苏教版七年级平行线和全等三角形模型(拓展提优)
第7章 平面图形的认识(二)-平行线中的常见模型 苏科版七年级数学下册专题练习(含答案)
七年级下册平面图形的认识(二):专题:平行线中的常见四大模型专题:平行线中的常见模型模型一:“猪蹄”模型(也称“M”模型)模型一“猪蹄”模型(M模型)点P在EF左侧,在AB、 CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.典型例题例1:如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为( )A.70° B.65° C.35° D.5°例2:如图,AD∥CE,∠ABC=95°,则∠2﹣∠1的度数是( )A.105°B.95°C.85°D.75°例3:如图,直线a∥b,射线DF与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,求∠2的度数.例4:如图,AB∥CD,∠E=35°,∠F=∠G=30°,则∠A+∠C的度数为 .例5:如图,AB∥CD,∠E=120°,∠F=90°,∠A+∠C的度数是( )A.30°B.35°C.40°D.45°例6:如图,AB∥CD,∠E+∠G=∠H,则∠A+∠B+∠C+∠D+∠F的度数为 .例7:如图,直线l1∥l2,点∠α、∠β夹在两平行线之间.(1)若∠α=∠β,∠1=40°,求∠2的度数;(2)直接写出∠1、∠2、∠α、∠β之间的数量关系,不用说明理由.例8:(1)如图1,已知AB∥CD,若∠EAF=∠EAB,∠ECF=∠ECD,求证:∠AFC=∠AEC;(2)如图2,若AB∥CD,∠EAF=∠EAB,∠ECF=∠ECD,求证:∠AFC=∠AEC;(3)若AB∥CD,∠EAF=∠EAB,∠ECF∠ECD,则∠AFC与∠AEC的数量关系是 (用含有n的代数式表示,不证明).例9:如图①,已知AB∥CD,CE、BE的交点为E,现作如下操作:第1次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第2次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第3次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.(1)如图①,求证:∠BEC=∠ABE+∠DCE;(2)如图②,求证:∠BE1C=∠BEC;(3)从图①开始进行上述的n次操作,若∠BE n C=α°,求∠BEC的大小(直接写出结论).模型二:“铅笔”模型(也称“U”型模型)模型二:“铅笔”模型(“U”型)点P在EF右侧,在AB、 CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=360°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.典型例题例1:一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=135°,则∠ABC= 度.例2:如图,直线l1∥l2,若∠1=35°,则∠2+∠3= .例3:如图,已知AB∥CD,E为AB,CD之间一点,连接BE,DE.(1)猜想∠BED时,∠B,∠D的数量关系,并证明;(2)作∠ABE,∠CDE的角平分线BF,DF交于点F.①依题意补全图形;②直接用等式表示∠BFD与∠BED的数量关系.例4:如图,已知AB∥CD,∠ABE与∠CDE的平分线相交于点F.(1)如图1,若∠E=70°,求∠BFD的度数;(2)如图2,若∠ABM=∠ABF,∠CDM=∠CDF,写出∠M和∠E之间的数量关系,并证明你的结论.例5:实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射的光线为n.(1)当m∥n时,若∠1=50°,则∠2= ,∠3= ;(2)当m∥n时,若∠1=x°(0<x<90),则∠3= ;(3)根据(1)(2)结果,反过来猜想:当两平面镜a,b的夹角∠3为多少度时,m∥n.请说明理由(可以在图中添加适当的角度标记进行说明)例6:如图,AB∥CD,点E为两直线之间的一点.(1)如图1,若∠BAE=35°,∠DCE=20°,则∠AEC= ;(2)如图2,试说明,∠BAE+∠AEC+∠ECD=360°;(3)①如图3,若∠BAE的平分线与∠DCE的平分线相交于点F,判断∠AEC与∠AFC 的数量关系,并说明理由;②如图4,若设∠E=m,∠BAF=∠FAE,∠DCF=∠FCE,请直接用含m、n的代数式表示∠F的度数.模型三:“抬头”模型(也称“靴子”或称“臭脚”模型)模型三“抬头”模型(“靴子”模型)点P在EF右侧,在AB、 CD外部“靴子”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.典型例题例1:如图,AB//CD,∠P=40°,∠D=100°,则∠ABP的度数是 .例2:已知,AB∥CD.(1)如图1,求证:∠A-∠C=∠E;(2)如图2,EF平分∠AEC,CF平分∠ECD,∠F=105°,求∠A的度数.例3:已知直线∥,点A,B在直线上(B在A左侧),点C在直线b上,E点在直线b下方,连接 AE 交直线b于点D.(1)如图1,若∠BAD=110°,∠DCE=45°,求∠DEC的度数;(2)如图2,∠BAD 的邻补角的角平分线与∠DEC 的角平分线所在的直线交于点M,试探究∠AME与∠ECD之间的数量关系,并说明理由.例4:已知AB∥CD.(1)如图1,求证:∠EAB=∠C+∠E;(2)如图2,点F在∠AEC内且在AB、CD之间,EF平分∠AEC,CF平分∠ECD,请猜想∠F与∠EAB的数量关系并证明;(3)如图3,点M在AB上,点N在CD上,点E是AB上方一点,点G在AB、CD之间,连接EM、EN,GM的延长线MF平分∠AME,NE平分∠CNG,若2∠MEN+∠MGN=105°,求∠AME的度数.:模型四:“骨折”模型(也称“X射线”模型)模型四“骨折”模型点P在EF左侧,在AB、 CD外部“骨折”模型结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.例1:如图,AB∥CD,∠E=40°,∠A=110°,则∠C的度数为 .例2:如图,AB∥CD,∠ABE=125°,∠C=30°,则∠α=( )A.70°B.75°C.80°D.85°例3:已知:如图,AB∥CD.(1)若∠1=∠2,试判断∠E与∠F的大小关系,并说明你的理由.(2)猜想∠1、∠2、∠E、∠F之间存在怎样的数量关系?并说明理由.例4:(1)(问题)如图1,若AB∥CD,∠AEP=40°,∠PFD=130°.求∠EPF的度数;(2)(问题迁移)如图2,AB∥CD,点P在AB的上方,问∠PEA,∠PFC,∠EPF之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知∠EPF=α,∠PEA的平分线和∠PFC的平分线交于点G,用含有α的式子表示∠G的度数.例5:已知AB∥MN.(1)如图1,求证:∠N+∠E=∠B;(2)若F为直线MN、AB之间的一点,∠E=∠EFB,BG平分∠ABF交MN于点G,EF 交MN于点C.①如图2,若∠N=57°,且BG∥EN,求∠E的度数;②如图3,若点K在射线BG上,且满足∠KNM=∠ENM,若∠NKB=∠EFB,∠E=∠FBD,直接写出∠E的度数.参考答案专题四:平行线中的常见模型模型一:“猪蹄”模型(也称“M”模型)模型一“猪蹄”模型(M模型)点P在EF左侧,在AB、 CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.典型例题例1:如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为(B)A.70° B.65° C.35° D.5°解析:作CF∥AB,∵AB∥DE,∴CF∥DE,∴AB∥DE∥CF,∴∠1=∠BCF,∠FCE=∠2,∵∠1=30°,∠2=35°,∴∠BCF=30°,∠FCE=35°,∴∠BCE=65°,故选:B.例2:如图,AD∥CE,∠ABC=95°,则∠2﹣∠1的度数是(C)A.105°B.95°C.85°D.75°解析:如图,作BF∥AD,∵AD∥CE,∴AD∥BF∥EC,∴∠1=∠3,∠4+∠2=180°,∠3+∠4=95°,∴∠1+∠4=95°,∠2+∠4=180°,∴∠2﹣∠1=85°.故选:C.例3:如图,直线a∥b,射线DF与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,求∠2的度数.解析:过点D作DG∥b,∵a∥b,且DE⊥b,∴DG∥a,∴∠1=∠CDG=25°,∠GDE=∠3=90°∴∠2=∠CDG+∠GDE=25°+90°=115°.☆模型拓展:M叠M型例4:如图,AB∥CD,∠E=35°,∠F=∠G=30°,则∠A+∠C的度数为35°.解析:如图所示,延长AE,CG,交于点H,过H作HP∥AB,∵AB∥CD,∴PH∥CD,∴∠A=∠AHP,∠C=∠CHP,∴∠A+∠C=∠AHC,∵∠F=∠CGF=30°,∴EF∥CH,∴∠AHC=∠AEF=35°,∴∠A+∠C=35°,故答案为:35°.例5:如图,AB∥CD,∠E=120°,∠F=90°,∠A+∠C的度数是( )A.30°B.35°C.40°D.45°解析:分别过E,F作GE∥AB,FH∥AB,∵AB∥CD,∴AB∥GE∥FH∥CD,∴∠1=∠A,∠2=∠C,∠GEF+∠HFE=180°,∵∠E=120°,∠F=90°,∴∠1+∠GEF+∠HFE+∠2=210°,∴∠1+∠2=210°﹣180°=30°,即∠A+∠C=30°,故选:A.例6:如图,AB∥CD,∠E+∠G=∠H,则∠A+∠B+∠C+∠D+∠F的度数为360°.解析:如图所示,延长AE,DG交于点Q,由题可得,∠A+∠D=∠Q,∠B+∠H+∠C=360°,又∵∠Q=∠AEF+∠DGF﹣∠F,∴∠A+∠D=∠AEF+∠DGF﹣∠F,即∠F=∠AEF+∠DGF﹣(∠A+∠D),又∵∠AEF+∠DGF=∠H,∴∠A+∠B+∠C+∠D+∠F=∠A+∠B+∠C+∠D+∠AEF+∠DGF﹣(∠A+∠D)=∠B+∠C+∠H=360°,故答案为:360°.例7:如图,直线l1∥l2,点∠α、∠β夹在两平行线之间.(1)若∠α=∠β,∠1=40°,求∠2的度数;(2)直接写出∠1、∠2、∠α、∠β之间的数量关系,不用说明理由.解析:(1)如图,延长AE交直线l2于点E,∵l1∥l2,∴∠3=∠1=40°,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣40°=140°.(2)∠1+∠2+∠β﹣○α=180°.理由:∵l1∥l2,∴∠3=∠1.∵∠BED=180°﹣∠α,∴∠3+∠2+∠β+180°﹣α=360°,即∠1+∠2+∠β﹣∠α=180°.☆模型拓展:M套M型例8:(1)如图1,已知AB∥CD,若∠EAF=∠EAB,∠ECF=∠ECD,求证:∠AFC=∠AEC;(2)如图2,若AB∥CD,∠EAF=∠EAB,∠ECF=∠ECD,求证:∠AFC=∠AEC;(3)若AB∥CD,∠EAF=∠EAB,∠ECF=∠ECD,则∠AFC与∠AEC的数量关系是(用含有n的代数式表示,不证明).解:(1)如图1,连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=2x°,∠ECD=2y°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+2x°+∠ACE+2y°=180°,∴∠CAE+∠ACE=180°﹣(2x°+2y°),∠FAC+∠FCA=180°﹣(x°+y°),∴∠AEC=180°﹣(∠CAE+∠ACE)=180°﹣[180°﹣(2x°+2y°)]=2x°+2y°,=2(x°+y°),∠AFC=180°﹣(∠FAC+∠FCA)=180°﹣[180°﹣(x°+y°)]=x°+y°,∴∠AFC=∠AEC;(2)如图2,连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=3x°,∠ECD=3y°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+3x°+∠ACE+3y°=180°,∴∠CAE+∠ACE=180°﹣(3x°+3y°),∠FAC+∠FCA=180°﹣(2x°+2y°),∴∠AEC=180°﹣(∠CAE+∠ACE)=180°﹣[180°﹣(3x°+3y°)]=3x°+3y°=3(x°+y°),∠AFC=180°﹣(∠FAC+∠FCA)=180°﹣[180°﹣(2x°+2y°)]=2x°+2y°=2(x°+y°),∴∠AFC=∠AEC;(3)若∠AFC=∠EAB,∠ECF=∠ECD,则∠AFC与∠AEC的数量关系是:∠AFC=∠AEC.故答案为:∠AFC=∠AEC.例9:如图①,已知AB∥CD,CE、BE的交点为E,现作如下操作:第1次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第2次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第3次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.(1)如图①,求证:∠BEC=∠ABE+∠DCE;(2)如图②,求证:∠BE1C=∠BEC;(3)从图①开始进行上述的n次操作,若∠BE n C=α°,求∠BEC的大小(直接写出结论).【解答】解:(1)如图①,过E作EF∥AB.∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2.∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;(2)如图2.∵∠ABE和∠DCE的平分线交点为E1,∴由(1)可得,∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC;(3)如图2.∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推,∠E n=∠BEC,∴当∠E n=α度时,∠BEC=2nα°模型二:“铅笔”模型(也称“U”型模型)模型二:“铅笔”模型(“U”型)点P在EF右侧,在AB、 CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=360°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.典型例题例1:一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=135°,则∠ABC=135度.【解析】解:如图,过点B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=135°,∠BAE=90°,∴∠1=45°,∠2=90°,∴∠ABC=∠1+∠2=135°.故答案为:135.例2:如图,直线l1∥l2,若∠1=35°,则∠2+∠3=215°.【解析】解:过点E作EF∥11,∵11∥12,EF∥11,∴EF∥11∥12,∴∠1=∠AEF=35°,∠FEC+∠3=180°,∴∠2+∠3=∠AEF+∠FEC+∠3=35°+180°=215°.故答案为:215°.例3:如图,已知AB∥CD,E为AB,CD之间一点,连接BE,DE.(1)猜想∠BED时,∠B,∠D的数量关系,并证明;(2)作∠ABE,∠CDE的角平分线BF,DF交于点F.①依题意补全图形;②直接用等式表示∠BFD与∠BED的数量关系.【解析】(1)∠B+∠BED+∠D=360°.证明:过点E作EG∥AB.∴∠B+∠BEG=180°.∵AB∥CD,EG∥AB,∴EG∥CD,∴∠DEG+∠D=180°,∴∠B+∠BEG+∠DEG+∠D=180°+180°.即∠B+∠BED+∠D=360°;(2)解:①如图所示:②由(1)得∠ABC+∠BED+∠CDE=360°,∵∠ABE,∠CDE的角平分线BF,DF交于点F,∴∠ABC=2∠FBE,∠CDE=2∠FDE,∴2∠FBE+∠BED+2∠CDE=360°,即∠FBE+∠BED+∠CDE=180°,∵∠BFD+∠FBE+∠BED+∠CDE=360°,∴∠BFD=180°-∠BED例4:如图,已知AB∥CD,∠ABE与∠CDE的平分线相交于点F.(1)如图1,若∠E=70°,求∠BFD的度数;(2)如图2,若∠ABM=∠ABF,∠CDM=∠CDF,写出∠M和∠E之间的数量关系,并证明你的结论.【解析】解:(1)如图1,过点E作EN∥AB,∵EN∥AB,∴∠ABE+∠BEN=180°,∵AB∥CD,AB∥NE,∴NE∥CD,∴∠CDE+∠NED=180°,∴∠ABE+∠E+∠CDE=360°,∵∠E=70°,∴∠ABE+∠CDE=290°,∵∠ABE与∠CDE的平分线相交于点F,∴∠ABF+∠CDF=(∠ABE+∠CDE)=145°,过点F作FG∥AB,∵FG∥AB,∴∠ABF=∠BFG,∵AB∥CD,FG∥AB,∴FG∥CD,∴∠CDF=∠GFD,∴∠BFD=∠ABF+∠CDF=145°;(2)结论:∠E+6∠M=360°,证明:∵设∠ABM=x,∠CDM=y,则∠FBM=2x,∠EBF=3x,∠FDM=2y,∠EDF=3y,由(1)得:∠ABE+∠E+∠CDE=360°,∴6x+6y+∠E=360°,∵∠M+∠EBM+∠E+∠EDM=360°,∴6x+6y+∠E=∠M+5x+5y+∠E,∴∠M=x+y,∴∠E+6∠M=360°.例5:实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射的光线为n.(1)当m∥n时,若∠1=50°,则∠2=100°,∠3= 90°;(2)当m∥n时,若∠1=x°(0<x<90),则∠3= 90°;(3)根据(1)(2)结果,反过来猜想:当两平面镜a,b的夹角∠3为多少度时,m∥n.请说明理由(可以在图中添加适当的角度标记进行说明)【解析】解:(1)∵m∥n,∴∠4+∠2=180°,∵∠5=∠1=50°,∴∠4=80°,∴∠2=100°,∴∠6=∠7=40°,∴∠3=180°﹣∠5﹣∠6=90°,故答案为:100°;90°;(2)∵m∥n,∴∠4+∠2=180°,∵∠5=∠1=x°,∴∠4=180°﹣2x°,∴∠2=2x°,∴∠6=∠7=90°﹣x°,∴∠3=180°﹣∠5﹣∠6=180°﹣x°﹣90°+x°=90°,故答案为:90°;(3)根据(1)、(2)猜想:当两平面镜a、b的夹角∠3是90°时,总有m∥n,证明:∵∠3=90°,∴∠5+∠6=90°,∴∠1+∠7=90°,∴∠1+∠5+∠6+∠7=180°,又∵∠1+∠4+∠5+∠2+∠6+∠7=360°,∴∠4+∠2=180°,∴m∥n.例6:如图,AB∥CD,点E为两直线之间的一点.(1)如图1,若∠BAE=35°,∠DCE=20°,则∠AEC=55°;(2)如图2,试说明,∠BAE+∠AEC+∠ECD=360°;(3)①如图3,若∠BAE的平分线与∠DCE的平分线相交于点F,判断∠AEC与∠AFC 的数量关系,并说明理由;②如图4,若设∠E=m,∠BAF=∠FAE,∠DCF=∠FCE,请直接用含m、n的代数式表示∠F的度数.【解析】解:如图所示,过点E作EF∥AB,∵AB∥CD∴AB∥CD∥EF,∴∠BAE=∠1,∠ECD=∠2,∴∠AEC=∠1+∠2=∠BAE+∠ECD=35°+20°=55°,故答案为55°.(2)如图所示,过点E作EG∥AB,∵AB∥CD∴AB∥CD∥EG,∴∠A+∠1=180°,∠C+∠2=180°,∴∠A+∠1+∠2+∠C=360°,即∠BAE+∠AEC+∠ECD=360°.(3)①2∠AFC+∠AEC=360°,理由如下:由(1)可得,∠AFC=∠BAF+∠DCF,∵AF平分∠BAE,CF平分∠DCE,∴∠BAE=2∠BAF,∠DCE=2∠DCF,∴∠BAE+∠DCE=2∠AFC,由(2)可知,∠BAE+∠AEC+∠DCE=360°,∴2∠AFC+∠AEC=360°.②由①知∠F+∠FAE+∠E+∠FCE=360°,∵∠BAF=∠FAE,∠DCF=∠FCE,∠BAF+∠DCF=∠F,∴∠F=(∠FAE+∠FCE),∴∠FAE+∠FCE=n∠F,∴∠F+∠E+n∠F=360°,∴(n+1)∠F=360°﹣∠E=360°﹣m,∴∠F=.模型三:“抬头”模型(也称“靴子”或称“臭脚”模型)模型三“抬头”模型(“靴子”模型)点P在EF右侧,在AB、 CD外部“靴子”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.典型例题例1:如图,AB//CD,∠P=40°,∠D=100°,则∠ABP的度数是140°.【解析】过点P作PM∥AB,∵AB∥CD,∴PM∥AB∥CD,∴∠MPB=∠ABP,∠D=∠DPM=100°,∴∠MPB=∠BPD+∠DPM=40°+100°=140°,∴∠ABP=∠MPB=140°.例2:已知,AB∥CD.(1)如图1,求证:∠A-∠C=∠E;(2)如图2,EF平分∠AEC,CF平分∠ECD,∠F=105°,求∠A的度数.【解析】(1)证明: 过点E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠FEA=∠EAB,∠FEC=∠C,∴∠AEC=∠FEA-∠FEC=∠EAB-∠C,即∠A-∠C=∠E.(2)解:过点E作EG∥FC,∵EF平分∠AEC,CF平分∠ECD,设∠AEF=∠CEF=,∠ECF=∠FCD=,∵EG∥FC,∴∠CEG=∠ECF=,∠FEG+∠F=180°.∵∠F=105°,∴∠FEG=180°-∠F=75°,∴∠CEG+∠CEF=75°,即+=75°,∴2x+2y=150°.由(1)知,∠A=∠AEC+∠ECD=2x+2y=150°.例3:已知直线∥,点A,B在直线上(B在A左侧),点C在直线b上,E点在直线b下方,连接 AE 交直线b于点D.(1)如图1,若∠BAD=110°,∠DCE=45°,求∠DEC的度数;(2)如图2,∠BAD 的邻补角的角平分线与∠DEC 的角平分线所在的直线交于点M,试探究∠AME与∠ECD之间的数量关系,并说明理由.例4:已知AB∥CD.(1)如图1,求证:∠EAB=∠C+∠E;(2)如图2,点F在∠AEC内且在AB、CD之间,EF平分∠AEC,CF平分∠ECD,请猜想∠F与∠EAB的数量关系并证明;(3)如图3,点M在AB上,点N在CD上,点E是AB上方一点,点G在AB、CD之间,连接EM、EN,GM的延长线MF平分∠AME,NE平分∠CNG,若2∠MEN+∠MGN=105°,求∠AME的度数.:【解析】(1)过点E作EF∥DC,∵BA∥DC,∴EF∥DC∥AB,∴∠AEF=∠BAE=110°,∠CEF=∠DCE=45°.∴∠DEC=∠AEF-∠CEF=110°-45°=65°.(2)过点M作MF∥BA,过点E作EG∥CD,设∠BAE=,∠ECD=,∵BA∥CD,∴MF∥AB∥CD∥EG.∴∠BAE=∠AEG=,∠DCE=∠CEG=,∴∠DEC=-.∵EM平分∠DEC,AM平分∠BAD的邻补角,∴∠MEC=,∠1==,∵MF∥AB,∴∠AMF=∠1=,∠MEG=∠CEG+∠MEC=,∵MF∥EG,∴∠FME=∠MEG=,∴∠AME=∠AMF+∠FME=,∴∠AME=.模型四:“骨折”模型(也称“X射线”模型)模型四“骨折”模型点P在EF左侧,在AB、 CD外部“骨折”模型结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.例1:如图,AB∥CD,∠E=40°,∠A=110°,则∠C的度数为70°.解析:∵AB∥CD,∴∠A+∠AFD=180°,∵∠A=110°,∴∠AFD=70°,∴∠CFE=∠AFD=70°,∵∠E=40°,∠C+∠E+∠CFE=180°,∴∠C=180°﹣∠E﹣∠CFE=180°﹣40°﹣70°=70°,故答案为:70°.例2:如图,AB∥CD,∠ABE=125°,∠C=30°,则∠α=(D)A.70°B.75°C.80°D.85°【解析】解:如图,作EF∥AB,∵AB∥EF,AB∥CD,∴EF∥CD,∴∠B+∠BEF=180°,∠C=∠CEF,∵∠ABE=125°,∠C=30°,∴∠BEF=55°,∠CEF=30°,∴∠BEC=55°+30°=85°.故选:D.例3:已知:如图,AB∥CD.(1)若∠1=∠2,试判断∠E与∠F的大小关系,并说明你的理由.(2)猜想∠1、∠2、∠E、∠F之间存在怎样的数量关系?并说明理由.【解答】解:(1)∠E=∠F,理由如下:∵AB∥CD,∴∠ABC=∠BCD,∵∠1=∠2,∴∠EBC=∠FCB,∴BE∥CF,∴∠E=∠F;(2)∠1+∠F=∠BEF+∠2,理由如下:如图,延长BE交DC的延长线于点M,在四边形EMCF中,∠FEM+∠EMC+∠MCF+∠F=360°,∵∠FEM=180°﹣∠BEF,∠MCF=180°﹣∠2,∴∠180°﹣∠BEF+∠EMC+180°﹣∠2+∠F=360°,∵AB∥CD,∴∠1=∠EMC,∴∠180°﹣∠BEF+∠1+180°﹣∠2+∠F=360°,∴∠1+∠F=∠BEF+∠2例4:(1)(问题)如图1,若AB∥CD,∠AEP=40°,∠PFD=130°.求∠EPF的度数;(2)(问题迁移)如图2,AB∥CD,点P在AB的上方,问∠PEA,∠PFC,∠EPF之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知∠EPF=α,∠PEA的平分线和∠PFC的平分线交于点G,用含有α的式子表示∠G的度数.【解答】解:(1)如图1,过点P作PM∥AB,∴∠1=∠AEP=40°.(两直线平行,内错角相等)∵AB∥CD,(已知)∴PM∥CD,(平行于同一条直线的两直线平行)∴∠2+∠PFD=180°.(两直线平行,同旁内角互补)∵∠PFD=130°,∴∠2=180°﹣130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:如图2,过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)如图,过点G作AB的平行线GH.∵GH∥AB,AB∥CD,∴GH∥AB∥CD,∴∠HGE=∠AEG,∠HGF=∠CFG,又∵∠PEA的平分线和∠PFC的平分线交于点G,∴∠HGE=∠AEG=,∠HGF=∠CFG=,由(1)可知,∠CFP=∠P+∠AEP,∴∠HGF=(∠P+∠AEP)=(α+∠AEP),∴∠EGF=∠HGF﹣∠HGE=(α+∠AEP)=+∠AEP﹣∠HGE=例5:已知AB∥MN.(1)如图1,求证:∠N+∠E=∠B;(2)若F为直线MN、AB之间的一点,∠E=∠EFB,BG平分∠ABF交MN于点G,EF 交MN于点C.①如图2,若∠N=57°,且BG∥EN,求∠E的度数;②如图3,若点K在射线BG上,且满足∠KNM=∠ENM,若∠NKB=∠EFB,∠E=∠FBD,直接写出∠E的度数.【解答】解:(1)如图,过E作EH∥MN,∴∠N=∠HEN,又∵MN∥AB,∴EH∥AB∥MN,∴∠B=∠HEB,即∠B=∠HEN+∠NEB=∠N+∠BEN;(2)①如图,过F作FP∥EN,交MN于H点,则BG∥EN∥FP,∵∠N=57°,∴∠CHF=∠CGB=∠ABG=57°,∵BG平分∠ABF,∴∠ABF=2∠ABG=114°,∵EN∥PF,∴∠E=∠EFP,∵∠E=∠EFB,∴114°+∠E=4∠E,∴∠E=38°;②如图,过点F作FP∥AD,设∠E=a=∠FBD,则∠PFB=α,∠EFP=3α,∴∠ENM=2a,∠KNM=,当K在BG上,∠NKB=∠EFB=4a,∴∠NGB==∠ABG=∠GBF,∴,∴a=22.5°;当K在BG延长线上时,∠NGB=,∠ABG=,∴,∴a=18°,综上所述,∠E=22.5°或18°.。
七年级数学拓展校本课程教学计划
七年级数学拓展校本课程教学计划
一、活动目的
为了唤起和发展学生对数学及其应用的稳定兴趣,拓宽和加深所学的知识,充分地展现他们的数学才能,以及培养他们一定的探索研究能力,通过强化性的思维训练,培养学生解决生活数学的能力和学习数学的兴趣,提高学生的数学综合素质。
七年级数学拓展校本课程授课教师团队,现制定工作计划如下:
二、活动措施
以数学教研组为核心,七年级数学拓展校本课程授课教师团队。
活动应制定目标明确、重点突出、科学详细的活动方案,包括指导内容、课时安排等内容。
三、活动内容
四、预期效果
预期经过一学期的辅导,让这些学生一方面学亲身体会到数学就在我们身边,所以在教学中要注重生活实际,重视学生直接经验,把教学归朴于实践,归朴于生活。
同时再将数学运用于生活的过程中感悟数学的价值,使学生的解题与思维能力得到一定程度的开发与锻炼,知识面得到丰富与拓展,并提高他们的学习信心和兴趣,打下数学知识学习及技能应用的基础,为今后数学学习做下初步的准备,促进数学正常教学的开展。
苏教版 七年级下册数学平面图形认识二提优复习2
、三角形的内角和定理三角形的内角和等于180度。
要会利用平行线性质、邻补角、平角等相关知识推出三角形内角和定理。
注:①、已知三角形的两个内角度数,可求出第三个角的度数;②、等边三角形的每一个内角都等于60度;③、如果已知等腰三角形的一个内角等于60度,那么这个等腰三角形就是等边三角形。
④、三角形中,有“大角对大边,大边对大角”性质,即度数较大的角,所对的边就较长,或较长的边,所对的角的度数较大。
例:已知等腰三角形的一个内角等于70度,则另外两个内角的度数分别是多少度?二、三角形的外角及其性质三角形的每一个内角都有相邻的两个外角,且这两个外角相等(对顶角相等)。
一共有六个外角。
其中,从与三角形的每一个内角相邻的两个外角中各取一个外角相加(一共三个外角相加),叫三角形的外角和。
根据邻补角、三角形的内角和等相关知识,可知:三角形的外角和= 360 度。
性质1、三角形的一个外角等于与它不相邻的两个内角和。
性质2、三角形的一个外角大于任何一个与它不相邻的内角。
(常用于解决角的不等关系问题)①锐角三角形两条边上的高相交所成的夹角与第三边所对的角互补;②直角三角形两条边上的高相交所成的夹角与第三边所对的角相等;③钝角三角形一条钝角边上的高与钝角所对最大边上的高相交所成的夹角与另一钝角边所对的角相等,但若是两条钝角边上的高相交所成的夹角,则与第三边所对的角互补。
例:1、一个多边形的内角和与某一个外角的度数总和为1350°,则此多边形为________边形。
2、一个多边形除了一个内角外,其余内角之和为1680°,则这个多边形是________边形。
3、已知:如图,MN⊥PQ,垂足为O,点A、B分别在射线上OM、OP上,直线BE平分∠PBA与∠BAO 的平分线相交于点C.(1)若∠BAO=45°,求∠ACB;(2)若点A、B分别在射线上OM、OP上移动,试问∠ACB的大小是否会发生变化?如果保持不变,请说明理由;如果随点A、B的移动发生变化,请求出变化的范围.①锐角三角形两条边上的高相交所成的夹角与第三边所对的角互补;②直角三角形两条边上的高相交所 成的夹角与第三边所对的角相等;③钝角三角形一条钝角边上的高与钝角所对最大边上的高相交所成的夹角与另一钝角边所对的角相等,但若是两条钝角边上的高相交所成的夹角,则与第三边所对的角互补。
全等三角形的六种模型全梳理(学生版)--初中数学专题训练
全等三角形的六种模型全梳理几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。
类型一、倍长中线模型目的:①构造出一组全等三角形;②构造出一组平行线。
将分散的条件集中到一个三角形中。
1【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图2,延长AD到点E,使DE=AD,连接BE.请根据小明的方法思考:(1)如图2,由已知和作图能得到△ADC≌△EDB的理由是.A.SSSB.SASC.AASD.ASA(2)如图2,AD长的取值范围是.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中.【问题解决】(3)如图3,AD是△ABC的中线,BE交AC于点E,交AD于F,且AE=EF.求证:AC=BF.2(培优)已知△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AD,BE,点F为BE中点.AD;(1)如图1,求证:BF=12(2)将△DCE绕C点旋转到如图2所示的位置,连接AE,BD,过C点作CM⊥AD于M点.①探究AE和BD的关系,并说明理由;②连接FC,求证:F,C,M三点共线.1.如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AB=2AE.2.(1)如图1,已知△ABC中,AD是中线,求证:AB+AC>2AD;(2)如图2,在△ABC中,D,E是BC的三等分点,求证:AB+AC>AD+AE;(3)如图3,在△ABC中,D,E在边BC上,且BD=CE.求证:AB+AC>AD+AE.3.(1)阅读理解:如图①,在△ABC中,若AB=8,AC=5,求BC边上的中线AD的取值范围.可以用如下方法:将△ACD绕着点D逆时针旋转180°得到△EBD,在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=100°,以C为顶点作一个50°的角,角的两边分别交AB、AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并说明理由.类型二、截长补短模型截长补短法使用范围:线段和差的证明(往往需证2次全等)3如图,在五边形ABCDE中,AB=AE,CA平分∠BCD,∠CAD=12∠BAE.(1)求证:CD=BC+DE;(2)若∠B=75°,求∠E的度数.4(培优)在△ABC中,BE,CD为△ABC的角平分线,BE,CD交于点F.(1)求证:∠BFC=90°+12∠A;(2)已知∠A=60°.①如图1,若BD=4,BC=6.5,求CE的长;②如图2,若BF=AC,求∠AEB的大小.1.如图,△ABC为等边三角形,若∠DBC=∠DAC=α0°<α<60°,则∠BCD=(用含α的式子表示).2.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E、F分别在直线BC、CD上,且∠BAD.∠EAF=12(1)当点E、F分别在边BC、CD上时(如图1),请说明EF=BE+FD的理由.(2)当点E、F分别在边BC、CD延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出EF、BE、FD之间的数量关系,并说明理由.3.阅读下面材料:【原题呈现】如图1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6,求BC的长.【思考引导】因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知△ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2.求AD 的长.类型三、一线三等角模型应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解。
专题2-4 命题与证明(拓展提高)(解析版)
专题2.4命题与证明(拓展提高) 一、单选题1.下列命题中的假命题是( )A .当x y =时,有22x y =B .相等的角是对顶角C .两直线平行,同位角相等D .平行于同一条直线的两条直线平行【答案】B 【分析】根据等式的性质,对顶角的定义,平行线的性质和平行公理的推论对四个选项依次判断即可.【详解】解:A 选项,根据等式的性质,可以判断该命题为真命题,故A 选项不符合题意; B 选项,根据对顶角的定义,可以判断该命题为假命题,故B 选项符合题意;C 选项,根据平行线的性质,可以判断该命题为真命题,故C 选项不符合题意;D 选项,根据平行公理的推论,可以判断该命题为真命题,故D 选项不符合题意.故选:B .【点睛】本题考查了等式的性质,对顶角的定义,平行线的性质和平行公理的推论,熟练掌握以上知识点是解题关键.2.下列说法:①相等的角是对顶角;②同位角相等;③过一点有且只有一条直线与己知直线平行;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.其中真命题有( )个A .1B .2C .3D .4 【答案】A 【分析】依据对顶角、同位角、平行公理以及点到直线的距离的概念进行判断,即可得出结论.【详解】解:①相等的角不一定是对顶角,故说法错误;②同位角不一定相等,故说法错误;③过直线外一点有且只有一条直线与已知直线平行,故说法错误;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故说法正确; 故选:A .【点睛】本题主要考查了对顶角、同位角、平行公理以及点到直线的距离的概念,点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.3.下列四个命题:(1)对顶角相等;(2)同位角相等;(3)两点之间,线段最短;(4)若OA OB =,则O 是AB 的中点,其中真命题的个数是( )A .1个B .2个C .3个D .4个【分析】根据对顶角的性质对(1)进行判断;根据平行线的性质对(2)进行判断;根据线段公理对(3)进行判断;根据线段的中点定义对(4)进行判断.【详解】对顶角相等,所以(1)正确;两直线平行,同位角相等,所以(2)错误;两点之间的线段最短,所以(3)正确;当点O 在线段AB 上,若OA=OB ,则点O 是AB 的中点,所以(4)错误.故选:B .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 4.利用反证法证明命题“在ABC ∆中,若AB AC =,则90B ∠<︒”时,应假设( )A .若AB AC =,则90B ∠>︒B .若AB AC ≠,则90B ∠<︒ C .若AB AC =,则90B ∠︒D .若AB AC ≠,则90B ∠︒【答案】C 【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,据此进行解答.【详解】解:用反证法证明命题“在ABC ∆中,若AB AC =,则90B ∠<︒”时,应假设若AB AC =,则90B ∠︒, 故选:C .【点睛】本题考查的是反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定. 5.某班选举班干部,全班有40名同学都有选举权和被选举权,他们的编号分别为1,2,…,40.老师规定:同意某同学当选的记“1”,不同意(含弃权)的记“0”. 如果令1,,0,i i j a j i j 第号同学同意第号同学当选第号同学不同意第号同学当选⎧=⎨⎩ 其中i =1,2,…,40;j =1,2,…,40.则a 1,1a 1,2+a 2,1a 2,2+a 3,1a 3,2+…+a 40,1a 40,2表示的实际意义是( ) A .同意第1号或者第2号同学当选的人数B .同时同意第1号和第2号同学当选的人数C .不同意第1号或者第2号同学当选的人数D .不同意第1号和第2号同学当选的人数【分析】先写出同意第1号同学当选的同学,再写出同意第2号同学当选的同学,那么同时同意1,2号同学当选的人数是他们对应相乘再相加.【详解】第1,2,3,……,40名同学是否同意第1号同学当选依次由a1,1,a2,1,a3,1,…,a40,1来确定,是否同意第2号同学当选依次由a1,2,a2,2,a3,2,…,a40,2来确定,a1,2+a2,1a2,2+a3,1a3,2+…+a40,1a40,2表示的实际意义是同时同意第1号和第2号同学当选的人数,∴a1,1故选B.【点睛】本题考查了推理应用题,题目比较新颖,是基础题.6.如图,给出下列推理:①∵∠B=∠BEF,∴AB∥EF;②∵∠B=∠CDE,∴AB∥CD;③∵∠B+∠BEC =180°,∴AB∥EF;④∵AB∥CD,CD∥EF,∴AB∥EF,其中正确的推理是( )A.①②③B.①②④C.①③④D.②③④【答案】B【解析】①∵∠B=∠BEF,∴AB//EF,则①是正确的;②∵∠B=∠CDE,∴AB//CD,则②是正确的;③中由∠B+∠BEC=180°,可推出AB//CE,不能推出AB//EF,故③不正确;④∵AB∥CD,CD//EF,∴AB//EF,则④是正确的.综上可知,①②④正确.故答案选B.点睛:1、平行线的判定定理: ①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行,④若a//b,b//c,那么a//c;以此为依据进行判断选择;2、结合图形,确定已知角之间的关系,即是否是同位角、同旁内角、内错角关系;3、注意检查已知角是否是由要判断的两线截得的同位角、同旁内角或内错角,否则易错选,如③.二、填空题7.用一组a,b的值说明命题“若a b>,则22a b>”是错误的,这组值可以是a=____,b=____【答案】1(答案不唯一)-2(答案不唯一)【分析】举出一个反例:a=1,b=-2,说明命题“若a>b,则a2>b2”是错误的即可.【详解】解:当a=1,b=-2时,满足a>b,但是a2=1,b2=4,a2<b2,∴命题“若a>b,则a2>b2”是错误的.故答案为:1、-2.(答案不唯一)【点睛】此题主要考查了命题与定理,要熟练掌握,解答此题的关键是要明确:任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.8.把命题“两直线平行,同位角相等”改写成“若…,则…”__.【答案】若两直线平行,则同位角相等【分析】命题写成“如果…,那么…”的形式,“如果”后面接的部分是题设,“那么”后面解的部分是结论.【详解】解:命题“两直线平行,同位角相等”可以改写成“若两直线平行,则同位角相等”,故答案为:“若两直线平行,则同位角相等”.【点睛】本题考查了命题的概念,掌握命题写成“如果…,那么…”的形式,“如果”后面接的部分是题设,“那么”后面解的部分是结论是解题的关键.9.已知“若a>b,则ac>bc”是假命题,请写出一个满足条件的c 的值是_______________.【答案】0(答案不唯一)【分析】举出一个能使得ac=bc或ac<bc的一个c的值即可.【详解】若a>b,当c=0时ac=bc=0,故答案为:0(答案不唯一).【点睛】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.10.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③等角的补角相等;④垂直于同一条直线的两条直线互相平行.其中真命题为____________.【答案】③【分析】根据对顶角的定义对①进行判断;根据平行线的性质对②进行判断;根据补角的定义对③进行判断;根据平行线的判定方法对④进行判断.【详解】解:相等的角不一定是对顶角,所以①错误;两条平行直线被第三条直线所截,同位角相等,所以②错误;等角的补角相等,所以③正确;在同一平面内,垂直于同一条直线的两条直线互相平行,所以④错误.故答案为:③.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.11.用一个m 的值说明命题“代数式223m -的值一定大于代数式21m +的值.”是错误的,这个m 的值可以是__. 【答案】0m =(答案不唯一)【分析】根据题意找到一个使得命题不成立的m 的值即可.【详解】当0m =时,2233m -=-,211m +=, 此时22231m m -<+, 故答案为0m =(答案不唯一) 【点睛】考查了命题与定理的知识,解题的关键是能够根据题意举出反例,难度不大.12.如图,一个弯形管道ABCD 的拐角∠ABC =120°,∠BCD =60°,这时说管道AB ∥CD ,是根据___________________________.【答案】同旁内角互补,两直线平行【详解】试题分析:由已知∠ABC=120°,∠BCD=60°,即∠ABC+∠BCD=120°+60°=180°,可得关于AB ∥CD 的判定条件:同旁内角互补,两直线平行.考点:平行线的判定.13.如图,直线a ∥b ,Rt △ABC 的顶点B 在直线a 上,∠C=90°,∠β=55°,则∠α的度数为______.【答案】35°【分析】先过点C 作CE ∥a ,可得CE ∥a ∥b ,然后根据两直线平行,内错角相等,即可求得答案.【详解】解:过点C 作CE ∥a ,∵a ∥b ,∴CE ∥a ∥b ,∴∠BCE=∠α,∠ACE=∠β=55°,∵∠C=90°,∴∠α=∠BCE=∠ABC-∠ACE=35°.故答案为:35°.【点睛】此题考查了平行线的性质.此题注意掌握辅助线的作法,注意掌握两直线平行,内错角相等定理的应用.14.如图,在△ABC 中,∠C =90°,∠ABC 的平分线与外角∠BAD 的平分线的反向延长线交于点F ,则∠F =____.【答案】45°【详解】如图,AE 平分∠DAB ,BF 平分∠ABC ,∴∠DAB=2∠1,∠ABC=2∠1.∵∠DAB=∠C+∠ABC=90°+∠ABC ,∠1=∠F+∠2,∴2∠1=90°+2∠2, ∴2(2)F ∠+∠=90°+2∠2,∴∠F=45°.三、解答题15.用举反例的方法说明命题“如果一个角的两边分别与另一个角的两边互相平行,那么这两个角相等”是假命题. 【答案】详见解析【分析】利用平行线的性质构造图形即可举出反例.【详解】解:如图,1∠的两边与2∠的两边互相平行,但1∠与2∠不相等.【点睛】本题考查了命题与定理,熟知平行线的性质、构造符合题意的图形是解题的关键.16.如图,有如下四个论断:①//AC DE ,②//DC EF ,③CD 平分BCA ∠,④EF 平分BED ∠. (1)若选择四个论断中的三个作为条件,余下的一个论断作为结论,构成一个数学命题,其中正确的有哪些?不需说明理由.(2)请你在上述正确的数学命题中选择一个进行说明理由.【答案】(1)见解析;(2)见解析【分析】(1)选择四个论断中的三个作为条件,余下的一个论断作为结论,即可得到结论;(2)根据平行线的性质和角平分线的定义即可得到结论.【详解】解:(1)如果①②③,那么④,正确;如果①②④,那么③,正确;如果①③④,那么②,正确;如果②③④,那么①,正确;(2)已知:AC ∥DE ,DC ∥EF ,CD 平分∠BCA ,求证:EF 平分∠BED .证明:∵AC ∥DE ,∴∠BCA =∠BED ,即∠1+∠2=∠4+∠5,∵DC ∥EF ,∴∠2=∠5,∵CD 平分∠BCA ,∴∠1=∠2,∴∠4=∠5,∴EF 平分∠BED .【点睛】本题考查了命题与定理,平行线的判定和性质,角平分线的定义,熟练掌握平行线的判定和性质是解题的关键.17.判断下列命题的真假,如果是假命题,请举一个反例,真命题不需要举例.(1)钝角的补角是锐角;(2)一个角的余角小于这个角;(3)如果a b =,那么a b =. 【答案】(1)真命题;(2)假命题,举例见解析;(3)假命题,举例见解析【分析】(1)钝角的补角是锐角,该命题是真命题;(2)一个角的余角不一定小于这个角,该命题是假命题,举出反例即可;(3)如果a b =,那么a 与b 相等或互为相反数,所以该命题是假命题,举出反例即可.【详解】(1)钝角的补角是锐角,该命题是真命题.(2)一个角的余角小于这个角,该命题是假命题.反例:45°的余角是45°,与本身相等.(3)如果a b =,那么a b =,该命题是假命题.反例:22-=,但是22-≠.【点睛】本题主要考查命题的真假判断、补角、余角以及绝对值的概念,熟记相关概念是解题关键. 18.如图,已知BC 、DE 相交于点O ,给出以下三个判断:①//AB DE ;②//BC EF ;③B E ∠=∠.请你以其中两个判断作为条件,另外一个判断作为结论,写出所有的命题,指出这些命题是真命题还是假命题.【答案】见解析【分析】三个判断任意两个为条件,另一个为结论可写三个命题,然后根据平行线的判定与性质即可判断这些命题的真假.【详解】解:(1)若AB ∥DE ,BC ∥EF ,则∠B =∠E ,此命题为真命题;(2)若AB ∥DE ,∠B =∠E ,则BC ∥EF ,此命题为真命题;(3)若∠B =∠E ,BC ∥EF ,则AB ∥DE ,此命题真命题; 第一个命题证明如下:∵AB ∥DE ,∴∠B =∠DOC .∵BC ∥EF ,∴∠DOC =∠E .∴∠B =∠E . 第二个命题证明如下:∵AB ∥DE ,∴∠B =∠DOC .∵∠B =∠E ,∴∠DOC =∠E .∴BC ∥EF . 第三个命题证明如下:∵BC ∥EF ,∴∠DOC =∠E .∵∠B =∠E ,∴∠DOC =∠B .∴AB ∥DE .【点睛】本题考查了真假命题和平行线的判定与性质,属于常考题型,熟练掌握上述基本知识是解题的关键.19.如图所示,AB CD ,相交于点E ,连接AD BC ,,①A C ∠=∠,②AD CB =,③AE CE =.以这三个式子中的两个作为命题的条件,另一个作为命题的结论,构成三个命题:①②⇒③;①③⇒②;②③⇒①.(1)在构成的三个命题中,真命题有________个;(2)请选择其中一个真命题加以证明.【答案】(1)2;(2)选择①②⇒③,见解析.【分析】(1)根据全等三角形的判定定理AAS ,ASA 即可判断;(2)选择①②⇒③,根据全等三角形的判定定理AAS ,得到(AAS)ADE CBE ∆∆≌,然后即可得到AE CE =.【详解】解:(1)①②⇒③,满足全等三角形判定定理AAS ,是真命题; ①③⇒②,满足全等三角形判定定理ASA ,是真命题; ②③⇒①,是SSA ,不能证明三角形全等,故不能得到①成立,是假命题;故答案为:2;(2)选择①②⇒③.证明:在ADE ∆和CBE ∆中,()()()AED CEB A C AD CB ∠=∠⎧⎪∠=∠⎨⎪=⎩对顶角相等,已知,已知, ∴(AAS)ADE CBE ∆∆≌. ∴AE CE =(全等三角形的对应边相等).【点睛】本题考查了全等三角形的判定定理,掌握、熟练运用全等三角形的证明方法证明全等是解题的关键.20.请阅读,完成证明和填空.九年级数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下:(1)如图1,正三角形ABC 中,在AB 、AC 边上分别取点M 、N ,使BM AN =,连结BN 、CM ,发现BN CM =,且60NOC ∠=︒. 请证明:60NOC ∠=︒.(2)如图2,正方形ABCD 中,在AB 、BC 边上分别取点M 、N ,使AM BN =,连结AN 、DM ,那么AN =______,且DON ∠=______度.(3)如图3,正五边形ABCDE 中,在AB 、BC 边上分别取点M 、N ,使AM BN =,连结AN 、EM ,那么AN =______,且EON ∠=______度.(4)在正n 边形中,对相邻的三边实施同样的操作过程,也会有类似的结论.请大胆猜测,用一句话概括你的发现:________________________________.【答案】(1)见解析;(2)DM ,90°;(3)EM ,108°;(4)见解析. 【分析】①以正n 边形的性质(即各边相等,各内角相等)为切入点,构造与ABN 全等的三角形;②通过对正三角形的探究与分析,得到正n 边形的一般性结论,即所探究的角恰好等于正n 边形的内角.【详解】解 (1)证明:∵ABC ∆是正三角形,∴60A ABC ∠=∠=︒,AB BC =.在ABN ∆和BCM ∆中,AB BC A ABC AN BM =⎧⎪∠=∠⎨⎪=⎩,∴ABN BCM ∆≅∆.∴ABN BCM ∠=∠.又∵60ABN OBC ∠+∠=︒,∴60BCM OBC ∠+∠=︒.又∵NOC BCM OBC ∠=∠+∠,∴60NOC ∠=︒.(2)在正方形中,AN DM =,90DON ∠=︒.(3)在正五边形中,AN EM =,108EON ∠=︒.(4)所连结的两条线段相等,所求的角恰好等于正n 边形的内角()2180n n-⋅︒. 【点睛】本题以正多边形为背景,以正三角形ABC 为切入点,通过对问题的类比、改造、延伸和拓展来检测分析问题、解决问题的能力.启示我们学习数学要在“做数学”,而不是“背数学”.。
(完整版)七年级数学培优-平行线四大模型
平行线四大模型平行线的判定与性质l、平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.2、平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补本讲进阶平行线四大模型模型一“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.模型二“猪蹄”模型(M模型)点P在EF左侧,在AB、CD内部“猪蹄"模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD。
苏科版数学七年级上提优练习与答案(平行)
苏科版数学七年级上提优练习内容:平行1.下列说法错误的是( )A.在同一平面内,不相交的两条线段必然平行B.在同一平面内,不相交的两条直线必然平行C.在同一平面内,不平行的两条直线必然相交D.在同一平面内,如果两条直线没有公共点,那么这两条直线平行2.如图6-4-1所示的两条平行直线用符号表示正确的是( )A.A∥B B.D∥B C.ACB∥D D.a∥b3.如图6—4—2,方格纸上,与直线a平行的直线的条数是( )A.4 B.3 C.2 D.14.如图6—4—3所示,∠AOB内有一点P.(1)过点P画L1∥0A; (2)过点P画L2∥0B:(3)用量角器量一量L1与L2的夹角与∠0的大小有怎样的关系.5.(2020独家原创试题)在同一个平面内有三条直线,若有且只有两条直线平行。
则它们 ( )A.没有交点 B.只有一个交点C.有两个交点 D.有三个交点6.(2020江苏无锡惠山期末,5,★☆☆)如图6-4-4,经过直线。
外一点O的4条直线中,与直线a相交的直线至少有 ( )A.4条 B.3条 C.2条 D.1条7.(2020江苏淮安清江浦期末,6,★☆☆)下列说法正确的有 ( )①任意两条直线的位置关系不是相交就是平行;②过一点有且只有一条直线和已知直线平行;③过直线。
外一点P,画直线b,c使b∥a,且c∥a④若直线a∥b..b∥c,则c∥aA.4个 B,3个 C.2个 D.1个8.(2019江苏连云港期末,l5,★☆☆)如图6—4—5,MC∥AB,NC∥AB,则点M,C、N在同一条直线上,理由是____________________________________9.(2020四川成都石室中学月考,19,★☆☆)已知直线a∥b,b∥c,c∥d,则a与d 的关系是什么?为什么?10.(1)如图6—4—6,三根木条相交成∠1、∠2,固定木条b、C,转动木条a,在木条a的转动过程中,∠[1与∠2的大小关系是否发生了变化?木条a、b的位置关系是否发生了变化? 。
苏科版七年级数学下册第7章7.2 《探索平行线的性质》综合提优
《探索平行线的性质》一、选择题1.如果一个36∘角的两条边与∠B的两条边分别平行,则∠B为( )A. 36∘B. 144∘C. 36∘或144∘D. 36∘或54∘2.如图,一条公路修到湖边时需绕道,第一次拐角∠B=120∘,第二次拐角∠C=140∘,为了保持公路AB与DE平行,则第三次拐角∠D的度数应为( )A. 130∘B. 140∘C. 150∘D. 160∘3.如图,将一块含有30∘角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=α度,∠2=β度,则( )A. α+β=150B. α+β=90C. α+β=60D. β−α=304.如图,一环湖公路的AB段为东西方向,经过三次拐弯后,又变成了东西方向的ED段,则∠B+∠C+∠D的度数为( )A. 180∘B. 270∘C. 360∘D. 450∘5.如图,AB//CD,AE平分∠CAB交CD于点E,若∠C=70∘,则∠AED=( )A.55∘B. 125∘B.135∘ D. 140∘6.直线a//b,Rt△ABC的直角顶点C在直线a上,若∠1=35∘,则∠2等于( )A. 65∘B. 50∘C. 55∘D. 60∘7.如图,∠BCD=90∘,AB//DE,则∠α与∠β满足( )A. ∠α+∠β=180∘B. ∠β−∠α=90∘C. ∠β=3∠αD. ∠α+∠β=90∘8.如图,已知直线AB//CD,BC平分∠ABD,∠1=63∘,则∠2的度数是( )A. 63∘B. 60∘C. 54∘D. 53∘9.一个角的两边分别平行于另一个角的两边,则这两个角( )A. 相等B. 相等或互补C. 互补D. 不能确定10.如图,在△ABC的角平分线CD,BE相交于F,∠A=90∘,EG//BC,且EG⊥CG于G,下列说法:①∠CEG=2∠DCB;②CA平分∠BCG;③∠ADC=∠GCD;∠CGE,其中正确结论是( )④∠DFB=12A. 只有①③B. 只有②④C. 只有①③④D. ①②③④二、解答题11.已知:如图,DE//BC,CD平分∠ACB,∠A=68∘,∠DFB=72∘,∠AED=72∘,求∠BDF和∠FDC的度数.12.已知△ABC,EF//AC交直线AB于点E,DF//AB交直线AC于点D.(1)如图1,若点F在边BC上,①补全图形;②判断∠BAC与∠EFD的数量关系,并给予证明;(2)若点F在边BC的延长线上,(1)中的结论还成立吗?若成立,给予证明;若不成立,说明理由.13.如图1,AM//NC,点B位于AM,CN之间,∠BAM为钝角,AB⊥BC,垂足为点B.(1)若∠C=40∘,则∠BAM=______;(2)如图2,过点B作BD⊥AM,交MA的延长线于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,BE平分∠DBC交AM于点E,若∠C=∠DEB,求∠DEB的度数.14.如图,CD分别交AD,EG于点D,G,EB分别交AD,EG于点A,E,AC交EG于点F,FH交AD于点H,AD平分∠BAC,EG//AD,CG⊥EG,∠C=∠AFH.(1)∠GFC与∠E相等吗?说明理由.(2)判断FH与AD的位置关系,并说明理由.答案和解析【答案】1. C2. D3. D4. C5. B6. C7. B8. C9. B10. C11. 解:∵DE//BC,∴∠ACB=∠AED=72∘,∵∠DFB=72∘,∴∠ACB=∠DFB,∴DF//AC,∴∠BDF=∠A=68∘,∵CD平分∠ACB,∴∠ACD=∠FCD,∵DF//AC,∴∠FDC=∠ACD,∴∠FDC=∠FCD,∵∠DFB=∠FDC+∠FCD,∴2∠FDC=∠DFB=72∘,∴∠FDC=36∘.12. 解:(1)①见图1;②∠BAC=∠EFD.证明:∵EF//AC,∴∠EFB=∠C.∴∠DFC=∠B.∴∠EFD=180∘−(∠EFB+∠DFC)=180∘−(∠C+∠B).在△ABC中,∠BAC=180∘−(∠C+∠B),∴∠BAC=∠EFD.(2)当点F在边BC的延长线上时,∠BAC+∠EFD=180∘;证明:如备用图,∵DF//AB,∴∠D=∠1.∵EF//AC,∴∠EFD+∠D=180∘.∴∠EFD+∠1=180∘.即∠BAC+∠EFD=180∘.13. 130∘14. 解:(1)∵AD平分∠BAC,∴∠BAD=∠E,∠CAD=∠EFA,∴∠EFA=∠E,∵∠GFC=∠EFA,∴∠GFC=∠E;(2)FH⊥AD,理由:∵∠C=∠AFH,∴CG//FH,∴∠HFG=∠CGF=90∘,∵EG//AD,∴∠DHF+∠HFG=180∘,∴∠DHF=90∘,∴FH⊥AD.。
三角形全等的判定方法压轴题五种模型全攻略(解析版)
三角形全等的判定方法压轴题五种模型全攻略【考点导航】目录【典型例题】【考点一用SAS证明两三角形全等】【考点二用ASA证明两三角形全等】【考点三用AAS证明两三角形全等】【考点四用SSS证明两三角形全等】【考点五添一个条件使两三角形全等】【过关检测】【典型例题】【考点一用SAS证明两三角形全等】1(2023春·江苏苏州·七年级校联考阶段练习)如图,在△ABC中,AC>AB,射线AD平分∠BAC,交BC 于点E,点F在边AB的延长线上,AF=AC,连接EF.(1)求证:△AEC≌△AEF.(2)若∠AEB=50°,求∠BEF的度数.【答案】(1)证明见解析(2)80°【分析】(1)由射线AD平分∠BAC,可得∠CAE=∠FAE,进而可证△AEC≌△AEF SAS;(2)由△AEC≌△AEF SAS,可得∠C=∠F,由三角形外角的性质可得∠AEB=∠CAE+∠C=50°,则∠FAE+∠F=50°,根据∠FAE+∠F+∠AEB+∠BEF=180°,计算求解即可.【详解】(1)证明:射线AD平分∠BAC,∴∠CAE=∠FAE,在△AEC和△AEF中,∵AC=AF∠CAE=∠FAEAE=AE,∴△AEC≌△AEF SAS;(2)解:∵△AEC≌△AEF SAS,∴∠C =∠F ,∵∠AEB =∠CAE +∠C =50°,∴∠FAE +∠F =50°,∵∠FAE +∠F +∠AEB +∠BEF =180°,∴∠BEF =80°,∴∠BEF 为80°.【点睛】本题考查了角平分线,全等三角形的判定与性质,三角形外角的性质,三角形内角和定理.解题的关键在于对知识的熟练掌握与灵活运用.【变式训练】1(2023春·云南昭通·九年级校考阶段练习)如图,点A 、C 、F 、D 在同一直线上,AF =DC ,∠A =∠D ,AB =DE .求证:△ABC ≌△DEF.【答案】见解析【分析】由AF =CD ,可求得AC =DF ,利用SAS 可得出结论.【详解】解:∵ AF =CD ,∴AF -FC =CD -FC ,即AC =DF ,在△ABC 和△DEF 中,AB =DE∠A =∠D AC =DF,∴△ABC ≌△DEF (SAS ).【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.2(2023春·四川成都·七年级统考期末)如图在△ABC 中,D 是BC 边上的一点,AB =DB ,BE 平分∠ABC ,交AC 边于点E ,连接DE.(1)求证:△ABE ≌△DBE ;(2)若∠A =100°,∠C =40°,求∠DEC 的度数.【答案】(1)证明见解析(2)60°【分析】(1)根据BE 平分∠ABC ,可得∠ABE =∠DBE ,进而利用SAS 证明△ABE ≌△DBE 即可;(2)根据全等三角形的性质可得∠BDE =∠A =100°,再由三角形外角的性质即可求解.【详解】(1)解:∵BE 平分∠ABC ,∴∠ABE =∠DBE .∵AB=DB,BE=BE,∴△ABE≌△DBE SAS;(2)解:∵△ABE≌△DBE,∴∠BDE=∠A=100°,∴∠DEC=∠BDE-∠C=60°.【点睛】本题主要考查了全等三角形的判定和性质,三角形外角的性质,熟练掌握全等三角形的判定和性质定理是解题的关键.3(2023春·江苏泰州·七年级统考期末)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,连接BD、CE.(1)求证:△ABD≌△ACE.(2)图中BD和CE有怎样的关系?试证明你的结论.【答案】(1)见详解(2)见详解【分析】(1)先证明∠BAD=∠EAC,又因为AB=AC,AD=AE,即可求出三角形全等;(2)根据△ABD≌△ACE,得到∠ACE=∠ABD,进而证得∠ABD+∠DBC+∠ACB=90°,等量代换得∠ACE+∠DBC+∠ACB=90°即∠ECB+∠DBC=90°,再利用内角和,即可证明垂直.【详解】(1)解:∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+∠CAD∴∠BAD=∠EAC∵AB=AC,AD=AE∴△ABD≌△ACE.(2)解:如图,设BD和CE交点为F∵△ABD≌△ACE∴∠ACE=∠ABD∵∠BAC=90°∴∠ABD+∠DBC+∠ACB=90°∴∠ACE+∠DBC+∠ACB=90°即∠ECB+∠DBC=90°∴∠BFC=180°-∠ECB+∠DBC=90°∴BD⊥CE.【点睛】此题考查全等三角形的判定和性质,和角与角之间关系,解题的关键是根据SAS三角形全等.4(2023·江苏南通·统考一模)如图,点A,B,C,D在同一条直线上,AB=CD=13BC,AE=DF,AE∥DF.(1)求证:△AEC ≌△DFB ;(2)若S △AEC =6,求四边形BECF 的面积.【答案】(1)见解析(2)9【分析】(1)由AE ∥DF ,得∠A =∠D ,进一步证得AC =DB ,根据边角边求证△AEC ≌△DFB SAS ;(2)以AC 为底作EH 为高,则S △AEC =12EH ∙AC ,S △BCE =12EH ·BC ,由AB =CD =13BC ,求得S △BEC =34S △AEC=4.5;求证△BEC ≌△CFB SAS ,得S △BEC =S △CFB ,所以S 四边形BECF =2S △BEC =9.【详解】(1)证明:∵AE ∥DF ,∴∠A =∠D ,∵AB =CD ,∴AC =DB ,在△AEC 和△DFB 中,AE =DF∠A =∠DAC =DB∴△AEC ≌△DFB SAS ;(2)解:在△AEC 中,以AC 为底作EH 为高,∴S △AEC =12EH ∙AC ,S △BCE =12EH ∙BC ,∵AB =CD =13BC ,∴AC =43BC ,∵S △AEC =6,∴S △BEC =34S △AEC =4.5,∵△AEC ≌△DFB ,∴∠ACE =∠DBF ,EC =FB ,在△BEC 和△CFB 中,EC =FB∠BCE =∠CBF BC =CB,∴△BEC ≌△CFB SAS ,∴S △BEC =S △CFB ,∴S 四边形BECF =2S △BEC =9.【点睛】本题考查平行的性质,全等三角形的判定和性质,三角形面积计算;能够灵活运用全等三角形性质是解题的关键.【考点二用ASA 证明两三角形全等】1(2023春·广东惠州·八年级校考期中)如图,BC ∥EF ,点C ,点F 在AD 上,AF =DC ,∠A =∠D .求证:△ABC ≌△DEF.【答案】见解析【分析】首先根据平行线的性质可得∠ACB =∠DFE ,利用等式的性质可得AC =DF ,然后再利用ASA 判定△ABC ≌△DEF 即可.【详解】证明:∵BC ∥EF ,∴∠ACB =∠DFE ,∵AF =DC ,∴AF +CF =DC +CF ,即AC =DF ,在△ABC 和△DEF 中,∠A =∠DAC =DF ∠ACB =∠DFE,∴△ABC ≌△DEF ASA .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【变式训练】1(2023·校联考一模)如图,点A 、D 、B 、E 在同一条直线上,若AD =BE ,∠A =∠EDF ,∠E =∠ABC .求证:AC =DF.【答案】见解析【分析】由AD =BE 知AB =ED ,结合∠A =∠EDF ,∠E =∠ABC ,依据“ASA ”可判定△ABC ≌△DEF ,依据两三角形全等对应边相等可得AC =DF .【详解】证明:∵AD =BE ,∴AD +BD =BE +BD ,即AB =ED ,在△ABC 和△DEF 中,∠ABC =∠EAB =ED ∠A =∠EDF,∴△ABC≌△DEF ASA,∴AC=DF.【点睛】本题主要考查全等三角形的判定与性质,掌握全等三角形的判定与性质是解题的关键.2(2023·浙江温州·温州市第八中学校考三模)如图,在△ABC和△ECD中,∠ABC=∠EDC=90°,点B为CE中点,BC=CD.(1)求证:△ABC≌△ECD.(2)若CD=2,求AC的长.【答案】(1)见解析(2)4,见解析【分析】(1)根据ASA判定即可;(2)根据△ABC≌△ECD ASA和点B为CE中点即可求出.【详解】(1)证明:∵∠ABC=∠EDC=90°,BC=CD,∠C=∠C,∴△ABC≌△ECD ASA(2)解:∵CD=2,△ABC≌△ECD ASA,∴BC=CD=2,AC=CE,∵点B为CE中点,∴BE=BC=CD=2,∴CE=4,∴AC=4;【点睛】本题考查全等三角形的判定和性质,掌握全等三角形的判定条件是解答本题的关键.【考点三用AAS证明两三角形全等】1(2023·广东汕头·广东省汕头市聿怀初级中学校考三模)如图,点E在△ABC边AC上,AE=BC,BC∥AD,∠CED=∠BAD.求证:△ABC≌△DEA【答案】证明见解析【分析】根据平行线的性质,得到∠DAC=∠C,再根据三角形外角的性质,得出∠D=∠BAC,即可利用“AAS”证明△ΑBC≌△DEA.【详解】证明:∵BC∥AD,∴∠DAC=∠C,∵∠CED=∠BAD,∠CED=∠D+∠DAC,∠BAD=∠DAC+∠BAC,∴∠D=∠BAC,在△ABC和△DEA中,∠BAC=∠D ∠C=∠DAC BC=AE,∴△ΑBC≌△DEA AAS.【点睛】本题考查了全等三角形的判定,平行线的性质,三角形外角的性质,熟练掌握全等三角形的判定定理是解题关键.【变式训练】1(2023·浙江温州·统考二模)如图,AB=BD,DE∥AB,∠C=∠E.(1)求证:△ABC≅△BDE.(2)当∠A=80°,∠ABE=120°时,求∠EDB的度数.【答案】(1)见解析(2)40°【分析】(1)根据平行线的性质,利用三角形全等的判定定理即可证明;(2)根据三角形全等的性质和平行线的性质即可求解【详解】(1)解:∵DE∥AB,∴∠BDE=∠ABC,又∵∠E=∠C,BD=AB,∴△ABC≅△BDE.(2)解:∵∠A=80°,△ABC≅△BDE,∴∠A=∠BDE=80°,∵∠ABE=120°,∴∠ABD=40°,∵DE∥AB,∴∠EDB=40°.【点睛】本题考查了平行线的性质,三角形全等的判定和性质,熟练掌握各知识点,利用好数形结合的思想是解本题的关键.2(2023秋·八年级课时练习)如图,已知点C是线段AB上一点,∠DCE=∠A=∠B,CD=CE.(1)求证:△ACD ≌△BEC ;(2)求证:AB =AD +BE .【答案】(1)见解析(2)见解析【分析】(1)由∠DCE =∠A 得∠D +∠ACD =∠ACD +∠BCE ,即∠D =∠BCE ,从而即可证得△ACD ≌△BEC ;(2)由△ACD ≌△BEC 可得AD =BC ,AC =BE ,即可得到AC +BC =AD +BE ,从而即可得证.【详解】(1)证明:∵∠DCE =∠A ,∴∠D +∠ACD =∠ACD +∠BCE ,∴∠D =∠BCE ,在△ACD 和△BEC 中,∠A =∠B∠D =∠BCE CD =EC,∴△ACD ≌△BEC AAS ;(2)解:∵△ACD ≌△BEC ,∴AD =BC ,AC =BE ,∴AC +BC =AD +BE ,∴AB =AD +BE .【点睛】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.【考点四用SSS 证明两三角形全等】1(2023·云南玉溪·统考三模)如图,点B ,E ,C ,F 在一条直线上,AB =DF ,AC =DE ,BE =CF ,求证:△ABC ≌△DFC.【答案】见解析【分析】根据题意,运用“边边边”的方法证明三角形全等.【详解】证明:∵BE =CF ,∴BE +CE =CF +CE ,即BC =EF ,在△ABC 和△DFE 中,AB =DFAC =DEBC =FE∴△ABC ≌△DFE (SSS ).【点睛】本题主要考查三角形全等的判定,掌握全等三角形的判定方法解题的关键.【变式训练】1(2023·云南·统考中考真题)如图,C 是BD 的中点,AB =ED ,AC =EC .求证:△ABC ≌△EDC.【答案】见解析【分析】根据C 是BD 的中点,得到BC =CD ,再利用SSS 证明两个三角形全等.【详解】证明:∵C 是BD 的中点,∴BC =CD ,在△ABC 和△EDC 中,BC =CDAB =ED AC =EC,∴△ABC ≌△EDC SSS 【点睛】本题考查了线段中点,三角形全等的判定,其中对三角形判定条件的确定是解决本题的关键.2(2023春·全国·七年级专题练习)如图,已知∠E =∠F =90°,点B ,C 分别在AE ,AF 上,AB =AC ,BD =CD.(1)求证:△ABD ≌△ACD ;(2)求证:DE =DF .【答案】(1)见解析(2)见解析【分析】(1)直接根据SSS 证明即可.(2)根据(1)得∠EAD =∠FAD ,然后证明△AED ≌△AFD 即可.【详解】(1)解:证明:在△ABD 和△ACD 中,AB =ACAD =AD BD =CD∴△ABD ≌△ACD (SSS ).(2)解:由(1)知△ABD ≌△ACD (SSS ),∴∠EAD =∠FAD ,在△AED和△AFD中,∠E=∠F∠EAD=∠FAD AD=AD∴△AED≌△AFD(AAS),∴DE=DF.【点睛】本题考查了全等三角形的性质与判定,熟记全等三角形的性质与判定是解题关键.【考点五添一个条件使两三角形全等】1(2023春·宁夏银川·七年级校考期末)如图,在△ABC和△FED中,AD=FC,∠A=∠F,要使△ABC≌△FED,需添加的一个条件是.【答案】AB=EF(∠B=∠E或∠ACB=∠FDE答案不唯一)【分析】要使△ABC≌△FED,现有一边一角分别对应相等,还少一个条件,可结合图形选择利用求解即可.【详解】解:∵AD=FC,∴AC=FD又∵∠A=∠F,∴添加AB=EF,利用SAS可以证明△ABC≌△FED;添加∠B=∠E,利用AAS可以证明△ABC≌△FED;添加∠ACB=∠FDE,利用ASA可以证明△ABC≌△FED故答案为:AB=EF(∠B=∠E或∠ACB=∠FDE(.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.【变式训练】1(2023·北京大兴·统考二模)如图,点B,E,C,F在一条直线上,AC∥DF,BE=CF,只需添加一个条件即可证明△ABC≌△DEF,这个条件可以是(写出一个即可).【答案】AC=DF或∠A=∠D或∠ABC=∠DEF或AB∥DE(答案不唯一).【分析】根据SAS,AAS或ASA添加条件即可求解.【详解】解:∵AC∥DF,∴∠ACB=∠DFE,∵BE=CF,∴BE+EC=CF+EC,即BC=EF,则有边角AS两个条件,要添加一个条件分三种情况,(1)根据“SAS”,则可添加:AC=DF,(2)根据“ASA”,则可添加:∠ABC=∠DEF或AB∥DE,(3)根据“AAS”,则可添加:∠A=∠D,故答案为:AC=DF或∠ABC=∠DEF或AB∥DE或∠A=∠D(答案不唯一).【点睛】本题考查了全等三角形的判定,解此题的关键是熟练掌握全等三角形的几种判断方法.2(2023春·山东青岛·七年级统考期末)如图,点E,F在BC上,BE=CF,∠AFB=∠DEC,请你添加一个条件(不添加字母和辅助线),使得△ABF≌△DCE,你添加的条件是.【答案】AF=DE或∠ABF=∠DCE或∠A=∠D【分析】本题要判定△ABF≌△DCE,已知∠AFB=∠DEC,由BE=CF可得BF=CE,那么只需添加一个条件即可.添边可以是AF=DE或添角可以是∠ABF=∠DCE或∠A=∠D.【详解】解:所添加条件为:AF=DE或∠ABF=∠DCE或∠A=∠D,∵BE=CF,∴BE+EF=CF+EF,即BF=CE,添加:AF=DE,在△ABF和△DCE中,AF=DE∠AFB=∠DECBF=CE,∴△ABF≌△DCE SAS;添加:∠ABF=∠DCE,在△ABF和△DCE中,∠ABF=∠DCEBF=CE∠AFB=∠DEC,∴△ABF≌△DCE ASA添加:∠A=∠D,在△ABF和△DCE中,∠A=∠D∠AFB=∠DECBF=CE,∴△ABF≌△DCE AAS.故答案为:AF=DE或∠ABF=∠DCE或∠A=∠D.【点睛】本题考查三角形全等的判定方法,解题的关键是掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3(2023秋·八年级课前预习)如图,AB=AC,D,E分别是AB,AC上的点,要使△ABE≌△ACD,则还需添加的条件是.(只需填写一个合适的条件即可,图中不能再添加其他点或线)【答案】AE=AD或∠B=∠C或∠AEB=∠ADC(答案不唯一)【分析】根据全等三角形的判定方法即可求解.【详解】解:①∵AB=AC,∠A=∠A,AE=AD,∴△ABE≌△ACD(SAS),∴添加的条件为AE=AD;②∵∠B=∠C,AB=AC,∠A=∠A,∴△ABE≌△ACD(ASA),∴添加的条件为∠B=∠C;③∵∠A=∠A,∠AEB=∠ADC,AB=AC,∴△ABE≌△ACD(ASA),∴添加的条件为∠AEB=∠ADC;综上所述,添加的条件为AE=AD或∠B=∠C或∠AEB=∠ADC,故答案为:AE=AD或∠B=∠C或∠AEB=∠ADC(答案不唯一).【点睛】本题主要考查全等三角形的判定,掌握以上知识是解题的关键.【过关检测】一、单选题1(2023春·四川达州·七年级四川省大竹中学校考期末)如图,已知BE=DF,AF∥CE,不能使△ABF≌△CDE的是()A.BF=DEB.AF=CEC.AB∥CDD.∠A=∠C【答案】A【分析】根据BE =DF ,可得BF =DE ,根据AF ∥CE ,可得∠AFE =∠CEF ,由等角的补角相等可得∠AFB =∠CED ,然后根据全等三角形的判定定理逐一判断即可.【详解】解:∵BE =DF ,∴BF =DE ,∵AF ∥CE ,∴∠AFE =∠CEF ,∴∠AFB =∠CED .A 、添加BF =DE 时,不能判定△ABF ≌△CDE ,故选项符合题意;B 、添加AF =CE ,根据SAS ,能判定△ABF ≌△CDE ,故选项不符合题意;C 、由AB ∥CD 可得∠B =∠D ,所以添加AB ∥CD ,根据ASA ,能判定△ABF ≌△CDE ,故选项不符合题意;D 、添加∠A =∠C ,根据AAS ,能判定△ABF ≌△CDE ,故选项不符合题意;故选:A .【点睛】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2(2023秋·河南漯河·八年级校考期末)如图,∠A =∠B ,AE =BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O ,若∠1=42°,则∠BDE 的度数为()A.71°B.69°C.67°D.65°【答案】B【分析】证明△BED ≌△AEC ,得到DE =CE ,∠C =∠BDE 等边对等角,求出∠C 的度数,即可.【详解】解:∵∠A =∠B ,∠BOE =∠AOD ,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴∠BED =∠AEC ,又AE =BE ,∴△BED ≌△AEC ,∴DE =CE ,∠C =∠BDE ,∴∠CDE =∠C =12180°-∠1 =69°,∴∠BDE =69°.【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质.解题的关键是证明三角形全等.3(2023春·辽宁丹东·八年级校考期中)如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=42°,则∠P的度数为()A.42°B.74°C.84°D.96°【答案】D【分析】根据等腰三角形的性质得出两个底角相等,根据三角形全等的判定定理得出∠AMK=∠BKN,根据三角形的外角性质得出∠A的度数,即可得答案.【详解】解:∵PA=PB,∴∠A=∠B,∵AM=BK,BN=AK,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠A+∠AMK=∠MKN+∠BKN,∴∠A=∠MKN=42°,∴∠P=180°-2×42°=96°.故选:D.【点睛】本题考查等腰三角形的性质、全等三角形的判定与性质、三角形内角和定理及三角形外角性质,熟练掌握相关判定定理及性质是解题关键.二、填空题4(2023春·山东青岛·七年级统考期末)如图,∠l=∠2,现要添加一个条件使△ABD≌△ACD,可以添加.(只添一个即可).【答案】CD=BD(答案不唯一)【分析】根据三角形全等的判定方法进行解答即可.【详解】解:∵∠l=∠2,∴180°-∠1=180°-∠2,即∠ADC =∠ADB ,∵AD =AD ,∴添加条件CD =BD ,根据SAS 证明△ABD ≌△ACD ;添加条件∠C =∠B ,根据AAS 证明△ABD ≌△ACD ;添加条件∠CAD =∠BAD ,根据ASA 证明△ABD ≌△ACD .故答案为:CD =BD (答案不唯一).【点睛】本题主要考查了三角形全等的判定,解题的关键是熟练掌握三角形全等的判定方法,SAS ,AAS ,ASA ,HL ,SSS .5(2023秋·湖南娄底·八年级统考期末)如图,∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D .下面四个结论:①∠ABE =∠BAD ;②△CBE ≌△ACD ;③AB =CE ;④AD -BE =DE ,其中正确的有.【答案】①②④【分析】由BE ⊥CE 于E ,AD ⊥CE 于D ,得BE ∥AD ,则∠ABE =∠BAD ,可判断①正确;根据“同角的余角相等”推导出∠BCE =∠CAD ,即可证明△CBE ≌△ACD ,可判断②正确;由垂线段最短可证明AB >BC ,BC >CE ,则AB >CE ,可判断③错误;由CE =AD ,BE =CD ,且CE -CD =DE ,得AD -BE =DE ,可判断④正确,于是得到问题的答案.【详解】∵BE ⊥CE ,AD ⊥CE ,∴AD ∥BE ,∴∠ABE =∠BAD ,故①正确;∵∠E =∠ADC =∠ACB =90°,∴∠BCE =∠CAD =90°-∠ACD ,在△CBE 和△ACD 中,∠E =∠ADC∠BCE =∠CAD BC =CA,∴△CBE ≌△ACD AAS ,故②正确;∵BC ⊥AC ,CE ⊥BE ,∴AB >BC ,BC >CE ,∴AB >CE ,故③错误;∵△CBE ≌△ACD ,∴CE =AD ,BE =CD ,∵CE -CD =DE ,∴AD -BE =DE ,故④正确;故答案为:①②④.【点睛】此题考查了同角的余角相等、垂线段最短、平行线的判定与性质、全等三角形的判定与性质等知识,证明∠BCE =∠CAD 及△CBE ≌△ACD 是解题的关键.6(2023秋·江苏淮安·八年级淮安市浦东实验中学校考开学考试)如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.如果点P在线段BC上以4cm/s的速度由B点向C点运动.同时,点Q在线段CD上以acm/s的速度由C点向D点运动.当a=时,△EBP和△PCQ全等.【答案】4或24 5【分析】分两种情况:当△EBP≌△PCQ时和当△EBP≌QCP时,根据边对应相等,分别求出a的值即可.【详解】解:当△EBP≌△PCQ时,此时BE=CP,BP=CQ,则有BP=4t=at,CP=BC-BP=10-4t=6,此时t=1,a=4,当△EBP≌QCP时,此时BE=CQ,BP=CP,则有CQ=at=6,CP=BC-BP=10-4t=4t,此时t=54,a=245,综上所述,a的值为4或24 5,故答案为:4或24 5.【点睛】本题主要考查了全等三角形的性质,熟练掌握全等三角形的性质,采用分类讨论的思想是解题的关键.三、解答题7(2023春·上海嘉定·七年级校考期末)如图,在四边形ABCD中,AD∥BC,点E为对角线BD上一点,∠A=∠BEC,且AD=BE.(1)求证:△ABD≌△ECB;(2)如果∠BDC=75°,求∠ADB的度数.【答案】(1)见解析(2)∠ADB=30°【分析】(1)由平行线性质可得∠ADB=∠CBE,再由ASA可证△ABD≌△ECB;(2)由全等三角形的性质可得BD=BC,由等腰三角形的性质可求出∠DBC=30°,再由两直线平行内错角相等即可求解.【详解】(1)证明∵AD∥BC,∴∠ADB=∠CBE,在△ABD和△ECB中,∠A=∠BECAD=BE∠ADB=∠CBE,∴△ABD≌△ECB ASA;(2)∵△ABD≌△ECB,∴BD=BC,∴∠BDC=∠BCD=75°,∴∠DBC=180°-∠BDC-∠BCD=30°,∵AD∥BC,∴∠ADB=∠DBC=30°.【点睛】本题考查了全等三角形的判定和性质,平行线的性质,三角形内角和,熟练掌握两直线平行内错角相等是解答本题的关键.8(2023秋·江苏·八年级校考周测)如图,在△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)试说明AE=CD;(2)若AC=12cm,求BD的长.【答案】(1)见解析(2)BD=6cm【分析】(1)由题意可得∠D+∠DCB=90°,∠DCB+∠AEC=90°,即∠D=∠AEC,根据“AAS”可证△DBC≌△ECA,可得;(2)先求出,然后根据全等三角形的性质即可求解.【详解】(1)∵,,∴,,∴,∵,,∴,∴;(2)∵,,∴.∵是边上的中线,∴.∵,∴.【点睛】本题考查了全等三角形的判定与性质,熟练运用全等三角形的判定是本题的关键.9(2023秋·湖南长沙·八年级长沙市开福区青竹湖湘一外国语学校校考开学考试)如图所示,在中,于D,于E,与交于点F,且.(1)求证:;(2)已知,求的长.【答案】(1)见解析(2)【分析】(1)根据垂直的定义得出,再根据同角的余角相等得出,然后由证明即可;(2)由全等三角形的性质得出,再根据线段的和差即可解决问题.【详解】(1)证明:∵,,∴,∴,∴,在和中∴,(2)解:∵,∴,∵,∴,∴;【点睛】此题考查了全等三角形的判定与性质的应用,证明三角形全等是解决问题的关键,属于中考常考题型.10(2023春·四川成都·七年级成都实外校考期末)已知:如图,点是等边三角形内一点,且,外一点满足,平分.(1)求证:;(2)求的度数.(3)若,试判断与的位置关系,并说明理由.【答案】(1)见解析(2)(3),理由见解析【分析】(1)由三角形是等边三角形和可得,由角平分线的性质可得,由“”即可证明;(2)由三角形是等边三角形和可得,,由“”证明,从而得到,再由,;(3)由全等三角形的性质可得,由等腰三角形的性质可得,令交于点,通过计算得出,最后由三角形内角和定理可得出,从而得到答案.【详解】(1)证明:三角形是等边三角形,,,,平分,,在和中,,;(2)解:三角形是等边三角形,,,在和中,,,,,,由(1)得,,;(3)解:,理由如下:由(1)得,,,由(2)得,,,,,,如图,令交于点,,则,,,.【点睛】本题主要考查了等边三角形的性质、三角形全等的判定与性质、等腰三角形的性质、三角形内角和定理、角平分线的性质,熟练掌握等边三角形的性质、三角形全等的判定与性质、等腰三角形的性质、三角形内角和定理、角平分线的性质,是解题的关键.11(2023春·四川达州·七年级校考期末)如图,在中,,,点在线段上运动(不与、重合),连接,作,交线段于.(1)当时,,;点从向的运动过程中,逐渐变(填“大”或“小”);(2)当等于多少时,,请说明理由.(3)在点的运动过程中,与的长度可能相等吗?若可以,请直接写出的度数,请说明理由.【答案】(1);;小;(2),理由见解析;(3)可能相等,,理由见解析【分析】(1)现根据邻补角的定义,得到,进而得到,然后利用三角形内角和定理,得到,,又因为点从向的运动过程中,逐渐增大,所以逐渐变小;(2)利用三角形内角和定理,得到,根据平角的性质,得到,进而得到,再根据“”证明,即可得到答案;(3)根据等边对等角的性质,得到,再利用三角形内角和定理,得出,由三角形外角的性质,得到,进而得到,最后利用邻补角,即可求出的度数.【详解】(1)解:,,,,,,,,点从向的运动过程中,逐渐增大,逐渐变小,故答案为:;;小;(2)解:当时,,理由如下:,,又,,,,当时,,,在和中,,,即当时,,;(3)解:在点的运动过程中,与的长度可能相等,理由如下:,,,,,,,,.【点睛】本题考查了邻补角,三角形内角和定理,全等三角形的判定和性质,等腰三角形的判定和性质,三角形外角的性质,灵活运用相关知识解决问题是解题关键.12(2023春·广东梅州·八年级校考开学考试)在四边形中.(1)如图1,,,,分别是,上的点,且,探究图中,,之间的数量关系.小林同学探究此问题的方法是:延长到点,使.连接,先对比与结论是;(2)如图2,在四边形中,,,、分别是,上的点,且,则上述结论是否仍然成立,请说明理由.(3)如图3,在四边形中,,,若点在的延长线上,点在的延长线上,若,请写出与的数量关系,并给出证明过程.【答案】(1),理由见解析(2)成立,理由见解析(3),证明见解析【分析】(1)延长到点,使,连接,可判定,进而得出,,再判定,可得结论;(2)延长到点,使,连接,先判定,进而得出,,再判定,可得结论;(3)在延长线上取一点,使得,连接,先判定,再判定,得出,最后根据,推导得到【详解】(1)解:结论:.理由:如图1,延长到点,使,连接,在和中,,,,,,,,在和中,,,.故答案为:;(2)解:仍成立,理由:如图2,延长到点,使,连接,,,,在和中,,,,,,,,在和中,,,;(3)解:结论:.理由:如图3,在延长线上取一点,使得,连接,,,,在和中,,,,,在和中,,,,,,,即,.【点睛】本题属于三角形综合题,主要考查了全等三角形的判定以及全等三角形的性质的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形.解题时注意:同角的补角相等.。
苏版七年级平行线和全等三角形模型(拓展提优)
平面图形(二)&全等三角形模型汇编平行线四大模型:结论1: 若AB// CD 贝P+Z AEF+Z PFC3 60 ° 结论2:若Z P+Z AEF+Z PFC 360。
,则AB// CD结论1:若AB// CD 则Z P=Z AEF+Z CFP 结论2:若Z P=Z AEP+Z CFP 贝U AB// CD结论1: 若AB// CD 贝UZ P=Z AEP Z CFP或Z P=Z CFP Z AEP 结论 2 :若Z P=Z AEP Z CFP或Z P=Z CFP Z AEP 贝U AB// CD结论1:若AB// CD 则Z P=Z CFP Z AEP或Z P=Z AEP Z CFP 结论 2 :若Z P=Z CFP Z AEP或Z P=Z AEP Z CFP贝U AB// CD 巩固练习平行线四大模型证明(1) 已知AE// CF,求证Z P+ Z AEP+ Z PFC= 360(2) 已知Z P=Z AEP Z CFP 求证AE// CF.(3) 已知AE// CF,求证Z P=Z AEP Z CFP(4) 已知Z P= Z CFP- Z AEP,求证AE// CF.模块一平行线四大模型应用例1(1)如图,a// b, M N分别在a、b上,P为两平行线间一点,那么Z l +Z 2+Z 3= ___________⑵如图,AB// CD且/ A=25°,/C=45°,则/E的度数是_____________ .⑶如图,已知AB// DE / ABC80°,/CDE=140 °,则/BCD •⑷如图,射线AC/ BD / A= 70 ° ,Z B= 40。
,则/P= __________________练如图所示,AB// CD / E=37°,/C= 20。
,则/EAB的度数为_____________(七一中学2015-2016七下3月月考)如图,AB// CD / B=30°,Z O=Z C.则/ C= .例2如图,已知AB// DE BF DF分别平分/ ABC / CDE求/ C / F的关系•练如图,已知AB// DE / FB(=1 / ABF / FD(=丄 / FDEn n(1)若n=2,直接写出/ C / F的关系______________________ ;⑵若n=3,试探宄/ C、/ F的关系;⑶直接写出/ C / F的关系_____________________ (用含n的等式表示)例3如图,已知AB// CD BE平分/ ABC DE平分/ ADC 求证:/ E= 2 ( / A+/C).练如图,己知AB// DE BF DF分别平分/ ABC / CDE求/ C / F的关系.例 4 如图,/ 3==/ 1 + / 2,求证:/ A+/ B+/ C+/ D= 180练(武昌七校2015-2016 七下期中)如图,ABL BC AE平分/ BAD交BC于E, AE1 DE / l +/2= 90°, M N分别是BA CD的延长线上的点,/ EAM和/ EDN勺平分线相交于点F则/ F的度数为().A 120 °B 135 C. 145 D 150模块二平行线四大模型构造例5 如图,直线AB// CD / EFA= 30 °,/FGH 90 ° ,Z HMN30°,/CNP 50。
2024年中考数学复习 拓展 全等三角形提高证明题含辅助线(六种类型)(原卷+答案解析)
拓展全等三角形提高证明题含辅助线(六种类型)【类型一】利用角平分线构造全等1如图,在△ABC中,AD是角平分线,E,F分别为AC,AB上的点,且∠AED+∠AFD=180°.(1)求证:∠AFD=∠CED;(2)求证:DE=DF.2如图,在ΔABC中,∠C=90°,AD是∠BAC的角平分线交BC于D,过D作DE⊥BA于点E,点F 在AC上,且BD=DF.(1)求证:AC=AE;(2)求证:∠BAC+∠FDB=180°;(3)若AB=9.5,AF=1.5,求线段BE的长,3如图,AD是△ABC的角平分线,H,G分别在AC,AB上,且HD=BD.(1)求证:∠B与∠AHD互补;(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明.4已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.求证:(1)AD=AE=EC.(2)BA+BC=2BF.【类型二】倍长中线5如图,AB=CD,E为BC的中点,∠BAC=∠BCA,求证:AD=2AE.6如图,已知ΔABC中,点M是BC边长的中点,过M作∠BAC的角平分线AD的平行线交AB于E,交CA的延长线于F,求证:(1)AE=AF.(2)BE=CF.7在△ABC中,∠ABC=45°,AM⊥MB,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,点D在线段AM上,且DM=CM.求证:△BDM≌△ACM;(2)如图2,在(1)的条件下,点E是△ABC外一点,且满足EC=AC,连接ED并延长交BC于点F,且F为线段BC的中点,求证:∠BDF=∠CEF.8规定:有两组边相等,且它们所夹的角互补的两个三角形叫兄弟三角形.如图,OA=OB,OC=OD,∠AOB=∠COD=90°,回答下列问题:(1)求证:△OAC和△OBD是兄弟三角形.(2)取BD的中点P,连接OP,请证明AC=2OP.【类型三】截长补短9如图,在△ABC中,AB=AC,∠A=108°,BD平分∠ABC交AC于D,试说明:BC=AB+CD.10如图,在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,求证:AE+CD=AC.11在△ABC中,∠ABC=60°,点D、E分别在AC、BC上,连接BD、DE和AE;并且有AB=BE,∠AED=∠C.(1)求∠CDE的度数;(2)求证:AD+DE=BD.12(1)如图1,射线OP平分∠MON,在射线OM,ON上分别截取线段OA,OB,使OA=OB,在射线OP上任取一点D,连接AD,BD.求证:AD=BD.(2)如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,求证:BC=AC+AD.(3)如图3,在四边形ABDE中,AB=9,DE=1,BD=6,C为BD边中点,若AC平分∠BAE,EC平分∠AED,∠ACE=120°,求AE的值.【类型四】直接连接13如图,在Rt△ABC中,AB=AC,∠A=90°,点D为BC中点,过点D作DM⊥DN,分别交BA,AC延长线于点M、N,求证:DM=DN.14△ABC中,∠A=90°,AB=AC,D为BC中点,E、F分别在AC、AB上,且DE⊥DF,试判断DE、DF的数量关系,并说明理由.15如图所示,在△ABC中,D为BC的中点,DE⊥BC,交∠BAC的平分线AE于点E,EF⊥AB于点F,EG⊥AC交AC延长线于点G.求证:BF=CG.16如图,在ΔABC中,∠ABC=90°,AB=BC,CD平分∠ACB交AB于D点,过A作AE⊥CD交CD延长线于E点,交CB延长线于F点,取FC中点G,连接DG,过C作CH⊥AC交DG延长线于H,(1)求证:AF=CD;(2)求证:AC=CH+2BD.【类型五】延长交于一点17如图,△ABC中,CD平分∠ACB,过点A作AD⊥CD于点D,点E是AB的中点,连接DE,若AC=20,BC=14,求DE的长.18已知,Rt△ABC中,∠ACB=90°,AC=BC,∠ABC的角平分线交AC于E,AD⊥BE于D,求证:AD=12 BE.19如图,在Rt△ABC中,∠ACB=90°,∠BAC的角平分线AD交BC于D,交∠ABC的角平分线于E,过点E作EF⊥AE,交AC于点F,求证:AF+BD=AB.20如图,在△ABC中,AB=AC,∠C=45°,点D为AC中点,AE⊥BD交BC于点E,交BD于点F.求证:(1)∠CAE=∠ABD;(2)BD=AE+ED.【类型六】半角模型21如图,△ABC中,AB=AC,∠BAC+∠BDC=180°.(1)求证:AD为∠BDC的平分线;∠BAC,且点E在BD上,直接写出BE、DE、DC三条线段之间的等量关系.(2)若∠DAE=1222(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,若∠EAF=12∠BAD,可求得EF、BE、FD之间的数量关系为.(只思考解题思路,完成填空即可,不必书写证明过程)(2)如图2,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,若∠EAF=12∠BAD,判断EF、BE、FD之间的数量关系还成立吗,若成立,请完成证明,若不成立,请说明理由.23问题背景:如图1:在四边形ABCD中,AB=AD.∠BAD=120°.∠B=∠ADC=90°.E,F分别是BC.CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.(1)小王同学探究此问题的方法是:延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;(直接写结论,不需证明)探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠ADF=180°.E,F分别是BC,CD上的点,且∠EAF=12∠BAD,(1)中结论是否仍然成立,并说明理由;(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明:若不成立,请直接写出它们之间的数量关系.24【问题引领】问题1:如图1.在四边形ABCD中,CB=CD,∠B=∠ADC=90°,∠BCD=120°.E,F分别是AB,AD上的点.且∠ECF=60°.探究图中线段BE,EF,FD之间的数量关系.小王祠学探究此问题的方法是,延长FD到点G.使DG=BE.连接CG.先证明△CBE≌△CDG,再证明△CEF≌△CGF.他得出的正确结论是.【探究思考】问题2:如图2,若将问题Ⅰ的条件改为:四边形ABCD中,CB=CD,∠ABC+∠ADC=180°,∠ECF= 1∠BCD,问题1的结论是否仍然成立?请说明理由.2【拓展延伸】问题3:如图3在问题2的条件下,若点E在AB的延长线上,点F在DA的延长线上,则问题2的结论是否仍然成立?若不成立,猜测此时线段BE,EF,FD之间存在的等量关系是.拓展全等三角形提高证明题含辅助线(六种类型)【类型一】利用角平分线构造全等1如图,在△ABC 中,AD 是角平分线,E ,F 分别为AC ,AB 上的点,且∠AED +∠AFD =180°.(1)求证:∠AFD =∠CED ;(2)求证:DE =DF.【答案】(1)见解析;(2)见解析【分析】(1)根据同角的补角相等即可得解;(2)过D 作DM ⊥AB 于M ,DN ⊥AC 于N ,根据角平分线性质求出DM =DN ,由(1)知∠MFD =∠DEN ,证出△FMD ≌△END 即可.【详解】(1)证明:∵∠AED +∠AFD =180°,∠AED +∠CED =180°,∴∠AFD =∠CED ;(2)证明:过D 作DM ⊥AB 于M ,DN ⊥AC 于N ,∵AD 平分∠BAC ,∴DM =DN ,∠FMD =∠END =90°,∵∠AED +∠AFD =180°,∠AED +∠DEN =180°,∴∠MFD =∠DEN ,在△FMD 和△END 中,∠MFD =∠DEN∠FMD =∠END DM =DN,∴△FMD ≌△END (AAS ),∴DE =DF .【点睛】本题考查了全等三角形的性质和判定,角平分线性质的应用,解题关键是利用AAS 推出△FMD ≌△END .2如图,在ΔABC 中,∠C =90°,AD 是∠BAC 的角平分线交BC 于D ,过D 作DE ⊥BA 于点E ,点F 在AC 上,且BD =DF.(1)求证:AC =AE ;(2)求证:∠BAC +∠FDB =180°;(3)若AB =9.5,AF =1.5,求线段BE 的长,【答案】(1)证明见解析;(2)证明见解析;(3)BE 的长为4.【分析】(1)根据已知条件,利用AAS 证明△ACD ≌△AED 即可;(2)设∠1=∠2=α,在AB 上截取AM =AF ,连接MD ,证明△FAD ≌△MAD ,进而证明Rt ΔMDE ≌Rt ΔBDE ,再证明ΔCFD ≌ΔEBD ,根据∠FDB +∠BAC 即可求证;(3)由(2)可得EB =EM ,AF =AM ,根据BE =AB -AM -ME 即可求得BE 的长.【详解】证明:(1)∵AD 平分∠BAC ,∴∠1=∠2,∵DE ⊥BA ,∴∠DEA =∠DEB =90°,∵∠C =90°,∴∠C =∠DEA =90°,在ΔACD 和ΔAED 中,∠DCA =∠DEA∠1=∠2AD =AD,∴ΔACD ≌ΔAED (AAS ),∴AC =AE ,(2)设∠1=∠2=α,∵∠C =∠DEA =90°,在ΔADC 中,∠ADC =90°-α,在ΔADE 中,∠ADE =90°-α,∵∠FDB =∠FCD +∠CFD =90°+∠CFD ,在AB 上截取AM =AF ,连接MD ,在ΔFAD 和ΔMAD 中,FA =MA∠1=∠2AD =AD∴ΔFAD ≌ΔMAD (SAS ),∴FD =MD ,∠5=∠6,∵BD =DF ,∴BD =MD ,在Rt ΔMDE 和Rt ΔBDE 中,MD =BDDE =DE∴Rt ΔMDE ≌Rt ΔBDE (HL ),∴∠3=∠4,设∠5=∠6=β,∵∠1=∠2=α,∴∠1+∠5=∠2+∠6=α+β,在ΔFAD 中,∠1+∠5=∠DFC在ΔAMD 中,∠2+∠6=∠3,∴∠DFC =∠3,∴∠DFC =∠4,在ΔCFD 和ΔEBD 中,∠DCF =∠DEB ∠CFD =∠EBD FD =BD,∴ΔCFD ≌ΔEBD (AAS ),∴∠CFD =∠4,∵∠C =90°,在ΔABC 中,∠4=90°-2α,∴∠CFD =90°-2α,∴∠FDB =90°+90°-2α=180°-2α,∵∠BAC =∠1+∠2=2α,∴∠FDB +∠BAC =180°-2α+2α=180°,(3)∵AF =AM ,且AF =1.5,∴AM =1.5,∵AB =9.5,∴MB =AB -AM =9.5-1.5=8,∵MB =BE ,且ME +BE =BM ,∴BE =12BM =4【点睛】本题考查了三角形全等的性质与判定,角平分线的定义,掌握以上知识是解题的关键.3如图,AD 是△ABC 的角平分线,H ,G 分别在AC ,AB 上,且HD =BD .(1)求证:∠B 与∠AHD 互补;(2)若∠B +2∠DGA =180°,请探究线段AG 与线段AH 、HD 之间满足的等量关系,并加以证明.【答案】(1)见解析;(2)AG =AH +HD ,证明见解析【分析】(1)在AB 上取一点M ,使得AM =AH ,连接DM ,则利用SAS 可得出ΔAHD ≌ΔAMD ,从而得出HD =MD =DB ,即有∠DMB =∠B ,通过这样的转化可证明∠B 与∠AHD 互补.(2)由(1)的结论中得出的∠AHD =∠AMD ,结合三角形的外角可得∠DGM =∠GDM ,可将HD 转化为MG ,从而在线段AG 上可解决问题.【详解】证明:(1)在AB 上取一点M ,使得AM =AH ,连接DM∵AH =AM∠CAD =∠BADAD =AD∴ΔAHD ≌ΔAMD ∴HD =MD ,∠AHD =∠AMD∵HD =DB∴DB =MD∴∠DMB =∠B∵∠AMD +∠DMB =180°∴∠AHD +∠B =180°即∠B 与∠AHD 互补.(2)由(1)∠AHD=∠AMD,HD=MD,∠AHD+∠B=180°,∵∠B+2∠DGA=180°,∠AHD=2∠DGA∴∠AMD=2∠DGM又∵∠AMD=∠DGM+∠GDM∴2∠DGM=∠DGM+∠GDM即∠DGM=∠GDM∴MD=MG∴HD=MG∵AG=AM+MG∴AG=AH+HD.【点睛】本题考查角平分线的性质,应用角平分线构造全等是常用的构造全等的方法,遇到角平分线常有“翻折构造全等”“作角边的垂线段”两种辅助线方法.4已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.求证:(1)AD=AE=EC.(2)BA+BC=2BF.【答案】证明详见解析【详解】分析:(1)根据角平分线的性质,得到∠ABD=∠CBD,然后根据SAS证得△ABD≌△EBC,然后根据全等三角形的性质和三角形的外角得到等腰△ACE,由此可证;(2)过点E作EG⊥BC于点G,根据三角形全等的判定“HL”证得Rt△BEG≌Rt△BEF和Rt△CEG≌Rt△AFE,然后根据全等三角形的对应边相等,等量代换求解.详解:证明:(1)∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,BD=BC∠ABD=∠CBD BE=BA,∴△ABD≌△EBC(SAS),∴∠BCE=∠BDA,∵∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=EC=AE.(2)过点E作EG⊥BC于点G,∵E是BD上的点,EF⊥AB,EG⊥BC,∴EF=EG,∵在Rt△BEG和Rt△BEF中,BE=BE EF=EG,∴Rt△BEG≌Rt△BEF(HL),∴BG=BF,∵在Rt△CEG和Rt△AFE中,EF=EG AE=CE,Rt△CEG≌Rt△AFE,∴AF=CG,∴BA+BC=BF+FA+BG-CG,=BF+BG=∠BF,∴BA+BC=2BF.点睛:此题考查了角平分线定理,全等三角形的判定与性质,以及等腰三角形的性质,利用了转化及等量代换的数学思想,熟练掌握判定与性质是解本题的关键.【类型二】倍长中线5如图,AB=CD,E为BC的中点,∠BAC=∠BCA,求证:AD=2AE.【答案】见解析.【分析】延长AE至点F,使得EF=AE,连接BF,易证△AEC≌△FEB(SAS),得到BF=AC,∠FBE=∠ACE=∠BAC,可得∠ABF=∠DCA,然后通过SAS证明△ABF≌△△DCA即可.【详解】证明:延长AE至点F,使得EF=AE,连接BF,∵∠BEF=∠CEA,BE=CE,∴△AEC≌△FEB(SAS),∴BF=AC,∠FBE=∠ACE=∠BAC,∴∠ABF=∠FBE+∠ABE=∠BAC+∠ABC=∠DCA,在△ABF和△DCA中,AB=CD∠ABF=∠DCA BF=AC,∴△ABF≌△△DCA(SAS),∴AD=FA=2AE.【点睛】本题主要考查三角形全等的判定和性质,正确作出辅助线是解题关键,一般的中线辅助线都是用的倍长中线.6如图,已知ΔABC中,点M是BC边长的中点,过M作∠BAC的角平分线AD的平行线交AB于E,交CA的延长线于F,求证:(1)AE=AF.(2)BE=CF.【答案】见详解.【分析】(1)要证AE=AF,利用等角对等边只需证出∠AFE=∠AEF,利用平行不难发现这两个角和角平分线分成的两角是内错角和同位角;(2)利用倍长中线法构造出全等三角形即可.【详解】证明:(1)∵MF∥DA∴∠AFE=∠CAD,∠AEF=∠DAE又∵AD平分∠CAB∴∠CAD=∠DAE∴∠AFE=∠AEF∴AE=AF(2)将FM延长至N使FM=MN,连接BN.∵M 为CB 中点∴CM =MB在△FMC 和△NMB 中CM =MB∠FMC =∠NMBFM =MN∴△FMC ≌△NMB (SAS )∴CF =BN ,∠F =∠N又∵∠AFE =∠AEF ,∠AEF =∠BEN∴∠N =∠BEN∴BE =BN∴BE =CF【点睛】此题考查的(1)平行线的性质和等角对等边;(2)倍长中线法构造全等三角形.7在△ABC 中,∠ABC =45°,AM ⊥MB ,垂足为M ,点C 是BM 延长线上一点,连接AC .(1)如图1,点D 在线段AM 上,且DM =CM .求证:△BDM ≌△ACM ;(2)如图2,在(1)的条件下,点E 是△ABC 外一点,且满足EC =AC ,连接ED 并延长交BC 于点F ,且F 为线段BC 的中点,求证:∠BDF =∠CEF.【答案】(1)见解析;(2)见解析.【分析】(1)根据已知条件,利用(SAS )即可证明三角形全等;(2)延长EF 至点G ,使FG =EF ,由上题中△BDM ≌△ACM ,得出AC =BD ,再证△BFG ≌△CFE ,可得BG =CE ,∠G =∠CEF ,从而得BD =CE =BG ,即可得∠BDF =∠G =∠CEF .【详解】解:(1)如图,∵∠ABC =45°,AM ⊥MB∴BM =AM在△BMD 和△AMC 中∵DM =CM ∠BDM =∠AMC BM =AM∴△BDM ≌△ACM (SAS ).(2)如图,延长EF 至点G ,使FG =EF ,连接BG∵△BDM ≌△ACM∴BD =AC又∵CE =AC∴BD =CE在△BFG 和△CFE 中∵BF =FC ∠BFG =∠EFC FG =FE∴△BFG ≌△CFE (SAS )∴BG =CE ,∠G =∠CEF∴BD =CE =BG∴∠BDF =∠G =∠CEF .【点睛】本题主要考查全等三角形的判定与性质、等腰直角三角形的性质等知识点,熟练掌握全等三角形的判定和性质是解题的关键.8规定:有两组边相等,且它们所夹的角互补的两个三角形叫兄弟三角形.如图,OA =OB ,OC =OD ,∠AOB =∠COD =90°,回答下列问题:(1)求证:△OAC 和△OBD 是兄弟三角形.(2)取BD 的中点P ,连接OP ,请证明AC =2OP .【答案】(1)证明见解析(2)证明见解析【分析】(1)根据OA =OB ,OC =OD ,∠AOC +∠BOD =180°即可证明;(2)延长OP 至E ,使PE =OP ,先证△BPE ≌△DPO ,推出BE =OD ,∠E =∠DOP ,进而推出BE ∥OD ,再证△EBO ≌△COA ,即可推出OE =AC ,由此可证AC =2OP .【详解】(1)证明:∵∠AOB =∠COD =90°,∴∠AOC +∠BOD =360°-∠AOB -∠COD =360°-90°-90°=180°,又∵AO =OB ,OC =OD ,∴△OAC 和△OBD 是兄弟三角形.(2)证明:延长OP 至E ,使PE =OP,∵P 为BD 的中点,∴BP =PD ,∵在△BPE 和△DPO 中,PE =PO∠BPE =∠DPO BP =DP,∴△BPE ≌△DPO SAS ,∴BE =OD ,∠E =∠DOP ,∴BE ∥OD ,∴∠EBO +∠BOD =180°,又∵∠BOD +∠AOC =180°,∴∠EBO =∠AOC ,∵BE =OD ,OD =OC ,∴BE =OC ,在△EBO 和△COA 中,OB =AO∠EBO =∠AOCBE =OC∴△EBO ≌△COA SAS ,∴OE =AC ,又∵OE =2OP ,∴AC =2OP .【点睛】本题考查全等三角形的判定与性质、平行线的判定与性质,解题的关键是正确作出辅助线,构造全等三角形.【类型三】截长补短9如图,在△ABC 中,AB =AC ,∠A =108°,BD 平分∠ABC 交AC 于D ,试说明:BC =AB +CD.【答案】见解析【分析】在线段BC 上截取BE =BA ,连接DE .则只需证明CD =CE 即可.结合角度证明∠CDE =∠CED .【详解】解:证明:在线段BC 上截取BE =BA ,连接DE .∵BD 平分∠ABC ,∴∠ABD =∠EBD =12∠ABC .在△ABD 和△EBD 中,BE =BA∠ABD =∠EBD BD =BD,∴△ABD ≌△EBD .(SAS )∴∠BED =∠A =108°,∠ADB =∠EDB .又∵AB=AC,∠A=108°,∠ACB=∠ABC=12×(180°-108°)=36°,∴∠ABD=∠EBD=18°.∴∠ADB=∠EDB=180°-18°-108°=54°.∴∠CDE=180°-∠ADB-∠EDB=180°-54°-54°=72°.∴∠DEC=180°-∠DEB=180°-108°=72°.∴∠CDE=∠DEC.∴CD=CE.∴BC=BE+EC=AB+CD.【点睛】此题考查全等三角形的判定和性质及等腰三角形的判定,综合性较强.10如图,在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,求证:AE+CD=AC.【答案】证明见解析【分析】根据三角形内角和定理和角平分线的定义,得到∠AOC=120°,∠AOE=∠COD=60°,在AC上截取AF=AE,连接OF,分别证明△AOE≌△AOF SAS,△COD≌△COF ASA,得到CD=CF,即可证明结论.【详解】证明:∵∠B=60°,∴∠BAC+∠ACB=180°-∠B=120°,∵AD、CE分别平分∠BAC、∠ACB,∴∠OAC=∠OAB=12∠BAC,∠OCA=∠OCB=12∠ACB,∴∠OAC+∠OCA=12∠BAC+12∠ACB=12∠BAC+∠ACB=60°,∴∠AOC=120°,∴∠AOE=∠COD=180°-∠AOC=60°,如图,在AC上截取AF=AE,连接OF,在△AOE和△AOF中,AE=AF∠OAE=∠OAF AO=AO,∴△AOE≌△AOF SAS,∴∠AOE=∠AOF=60°,∴∠COF=∠AOC-∠AOF=120°-60°=60°,∵∠COD=60°,∴∠COD=∠COF,在△COD和△COF中,∠OCD=∠OCF CO=CO∠COD=∠COF,∴△COD≌△COF ASA,∴CD=CF,∵AF=AE,∴AF+CF=AE+CD=AC.【点睛】本题考查了全等三角形的判定和性质,三角形内角和定理,角平分线的定义,做辅助线构造全等三角形是解题关键.11在△ABC中,∠ABC=60°,点D、E分别在AC、BC上,连接BD、DE和AE;并且有AB=BE,∠AED=∠C.(1)求∠CDE的度数;(2)求证:AD+DE=BD.【答案】(1)60°;(2)见解析【分析】(1)由AB=BE,∠ABC=60°,可得△ABE为等边三角形,由∠AEB=∠EAC+∠C,∠CDE=∠EAC+∠AED,∠AED=∠C,可证∠CDE=∠AEB=60°(2)延长DA至F,使AF=DE,连接FB,由∠BED=60°+∠AED,∠BAF=60°+∠C,且∠C=∠AED,可证△FBA≌△DBE(SAS)由DB=FB,可证△FBD为等边三角形,可得BD=FD,可推出结论,【详解】解:(1)∵AB=BE,∠ABC=60°,∴△ABE为等边三角形,∴∠BAE=∠AEB=60°,∵∠AEB=∠EAC+∠C,∠CDE=∠EAC+∠AED,∵∠AED=∠C,∴∠CDE=∠AEB=60°(2)如图,延长DA至F,使AF=DE,连接FB,由(1)得△ABE为等边三角形,∴∠AEB=∠ABE=60°,∵∠BED=∠AEB+∠AED=60°+∠AED,又∵∠BAF=∠ABE+∠C=60°+∠C,且∠C=∠AED,∴∠BED=∠BAF,在△FBA与△DBE中,AB=BE∠BAF=∠BED AF=DE∴△FBA≌△DBE(SAS)∴DB=FB,∠DBE=∠FBA∴∠DBE+∠ABD=∠FBA+∠ABD,∴∠ABE=∠FBD=60°又∵DB=FB,∴△FBD为等边三角形∴BD=FD,又∵FD=AF+AD,且AF=DE,∴FD=DE+AD=BD,【点睛】本题考查等边三角形的判定与性质,三角形全等判定与性质,线段和差,三角形外角性质,关键是引辅助线构造三角形全等证明等边三角形.12(1)如图1,射线OP平分∠MON,在射线OM,ON上分别截取线段OA,OB,使OA=OB,在射线OP上任取一点D,连接AD,BD.求证:AD=BD.(2)如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,求证:BC=AC+AD.(3)如图3,在四边形ABDE中,AB=9,DE=1,BD=6,C为BD边中点,若AC平分∠BAE,EC平分∠AED,∠ACE=120°,求AE的值.【答案】(1)见详解;(2)见详解;(3)AE=13【分析】(1)由题意易得∠AOD=∠BOD,然后易证△AOD≌△BOD,进而问题可求证;(2)在BC上截取CE=CA,连接DE,由题意易得∠ACD=∠ECD,∠B=30°,则有△ACD≌△ECD,然后可得∠A=∠CED=60°,则根据三角形外角的性质可得∠EDB=∠B=30°,然后可得DE=BE,进而问题可求证;(3)在AE上分别截取AF=AB,EG=ED,连接CF、CG,同理(2)可证△ABC≌△AFC,△CDE≌△CGE,则有∠ACB=∠ACF,∠DCE=∠GCE,然后可得∠ACF+∠GCE=60°,进而可得△CFG是等边三角形,最后问题可求解.【详解】证明:(1)∵射线OP平分∠MON,∴∠AOD=∠BOD,∵OD=OD,OA=OB,∴△AOD≌△BOD(SAS),∴AD=BD.(2)在BC上截取CE=CA,连接DE,如图所示:∵∠ACB=90°,∠A=60°,CD平分∠ACB,∴∠ACD=∠ECD,∠B=30°,∵CD=CD,∴△ACD≌△ECD(SAS),∴∠A=∠CED=60°,AD=DE,∵∠B+∠EDB=∠CED,∴∠EDB=∠B=30°,∴DE=BE,∴AD=BE,∵BC=CE+BE,∴BC=AC+AD.(3)在AE 上分别截取AF =AB =9,EG =ED =1,连接CF 、CG ,如图所示:同理(1)(2)可得:△ABC ≌△AFC ,△CDE ≌△CGE ,∴∠ACB =∠ACF ,∠DCE =∠GCE ,BC =CF ,CD =CG ,DE =GE =1,∵C 为BD 边中点,∴BC =CD =CF =CG =3,∵∠ACE =120°,∴∠ACB +∠DCE =60°,∴∠ACF +∠GCE =60°,∴∠FCG =60°,∴△CFG 是等边三角形,∴FG =CF =CG =3,∴AE =AF +FG +GE =9+3+1=13.【点睛】本题主要考查三角形全等的性质与判定、角平分线的定义、等腰三角形的性质与判定及等边三角形的性质与判定,解题的关键是构造辅助线证明三角形全等.【类型四】直接连接13如图,在Rt △ABC 中,AB =AC ,∠A =90°,点D 为BC 中点,过点D 作DM ⊥DN ,分别交BA ,AC 延长线于点M 、N ,求证:DM =DN.【答案】见解析【分析】连接AD ,可得∠ADM =∠CDN ,可证△AMD ≌△CND ,可得DM =DN .【详解】解:连接AD ,∵D 为BC 中点,∴AD =BD ,∠BAD =∠C ,∵∠ADM +∠MDC =90°,∠MDC +∠CDN =90°,∴∠ADM =∠CDN ,∵∠MAD =MAC +DAC =135°,∠NCD =180°-∠ACD =135°在ΔAMD 和ΔCND 中,∠ADM =∠CDNAD =CD ∠MAD =∠NCD,∴ΔAMD ≅ΔCND (ASA ),∴DM =DN .【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△AMD ≌△CND 是解题的关键.14△ABC 中,∠A =90°,AB =AC ,D 为BC 中点,E 、F 分别在AC 、AB 上,且DE ⊥DF ,试判断DE 、DF 的数量关系,并说明理由.【答案】DE =DF ,理由见解析【分析】连接AD ,则有AD =CD ,∠DAF =∠C =45°,且AD ⊥CD ,可得∠CDE +∠EDA =∠ADF +∠EDA =90°,所以∠CDE =∠ADF ,可证△CDE ≌△ADF ,可得结论.【详解】DE =DF ,理由如下:连接AD ,因为∠A =90°,AB =AC ,D 为BC 中点,∴CD =AD ,∠C =∠DAF =45°,AD ⊥CD ,∴∠CDE +∠EDA =∠ADF +∠EDA =90°,∴∠CDE =∠ADF ,在△CDE 和△ADF 中,∠C =∠DAFCD =AD ∠CDE =∠ADF,∴△CDE ≌△ADF (ASA ),∴DE =DF .【点睛】本题主要考查了三角形全等的判定和性质,正确掌握全等三角形的判定方法是解题的关键.15如图所示,在△ABC 中,D 为BC 的中点,DE ⊥BC ,交∠BAC 的平分线AE 于点E ,EF ⊥AB 于点F ,EG ⊥AC 交AC 延长线于点G .求证:BF =CG.【答案】见解析.【分析】连接EB 、EC ,利用已知条件证明Rt △BEF ≌Rt △CEG ,即可得到BF =CG .【详解】证明:连接BE 、EC ,∵ED ⊥BC ,D 为BC 中点,∴BE =EC ,∵EF ⊥AB ,EG ⊥AG ,且AE 平分∠FAG ,∴FE =EG,在Rt △BEF 和Rt △CEG 中,BE =CE EF =EG ,∴Rt △BEF ≌Rt △CEG (HL ),∴BF =CG .【点评】本题考查了全等三角形的判定:解题的关键是全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.16如图,在ΔABC 中,∠ABC =90°,AB =BC ,CD 平分∠ACB 交AB 于D 点,过A 作AE ⊥CD 交CD 延长线于E 点,交CB 延长线于F 点,取FC 中点G ,连接DG ,过C 作CH ⊥AC 交DG 延长线于H ,(1)求证:AF =CD ;(2)求证:AC =CH +2BD.【答案】(1)见解析;(2)见解析【分析】(1)根据垂直推出∠ABF =∠ABC =90°与∠FAB =∠BCD ,则可证明ΔABF ≌ΔCBD ,即可有AF =CD ;(2)连接FD 根据CE ⊥AF ,AB ⊥CF ,推出FD ⊥AC ,即可证明CH ⎳FD ,可有∠HCG =∠DFG ,然后证明ΔFGD ≌ΔCGH 推出CH =FD ,根据已知条件即可有AD =DF ,由(1)知FB =BD ,即可证明AC =CH +2BD .【详解】证:(1)∵∠ABC =90°,CE ⊥AF∴∠ABF =∠ABC =90°∴∠AFB +∠FAB =90°,∠EFC +∠BCD =90°∴∠FAB =∠BCD在ΔABF 与ΔCBD 中,∠ABF =∠CBDAB =CB∠FAB =∠DCB∴ΔABF ≌ΔCBD∴AF =CD (2)连接FD∵CE ⊥AF ,AB ⊥CF∴FD ⊥AC∵CH ⊥AC∴CH ⎳FD∴∠HCG =∠DFG∵G 是FC 中点∴FG =CG在ΔFGD 与ΔCGH 中,∠DFG =∠HCGFG =CG∠FGD =∠CGH∴ΔFGD ≌ΔCGH∴CH =FD ∵CE ⊥AF ,CE 平分∠FCA∴AC =CF∴AD =DF由(1)可知ΔABF ≌ΔCBD∴FB =BD∴CF =CB +BF =AB +BF =AD +DB +BF =CH +2DB即AC =CH +2BD【点睛】本题主要考查了三角形全等的性质与判定,角平分线的性质,在(1)中找出条件证明ΔABF ≌ΔCBD 是关键,在(2)中作出辅助线是解题的关键.【类型五】延长交于一点17如图,△ABC 中,CD 平分∠ACB ,过点A 作AD ⊥CD 于点D ,点E 是AB 的中点,连接DE ,若AC =20,BC =14,求DE的长.【答案】DE 的长为3.【分析】先添加辅助线,构造全等三角形,利用性质求出AD =DF ,最后用中位线定理即可求解.【详解】解:如图,延长AD ,CB 交于点F ,∵CD 平分∠ACB ,∴∠ACD =∠FCD ,∵AD ⊥CD ,∴∠ADC =∠FDC =90°,在△ACD 和△FCD 中,∠ACD =∠FCDCD =CD ∠ADC =∠FDC,∴△ACD ≌△FCD ASA ,∴AD =DF ,AC =CF =20,∴BF =CF -BC =20-14=6,∵点D 为AF 中点,点E 为AB 中点,∴DE 为△ABF 的中位线,∴DF =12BF =3,答:DE 的长为3.【点睛】此题考查了等腰三角形和全等三角形的判定和性质,三角形中位线定理,解题的关键是延长CB 交AD 延长线于F ,证明DE 是△ABF 的中位线.18已知,Rt△ABC 中,∠ACB =90°,AC =BC ,∠ABC 的角平分线交AC 于E ,AD ⊥BE 于D ,求证:AD =12BE .【答案】见解析【详解】试题分析:延长AD 和BC 交于F ,求出∠CBE =∠CAF ,AC =BC ,证△EBC ≌△FAC ,△ABD ≌△FBD ,推出BE =AF ,AD =DF ,即可得出答案.解:如图延长AD 和BC 交于F ,∵Rt △ABC 中,∠ACB =90°,∠BAC =45°,∴∠ABC =45°=∠BAC ,∴AC =BC ,∵∠ACB =90°,∴∠BCE =∠ACF =90°,∵BE 平分∠ABC ,∴∠ABD =∠EBC ,∵BD ⊥AD ,∴∠BCE =∠ADE =90°,∵∠BEC =∠AED ,∴根据三角形内角和定理得:∠DAE =∠CBE ,在△BCE 和△ACF 中,∠FAC =∠CBE AC =BC ∠ACF =∠BCE,∴△BCE ≌△ACF (SAS ),∴BE =AF ,在△ABD 和△FBD 中,∠ABD =∠FDN BD =BD ∠ADB =∠FDB,∴△ABD≌△FBD (ASA ),∴AD =DF ,即AF =2AD ,∴AD =12AF ,∴AD =12BE .考点:全等三角形的判定与性质.19如图,在Rt △ABC 中,∠ACB =90°,∠BAC 的角平分线AD 交BC 于D ,交∠ABC 的角平分线于E ,过点E 作EF ⊥AE ,交AC 于点F ,求证:AF +BD =AB.【答案】见解析【分析】延长EF ,BC 相交于点M ,分别证明△AEB ≌△MEB 和△AEF ≌△MED 即可得解.【详解】证明:延长EF ,BC 相交于点M ,∵∠ACB =90°,∴∠CAB +∠CBA =90°,∵AE 平分∠BAC ,BE 平分∠ABC ,∴∠EAB +∠EBA =45°,∴∠AEB =180°-45°=135°,∴∠DEB =180°-135°=45°,∵AE ⊥EF ,∴∠MEB =∠MED +∠DEB =90°+45°=135°=∠AEB ,在△AEB 和△MEB 中,∠AEB =∠MEBEB =EB ∠ABE =∠MBE,∴△AEB ≌△MEB ASA ,∴∠EAB =∠M ,AE =ME ,AB =MB ,∵AE 平分∠BAC ,∴∠FAE =∠EAB ,∴∠FAE =∠M ,在△AEF 和△MED 中,∠FAE =∠MAE =ME ∠AEF =∠MED =90°,∴△AEF ≌△MED ASA ,∴AF =MD ,∴AF +BD =MD +BD =MB =AB .【点睛】本题考查角平分线的定义和全等三角形的判定和性质.熟练掌握角平分线的定义,通过添加辅助线证明三角形全等是解题的关键.20如图,在△ABC 中,AB =AC ,∠C =45°,点D 为AC 中点,AE ⊥BD 交BC 于点E ,交BD 于点F.求证:(1)∠CAE=∠ABD;(2)BD=AE+ED.【答案】(1)见解析(2)见解析【分析】(1)根据三角形的内角和定理得出∠BAC=90°,再根据直角三角形两锐角互余得出∠CAE+∠BAF=∠ABD+∠BAF=90°,即可求证;(2)过点C作CA的垂线交AE延长线于点M,先证明△ACM≌△BAD ASA,得出AD=CM,BD= AM,则CM=CD,再证明△MCE≌△DCE SAS,得出EM=ED,即可求证.【详解】(1)证明:∵AB=AC,∠C=45°,∴∠CBA=45°,∴∠BAC=90°,∵AE⊥BD,∴∠AFB=90°∴∠CAE+∠BAF=∠ABD+∠BAF=90°,∴∠CAE=∠ABD.(2)证明:过点C作CA的垂线交AE延长线于点M∵CM⊥CA,∴∠MCA=90°即∠MCA=∠CAB,在△ACM和△BAD中,∠CAE=∠ABD AB=AC∠MCA=∠CAB∴△ACM≌△BAD ASA,∴AD=CM,∵D为AC中点,∴AD=CD,∴CM=CD∵∠MCA=90°,∠ACB=45°,∴∠ACB=∠MCB,在△MCE和△DCE中,CM=CD∠ACB=∠MCB CE=CE,∴△MCE≌△DCE SAS∴EM=ED,∴AM=AE+EM=AE+ED,∴BD=AE+ED.【点睛】本题主要考查了三角形的内角和定理,全等三角形的判定和性质,解题的关键是掌握三角形的内角和为180°,直角三角形两锐角互余,以及正确画出辅助线,构造全等三角形,根据全等三角形的性质进行证明.【类型六】半角模型21如图,△ABC中,AB=AC,∠BAC+∠BDC=180°.(1)求证:AD为∠BDC的平分线;(2)若∠DAE=12∠BAC,且点E在BD上,直接写出BE、DE、DC三条线段之间的等量关系.【答案】(1)见解析;(2)DE=B E+DC.【分析】(1)过A作AG⊥BD于G,AF⊥DC于F,先证明∠BAG=∠CAF,然后证明△BAG≌△CAF得到AG=AF,最后由角平分线的判定定理即可得到结论;(2)过A作∠CAH=∠BAE,证明△EAD≌△HAD,得到AE=AH,再证明△EAB≌△HAC中,即可得出BE、DE、DC三条线段之间的等量关系.【详解】证明:(1)如图1,过A作AG⊥BD于G,AF⊥DC于F,∵AG⊥BD,AF⊥DC,∴∠AGD=∠F=90°,∴∠GAF+∠BDC=180°,∵∠BAC+∠BDC=180°,∴∠GAF=∠BAC,∴∠GAF-∠GAC=∠BAC-∠GAC,∴∠BAG=∠CAF,在△BAG和△CAF中,∠AGB=∠F=90°∠BAG=∠CAF AB=AC∴△BAG≌△CAF(AAS),∴AG=AF,∴∠BDA=∠CDA,(2)BE、DE、DC三条线段之间的等量关系是DE=B E+DC,理由如下:如图2,过A作∠CAH=∠BAE交DC的延长线于H,∵∠DAE=12∠BAC,∴∠DAE=∠BAE+∠CAD,∵∠CAH=∠BAE,∴∠DAE=∠CAH+∠CAD=∠DAH,在△EAD和△HAD中,∠EAD=∠HAD AD=AD∠ADE=∠ADH ,∴△EAD≌△HAD(ASA),∴DE=DH,AE=AH,在△EAB和△HAC中,AB=AC∠BAE=∠CAH AE=AH,∴△EAB≌△HAC(SAS),∴BE=CH,∴DE=DH=DC+CH=DC+BE,∴DE=DC+BE.故答案是:DE=DC+BE.【点睛】本题考查了全等三角形的性质和判定,角平分线的判定定理,线段和差的证明,掌握截长法和补短法是解答此题的突破口.22(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,若∠EAF=12∠BAD,可求得EF、BE、FD之间的数量关系为.(只思考解题思路,完成填空即可,不必书写证明过程)(2)如图2,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,若∠EAF=12∠BAD,判断EF、BE、FD之间的数量关系还成立吗,若成立,请完成证明,若不成立,请说明理由.【答案】(1)BE+DF=EF;(2)EF+DF=BE.理由见解析.【分析】(1)线段EF、BE、FD之间的数量关系是BE+DF=EF.如图,延长CB至M,使BM=DF,连接AM,利用全等三角形的性质解决问题即可.(2)结论:EF+DF=BE.如图中,在BE上截取BM=DF,连接AM,证明△ABM≌△ADF SAS,推出AM=AF,∠BAM=∠DAF,再证明△AEM≌△AEF SAS,可得结论.【详解】(1)解:线段EF、BE、FD之间的数量关系是BE+DF=EF.如图,延长CB至M,使BM=DF,连接AM,∵∠ABC=∠D=90°,∠ABC+∠1=180°,即:∠ABC+∠D=180°,∴∠1=∠D,在△ABM 和△ADF 中,AB =AD∠1=∠D BM =DF,∴△ABM ≌△ADF SAS ,∴AM =AF ,∠3=∠2,∵∠EAF =12∠BAD ,∠EAF +∠2+∠4=∠BAD ,∴∠2+∠4=∠EAF ,∴∠EAM =∠3+∠4=∠2+∠4=∠EAF ,在△MAE 和△FAE 中,AM =AF∠MAE =∠FAE AE =AE,∴△MAE ≌△FAE SAS ,∴EF =EM ,∵EM =BM +BE =BE +DF ,∴EF =BE +FD ;故答案为:BE +DF =EF .(2)结论:EF +DF =BE .理由:在BE 上截取BM =DF ,连接AM ,∵∠B +∠ADC =180°,∠ADC +∠ADE =180°,∴∠B =∠ADF ,在△ABM 与△ADF 中,BM =DF∠ABM =∠ADF AB =AD,∴△ABM ≌△ADF SAS ,∴AM =AF ,∠BAM =∠DAF ,则∠BAM +∠MAD =∠DAF +∠MAD ,∴∠BAD =∠MAF∵∠EAF =12∠BAD ,∠EAF +∠EAM =∠MAF ,∴∠EAF =∠EAM ,在△AEM 与△AEF 中,AM =AF∠EAF =∠EAM AE =AE,∴△AEM ≌△AEF SAS ,∴EM =EF ,即BE -BM =EF ,即BE -DF =EF ,∴EF +DF =BE .【点睛】本题考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.23问题背景:如图1:在四边形ABCD 中,AB =AD .∠BAD =120°.∠B =∠ADC =90°.E ,F 分别是BC .CD 上的点,且∠EAF =60°,探究图中线段BE ,EF ,FD 之间的数量关系.(1)小王同学探究此问题的方法是:延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;(直接写结论,不需证明)探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠ADF=180°.E,F分别是BC,CD上的点,且∠EAF=12∠BAD,(1)中结论是否仍然成立,并说明理由;(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明:若不成立,请直接写出它们之间的数量关系.【答案】(1)EF=BE+FD(2)(1)中的结论EF=BE+FD仍然成立.证明见解析;(3)结论EF=BE+FD不成立,结论是:EF=BE-FD.证明见解析.【分析】(1)延长FD到点G.使DG=BE.连接AG,利用全等三角形的性质解决问题即可;(2)延长CB至M,使BM=DF,连接AM.证明△ABM≌△ADF(SAS),由全等三角形的性质得出AF= AM,∠2=∠3.△AME≌△AFE(SAS),由全等三角形的性质得出EF=ME,即EF=BE+BM,则可得出结论;(3)在BE上截取BG,使BG=DF,连接AG.证明△ABG≌△ADF(SAS).由全等三角形的性质得出∠BAG=∠DAF,AG=AF.证明△AEG≌△AEF(SAS),由全等三角形的性质得出结论.【详解】(1)解:EF=BE+FD.延长FD到点G.使DG=BE.连接AG,∵∠ABE=∠ADG=∠ADC=90°,AB=AD,∴△ABE≌△ADG(SAS).∴AE=AG,∠BAE=∠DAG.∴∠BAE+∠DAF=∠DAG+∠DAF=∠EAF=60°.∴∠GAF=∠EAF=60°.又∵AF=AF,∴△AGF≌△AEF(SAS).∴FG=EF.∵FG=DF+DG.∴EF=BE+FD.故答案为:EF=BE+FD;(2)解:(1)中的结论EF=BE+FD仍然成立.证明:如图②中,延长CB至M,使BM=DF,连接AM.∵∠ABC +∠D =180°,∠1+∠ABC =180°,∴∠1=∠D ,在△ABM 与△ADF 中,AB =AD∠1=∠D BM =DF,∴△ABM ≌△ADF (SAS ).∴AF =AM ,∠2=∠3.∵∠EAF =12∠BAD ,∴∠2+∠4=12∠BAD =∠EAF .∴∠3+∠4=∠EAF ,即∠MAE =∠EAF .在△AME 与△AFE 中,AM =AF∠MAE =∠EAF AE =AE,∴△AME ≌△AFE (SAS ).∴EF =ME ,即EF =BE +BM ,∴EF =BE +DF ;(3)解:结论EF =BE +FD 不成立,结论:EF =BE -FD .证明:如图③中,在BE 上截取BG ,使BG =DF ,连接AG .∵∠B +∠ADC =180°,∠ADF +∠ADC =180°,∴∠B =∠ADF .在△ABG 与△ADF 中,AB =AD∠ABG =∠ADF BG =DF,∴△ABG ≌△ADF (SAS ).∴∠BAG =∠DAF ,AG =AF .∴∠BAG +∠EAD =∠DAF +∠EAD =∠EAF =12∠BAD .∴∠GAE =∠EAF .∵AE =AE ,∴△AEG ≌△AEF (SAS ),∴EG =EF ,∵EG =BE -BG ,∴EF =BE -FD .【点睛】本题是三角形综合题,考查了三角形全等的判定和性质等知识,解题的关键是添加辅助线,构造全等三角形解决问题.24【问题引领】问题1:如图1.在四边形ABCD 中,CB =CD ,∠B =∠ADC =90°,∠BCD =120°.E ,F 分别是AB ,AD 上的点.且∠ECF =60°.探究图中线段BE ,EF ,FD 之间的数量关系.小王祠学探究此问题的方法是,延长FD 到点G .使DG =BE .连接CG .先证明△CBE ≌△CDG ,再证明△CEF ≌△CGF .他得出的正确结论是.【探究思考】问题2:如图2,若将问题Ⅰ的条件改为:四边形ABCD 中,CB =CD ,∠ABC +∠ADC =180°,∠ECF =。
全等三角形的提高拓展经典题
全等三角形的提高拓展训练知识点睛全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.例题精讲板块一、截长补短【例1】 已知ABC ∆中,60A ∠=o ,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.【例2】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?【变式拓展训练】如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?【例3】 已知:如图,ABCD 是正方形,∠FAD =∠FAE . 求证:BE +DF =AE .【例4】 以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠.【例5】 如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长._F _E_D_C _B _A _N _C _D _E _B _M _A【例6】五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°,求证:AD平分∠CDE板块二、全等与角度【例7】如图,在ABC∠的平分线,且AC AB BD=+,求ABC∠∠=︒,AD是BAC∆中,60BAC的度数.【例8】在等腰ABC∠=︒,在边AB上取点D,使AD BC=,A∆中,AB AC=,顶角20求BDC∠.【例9】如图所示,在ABC∠=︒,又M在AC上,N在BC上,且满足C=,20∆中,AC BC∠=︒,求NMB∠.ABMBAN50∠=︒,60【例10】 在四边形ABCD 中,已知AB AC =,60ABD ︒∠=,76ADB ︒∠=,28BDC ︒∠=,求DBC∠的度数.【例11】 如图所示,在四边形ABCD 中,12DAC ︒∠=,36CAB ︒∠=,48ABD ︒∠=,24DBC ︒∠=,求ACD ∠的度数.【例12】 在正ABC ∆内取一点D ,使DA DB =,在ABC ∆外取一点E ,使DBE DBC ∠=∠,且BE BA =,求BED ∠.【例13】 如图所示,在ABC ∆中,44BAC BCA ︒∠=∠=,M 为ABC ∆内一点,使得30MCA ︒∠=,16MAC ︒∠=,求BMC ∠的度数.全等三角形证明经典50题(含答案)1.已知:AB=4,AC=2,D是BC中点,AD是整数,求ADAB CD延长AD到E,使DE=AD,则三角形ADC全等于三角形EBD即BE=AC=2 在三角形ABE中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6又AD是整数,则AD=52.已知:D是AB中点,∠ACB=90°,求证:12 CD AB3.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF和EF。
七年级数学上册-专题强化:平行线常考模型归纳 解析版
专题强化:平行线常考模型归纳【题型归纳】题型一:M 型(含锯齿型)A.30︒B.【答案】B 【分析】作c b ∥,根据平行线的判定和性质可得【详解】解:如图,作c ∵a b ∥,∴a c b ∥∥,∴41∠=∠,52∠=∠,∴451270∠+∠=∠+∠=∵1210︒∠-∠=,∴2180∠=︒,∴140∠=︒,故选:B.【点睛】本题考查了平行线的判定和性质,求出2.(2021下·重庆北碚·七年级西南大学附中校考期末)如图,侧),点G 在直线CD 上,的角平分线交与点Q ,且点②∠AEF +2∠PQG =270°;③若∠A.4B.3C.2D.1【答案】A【分析】①过点F作FH∥AB,利用平行线的性质以及已知即可证明;②利用角平分线的性质以及平行线的性质得到∠3=2∠2,∠CGF+2∠1+∠3=180°,结合①的结论即可证明;③由已知得到∠MGC=3∠CGF,结合①的结论即可证明;④由已知得到∠MGC=(n+1)∠CGF,结合①的结论即可证明.【详解】解:①过点F作FH∥AB,如图:∵AB∥CD,∴AB∥FH∥CD,∴∠AEF=∠EFH,∠CGF=∠GFH,∵EF⊥FG,即∠EFG=∠EFH+∠GFH=90°,∴∠AEF+∠CGF=90°,故①正确;②∵AB∥CD,PQ平分∠APG,GQ平分∠FGP,∴∠APQ=∠2,∠FGQ=∠1,④∵∠MGF=n∠CGF,故选:A.【点睛】本题主要考查了平行线的性质,角平分线的定义等知识点,作辅助线求得∠AEF +∠CGF =90°,是解此题的关键.3.(2023下·山东聊城·七年级校考阶段练习)如图,已知直线12l l ∥,3l 、4l 和1l 、2l 分别交于点A 、B 、C 、D ,点P 在直线3l 或4l 上且不与点A 、B 、C 、D 重合.记1AEP ∠=∠,2PFB ∠=∠,3E P F ∠=∠.(1)若点P 在图(1)位置时,求证:312Ð=Ð+Ð;(2)若点P 在图(2)位置时,写出1∠、2∠、3∠之间的关系并给予证明.【答案】(1)证明见解析(2)312360∠∠∠++=︒,证明见解析【分析】此题两个小题的解题思路是一致的,过P 作直线1l 、2l 的平行线,利用平行线的性质得到和1∠、2∠相等的角,然后结合这些等角和3∠的位置关系,来得出1∠、2∠、3∠的数量关系.【详解】(1)过P 作1PQ l ∥,∵12l l ∥,∴12PQ l l ∥∥,由两直线平行,内错角相等,可得:1QPE ∠=∠、2QPF ∠=∠;∵3QPE QPF ∠=∠+∠,∴312Ð=Ð+Ð.(2)关系:312360∠∠∠++=︒.过P 作1PQ l ∥,∵12l l ∥,∴12PQ l l ∥∥,同(1)可证得:3CEP DFP ∠=∠+∠;∵11802180CEP DFP ∠+∠=︒∠+∠=︒,,∴12360CEP DFP ∠+∠+∠+∠=︒,即312360∠∠∠++=︒.【点睛】本题主要考查平行线的性质,能够正确多出辅助线是解题关键.A.110︒B.115︒【答案】A 【分析】过N 点作NH AB ∥,则BEN ENG GNM MNF ∠+∠+∠+∠【详解】解:过N 点作NH AB ∥,则AB NH CD ∥∥,如图所示:180BEN ENH HNF NFG ∴∠+∠=∠+∠=︒,360BEN ENG GNM MNF NFG ∴∠+∠+∠+∠+=︒,160BEN ∠=︒ ,200ENG GNM MNF NFG ∴∠+∠+∠+∠=︒,NG 平分ENM ∠,ENG GNM ∴∠=∠,200GNM GNM MNF NFG ∴∠+∠+∠+∠=︒,NF NG ⊥ ,90GNM MNF GNF ∴∠+∠∠︒==,90200GNM NFG ∴∠+︒+∠︒=,110MNG NFG ∴∠+∠︒=.故选:A.【点睛】此题考查了平行线的性质、平行公理的应用、角平分线的性质,解题的关键是正确作出辅助线.5.(2021下·湖南株洲·七年级统考期末)①如图1,AB ∥CD ,则360A E C ∠+∠+∠=︒;②如图2,AB ∥CD ,则P A C ∠=∠-∠;③如图3,AB ∥CD ,则1E A ∠=∠+∠;④如图4,直线AB ∥CD ∥EF ,点O 在直线EF 上,则180αβγ∠-∠+∠=︒.以上结论正确的个数是()A.1个B.2个C.3个D.4个【答案】C 【分析】①过点E 作直线EF ∥AB ,由平行线的性质:两直线平行,同旁内角互补,即可得出结论;②如图2,先根据三角形外角的性质得出∠1=∠C +∠P ,再根据两直线平行,内错角相等即可作出判断;③如图3,过点E作直线EF∥AB,由平行线的性质可得出∠A+∠AEC﹣∠1=180°,即得∠AEC=180°+∠1﹣∠A;④如图4,根据平行线的性质得出∠α=∠BOF,∠γ+∠COF=180°,再利用角的关系解答即可.【详解】解:①如图1,过点E作直线EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠A+∠1=180°,∠2+∠C=180°,∴∠A+∠1+∠2+∠C=360°,∴∠A+∠AEC+∠C=360°,故①正确;②如图2,∵∠1是△CEP的外角,∴∠1=∠C+∠P,∵AB∥CD,∴∠A=∠1,即∠P=∠A﹣∠C,故②正确;③如图3,过点E作直线EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠A+∠3=180°,∠1=∠2,∴∠A+∠AEC﹣∠1=180°,即∠AEC=180°+∠1﹣∠A,故③错误;④如图4,∵AB∥EF,∴∠α=∠BOF ,∵CD ∥EF ,∴∠γ+∠COF =180°,∵∠BOF =∠COF +∠β,∴∠COF =∠α﹣∠β,∴∠γ+∠α﹣∠β=180°,故④正确;综上结论正确的个数为3,故选:C.【点睛】本题考查的是平行线的性质及三角形外角的性质,熟练掌握平行线的性质,根据题意作出辅助线是解答此题的关键.6.(2021下·广东东莞·七年级东莞市光明中学校考期中)(1)如图(1)AB CD ,猜想BPD ∠与B D ∠∠、的关系,说出理由.(2)观察图(2),已知AB CD ,猜想图中的BPD ∠与B D ∠∠、的关系,并说明理由.(3)观察图(3)和(4),已知AB CD ,猜想图中的BPD ∠与B D ∠∠、的关系,不需要说明理由.【答案】(1)360B BPD D ∠+∠+∠=︒,理由见解析;(2)BPD B D ∠=∠+∠,理由见解析;(3)图(3)BPD D B ∠=∠-∠,图(4)BPD B D∠=∠-∠【分析】(1)过点P 作EF AB ∥,得到180B BPE ∠+∠=︒,由AB CD ,EF AB ∥,得到EF CD ,得到180EPD D ∠+∠=︒,由此得到360B BPD D ∠+∠+∠=︒;(2)过点P 作PE AB ,由PE AB CD ∥∥,得到12B D ∠=∠∠=∠,,从而得到结论12BPD B D ∠=∠+∠=∠+∠;(3)由AB CD ,根据两直线平行,内错角相等与三角形外角的性质,即可求得BPD ∠与B D ∠∠、的关系.【详解】(1)解:猜想360B BPD D ∠+∠+∠=︒.理由:过点P 作EF AB ∥,∴180B BPE ∠+∠=︒,∵AB CD ,EF AB ∥,∴EF CD ,∴180EPD D ∠+∠=︒,∴360B BPE EPD D ∠+∠+∠+∠=︒,∴360B BPD D ∠+∠+∠=︒;(2)BPD B D ∠=∠+∠.理由:如图,过点P 作PE AB ,∵AB CD ,∴PE AB CD ∥∥,∴12B D ∠=∠∠=∠,,∴12BPD B D ∠=∠+∠=∠+∠;(3)如图(3):BPD D B ∠=∠-∠.理由:∵AB CD ,∴1D ∠=∠,∵1B P ∠=∠+∠,∴D B P ∠=∠+∠,即BPD D B ∠=∠-∠;如图(4):BPD B D ∠=∠-∠.理由:∵AB CD ,∠=∠,∵1D P∠=∠+∠,∴B D P∠=∠+∠,即BPD B D∠=∠-∠.【点睛】此题考查了平行线的性质,平行公理的推论,三角形的外角的性质定理,熟记平行线的性质是解题的关键.题型三:鸡翅型【答案】【感知探究】证明见解析;【类比迁移】F BMF DNF∠=∠-∠;【结论应用】20【分析】本题主要考查平行线的判定和性质,作辅助线是解题的关键.(1)过点E作EF AB∥,根据平行线的性质可求解;(2)如图②,过F作FH AB∥,根据平行线的性质即可得到结论;(3)如图③,过C作CG AB∥,根据平行线的性质即可得到结论.【详解】(1)证明:如图①,过点E作EF AB∥,∠=∠,又∵AB CD∥,∴EF CD∥,NEF DNE∴∠=∠,∴∠=∠+∠,MEN MEF NEF即MEN BME DNE∠=∠+∠;(2)解:BMF MFN FND∠=∠+∠.∥,证明:如图②,过F作FK ABBMF MFK,∵AB CD∴FK CD∥,FND KFN∴∠=∠,∴∠=∠-∠=∠-∠,MFN MFK KFN BMF FND 即:BMF MFN FND∠=∠+∠.故答案为:BMF MFN FND∠=∠+∠;(3)如图③,过C作CG AB∥,∴∠=︒-∠=︒,GCA BAC18060∵AB DE∥,∴CG DE∥,∴∠=∠=︒,80GCD CDE∴∠=︒,ACD20故答案为:20.8.(2021下·广东河源·七年级河源市第二中学校考期中)已知直线12l l ∥,A 是l1上的一点,B 是l2上的一点,直线l3和直线l1,l2交于C 和D ,直线CD 上有一点P .(1)如果P 点在C ,D 之间运动时,问PAC ∠,APB ∠,PBD ∠有怎样的数量关系?请说明理由.(2)若点P 在C ,D 两点的外侧运动时(P 点与C ,D 不重合),试探索PAC ∠,APB ∠,PBD ∠之间的关系又是如何?(请直接写出答案,不需要证明)【答案】(1)PAC PBD APB∠+∠=∠(2)当点P 在直线1l 上方时,∠-∠=∠PBD PAC APB ;当点P 在直线2l 下方时,∠-∠=∠PAC PBD APB .【分析】(1)过点P 作1PE l ∥,由“平行于同一条直线的两直线平行”可得出12PE l l ∥∥,再由“两直线平行,内错角相等”得出PAC APE ∠=∠、PBD BPE ∠=∠,再根据角与角的关系即可得出结论;(2)按点P 的两种情况分类讨论:①当点P 在直线1l 上方时;②当点P 在直线2l 下方时,同理(1)可得PAC APE ∠=∠、PBD BPE ∠=∠,再根据角与角的关系即可得出结论.【详解】(1)解:PAC PBD APB ∠+∠=∠.过点P 作1PE l ∥,如图1所示.1PE l ∥,12l l ∥,∴12PE l l ∥∥,PAC APE ∴∠=∠,PBD BPE ∠=∠,APB APE BPE ∠=∠+∠ ,PAC PBD APB ∴∠+∠=∠.(2)解:结论:当点P 在直线1l 上方时,∠-∠=∠PBD PAC APB ;当点P 在直线2l 下方时,∠-∠=∠PAC PBD APB .①当点P 在直线1l 上方时,如图2所示.过点P 作1PE l ∥.1PE l ∥,12l l ∥,∴12PE l l ∥∥,PAC APE ∴∠=∠,PBD BPE ∠=∠,APB BPE APE ∠=∠-∠ ,PBD PAC APB ∴∠-∠=∠.②当点P 在直线2l 下方时,如图3所示.过点P 作1PE l ∥.1PE l ∥,12l l ∥,∴12PE l l ∥∥,PAC APE ∴∠=∠,PBD BPE ∠=∠,APB APE BPE ∠=∠-∠ ,PAC PBD APB ∴∠-∠=∠.两直线平行,内错角相等(1)求证:180B C A ∠+∠-∠=︒:(2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究(3)如图③,在(2)的前提下,且有AC QB ∥,直线AQ BC 、=DAC ACB CBE ∠∠∠::.【答案】(1)见解析(2)2=180AQB C ∠+∠︒,理由见解析(3)122::【分析】(1)过点C 作CF AD ∥,则CF BE ∥,根据平行线的性质可得出据此可得;(2)过点Q 作QM AD ∥,则QM BE ∥,根据平行线的性质、角平分线的定义可得出1()2AQB CBE CAD ∠=∠-∠,结合(1)的结论可得出2AQB ∠(3)由(2)的结论可得出12CAD CBE ∠=∠①,由QP PB ⊥求出CAD CBE ∠∠、的度数,再结合(1)的结论可得出ACB ∠可求出结论.【详解】(1)在图①中,过点C 作CF AD ∥,则CF BE ∥.∵CF AD BE ∥∥,∴ACF A BCF ∠=∠∠,∴ACB B A ∠+∠-∠=∠(2)在图2中,过点Q ∵QM AD QM BE ∥,∥∴AQM NAD BQM ∠=∠∠,∵AQ 平分CAD ∠,BQ ∴1,2NAD CAD EBQ ∠=∠∠∴AQB BQM AQM ∠=∠-∠∵180(C CBE ︒∠=-∠∴2180AQB C ∠+∠=(3)∵AC QB ∥,∴12AQB CAP ∠=∠=∴180ACB ACP ∠=︒-∠∵2180AQB ACB ∠+∠=∴1.2CAD CBE ∠=∠.又∵QP PB ⊥,∴90CAP ACP ∠+∠=︒,即180CAD CBE ∠+∠=︒,∴60120CAD CBE ∠=︒∠=︒,,∴180120()ACB CBE CAD ∠=︒-∠-∠=︒,∴60120120122DAC ACB CBE ∠∠∠=︒︒︒=::::::,故答案为:122::.【点睛】本题主要考查平行线的的判定与性质,解题的关键是熟练掌握平行线的性质、添加辅助线构建平行线.题型四:骨折型【答案】40︒/40度【分析】本题主要考查了平行线的判定和性质.过点即可得到结论.【详解】解:如图,过点C 80ABC ∠=︒ ,80BCF ABC ∴∠=∠=︒,又AB DE ∥ ,DE CF ∴∥,180DCF CDE ∴∠+∠=︒,40DCF ∴∠=︒,80BCD BCF DCF ∴∠=∠-∠=︒-(1)如图1,已知50A ∠=︒,150D ∠=︒,求APD ∠的度数;(2)如图2,判断∠PAB 、CDP ∠、APD ∠之间的数量关系,请写出证明过程.(3)如图3,在(2)的条件下,AP PD ⊥,DN 平分PDC ∠,若12PAN PAB APD ∠+∠=∠,求【答案】(1)80︒(2)180CDP PAB APD ∠+∠-∠=︒,证明见解析(3)45︒【分析】(1)过点P 作EF AB ∥,根据平行线的性质可得50APE A ∠=∠=︒,180EPD ∠=︒-可求出APD ∠的度数;(2)过点P 作EF AB ∥,则AB EF CD ∥∥,根据平行线的性质可得CDP DPF ∠=∠,FPA ∠又FPA DPF APD ∠=∠-∠,即可得出180CDP PAB APD ∠+∠-∠=︒;(3)PD 交AN 于点O ,由AP PD ⊥,得出90APO ∠=︒,由12PAN PAB APD ∠+∠=∠得出1902PAN PAB ∠+∠=︒,由90POA PAN ∠+∠=︒,得出12POA PAB ∠=∠,由对顶角相等得出∠由角平分线的性质得出12ODN PDC ∠=∠,即1180()2AND PAB PDC ∠=︒-∠+∠,由(2)得:CDP DPF ∴∠=∠,FPA ∠+∠FPA DPF APD ∠=∠-∠ ,180DPF APD PAB ∴∠-∠+∠=180CDP PAB APD ∴∠+∠-∠=︒,故答案为:CDP PAB ∠+∠-∠(3)如图3,PD 交AN 于点AP PD ⊥ ,90APO ∴∠=︒,12PAN PAB APD ∠+∠=∠ ,【答案】(1)证明见解析;(2)证明见解析;(3)120°.【分析】(1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到∴、∠CAB+∠ACD=180°,由邻补角定义得到∠ECM+∠ECN=180°,再等量代换即可得解;(3)由平行线的性质得到,∠FAB=120°﹣∠GCA,再由角平分线的定义及平行线的性质得到∠GCA﹣∠ABF=60°,最后根据三角形的内角和是180°即可求解.【详解】解:(1)证明:如图1,过点A作AD∥MN,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如图2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA+∠FAC=180°,∵∠CAB=60°即∠GCA+∠CAB+∠FAB=180°,∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,由(1)可知,∠CAB=∠MCA+∠ABP,∵BF平分∠ABP,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,∴∠GCA﹣∠ABF=60°,∵∠AFB+∠ABF+∠FAB=180°,∴∠AFB=180°﹣∠FAB﹣∠FBA=180°﹣(120°﹣∠GCA)﹣∠ABF=180°﹣120°+∠GCA﹣∠ABF=120°.【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键.【专题强化】(5)(6)当点E 在CD 的下方时,同理可得∠AEC =α-β或β-α.综上所述,∠AEC 的度数可能为β-α,α+β,α-β,360°-α-β,即①②③④.故选:D .【点睛】本题主要考查平行线的性质的运用,解题时注意两直线平行,同位角相等;两直线平行,内错角相等以及分类讨论.14.(2016上·甘肃张掖·八年级统考期末)如图,直线12l l ∥,125A ∠=︒,85B ∠=︒,则12∠+∠=()A.30︒B.35︒C.36︒D.40︒【答案】A 【分析】作直线32l l ∥,42l l ∥,根据平行线的性质可得13∠=∠,26∠=∠,45180∠+∠=︒,进而即可求得12∠+∠.【详解】解:如图,作直线32l l ∥,42l l ∥,∵12l l ∥,∴1234l l l l ∥∥∥,∴13∠=∠,26∠=∠,45180∠+∠=︒,∵125A ∠=︒,85B ∠=︒,∴345612585210∠+∠+∠+∠=︒+︒=︒,∴3621018030∠+∠=︒-︒=︒,∴123630∠+∠=∠+∠=︒,故选:A.【点睛】本题考查了平行线的判定和性质,掌握平行线的性质是解题的关键.15.(2021·江苏南通·南通田家炳中学校考二模)如图,已知//AB CD ,140A ∠=︒,120E ∠=︒,则C ∠的度数是()A.80°B.120°C.100°D.140°【答案】C 【分析】过E 作直线MN //AB ,根据两直线平行,同旁内角互补即可求出∠1,进而可求出∠2,然后根据平行于同一条直线的两直线平行可得MN //CD ,根据平行线性质从而求出∠C .【详解】解:过E 作直线MN //AB ,如下图所示,∵MN //AB ,∴∠A +∠1=180°(两直线平行,同旁内角互补),∴∠1=180°﹣∠A =180°﹣140°=40°,∵12120AEC ∠=∠+∠=︒,∴211204080AEC ∠=∠-∠=︒-︒=︒∵MN //AB ,AB //CD ,∴MN //CD ,∴∠C +∠2=180°(两直线平行,同旁内角互补),∴∠C =180°﹣∠2=180°﹣80°=100°,故选:C.【点睛】此题考查的是平行线的判定及性质,掌握构造平行线的方法是解决此题的关键.16.(2021上·山东青岛·八年级统考期末)如图,//AB CD ,点E 在AC 上,110A ∠=︒,15D ∠=︒,则下列结论正确的个数是()(1)AE EC =;(2)85AED ∠=︒;(3)A CED D ∠=∠+∠;(4)45BED ∠=︒A.1个B.2个C.3个D.4个【答案】B 【分析】利用平行线的性质和三角形的性质依次判断即可求解.【详解】解:∵AB ∥CD ,∴∠A +∠C =180°,又∵∠A =110°,∴∠C =70°,∴∠AED =∠C +∠D =85°,故(2)正确,∵∠C +∠D +∠CED =180°,∴∠D +∠CED =110°,∴∠A =∠CED +∠D ,故(3)正确,∵点E 在AC 上的任意一点,∴AE 无法判断等于CE ,∠BED 无法判断等于45°,故(1)、(4)错误,故选:B .【点睛】本题考查了平行线的性质,三角形的外角的性质,掌握平行线的性质是本题的关键.17.(2020下·重庆·七年级重庆南开中学校考期末)如图,直线//m n ,在Rt ABC 中,90B Ð=°,点A 落在直线m 上,BC 与直线n 交于点D ,若2130∠=︒,则1∠的度数为().A.30°B.40°C.50°D.65°【答案】B【分析】由题意过点B 作直线//l m ,利用平行线的判定定理和性质定理进行分析即可得出答案.【详解】解:如图,过点B 作直线//l m ,∵直线m//n,//l m ,∴//l n ,∴∠2+∠3=180°,∵∠2=130°,∴∠3=50°,∵∠B=90°,∴∠4=90°-50°=40°,∵//l m ,∴∠1=∠4=40°.故选:B.【点睛】本题主要考查平行线的性质定理和判定定理,熟练掌握两直线平行,平面内其外一条直线平行于其中一条直线则平行于另一条直线是解答此题的关键.18.(2020下·重庆南岸·七年级统考期末)如图,AB //EF,∠D=90°,则α,β,γ的大小关系是()A.βαγ=+B.90βαγ=+-︒C.90βγα=+︒-D.90βαγ=+︒-【答案】D 【分析】通过作辅助线,过点C 和点D 作CG //AB,DH //AB,可得CG //DH //AB,根据AB //EF,可得AB //EF //CG //DH,再根据平行线的性质即可得γ+β-α=90°,进而可得结论.【详解】解:如图,过点C 和点D 作CG //AB,DH //AB,∵CG //AB,DH //AB,∴CG //DH //AB,∵AB //EF,∴AB //EF //CG //DH,∵CG //AB,∴∠BCG=α,∴∠GCD=∠BCD-∠BCG=β-α,∵CG //DH,∴∠CDH=∠GCD=β-α,∵HD //EF,∴∠HDE=γ,∵∠EDC=∠HDE+∠CDH=90°,∴γ+β-α=90°,∴β=α+90°-γ.故选:D.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.19.(2020下·浙江绍兴·七年级统考期末)如图,已知AB//CD,则α∠,∠β,γ∠之间的等量关系为()A.180αβγ∠+∠-∠=︒B.180βγα︒∠+∠-∠=C.360αβγ︒∠+∠+∠=D.180αβγ∠+∠+∠=︒【答案】C 【分析】过点E 作EF∥AB,则EF∥CD,然后通过平行线的性质求解即可.【详解】解:过点E 作EF∥AB,则EF∥CD,如图,∵AB∥EF∥CD,∴∠γ+∠FED=180°,∵∠ABE+∠FEB=180°,∠ABE=∠α,∠FED+∠FEB=∠β,∴∠γ+∠FED+∠ABE+∠FEB=360°,∴∠α+∠β+∠γ=360°,故选:C.【点睛】本题主要考查了平行线的性质,正确作出辅助线是解答此题的关键.20.(2019·山东泰安·统考中考真题)如图,直线12l l ,130∠=︒,则23∠+∠=()A.150°B.180°C.210°D.240°【答案】C 【分析】根据题意作直线l 平行于直线l 1和l 2,再根据平行线的性质求解即可.【详解】解:作直线l 平行于直线l 1和l 2.12////l l l ,143035180︒︒∴∠=∠=∠+∠=,.245∠=∠+∠ ,2+3=4+5+3=30180210︒︒︒∴∠∠∠∠∠+=.故选C.【点睛】本题主要考查平行线的性质,掌握两直线平行同旁内角互补,两直线平行内错角相等是解题关键.21.(2016·浙江杭州·七年级期中)如图所示,若AB∥EF,用含α、β、γ的式子表示x ,应为()A.αβγ++B.βγα+-C.180αγβ︒--+D.180αβγ︒++-【答案】C 【分析】过C 作CD∥AB,过M 作MN∥EF,推出AB∥CD∥MN∥EF,根据平行线的性质得出α+∠BCD=180°,∠DCM=∠CMN,∠NMF=γ,求出∠BCD=180°-α,∠DCM=∠CMN=β-γ,即可得出答案.【详解】过C 作CD∥AB,过M 作MN∥EF,∵AB∥EF,∴AB∥CD∥MN∥EF,∴α+∠BCD=180°,∠DCM=∠CMN,∠NMF=γ,∴∠BCD=180°-α,∠DCM=∠CMN=β-γ,∴x =∠BCD+∠DCM=180αγβ︒--+,故选:C.【点睛】本题考查了平行线的性质的应用,主要考查了学生的推理能力.二、填空题【答案】80︒/80度【分析】过点F作FM CD∥,所以∥,因为AB CDÐ,再根据平行线的性质即可求得∠,进而可求出EFAEFM【详解】解:如图,过点F作FM CD∥,∵AB CD∥,∴AB CD FM∥∥,∴180∠DEF EFM∠+∠=︒,MFA【答案】60︒【分析】过点B 作BD EF ∥进而可得12∠+∠ABD =∠【详解】解:如图,过点 Rt ABC △中,30A ∠=︒,∴9060ABC A ∠=︒-∠=︒.BD EF ∥,∴1ABD ∠=∠.BD EF ∥,MN EF ∥,∴MN BD ∥,∴2CBD ∠=∠,∴12∠+∠ABD CBD =∠+∠=故按为:60︒.【点睛】本题主要考查平行线性质,平行公理的推论,三角板中的角度计算等知识点,解题的关键是正确【答案】1402n ︒+︒,再根据两直线平行,内错角相等,∥ AB CD ,∴BCD ABC n ∠=∠=︒,BAD ADC ∠=∠又∵BE 平分ABC ∠,DE 平分ADC ∠,∴1122ABE ABC n ∠=∠=︒,11804022EDC ADC ∠=∠=⨯︒=︒,∵AB EF CD ∥∥,∴12BEF ABE n ∠=∠=︒,40FED EDC ∠=∠=︒,∴1402BED FED BEF n ∠=∠+∠=︒+︒,故答案为:1402n ︒+︒.l l∥, 直线12∵AB ∥CD ,AB ∥PM∵AB ∥PM ∥CD ,∴∠1+∠APM =180°,∠MPC +∠3=180°,∴∠1+∠APC +∠3=360°;(2)如图,过点P 、Q 作PM 、QN 平行于AB ,∵AB ∥CD ,∵AB ∥PM ∥QN ∥CD ,∴∠1+∠APM =180°,∠MPQ +∠PQN =180°,∠NQC +∠4=180°;∴∠1+∠APQ +∠PQC +∠4=540°;根据上述规律,显然作(n -2)条辅助线,运用(n -1)次两条直线平行,同旁内角互补.即可得到∠1+∠2+∠3+…+∠n =180°(n -1).故答案为:()1801n -︒【点睛】此题考查了平行线的性质.注意掌握辅助线的作法是解此题的关键.三、解答题27.(2022上·黑龙江哈尔滨·七年级统考期末)已知,DE 平分ADB ∠交射线BC 于点E ,BDE BED ∠=∠.(1)如图1,求证:AD BC ∥;(2)如图2,点F 是射线DA 上一点,过点F 作FG BD ∥交射线BC 于点G ,点N 是FG 上一点,连接NE ,求证:DEN ADE ENG ∠=∠+∠;(3)如图3,在(2)的条件下,连接DN ,点P 为BD 延长线上一点,DM 平分BDE ∠交BE 于点M ,若DN 平分PDM ∠,DE EN ⊥,DBC DNE FDN ∠-∠=∠,求EDN ∠的度数.【答案】(1)见解析(2)见解析(3)45︒【分析】(1)利用角平分线的定义可得ADE BDE =∠∠,然后再利用等量代换可得ADE BED ∠=∠,从而利用平行线的判定,即可解答;(2)过点E 作EH BD ∥,可知EH FG ∥,利用平行线的性质可得=DEH BDE ∠∠,HEN ENG ∠=∠,由BDE ADE =∠∠,可知=ADE DEH ∠∠,由=DEN DEH HEN ∠∠+∠,可证得结论;(3)设=2BDM x ∠,利用角平分线的定义可得==2BDM MDE x ∠∠,从而可得==2=4ADE BDE BDM x ∠∠∠,进而可得=2=8ADB BDE x ∠∠,然后利用平行线的性质可得=1808B x ∠︒-,再根据垂直定义可得90DEN ∠=︒,最后利用(2)的结论可得=904ENG x ∠︒-,再利用角平分线的定义可得=90MDN x ∠︒-,从而可得=903EDN x ∠︒-,进而可得=3DNE x ∠,790FDN x ∠=-︒,再根据已知790FDN x ∠=-︒,列出关于x 的方程,进行计算即可解答.【详解】(1)证明:∵DE 平分ADB ∠,∴ADE BDE =∠∠,∵BDE BED ∠=∠,∴ADE BED ∠=∠,∴AD BE ;(2)证明:过点E 作EH BD ∥,∴=DEH BDE ∠∠,∵BDE ADE =∠∠,∴=ADE DEH ∠∠,∵BD FG ,∴EH FG ∥,∴HEN ENG ∠=∠,∵=DEN DEH HEN ∠∠+∠,∴DEN ADE ENG ∠=∠+∠;(3)解:设=2BDM x ∠,∵DM 平分BDE ∠,∴==2BDM MDE x ∠∠,∴==2=4ADE BDE BDM x ∠∠∠∴=2=8ADB BDE x ∠∠,∵AD BC ∥,∴=180=1808B ADB x ∠︒-∠︒-,∵DE EN ⊥,∴90DEN ∠=︒,由(2)得:DEN ADE ENG ∠=∠+∠∴==90ENG DEN ADE ∠∠-∠︒-∵DN 平分PDM ∠,∴(11==180MDN PDM ∠∠︒-∠∴18083=790x x x ︒---︒,解得:15x =︒,∴=903=45EDN x ∠︒-︒,∴EDN ∠的度数为45︒.【点睛】本题考查了平行线的判定与性质及角平分线的定义,垂直定义,熟练掌握平行线的判定及性质是解题的关键.28.(2023下·江苏·七年级泰州市姜堰区第四中学校考周测)如图,AB CD ∥,12110∠+∠=︒,求G ∠的度数.【答案】110︒【分析】过点G 作GM AB ∥,根据AB CD ,GM AB CD ∥∥,进而根据平行线的性质即可求EGF ∠的度数.【详解】解:过点G 作GM AB ∥,∵AB CD ,∴GM AB CD ∥∥,∴1EGM ∠∠=,2FGM ∠∠=,∴12110EGF EGM FGM ∠∠∠∠∠=+=+=︒,【点睛】本题考查了平行线的判定与性质,解决本题的关键是作辅助线及灵活应用平行线的判定与性质解决问题.29.(2023下·江苏·七年级专题练习)已知AB CD ∥,连接A ,C 两点.(1)如图1,CAB ∠与ACD ∠的平分线交于点E ,则AEC ∠等于(2)如图2,点M 在射线AB 反向延长线上,点N 在射线CD 4570AMN ACN ∠=︒∠=︒,,求MEC ∠的度数;(3)如图3,图4,M ,N 分别为射线AB ,射线CD 上的点,()AMN ACN αβαβ∠=∠=≠,,请直接写出图中MEC ∠的度数(用含α,β的式子表示)【答案】(1)90(2)57.5︒(3)1118022αβ︒-+或1118022βα︒-+【分析】(1)根据平行线的性质得到180BAC ACD ∠+∠=︒,即可求出答案;(2)过点E 作EF AB ∥,得到EF CD ∥,根据平行线的性质得到平分线的定义求出1122.522BME BMN ECD ACD ∠=∠=︒∠=∠,(3)由平行线的性质:两直线平行同旁内角互补,两直线平行内错角相等,即可求解.【详解】(1)解:如图1,∵AB CD ∥,∴180BAC ACD ∠+∠=︒,∵,AE CE 分别平分BAC ACD ∠∠,,∴1122CAE BAC ACE ACD ∠=∠∠=∠,,∵AB CD ∥,∴EF CD ∥,∴BME MEF FEC ∠=∠∠,∵,ME CE 分别平分BMN ∠,∴122.52BME BMN ∠=∠=︒∴MEC MEF CEF ∠=∠+∠(3)①如图3,过点E 作EF ∵AB CD ∥,∴EF CD ∥,∴180AME MEF ∠+∠=︒,∵1122AME AMN α∠=∠=,∴11802MEF α∠=︒-,∵1122ECD ACD β∠=∠=,∴12FEC ECD β∠=∠=,∵AB CD ∥,∴EF CD ∥,∴1122AME MEF α∠=∠=,∠∵1122ECD ACD β∠=∠=,∴11802FEC β∠=︒-,∴180MEC MEF CEF ∠=∠+∠=【点睛】此题考查了平行线的性质及角平分线的定义,解题的关键是正确掌握平行线的性质:两直线平行同旁内角互补,两直线平行内错角相等.30.(2022上·河南平顶山·八年级统考期末)出BED ∠的度数.(2)如图2,AB CD ,点E F ∠之间的关系并说明理由.(3)如图3,AB 与CD 相交于点95BFD ∠=︒,直接写出BED ∠【答案】(1)66︒;(2)2BED F ∠=∠,理由见解析;(3)130︒【分析】(1)过点E 作EM AB ∥,可得ABE MEB ∠=∠,CDE MED ∠=∠,可求解;(2)过点E 作EG AB ∥,可求出2(23)2(14)BED ∠=∠+∠=∠+∠,过点F 作FH AB ∥,可求出14BFD ∠=∠+∠,由此即可求解;(3)延长DE 交BF 于点P ,可得BED EBP BPD EBP BFD PDF ∠=∠+∠=∠+∠+∠,BED EBG BPD EDG BGD EBG ∠=∠+∠=∠+∠+∠,BF 平分ABE ∠,DF 平分CDE ∠,可得22BED EBP PDF BGD ∠=∠+∠+∠,由此即可求解.【详解】解:(1)如图,过点E 作EM AB ∥,∵AB CD ,∴EM AB CD ∥∥,∴ABE MEB ∠=∠,CDE MED ∠=∠,∵=45ABE ∠︒,21CDE ∠=︒,∴45MEB ∠=︒,21MED ∠=︒,∴452166BED MEB MED ∠=∠+∠=︒+︒=︒.(2)2BED F ∠=∠,理由如下:过点E 作EG AB ∥,∵AB CD ,∴EG AB CD ∥∥,∴512∠=∠+∠,634∠=∠+∠,∵BF 平分ABE ∠,DF 平分CDE ∠,∴12∠=∠,3=4∠∠,∴2(23)2(14)BED ∠=∠+∠=∠+∠,同理,过点F 作FH AB ∥,∴FH AB CD ∥∥,∴1BFH ∠=∠,4DFH ∠=∠,∵BFD BFH DFH ∠=∠+∠,∴14BFD ∠=∠+∠,∴22(14)BFD ∠=∠+∠,∴2BED BFD ∠=∠,即2BED F ∠=∠.(3)如图,延长DE 交BF 于点P ,∴BED EBP BPD EBP BFD PDF ∠=∠+∠=∠+∠+∠,BED EBG BPD EDG BGD EBG ∠=∠+∠=∠+∠+∠,∵BF 平分ABE ∠,DF 平分CDE ∠,∴2EBG EBP ∠=∠,2EDG PDF ∠=∠,∴22BED EBP PDF BGD ∠=∠+∠+∠,∴22EBP BFD PDF EBP PDF BGD ∠+∠+∠=∠+∠+∠,∴952()60EBP PDF EBP PDF ∠+∠+︒=∠+∠+︒,∴35EBP PDF ∠+∠=︒,∴953595130BED EBP PDF ∠=∠+∠+︒=︒+︒=︒.【点睛】本题主要考查平行线的性质,理解平行线的性质,三角形外角的性质是解题的关键.31.(2022下·广东东莞·七年级东莞市光明中学校考期中)阅读下面内容,并解答问题.已知:如图1,AB CD ∥,直线EF 分别交AB ,CD 于点E ,F .BEF ∠的平分线与DFE ∠的平分线交于点G .(1)求证:EG FG⊥;(2)填空,并从下列①、②两题中任选一题说明理由.我选择题.①在图1的基础上,分别作BEG∠的平分线与DFG∠的平分线交于点M 为.②如图3,AB CD∥,直线EF分别交AB,CD于点E,F.点O在直线 ,AB CD//∴∠+∠=︒BEF DFE180平分BEFEG∠,FG(1)如图1,连接GM ,HM .求证:∠M =∠AGM (2)如图2,在∠GHC 的角平分线上取两点M 、Q ,使得∠关系,并说明理由.【答案】(1)证明见详解(2)180GQH M ∠=︒-∠;理由见详解【分析】(1)过点M 作MN AB ∥,由AB CD ∥,可知MN AB CD ∥∥.由此可知:AGM GMN ∠=∠,CHM HMN ∠=∠,故=AGM CHM GMN HMN M ∠+∠=∠+∠∠;(2)由(1)可知=AGM CHM M ∠+∠∠.再由CHM GHM ∠=∠,∠AGM =∠HGQ ,可知:M HGQ GHM ∠=∠+∠,利用三角形内角和是180°,可得180GQH M ∠=︒-∠.【详解】(1)解:如图:过点M 作MN AB ∥,∴MN AB CD ∥∥,∴AGM GMN ∠=∠,CHM HMN ∠=∠,∵M GMN HMN ∠=∠+∠,∴=M AGM CHM ∠∠+∠.(2)解:180GQH M ∠=︒-∠,理由如下:如图:过点M 作MN AB ∥,由(1)知=M AGM CHM ∠∠+∠,∵HM 平分GHC ∠,∴CHM GHM ∠=∠,∵∠AGM =∠HGQ ,∴M HGQ GHM ∠=∠+∠,∵180HGQ GHM GQH ∠+∠+∠=︒,∴180GQH M ∠=︒-∠.【点睛】本题考查了利用平行线的性质求角之间的数量关系,正确的作出辅助线是解决本题的关键,同时这也是比较常见的几何模型“猪蹄模型”的应用.33.(2022下·江苏常州·七年级统考期中)问题情境:如图①,直线AB CD∥,点E,F分别在直线AB,CD上.(1)猜想:若1130∠=︒,2150∠=︒,试猜想P∠=______°;(2)探究:在图①中探究1∠,2∠之间的数量关系,并证明你的结论;∠,P(3)拓展:将图①变为图②,若12325∠=︒,求PGF∠+∠=︒,75EPG∠的度数.【答案】(1)80︒(2)36012∠=︒-∠-∠;证明见详解P(3)140︒【分析】(1)过点P作MN AB∥,利用平行的性质就可以求角度,解决此问;(2)利用平行线的性质求位置角的数量关系,就可以解决此问;(3)分别过点P、点G作MN AB∥,然后利用平行线的性质求位置角的数量关系即可.∥、KR AB【详解】(1)解:如图过点P作MN AB∥,∵AB CD∥,∴AB MN CD∥∥.∴1180∠+∠=︒,EPN∠+∠=︒.FPN2180∵1130∠=︒,2150∠=︒,∴12360∠+∠+∠+∠=︒EPN FPN∴36013015080∠+=︒-︒-︒=︒.EPN FPN∵P EPN FPN∠=∠+∠,∴∠P=80°.故答案为:80︒;(2)解:36012∠=︒-∠-∠,理由如下:P如图过点P作MN AB∥,∵AB CD∥,∴AB MN CD∥∥.∴1180EPN∠+∠=︒,∠+∠=︒.FPN2180∴12360∠+∠+∠+∠=︒EPN FPN∵EPN FPN P∠+∠=∠,∠=︒-∠-∠.36012P(3)如图分别过点P、点G作MN AB∥∥、KR AB∵AB CD∥,∴AB MN KR CD∥∥∥.∴1180∠+∠=︒,EPNNPG PGR∠+∠=︒,180∠+∠=︒.RGF2180∴12540∠+∠+∠+∠++∠=︒EPN NPG PGR RGF∵75∠=∠+∠=︒,EPG EPN NPG∠+∠=∠,PGR RGF PGF∠+∠=︒,12325思路点拨:小明的思路是:如图2,过P 作PE AB ,通过平行线性质,可分别求出APE ∠、CPE ∠的度数,从而可求出APC ∠的度数;小丽的思路是:如图3,连接AC ,通过平行线性质以及三角形内角和的知识可求出APC ∠小芳的思路是:如图4,延长AP 交DC 的延长线于E ,通过平行线性质以及三角形外角的相关知识可求出APC ∠的度数.问题解决:请从小明、小丽、小芳的思路中任选一种思路进行推理计算,你求得的APC ∠的度数为问题迁移:(1)如图5,AD BC ∥,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,ADP ∠BCP β∠=∠.CPD ∠、α∠、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合)写出CPD ∠、α∠、∠β间的数量关系.【答案】110;(1)CPD αβ∠=∠+∠,理由见解析;(2)CPD βα∠=∠-∠或CPD a ∠=∠解析【分析】小明的思路是:过P 作PE AB ,构造同旁内角,利用平行线性质,可得APC ∠=(1)过P 作PE AD ∥交CD 于E ,推出AD PE BC ∥∥,根据平行线的性质得出a DPE ∠=∠即可得出答案;(2)画出图形(分两种情况:①点P 在BA 的延长线上,②点P 在AB 的延长线上),根据平行线的性质得出DPE α∠=∠,CPE β∠=∠,即可得出答案.【详解】解:小明的思路:如图2,过P 作PE AB ,∵AB CD ∥,∴PE AB CD ∥∥,∴18050APE A ︒∠=-∠=︒,18060CPE C ︒∠=-∠=︒,∴5060110APC ∠=︒+︒=︒,故答案为:110;(1)CPD αβ∠=∠+∠,理由如下:如图5,过P 作PE AD ∥交CD 于E ,∵AD BC ∥,∴AD PE BC ∥∥,∴a DPE ∠=∠,CPE β∠=∠,∴CPD DPE CPE a β∠=∠+∠=∠+∠;(2)当P 在BA 延长线时,CPD βα∠=∠-∠;理由:如图6,过P 作PE AD ∥交CD 于E ,∵AD BC ∥,∴AD PE BC ∥∥,∴DPE α∠=∠,CPE β∠=∠,∴CPD CPE DPE βα∠=∠-∠=∠-∠;当P 在BO 之间时,CPD a ∠=∠-∠理由:如图7,过P 作PE AD ∥交∵AD BC ∥,∴AD PE BC ∥∥,∴DPE α∠=∠,CPE β∠=∠,∴CPD DPE CPE α∠=∠-∠=∠-∠【点睛】本题考查了三角形的内角和定理,平行线的判定和性质,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.。
第7章 平面图形的认识(二)-平行线几何模型(铅笔头模型) 苏科版七年级数学下册基础知识讲与练
专题7.15 平行线几何模型(铅笔头模型)(专项练习)一、单选题1.如图,已知,,,则的度数是()A.80°B.120°C.100°D.140°2.如图所示,AB∥CD,则∠A+∠E+∠F+∠C等于()A.180°B.360°C.540°D.720°3.如图,AB//ED,α=∠A+∠E,β=∠B+∠C+∠D,则β与α的数量关系是()A.2β=3αB.β=2αC.2β=5αD.β=3α4.如图,已知AB//CD,则,,之间的等量关系为()A.B.C.D.5.如图,直线,,则()A.150°B.180°C.210°D.240°6.如图,直线,在中,,点落在直线上,与直线交于点,若,则的度数为().A.30°B.40°C.50°D.65°7.如图所示,l1∥l2,∠1=105°,∠2=140°,则∠3的度数为( )A.55°B.60°C.65°D.70°8.如图,两直线、平行,则().A.B.C.D.9.如图,已知直线、被直线所截,,E是平面内任意一点(点E不在直线、、上),设,.下列各式:①,②,③,④,的度数可能是( )A.②③B.①④C.①③④D.①②③④10.如图所示,若AB∥EF,用含、、的式子表示,应为()A.B.C.D.二、填空题11.如图,,,则的度数是_____.12.如图,在五边形中满足,则图形中的的值是______.13.如图,若直线l1∥l2,∠α=∠β,∠1=30°则∠2的度数为___.14.如图,直线a与∠AOB的一边射线OA相交,∠1=130°,向下平移直线a得到直线b,与∠AOB的另一边射线OB相交,则∠2+∠3=___.15.如图,如果AB CD,那么∠B+∠F+∠E+∠D=___°.16.一大门的栏杆如图所示,BA垂直地面AE于点A,CD平行于地面AE,则∠ABC+∠BCD=_____.17.如图,一环湖公路的段为东西方向,经过四次拐弯后,又变成了东西方向的段,则的度数是______.三、解答题18.请在横线上填上合适的内容.(1)如图(1)已知//,则.解:过点作直线//.∴().()∵//,//,∴()//().(如果两条直线和第三条直线平行,那么这两直线平行)∴().().∴.∴.(2)如图②,如果//,则()19.如图,已知AB∥CD.(1)如图1所示,∠1+∠2= ;(2)如图2所示,∠1+∠2+∠3= ;并写出求解过程.(3)如图3所示,∠1+∠2+∠3+∠4= ;(4)如图4所示,试探究∠1+∠2+∠3+∠4+⋯+∠n= .20.如图1,四边形为一张长方形纸片.(1)如图2,将长方形纸片剪两刀,剪出三个角(),则__________°.(2)如图3,将长方形纸片剪三刀,剪出四个角(),则__________°.(3)如图4,将长方形纸片剪四刀,剪出五个角(),则___________°.(4)根据前面探索出的规律,将本题按照上述剪法剪刀,剪出个角,那么这个角的和是____________°.21.请你探究:如图(1),木杆与平行,木杆的两端、用一橡皮筋连接.(1)在图(1)中,与有何关系?(2)若将橡皮筋拉成图(2)的形状,则、、之间有何关系?(3)若将橡皮筋拉成图(3)的形状,则、、之间有何关系?(4)若将橡皮筋拉成图(4)的形状,则、、之间有何关系?(5)若将橡皮筋拉成图(5)的形状,则、、之间有何关系?(注:以上各问,只写出探究结果,不用说明理由)22.阅读下面材料,完成(1)~(3)题.数学课上,老师出示了这样—道题:如图1,已知点分别在上,.求的度数.同学们经过思考后,小明、小伟、小华三位同学用不同的方法添加辅助线,交流了自己的想法:小明:“如图2,通过作平行线,发现,由已知可以求出的度数.”小伟:“如图3这样作平行线,经过推理,得也能求出的度数.”小华:∵如图4,也能求出的度数.”(1) 请你根据小明同学所画的图形(图2),描述小明同学辅助线的做法,辅助线:______;(2) 请你根据以上同学所画的图形,直接写出的度数为_________°;老师:“这三位同学解法的共同点,都是过一点作平行线来解决问题,这个方法可以推广.”请大家参考这三位同学的方法,使用与他们类似的方法,解决下面的问题:(3) 如图,,点分别在上,平分若请探究与的数量关系((用含的式子表示),并验证你的结论.23.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC度数.思路点拨:小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可分别求出∠APE、∠CPE 的度数,从而可求出∠APC的度数;小丽的思路是:如图3,连接AC,通过平行线性质以及三角形内角和的知识可求出∠APC 的度数;小芳的思路是:如图4,延长AP交DC的延长线于E,通过平行线性质以及三角形外角的相关知识可求出∠APC的度数.问题解决:请从小明、小丽、小芳的思路中任选一种思路进行推理计算,你求得的∠APC 的度数为 °;问题迁移:(1)如图5,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.24.已知直线,点A,C分别在,上,点B在直线,之间,且.(1)如图①,求证:.阅读并将下列推理过程补齐完整:过点B作,因为,所以__________()所以,()所以.(2)如图②,点D,E在直线上,且,BE平分.求证:;(3)在(2)的条件下,如果的平分线BF与直线平行,试确定与之间的数量关系,并说明理由.参考答案1.C【分析】过E作直线MN//AB,根据两直线平行,同旁内角互补即可求出∠1,进而可求出∠2,然后根据平行于同一条直线的两直线平行可得MN//CD,根据平行线性质从而求出∠C.解:过E作直线MN//AB,如下图所示,∵MN//AB,∴∠A+∠1=180°(两直线平行,同旁内角互补),∴∠1=180°﹣∠A=180°﹣140°=40°,∵,∴∵MN//AB,AB//CD,∴MN//CD,∴∠C+∠2=180°(两直线平行,同旁内角互补),∴∠C=180°﹣∠2=180°﹣80°=100°,故选:C.【点拨】此题考查的是平行线的判定及性质,掌握构造平行线的方法是解决此题的关键.2.C解:作EM∥AB,FN∥AB,∵AB∥CD,∴AB∥EM∥FN∥CD.∴∠A+∠AEM=180°,∠MEF+∠EFN=180°,∠NFC+∠C=180°,∴∠A+∠AEF+∠EFC+∠C=540°.故选:C.3.B【分析】作CF//ED,利用平行线的性质求得β与α,再判断β与α的数量关系即可.解:如图,作CF//ED,∵AB//ED,∴∠A+∠E=180°= α,∵ED//CF,∴∠D+∠DCF=180°,∵AB//ED,ED//CF,∴AB//CF,∴∠B+∠BCF=180°,∴∠D+∠DCF+∠B+∠BCF=180°+180°即∠B+∠C+∠D =360°= β,∴β=2α.故选B.【点拨】本题考查了平行线的性质,熟悉运用平行线的性质是解题的关键.4.C【分析】过点E作EF∥AB,则EF∥CD,然后通过平行线的性质求解即可.解:过点E作EF∥AB,则EF∥CD,如图,∵AB∥EF∥CD,∴∠γ+∠FED=180°,∵∠ABE+∠FEB=180°,∠ABE=∠α,∠FED+∠FEB=∠β,∴∠γ+∠FED+∠ABE+∠FEB=360°,∴∠α+∠β+∠γ=360°,故选:C.【点拨】本题主要考查了平行线的性质,正确作出辅助线是解答此题的关键.5.C【分析】根据题意作直线l平行于直线l1和l2,再根据平行线的性质求解即可.解:作直线l平行于直线l1和l2.,.,.故选C.【点拨】本题主要考查平行线的性质,掌握两直线平行同旁内角互补,两直线平行内错角相等是解题关键.6.B【分析】由题意过点B作直线,利用平行线的判定定理和性质定理进行分析即可得出答案.解:如图,过点B作直线,∵直线m//n,,∴,∴∠2+∠3=180°,∵∠2=130°,∴∠3=50°,∵∠B=90°,∴∠4=90°-50°=40°,∵,∴∠1=∠4=40°.故选:B.【点拨】本题主要考查平行线的性质定理和判定定理,熟练掌握两直线平行,平面内其外一条直线平行于其中一条直线则平行于另一条直线是解答此题的关键.7.C【分析】首先过点A作AB∥l1,由l1∥l2,即可得AB∥l1∥l2,然后根据两直线平行,同旁内角互补,即可求得∠4与∠5的度数,又由平角的定义,即可求得∠3的度数.解:过点A作AB∥l1,∵l1∥l2,∴AB∥l1∥l2,∴∠1+∠4=180,∠2+∠5=180,∵∠1=105,∠2=140 ,∴∠4=75,∠5=40,∵∠4+∠5+∠3=180,∴∠3=65.故选:C.【点拨】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.8.D解:分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB观察图形可知,图中有5组同旁内角,则故选D【点拨】本题考查了平行线的性质,添加辅助线是解题的关键9.D【分析】由题意根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α.(2)如图2,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β.(4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β.(5)(6)当点E在CD的下方时,同理可得∠AEC=α-β或β-α.综上所述,∠AEC的度数可能为β-α,α+β,α-β,360°-α-β,即①②③④.故选:D.【点拨】本题主要考查平行线的性质的运用,解题时注意两直线平行,同位角相等;两直线平行,内错角相等以及分类讨论.10.C【分析】过C作CD∥AB,过M作MN∥EF,推出AB∥CD∥MN∥EF,根据平行线的性质得出+∠BCD=180°,∠DCM=∠CMN,∠NMF=,求出∠BCD=180°-,∠DCM=∠CMN= -,即可得出答案.解:过C作CD∥AB,过M作MN∥EF,∵AB∥EF,∴AB∥CD∥MN∥EF,∴+∠BCD=180°,∠DCM=∠CMN,∠NMF=,∴∠BCD=180°-,∠DCM=∠CMN=-,∴=∠BCD+∠DCM=,故选:C.【点拨】本题考查了平行线的性质的应用,主要考查了学生的推理能力.11.【分析】直接作出,再利用平行线的性质分析得出答案.解:作,∵,∴,∴,,,∴,,∴,故答案为.【点拨】本题考查了平行线的判定与性质,正确得出,是解题关键.12.85【分析】根据平行线的性质先求∠B的度数,再根据五边形的内角和公式求x的值即可.解:∵AB∥CD,∠C=60°,∴∠B=180°−∠C=120°.∴(5−2)×180°=x°+150°+125°+60°+120°.∴x=85.故答案为:85.【点拨】本题主要考查多边形的内角和,熟练掌握平行线的性质和多边形内角和定理是解题的关键.13.150°##150度【分析】延长AB交l2于E,根据平行线的判定可得AB∥CD,根据平行线的性质先求得∠3的度数,再根据平行线的性质求得∠2的度数.解:延长AB交l2于E,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°∵l1∥l2,∴∠3=∠1=30°,∴∠2=180°-∠3=150°.故答案为:150°.【点拨】本题考查了平行线的性质和判定,熟练掌握平行线的性质和判定定理是解题的关键.14.【分析】过点O作,利用平移的性质得到,可得判断,根据平行线的性质得,,可得到,从而得出的度数.解:过点O作,∵直线a向下平移得到直线b,∴,∴,∴,,∴,∴.故答案为:.【点拨】本题考查了平移的性质,平行线的性质,过拐点作已知直线的平行线是解题的关键.15.540【分析】过点E作,过点F作,再根据两直线平行,同旁内角互补即可作答.解:过点E作,过点F作,如图,∵,,,∴,,∴∠B+∠BFN=180°,∠FEM+∠EFN=180°,∠D+∠DEM=180°,∵∠DEF=∠DEM+∠FEM,∠BFE=∠BFN+∠EFN,∴∠B+∠BFE+∠DEF+∠D=∠B+∠BFN+∠FEM+∠EFN+∠D+∠DEM=540°,故答案为:540.【点拨】本题主要考查了平行线的性质,即两直线平行,同旁内角互补.构造辅助线,是解答本题的关键.16.270°【分析】过B作BF∥AE,则CD∥BF∥AE.根据平行线的性质即可求解.解:过B作BF∥AE,∵CD∥AE,则CD∥BF∥AE,∴∠BCD+∠1=180°,又∵AB⊥AE,∴AB⊥BF,∴∠ABF=90°,∴∠ABC+∠BCD=90°+180°=270°.故答案为:270.【点拨】本题主要考查了平行线的性质,两直线平行,同旁内角互补.正确作出辅助线是解题的关键.17.540°【分析】分别过点C,D作AB的平行线CG,DH,进而利用同旁内角互补可得∠B+∠BCD +∠CDE+∠E的大小.解:如图,根据题意可知:AB∥EF,分别过点C,D作AB的平行线CG,DH,所以AB∥CG∥DH∥EF,则∠B+∠BCG=180°,∠GCD+∠HDC=180°,∠HDE+∠DEF=180°,∴∠B+∠BCG+∠GCD+∠HDC+∠HDE+∠DEF=180°×3=540°,∴∠B+∠BCD+∠CDE+∠E=540°.【点拨】考查了平行线的性质,解题的关键是作辅助线,利用平行线的性质计算角的大小.18.(1)∠B,两直线平行,内错角相等,EF,CD,∠D,两直线平行,内错角相等;(2)360°【分析】(1)过点E作直线EF∥AB,则∠FEB=∠B,继而由EF∥CD可得∠FED=∠D.所以∠B+∠D=∠BEF+∠FED,即∠B+∠D=∠BED;(2)过点E作直线EF∥AB,则∠FEB+∠B=180°,继而由EF∥CD可得∠FED+∠D=180°.所以∠B+∠D+∠BEF+∠FED=360°,即∠B+∠BED+∠D=360°.(1)解:过点E作直线EF∥AB.∴∠FEB=∠B.(两直线平行,内错角相等)∵AB∥CD,EF∥AB,∴EF∥CD(如果两条直线和第三条直线平行,那么这两直线平行).∴∠FED=∠D(两直线平行,内错角相等).∴∠B+∠D=∠BEF+∠FED.∴∠B+∠D=∠BED.故答案为:∠B,两直线平行,内错角相等,EF,CD,∠D,两直线平行,内错角相等;(2)解:过点E作直线EF∥AB,如图.∴∠FEB+∠B=180°.两直线平行,内错角相等).∵AB∥CD,EF∥AB,∴EF∥CD(如果两条直线和第三条直线平行,那么这两直线平行).∴∠FED+∠D=180° (两直线平行,内错角相等).∴∠B+∠D+∠BEF+∠FED=360°.∴∠B+∠BED+∠D=360°.【点拨】本题考查了平行线的判定与性质,平行公理及其推论,熟练掌握平行线判定、性质说理是关键.19.(1)180°;(2)360°;(3)540°;(4)(n-1)×180°【分析】(1)由两直线平行,同旁内角互补,可得答案;(2)过点E作AB的平行线,转化成两个图1,同理可得答案;(3)过点E,点F分别作AB的平行线,转化成3个图1,可得答案;(4)由(2)(3)类比可得答案.解:(1)如图1,∵AB∥CD,∴∠1+∠2=180°(两直线平行,同旁内角互补).故答案为:180°;(2)如图2,过点E作AB的平行线EF,∵AB∥CD,∴AB∥EF,CD∥EF,∴∠1+∠AEF=180°,∠FEC+∠3=180°,∴∠1+∠2+∠3=360°;(3)如图3,过点E,点F分别作AB的平行线,类比(2)可知∠1+∠2+∠3+∠4=180°×3=540°,故答案为:540°;(4)如图4由(2)和(3)的解法可知∠1+∠2+∠3+∠4+…+∠n=(n-1)×180°,故答案为:(n-1)×180°.【点拨】此题考查了平行线的性质.注意掌握辅助线的作法是解此题的关键.20.(1)360;(2)540;(3)720;(4).【分析】(1)过点E作EH∥AB,再根据两直线平行,同旁内角互补即可得到三个角的和等于180°的2倍;(2)分别过E、F分别作AB的平行线,根据两直线平行,同旁内角互补即可得到四个角的和等于180°的三倍;(3)分别过E、F、G分别作AB的平行线,根据两直线平行,同旁内角互补即可得到四个角的和等于180°的三倍;(4)根据前三问个的剪法,剪n刀,剪出n+1个角,那么这n+1个角的和是180n度.解:(1)过E作EH∥AB(如图②).∵原四边形是长方形,∴AB∥CD,又∵EH∥AB,∴CD∥EH(平行于同一条直线的两条直线互相平行).∵EH∥AB,∴∠A+∠1=180°(两直线平行,同旁内角互补).∵CD∥EH,∴∠2+∠C=180°(两直线平行,同旁内角互补).∴∠A+∠1+∠2+∠C=360°,又∵∠1+∠2=∠AEC,∴∠BAE+∠AEC+∠ECD=360°;(2)分别过E、F分别作AB的平行线,如图③所示,用上面的方法可得∠BAE+∠AEF+∠EFC+∠FCD=540°;(3)分别过E、F、G分别作AB的平行线,如图④所示,用上面的方法可得∠BAE+∠AEF+∠EFG+∠FGC+∠GCD=720°;(4)由此可得一般规律:剪n刀,剪出n+1个角,那么这n+1个角的和是180n度.故答案为:(1)360;(2)540;(3)720;(4)180n.【点拨】本题主要考查了多边形的内角和,作平行线并利用两直线平行,同旁内角互补是解本题的关键,总结规律求解是本题的难点.21.(1)∠B+∠C=180º;(2)∠B+∠C=∠A;(3)∠A +∠B+∠C=360º;(4)∠A+∠B=∠C;(5)∠A+∠C =∠B【分析】(1)利用平行线的性质“两直线平行,同旁内角相等”即可解答;(2)过点A作AD∥BE,利用“两直线平行,内错角相等”即可得出结论;(3)同样过点A作AD∥BE,利用“两直线平行,同旁内角互补”即可得出结论;(4)利用“两直线平行,同位角相等”和三角形外角性质可得出结论;(5)利用“两直线平行,同位角相等”和三角形外角性质可得出结论.解:(1)如图(1)∵与平行,∴∠B+∠C=180º;(2)如图(2),过点A作AD∥BE,则AD∥BE∥CF(平行于同一条直线的两条直线平行),∴∠B=∠BAD,∠C=∠DAC,∴∠B+∠C=∠BAD+∠DAC=∠BAC,即∠B+∠C=∠A;(3)如图(3),过点A作AD∥BE,则AD∥BE∥CF,∴∠B+∠BAD=180º,∠DAC+∠C=180º,∴∠B+∠BAD+∠DAC+∠C=360º,即∠B+∠A+∠C=360º;(4)如图(4),设BE与AC相交于D,∵与平行,∴∠C=∠ADE,∵∠ADE=∠A+∠B,∴∠A+∠B=∠C;(5)如图(5),设CF与AB相交于D,∵与平行,∴∠B=∠ADF,∵∠ADF=∠A+∠C,∴∠A+∠C=∠B.【点拨】本题考查了平行线的性质、三角形的外角性质,熟练掌握平行线的性质,作辅助平行线是解答的关键.22.(1)过点作;(2)30;(3).【分析】(1)根据图中所画虚线的位置解答即可;(2)过点作,根据平行线的性质可得∠1=∠3,∠2=∠4,由EP⊥FP可得∠3+∠4=90°,即可得出∠1+∠2=90°,进而可得答案;(3)设,过点作,根据平行线的性质可得,,进而根据角的和差关系即可得答案.解:(1)由图中虚线可知PQ//AC,∴小明同学辅助线的做法为过点作,故答案为:过点作(2)如图2,过点作,∵AB//CD,∴PQ//AB//CD,∴∠1=∠3,∠2=∠4,∵EP⊥FP,∴∠EPF=∠3+∠4=90°,∴∠1+∠2=90°,∵∠1=60°,∴∠2=30°,故答案为:30(3)如图,设,过点作,∵,即.【点拨】本题考查平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;正确作出辅助线,熟练掌握平行线的性质是解题关键.23.问题解决:110°;问题迁移:(1)∠CPD=∠α+∠β,理由见分析;(2)∠CPD=∠β﹣∠α,理由见分析【分析】小明的思路是:过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC =110°.(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)画出图形(分两种情况:①点P在BA的延长线上,②点P在AB的延长线上),根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.解:小明的思路:如图2,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=180°﹣∠A=50°,∠CPE=180°﹣∠C=60°,∴∠APC=50°+60°=110°,故答案为:110;(1)∠CPD=∠α+∠β,理由如下:如图5,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(2)当P在BA延长线时,∠CPD=∠β﹣∠α;理由:如图6,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE﹣∠DPE=∠β﹣∠α;当P在BO之间时,∠CPD=∠α﹣∠β.理由:如图7,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE﹣∠CPE=∠α﹣∠β.【点拨】本题考查了三角形的内角和定理,平行线的性质,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.24.(1)BG;平行于同一条直线的两条直线平行;两直线平行,内错角相等;(2)见分析;(3),理由见分析【分析】(1)根据平行于同一条直线的两条直线平行可得,再根据平行线的性质即可得结论;(2)过点作,根据,可得,所以,,结合(1)即可进行证明;(3)根据,,可得,根据平分,可得,结合(2)可得,中根据平行线的性质即可得结论.(1)解:如图①,过点作,因为,所以(平行于同一条直线的两条直线平行).所以,(两直线平行,内错角相等).所以.故答案为:,平行于同一条直线的两条直线平形,两直线平行,内错角相等;(2)证明:如图②,过点作,因为,所以,所以,,由(1)知:.又,所以.因为.所以,所以,因为平分.所以,所以,所以;(3)解:,理由如下:因为,,所以,因为平分,所以,由(2)知:,所以,因为,所以,所以,,而,所以.【点拨】本题考查了平行线的判定与性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.。
平行线模型-翘脚模型 七年级数学下册专题(苏科版)(解析版)
平行线热考模型-翘脚模型【进阶】一、单选题1.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°【答案】A【详解】∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故选A.2.如图,直线a∥b,若∠1=24°,∠A=46°,则∠2等于()A.46°B.70°C.40°D.30°【答案】B【详解】如图,∵∠1=24°,∴∠ADB=∠1=24°.∵∠3是△ABD的外角,∴∠3=∠A+∠ADB=46°+24°=70°.∵直线a∥b,∠3=70°,∴∠2=∠3=70°.故选B.【名师点拨】本题考查对顶角的性质、三角形外角的性质、平行线的性质,证法不唯一,属于基础题,难度较小,需要熟练掌握基本知识.3.如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为()A.45°B.48°C.50°D.58°【答案】B【详解】解:∵AB∥CD,∴∠B=∠1,∵∠1=∠D+∠E,∴∠D=∠B−∠E=75°−27°=48°,故选B.【名师点拨】本题考查平行线的性质,关键是根据平行线的性质解答.4.如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°【答案】A【详解】解∶如图,由三角形的外角性质,∠3=∠1+∠B=70°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣70°﹣90°=20°.故选∶A.【名师点拨】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.5.如图是郝老师的某次行车路线,总共拐了三次弯,最后行车路线与开始的路线是平行的,已知第一次转过的角度120°,第三次转过的角度135°,则第二次转过的角度是()A.75°B.120°C.135°D.无法确定【答案】A【详解】如图,延长ED交BC于F.∵DE∥AB,∴∠DFB=∠ABF=120°,∴∠CFD=60°.∵∠CDE=∠C+∠CFD,∴∠C=∠CDE-∠CFD=135°-60°=75°.故选A.【名师点拨】本题考查了平行线的性质及三角形外角的性质.解题的关键是理解题意,灵活应用平行线的性质解决问题,属于中考常考题型.6.已知,如图,AB∥CD,则图中α、β、γ三个角之间的数量关系为()A.α-β+γ=180°B.α+β-γ=180°C.α+β+γ=360°D.α-β-γ=90°【答案】B【详解】如图,延长CD交AE于点F∵AB∥CD∴β=∠AFD∵∠FDE+α=180°∴∠FDE=180°-α∵γ+∠FDE=∠ADF∴γ+180°-α=β∴α+β-γ=180°故选B【名师点拨】本题考查平行线的性质以及三角形外角定理的应用,熟练掌握相关性质定理是解题关键.7.如图,已知AB∥DE,∠ABC=70°,∠CDE=140°,则∠BCD的值为()A.20°B.30°C.40°D.70°【答案】B【详解】延长ED交BC于F,∵AB∥DE,∠ABC=70°,∴∠MFC=∠B=70°,∵∠CDE=140°,∴∠FDC=180°﹣140°=40°,∴∠C=∠MFC﹣∠MDC=70°﹣40°=30°,故选:B.【名师点拨】此题考查了平行线的性质和三角形外角的性质,解题的关键是熟练掌握平行线的性质和三角形外角的性质.8.如图,一块直角三角板的60度的顶点A与直角顶点C分别在平行线FD,GH上,斜边AB平分∠CAD,交直线GH 于点E,则∠ECB的大小为()A.60°B.45°C.30°D.25°【答案】C【详解】∵AB平分∠CAD,∠CAB=60°,∴∠DAE=60°,∵FD∥GH,∴∠ACE+∠CAD=180°,∴∠ACE=180°-∠CAB-∠DAE=60°,∵∠ACB=90°,∴∠ECB=90°-∠ACE=30°,故选:C.【名师点拨】本题考查了角平分线的定义,平行线的性质,三角形内角和定理的应用,用到的知识点为:两直线平行,同旁内角互补.9.如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是()A.110°B.115°C.120°D.125°【答案】C【详解】详解:延长FE交DC于点N,∵直线AB ∥EF ,∴∠DNF=∠BCD =95°,∵∠CDE=25°,∴∠DEF=95°+25°=120°.故选C .名师点拨:此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.10.如图,AB ∥CD ,∠ABK 的角平分线BE 的反向延长线和∠DCK 的角平分线CF 的反向延长线交于点H ,∠K ﹣∠H=27°,则∠K=( )A .76°B .78°C .80°D .82°【答案】B【详解】 如图,分别过K 、H 作AB 的平行线MN 和RS ,∵AB ∥CD ,∴AB ∥CD ∥RS ∥MN ,∴∠RHB=∠ABE=12∠ABK ,∠SHC=∠DCF=12∠DCK ,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB ﹣∠SHC=180°﹣12(∠ABK+∠DCK ),∠BKC=180°﹣∠NKB ﹣∠MKC=180°﹣(180°﹣∠ABK )﹣(180°﹣∠DCK )=∠ABK+∠DCK ﹣180°,∴∠BKC=360°﹣2∠BHC ﹣180°=180°﹣2∠BHC ,又∠BKC ﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故选B.二、填空题11.如图,AB∥CD,∠ABE=160°,∠D=120°,则∠E=_________【答案】40°【详解】解:延长AB交DE于F,∵AB∥CD,∠D=120°,∴∠EFB=∠D=120°,∵∠ABE=160°,∴∠E=∠ABE-∠EFB=40°.故答案为40°.【名师点拨】本题考查平行线的性质、三角形的外角性质;熟练掌握平行线的性质,并能进行推理计算是解题关键.12.如图,直线MA∥NB,∠A=70°,∠B=40°,则∠P=___________度.【答案】30【详解】解:根据平行线的性质,得∠A的同位角是70°,再根据三角形的外角的性质,得∠P=70°−40°=30°.故答案为30.【名师点拨】本题考查了平行线的性质以及三角形的一个外角等于和它不相邻的两个内角和,可以牢记此题中的结论:∠P=∠A−∠B.13.如图,AB∥CD,∠C=35°,∠E=25°,则∠A=_______°.【答案】60【详解】解:∠EOD=∠E+∠C=60°,∵AB∥CD,∴∠A=∠EOD=60°.故答案为60.【名师点拨】本题考查的是三角形外角性质以及平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.在解答时,要结合图形,正确运用平行线的性质.14.如图,已知AB∥DE,∠ABC=75°,∠CDE=150°,则∠BCD的度数为_____.【答案】45°##45度【详解】解:反向延长DE交BC于M,如图,∵AB∥DE,∴∠BMD=∠ABC=75°,∴∠CMD=180°﹣∠BMD=105°;又∵∠CDE=∠CMD+∠BCD,∴∠BCD=∠CDE﹣∠CMD=150°﹣105°=45°.故答案为:45°.【名师点拨】本题考查了平行线的性质和三角形的外角定理,属于基本题型,熟练掌握上述基础知识是解题的关键.三、解答题15.(1)已知:如图(a),直线DE∥AB.求证:∠ABC+∠CDE=∠BCD;(2)如图(b),如果点C在AB与ED之外,其他条件不变,那么会有什么结果?你还能就本题作出什么新的猜想?【答案】(1)见解析;(2)当点C在AB与ED之外时,∠ABC−∠CDE=∠BCD,见解析【详解】解:(1)证明:过点C作CF∥AB,∵AB∥ED,∴AB∥ED∥CF,∴∠BCF=∠ABC,∠DCF=∠EDC,∴∠ABC+∠CDE=∠BCD;(2)结论:∠ABC-∠CDE=∠BCD,证明:如图:∵AB∥ED,∴∠ABC=∠BFD,在△DFC中,∠BFD=∠BCD+∠CDE,∴∠ABC=∠BCD+∠CDE,∴∠ABC-∠CDE=∠BCD.若点C在直线AB与DE之间,猜想∠ABC+∠BCD+∠CDE=360°,∵AB∥ED∥CF,∴∠ABC+∠BCF=180°,∠CDE+∠DCF=180°,∴∠ABC+∠BCD+∠CDE=∠ABC+∠BCF+∠DCF+∠CDE=360°.【名师点拨】本题考查的是平行线的性质及三角形外角的性质,熟练掌握平行线的性质是解答本题的关键,注意掌握辅助线的作法.16.(1)如图(1)AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.(2)观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(3)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.【答案】(1)∠B+∠BPD+∠D=360°,理由见解析;(2)∠BPD=∠B+∠D,理由见解析;(3)∠BPD=∠D-∠B或∠BPD=∠B-∠D,理由见解析【详解】解:(1)如图(1)过点P作EF∥AB,∴∠B+∠BPE=180°,∵AB∥CD,EF∥AB,∴EF∥CD,∴∠EPD+∠D=180°,∴∠B+∠BPE+∠EPD+∠D=360°,∴∠B+∠BPD+∠D=360°.(2)∠BPD=∠B+∠D.理由:如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠1+∠2=∠B+∠D.(3)如图(3),∠BPD=∠D-∠B.理由:∵AB∥CD,∴∠1=∠D,∵∠1=∠B+∠BPD,∴∠D=∠B+∠BPD,即∠BPD=∠D-∠B;如图(4),∠BPD=∠B-∠D.理由:∵AB∥CD,∴∠1=∠B,∵∠1=∠D+∠BPD,∴∠B=∠D+∠BPD,即∠BPD=∠B-∠D.【名师点拨】此题考查了平行线的性质与三角形外角的性质.此题难度不大,解题的关键是注意掌握平行线的性质,注意辅助线的作法.17.已知AB//CD,求证:∠B=∠E+∠D【答案】见解析【详解】证明:过点E作EF∥CD,如图∵AB∥CD,∴∠B=∠BOD,∵EF∥CD(辅助线),∴∠BOD=∠BEF(两直线平行,同位角相等);∠D=∠DEF(两直线平行,内错角相等);∴∠BEF=∠BED+∠DEF=∠BED+∠D(等量代换),∴∠BOD=∠E+∠D(等量代换),即∠B=∠E+∠D.【名师点拨】本题考查了平行线的性质以及角的计算,解题的关键是根据平行线的性质找出相等或互补的角.18.(1)如图a所示,AB//CD,且点E在射线AB与CD之间,请说明∠AEC=∠A+∠C的理由.(2)现在如图b所示,仍有AB//CD,但点E在AB与CD的上方,①请尝试探索∠1,∠2,∠E三者的数量关系.②请说明理由.【答案】(1);(2)①∠1+∠2-∠E=180°;②见解析【详解】解:(1)过点E作EF∥AB,∴∠A=∠AEF,∵AB∥CD,∴EF∥CD,∴∠FEC=∠C,∵∠AEC=∠AEF+∠FEC,∴∠AEC=∠A+∠C;(2)①∠1+∠2-∠E=180°,②过点E作EF∥AB,∴∠AEF+∠1=180°,∵AB∥CD,∴EF∥CD,∴∠FEC=∠2,即∠CEA+∠AEF=∠2,∴∠AEF=∠2-∠CEA,∴∠2-∠CEA+∠1=180°,即∠1+∠2-∠AEC=180°.【名师点拨】本题考查了平行线的性质,作辅助线并熟记性质是解题的关键.19.已知AB∥CD,点E为AB,CD之外任意一点.(1)如图1,探究∠BED与∠B,∠D的数量关系,并说明理由;(2)如图2,探究∠CDE与∠B,∠E的数量关系,并说明理由.【答案】(1) ∠B=∠BED+∠D. (2)∠CDE=∠B+∠BED.【详解】解:(1)∠B=∠BED+∠D.理由如下:过点E作EF∥AB.又∵AB∥CD,∴EF∥AB∥CD.∴∠BEF=∠B,∠D=∠DEF.∵∠BEF=∠BED+∠DEF,∴∠B=∠BED+∠D.(2)∠CDE=∠B+∠BED.理由如下:过点E作EF∥AB.又∵AB∥CD,∴EF∥AB∥CD.∴∠B+∠BEF=180°,∠CDE+∠DEF=180°.又∵∠DEF=∠BEF-∠BED,∴∠CDE+∠BEF-∠BED=∠B+∠BEF,即∠CDE=∠B+∠BED.【名师点拨】本题主要考查了平行线的性质,掌握平行线的性质是解题的关键,。
苏科版七年级上册 6.4平行 强化提优检测
苏科版七年级上《6.4平行》强化提优检测(时间:60分钟满分:100分)一.选择题(共20小题共40分)1.下列说法中,正确的个数是( )(1)过一点有且只有一条直线与已知直线垂直;(2)过一点有且只有一条直线与已知直线平行;(3)在同一平面内,不相交的两条射线是平行线;(4)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.A.1个 B.2个C.3个D.4个2.下列说法中正确的是()A.如果同一平面内的两条线段不相交,那么这两条线段所在的直线互相平行B.不相交的两条直线一定是平行线C.同一平面内有两条射线不相交,则这两条射线互相平行D.同一平面内有两条直线不相交,则这两条直线一定是平行线3..下列表示两条直线平行的方法中正确的是()A.a∥A B.AB∥cd C.A∥B D.a∥b4.如图,过点A画直线L的平行线,能画( )A. 两条以上B. 2条C. 1条D. 0条第4题图第9题图第12题图第13题图5.若一个角的两边分别平行于另一个角的两边,则这两个角( )A.相等B.互补C.相等或互补D.以上都不对6.下列说法中:(1)两条直线相交只有一个交点;(2)两条直线不是一定有公共点;(3)直线AB与直线BA是两条不同的直线;(4)两条不同的直线不能有两个或更多公共交点.其中正确的是( )A. (1)(2)B.(1)(4)C. (1)(2)(4)D. (2)(3)(4)7.下列说法错误的是()A.直线a∥b,若c与a相交,则b与c也相交B.直线a与b相交,c与a相交,则b∥cC.直线a∥b,b∥c,则a∥cD.直线AB与CD平行,则AB上所有点都在CD同侧8.在同一平面内有三条直线,如果要使其中两条且只有两条平行,那么它们()A.没有交点B.只有一个交点C.有两个交点D.有三个交点.9.如图,将三个相同的三角尺不重叠、不留空隙地拼在一起,观察图形,在线段AB,AC,AE,ED,EC,DB中,相互平行的线段有()A.4组B.3组C.2组D.1组10.在同一平面内有三条直线,如果要使其中两条且只有两条平行,那么它们()A.没有交点B.只有一个交点C.有两个交点D.有三个交点11.已知∠AOB与其内部任意一点P,若过点P画一条直线与OA平行,那么这样的直线( )A.有且只有一条B.有两条C.有无数条D.不存在12.如图,在长方体中,与棱AB平行的棱有( )A.1条B.2条C.3条D.4条13如图,将网格中的三条线段沿网格线平移后组成一个首尾相接的三角形,至少需要移动( )A.8格B.9格C.11格D.12格14.同一平面内,直线l与两条平行线a,b的位置关系是()A. l与a,b平行或相交B. l可能与a平行,与b相交C. l与a,b一定都相交D. 同旁内角互补,则两直线平行15.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行16.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则这三条直线交点的个数为()A.0个B.1个C.2个D.3个17.下列语句正确的有()个①任意两条直线的位置关系不是相交就是平行②过一点有且只有一条直线和已知直线平行③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b④若直线a∥b,b∥c,则c∥a. A. 4 B. 3 C. 2 D. 118.a、b、c是同一平面内的任意三条直线,其交点个数有()A.1或2个B.1或2或3个C.0或1或3个D.0或1或2或3个19.a、b、c、d为互不重合的四条直线,则下列推理中正确的是()A.因为a∥b,b∥c,所以d∥cB.因为a∥d,b∥c,所以d∥cC.因为a∥d,b∥d,所以a∥bD.因为a∥d,a∥b,所以c∥d20.同一平面内,直线l与两条平行线a,b的位置关系是( )A. l与a,b平行或相交B. l可能与a平行,与b相交C. l与a,b一定都相交D. 同旁内角互补,则两直线平行二.填空题(共15小题共30分)21.已知a,b是同一平面内的任意两条直线.(1)若直线a,b没有公共点,则直线a,b的位置关系是;(2)若直线a,b有且只有一个公共点,则直线a,b的位置关系是;(3)若直线a,b有两个以上的公共点,则直线a,b的位置关系是.22.如图,已知在同一平面内,有三条直线a,b,c,且a∥b.如果直线a与c交于点O,那么直线c与b的位置关系是.第22题图第23题图第28题图第29题图23.如图,PC∥AB,QC∥AB,则点P,C,Q在一条直线上,理由是.24.给出下列说法:①过一点有且只有一条直线与已知直线平行; ②在同一平面内,两条不相交的线段是平行线段;③若两条直线没有交点,则这两条直线平行;④在同一平面内,若直线AB∥CD,直线AB与EF相交,则CD与EF相交.其中说法错误的是.(填序号)25.在同一平面内,四条互不重合的直线的交点个数为.26..已知直线a∥b,b∥c,c∥d,则a与d的关系是.27.在同一平面内,不重合的两条直线的位置关系是_____.28.如图,AB∥l,AC∥l,则A,B,C三点共线,理由是:_____.29.如图:PC∥AB,QC∥AB,则点P、C、Q在一条直线上.理由是:______________________.30.平面内两两相交的8条直线,其交点最少为m个,最多为n个,则m+n=______.31如图,在下面的网格中,找出互相平行的线段,并用符号表示出来:________________.第31题图第33题图第34题图第35题图32.过直线外一点,有________直线与这条直线平行.33.如图,在同一平面内,有三条直线a,b,c,且a∥b,如果直线a与c交于点O,那么直线c与b的位置关系是__________.34.如图,在长方体中,与棱AB平行的棱有条,它们分别是;与棱CG 平行的棱有条,它们分别是;与棱AD平行的棱有条,它们分别是.棱AB和棱CG既不,也不.35.如图,平面镜A与B之间夹角为110°,光线经平面镜A反射到平面镜B上,再反射出去,若∠1=∠2,则∠1的度数为_______.三.解答题(共8小题共30分)36.下图中哪些线段是互相平行的,请分别将它们表示出来:37.在如图所示的方格纸中,经过线段BC外一点A,仅用直尺画出线段BC的平行线。
七下数学第六周《平行线,三角形,完全平方公式,平方差公式》提优训练
七下数学第六周《平行线,三角形,完全平方公式,平方差公式》提优训练1.单项式的乘法法则:单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
2.单项式与多项式的乘法法则:单项式与多项式相乘,就是用单项式去乘以多项式的每一项,再把所得的积相加。
3.多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项去乘以另一个多项式的每一项,再把所得的积相加。
4.乘法公式:完全平方公式:⎪⎩⎪⎨⎧+-=-++=+2222222)(2)(bab a b a b ab a b a , 注:满足“前平方、后平方,积的二倍在中央的算式叫做完全平方式,如962+-x x 就是一个完全平方式。
平方差公式:22))((b a b a b a -=-+ 注:平方差公式中必须既含有相同项,又含有相反项,否则不能使用此公式。
一、选择题:1.下列计算正确的是------------------------------------------------------------------( )A .954a a a =+B .33333a a a a =••C .954632a a a =⨯D .()743a a =- 2.若a =0.32,b =-32,c =(-3)0,那么a 、b 、c 三数的大小为--------------------------( )A. a c b >>B. c a b >>C. a b c >>D. c b a >>3.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m ,该数值用科学记数法表示为-----------------------------------------------------------------------( ) A .1.05×105 B .1.05×10-5 C .-1.05×105 D .1.05×10-74.下列各式能用平方差公式计算的是----------------------------------------------------( )A .(3a+b )(a ﹣b )B .(3a+b )(﹣3a ﹣b )C .(﹣3a ﹣b )(﹣3a+b )D .(﹣3a+b )(3a ﹣b )5.下列运算中,正确的是--------------------------------------------------------------( )A .(a+b )2=a 2+b 2B .(﹣x ﹣y )2=x 2+2xy+y 2C .(x+3)(x ﹣2)=x 2﹣6D .(﹣a ﹣b )(a+b )=a 2﹣b 26.如图,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a 、b 上,已知∠1=55°,则∠2的度数为--------------------------------------------------------------------------------( )A .45°B .35°C .55°D .125°7.如图,小明从A处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,此时需把方第6题 第7题 第8题第12题向调整到与出发时一致,则方向的调整应是-----------------------------------------------( )A. 右转80°B. 左转80°C. 右转100°D. 左转100°8.如图,四边形ABCD 中,点M ,N 分别在AB ,BC 上,将△BMN 沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠B 的度数是----------------------------------------------------------------------( )A .80°B .100°C .90°D .95°二、填空题:9.如果等腰三角形的两边长分别为4和8,则三角形的周长为 . 10.如果2(1)()x x ax a +-+的乘积中不含2x 项,则a 为 .11.若代数式x 2+mx+1是一个完全平方式,则常数m 的值为12.如图,AB ∥CD ,EF 与AB 、CD 分别相交于点E 、F ,EP ⊥EF ,与∠EFD 的平分线FP 相交于点P ,且∠BEP=20°,则∠EPF= .13.如图,是我们生活中经常接触的小刀,刀片的外形是一个直角梯形,刀片上、下是平行的,转动刀片时会形成∠1和∠2,则∠1+∠2= 度.14.将两张长方形纸片按如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则∠1+∠2= °.15. 图(1)是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是 .16.如图,∠ABC=∠ACB ,AD ,BD ,CD 分别平分△ABC 的外角∠EAC ,内角∠ABC ,外角∠ACF ,以下结论:①AD ∥BC ;②∠ACB=2∠ADB ;③BD 平分∠ADC ;④∠ADC=90°-∠ABD ;⑤∠BAC=2∠BDC ,其中正确的是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面图形(二)&全等三角形模型汇编平行线四大模型:
模型一“铅笔”模型
点P在EF右侧,在AB、CD内部“铅笔”模型
结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;
结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.
模型二“猪蹄”模型(M模型)
点P在EF左侧,在AB、CD内部“猪蹄”模型
结论1:若AB∥CD,则∠P=∠AEP+∠CFP;
结论2:若∠P=∠AEP+∠CFP,则AB∥CD.
模型三“臭脚”模型
点P在EF右侧,在AB、CD外部“臭脚”模型
结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;
结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.
模型四“骨折”模型
点P在EF左侧,在AB、CD外部“骨折”模型
巩固练习平行线四大模型证明
(1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°
.
(2)已知∠P=∠AEP+∠CFP,求证AE∥CF.
(3)已知AE∥CF,求证∠P=∠AEP-∠CFP.
(4)已知∠P= ∠CFP -∠AEP ,求证AE //CF .
模块一平行线四大模型应用
例1
(1)如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .
(2)如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.
(3)如图,已知AB∥DE,∠ABC=80°,∠CDE =140°,则∠BCD= .
(4) 如图,射线AC∥BD,∠A= 70°,∠B= 40°,则∠P= .
练如图所示,AB ∥CD ,∠E =37°,∠C = 20°,则∠EAB 的度数为 .
(七一中学2015-2016七下3月月考)
如图,AB ∥CD ,∠B =30°,∠O =∠C .则∠C = .
例2如图,已知AB ∥DE ,BF 、 DF 分别平分∠ABC 、∠CDE ,求∠C 、 ∠F 的关系.
练如图,已知AB ∥DE ,∠FBC =n 1∠ABF ,∠FDC =n
1∠FDE .
(1)若n =2,直接写出∠C 、∠F 的关系 ; (2)若n =3,试探宄∠C 、∠F 的关系;
(3)直接写出∠C 、∠F 的关系 (用含n 的等式表示).
例3
如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .求证:∠E = 2 (∠A +∠C ) .
练
如图,己知AB ∥DE ,BF 、DF 分别平分∠ABC 、∠CDE ,求∠C 、∠F 的关系.
练(武昌七校 2015-2016 七下期中)如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F则∠F的度数为().
A. 120°
B. 135°
C. 145°
D. 150°
模块二平行线四大模型构造
例5如图,直线AB∥CD,∠EFA= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,则
∠GHM= .
练如图,直线AB∥CD,∠EFG =100°,∠FGH =140°,则∠AEF+ ∠CHG= .
例6已知∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.
练
已知AB∥EF,求∠l-∠2+∠3+∠4的度数.
(1)如图(l),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n,∠B1、∠B2…∠B n-1之间的
关系.
(2)如图(2),己知MA1∥NA4,探索∠A1、∠A2、∠A3、∠A4,∠B1、∠B2之间的关系.
(3)如图(3),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n之间的关系.
如图所示,两直线AB∥CD平行,求∠1+∠2+∠3+∠4+∠5+∠6.
挑战压轴题
(粮道街2015—2016 七下期中)
如图1,直线AB ∥CD ,P 是截线MN 上的一点,MN 与CD 、AB 分别交于E 、F . (1) 若∠EFB =55°,∠EDP = 30°,求∠MPD 的度数;
(2) 当点P 在线段EF 上运动时,∠CPD 与∠ABP 的平分线交于Q ,问:DPB
Q
∠∠是否为定值?若是定值,请求出定值;若不是,说明其范围;
(3) 当点P 在线段EF 的延长线上运动时,∠CDP 与∠ABP 的平分线交于Q ,问DPB
Q
∠∠的值足否定值,请在图2中将图形补充完整并说明理由.
平行线四大模型(课后作业)
1.如图,AB // CD // EF , EH ⊥CD 于H ,则∠BAC +∠ACE +∠CEH 等于( ).
A . 180°
B . 270°
C . 360°
D . 450°
2.(武昌七校2015-2016七下期中)
若AB ∥CD ,∠CDF =
32∠CDE ,∠ABF =3
2
∠ABE ,则∠E :∠F =( ). A .2:1 B .3:1 C .4:3 D .3:2 3.如图3,己知AE ∥BD ,∠1=130°,∠2=30°,则∠C = .
4.如图,已知直线AB∥CD,∠C =115°,∠A= 25°,则∠E= .
5.如阁所示,AB∥CD,∠l=l l0°,∠2=120°,则∠α= .
6.如图所示,AB∥DF,∠D =116°,∠DCB=93°,则∠B= .
7.如图,将三角尺的直角顶点放在直线a上,a∥b.∠1=50°,∠2 =60°,则∠3的度数为 . 8.如图,AB∥CD,EP⊥FP, 已知∠1=30°,∠2=20°.则∠F的度数为.
9.如图,若AB∥CD,∠BEF=70°,求∠B+∠F+∠C的度数.
10.已知,直线AB∥CD.
(1)如图l,∠A、∠C、∠AEC之间有什么关系?请说明理由;
(2)如图2,∠AEF、∠EFC、∠FCD之间有什么关系?请说明理由;
(3)如图3,∠A、∠E、∠F、∠G、∠H、∠O、∠C之间的关是 .
三角形的相关模型:
飞镖模型:
如图:∠D=∠A+∠B+∠C
全等三角形模型:
一线三等角模型:。