实数练习题基础篇附答案
(完整版)实数测试题及答案解析
↗(人教版.第6章.实数.2分)1.8的平方根是()A.4B.±4C.2D.考点:平方根.专题:计算题.分析:直接根据平方根的定义进行解答即可解决问题.解答:,∴8的平方根是.故选:D.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.↗(人教版.第6章.实数.2分)2.的平方根是()A.±3B.3C.±9D.9考点:平方根;算术平方根.专题:计算题.分析:根据平方运算,可得平方根、算术平方根.解答:解:∴,9的平方根是±3,故选:A.点评:本题考查了算术平方根,平方运算是求平方根的关键.↗(人教版.第6章.实数.2分)3.已知边长为a的正方形的面积为8,则下列说法中,错误的是()A.a是无理数B.a是方程x2﹣8=0的一个解C.a是8的算术平方根D.a满足不等式组考点:算术平方根;无理数;解一元二次方程-直接开平方法;解一元一次不等式组.专题:数与式分析:首先根据正方形的面积公式求得a的值,然后根据算术平方根以及方程的解的定义即可作出判断.解答:解:a==2,则a是无理数,a是方程x2﹣8=0的一个解,是8的算术平方根都正确;解不等式组,得:3<a<4,而2<3,故错误.故选:D.点评:此题主要考查了算术平方根的定义,方程的解的定义,以及无理数估计大小的方法.↗(人教版.第6章.实数.2分)4.化简得()A.100B.10C.D.±10考点:算术平方根.专题:数与式分析:运用算术平方根的求法化简.解答:解:=10,故答案为:B.点评:本题主要考查算术平方根用二次根式的性质和化简的知识点,本题是基础题,比较简单.↗(人教版.第6章.实数.2分)5.若实数x、y满足=0,则x+y的值等于()A.1B.C.2D.考点:非负数的性质:算术平方根;非负数的性质:偶次方.专题:分类讨论.分析:根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.解答:解:由题意得,2x﹣1=0,y﹣1=0,解得x=,y=1,所以,x+y=+1=.故选:B.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.↗↗(人教版.第6章.实数.2分)6.下列实数中是无理数的是()A.B.2﹣2C.5.D.sin45°考点:无理数.专题:常规题型.分析:根据无理数是无限不循环小数,可得答案.解答:解:A、是有理数,故A选项错误;B、是有理数,故B选项错误;C、是有理数,故C选项错误;D、是无限不循环小数,是无理数,故D选项正确;故选:D.点评:本题考查了无理数,无理数是无限不循环小数.↗↗(人教版.第6章.实数.2分)7.下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个考点:无理数.专题:数与式分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:据无理数定义得有,π和是无理数.故选:B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.↗(人教版.第6章.实数.2分)8.4的平方根是±2.考点:平方根.专题:计算题.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∴(±2)2=4,∴4的平方根是±2.故答案为:±2.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.↗(人教版.第6章.实数.2分)9.计算:=3.考点:算术平方根.专题:计算题.分析:根据算术平方根的定义计算即可.解答:解:∴32=9,∴=3.故答案为:3.点评:本题较简单,主要考查了学生开平方的运算能力(人教版.第6章.实数.2分)10.的算术平方根为.考点:算术平方根.专题:计算题.分析:首先根据算术平方根的定义计算先=2,再求2的算术平方根即可.解答:解:∴=2,∴的算术平方根为.故答案为:.点评:此题考查了算术平方根的定义,解题的关键是知道=2,实际上这个题是求2的算术平方根.注意这里的双重概念.。
初中数学实数与运算练习题及参考答案
初中数学实数与运算练习题及参考答案本文为初中数学实数与运算练习题及参考答案,旨在帮助初中学生巩固和提高实数与运算的知识点,让大家更好地掌握数学相关知识。
以下是题目及参考答案:一、填空题1. 5.6是________数。
答:有理数2. 2根号3 是 __________数。
答:无理数3. π 是__________数。
答:无理数4. -13是__________数。
答:整数5. √16/√25 = __________。
答:4/56. -2/3化为小数为__________。
答:-0.6666666666666667二、选择题。
1. -1/3在数轴上的位置是()A. 3/1的左面B. 0的左面C. -1的左面D. -1的右面答:D2. 以下哪个数是无理数()A. 6B. -5.7C. 0D. √2答:D3. 已知a = 7/3,b = -5/4,则a ÷ b = ()A. -2.8B. 3.58C. -3.58D. 2.8答:C三、计算题。
1. (1+根号5)/2 + (1-根号5)/2 = __________。
答:12. (998-458)÷(12-3×3)×5=__________。
答:603. -5/6 + [(-5/6) ÷ (-2/5)] =__________。
答:-1/3四、应用题。
1. 某班有40名学生,其中1/4的学生患感冒。
请问这个数量为多少?答:40 × 1/4 = 10(人)2. 一家工厂去年利润为200万元,比前年增长了20%。
请问前年的利润为多少?答:200 ÷ 1.2 = 166.67(万元)以上就是初中数学实数与运算练习题及参考答案,希望本文能对初中同学们的学习有所帮助,加深对数学知识的理解和掌握。
实数专项训练及解析答案
实数专项训练及解析答案一、选择题1.+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间 【答案】B【解析】解:∵34<<,∴415<<.故选B .的取值范围是解题关键.2.下列各数中最小的数是( )A .1-B .0C .D .2-【答案】D【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】根据实数比较大小的方法,可得-2<-1<0,∴各数中,最小的数是-2.故选D .【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.3.规定用符号[]n 表示一个实数的小数部分,例如:[]3.50.5, 1.==按照此规定, 1⎤⎦的值为( )A 1B 3C 4D 1+ 【答案】B【解析】【分析】根据3<4的小数部分,根据用符号[n]表示一个实数的小数部分,可得答案.【详解】解:由34,得4+1<5.3-,故选:B .【点睛】本题考查了估算无理数的大小,利用了无理数减去整数部分就是小数部分.4.估计65的立方根大小在( )A .8与9之间B .3与4之间C .4与5之间D .5与6之间 【答案】C【解析】【分析】先确定65介于64、125这两个立方数之间,从而可以得到45<<,即可求得答案. 【详解】解:∵3464=,35125=∴6465125<<∴45<<.故选:C【点睛】本题考查了无理数的估算,“夹逼法”是估算的一种常用方法,找到与65临界的两个立方数是解决问题的关键.5.已知,x y 为实数且10x +=,则2012x y ⎛⎫ ⎪⎝⎭的值为( ) A .0B .1C .-1D .2012 【答案】B【解析】【分析】利用非负数的性质求出x 、y ,然后代入所求式子进行计算即可.【详解】由题意,得x+1=0,y-1=0,解得:x=-1,y=1, 所以2012x y ⎛⎫ ⎪⎝⎭=(-1)2012=1,故选B.【点睛】 本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.6.在-2,4,2,3.14, 327-,5π,这6个数中,无理数共有( ) A .4个B .3个C .2个D .1个【答案】C【解析】-2,42=, 3.14, 3273-=-是有理数; 2,5π是无理数; 故选C. 点睛:本题考查了无理数的识别,无限不循环小数叫无理数,无理数通常有以下三种形式,①开方开不尽的数,如3 ,35 等;②圆周率π;③构造的无限不循环小数,如2.01001000100001⋅⋅⋅ (0的个数一次多一个).7.估计的值在( )A .0到1之间B .1到2之间C .2到3之间D .3到4之间【答案】B【解析】【分析】利用“夹逼法”估算无理数的大小.【详解】=﹣2. 因为9<11<16,所以3<<4. 所以1<﹣2<2. 所以估计的值在1到2之间. 故选:B .【点睛】本题考查估算无理数的大小.估算无理数大小要用逼近法.8.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③2a 的算术平方根是a ;④算术平方根不可能是负数;⑤()24π-的算术平方根是4π-,其中不正确的个数是( )A .2个B .3个C .4个D .5个 【答案】B【解析】【分析】根据算术平方根的定义判断即可.【详解】负数没有算术平方根,①错误;0的算术平方根是0,②错误;2a 的算术平方根是a ,③错误;算术平方根不可能是负数,④正确;()24π-的算术平方根是4-π,⑤正确.所以不正确的个数为3个,选B .【点睛】掌握算术平方根的定义.注意:0的算术平方根是0、负数没有算术平方根.9.在整数范围内,有被除数=除数⨯商+余数,即a bq r a b =+≥(且)00b r b ≠≤<,,若被除数a 和除数b 确定,则商q 和余数r 也唯一确定,如:11,2a b ==,则11251=⨯+此时51q r ==,.在实数范围中,也有 (a bq r a b =+≥且0b ≠,商q 为整数,余数r 满足:0)r b ≤<,若被除数是,除数是2,则q 与r 的和( )A .4B .6C .4D .4 【答案】A【解析】【分析】根据2=q 即可先求出q 的值,再将a 、q 、b 的值代入a =bq +r 中即可求出r 的值,从而作答.【详解】∵2=7=45,的整数部分是4, ∴商q =4,∴余数r =a ﹣bq =2×4=8,∴q +r =4+8=4.故选:A .【点睛】本题考查了整式的除法、估算无理数的大小,解答本题的关键理解q 的整数部分.10.给出下列说法:①﹣0.064的立方根是±0.4;②﹣9的平方根是±3;=﹣;④0.01的立方根是0.00001,其中正确的个数是( )A .1个B .2个C .3个D .4个【答案】A【解析】【分析】利用平方根和立方根的定义解答即可.【详解】①﹣0.064的立方根是﹣0.4,故原说法错误;②﹣9没有平方根,故原说法错误;④0.000001的立方根是0.01,故原说法错误,其中正确的个数是1个,故选:A.【点睛】此题考查平方根和立方根的定义,熟记定义是解题的关键.11.的值是在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间【答案】B【解析】解:由于16<19<25,所以4<5,因此6<7.故选B.点睛:本题主要考查了估算无理数的大小的能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.12.25的平方根是()A.±5 B.5 C.﹣5 D.±25【答案】A【解析】【分析】如果一个数 x的平方是a,则x是a的平方根,根据此定义求解即可.【详解】∵(±5)2=25,∴25的立方根是±5,故选A.【点睛】本题考查了求一个数的平方根,解题的关键是掌握一个正数的平方根有两个,这两个互为相反数.13.王老师在讲“实数”时画了一个图(如图),即“以数轴的单位长度的线段为边作一个正方形,然后以表示-1的点为圆心,正方形的对角线长为半径画弧交数轴于点A”.则数轴上点A所表示的数是()A2-1 B2+1 C2D2【答案】A【解析】【分析】先根据勾股定理求出正方形的对角线长,再根据两点间的距离公式为:两点间的距离=较大的数-较小的数,便可求出-1和A之间的距离,进而可求出点A表示的数.【详解】22112+=-1和A2.∴点A2.故选A.【点睛】本题考查的是勾股定理及两点间的距离公式,本题需注意:知道数轴上两点间的距离,求较小的数,就用较大的数减去两点间的距离.14.下列说法正确的是()A.任何数的平方根有两个B.只有正数才有平方根C.负数既没有平方根,也没有立方根D.一个非负数的平方根的平方就是它本身【答案】D【解析】A、O的平方根只有一个即0,故A错误;B、0也有平方根,故B错误;C、负数是有立方根的,比如-1的立方根为-1,故C错误;D、非负数的平方根的平方即为本身,故D正确;故选D.15.362+在哪两个整数之间()A.4和5 B.5和6 C.6和7 D.7和8【答案】C【解析】【分析】362182322+==2 1.414≈,即可解答.【详解】36222+== 1.414≈,∴2 6.242≈,即介于6和7,故选:C .【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.16.1?0,?-,?,?0.10100100013π⋅⋅⋅(相邻两个1之间依次多一个0),其中无理数是( )个.A .1B .2C .3D .4 【答案】B 【解析】【分析】根据无理数的定义(无理数是指无限不循环小数)判断即可.无理数就是无限不循环小数,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,因此,【详解】4==,013是有理数. ∴无理数有:﹣π,0.1010010001….共有2个.故选B.【点睛】 此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…等有这样规律的数.17.已知下列结论:①在数轴上的点只能表示无理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是( ) A .①②B .②③C .③④D .②③④【答案】B【解析】【分析】根据实数与数轴的关系,有理数是无限循环小数或有限小数,无理数是无限不循环小数,可得答案.【详解】解:①数轴上的点表示实数,故①错误;②任何一个无理数都能用数轴上的点表示,故②正确;③实数与数轴上的点一一对应,故③正确;④有理数有无限个,无理数有无限个,故④错误;【点睛】本题考查了实数与数轴,实数与数轴上的点一一对应,掌握实数与数轴的关系是解题的关键.18.对于两个不相等的实数a,b,我们规定符号max{a,b}表示a、b中的较大的数,如:max{2,4}=4,按照这个规定,方程max{x,﹣x}=x2﹣x﹣1的解为()A.或1B.1或﹣1 C.1或1 D.或﹣1【答案】D【解析】【分析】根据题意应分为x>0和x<0两种情况讨论,并列出关于x的分式方程求解,结合x的取值范围确定方程max{x,﹣x}=x2﹣x﹣1的解即可.【详解】解:①当x≥﹣x,即x≥0时,∵max{x,﹣x}=x2﹣x﹣1,∴x=x2﹣x﹣1,解得:x=(1<0,不符合舍去);②当﹣x>x,即x<0时,﹣x=x2﹣x﹣1,解得:x=﹣1(1>0,不符合舍去),即方程max{x,﹣x}=x2﹣x﹣1的解为或﹣1,故选:D.【点睛】本题考查了解分式方程,有关实数、实数运算的新定义,掌握分式方程的解法是解题的关键.19.25的算数平方根是A B.±5 C.D.5【答案】D【解析】【分析】一个正数的平方根有2个,且这两个互为相反数,而算数平方根只有一个且必须是正数,特别地,我们规定0的算术平方根是0 负数没有算术平方根,但i的平方是-1,i是一个虚数,是复数的基本单位.【详解】=,5∴25的算术平方根是:5.故答案为:5.本题考查了算术平方根,熟练掌握该知识点是本题解题的关键.20.如图,长方形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是1-,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是( )A .45B 52C 51D .35【答案】C【解析】【分析】 首先根据勾股定理算出AC 的长度,进而得到AE 的长度,再根据A 点表示的数是-1,可得E 点表示的数.【详解】∵2,1AD BC AB === ∴22521AC =+=∴AE 5∵A 点表示的数是1-∴E 51【点睛】掌握勾股定理;熟悉圆弧中半径不变性.。
初中数学实数基础训练1含答案
实数基础训练1一.选择题(共16小题)1.下列实数中,()是无理数.A.﹣3.1416B.C.﹣D.2.矩形的面积为18,一边长为,则另一边长为()A.B.C.D.243.与是同类二次根式的是()A.B.C.D.4.当x为下列何值时,二次根式有意义()A.x≠2B.x>2C.x≤2D.x≥2 5.﹣8的立方根是()A.2B.﹣2C.4D.﹣46.若+n2+2n+1=0,则m n=()A.B.C.2D.﹣27.2的平方根是()A.±4B.4C.±D.8.若最简二次根式与最简二次根式是同类二次根式,则x的值为()A.x=0B.x=1C.x=2D.x=﹣2 9.若在实数范围内有意义,则x的取值范围是()A.x<﹣2B.x>﹣2C.x≤﹣2D.x≥﹣2 10.估计+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间11.﹣27的立方根是()A.3B.﹣3C.±3D.﹣3 12.估计的运算结果应在()A.3到4之间B.4到5之间C.5到6之间D.6到7之间13.下列二次根式中,是最简二次根式的是()A.B.C.D.14.下列二次根式中属于最简二次根式的是()A.B.C.(a>0,b>0)D.15.下列计算正确的是()A.×=B.=2C.+=D.=﹣5 16.=()A.﹣4B.4C.﹣8D.8二.填空题(共11小题)17.当x______时,二次根式在实数范围内有意义.18.已知a=2+,b=2﹣,则ab(a+b)=______.19.实数a、b在数轴上位置如图,化简:|a+b|+=______.20.写出一个满足<a<的整数a的值为______.21.代数式+2的最小值是______.22.计算的结果是______.23.若a、b为实数,且(a+)2+=0,则a b的值______.24.有理化分母:=______.25.已知的小数部分是a,的整数部分是b,则a+b=______.26.的小数部分是______.27.若,则x2+2x+1=______.三.解答题(共3小题)28.(π﹣3.14)0+()﹣1﹣|﹣3|29.计算:﹣14+|﹣2|﹣(π﹣3.14)0+÷30.实数a、b、c在数轴上的位置如图所示,求代数式|a|﹣|a+b|+|c﹣a|+|b﹣c|的值.实数基础训练1参考答案与试题解析一.选择题(共16小题)1.解:A、﹣3.1416是有限小数,属于有理数,故本选项不合题意;B、是无理数,故本选项符合题意;C.,是整数,属于有理数,故本选项不合题意;D.是分数,属于有理数,故本选项不合题意.故选:B.2.解:∵矩形的面积为18,一边长为,∴另一边长为=3,故选:C.3.解:的被开方数是2.A、原式=3,其被开方数是3,与的被开方数不同,它们不是同类二次根式,故本选项不符合题意.B、该二次根式的被开方数是6,与的被开方数不同,它们不是同类二次根式,故本选项不符合题意.C、原式=,其被开方数是3,与的被开方数不同,它们不是同类二次根式,故本选项不符合题意.D、原式=2,其被开方数是2,与的被开方数相同,它们是同类二次根式,故本选项符合题意.故选:D.4.解:根据二次根式有意义的条件可得:2﹣x≥0,解得:x≤2.故选:C.5.解:﹣8的立方根为﹣2,故选:B.6.解:∵+n2+2n+1=0,∴+(n+1)2=0,∴m﹣2=0,n+1=0,∴m=2,n=﹣1,∴m n=2﹣1=.故选:A.7.解:∵(±)2=2,∴2的平方根为±,故选:C.8.解:根据题意,得x+4=3x,解得x=2.故选:C.9.解:由题意,得x+2≥0,解得x≥﹣2.故选:D.10.解:∵2<3,∴3<+1<4,故选:B.11.解:﹣27的立方根是﹣3,故选:B.12.解:∵9<15<16,∴3<<4.故选:A.13.解:A、被开方数里含有能开得尽方的因数8,故本选项错误;B、符合最简二次根式的条件;故本选项正确;C、被开方数里含有分母;故本选项错误.D、被开方数里含有能开得尽方的因式a2;故本选项错误;故选:B.14.解:(A)原式=2,故A不符合题意;(B)原式=6,故B不符合题意;(C)不是最简二次根式,故C不符合题意;故选:D.15.解:∵=,故选项A正确;∵=3,故选项B错误;∵==3,故选项C错误;∵=5,故选项D错误;故选:A.16.解:∵82=64,∴=8.故选:D.二.填空题(共11小题)17.解:由题意,得x+1≥0.则x≥﹣1.故答案是:≥﹣1.18.解:a+b=2++2﹣=4,ab=(2+)(2﹣)=1,则ab(a+b)=4×1=4,故答案为:4.19.解:由题意可知:a<0<b,∴a+b<0,a﹣b<0,∴原式=﹣(a+b)﹣(a﹣b)=﹣a﹣b﹣a+b=﹣2a,故答案为:﹣2a20.解:∵1<<2,4<<5,a为整数,∴2≤a<5,∴满足<a<的整数a的值可以为2,故答案为:2(答案不唯一).21.解:∵≥0,∴+2≥2,即的最小值是2.故答案为:2.22.解:原式=2﹣3=﹣.故答案为:﹣.23.解:∵(a+)2+=0,∴(a+)2=0,=0,解得,a=﹣,b=2,则a b=(﹣)2=3,故答案为:3.24.解:原式==+,故答案为:+25.解:∵2<<3,2<<3,∴a=﹣2,b=2,a+b=﹣2+2=,故答案为.26.解:∵4<<5,∴的小数部分是﹣4,故答案为:﹣4.27.解:原式=(x+1)2,当x=﹣1时,原式=()2=2.三.解答题(共3小题)28.解:(π﹣3.14)0+()﹣1﹣|﹣3|=1+2﹣3+2=229.解:﹣14+|﹣2|﹣(π﹣3.14)0+÷=﹣1+2﹣﹣1+=030.解:由数轴可知,a<0,a+b<0,c﹣a>0,b﹣c<0,∴|a|﹣|a+b|+|c﹣a|+|b﹣c|=﹣a+a+b+c﹣a﹣b+c =﹣a+2c.。
初二实数测试题及答案
初二实数测试题及答案一、选择题(每题3分,共30分)1. 下列选项中,哪一个是无理数?A. 3.14159B. -2C. √2D. 02. 计算下列式子的结果,哪个是正确的?A. (-3) × (-3) = 6B. (-3) × (-3) = 9C. (-3) × (-3) = -9D. (-3) × (-3) = -63. 以下哪个数是实数?A. 3iB. √-1C. 2+3iD. 44. 计算√16的值是多少?A. 4B. -4C. ±4D. 25. 以下哪个数是实数集中的有理数?A. πB. √3C. 0.5D. √26. 计算下列式子的结果,哪个是正确的?A. (-2)³ = -8B. (-2)³ = 8C. (-2)³ = -6D. (-2)³ = 67. 以下哪个数是实数集中的无理数?A. 1/3B. √4C. 2πD. 28. 计算√9的值是多少?A. 3B. -3C. ±3D. 09. 以下哪个数是实数集中的整数?A. √2B. 0.5C. -2D. π10. 计算下列式子的结果,哪个是正确的?A. √(-1)² = -1B. √(-1)² = 1C. √(-1)² = 0D. √(-1)² = ±1二、填空题(每题3分,共30分)1. √9的值是______。
2. √(-4)²的值是______。
3. 无理数π的近似值是______。
4. 有理数-5的相反数是______。
5. √16的值是______。
6. √(-3)²的值是______。
7. 无理数e的近似值是______。
8. √25的值是______。
9. 有理数1/2的倒数是______。
10. √(-2)²的值是______。
三、解答题(每题10分,共40分)1. 计算并化简:√(-5)²。
完整版)实数练习题基础篇附答案
完整版)实数练习题基础篇附答案实数练题一、判断题(1分×8=8分)1.3不是9的算术平方根。
(×)2.2的平方根是根号2,它的算术平方根也是根号2.(√)3.-2没有实数平方根。
(×)4.-0.5不是0.25的一个平方根。
(×)5.2的平方根是a。
(×)6.6根是4.(√)7.-10不是1000的一个立方根。
(×)8.-7是-343的立方根。
(√)9.无理数可以用数轴上的点表示出来。
(√)10.有理数和无理数统称实数。
(√)二、选择题(3分×5=15分)11.列说法正确的是(B)A、1是0.5的一个平方根B、正数有两个平方根,且这两个平方根之和等于它们的和C、7的平方根是7D、负数有一个平方根12.如果y=0.25,那么y的值是(C)A、0.0625B、-0.5C、0.5D、±0.513.如果x是a的立方根,则下列说法正确的是(A)A、-x也是a的立方根B、-x是-a的立方根C、x是-a的立方根D、x等于a14.√3、22/7、-3、3343、3.1416都是无理数,它们的个数是(C)A、1个B、2个C、3个D、4个15.与数轴上的点建立一一对应的是(C)A、全体有理数B、全体无理数C、全体实数D、全体整数16.如果一个实数的平方根与它的立方根相等,则这个数是(A)A、0B、正实数且等于1C、负实数且等于-1D、1三、填空题(1分×30=30分)2.100的平方根是10,10的算术平方根是3.3.±3是√9的平方根,-3是√9的平方根;(-2)^2的算术平方根是2.4.正数有两个平方根,它们分别是正数和负数;负数没有实数平方根。
5.-125的立方根是-5,±8的立方根是2,27的立方根是3.6.正数的立方根是正数;负数的立方根是负数;0的立方根是0.7.2的相反数是-2,-π≈-3.14.8.比较下列各组数大小:⑴ <⑵ 3-64=2.5>1.5⑶ π≈3.14<3.5⑷ 2322>2000四、解下列各题。
初二数学之实数基础练习(含解析)
初二数学之实数基础练习一.选择题(共8小题)1.(2016春•固镇县期末)二次根式的值是()A.﹣2 B.2或﹣2 C.4 D.22.(2016秋•巴中校级期中)的平方根是()A.± B.±C.D.3.(2016•海沧区模拟)如图数轴上有A,B,C,D四点,根据图中各点的位置,所表示的数与11﹣2最接近的点是()A.A B.B C.C D.D4.(2016春•德州校级期中)下列说法中正确的是()A.9的平方根是3 B.的算术平方根是±2C.的算术平方根是4 D.的平方根是±25.(2016春•伽师县校级期中)的平方根为()A.±8 B.±4 C.±2 D.46.(2016春•龙口市期中)按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.3+B.15+C.3+3D.15+77.(2016春•盐亭县校级月考)把x根号外的因数移到根号内,结果是()A.B.C.﹣D.﹣8.(2015秋•天水期末)若2m﹣4与3m﹣1是同一个正数的平方根,则m为()A.﹣3 B.1 C.﹣1 D.﹣3或1二.填空题(共4小题)9.(2016•乐山模拟)有理数9的算术平方根是______.10.(2015•淮北模拟)计算:的平方根=______.11.(2015春•丹江口市期末)若一个正数的两个平方根是2a﹣1和﹣a+2,则a=______,这个正数是______.12.(2015秋•邵阳县校级期末)若2a﹣4与3a﹣1是同一个数的平方根,则a的值为______.三.解答题(共2小题)13.(2015•浦东新区三模)计算:20150﹣()+﹣|2﹣3|14.(2015春•潘集区期中)已知2a﹣1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.初二数学之实数基础练习参考答案与试题解析一.选择题(共8小题)1.(2016春•固镇县期末)二次根式的值是()A.﹣2 B.2或﹣2 C.4 D.2【分析】根据算术平方根的意义,可得答案.【解答】解:=2,故D正确,故选:D.【点评】本题考查了二次根式的性质,=a(a≥0).2.(2016秋•巴中校级期中)的平方根是()A.± B.±C.D.【分析】首先根据算术平方根的性质化简,再根据平方根的定义即可求出结果.【解答】解:∵,∴的平方根是±,∴的平方根是±.故选A.【点评】此题主要考查了平方根的定义和性质,解决本题的关键是先求得值.3.(2016•海沧区模拟)如图数轴上有A,B,C,D四点,根据图中各点的位置,所表示的数与11﹣2最接近的点是()A.A B.B C.C D.D【分析】由于,所以,所以,因为点B表示的数是﹣1.5,在﹣2~﹣1之间,所以点B最接近.【解答】解:∵,∴,∴,∵点B表示的数是﹣1.5,在﹣2~﹣1之间,∴点B最接近,故选:B.【点评】此题主要考查了估算无理数的大小,可以直接估算所以无理数的值,也可以利用“夹逼法”来估算.4.(2016春•德州校级期中)下列说法中正确的是()A.9的平方根是3 B.的算术平方根是±2C.的算术平方根是4 D.的平方根是±2【分析】根据平方根,算术平方根的定义对各选项分析判断后利用排除法求解.【解答】解:A、9的平方根是±3,故本选项错误;B、∵=4,∴的算术平方根是2,故本选项错误;C、的算术平方根是2,故本选项错误;D、∵=4,∴的平方根是±2,故本选项正确.故选D.【点评】本题考查了算术平方根,平方根的定义,要注意先求出的值,这也是本题最容易出错的地方.5.(2016春•伽师县校级期中)的平方根为()A.±8 B.±4 C.±2 D.4【分析】首先根据立方根的定义化简,然后根据平方根的定义即可求出结果.【解答】解:∵=4,又∵(±2)2=4,∴的平方根是±2.故选C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.6.(2016春•龙口市期中)按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.3+B.15+C.3+3D.15+7【分析】按所示的程序将n=输入,结果为3+,小于15;再把3+作为n再输入,得15+7,15+7>15,则就是输出结果.【解答】解:当n=时,n(n+1)=(+1)=3+<15,当n=3+时,n(n+1)=(3+)(4+)=15+7>15,故选D【点评】本题以一种新的运算程序考查了实数的运算,要注意两方面:①新的运算程序要准确;②实数运算要准确.7.(2016春•盐亭县校级月考)把x根号外的因数移到根号内,结果是()A.B.C.﹣D.﹣【分析】由x得出x<0,再利用二次根式的性质来化简求解.【解答】解:由x可知x<0,所以x=﹣=﹣,故选:C.【点评】本题主要考查了二次根式的性质与化简,解题的关键是求出x<0.8.(2015秋•天水期末)若2m﹣4与3m﹣1是同一个正数的平方根,则m为()A.﹣3 B.1 C.﹣1 D.﹣3或1【分析】由于一个正数的平方根有两个,且互为相反数,可得到2m﹣4与3m﹣1互为相反数,2m﹣4与3m﹣1也可以是同一个数.【解答】解:∵2m﹣4与3m﹣1是同一个正数的平方根,∴2m﹣4+3m﹣1=0,或2m﹣4=3m﹣1,解得:m=1或﹣3.故选D.【点评】本题主要考查了平方根的概念,解题时注意要求是一个正数的平方根.二.填空题(共4小题)9.(2016•乐山模拟)有理数9的算术平方根是3.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,根据此定义即可求出结果.【解答】解:∵32=9,∴9算术平方根为3.故答案为:3.【点评】本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.10.(2015•淮北模拟)计算:的平方根=±2.【分析】先求出的值,再根据平方根的定义解答.【解答】解:∵=8,∴的平方根为,±即±2.故答案为:±2.【点评】本题考查了平方根与算术平方根的定义,是基础概念题,熟记概念是解题的关键,要注意先求出的值,再进行解答.11.(2015春•丹江口市期末)若一个正数的两个平方根是2a﹣1和﹣a+2,则a=﹣1,这个正数是9.【分析】由于一个正数的平方根有两个,且它们互为相反数,由此即可列出方程求解.【解答】解:依题意得,2a﹣1+(﹣a+2)=0,解得:a=﹣1.则这个数是(2a﹣1)2=(﹣3)2=9.故答案为:﹣1,9【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数.12.(2015秋•邵阳县校级期末)若2a﹣4与3a﹣1是同一个数的平方根,则a的值为1或﹣3.【分析】由于一个正数有两个平方根,它们互为相反数,由此即可列出关于a的方程,解方程即可解决问题.【解答】解:依题意可知:2a﹣4+(3a﹣1)=0,或2a﹣4=3a﹣1,解得:a=1或a﹣3.故答案为:1或﹣3.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.三.解答题(共2小题)13.(2015•浦东新区三模)计算:20150﹣()+﹣|2﹣3|【分析】分别进行零指数幂、二次根式的化简、分数指数幂、绝对值的化简等运算,然后合并.【解答】解:原式=1﹣+2+2﹣(3﹣2)=3.【点评】本题考查了二次根式的混合运算,涉及了零指数幂、二次根式的化简、分数指数幂、绝对值的化简等等知识掌握运算法则是解答本题关键.14.(2015春•潘集区期中)已知2a﹣1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.【分析】根据平方根的定义求出a的值,再根据立方根的定义求出b的值,最后计算2(a+b)的值,即可解答.【解答】解:由已知得,2a﹣1=9解得:a=5,又3a+b+9=27∴b=3,2(a+b)=2×(3+5)=16,∴2(a+b)的平方根是:±=±4.【点评】本题考查了平方根、立方根的定义.如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.如果一个数x的立方等于a,那么这个数x就叫做a的立方根.。
精选八年级实数单元测试题(含答案)
精选八年级实数单元测试题(含答案)精选八年级实数单元测试题(含答案)一、基础测试1.算术平方根:如果一个正数x等于a,即x2=a,那么这个x正数就叫做a的算术平方根,记作,0的算术平方根是。
2.平方根:如果一个数x的等于a,即x2=a那么这个数a就叫做x 的平方根(也叫做二次方根式),正数a的平方根记作 .一个正数有平方根,它们 ;0的平方根是 ;负数平方根.特别提醒:负数没有平方根和算术平方根.3.立方根:如果一个数x的等于a,即x3=a,那么这个数x就叫做a的立方根,记作.正数的立方根是,0的立方根是,负数的立方根是。
4、实数的分类5.实数与数轴:实数与数轴上的点______________对应.6.实数的相反数、倒数、绝对值:实数a的相反数为______;若a,b 互为相反数,则a+b=______;非零实数a的倒数为_____(a≠0);若a,b 互为倒数,则ab=________。
7.8.数轴上两个点表示的数,______边的总比___边的大;正数_____0,负数_____0,正数___负数;两个负数比较大小,绝对值大的反而____。
9.实数和有理数一样,可以进行加、减、乘、除、乘方运算,而且有理数的运算法则与运算律对实数仍然适用.二、专题讲解:专题1平方根、算术平方根、立方根的概念若a≥0,则a的平方根是,a的算术平方根;若a<0,则a没有平方根和算术平方根;若a为任意实数,则a的立方根是。
【例1】的平方根是______【例2】327的平方根是_________【例3】下列各式属于最简二次根式的是()A.【例4】(2010山东德州)下列计算正确的是(A)(B)(C)(D)【例5】(2010年四川省眉山市)计算的结果是A.3B.C.D.9专题2实数的有关概念无理数即无限不循环小数,初中主要学习了四类:含的数,如:等,开方开不尽的数,如等;特定结构的数,例0.010010001…等;某些三角函数,如sin60,cos45等。
实数复习题含答案
实数复习题含答案一、选择题1. 下列各数中,是实数的是()A. -3√2B. √(-1)C. √2D. 1/0答案:A2. 若a是实数,下列表达式中不可能为实数的是()A. a^2B. a^3C. a^4D. 1/a答案:D3. 实数x满足|x-2| < 1,则x的取值范围是()A. 1 < x < 3B. 0 < x < 4C. 1 ≤ x ≤ 3D. 0 ≤ x ≤ 4答案:A二、填空题1. 若实数x满足x^2 - 4x + 4 = 0,那么x的值为____。
答案:22. 一个实数的绝对值等于它自己,那么这个实数是____。
答案:非负数3. 若实数a和b满足a + b = 5,且a - b = 3,那么a和b的值分别是____和____。
答案:4,1三、解答题1. 证明:对于任意实数a和b,(a+b)^2 ≤ 2(a^2 + b^2)。
证明:根据平方和公式,有(a+b)^2 = a^2 + 2ab + b^2而2(a^2 + b^2) = 2a^2 + 2b^2由于2ab ≤ 2a^2 + 2b^2(根据基本不等式),所以(a+b)^2 ≤ 2(a^2 + b^2)。
2. 已知实数x满足x^2 - 5x + 6 = 0,求x的值。
解:将方程x^2 - 5x + 6 = 0进行因式分解,得到(x-2)(x-3) = 0因此,x的值为2或3。
四、应用题1. 一个长方形的长是宽的两倍,且面积为24平方米。
求长方形的长和宽。
解:设长方形的宽为x米,则长为2x米。
根据面积公式,有x * 2x = 24即 x^2 = 12解得x = √12 = 2√3因此,长方形的宽为2√3米,长为4√3米。
五、综合题1. 已知实数a,b,c满足a < b < c,且a + b + c = 1。
证明:1/a > 1/b + 1/c。
证明:由于a < b < c,所以1/a > 1/b > 1/c。
实数单元测试题及答案卷
实数单元测试题及答案卷一、选择题(每题2分,共10分)1. 下列数中,是实数的是()。
A. iB. πC. -1D. √22. 若a > 0,则a的绝对值是()。
A. -aB. aC. 0D. 13. 以下哪个数不是有理数?()。
A. √3B. 0.5C. 3/4D. -24. 两个负实数相加,结果为()。
A. 正数B. 负数C. 零D. 实数5. 一个数的相反数是它自己,这个数是()。
A. 1B. -1C. 0D. 2二、填空题(每题2分,共10分)6. 一个数的平方根是它自己,这个数可以是______。
7. 绝对值等于5的数是______。
8. 两个互为相反数的数的和是______。
9. 一个数的立方根是它自己,这个数可以是______。
10. 一个数的倒数是它自己,这个数可以是______。
三、简答题(每题5分,共20分)11. 解释什么是有理数和无理数,并各举一例。
12. 说明实数的运算法则有哪些?13. 什么是绝对值?如何求一个数的绝对值?14. 什么是相反数?如何求一个数的相反数?四、计算题(每题10分,共30分)15. 计算下列各数的和:3 + (-4) + 5 + (-6)。
16. 求下列数的绝对值:|-8|,|0|,|-5.5|。
17. 求下列数的倒数:1/2,-3,0。
五、解答题(每题15分,共30分)18. 已知a = -2,b = 3,求a + b的值。
19. 若x² = 9,求x的值。
20. 已知y = √4,求y的值。
答案:一、选择题1. B2. B3. A4. B5. C二、填空题6. 0或17. ±58. 09. 0,±110. ±1三、简答题11. 有理数是可以表示为两个整数的比的数,例如1/2。
无理数是无限不循环小数,例如π。
12. 实数的运算法则包括加法、减法、乘法和除法。
13. 绝对值是一个数去掉符号后的值,求绝对值的方法是:如果这个数是正数或零,它的绝对值就是它本身;如果是负数,它的绝对值是它的相反数。
实数练习题及答案
实数练习题及答案实数是指所有的有理数和无理数的集合,它们可以用来描述现实世界中的各种量和现象。
在数学学习中,对于实数的理解和运用是非常重要的。
下面是一些实数练习题,供大家进行巩固和提高。
题目一:将下列数按照从小到大的顺序排列:-3,5,-2/3,根号2,6/7答案一:首先,我们可以将所有的数转化为小数的形式,然后再进行比较。
-3 = -3.0005 = 5.000-2/3 ≈ -0.667根号2 ≈ 1.4146/7 ≈ 0.857所以从小到大的顺序排列为:-3,-2/3,6/7,根号2,5。
题目二:计算下列各式的值:|4-6| + |-3| + √9答案二:要计算这个式子的值,我们需要按照运算的优先级进行计算。
首先计算绝对值,|4-6| = |-2| = 2,| -3 | = 3。
然后计算平方根,√9 = 3。
所以,|4-6| + |-3| + √9 = 2 + 3 + 3 = 8。
题目三:已知 a + b = 5,a - b = 1,求 a 的值。
答案三:我们可以通过联立方程的方法求解该题目。
首先,可以通过将两个方程相加消去 b,得到 2a = 6,即 a = 3。
所以 a 的值为 3。
题目四:求下列各式的值:2√3 + 5(√2 - √3) - √8答案四:要计算这个式子的值,我们需要按照运算的优先级进行计算。
首先计算含有√的项,√3 - √8 = √3 - 2√2。
然后结合其他数字进行计算,2√3 + 5(√2 - √3) = 2√3 + 5√2 - 5√3 = -3√3 + 5√2。
所以,2√3 + 5(√2 - √3) - √8 = -3√3 + 5√2。
通过上述题目的练习,我们可以对实数的概念和运算规则有更深入的理解,同时也能够锻炼我们的计算能力和逻辑思维能力。
希望大家能够多加练习,不断提高自己的数学水平。
实数(基础篇)(专项练习)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)
专题6.8 实数(基础篇)(专项练习)一、单选题1.下列实数中,无理数是( ) A 3B .3.14C .0D .2272.下列说法:①负数和0没有平方根;①所有的实数都存在立方根;①正数的绝对值等于它本身;①相反数等于本身的数有无数个.正确的个数是( )A .0B .1C .2D .33.在2,0,2- ) A .2B .0C .3-D 242对应的点在( )A .点B 与点C 之间 B .点C 与点D 之间 C .点D 与点E 之间D .点E 与点F 之间5515a < ) A .12a <<B .23a <<C .34a <<D .24a <<6.已知2341156=,2351225=,2361296=,2371369=.若n 为整数且11334n n -,则n 的值为( )A .34B .35C .36D .3775a ,小数部分为b ,则2a b -=( ) A .25B .25C .65D .658.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如,,,若4510x +⎡⎤=⎢⎥⎣⎦,则x 的取值可以是( ) A .40 B .45 C .51 D .569.已知 432=1849,442=1936,452=2025,462=2116…,若n 为整数,且n 2048<n +1,则n 的值为( )A .43B .44C .45D .4610.勾股定理在《九章算术》中的表述是:“勾股术曰:勾股各自乘,并而开方除之,即弦”.即22c a b +(a 为勾,b 为股,c 为弦),若“勾”为2,“股”为3,则“弦”最接近的整数是( )A .1B .2C .3D .4二、填空题1121的相反数是__________,3.14π-=____________ 1251___________1(填“>”、“<”或“=”) 1351小的数中,最大的整数是___________.14.如图所示,在数轴上点A 所表示的数为a ,则a 的值为 _______.15.已知实数a 在数轴上的位置如图所示,计算3||1|a a --=_____.16.若22a a -=-,则=a ________(请写出一个符合条件的无理数).17.按如图所示的程序计算,若开始输入的值为9,则最后输出的y 值是___________.18.观察下列等式:12211311112212x =++==+⨯; 22211711123623x =++=+⨯; 3221113111341234x =++=+⨯; …根据以上规律,计算123420222022x x x x x +++++-=_______.三、解答题19.将下列各数填入相应的大括号里.22 7,3.1415926578-39320.6,0363π正分数:{…};整数:{…};无理数:{…}.20.计算:(1) 233336481125(3)4(2)--(2) 223153|168))(5(2-+----21.a,b均为正整数,且a7b32a+b的最小值.22.(1)如果x是313y是31313x y-根.(2)当m 为何值时,关于x 的方程547m x x +=+的解与方程341125x x -+-=的解互为相反数.23.探究题:(1) 计算下列各式,完成填空: 49649⨯= ,12549= ,12549⨯= (2) 通过上面的计算,比较左右两边的等式,你发现了什么?请用字母表示你发现的规律是 ;请用这一规律计算:227132024.阅读下列过程,回答问题(1)通过计算下列各式的值探究问题:22______20=______215⎛⎫=⎪⎝⎭______()23-______.探究:当0a≥2a______;当a<02a______.(2)应用(1)中所得结论解决问题:有理数a,b在数轴上对应的点的位置如图所示,()222a b a b+.参考答案1.A【分析】根据无理数的定义,“无限不循环的小数是无理数”逐个分析判断即可.3 3.14,0,227中,3.14,0,2273故选:A.【点拨】本题考查了无理数,解答本题的关键掌握无理数的三种形式:①开方开不尽的数,①无限不循环小数,①含有π的数.2.C【分析】直接利用平方根、立方根、绝对值、相反数的性质分别分析得出答案.解:①0有平方根,故错误;①所有的实数都存在立方根,故正确;①正数的绝对值等于它本身,故正确;①相反数等于本身的数有1个,故错误;故选:C.【点拨】此题主要考查了平方根、立方根、绝对值、相反数等定义,正确掌握相关定义是解题关键.3.C【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数即可求解.解:由题可知,3022-<<<①最小的数是3-故选:C.【点拨】本题主要考查了实数比较大小,熟练掌握正实数都大于0,负实数都小于0是解题的关键.4.C2解:①122<21与2之间,即点D与点E之间,故选:C.25.D【分析】对不等式进行适当的放缩,即可得到答案.解:25154a <<<,24a ∴<<,故选:D .【点拨】本题考查了无理数的估算,对不等式进行适当放缩是解题的关键. 6.D1334 解:①2361296=,2371369=,且129613341369<<, ①36133437<,①n 为整数且11334n n -<, ①37n =,故D 正确. 故选:D .【点拨】本题主要考查估算无理数的大小,理解算术平方根的定义是正确解答的前提. 7.C5a 、b 的值,最后代入求出即可. 解:253<<,2a ∴=,52b =,222(52)65a b ∴-=⨯-=故选:C .5 8.C解:根据定义,得45<5110x +≤+ ①504<60x ≤+ 解得:46<56x ≤. 故选C . 9.C2048解:①452=2025,462=2116, ①2025<2048<2116, ①45204846,①n 为整数,且n 2048<n +1, ①n =45; 故选:C .【点拨】本题考查了无理数的估算,熟练掌握平方数是解题的关键. 10.D【分析】首先利用勾股定理求出“弦”,然后利用算术平方根的性质估计其最接近的整数. 解:依题意“弦”222313+ 而3.512.2513164=, ∴“弦”最接近的整数是4.故选:D .【点拨】本题主要考查了利用勾股定理进行计算,同时也利用了算术平方根的性质估计无理数的大小.11. 12 3.14π-【分析】根据相反数的定义及去绝对值符合号法则,即可求得. 21的相反数是)2112-=>3.14π,3.14<0π∴-,()3.14 3.14 3.14πππ∴-=--=-,故答案为:12 3.14π-.【点拨】本题考查了相反数的定义及去绝对值符合号法则,掌握和灵活运用相反数的定义及去绝对值符合号法则是解决本题的关键.12.>【分析】先求出25<解:①222455=<=,①25<-=>,511520>,511故答案为:>.【点拨】本题主要考查了实数比较大小,熟知作差法比较大小的方法是解题的关键.13.151的范围即可解答.>,解:①54>,542=>,511①51小的数中,最大的整数是:1,故答案为:1.【点拨】本题考查了估算无理数的大小,熟练掌握平方数是解题的关键.142【分析】先根据勾股定理求出直角三角形的斜边,即可求解.解:如图:由图可知:22OA=+=112①数轴上点A所表示的数为a,①2a=2【点拨】本题考查了数轴和实数,勾股定理的应用,能读懂图是解此题的关键.1531##3-a-的符号,再化简绝对值即可求解.3a与1解:由数轴可得:0,3a a <>30a >,10a -<, ()31a a -- 31=,31.【点拨】本题考查了实数与数轴,根据数轴进行绝对值化简,解题关键是能利用数轴判断出式子的正负.162(答案不唯一)【分析】根据绝对值的性质可得a -2≤0,据此可得a 的取值范围,再根据无理数的定义求解即可.解:①22a a -=-, ①a -2≤0,2a ≤,①2a =2【点拨】本题考查了无理数以及估算无理数的大小,解题的关键是掌握无理数的定义,注意初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.17.3【分析】根据已知判断每一步输出结果即可得到答案.解:由所示的程序可得:9的算术平方根是3,3是有理数,取3的平方根3理数,输出为y ,①开始输入的x 值为9,则最后输出的y 值是3± 故答案为:3【点拨】本题考查实数的分类及运算,判断每步计算结果是否为无理数是解题的关键. 18.20222023【分析】根据已知等式,归纳总结得到拆项规律,根据规律展开,最后合并,即可求出答案. 解:①12211311112212x =++==+⨯ 2211711123623x =++==+⨯ 3221113111341234x =++=+⨯ ① ①12320222022x x x x +++⋯+-11111111202212233420222023=++++++⋯++-⨯⨯⨯⨯ 11111112022120222233420222023=+-+-+-+⋯+-- 112023 20222023. 故答案为:20222023. 【点拨】本题考查了数字的规律,解此题的关键是能根据已知条件得出规律. 19.22,3.14159265,0.67;36-337,9,23π,. 【分析】由正分数,整数,无理数的含义逐一判断各数,再填入各自的集合中即可得到答案.解:正分数:{ 22,3.14159265,0.67…}; 整数:{ 36-…};无理数:{ 337,9,23π,…}. 【点拨】本题考查的是实数的分类,掌握实数中的正分数,整数与无理数的含义是解题的关键.20.(1)3 (2)4【分析】(1)根据二次根式,三次根式的性质化简,再根据实数的混合运算即可求解;(2)根据乘方运算,绝对值性质,二次根式的性质,三次根式的性质化简,再根据实数的运算即可求解.(1233336481125(3)4(2)--495322=-++-+3=,故答案为:3.(2)解:223153|168))(5(2-+---1354245=-+++4=,故答案为:4.【点拨】本题主要考查二次根式,三次根式的性质,绝对值的性质,幂的运算,实数的混合运算,掌握二次根式,三次根式的性质,实数的混合运算是解题的关键.21.4 732a 、b 的值,最后求得a+b 的最小值即可.解:①4<7<9,①27<3.①1<2<8,①1322.①a 、b 均为正整数,①a 的最小值为3,b 只能是1,所以当a=3,b=1时,a+b 有最小值,最小值=3+1=4.【点拨】本题主要考查的是估算无理数的大小,732题的关键.22.(1)±3;(2)m=-4 【分析】(113313x 、y 的值,再代入计算即可.(2)首先解得第二个方程的解,然后根据相反数的定义得到第一个方程的解,再代入求出m 的值即可.解:(1)91316①3134<,①63137<+,①x=6,y=3136133=,①13x y -,①13x y -±3;(2)341125x x -+-=, 解得:x=-9,①547m x x +=+的解为x=9,代入,得54979m +⨯=+,解得:m=-4.【点拨】本题考查了一元一次方程的解,无理数的估算、平方根的意义,以及解一元一次方程,解题的关键是得到方程547m x x +=+的解. 23.(1)6,57,57 a b a b ⋅a ≥0,b ≥022*******【分析】(1)根据算术平方根的定义进行计算;(2)比较得到的等式发现两个非负数的算术平方根的积等于这两个数的积的算术平方2275271320320⨯ 解:(149366⨯==11525=5=4977⨯125525=49497⨯; 故答案为:6,57,57; (2)比较得到的等式发现两个非负数的算术平方根的积等于这两个数的积的算术平方根.a b a b =⋅a ≥0,b ≥0).22752793132032042=⨯= a b a b •(a ≥0,b ≥0),32【点拨】本题考查了实数的运算:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.24.(1)2;0;15;3:a;a-;(2)应用:2a-.【分析】(1)分别计算各式的值,并归纳出探究结果;(2)先利用(1)式的探究结果化简二次根式,再根据字母a、b在数轴上的位置及绝对值的意义进行化简,合并后即可得出结果.解:(1222200215⎛⎫=⎪⎝⎭15()23-=3.探究:当0a≥2a a;当a<02a=-a故答案为:2;0;15;3:a;a-;(2)观察数轴可知:−2<a<−1,0<b<1,a+b<0.()222a b a b+=|a|+|b|+|a+b|=−a+b-a−b=−2a.【点拨】此题主要考查了算术平方根的计算以及二次根式的化简,根据已知能准确归纳探究结果并能运用其正确化简是解题的关键,此题重点培养学生的归纳应用能力.。
实数的练习题及答案
实数的练习题及答案实数的练习题及答案数学上,实数定义为与数轴上的点相对应的数。
小编收集了实数的练习题及答案,欢迎阅读。
知识点:有理数:整数和分数叫有理数无限循环小数叫有理数无理数:无限不循环小数叫做无理数.实数:有理数和无理数统称实数.实数都能用坐标上的点表示同步练习:一、仔细选一选:(每题4分,共24分)1.16的平方根是A、4B、-4C、±4D、±22.立方根等于3的数是()A、9B、C、27D、3、有下列说法:①有理数和数轴上的`点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④是17的平方根。
其中正确的有()(A)0个(B)1个(C)2个(D)3个4、下列各式中,正确的是()A. B. C. D.5、估计的大小应在( )A.7~8之间B.8.0~8.5之间C. 8.5~9.0之间D. 9.0~9.5之间6、下列计算中,正确的是()A.2+3=5B.(+)·=·=10C.(3+2)(3-2)=-3D.()()=2a+b二、细心填一填:(每题5分,共30分)1、的相反数是;绝对值是。
2、下列各数:、、、-、、0.01020304…中是无理数的有_____________.3、比较大小,填>或<号: 11;.4、利用计算器计算≈ ;≈ (结果保留4个有效数字)。
5、一个正数x的平方根是2a3与5a,则a的值为____________.6、绝对值小于的整数有____________.三、用心解一解:(共46分)1、求下列各式中未知数x的值(每小题4分,共8分)(1)(2)2、化简(每小题5分,共20分)(1)-3 (2)×+5(3) (2-) (4)3、(8分)用铁皮制成一个封闭的正方体,它的体积是1.331立方米,需要多大面积的铁皮才能制成?即;猜想:等于什么,并通过计算验证你的猜想。
随堂小测(A卷)答案:一、CCBDCC二、1、2-; 2、、、0.01020304… 3、<;>4、1.773;4.3445、-26、-2、-1、0、1、2三、1、(1)x=±(2)x=32、(1)原式=(2)原式=;(3)原式=2;(4)原式=6-33、设正方体的边长为x米,则x3=1.331,x=1.1,1.12×6=7.26平方米。
《实数》单元测试题及答案
《实数》单元测试题及答案一、选择题(每题3分,共15分)1. 下列数中,不是实数的是()A. πB. -2C. √2D. i2. 若a > 0,b < 0,且|a| > |b|,则a + b()A. 一定大于0B. 一定小于0C. 一定等于0D. 无法确定3. 以下哪个数是无理数?()A. 3.1415B. √3C. 0.33333D. 1/34. 实数x满足|x - 1| < 2,x的取值范围是()A. -1 < x < 3B. -2 < x < 2C. 0 < x < 2D. 1 < x < 35. 若x² = 4,x的值是()A. 2B. -2C. 2或-2D. 无解二、填空题(每题2分,共10分)6. 一个数的相反数是它自己,这个数是________。
7. 绝对值最小的实数是________。
8. 一个数的平方根是2,这个数是________。
9. √16的算术平方根是________。
10. 若a = -3,则|a| = ________。
三、解答题(每题5分,共20分)11. 证明:对于任意实数x,都有|x| ≥ 0。
12. 解不等式:2x + 5 > 3x - 2。
13. 证明:√2是一个无理数。
14. 已知x² - 4x + 4 = 0,求x的值。
四、综合题(每题10分,共20分)15. 某工厂需要生产一批零件,每件零件的成本是c元,销售价格是p 元。
如果工厂希望获得的利润率是20%,求p和c之间的关系。
16. 一个圆的半径是r,求圆的面积和周长。
五、附加题(每题5分,共5分)17. 一个数的立方根是它自己,这个数有几个?分别是多少?答案:一、选择题1. D2. A3. B4. A5. C二、填空题6. 07. 08. 49. 410. 3三、解答题11. 证明:对于任意实数x,|x|定义为x与0之间的距离,因此|x|总是非负的,即|x| ≥ 0。
实数单元测试题2及答案
实数单元测试题2及答案一、选择题(每题3分,共30分)1. 实数集R中,最小的正整数是()。
A. 0B. 1C. 2D. 32. 若a > 0,b < 0,且|a| < |b|,则a + b()。
A. 一定小于0B. 一定大于0C. 一定等于0D. 无法确定3. 下列数中,不是实数的是()。
A. πB. √2C. iD. -14. 一个数的相反数是它本身,这个数是()。
A. 1B. 0C. -1D. 25. 若实数x满足|x - 3| = 2,则x的值是()。
A. 1或5B. 3或5C. 1或4D. 2或46. 一个正数的平方根是()。
A. 正数B. 负数C. 0D. 正数或负数7. 实数的绝对值()。
A. 总是正数B. 总是非负数C. 总是非正数D. 可以是任何实数8. 若a,b是实数,且a² + b² = 0,则a和b的值是()。
A. a = 0,b = 0B. a = 1,b = 0C. a = 0,b = 1D. a和b可以是任意实数9. 以下哪个表达式的结果不是实数?()A. √4B. √(-1)C. √9D. √1610. 一个数的立方根是它本身,这个数可以是()。
A. 1B. -1C. 0D. A和C二、填空题(每题2分,共10分)11. 若|a| = 5,则a的值可以是______。
12. 一个数的倒数是1/2,这个数是______。
13. 两个相反数的和为______。
14. 一个数的绝对值是它本身,则这个数是______。
15. 若x² = 4,则x的值可以是______。
三、解答题(每题10分,共60分)16. 计算以下表达式的值:|-5| + √(-4)²。
17. 证明:对于任意实数a和b,(a + b)² = a² + 2ab + b²。
18. 解方程:|x + 1| = 3。
19. 证明:对于任意实数x,x³ - 3x = 0的解是x = 0或x = ±√3。
实数练习题与答案
实数练习题及答案一、选择题(每小题3分,共30分)1.下列各式中无意义的是()A.B.C.D.2.10的平方根是±-2是4的平方根是④0.01的算术平方根是0.1;⑤,其中正确的有()A.1个B.2个C.3个D.4个3.下列说法中正确的是()A.立方根是它本身的数只有1和0B.算数平方根是它本身的数只有1和0C.平方根是它本身的数只有1和0D.绝对值是它本身的数只有1和04.的立方根是()A.B.C.D.5.现有四个无理数,,,,其中在实数+1与+1之间的有()A.1个B.2个C.3个D.4个6.实数,-2,-3的大小关系是()A.B.C.D.7.已知=1.147,=2.472,=0.5325,则的值是()A.24.72B.53.25C.11.47D.114.78.若,则的大小关系是()A.B.C.D.9.已知是169的平方根,且,则的值是()A.11B.±11C.±15D.65或10.大于且小于的整数有()A.9个B.8个C.7个D.5个二、填空题(每小题3分,共30分)10.绝对值是,的相反数是.11.的平方根是,的平方根是,-343的立方根是,的平方根是.12.比较大小:(1);(2);(3);(4)2.13.当时,有意义。
14.已知=0,则=.15.最大的负整数是,最小的正整数是,绝对值最小的实数是,不超过的最大整数是.16.已知且,则的值为。
17.已知一个正数的两个平方根是和,则=,=.18.设是大于1的实数,若在数轴上对应的点分别记作A、B、C,则A、B、C三点在数轴上从左至右的顺序是.19.若无理数满足1,请写出两个符合条件的无理数.三、解答题(共40分)20.(8分)计算:(1);(2);(3);(4);21.(12分)求下列各式中的的值:(1);(2);(3);(4);22.(6分)已知实数、、在数轴上的对应点如图所示,化简:23.(7分)若、、是有理数,且满足等式,试计算的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数练习题
一、判断题(1分×10=10分)
1. 3是9的算术平方根 ( ) 2. 0的平方根是0,0的算术平方根也是0 ( ) 3. (-2)2
的平方根是2- ( ) 4. -0.5是0.25的一个平方根 ( ) 5.
a 是a 的算术平方根 ( )
6. 64的立方根是4± ( ) 7. -10是1000的一个立方根 ( ) 8. -7是-343的立方根 ( ) 9. 无理数也可以用数轴上的点表示出来 ( ) 10.有理数和无理数统称实数 ( ) 二、选择题(3分×6=18分) 11.列说法正确的是() A 、
4
1
是5.0的一个平方根 B 、 正数有两个平方根,且这两个平方根之和等于0 C 、 72
的平方根是7 D 、负数有一个平方根 12.如果
25.0=y ,那么y 的值是()
A 、 0625.0
B 、 5.0-
C 、 5.0
D 、5.0± 13.如果x 是a 的立方根,则下列说法正确的是() A 、x -也是a 的立方根 B 、x -是a -的立方根 C 、x 是a -的立方根 D 、等于3
a 14.π、
7
22、3-、3343、1416.3、3.0 可,无理数的个数是() A 、1个 B 、 2个 C 、 3个 D 、 4个 15.与数轴上的点建立一一对应的是()(
A 、全体有理数
B 、全体无理数
C 、 全体实数
D 、全体整数 16.如果一个实数的平方根与它的立方根相等,则这个数是() A 、0 B 、正实数 C 、0和1 D 、1
三、填空题(1分×30=30分)
2.100的平方根是 ,10的算术平方根是 。
3.3±
是 的平方根3-是 的平方根;2)2(-的算术平方根是 。
4.正数有 个平方根,它们 ;0的平方根是 ;负数 平方根。
5.125-的立方根是 ,8±的立方根是 ,0的立方根是 。
6.正数的立方根是 数;负数的立方根是 数;0的立方根是 。
7.2的相反数是 ,π-= ,3
64-=
8.比较下列各组数大小: ⑴
⑵
2
1
5- 5.0 ⑶π 14.3 2 四、解下列各题。
1. 求下列各数的算术平方根与平方根(3分×4=12分) ⑴225 ⑵
144
121 ⑶ 81.0 ⑷ 2
)4(-
2. 求下列各式值(3分×6=18分) ⑴225 ⑵16.0-
⑶289
144±
⑷ 364 ⑸ 3125- ⑹327125
-
3. 求下列各式中的x :(3分×4=12分) ⑴2
x 49= ⑵81252
=x ⑶8
333
=-x ⑷125)2(3=+x
附加题:(10分×2=20分)
1. 怎样计算边长为1的正方形的对角线的长?
2. 如图 平面内有四个点,它们的坐标分别是 )22,1(A )22,3(B
)2,4(C )2,1(D ⑴依次连接A 、B 、C 、D ,围成的四边形是什么图形?并求它的面积 ⑵将这个四边形向下平移
22
一、选择题(3分×8=24分)
1. 实数38 2
π 34
3
10
25 其中无理数有() A 、 1个 B 、 2个 C 、 3个 D 、 4个
2.
91
的平方根是() A 、31 B 、 31- C 、 31± D 、81
1±
3.如果162
=x ,则的值是()
A 、 4
B 、 -4
C 、 4±
D 、 2±
4.下列说法正确的是()
A 、 25的平方根是5
B 、2
2-的算术平方根是2 C 、 8.0的立方根是2.0 D 、
65是36
25的一个平方根 5.下列说法
⑴无限小数都是无理数 ⑵无理数都是无限小数 ⑶带根号的数都是无理数⑷两个无理数的和还是无理数 。
其中错误的有( )个 A 、 3 B 、 1 C 、 4 D 、 2 6.如果x x -=2成立的条件是()
A 、x ≥0
B 、x ≤0
C 、x >0
D 、x <0
7.设面积为3的正方形的边长为x ,那么关于x 的说法正确的是() A 、x 是有理数 B 、3±=x C 、x 不存在 D 、x 取1和2之间的实数 8.下列说法错误的是()
A 、2
a 与2)(a -相等 B 、a 与a -互为相反数
C 、3a 与3a -是互为相反数
D 、a 与a -互为相反数 二、填空题(1分×14=14分)
9.9 的算术平方根是 ;2
)3(-的算术平方根 ;3的平方根是 10.0的立方根是 ;-8的立方根是 ;4的立方根是
11.一个数的平方等于它本身,这个数是 ;一个数的平方根等于它本身,这个数是 ,一个数的算术平方根等于它本身,这个数是
12.若x x =3
,则=x ;若x x =3,则=x
13.比较下列各组数的大小:
⑴ 5.1- 5
.1 ⑵215- 2
1
⑶ π 14.3 三、解下列各题
14.求下列各式的值(2分×8=16分) ⑴ 169
49
- ⑵ 3008.0-
⑶2
)13
4(-- ⑷ 23)1(1-+-
⑸)33(3- ⑹)2
12(2-
⑺22322+- ⑻3
32)52()25(--
16.求符合下列各条件中的x 的值。
(3分×6=18分) ⑴02122
=-
x ⑵018
1
3=+x ⑶ 4)4(2=-x ⑷ 09)3(3
13
=-+x
⑸满足x <π的整数x ⑹ 满足2-
<x <5的所有整数x
A 卷 1对2对3错4错5错6错7错8对9对10对 11
B 12A 13B 14B 15
C 16A 17 。
11,12,
13,15,16,17,19,20;18. 10,10± 19. 3,9,2; 20. 2 互为相反数,0,没有; 21. -5,0,2±;22 .正,负 0;23. ,2-
π,4; 24. <、>、>、>;25. ①15,15± ②
12
1
,1211± ③ 9.0,9.0± ④ 4,4±; 26. ⑴15 ⑵–0.4 ⑶1712±
⑷ 4 ⑸ -5 ⑹ 3
5
-; 27. 7±=x 95=
x 2
3
=x 3=x 附加题:28。
将同样大的正方形对折剪开,拼成一个面积为2的正方形,设该对角线长为x 则x 2
=2 所以 )0(2 x x = 29 梯形,它的面积为225 (1,0) (3,0) )2,4(- )2,1(-
B 卷:1
C 2C 3C 4
D 5A 6B 7D 8C :9 . 3,3,3± ; 10 . 32,2,0-; 11 .0或1 ,0,
0或1 ;12 . 10±或,0或1± ;13. <、>、>;14 . 13
7
- ,-0.2 , 0 , 33- ,1,32 10 ;15 . 0.35, 2.85; 16 .①2
1
±
=x ,②-2,③ 6或2 ,④0 ,⑤3,2,1,0±±± ⑥-1,0,1,2,。