-p,P(ξ=1)=p,Eξ=0×(1-p)+1×p=p,Dξ=(1-p)·(0-p)2+p(1-p)2= p(1-p)≤(21p p -+)2=41. 所以事件在一次试验中发生的次数的方差不超过41. 【类题演练3】甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量ξ与η,计算ξ、η的期望与方差,并以此分析甲、乙的技术优劣. 解析:依题意,有Eξ=10×0.5+9×0.2+8×0.1+7×0.1+6×0.05+5×0.05+0×0=8.85(环). E η=10×0.1+9×0.1+8×0.1+7×0.1+6×0.2+5×0.2+0×0.2=5.6(环).D ξ=(10-8.85)2×0.5+(9-8.85)2×0.2+(8-8.85)2×0.1×…+(5-8.85)2×0.05+(0-8.85)2×0=2.227 5.D η=(10-5.6)2×0.1+(9-5.6)2×0.1+(8-5.6)2×0.1+…+(5-5.6)2×0.2+(0-5.6)2×0.2=10.24.所以Eξ<Eη,说明甲的平均水平比乙高,又因为Dξ<Dη,说明甲射中的环数比较集中,比较稳定,而乙射中的环数分散较大,技术波动较大,不稳定,所以甲比乙的技术好. 【变式提升3】现要从甲、乙两个技工中选派一个参加技术比赛,已知他们在同样的条件下乙根据以上条件,选派谁去合适?解析:Eξ1=0×0.1+1×0.5+2×0.4=1.3,Eξ2=0×0.3+1×0.3+2×0.2+3×0.2=1.3.由于Eξ1=Eξ2,所以甲技工与乙技工出现次品数的平均水平基本一致,因而还需考查稳定性.Dξ1=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41;Dξ2=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21.因此Dξ1<Dξ2,所以技工乙波动较大,稳定性较差.综上所述,应选派技工甲去参加比赛.。
最新-2021高中数学选修23课件:第二章23231离散型随机变量的均值 精品
值,是随机变量 X 的一个固有的数字特征,不具有随机
性.
2.离散型随机变量的性质
如果 X 为(离散型)随机变量,则 Y=aX+b(其中 a,b 为常数)也是(离散型)随机变量,且 P(X=xi)=P(Y=axi+ b),i=1,2,3,…,n.E(Y)=E(aX+b)=aE(X)+b.
解析:(1)错,随机变量 X 的数学期望是一个常量. (2)错,随机变量的均值与样本的平均值是两个不同 的概念. (3)对,E(2X)=2E(X)=2×3=6. 答案:(1)× (2)× (3)√
2.已知 ξ 的分布列为:
ξ -1 0 1 2
P
1 4
311 848
则 ξ 的均值为( )
A.0
B.-1
法二 由于 Y=2X-3,
所以 Y 的分布列如下:
Y -7 -5 -3 -1 1
P
1 4
1 3Leabharlann 1 511 6 20所以
E(Y) =
(
-
7)× 14
+(-
5)×
1 3
+
(
- 3)× 15 + ( -
1)×16+1×210=-6125.
归纳升华 若给出的随机变量 ξ 与 X 的关系为 ξ=aX+b,a,b 为常数.一般思路是先求出 E(X),再利用公式 E(aX+b) =aE(X)+b 求 E(ξ).也可以利用 ξ 的分布列得到 η 的分 布列,关键由 ξ 的取值计算 η 的取值,对应的概率相等, 再由定义法求得 E(η).
防范措施:在求随机变量取各值的概率时,务必理解
各取值的实际意义,以免失误.另外,可以利用分布列的
n
性质:(1)pi≥0(i=1,2,3,…,n),(2) pi=1 来检验.
选修2-3离散型随机变量的方差
六、课堂小结
1、离散型随机变量取值的方差、标准差及意义 、离散型随机变量取值的方差、 2、记住几个常见公式 、
D(aX + b ) = a 2 DX
服从两点分布, 若 X 服从两点分布,则 DX = p(1 − p )
若 X ~ B ( n , p ),则 DX = np (1 − p )
新疆 王新敞
奎屯
④根据方差、标准差的定义求出 DX、σ X 根据方差、
基础训练
1、已知随机变量X的分布列 、已知随机变量 的分布列 X P 0 0.1 1 0.2 2 0.4 3 0.2 4 0.1
求DX和σX。 和 。 解: = 0 × 0.1 + 1× 0.2 + 2 × 0.4 + 3 × 0.2 + 4 × 0.1 = 2 EX
EX 2 = 8
DX 2 Leabharlann 0.82结论:第一名同学的射击成绩稳定性较差, 结论:第一名同学的射击成绩稳定性较差,第 二名同学的射击成绩稳定性较好,稳定于8 二名同学的射击成绩稳定性较好,稳定于8环 左右. 左右.
思考? 思考?
(1)如果其他班级参赛选手的射击成绩都 左右,本班应该派哪一名选手参赛? 在9环左右,本班应该派哪一名选手参赛?
1 1 1 1 1 1 + 2 × + 3 × + 4 × + 5 × + 6 × = 3.5 6 6 6 6 6 6
σ X = DX ≈ 1.71
小结
求离散型随机变量X的方差、标准差的一般步骤: 的方差、标准差的一般步骤: 的意义, 可能取的全部值; ①理解X 的意义,写出X 可能取的全部值; ②求X取各个值的概率,写出分布列; 取各个值的概率,写出分布列; ③根据分布列,由期望的定义求出 EX; 根据分布列,
人教版高中数学选修2-3课件:2.3.1 离散型随机变量的均值
当堂自测
[答案] A
当堂自测
3.设随机变量X~B(3,0.2),则
E(2X+1)= ( )
A.0.6
B.1.2
C.2.2
D.3.2
[答案] C
[解析] ∵随机变量 X~B(3,0.2),∴E(X)=3×0.2=0.6,∴E(2X+1)=2E(X)+1 =2×0.6+1=2.2,故选C.
当堂自测
故选D. (2)设该学生在这次测验中选对的题数 为X,该学生在这次测验中成绩为Y,则 X~B(20,0.9),Y=5X.由二项分布的均值公
式得E(X)=20×0.9=18.由随机变量均值 的线性性质得E(Y)=E(5X)=5×18=90.
考点类析
考点三 利用随机变量均值的性质解决问题
[导入] 若X是随机变量,且Y=aX+b,其中a,b为常数,试分析随机变量Y的均值E(Y)和E(X) 的关系.
考点一 随机变量X均值定义的应用
ξ012345 P 2x 3x 7x 2x 3x x
[答案] C
考点类析
例2 袋中有4只红球、3只 黑球,现从袋中随机取出4 只球,设取到1只红球得2分, 取得1只黑球得1分,试求得 分X的均值.
X5678 P
考点类析
考点二 两点分布、二项分布的均值
例3 (1)设X~B(40,p),且E(X)=16,则p=
的均值. (2)随机变量的均值是常数,其值不随X的变化而变化.
预习探究
[探究] 随机地抛掷一枚骰子,怎样求向上的点数X的均值?
X123456 P
预习探究
知识点二 离散型随机变量均值的性质
若Y=aX+b(a,b为常数),则E(Y)=E(aX+b)=
2.3 离散型随机变量的分布列及其期望
2.3 离散型随机变量的分布列及其期望基础梳理1.离散型随机变量的分布列(1)随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,随机变量常用字母X,Y,ξ,η等表示.(2)离散型随机变量对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.(3)分布列设离散型随机变量X可能取得值为x1,x2,…,x i,…x n,X取每一个值x i(i=1,2,…,n)的概率为P(X=x i)=p i,则称表X x1x2…x i…x nP p1p2…p i…p n为随机变量X的概率分布列,简称X的分布列.(4)分布列的两个性质①p i≥0,i=1,2,…,n;②p1+p2+…+p n=_1_.2.两点分布如果随机变量X的分布列为X 10P p q其中0<p<1,q=1-p,则称离散型随机变量X服从参数为p的两点分布.3.超几何分布列在含有M件次品数的N件产品中,任取n件,其中含有X件次品数,则事件{X=k}发生的概率为:P(X=k)=C k M C n-kN-MC n N(k=0,1,2,…,m),其中m=min{M,n},且n≤N,M≤N,n、M、N∈N*,则称分布列X 01…mP C0M·C n-0N-MC n NC1M C n-1N-MC n N…C m M C n-mN-MC n N为超几何分布列.4.二项分布在n 次独立重复试验中,设事件A 发生的次数为k ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率. 5.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n基础训练1.抛掷均匀硬币一次,随机变量为( ).A .出现正面的次数B .出现正面或反面的次数C .掷硬币的次数D .出现正、反面次数之和2.如果X 是一个离散型随机变量,那么下列命题中假命题是( ). A .X 取每个可能值的概率是非负实数 B .X 取所有可能值的概率之和为1C .X 取某2个可能值的概率等于分别取其中每个值的概率之和D .X 在某一范围内取值的概率大于它取这个范围内各个值的概率之和(1)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值 或 ,它反映了离散型随机变量取值的 .(2)方差称D (X )=∑i =1n[x i -E (X )]2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均 ,其算术平方根D (X )为随机变量X 的标准差.数学期望 平均水平 偏离程度3.已知随机变量X 的分布列为:P (X =k )=12k ,k =1,2,…,则P (2<X ≤4)等于( ). A.316 B.14 C.116 D.5164.袋中有大小相同的5只钢球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为X ,则X 的所有可能取值个数为( ). A .25 B .10 C .7 D .65.设某运动员投篮投中的概率为P =0.3,则一次投篮时投中次数的分布列是________. 6.小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是( ).A.49B.29C.427D.227由统计数据求离散型随机变量的分布列【例1】某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:投资成功 投资失败 192次8次则该公司一年后估计可获收益的期望是________.(1)可设出随机变量Y ,并确定随机变量的所有可能取值作为第一行数据;(2)由统计数据利用事件发生的频率近似地表示该事件的概率作为第二行数据.由统计数据得到分布列可帮助我们更好理解分布列的作用和意义.【训练1】某射手进行射击训练,假设每次射击击中目标的概率为35,且各次射击的结果互不影响.(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答);(2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答);(3)设随机变量ξ表示射手第3次击中目标时已射击的次数,求ξ的分布列【例2】►某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X表示此人选对A 饮料的杯数.假设此人对A和B两种饮料没有鉴别能力.(1)求X的分布列;(2)求此员工月工资的期望.求离散型随机变量的分布列,首先要根据具体情况确定X的取值情况,然后利用排列、组合与概率知识求出X取各个值的概率.而超几何分布就是此类问题中的一种.【训练2】着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12;两小时以上且不超过三小时还车的概率分别为12,14;两人租车时间都不会超过四小时.(1)求甲、乙两人所付的租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列及数学期望E(ξ).【例3】►(某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=112,则随机变量X的数学期望E(X)=________.本题考查了相互独立事件同时发生的概率求法以及分布列,期望的相关知识,公式应用,计算准确是解题的关键.【训练3】某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区.B肯定是受A感染的.对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是12.同样也假定D受A、B和C感染的概率都是13.在这种假定之下,B、C、D中直接受A感染的人数X就是一个随机变量.写出X的分布列(不要求写出计算过程),并求X的均值(即数学期望).【例4】►一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是1 3.(1)设X为这名学生在途中遇到红灯的次数,求X的分布列;(2)设Y为这名学生在首次停车前经过的路口数,求Y的分布列;(3)求这名学生在途中至少遇到一次红灯的概率.独立重复试验是相互独立事件的特例(概率公式也是如此),就像对立事件是互斥事件的特例一样,只要有“恰好”字样的用独立重复试验的概率公式计算更简单,就像有“至少”或“至多”字样的题用对立事件的概率公式计算更简单一样.【训练4】某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(1)任选1名下岗人员,求该人参加过培训的概率;(2)任选3名下岗人员,记X为3人中参加过培训的人数,求X的分布列.巩固提升1、设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.,则同一工作日至少3人需使用设备的概率为______________;2、甲、乙、丙三个同学一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取),两次考试过程相互独立.根据甲、乙、丙三个同学的平时成绩分析,甲、乙、丙三个同学能通过笔试的概率分别是0.6、0.5、0.4,能通过面试的概率分别是0.6、0.6、0.75.(1)求甲、乙、丙三个同学中恰有一人通过笔试的概率;(2)求经过两次考试后,至少有一人被该高校预录取的概率.3.某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.4.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列、数学期望和方差.。
人教版A版高中数学选修2-3:2.3离散型随机变量的均值与方差
反),(反正),(反反),所以试验一次成功的概率为 1-
1 2
2
= 3.
4
所以在 2 次试验中成功次数 X 的取值为 0,1,2,
其中 P(X=0)=
1 4
2 = 116,
P(X=1)=C21
×
3 4
×
1 4
=
38,
P(X=2)=34
×
3 4
=
196,
所以在 2 次试验中成功次数 X 的均值是 E(X)=0× 116+1×
他们考核所得的等次相互独立.
(1)求在这次考核中,志愿者甲、乙、丙三人中至少有一名考核为优秀的概率;
(2)记这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量ξ,求随机变 量ξ的分布列和均值E(ξ).
思考怎样求离散型随机变量X的均值与方差?
解 (1)记“甲考核为优秀”为事件A,“乙考核为优秀”为事件B,“丙考核为优秀”为 事件C,“志愿者甲、乙、丙三人中至少有一名考核为优秀”为事件E,
请同学们阅读课本,通过自学完成以下问题:
• 1.下列结论正确的打“√”,错误的打“×”.
• (1)均值是算术平均数概念的推广,与概率无关.( ) • (2)均值与方差都是从整体上刻画离散型随机变量的情况,因此它们是一回 事.( ) • (3)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度, 方差或标准差越小,则偏离均值的平均程度越小.( ) • (4)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的均值,σ 是正态分布的标准差.( )
(2)从招聘职工(人数很多)中任意选取3人,记X为这3名职工中参加这种技能培 训时间不少于90小时的人数.试求X的分布列、均值E(X)和方差D(X).
选修2-3离散型随机变量的均值与方差第1课时教案新部编本
教师学科教案[ 20–20学年度第__学期]任教学科: _____________任教年级: _____________任教老师: _____________xx市实验学校§2.3 离散型随机变量的均值与方差§2.3.1 离散型随机变量的均值教学目标:知识与技能:了解离散型随机量的均或期望的意,会根据离散型随机量的分布列求出均或期望.过程与方法:理解公式“ E( aξ +b) =aEξ +b”,以及“若ξ: B( n,p ), Eξ =np” . 能熟地用它求相的离散型随机量的均或期望。
情感、态度与价值观:承前启后,感悟数学与生活的和之美, 体数学的文化功能与人文价。
教学重点:离散型随机量的均或期望的概念教学难点:根据离散型随机量的分布列求出均或期望授课类型:新授课时安排: 1教学过程:一、复习引入:1.离散型随机量的二分布: 在一次随机中,某事件可能生也可能不生,在 n 次独立重复中个事件生的次数ξ 是一个随机量.如果在一次中某事件生的概率是P,那么在 n 次独立重复中个事件恰好生k 次的概率是P n (k) C n k p k q n k,(k=0,1,2,⋯, n,q 1 p).于是得到随机量ξ 的概率分布如下:ξ01⋯k⋯nP C n0 p0q n C n1 p1q n 1⋯C n k p k q n k⋯C n n p n q0称的随机量ξ 服从二分布,作ξ~ B(n , p) ,其中n, p 参数,并C n k p k q n k=b(k;n,p).二、讲解新课:根据已知随机量的分布列,我可以方便的得出随机量的某些制定的概率,但分布列的用途不止于此,例如:已知某射手射所得数ξ 的分布列如下ξ45678910P0.020.040.060.090.280.290.22在 n 次射之前,可以根据个分布列估n 次射的平均数.就是我今天要学的离散型随机量的均或期望根据射手射所得数ξ 的分布列,我可以估,在 n 次射中,大有P(4)n0.02n次得 4;P(5)n0.04n次得 5;⋯⋯⋯⋯P(10) n 0.22n次得10.故在 n 次射的数大4 0.02 n5 0.04 n10 0.22n(4 0.02 5 0.0410 0.22) n ,从而,n 次射的平均数4 0.025 0.0410 0.22 8.32 .是一个由射手射所得数的分布列得到的,只与射数的可能取及其相的概率有关的常数,它反映了射手射的平均水平.于任一射手,若已知其射所得数ξ的分布列,即已知各个P(i ) (i=0,1,2,⋯, 10),我可以同他任意n 次射的平均数:0 P(0) 1 P(1)⋯10 P(10).1.均或数学期望 :一般地,若离散型随机量ξ 的概率分布ξx1x2⋯x n⋯P p1p⋯pn⋯2称 Ex1 p1 x2 p2⋯x n p n⋯ξ 的均或数学期望,称期望.2.均或数学期望是离散型随机量的一个特征数,它反映了离散型随机量取的平均水平3.平均数、均 :一般地,在有限取离散型随机量ξ的概率分布中,令 p1p2⋯ p n,有p1 p2⋯ p n 11,E( x1x2⋯ x n ),所以ξ 的数学期望又称平均数、n n均4.均或期望的一个性 :若a b (a、b是常数),ξ 是随机量,η也是随机量,它的分布列ξx1x2⋯x n⋯ηax1b ax2b⋯ax n b⋯P p1p2⋯p n⋯于是 E(ax1b) p1(ax2b) p2⋯(ax n b) p n⋯= a( x1 p1x2 p2⋯x n p n⋯)b( p1p2⋯p n⋯)= aE b ,由此,我得到了期望的一个性: E(a b) aE b5. 若ξ: B(n,p ), Eξ=np明如下:∵P(k) C n k p k (1 p)n k C n k p k q n k,∴E0×C n0p0q n+ 1×C1n p1q n 1+ 2×C n2p2q n 2+⋯+ k×C n k p k q n k+⋯+ n ×C n n p n q0.又∵kC n k k n!k)! (k n(n1)!nC n k11,k!(n1)![( n1)( k1)]!∴E np(C n01 p0q n 1+ C n11 p1q n2+⋯+ C n k11 p k 1 q( n 1) (k 1)+⋯ +C n n11 p n 1q 0 )np ( p q) n1np .故若ξ~ B(n , p) ,E np.三、讲解范例:例 1.球运在比中每次球命中得 1 分,不中得0 分,已知他命中的概率0.7 ,求他球一次得分的期望解:因 P(1)0.7, P(0) 0.3 ,所以 E10.70 0.30.7例 2.一次元由 20 个构成,每个有 4 个,其中有且有一个是正确答案,每正确答案得 5 分,不作出或不得分,分100 分学生甲任一的概率0.9 ,学生乙在中每都从 4 个中随机地一个,求学生甲和乙在次英元中的成的期望解:学生甲和乙在次英中正确答案的个数分是,,~B (20,0.9 ),~ B(20,0.25) ,E200.918, E200.25 5由于答对每题得 5 分,学生甲和乙在这次英语测验中的成绩分别是5和5所以,他们在测验中的成绩的期望分别是:E(5 ) 5E( ) 5 18 90,E(5 ) 5E( ) 5 5 25例 3.随机抛掷一枚骰子,求所得骰子点数的期望解:∵ P(i )1/ 6,i 1,2,,6 ,E11/ 621/ 6 6 1/ 6 =3.5例 4.随机的抛掷一个骰子,求所得骰子的点数ξ 的数学期望.解:抛掷骰子所得点数ξ的概率分布为ξ123456P 111111 666666所以E1×1+2×1+3×1+4×1+5×1+6×1 666666=(1 +2+3+4+5+6) ×1= 3.5 .6抛掷骰子所得点数ξ 的数学期望,就是ξ 的所有可能取值的平均值.四、课堂练习:1.口袋中有 5 只球,编号为1,2, 3,4,5,从中任取 3 球,以表示取出球的最大号码,则E()A. 4;B. 5;C.4.5 ;D. 4.75答案: C2.篮球运动员在比赛中每次罚球命中的 1 分,罚不中得 0 分.已知某运动员罚球命中的概率为 0.7 ,求⑴他罚球 1 次的得分ξ的数学期望;⑵他罚球 2 次的得分η的数学期望;⑶他罚球 3 次的得分ξ的数学期望.3.设有 m升水,其中含有大肠杆菌 n 个.今取水 1 升进行化验,设其中含有大肠杆菌的个数为ξ,求ξ 的数学期望.五、小结:(1)离散型随机变量的期望,反映了随机变量取值的平均水平;(2)求离散型随机变量ξ 的期望的基本步骤:①理解ξ 的意义,写出ξ 可能取的全部值;②求ξ 取各个值的概率,写出分布列;③根据分布列,由期望的定义求出 Eξ公式 E(aξ +b) = aEξ +b,以及服从二项分布的随机变量的期望 Eξ =np六、布置作业:练习册七、板书设计(略)八、教学反思:(1)离散型随机变量的期望,反映了随机变量取值的平均水平;(2)求离散型随机变量ξ 的期望的基本步骤:①理解ξ 的意义,写出ξ 可能取的全部值;②求ξ 取各个值的概率,写出分布列;③根据分布列,由期望的定义求出Eξ公式E(aξ +b)= aEξ +b,以及服从二项分布的随机变量的期望Eξ =np 。
选修2-3离散型随机变量及其分布知识点
离散型随机变量及其分布知识点一:离散型随机变量的相关概念;随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机 变量随机变量常用希腊字母、等表示离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随 机变量叫做离散型随机变量。
若 •是随机变量, b ,其中a 、b 是常数,则 也是随机变量连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的 变量就叫做连续型随机变量离散型随机变量与连续型随机变量的区别与联系 :离散型随机变量与连续型随机 变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一 列出,而连续性随机变量的结果不可以 列出离散型随机变量的分布列:设离散型随机变量•可能取的值为x i 、X 2…人取每 个值x i =1,2,…的概率为P( =Xi) = 口,则称表为随机变量•的概率分布,简称•的分布列 知识点二:离散型随机变量分布列的两个性质;任何随机事件发生的概率都满足:0乞P(A)叮,并且不可能事件的概率为0 ,必然 事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质:(1) Pi 王0, i =1,2,…;(2) R+巳+川=1特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和即P 「_x k )=x k ) • P(F ; =x k 』•丨1(知识点二:两点分布:特别提醒:(1)若随机变量X 的分布列为两点分布,则称X 服从两点分布,而称P(X=1) 为成功率•(2) 两点分布又称为0-1分布或伯努利分布(3)两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列 来研究•知识点三:超几何分布:般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则C k C n _kp (x 二k )二 MN 川,k =0,1, m,m = min{M ,n},其中,n N,M < N.称超几何分布列.若随机变量X 的分布列:则称X 的分布列为两点分布列N知识点四:离散型随机变量的二项分布;在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数•是一个随机变量.如果在一次试验中某事件发生的概率是 p ,那么在n 次 独立重复试验中这个事件恰好发生 k 次的概率是 P n (© =k)p k q n 」,(k 30..., q=1-p )于是得到随机变量•的概率分布如下:由于Cnp k q 恰好是二项式展开式:(p • q)n =C ;p 0q n £:卩乙2 • |l 「C :p k q n ± VCnpF 0中的各项的值,所以称这样的随 机变量■服从二项分布,记作LI B( n,p),其中n ,p 为参数,并记c :p k q n 上二b(k ,n, p)||| 知识点五:离散型随机变量的几何分布:在独立重复试验中,某事件第一次发生时,所作试验的次数•也是一个正整数的离散型随机变量.“ • =k ”表示在第k 次独立重复试验时事件第一次发生.如果把k 次试验 时事件A 发生记为A k 、事件A 不发生记为宀,p(AJ = p , p(AJ =q, (q =1- p),那么 P (二k)二P(AA 2A3IH A ;人)十(入)卩叵)卩(瓦)||冋兀)卩(乓)二q2p (k =0,1,2,… q =1 - p ) 于是得到随机变量•的概率分布如下:称这样的随机变量•服从几何分布,记作 g(k, p) =q k 'p,其中 k =0,1,2」l (,q =1 - p. 知识点六:求离散型随机变量分布列的步骤;(1) 要确定随机变量 的可能取值有哪些•明确取每个值所表示的意义;(2) 分清概率类型,计算•取得每一个值时的概率(取球、抽取产品等问题还要注意是 放回抽样还是不放回抽样;(3) 列表对应,给出分布列,并用分布列的性质验证•几种常见的分布列的求法:(1) 取球、投骰子、抽取产品等问题的概率分布,关键是概率的计算 •所用方法主要有划 归法、数形结合法、对应法等对于取球、抽取产品等问题,还要注意是放回抽样还是不放回抽样•(2) 射击问题:若是一人连续射击,且限制在n次射击中发生k次,则往往与二项分布联系起来;若是首次命中所需射击的次数,则它服从几何分布,若是多人射击问题,一般利用相互独立事件同时发生的概率进行计算•(3) 对于有些问题,它的随机变量的选取与所问问题的关系不是很清楚,此时要仔细审题,明确题中的含义,恰当地选取随机变量,构造模型,进行求解•知识点六:期望数学期望:一般地,若离散型随机变量E的概率分布为则称E - X i P i X2P2 .................................. X n P n •… 为的数学期望,简称期望数学期望的意义:数学期望离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平。
2.3.2离散型随机变量的方差
2.3.2离散型随机变量的方差232 离散型随机变量的方差在我们探索概率与统计的奇妙世界时,离散型随机变量的方差是一个非常重要的概念。
它就像是一把神奇的尺子,能够帮助我们更深入地理解随机现象背后的规律。
那什么是离散型随机变量的方差呢?咱们先从一个简单的例子说起。
假设你参加一个抽奖活动,有三种可能的奖品,价值分别为 10 元、20 元和 50 元,获得它们的概率分别是 05、03 和 02。
这个时候,我们可以把获得的奖品价值看作一个离散型随机变量 X。
那么,这个随机变量的平均值,也就是期望,通过计算可以得到:E(X) = 10×05 + 20×03 + 50×02 = 21(元)。
但是,仅仅知道平均值还不够。
因为即使平均值相同,不同的抽奖活动可能具有不同的“波动程度”。
比如说,另一个抽奖活动的奖品价值平均值也是 21 元,但是有的奖品价值很低,有的又很高,这样的抽奖活动风险就比较大。
而离散型随机变量的方差,就是用来衡量这种“波动程度”或者“分散程度”的。
具体来说,离散型随机变量 X 的方差记作 Var(X),它的计算公式是:Var(X) = E(X E(X))²。
咱们还是以刚才的抽奖活动为例,来计算一下方差。
首先,计算(X E(X))²在每个取值下的值:当 X = 10 时,(10 21)²= 121;当 X = 20 时,(20 21)²= 1;当 X = 50 时,(50 21)²= 841。
然后,分别乘以对应的概率:121×05 + 1×03 + 841×02 = 2188(元²)这就是这个抽奖活动奖品价值的方差。
方差越大,说明抽奖结果的波动越大,不确定性也就越大;方差越小,说明抽奖结果相对稳定,比较接近平均值。
再举一个例子,比如说掷骰子。
掷出的点数就是一个离散型随机变量。
原创1 :2.3.2离散型随机变量的方差
6
6
6
1
1
2
2
(5 3.5) (6 3.5) 2.92
6
6
2
sX
DX 1.71
题后感悟
求离散型随机变量X的方差、标准差的一般步骤:
①理解X 的意义,写出X 可能取的全部值;
②求X取各个值的概率,写出分布列;
③根据分布列,由期望的定义求出 EX;
新疆
王新敞
奎屯
④根据方差、标准差的定义求出、.
解:根据月工资的分布列,可算得
EX 1 1200 0.4 + 1 400 0.3 + 1600 0.2 + 1800 0.1 =1400
DX 1 (1200 -1400)
2
0. 4 (1400 -1400 ) 2 0.3 (1600 -1400 ) 2 0.2
X2
P
5
0.01
6
0.05
7
0.20
8
0.41
9
0.33
请问应该派哪名同学参赛?
EX 1 8 , EX 2 8
发现两个均值相等
因此只根据均值不能区分这两名同学的射击水平.
问题探究
1、定性分析
除平均中靶环数以外,还有其他刻画两名同学各自射击特点的指标吗?
(1)分别画出1 , 2 的分布列图.
得正品之前已取出次品数的期望与方差.
新疆
王新敞
奎屯
EX=0.3 ;DX=351/1100
课堂小结
1、离散型随机变量取值的方差、标准差及意义
2、记住几个常见公式
D(aX b) a 2 DX
若X服从两点分布,则DX
第2章 2.3 2.3.1 离散型随机变量的均值
2.3离散型随机变量的均值与方差2.3.1离散型随机变量的均值学习目标核心素养1.理解离散型随机变量的均值的意义和性质,会根据离散型随机变量的分布列求出均值.(重点)2.掌握两点分布、二项分布的均值.(重点)3.会利用离散型随机变量的均值解决一些相关的实际问题.(难点)1.通过离散型随机变量的均值的学习,体会数学抽象的素养.2.应用随机变量的均值解题提升数学运算的素养.1.离散型随机变量的均值(1)定义:若离散型随机变量X的分布列为:X x1x2…x i…x nP p1p2…p i…p n=x1p1+x2p2+…+x i p i+…+x n p n为随机变量(2)意义:它反映了离散型随机变量取值的平均水平.(3)性质:如果X为(离散型)随机变量,则Y=aX+b(其中a,b为常数)也是随机变量,且P(Y=ax i+b)=P(X=x i),i=1,2,3,…,n.E(Y)=E(aX+b)=aE(X)+b.2.两点分布和二项分布的均值(1)若X服从两点分布,则E(X)=p;(2)若X~B(n,p),则E(X)=np.思考:随机变量的均值与样本平均值有什么关系?[提示]随机变量的均值是一个常数,它不依赖于样本的抽取,而样本的平均值是一个随机变量,它随样本抽取的不同而变化.对于简单随机样本,随着样本容量的增加,样本的平均值越来越接近于总体的均值.1.若随机变量X 的分布列为X -1 01 p121613A .0B .-1C .-16D .-12C [E (X )=∑i =13x i p i =(-1)×12+0×16+1×13=-16.]2.设E (X )=10,则E (3X +5)=________. 35 [E (3X +5)=3E (X )+5=3×10+5=35.]3.若随机变量X 服从二项分布B ⎝ ⎛⎭⎪⎫4,13,则E (X )的值为________.43 [E (X )=np =4×13=43.]求离散型随机变量的均值【例1多有4次参加考试的机会,一旦某次考试通过,即可领取驾照,不再参加以后的考试,否则就一直考到第4次为止.如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数X 的分布列和X 的均值.[解] X 的取值分别为1,2,3,4.X =1,表明李明第一次参加驾照考试就通过了, 故P (X =1)=0.6.X =2,表明李明在第一次考试未通过,第二次通过了,故P (X =2)=(1-0.6)×0.7=0.28.X =3,表明李明在第一、二次考试未通过,第三次通过了,故P(X=3)=(1-0.6)×(1-0.7)×0.8=0.096.X=4,表明李明第一、二、三次考试都未通过,故P(X=4)=(1-0.6)×(1-0.7)×(1-0.8)=0.024.所以李明一年内参加考试次数X的分布列为X 123 4P 0.60.280.0960.024 所以X的均值为E(X)=1×0.6+2×0.28+3×0.096+4×0.024=1.544.求离散型随机变量X的均值的步骤1.理解X的实际意义,并写出X的全部取值.2.求出X取每个值的概率.3.写出X的分布列(有时也可省略).4.利用定义公式E(X)=x1p1+x2p2+…+x n p n求出均值.其中第(1)、(2)两条是解答此类题目的关键,在求解过程中要注重运用概率的相关知识.1.盒中装有5节同牌号的五号电池,其中混有两节废电池.现在无放回地每次取一节电池检验,直到取到好电池为止,求抽取次数X的分布列及均值.[解]X可取的值为1,2,3,则P(X=1)=35,P(X=2)=25×34=310,P(X=3)=25×14×1=110.抽取次数X的分布列为X 12 3P 35310110E(X)=1×35+2×310+3×110=32.离散型随机变量的均值公式及性质X -2 -1 0 1 2 P141315m120(2)求E (X );(3)若Y =2X -3,求E (Y ).[解] (1)由随机变量分布列的性质,得14+13+15+m +120=1, 解得m =16.(2)E (X )=(-2)×14+(-1)×13+0×15+1×16+2×120=-1730.(3)法一:(公式法)由公式E (aX +b )=aE (X )+b ,得E (Y )=E (2X -3)=2E (X )-3=2×⎝ ⎛⎭⎪⎫-1730-3=-6215.法二:(直接法)由于Y =2X -3,所以Y 的分布列如下:Y -7 -5 -3 -1 1 P14131516120所以E (Y )=(-7)×14+(-5)×13+(-3)×15+(-1)×16+1×120=-6215.1.该类题目属于已知离散型分布列求均值,求解方法是直接套用公式,E (X )=x 1p 1+x 2p 2+…+x n p n 求解.2.对于aX +b 型的随机变量,可利用均值的性质求解,即E (aX +b )=aE (X )+b ;也可以先列出aX +b 的分布列,再用均值公式求解,比较两种方式显然前者较方便.2.已知随机变量X 的分布列为X 1 2 3 P121316且Y=aX+3,若E(Y)=-2,则a的值为________.-3[E(X)=1×12+2×13+3×16=53.∵Y=aX+3,∴E(Y)=aE(X)+3=53a+3=-2.解得a=-3.]两点分布与二项分布的均值【例(1)求投篮1次时命中次数X的均值;(2)求重复5次投篮时,命中次数Y的均值.[思路点拨](1)利用两点分布求解.(2)利用二项分布的数学期望公式求解.[解](1)投篮1次,命中次数X的分布列如下表:X 0 1P 0.40.6(2)由题意,重复5次投篮,命中的次数Y服从二项分布,即Y~B(5,0.6),则E(Y)=np=5×0.6=3.1.(变换条件)求重复10次投篮时,命中次数ξ的均值.[解]E(ξ)=10×0.6=6.2.(改变问法)重复5次投篮时,命中次数为Y,命中一次得3分,求5次投篮得分的均值.[解]设投篮得分为变量η,则η=3Y.所以E(η)=E(3Y)=3E(Y)=3×3=9.1.常见的两种分布的均值设p为一次试验中成功的概率,则(1)两点分布E(X)=p;(2)二项分布E(X)=np.熟练应用上述公式可大大减少运算量,提高解题速度.2.两点分布与二项分布辨析(1)相同点:一次试验中要么发生要么不发生.(2)不同点:①随机变量的取值不同,两点分布随机变量的取值为0,1,二项分布中随机变量的取值x=0,1,2,…,n.②试验次数不同,两点分布一般只有一次试验;二项分布则进行n次试验.离散型随机变量均值的实际应用[1.某篮球明星罚球命中率为0.7,罚球命中得1分,不中得0分,若该球星在一场比赛中共罚球10次,命中8次,那么他平均每次罚球得分是多少?[提示]每次平均得分为810=0.8.2.在探究1中,你能求出在他参加的各场比赛中,罚球一次得分大约是多少吗?为什么?[提示]在球星的各场比赛中,罚球一次的得分大约为0×0.3+1×0.7=0.7(分).因为在该球星参加各场比赛中平均罚球一次的得分只能用随机变量X的数学期望来描述他总体得分的平均水平.具体到每一场比赛罚球一次的平均得分应该是非常接近X的均值的一个分数.【例4】随机抽取某厂的某种产品200件,经质检,其中一等品126件,二等品50件,三等品20件,次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元,设1件产品的利润(单位:元)为X.(1)求X的分布列;(2)求1件产品的平均利润(即X的均值);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%,如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?[思路点拨]根据利润的意义写出X的取值→写出X的分布列→求出均值E(X)→利用期望回答问题[解](1)X的所有可能取值有6,2,1,-2.P(X=6)=126200=0.63,P(X=2)=50200=0.25,P(X=1)=20200=0.1,P(X=-2)=4200=0.02.故X的分布列为:X 621-2P 0.630.250.10.02(2)(3)设技术革新后的三等品率为x,则此时1件产品的平均利润为E(X)=6×0.7+2×(1-0.7-0.01-x)+1×x+(-2)×0.01=4.76-x(0≤x≤0.29).依题意,E(X)≥4.73,即4.76-x≥4.73,解得x≤0.03,所以三等品率最多为3%.1.实际问题中的均值问题均值在实际生活中有着广泛的应用,如对体育比赛的成绩预测,消费预测,工程方案的预测,产品合格率的预测,投资收益的预测等方面,都可以通过随机变量的均值来进行估计.2.概率模型的三个解答步骤(1)审题,确定实际问题是哪一种概率模型,可能用到的事件类型,所用的公式有哪些.(2)确定随机变量的分布列,计算随机变量的均值.(3)对照实际意义,回答概率,均值等所表示的结论.3.某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X ≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,则他们选择何种方案抽奖,累计得分的数学期望较大?[解] (1)由已知得小明中奖的概率为23,小红中奖的概率为25,两人中奖与否互不影响,记“这2人的累计得分X ≤3”为事件A ,则事件A 的对立事件为“X =5”, 因为P (X =5)=23×25=415, 所以P (A )=1-P (X =5)=1115.所以这两人的累计得分X ≤3的概率为1115.(2)设小明、小红都选择方案甲抽奖中奖的次数为X 1,都选择方案乙抽奖中奖的次数为X 2,则这两人选择方案甲抽奖累计得分的数学期望为E (2X 1),选择方案乙抽奖累计得分的数学期望为E (3X 2).由已知得X 1~B ⎝ ⎛⎭⎪⎫2,23,X 2~B ⎝ ⎛⎭⎪⎫2,25,所以E (X 1)=2×23=43,E (X 2)=2×25=45. 所以E (2X 1)=2E (X 1)=83, E (3X 2)-3E (X 2)=125. 因为E (2X 1)>E (3X 2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.1.求离散型随机变量均值的步骤: (1)确定离散型随机变量X 的取值;(2)写出分布列,并检查分布列的正确与否; (3)根据公式写出均值.2.若X ,Y 是两个随机变量,且Y =aX +b ,则E (Y )=aE (X )+b ;如果一个随机变量服从两点分布或二项分布,可直接利用公式计算均值.1.判断(正确的打“√”,错误的打“×”)(1)随机变量X 的数学期望E (X )是个变量,其随X 的变化而变化.( ) (2)随机变量的均值反映样本的平均水平.( )(3)若随机变量X 的数学期望E (X )=2,则E (2X )=4.( ) (4)随机变量X 的均值E (X )=x 1+x 2+…+x nn.( )[答案] (1)× (2)× (3)√ (4)× 2.已知随机变量X 的分布列为X 1 2 3 P0.20.5m则X A .2 B .2.1C .2.3D .随m 的变化而变化B [由0.2+0.5+m =1得m =0.3,∴E (X )=1×0.2+2×0.5+3×0.3=2.1,故选B.] 3.已知X ~B ⎝ ⎛⎭⎪⎫100,12,则E (2X +3)=________.103 [E (X )=100×12=50,E (2X +3)=2E (X )+3=103.]4.袋中有4个黑球,3个白球,2个红球,从中任取2个球,每取到1个黑球记0分,每取到1个白球记1分,每取到1个红球记2分,用X 表示取得的分数.求:(1)X 的分布列; (2)X 的均值.[解] (1)由题意知,X 可能取值为0,1,2,3,4.P(X=0)=C24C29=16,P(X=1)=C13C14C29=13,P(X=2)=C14C12+C23C29=1136,P(X=3)=C12C13C29=16,P(X=4)=C22C29=136.故X的分布列为(2)E(X)=0×16+1×13+2×1136+3×16+4×136=149.课时分层作业(十四)离散型随机变量的均值(建议用时:60分钟)[基础达标练]一、选择题1.设随机变量X~B(40,p),且E(X)=16,则p等于()A.0.1 B.0.2C.0.3 D.0.4D[∵E(X)=16,∴40p=16,∴p=0.4.]2.今有两台独立工作在两地的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达台数为X,则E(X)为()A.0.765 B.1.75C.1.765 D.0.22B[X的取值为0,1,2,P(X=0)=0.1×0.15=0.015,P (X =1)=0.9×0.15+0.1×0.85=0.22, P (X =2)=0.9×0.85=0.765,E (X )=0×0.015+1×0.22+2×0.765=1.75.] 3.已知Y =5X +1,E (Y )=6,则E (X )的值为( ) A .65 B .5 C .1D .31C [因为E (Y )=E (5X +1)=5E (X )+1=6, 所以E (X )=1.]4.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400B [记“不发芽的种子数为ξ”,则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100,而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200,故选B.]5.口袋中有编号分别为1,2,3的三个大小和形状相同的小球,从中任取2个,则取出的球的最大编号X 的期望为( )A.13B.23C.2D.83D [X =2,3.所以P (X =2)=1C 23=13,P (X =3)=C 12C 23=23,所以E (X )=2×13+3×23=83.]二、填空题6.篮球运动员在比赛中每次罚球命中得1分,不命中得0分.已知他命中的概率为0.8,则罚球一次得分X 的期望是________.0.8 [因为P (X =1)=0.8,P (X =0)=0.2,所以E (X )=1×0.8+0×0.2=0.8.] 7.某射手射击所得环数X 的分布列如下:已知X 的均值E (X )=8.9,则y 的值为________. 0.4 [由题意得⎩⎨⎧x +0.1+0.3+y =1,7x +0.8+2.7+10y =8.9,即⎩⎨⎧ x +y =0.6,7x +10y =5.4,解得⎩⎨⎧x =0.2,y =0.4.] 8.对某个数学题,甲解出的概率为23,乙解出的概率为34,两人独立解题.记X 为解出该题的人数,则E (X )=________.1712 [由已知得X 的可能取值为0,1,2. P (X =0)=13×14=112, P (X =1)=23×14+13×34=512,P (X =2)=23×34=612,E (X )=0×112+1×512+2×612=1712.] 三、解答题9.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.若厂家发给商家20件产品,其中有3件不合格.按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数X 的分布列及均值E (X ).[解] X 可能的取值为0,1,2.P (X =0)=C 217C 220=136190,P (X =1)=C 13C 117C 220=51190,P (X =2)=C 23C 220=3190.∴X 的分布列为:E(X)=0×136190+1×51190+2×3190=310.10.端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的分布列与均值.[解](1)令A表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A)=C12C13C15C310=14.(2)X的所有可能取值为0,1,2,且P(X=0)=C38C310=715,P(X=1)=C12C28C310=715,P(X=2)=C22C18C310=115.综上知,X的分布列为故E(X)=0×715+1×715+2×115=35.[能力提升练]1.某船队若出海后天气好,可获得5 000元;若出海后天气坏,将损失2 000元;若不出海也要损失1 000元.根据预测知天气好的概率为0.6,则出海的期望效益是()A.2 000元B.2 200元C.2 400元D.2 600元B[出海的期望效益E(ξ)=5 000×0.6+(1-0.6)×(-2 000)=3 000-800=2 200(元).]2.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设某学生一次发球成功的概率为p(p≠0),发球次数为X,若X的数学期望E(X)>1.75,则p的取值范围是()A.⎝ ⎛⎭⎪⎫0,712 B.⎝ ⎛⎭⎪⎫0,12 C.⎝ ⎛⎭⎪⎫712,1 D.⎝ ⎛⎭⎪⎫12,1 B [根据题意,X 的所有可能取值为1,2,3,且P (X =1)=p ,P (X =2)=p (1-p ),P (X =3)=(1-p )2,则E (X )=p +2p (1-p )+3(1-p )2=p 2-3p +3,依题意有E (X )>1.75,则p 2-3p +3>1.75,解得p >52或p <12,结合p 的实际意义,可得0<p <12,即p ∈⎝ ⎛⎭⎪⎫0,12.]3.把两封信投入A ,B ,C 三个空邮箱中,则A 邮箱中的信件数X 的均值E (X )=________.23[每封信投到A 邮箱的概率均为13, X ~B ⎝ ⎛⎭⎪⎫2,13,∴E (X )=23.]4.某人有10万元,准备用于投资房地产或购买股票,如果根据下面的盈利表进行决策:那么应选择的决策方案是________.投资房地产 [设购买股票的盈利为X ,投资房地产的盈利为Y , 则购买股票的盈利的均值为 E (X )=10×0.3+3×0.5+(-5)×0.2 =3+1.5-1=3.5.投资房地产的盈利的均值为 E (Y )=8×0.3+4×0.5+(-4)×0.2=2.4+2-0.8=3.6.因为E(Y)>E(X),所以投资房地产的平均盈利高,即应选择投资房地产.] 5.某商场为刺激消费,拟按以下方案进行促销:顾客消费每满500元便得到抽奖券1张,每张抽奖券的中奖概率为12,若中奖,则商场返回顾客现金100元.某顾客现购买价格为2 300元的台式电脑一台,得到奖券4张.每次抽奖互不影响.(1)设该顾客抽奖后中奖的奖券张数为ξ,求ξ的分布列;(2)设该顾客购买台式电脑的实际支出为η(单位:元),用ξ表示η,并求η的数学期望.[解](1)∵每张奖券是否中奖是相互独立的,∴ξ~B(4,1 2).∴ξ的分布列为ξ0123 4P 116143814116(2)∵ξ~B(4,12),∴E(ξ)=4×12=2.又由题意可知η=2 300-100ξ,∴E(η)=E(2 300-100ξ)=2 300-100E(ξ)=2 300-100×2=2 100. 即实际支出的数学期望为2 100元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
也称X是参数为p的 贝努利随机变量.
三、离散均匀分布 x1 x2 ... xn
X ~ 1 n
1 n
2 1 6 3 1 6
...
1 n
5 1 6 6 1 6
如掷一颗骰子出现的点数 X 具有离散均匀分布.
1 X ~ 1 6 4 1 6
四、二项分布 设在一次试验中, 只有两个对立的结果: A 或 A 各次试验的条件 (“重复”指 重复进行n次独立试验, 相同, “独立”指各次试验的结 互不影响) 果 每一次试验,A发生的概率都是 p, A不发生的 概率都是 q 1 p 这样的 n 次独立重复试验 称作 n重贝努里试验, 简称贝努里试验 或贝努里 概型. 用 X 表示 n重贝努里试验中 事件A(成功)出现的 次数, X 可能取值: 0,1,2,3,..., n
p1 p2 ... pk ... pk
k
若离散型 r , v . X 的概率分布为
X p x1 p1 x2 p2 xk pk
3.离散型随机变量的分布函数为
F ( x) P( X x)
xi x
P( X x )
i
xi x
p
i
只有两种对立结果: 对于贝努利试验, “A发生” 与“A不发生” 设事件A发生的概率为 p ( 0 p 1 ) 则事件 A 发生的概率为 q 1 p 令X表示 一次贝努利试验中, A发生的次数, 即
例 袋中有五张卡片,其中标有数字1的有一 张,标有数字2及3的各有两张.从中一次随机 抽取3张,X表示取到的3张卡片上的最大数字, 求X的概率分布.若Y表示最小数字呢? X Y 2 3 1 2 解 P P 0 . 6 0 .4 0 .1 0 .9
1 2 C1 C2 0.1 P{ X 2} 3 C5
满足规范性.
1.模型:稠密或稀有事件的分布. 如等车人数、寻呼台接到的呼唤次数、放 射性物质在某段时间内放射的粒子数、某 页书的印刷错误、铸件的疵点、布的疵点 等.
0 1
离散型随机变量的分布函数 例 掷一颗骰子, 出现的点数为X
0
1 6 2 6 3 6
4 6
x 1 1 x 2 2 x3 3 x4 4 x5 5 x6 6 x
5 6
1
2
3 4
5 6
1 X ~ 1 6
5 6 3 6 1 6
0 1
1 1 1 1 6 6 6 6 F ( x ) P{ X x} 1 4 6 2 6
X P
0
1
2
...
k
...
n
1 1 n1 q n Cn pq
P X 0 P ( A1 A2 ... An ) P ( A1 ) P ( A2 )... P ( An ) q
设 Ai 表示第 i次发生事件A P ( Ai ) p P ( Ai ) 1 p q
n
§2.3
离散型随机变量
离散型随机变量与概率分布律 定义2.3.1 如果随机变量X 只可能取有限个 或可数 无穷多个值,则称 X 是 离散型随机变量. 离散型随机变量的特点是它的所有取值 可以逐 个一一列举出来. 如 “取到次品的个数” “掷骰子出现的点数” “某电话交换台 任一小时内收到的呼叫次数”
q n Cn p q
1
1 n1
例1 一批产品的合格率为0.9,重复抽取3 件:每次一件,连续3次.求3次中取到的合 格品件数X 的概率分布. 解 依题意X ~ B(3,0.9),
P{ X k } C 0.9 0.1
k 3 k
3 k
(k 0,1,2,3 )
2
0.243
X P
2 3 4 5 6 1 6
2 3 4 5 6
0
1 6 2 6 3 6
4 6
x 1 1 x 2 2 x3 3 x4 4 x5 5 x6 6 x
5 6
1
1, 2, 3, 4, 5, 6 处发生跳跃, 跳跃的高度 等于X在相应 取值点处的概率.
F ( x )是一个阶梯形函数, 它在X的可能取值点
X ~ B( n, p)
k n k
k 0,1, 2,..., n
称随机变量X 服从参数为 n, p 的二项分布,记为
2 2 n2 k k n k Cn p q ... C n p q ... p n ( q p )n 1 当n=1时, 二项分布 b( 1 , p) 1 0 X ~ q p 即是参数为p的0—1分布.
X pk 1 1 26 2 1 26 3 1 26 ...
...
26 1 26
一般地, 若 r .v . X 的概率分布是 P{ X xk }
x1 即 X ~1 n x2 x3
1 n
1 n
... xn 1 ... n
1 n k 1, 2,..., n
则称 r .v . X具有离散均匀分布.
2 n
k n
n P X n P ( A1 A ... A ) )P )... P( An ) p 2 ( A2n
X P
0
q
n
1 2 ... n 1 1 2 p 2q n 2 ... q p Cn Cn
k n
k
...
nk
n
C p q
k n
k
...
pn
即 P X k C p q
P X 1 P ( A1 A2 A3 ... An A1 A2 A3 ... An ... A1 ... An1 An )
P ( A1 A2 A3 ... An ) P ( A1 A2 A3 ... An ) ... P ( A1 ... An1 An ) P ( A1 ) P ( A2 )... P ( An ) P ( A1 ) P ( A2 )... P ( An ) ...
P X k P ( A1 ... Ak Ak 1 ... An ... A1 ... Ank Ank 1 ... An )
P ( A1 ... Ak Ak 1 ... An ) ... P ( A1 ... Ank Ank 1 ... An )
k nk p q C
n1 p q P ( A1 )... P ( An1 ) P ( An ) C
1 n
X P
0
1
2
...
k n
k
...
n k
n
1 1 n1 2 2 n 2 ... q n Cn p q Cn pq 设 Ai 表示第 i次发生事件A
C pq
k
...
pn
P ( Ai ) p P ( Ai ) 1 p q P X 2 P ( A1 A2 A3 ... An ... A1 ... An2 An1 An )
0 1 2 3 4
其取值在数轴上 是有限个点 或一列离散的点.
定义2.3.2 设X 是离散型随机变量,它的一切可能 取值为 x1 , x2 ,..., xn ,... 且 X 取各个值的概率为
pi p( xi ) P X xi
i 1,2,3,...
(2.1)
(2)
{ x1 , x2 ,..., xk ,...} x1 x2 ... xk ...
k
1 P ( ) P x1 x2 ... xk ...
p{ X x1 } p{ X x2 } ... p{ X xk } ...
任一离散型随机变量 的分布函数, 都具有这个 特征. 反之, 若一随机变量X的分布函数 是阶梯型函数, 则X一定是离散型随机变量. 而且 F ( x ) 的全部跳跃点 就是X的全部取值点. F ( x )在跳跃点处 跳跃的高度 等于X在相应取值点 处的概率.
例2
P38
几个重要的离散型分布 一、退化分布 如果随机变量X
0
0.001
1
0.027
3
0.729
例2 某人投篮的命中率为0.8,若连续投篮5次,求 最多投中两次的概率. 则 X ~ B(5, 0.8) 解 X "5次中投中的次数 ",
P{ X k } C 0.8 0.2
k 5 k
5 k
(k 0,1,2,3,4,5)
P{ X 2}
1 0.8 0.24 C 2 0.8 2 0.2 3 0.25 C 5 5 0.05792
P40 例4
五、泊松分布 定义 设随机变量 X 可能取的值为 0,1,2,, n, 且取这些值的概率为
k e P X k k!
k 0,1,2,, n,
其中 0, 为常数,则称 X 服从参数为λ的泊松 分布, 记为 X ~ P ( )
X P 0
e
1
2
...
k
...
1 2 ... e e 1! 2!
k ... e k!
X
0
e
1
1
2
2
...
k
k
...
X ~ P ( )
P
n
... e e 1! 2!
x1 有时也写成 X ~ p1
X
x1 , x2 , x3 , ..., xn , ... p p1 , p2 , p3 , ..., pn , ...
概率分布的性质: 定理2.3.1 1. 非负性 pk 0 2. 规范性 pk 1