第二十七周 最小公倍数2

合集下载

数的最小公倍数求两个数的最小公倍数的方法

数的最小公倍数求两个数的最小公倍数的方法

数的最小公倍数求两个数的最小公倍数的方法最小公倍数(Least Common Multiple,简称LCM)是指能同时被两个或多个数整除的最小正整数。

求最小公倍数的方法有多种,下面将介绍两种常用的方法。

方法一:分解质因数法最小公倍数可以用两个数的所有质因数的最高次幂的乘积表示。

具体步骤如下:1. 将两个数分别进行质因数分解,将每个数分解成若干个质数的乘积形式。

2. 统计出现在两个数的质因数分解中的所有质数,取每个质数的最高出现次数。

3. 将各个质数的最高出现次数相乘,得到最小公倍数。

以求解最小公倍数为例,假设有两个数分别为a和b:1. 对a和b进行质因数分解,将其分解为质数的乘积形式。

a = p1^a1 * p2^a2 * p3^a3 * ... * pn^anb = p1^b1 * p2^b2 * p3^b3 * ... * pn^bn其中,p1、p2、p3...pn为质数,a1、a2、a3...an和b1、b2、b3...bn为对应质数的指数。

2. 取每个质数的最高出现次数。

对于每个质数pi,取其出现次数的最大值,即最高次幂。

记为mi。

mi = max(ai, bi)3. 计算最小公倍数。

最小公倍数 LCM(a, b) = p1^m1 * p2^m2 * p3^m3 * ... * pn^mn方法二:倍数法最小公倍数可以直接通过倍数关系求解。

具体步骤如下:1. 从两个数中取较大的数作为起始值,记为m。

2. 不断增加m的值,直到找到一个数能够同时被a和b整除,这个数就是最小公倍数。

以求解最小公倍数为例,假设有两个数a和b:1. 确定起始值m,取m = max(a, b)。

2. 逐步增加m的值,直到存在一个数能够同时被a和b整除。

3. 当找到这个数时,即为最小公倍数。

注意事项:1. 对于大整数的情况,分解质因数法比倍数法更高效,所以在实际运算中,通常优先采用分解质因数法。

2. 当输入的两个数中存在相同质因数时,可以通过取最低次幂来计算最小公倍数。

三年级奥数举一反三第25262728周之和倍问题差倍问题和差问题[3]

三年级奥数举一反三第25262728周之和倍问题差倍问题和差问题[3]

第二十五周和倍问题专题简析:已知两个数的和与两个数间的倍数关系,求这两个数分别是多少,像这样的应用题,通常叫做和倍问题。

要想顺利地解答和倍应用题,最好的方法就是根据题意,画出线段图,使数量关系一目了然,从而正确列式解答。

解答和倍应用题,关键是要找出两数的和以及与其对应的倍数和,从而先求出1倍数,再求出几倍数。

数量关系可以这样表示:两数和÷(倍数+1)=小数(1倍数)小数×倍数=大数(几倍数)两数和-小数=大数例题1 学校将360本图书分给二、三两个年级,已知三年级所分得的本数是二年级的2倍,问二、三两个年级各分得多少本图书?思路导航:将二年级所得图书的本数看作1倍数,则三年级所得本数是这样的2倍。

如图所示:二年级共360本三年级由图可知,二、三年级所得图书本数的和360本相当于二年级的(1+2)倍,则二年级所得图书本数的360÷(1+2)=120本,三年级为120×2=240本。

练习一1,小红和小明共有压岁钱800元,小红的钱数是小明的3倍。

小红和小明各有压岁钱多少元?2,学校将360本图书分给二、三年级,已知三年级所得本数比二年级的2倍还多60本。

二、三年级各得图书多少本?3,甲桶有油25千克,乙桶有油17千克,乙桶倒入多少千克油给甲桶后,甲桶油是乙桶的5倍?例题2 小宁有圆珠笔芯30枝,小青有圆珠笔芯15枝,问小青给小宁多少枝后,小宁的圆珠笔芯枝数是小青的8倍?思路导航:我们把变化后小青的圆珠笔芯枝数看作1倍数,那么小宁与小青圆珠笔芯的枝数和相当于变化后小青枝数的9倍,所以变化后小青的枝数为(30+15)÷(1+8)=5枝,再用15-5=10枝,则表示小青给小宁的枝数。

练习二1,红红有邮票80张,佳佳有邮票60张,要使红红的邮票张数是佳佳的4倍,那么佳佳必须给红红多少张邮票?2,甲水池有水69吨,乙水池有水36吨,如果甲水池中的水以每分钟2吨的速度流入乙水池,那么多少分钟后,乙水池的水是甲水池的2倍?3,甲书架有图书18本,乙书架有图书8本,班图书管理员又买来图书16本,怎样分配才能使甲书架图书的本数是乙书架的2倍?例题3 被除数与除数的和为320,商是7,被除数和除数各是多少?思路导航:由商是7可知,被除数是除数的7倍,把除数看作1份数,被除数就有这样的7份,一共7+1=8份。

三年级奥数举一反三第25262728周之和倍问题差倍问题和差问题[3]

三年级奥数举一反三第25262728周之和倍问题差倍问题和差问题[3]

第二十五周和倍问题专题简析:已知两个数的和与两个数间的倍数关系,求这两个数分别是多少,像这样的应用题,通常叫做和倍问题。

要想顺利地解答和倍应用题,最好的方法就是根据题意,画出线段图,使数量关系一目了然,从而正确列式解答。

解答和倍应用题,关键是要找出两数的和以及与其对应的倍数和,从而先求出1倍数,再求出几倍数。

数量关系可以这样表示:两数和÷(倍数+1)=小数(1倍数)小数×倍数=大数(几倍数)两数和-小数=大数例题1 学校将360本图书分给二、三两个年级,已知三年级所分得的本数是二年级的2倍,问二、三两个年级各分得多少本图书?思路导航:将二年级所得图书的本数看作1倍数,则三年级所得本数是这样的2倍。

如图所示:二年级共360本三年级由图可知,二、三年级所得图书本数的和360本相当于二年级的(1+2)倍,则二年级所得图书本数的360÷(1+2)=120本,三年级为120×2=240本。

练习一1,小红和小明共有压岁钱800元,小红的钱数是小明的3倍。

小红和小明各有压岁钱多少元?2,学校将360本图书分给二、三年级,已知三年级所得本数比二年级的2倍还多60本。

二、三年级各得图书多少本?3,甲桶有油25千克,乙桶有油17千克,乙桶倒入多少千克油给甲桶后,甲桶油是乙桶的5倍?例题2 小宁有圆珠笔芯30枝,小青有圆珠笔芯15枝,问小青给小宁多少枝后,小宁的圆珠笔芯枝数是小青的8倍?思路导航:我们把变化后小青的圆珠笔芯枝数看作1倍数,那么小宁与小青圆珠笔芯的枝数和相当于变化后小青枝数的9倍,所以变化后小青的枝数为(30+15)÷(1+8)=5枝,再用15-5=10枝,则表示小青给小宁的枝数。

练习二1,红红有邮票80张,佳佳有邮票60张,要使红红的邮票张数是佳佳的4倍,那么佳佳必须给红红多少张邮票?2,甲水池有水69吨,乙水池有水36吨,如果甲水池中的水以每分钟2吨的速度流入乙水池,那么多少分钟后,乙水池的水是甲水池的2倍?3,甲书架有图书18本,乙书架有图书8本,班图书管理员又买来图书16本,怎样分配才能使甲书架图书的本数是乙书架的2倍?例题3 被除数与除数的和为320,商是7,被除数和除数各是多少?思路导航:由商是7可知,被除数是除数的7倍,把除数看作1份数,被除数就有这样的7份,一共7+1=8份。

最新举一反三——三年级分册第二十七周--差倍问题(二)

最新举一反三——三年级分册第二十七周--差倍问题(二)

第二十七周差倍问题(二)专题简析:有些差倍问题比较复杂,不能直接利用公式进行解答,这时需要我们小朋友仔细审题,尤其注意一些隐含条件,同时借助线段图帮助理解题意,从而找到解题方法。

较复杂的差倍应用题,数量关系比较隐蔽。

先依题意画出线段图,数量关系就会比较清晰地展现出来,然后借助线段图找出两个数的差以及所对应的倍数,再利用公式进行解答。

例题1 有两袋玉米,大袋比小袋多56千克,如果将小袋的玉米吃掉4千克,这时大袋的玉米重量是小袋的4倍。

两袋玉米原来各重量多少千克?思路导航:根据题意,画出线段图。

大袋玉米小袋玉米?千克56千克?千克4千克从图上可以看出,小袋玉为吃掉4千克后,大袋里的玉米就比小袋现有玉米重4+56=60千克;又根据“这时大袋的玉米重量是小袋的4倍”,可知把小袋现有的玉米重量看作1倍数,大袋比小袋多的60千克正好相当于现有小袋的4-1=3倍,所以小袋现有玉米60÷3=20千克,原有重量20+4=24千克,大袋原有20×4=80千克。

练习一1,有两箱玩具,第一盒比第二盒多60只。

如果从第二盒中取出3只,这时第一盒的只数是第二盒的8倍。

求两箱玩具原来各有多少只?2,一个书架上放着一些书,第二层比第一层多12本。

如果从第一层中拿走6本,这时第二层的本数是第一层的4倍。

求第一、第二层原来各有多少本书?3,甲、乙两桶油各有油若干千克,甲桶的油比乙桶少20千克,如果从甲桶倒出5千克放入5千克,这时乙桶内油的重量是甲桶的4倍。

甲、乙两桶原来各有油多少千克?例题2 有甲、乙两桶色拉油,如果向甲桶中倒入8千克,则两桶色拉油就一样重;如果向乙桶中倒入12千克,乙桶的色拉油就是甲桶的5倍。

甲、乙两桶原来各有色拉油多少千克?思路导航:根据题意,画出线段图。

倒入12千克?千克乙桶甲桶?千克倒入8千克1倍数从线段图上可以看出:如果向甲桶倒入8千克,两桶油重量相等,说明乙桶油比甲桶油多8千克;如果向乙桶倒入12千克,乙桶油就比甲桶油多8+12=20千克,与20千克相对应的倍数差是5-1=4倍。

五年级奥数教材举一反三课程40讲全整理

五年级奥数教材举一反三课程40讲全整理

修改整理加入目录,方便查用,五年级奥数举一反三目录平均数(一) (2)练习一 (2)练习二 (3)平均数(二) (6)第3周长方形、正方形的周长 (10)第4周长方形、正方形的面积 (17)第5周分类数图形 (22)第6周尾数和余数 (28)第7周一般应用题(一) (33)第8周一般应用题(二) (37)第9周一般应用题(三) (42)第10周数阵 (46)第11周周期问题 (54)第12周盈亏问题 (59)第13周长方体和正方体(一) (65)第十四周长方体和正方体(二) (71)第十五周长方体和正方体(三) (76)第16周倍数问题(一) (81)第17周倍数问题(二) (87)第18周组合图形面积(一) (91)第十九周组合图形的面积 (98)第二十周数字趣题 (106)第二十一讲假设法解题 (111)第二十二周作图法解题 (116)第二十三周分解质因数 (122)第二十四周分解质因数(二) (127)第25周最大公约数 (131)第二十六周最小公倍数(一) (136)第二十九周行程问题(二) (152)第三十周行程问题(三) (157)第三十一周行程问题(四) (163)第三十二周算式谜 (169)第33周包含与排除(容斥原理) (174)第34周置换问题 (179)第35周估值问题 (184)第36周火车行程问题 (190)第37周简单列举 (194)第三十八周最大最小问题 (199)第三十九周推理问题 (205)第40周杂题 (212)练习五 (216)平均数(一)专题简析:把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。

如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量×平均数例1 有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。

最大公约数和最小公倍数问题

最大公约数和最小公倍数问题

最大公约数几个数公有的约数叫做这几个数的公约数,其中最大的一个叫做这几个数的最大公约数。

我们可以把自然数a、b的最公约数记作(a、b),如果(a、b)=1、则a和b互质。

求几个数的最大公约数可以用分解质因数和短除法等方法。

例题1:一张长方形的纸,长7分米5厘米,宽6分米。

现在要把它裁成一块块正方形,而且正方形边长为整厘米数,有几种裁法?如果要使裁得的正方形面积最大,可以裁多少块?分析7分米5厘米=75厘米,6分米=60厘米。

因为裁成的正方形的边长必须能同时整除75和60,所以边长是75和60的公约数。

75和60的公约数有1、3、5、15,所以有4种裁法。

如果要使正方形面积最大,那么边长也应该最大,应该取75和60的最大公约数15作为正方形的边长,所以可以裁(75÷15)×(60÷15)=20块。

1、把1米3分米5厘米长、1米5厘米宽的长方形纸,裁成同样大小的正方形,至少能裁多少块?2、一块长45厘米、宽30厘米的长方形木板,把它锯成若干块正方形而无剩余,所锯成的正方形的边长最长是多少厘米?3、将一块长80米、宽60米的长方形土地划分成面积相等的小正方形,小正方形的面积最大是多少?例题2:一个长方体木块,长2.7米,宽1.8分米,高1.5分米。

要把它切成大小相等的正方体木块,不许有剩余,正方体的棱长最大是多少分米?分析 2.7米=270厘米,1.8分米=18厘米,1.5分米=15厘米。

要把长方体切成大小相等的正方体,不许有剩余,正方体的棱长应该是长、宽、高的公约数。

现要求正方体的棱长最大,所以棱长就是长、宽、高的最大公约数。

(270,18,15)=3、3厘米=0.3分米1、一个长方体木块的长是4分米5厘米、宽3分米6厘米、高2分米4厘米。

要把它切成大小相等的正方体木块,不许有剩余,求所切正方体木块的棱长最长是多少厘米?2、有50个梨,75个橘子和100个苹果,要把这些水果平均分给几个小组,并且每个小组分得的三种水果的个数也相同,最多可以分给几个小组?3、五年级三个班分别有24人、36人、42人参加体育活动,要把他们分成人数相等的小组,但各班同学不能打乱,最多每组多少人?每班各可以分几组?例题3:有三根钢管,它们的长度分别是240厘米、200厘米和480厘米,如果把它们截成同样长的小段,每小段最长可以是多少厘米?分析要把三根钢管截成同样长的小段,每小段的长度数应该是240、200和480的公约数,而每小段要取最长,也就是求240、200和480的最大公约数。

小学四年级奥数(27到32)

小学四年级奥数(27到32)

• 练 习 一 • (1)□□△△□□△△□□△△……第28 个图形是什么? • (2)盼望祖国早日统一盼望祖国早日统一 盼望祖国早日统一…第2001个字是什么字? • (3)公园门口挂了一排彩灯泡按“二红三 黄四蓝”重复排列,第63只灯泡是什么颜 色?第112只呢?
• 例2:有一列数,按5、6、2、4、5、6、2、 4…排列。 • (1)第129个数是多少?(2)这129个数 相加的和是多少? • 分析与解答:(1)从排列可以看出,这组 数是按“5、6、4、2”一个循环依次重复出 现进行排列,那么一个循环就是4个数,则 129÷4=32…1,可知有32个“5、6、4、2” 还剩一个。所以第129个数是5。(2)每组 四个数之和是5+6+4+2=17,所以,这129 个数相加的和是17×32+5=549。
• 例1:甲乙两人分别从相距20千米的两地同 时出发相向而行,甲每小时走6千米,乙每 小时走4千米。两人几小时后相遇? • 分析与解答:这是一道相遇问题。所谓相 遇问题就是指两个运动物体以不同的地点 作为出发地作相向运动的问题。根据题意, 出发时甲乙两人相距20千米,以后两人的 距离每小时缩短6+4=10千米,这也是两人 的速度和。所以,求两人几小时相遇,就 是求20千米里面有几个10千米。因此,两 人20÷(6+4)=2小时后相遇。
• 第二十七周 • 较复杂的和差倍问题
• 专题简析: • 前面我们学习了和倍、差倍、和差三种应 用题,有的题目需要通过转化而成为和倍、 差倍、和差问题,这类问题叫做复杂的和 差倍问题。 • 解答较复杂的和差倍问题,需要我们从整 体上把握住问题的本质,将题目进行合理 的转化,从而将较复杂的问题转化为一般 和倍、差倍、和差应用题来解决。
• 例2:甲、乙、丙三个同学做数学题,已知 甲比乙多做5道,丙做的是甲的2倍,比乙 多做20道。他们一共做了多少道数学题? • 分析与解答:甲比乙多5道,丙比乙多20道, 丙做的是甲的2倍,因此,20-5=15道是丙 的一半,也就是甲做的道数。丙做了 15×2=30道,乙做了15-5=10道。他们共 做了:(20-5)×(1+2)+[(20-5) -5]=55道。

三年级数学思维拓展第27周 差倍问题(二)

三年级数学思维拓展第27周  差倍问题(二)

三年级数学思维拓展第二十七周 差倍问题(二)专题简析:有些差倍问题比较复杂,不能直接利用公式进行解答,这时需要我们小朋友仔细审题,尤其注意一些隐含条件,同时借助线段图帮助理解题意,从而找到解题方法。

较复杂的差倍应用题,数量关系比较隐蔽。

先依题意画出线段图,数量关系就会比较清晰地展现出来,然后借助线段图找出两个数的差以及所对应的倍数,再利用公式进行解答。

例题1 有两袋玉米,大袋比小袋多56千克,如果将小袋的玉米吃掉4千克,这时大袋的玉米重量是小袋的4倍。

两袋玉米原来各重量多少千克?思路导航:根据题意,画出线段图。

大袋玉米小袋玉米从图上可以看出,小袋玉为吃掉4千克后,大袋里的玉米就比小袋现有玉米重4+56=60千克;又根据“这时大袋的玉米重量是小袋的4倍”,可知把小袋现有的玉米重量看作1倍数,大袋比小袋多的60千克正好相当于现有小袋的4-1=3倍,所以小袋现有玉米60÷3=20千克,原有重量20+4=24千克,大袋原有20×4=80千克。

练 习 一1,有两箱玩具,第一盒比第二盒多60只。

如果从第二盒中取出3只,这时第一盒的只数是第二盒的8倍。

求两箱玩具原来各有多少只?2,一个书架上放着一些书,第二层比第一层多12本。

如果从第一层中拿走6本,这时第二层的本数是第一层的4倍。

求第一、第二层原来各有多少本书?3,甲、乙两桶油各有油若干千克,甲桶的油比乙桶少20千克,如果从甲桶倒出5千克放入5千克,这时乙桶内油的重量是甲桶的4倍。

甲、乙两桶原来各有油多少千克?例题2 有甲、乙两桶色拉油,如果向甲桶中倒入8千克,则两桶色拉油就一样重;如果向乙桶中倒入12千克,乙桶的色拉油就是甲桶的5倍。

甲、乙两桶原来各有色拉油多少千克?思路导航:根据题意,画出线段图。

乙桶倒入8千克1倍数从线段图上可以看出:如果向甲桶倒入8千克,两桶油重量相等,说明乙桶油比甲桶油多8千克;如果向乙桶倒入12千克,乙桶油就比甲桶油多(8+12)8+12=20千克,与20千克相对应的倍数差是5-1=4倍。

最小公倍数的计算方法

最小公倍数的计算方法

最小公倍数的计算方法最小公倍数(LCM)是指两个或多个正整数的公共倍数中最小的那个数。

在数学中,最小公倍数是一个基本概念,它在各个领域都有着广泛的应用。

本文将介绍最小公倍数的计算方法。

一、最小公倍数的定义设a、b是两个正整数,如果存在一个正整数c,使得a和b都是c的倍数,那么c就是a和b的公倍数。

a和b的公倍数中最小的那个数就是最小公倍数。

二、最小公倍数的性质1. 如果a、b是两个正整数,则它们的最小公倍数等于它们的乘积除以它们的最大公约数,即LCM(a,b) = a*b/GCD(a,b)。

2. 最小公倍数是唯一的。

三、最小公倍数的计算方法1. 分解质因数法将a、b分别分解质因数,然后将它们的公共质因数和不同的质因数分别取出来,将它们的乘积即为最小公倍数。

例如,求12和18的最小公倍数,分解质因数得到12=2^2*3,18=2*3^2,因此,它们的公共质因数是2和3,不同的质因数是2^2和3^2,所以它们的最小公倍数为2^2*3^2=36。

2. 短除法将a、b进行短除法,将它们的公共因数和不同的因数分别取出来,将它们的乘积即为最小公倍数。

例如,求12和18的最小公倍数,进行短除法得到12=2*2*3,18=2*3*3,因此,它们的公共因数是2和3,不同的因数是2*2和3*3,所以它们的最小公倍数为2*2*3*3=36。

3. 最大公约数法求出a和b的最大公约数,然后用a和b的积除以它们的最大公约数,即可求出它们的最小公倍数。

例如,求12和18的最小公倍数,它们的最大公约数是6,因此,它们的最小公倍数为12*18/6=36。

四、最小公倍数的应用1. 最小公倍数可以用来求两个数的最大公约数。

2. 在分数的加、减、乘、除运算中,需要先求出分母的最小公倍数,然后将分子乘以相应的倍数,使得分母相同,然后再进行计算。

3. 在解方程、化简式子等问题中,经常需要用到最小公倍数。

综上所述,最小公倍数是数学中的一个基本概念,它在各个领域都有着广泛的应用。

两个数求最小公倍数的方法

两个数求最小公倍数的方法

两个数求最小公倍数的方法嘿,咱今儿就来聊聊怎么给两个数找它们的最小公倍数!这事儿啊,就好比是给两个小伙伴找一个最合适的“聚会地点”。

咱先从最简单的说起,就像 2 和 3 这两个数,它们俩互不相干,没啥特别关系。

那它们的最小公倍数不就是它们俩相乘嘛,2×3=6,6 就是它们的最小公倍数啦!这多直接呀,就像你直接去你熟悉的老地方找朋友一样。

再来说说有点特别的情况,比如 4 和 6。

4 呢,可以分成 2×2,6 可以分成 2×3。

嘿,你瞧,这里面都有个 2 呢!那咱就把共有的这个 2 留下,其他的数字都乘起来,2×2×3=12,12 就是它们的最小公倍数啦!这就好像是两个小伙伴都喜欢去一个公园,那这个公园就是他们的“聚会地点”啦。

还有一种情况呢,就是一个数是另一个数的倍数,比如说 5 和 10。

那还用说嘛,肯定就是那个大的数 10 呀!就好比一个大人带着一个小孩去玩,那肯定是跟着大人的节奏走呀,大人去哪儿小孩就去哪儿呗。

哎呀,你说这求最小公倍数是不是也挺有意思的呀!其实啊,生活中也有很多这样类似的情况呢。

比如说你和你的好朋友约着出去玩,那你们就得找一个大家都方便去的地方,这可不就是在找你们之间的“最小公倍数”嘛!再想想看,在做一些事情的时候,我们也得找到一个最合适的方式或者时间,让所有相关的人或者事情都能配合好,这不也是一种“找最小公倍数”嘛!所以说呀,数学这东西可不只是在课本里,它就在我们生活的方方面面呢。

那我们再回到两个数求最小公倍数这个事儿上来。

不管遇到什么样的两个数,我们都有办法找到它们的最小公倍数。

有时候可能会稍微麻烦一点,但只要我们细心点,肯定能找出来。

就像你找东西一样,只要你认真找,肯定能找到的嘛。

你说是不是这个理儿呀?咱可别小瞧了这小小的最小公倍数,它用处大着呢!以后遇到什么问题,咱就可以用这个办法来解决啦!怎么样,学会了吧?哈哈!。

五年级奥数举一反三26-30

五年级奥数举一反三26-30

第二十六周最小公倍数(一)专题简析:几个数公有的倍数叫做这几个数的公倍数,其中最小的一个公倍数,叫做这几个数的最小公倍数。

自然数a、b的最小公倍数可以记作[a、b],当(a、b)=1时,[a、b]= a×b。

两个数的最大公约数和最小公倍数有着下列关系:最大公约数×最小公倍数=两数的乘积即(a、b)×[a、b]= a×b要解答求最小公倍数的问题,关键要根据题目中的已知条件,对问题作全面的分析,若要求的数对已知条件来说,是处于被除数的地位,通过就是求最小公倍数,解题时要避免和最大公约数问题混淆。

例题1 两个数的最大公约数是15,最小公倍数是90,求这两个数分别是多少?分析根据“两个数的最大公约数与最小公倍数的乘积等于这两个数的乘积”可先求出这两个数的乘积,再把这个积分解成两个数。

根据题意:当a1b1分别是1和6时,a、b分别为15×1=15,15×6=90;当a1b1分别是2和3时,a、b分别为15×2=20,15×3=45。

所以,这两个数是15和90或者30和45。

练习一1,两个数的最大公约数是9,最小公倍数是90,求这两个数分别是多少?2,两个数的最大公约数是12,最小公倍数是60,求这两个数的和是多少?3,两个数的最大公约数是60,最小公倍数是720,其中一个数是180,另一个数是多少?例题2 两个自然数的积是360,最小公倍数是120,这两个数各是多少?分析我们把这两个自然数称为甲数和乙数。

因为甲、乙两数的积一定等于甲、乙两数的最大公约数与最小公倍数的积。

根据这一规律,我们可以求出这两个数的最大公约数是360÷120=3。

又因为(甲÷3=a,乙÷3=b)中,3×a×b=120,a和b一定是互质数,所以,a 和b可以是1和40,也可以是5和8。

当a和b是1和40时,所求的数是3×1=3和3×40=120;当a和b是5和8时,所求的数是3×5=15和3×8=24。

27,15,18的最小公倍数

27,15,18的最小公倍数

27,15,18的最小公倍数
27, 15, 18的最小公倍数是什么
最小公倍数(LCM)是指一个数学概念,是能够被给定的一组数整除的最小的正整数。

具体来说,27、15、18的最小公倍数是这三个数的公共倍数中最小的那个数。

首先,我们可以将27、15、18这三个数分解质因数,如下:
27=3×3×3
15=3×5
18=2×3×3
接下来,我们可以将它们的分解质因数写成下面的样子:
27=3^3
15=3×5
18=2×3^2
为了找到它们的最小公倍数,我们需要找到它们的公共因数和非公共因数。

它们的公共因数是3,因为它们都能被3整除。

它们的非公共因数是2、3和5。

然后,我们可以找到它们的最小公倍数。

最小公倍数是公共因数和非公共因数的乘积。

公共因数3只需要乘一次,非公共因数需要乘一次,所以它们的最小公倍数为:
最小公倍数=3^3×2×5=270
因此,27、15、18的最小公倍数是270。

找最小公倍数的诀窍

找最小公倍数的诀窍

找最小公倍数的诀窍《找最小公倍数的诀窍》嗨,小伙伴们!今天我想和大家分享一个超有趣又特别有用的东西,那就是找最小公倍数的诀窍。

你们在数学作业里是不是也常常碰到找最小公倍数的题目呀?有时候是不是觉得脑袋都要大了,就像一团乱麻找不到头绪呢?哈哈,别担心,听我慢慢讲,你就会觉得这事儿没那么难啦。

咱们先来说说什么是最小公倍数吧。

就好比有几个小朋友在跳绳,他们各自跳绳的周期不一样。

最小公倍数就像是一个神奇的数字,到了这个数字的时候,大家跳绳的动作又会变得一样啦。

在数学里呢,就是几个数公有的倍数里最小的那个数。

那怎么找这个最小公倍数呢?有一种方法很简单,就是列举法。

比如说2和3吧。

2的倍数有2、4、6、8、10、12……3的倍数有3、6、9、12、15……你看,6是它们最先共同出现的倍数,那6就是2和3的最小公倍数啦。

这就好像是我们在找两个小朋友同时到达某个地点的最快时间一样。

可是这种方法有时候也有点麻烦呢,要是数字大一点,那要列的倍数可就太多了。

这时候就可以用短除法啦。

这短除法就像是一个超级厉害的小工具。

比如说我们要找12和18的最小公倍数。

先把12和18写在那儿,然后像搭小房子一样画个短除号。

能同时整除12和18的数是6,12除以6等于2,18除以6等于3。

这时候2和3除了1以外就没有其他能一起整除它们的数了。

那最小公倍数怎么算呢?就把除数和最后的商相乘,6乘以2乘以3等于36,36就是12和18的最小公倍数。

这就像是把一个大问题分解成一个个小问题,然后再把小问题的答案组合起来得到最终的答案。

我再给你们讲个故事吧。

有一天,小明和小红在做数学作业,就碰到找最小公倍数的题了。

小明用的是列举法,一个一个地列倍数,列得手都酸了,还差点算错。

小红呢,她就用短除法,一下子就把答案算出来了。

小明就特别惊讶,说:“小红,你怎么这么快呀?”小红就笑着说:“我用了短除法这个小妙招呀,就像你有一把小钥匙能快速打开一扇门一样。

4、6、7、8、9、11、13、27的倍数的特征Word版

4、6、7、8、9、11、13、27的倍数的特征Word版

4、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、27的倍数的特征判断一个数是谁的倍数有最简单的方法,就是看倍数能不能被谁整除即可,能被谁整除,就是谁的倍数。

举例:10可以分解成:10=2×5,再也无法向下继续分解了,所以10必定是1,2,5的倍数。

再如:36可以分解成:36=2×18=2×3×6=4×9=3×12=6×6,所以36就是2,18,3,6,4,9,12的倍数。

这里要注意一个概念,“什么是共同倍数”,共同倍数也就是公倍数,36不能说是2,18,3,6,4,9,12的共同倍数,因为这些数字没有出现在同一个乘式里,只能说36是2和18的共同倍数,36是2和3和6的共同倍数,36是4和9的共同倍数,36是3和12的共同倍数。

再如:81可以分解成:81=9×9=3×3×9=3×27,所以81就是9, 3,27的倍数。

记忆:11×11=121,12×12=144,13×13=169,14×14=196,15×15=225,16×16=256,17×17=289,18×18=324,19×19=3614的倍数的特征(一个数的最小倍数是它自己,4的最小倍数是4):只要看最后末尾两个数字是否能被4整除就可以了,最后两个数字能被4整除,这个原始的数字就是4的倍数。

末尾是00的多位数也全是4的倍数(如100,2200,2500,1300等)。

最后两个数字也就是两位数,那么如何判断一个两位数是不是4的倍数,方法如下:(a)当十位数上的数字是偶数也就是2,4,6,8时(偶数是除0之外偶数,因为0不能打头),个位数是0、4、8的数,这个数就是4的倍数。

(b)十位是奇数,个位是2,6的数都是4的倍数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十七周最小公倍数(二)
专题简析:
最小公倍数的应用题,解题方法比较独特。

当有些题中所求的数不正好是已知数的最小公倍数时,我们可以通过“增加一部分”或“减少一部分”的方法,使问题转换成已知数的最小公倍数,从而求出结果。

例题1 有一个自然数,被10除余7,被7除余4,被4除余1。

这个自然数最小是多少?
分析根据已知条件可知,假如把这个自然数增加3,所得的数就正好能被10、7和4这三个数整除,即10、7和4的最小公倍数,然后再减去3就能得到所求的数了。

[10,7,4]=140
140-3=137
即:这个自然数最小是137。

练习一
1,学校六年级有若干个同学排队做操,如果3人一行余2人,7人一行余2人,11人一行也余2人。

六年级最少多少人?
2,一个数能被3、5、7整除,但被11除余1。

这个数最小是多少?
3,一袋糖,平均分给15个小朋友或20个小朋友后,最后都余下5块。

这袋糖至少有多少块?
例题2 有一批水果,总数在1000个以内。

如果每24个装一箱,最后一箱差2个;如果每28个装一箱,最后一箱还差2个;如果每32个装一箱,最后一箱只有30个。

这批水果共有多少个?
分析根据题意可知,这批水果再增加2个后,每24个装一箱,每28个装一箱或每32个装一箱都能装整箱数,也就是说,只要把这批水果增加2个,就正好是24、28和32的公倍数。

我们可以先求出24、28和32的最小公倍数672,再根据“总数在1000以内”确定水果总数。

[24,28,32]=672
672-2=670(个)
即:这批水果共有670个。

1,一所学校的同学排队做操,排成14行、16行、18行都正好能成长方形,这所学校至少有多少人?
2,有一批乒乓球,总数在1000个以内。

4个装一袋、5个装一袋或6个、7个、8个装一袋最后都剩下一个。

这批乒乓球到底有多少个?
3,食堂买回一些油,用甲种桶装最后一桶少3千克,用乙种桶装最后一桶只装了半桶油,用丙种桶装最后一桶少7千克。

如果甲种桶每桶能装8千克,乙种桶每桶能装10千克,丙种桶每桶能装12千克,那么,食堂至少买回多少千克油?例题3 一盒围棋子,4颗4颗数多3颗,6颗6颗数多5颗,15颗15颗数多14颗,这盒棋子在150至200颗之间,问共有多少颗?
分析由已知条件可知:这盒棋子只要增加1颗,就正好是4、6、15的公倍数。

换句话说,这盒棋子比4、6、15的最小公倍数少1。

我们可以先求4、6、15的最小公倍数,然后再根据“这盒棋子在150至200颗之间”这一条件找出这盒棋子数。

4、6、15的最小公倍数是60。

60×3-1=179颗,即这盒棋子共179颗。

练习三
1,有一批树苗,9棵一捆多7棵,10棵一捆多8棵,12棵一捆多10棵。

这批树苗数在150至200之间,求共有多少棵树苗。

2,五(1)班的五十多位同学去大扫除,平均分成4组多2人,平均分成5组多3人。

请你算一算,五(1)班有多少位同学?
3,有一批水果,每箱放30个则多20个,每箱放35个则少10个。

这批水果至少有多少个?
例题4 从学校到少年宫的这段公路上,一共有37根电线杆,原来每两根电线杆之间相距50米,现在要改成每两根之间相距60米,除两端两根不需移动外,中途还有多少根不必移动?
分析从学校到少年宫的这段路长50×(37-1)=1800米,从路的一端开始,是50和60的公倍数处的那一根就不必移动。

因为50和60的最小公倍数是300,所以,从第一根开始,每隔300米就有一根不必移动。

1800÷300=6,就是6根不必移动。

去掉最后一根,中途共有5根不必移动。

1,插一排红旗共26面。

原来每两面之间的距离是4米,现在改为5米。

如果起点一面不移动,还可以有几面不移动?
2,一行小树苗,从第一棵到最后一棵的距离是90米。

原来每隔2米植一棵树,由于小树长大了,必须改为每隔5米植一棵。

如果两端不算,中间有几棵不必移动?
3,学校开运动会,在400米环形跑道边每隔16米插一面彩旗,一共插了25面。

后来增加了一些彩旗,就把彩旗间隔缩短了,起点彩旗不动,重新插完后发现一共有5面彩旗没动。

问:现在彩旗的间隔是多少米?
例题5 在一根长木棍上用红、黄、蓝三种颜色做标记,分别将木棍平均分成了10等份、12等份和15等份。

如果沿这三种标记把木棍锯断,木棍总共被锯成多少段?
分析因为10、12和15的最小公倍数是60,所以,设这根木棍长60厘米。

三种颜色的标记分别把木棍分成的小段长是60÷10=厘米,60÷12=5厘米,60÷15=4厘米。

因为5和6的最小公倍数是30,所以红黄两种标记重复的地方有60÷30-1=1处,另两种情况分别有2处和4处。

因此,木棍总共被锯成(10+12+15-2)-1-2-4=28段。

练习五
1,用红笔在一根木棍上做了三次记号,第一次把木棍分成12等份,第二次把棍分成15等份,第三次把木棍分成20等份,然后沿着这些红记号把木棍锯开,一共锯成多少小段?
2,父子二人在雪地散步,父亲在前,每步80厘米,儿子在后,每步60厘米。

在120米内一共留下多少个脚印?
3,在96米长的距离内挂红、绿、黄三种颜色的气球,绿气球每隔6米挂一个,黄气球每隔4米挂一个,。

如果绿气球和黄气球重叠的地方就改挂一个红气球,那么,除两端外,中间挂有多少个红气球?。

相关文档
最新文档