山东省青岛市城阳一中2018-2019年第一学期城阳一中高二期末试题(无答案)

合集下载

城阳区第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析

城阳区第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析

城阳区第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 如果对定义在R 上的函数)(x f ,对任意n m ≠,均有0)()()()(>--+m nf n mf n nf m mf 成立,则称 函数)(x f 为“H 函数”.给出下列函数: ①()ln25x f x =-;②34)(3++-=x x x f ;③)cos (sin 222)(x x x x f --=;④⎩⎨⎧=≠=0,00|,|ln )(x x x x f .其中函数是“H 函数”的个数为( ) A .1 B .2 C .3 D . 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大. 2. 如图所示,阴影部分表示的集合是( )A .(∁UB )∩A B .(∁U A )∩BC .∁U (A ∩B )D .∁U (A ∪B )3. 已知两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,则实数a 等于( ) A .1或﹣3 B .﹣1或3 C .1或3 D .﹣1或﹣34. 图1是由哪个平面图形旋转得到的( )A .B .C .D . 5. 三个数60.5,0.56,log 0.56的大小顺序为( ) A .log 0.56<0.56<60.5 B .log 0.56<60.5<0.56C .0.56<60.5<log 0.56D .0.56<log 0.56<60.56. 设等差数列{a n }的前n 项和为S n ,已知S 4=﹣2,S 5=0,则S 6=( )A .0B .1C .2D .37. 对于任意两个正整数m ,n ,定义某种运算“※”如下:当m ,n 都为正偶数或正奇数时,m ※n=m+n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ※n=mn .则在此定义下,集合M={(a ,b )|a ※b=12,a ∈N *,b ∈N *}中的元素个数是( ) A .10个 B .15个 C .16个 D .18个8. 函数21()ln 2f x x x ax =++存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力. 9. 一个几何体的三视图如图所示,则该几何体的体积是( )A .64B .72C .80D .112【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力. 10.对一切实数x ,不等式x 2+a|x|+1≥0恒成立,则实数a 的取值范围是( ) A .(﹣∞,﹣2) B . D .上是减函数,那么b+c ( )A .有最大值B .有最大值﹣C .有最小值D .有最小值﹣11.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( ) A .y=sinxB .y=1g2xC .y=lnxD .y=﹣x 3【考点】函数单调性的判断与证明;函数奇偶性的判断. 【专题】函数的性质及应用.【分析】根据正弦函数的单调性,对数的运算,一次函数的单调性,对数函数的图象及单调性的定义即可判断每个选项的正误,从而找出正确选项.12.经过点()1,1M 且在两轴上截距相等的直线是( ) A .20x y +-= B .10x y +-=C .1x =或1y =D .20x y +-=或0x y -=二、填空题13.已知1sin cos 3αα+=,(0,)απ∈,则sin cos 7sin 12ααπ-的值为 .14.在ABC ∆中,90C ∠=,2BC =,M 为BC 的中点,1sin 3BAM ∠=,则AC 的长为_________.15.在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 .16.函数()y f x =的定义域是[]0,2,则函数()1y f x =+的定义域是__________.111] 17.函数的单调递增区间是 .18.设函数则______;若,,则的大小关系是______.三、解答题19.(本小题满分10分)已知曲线22:149x y C +=,直线2,:22,x t l y t =+⎧⎨=-⎩(为参数). (1)写出曲线C 的参数方程,直线的普通方程;(2)过曲线C 上任意一点P 作与夹角为30的直线,交于点A ,求||PA 的最大值与最小值.20.如图所示,在正方体ABCD ﹣A 1B 1C 1D 1中,E 、F 分别是棱DD 1、C 1D 1的中点. (Ⅰ)证明:平面ADC 1B 1⊥平面A 1BE ; (Ⅱ)证明:B 1F ∥平面A 1BE ;(Ⅲ)若正方体棱长为1,求四面体A 1﹣B 1BE 的体积.21.(本小题满分12分)某校高二奥赛班N 名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100-110的学生 数有21人.(1)求总人数N 和分数在110-115分的人数; (2)现准备从分数在110-115的名学生(女生占13)中任选3人,求其中恰好含有一名女生的概率; (3)为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩 (满分150分),物理成绩y 进行分析,下面是该生7次考试的成绩.已知该生的物理成绩y 与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理 成绩大约是多少?附:对于一组数据11(,)u v ,22(,)u v ……(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分 别为:^121()()()niii nii u u v v u u β==--=-∑∑,^^a v u β=-.22.△ABC中,角A,B,C所对的边之长依次为a,b,c,且cosA=,5(a2+b2﹣c2)=3ab.(Ⅰ)求cos2C和角B的值;(Ⅱ)若a﹣c=﹣1,求△ABC的面积.23.某公司对新研发的一种产品进行合理定价,且销量与单价具有相关关系,将该产品按事先拟定的价格进行(1)现有三条y对x的回归直线方程:=﹣10x+170;=﹣20x+250;=﹣15x+210;根据所学的统计学知识,选择一条合理的回归直线,并说明理由.(2)预计在今后的销售中,销量与单价服从(1)中选出的回归直线方程,且该产品的成本是每件5元,为使公司获得最大利润,该产品的单价应定多少元?(利润=销售收入﹣成本)24.已知x2﹣y2+2xyi=2i,求实数x、y的值.城阳区第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B第2.【答案】A【解析】解:由图象可知,阴影部分的元素由属于集合A,但不属于集合B的元素构成,∴对应的集合表示为A∩∁U B.故选:A.3.【答案】A【解析】解:两条直线ax+y﹣2=0和3x+(a+2)y+1=0互相平行,所以=≠,解得a=﹣3,或a=1.故选:A.4.【答案】A【解析】试题分析:由题意得,根据旋转体的概念,可知该几何体是由A选项的平面图形旋转一周得到的几何体故选A.考点:旋转体的概念.5.【答案】A【解析】解:∵60.5>60=1,0<0.56<0.50=1,log0.56<log0.51=0.∴log 0.56<0.56<60.5. 故选:A【点评】本题考查了不等关系与不等式,考查了指数函数和对数函数的性质,对于此类大小比较问题,有时借助于0和1为媒介,能起到事半功倍的效果,是基础题.6. 【答案】D 【解析】解:设等差数列{a n }的公差为d ,则S 4=4a 1+d=﹣2,S 5=5a 1+d=0,联立解得,∴S 6=6a 1+d=3故选:D【点评】本题考查等差数列的求和公式,得出数列的首项和公差是解决问题的关键,属基础题.7. 【答案】B【解析】解:a ※b=12,a 、b ∈N *,若a 和b 一奇一偶,则ab=12,满足此条件的有1×12=3×4,故点(a ,b )有4个;若a 和b 同奇偶,则a+b=12,满足此条件的有1+11=2+10=3+9=4+8=5+7=6+6共6组,故点(a ,b )有2×6﹣1=11个,所以满足条件的个数为4+11=15个. 故选B8. 【答案】D 【解析】因为1()f x x a x'=++,直线的03=-y x 的斜率为3,由题意知方程13x a x ++=(0x >)有解,因为12x x+?,所以1a £,故选D . 9. 【答案】C. 【解析】10.【答案】B【解析】解:由f (x )在上是减函数,知f′(x)=3x2+2bx+c≤0,x∈,则⇒15+2b+2c≤0⇒b+c≤﹣.故选B.11.【答案】B【解析】解:根据y=sinx图象知该函数在(0,+∞)不具有单调性;y=lg2x=xlg2,所以该函数是奇函数,且在(0,+∞)上单调递增,所以选项B正确;根据y=lnx的图象,该函数非奇非偶;根据单调性定义知y=﹣x3在(0,+∞)上单调递减.故选B.【点评】考查正弦函数的单调性,对数的运算,以及一次函数的单调性,对数函数的图象,奇偶函数图象的对称性,函数单调性的定义.12.【答案】D【解析】考点:直线的方程.二、填空题13.【解析】7sinsin sin cos cos sin 12434343πππππππ⎛⎫=+=+ ⎪⎝⎭=,sincos 73sin 12ααπ-∴==,故答案为3.考点:1、同角三角函数之间的关系;2、两角和的正弦公式.14.【解析】考点:1、正弦定理及勾股定理;2诱导公式及直角三角形的性质.【方法点睛】本题主要考查正弦定理及勾股定理、诱导公式及直角三角形的性质,属于难题,高考三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正弦定理、余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可, 对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及面积公式实现边角互化,求出相关的边和角的大小,有时也要考虑特殊三角形的特殊性质(如正三角形,直角三角形等). 15.【答案】.【解析】解:过CD作平面PCD,使AB⊥平面PCD,交AB与P,设点P到CD的距离为h,则有V=×2×h××2,当球的直径通过AB与CD的中点时,h最大为2,则四面体ABCD的体积的最大值为.故答案为:.【点评】本小题主要考查棱柱、棱锥、棱台的体积、球内接多面体等基础知识,考查运算求解能力,考查空间想象力.属于基础题.-16.【答案】[]1,1【解析】考点:函数的定义域.17.【答案】[2,3).【解析】解:令t=﹣3+4x﹣x2>0,求得1<x<3,则y=,本题即求函数t在(1,3)上的减区间.利用二次函数的性质可得函数t在(1,3)上的减区间为[2,3),故答案为:[2,3).18.【答案】,【解析】【知识点】函数图象分段函数,抽象函数与复合函数【试题解析】,因为,所以又若,结合图像知:所以:。

山东省青岛市城阳区2018届高三上学期学分认定考试(期末)英语试题Word版含答案

山东省青岛市城阳区2018届高三上学期学分认定考试(期末)英语试题Word版含答案

2017-2018学年度第一学期期末学分认定高三英语(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷由四个部分组成。

其中,第一、二部分和第三部分的第一节为选择题。

第三部分的第二节和第四部分为非选择题。

2.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

3.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

第一部分:听力(共20小题,每题1.5分,满分30分)做题时,先将答案标在试卷上。

录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1.What does the man suggest the woman do?A.Buy a new dress. B.Get the dress tailored.C.Exchange the dress.2.What are the speakers talking about?A.A holiday plan. B.A fancy restaurant.C.A birthday celebration.3.What did the woman do for Mary last night?A.She let Mary sleep in her house.B.She gave Mary a phone call.C.She fixed Mary’s call.4.Where do the speakers plan to go?A.The theater. B.Their mom’s office.C.Their grandma’s house.5.Who will begin the lecture now?A.Dr.White. B.Dr.Mildens.C.Prof.Brookings.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

最新-山东省青岛市城阳区2018学年第一学期高三期末统

最新-山东省青岛市城阳区2018学年第一学期高三期末统

山东省青岛市城阳区2018-2018学年第一学期高三期末统一质量检测生物试题注意事项:1、本试题分第Ⅰ卷和第Ⅱ卷两部分。

第Ⅰ卷为选择题,45分;第Ⅱ卷为非选择题,55分,满分100分。

考试时间90分钟。

2、答第Ⅰ卷前务必将自己的姓名、考号、考试科目涂写在答题卡上。

3、第Ⅰ卷每题选出答案后,都必须用2B铅笔把答题卡上对应题目的答案标号[ABCD]涂黑,如需改动,必须先用橡皮擦干净,再改涂其他答案。

第I卷(选择题,共45分)本大题含30小题,每小题1.5分,共45分。

每题的四个选项中只有一个选项符合题目要求。

1.下列细胞内的反应发生在生物膜上的是A.DNA复制 B.暗反应 C.叶绿素a被激发失去电子 D.氨基酸脱水缩合2.在不断增长的癌组织中,癌细胞A.通过减数分裂不断增殖 B.都有染色单体 C.都能合成蛋白质 D.DNA 量都相等3.基因是有“遗传效应的”DNA片段,下列哪项不是“遗传效应”的含义A.能控制一种生物性状的表现B.能控制一种蛋白的合成C.能决定一种氨基酸的位置D.能转录成一种mRNA4.下列结构中存在突触的是①一个神经元内②脊髓③大脑皮层④树突→轴突⑤轴突→树突⑥轴突→细胞体⑦一个完整的反射弧内⑧感觉神经元与运动神经元之间A.②③⑤⑥⑦⑧ B.②③⑤⑥⑦ C.①②③⑤⑥⑦⑧ D.④⑤⑥⑦5.能在细胞分裂间期起作用的措施是①农作物的诱变育种②用秋水仙素使染色体数目加倍③肿瘤的治疗④花粉离体培养A.①③ B.①④ C.②③ D.②④6.下列有关基因和染色体的叙述,不支持“基因在染色体上”这一结论的选项A.在向后代传递过程中,都保持完整性和独立性B.在体细胞中都成对存在,都分别来自父母双方C.减数第一次分裂过程中,基因和染色体行为完全一致D.果蝇的眼色有白色和红色等性状7.下列过程发生在人体内环境中的是A.神经递质与受体结合 B.葡萄糖脱氢分解产生丙酮酸C.食物中的蛋白质经消化被分解成氨基酸 D.胰岛细胞合成胰岛素8.下列关于生物膜的叙述,不正确的是A.细胞完成分化以后,其细胞膜的通透性稳定不变B.膜的流动性是细胞生物膜相互转化的基础C.特异性免疫系统通过细胞膜表面的分子识别“自己”和“非已”D.分泌蛋白质合成越旺盛的细胞,其高尔基体膜成分的更新速度越快9.左下图为某植物根示意图,右下图是左下图中的P、Q、R的放大示意图。

山东省青岛市城阳第一中学2018年高三地理期末试卷含解析

山东省青岛市城阳第一中学2018年高三地理期末试卷含解析

山东省青岛市城阳第一中学2018年高三地理期末试卷含解析一、选择题(每小题2分,共52分)1. 读欧洲1月和7月等温线分布图,完成关于图中各地等温线分布及其成因的叙述错误的是A.E地等温线弯曲是因为洋流的影响B.山脉分布导致D地等温线弯曲C.A、B两地等温线密度的差异是由于地形的原因造成的D.地形对欧洲冬夏季气温的影响都比较明显参考答案:A2.上图是北半球部分地区某时刻地面天气图。

此时可能出现的现象是A.地球公转到远日点附近 B.太阳耀斑爆发C.我国大部分地区太阳早于6:00升起 D.太阳直射北半球参考答案:B3. 2018年1月中下旬,一场暴雪席卷我国江淮部分地区,积雪厚度达到35cm,雪后持续低温晴朗天气。

下图为江淮地区雪后第五天拍摄的一多层楼房房顶照片,照片显示该屋顶西面积雪面积较小,东面积雪面积较西面大,正南面仍被积雪完全覆盖,北面积雪面积最小,而当时地面积雪几乎没有融化。

据此完成4-6题。

4. 屋顶正南面积雪保存较完整的原因最可能是A. 正前方有建筑遮挡阳光B. 积雪厚反射太阳辐射多C. 背阳面吸收太阳辐射多D. 向阳面吸收太阳辐射多5. 屋顶西面积雪融化较东面快的原因是一天中A. 太阳照射西面时气温B. 太阳照射东面的时间短C. 太阳照射西面的时间长D. 太阳照射东面时高度角小6. 照片中东侧屋顶西面的积雪面积大于西侧屋顶西面的积雪面积,形成此现象的主要因素是A. 气温B. 坡度C. 日照时间D. 风向参考答案:4. B5. A6. C4. 屋顶正南方向位于西北季风的背风地带,积雪较厚,厚厚的积雪反射太阳辐射能力强,使得地面吸收太阳辐射少,地面温度低,不利于积雪融化,而南方为向阳坡,与是否有建筑物遮挡阳光关系不大,南面为向阳面,如果吸收太阳辐射多则应当融化快,故选B。

5. 屋顶西侧积雪融化快,说明太阳照射西侧时气温较高,并且随着地面辐射的增强,在下午2点左右气温达到最高,A对。

从太阳辐射的时间和照射时长没有什么差异,BC错。

2018年高三最新 城阳区2018学年度第一学期期终统一质

2018年高三最新 城阳区2018学年度第一学期期终统一质

城阳区2018—2018学年度第一学期期终统一质量检测高三数学试卷本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷1至2页,第II 卷3至8页,满分150分,考试时间120分钟。

注意事项:1. 答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。

3. 考试结束后,监考人将答题卡连同第II 卷一起收回。

第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的。

1.已知函数))((b x a x f y ≤≤=,则集合{}b x a x f y y x ≤≤=),(|),({}(,)|0x y x = 中含有元素的个数为 ( ) (A )0 (B )1或0 (C )1 (D )1或2 2.已知βαβαβαcos cos ,31)cos()cos(则=-++的值为 ( )A .21 B .31 C .41 D .61 3.下列判断错误的是( )A .命题“若q 则p ”与命题“若p ⌝则q ⌝”互为逆否命题B .“am 2<bm 2”是“a<b ”的充要条件C .“矩形的两条对角线相等”的否命题为假D .命题“}2,1{4}2,1{∈⊂或φ”为真(其中φ为空集)4.若实数a 、b 满足ab<0,则有( )A .|a -b|<|a|-|b|B .|a -b|<|a|+|b|C .|a+b|>|a -b|D .|a+b|<|a -b|5.在棱长为1的正方体AC 1中,对角线AC 1在六个面上的射影长度总和为 ( )A .63B .62C .6D .36 6.图中阴影部分可用哪一组二元一次不等式表示( )A .⎩⎨⎧≥+--≥0221y x yB .⎩⎨⎧≤+--≥0221y x yC .⎪⎩⎪⎨⎧≥+--≥≤02210y x y xD .⎪⎩⎪⎨⎧≤+--≥≤02210y x y x7.生物学指出:生态系统中,在输入一个营养级的能量中,大约10%的能量能够流到下一 个营养级。

山东省青岛市第一中学高一2018-2019学年度第二学期期末考试数学试题(word版 无答案)

山东省青岛市第一中学高一2018-2019学年度第二学期期末考试数学试题(word版  无答案)

青岛一中2018-2019学年第二学期期末测试一、选择(每小题5分共60分)1.过点(3,0)和点(4,)的直线的倾斜角是( )A .30° B.60° C.120° D .150°2.数列{}n a 为等比数列,且21a =,公比2q =,则4a =( )A. 2B. 4C. 8D. 163.设,且,则下列不等式成立的是( )A. B. C. D.4.在ABC ∆中, ,,A B C ∠∠∠所对的边分别为,,a b c ,若8,60,75a B C =∠=︒∠=︒,则b 等于( )A. D.323 5.若变量,满足约束条件,则的最大值和最小值分别为( ) A. 和 B. 和 C. 和 D. 和与DC1所成角的余弦值是(平面ABC,则三棱锥D1-ABC15、过点(2,−3),在两坐标轴上的截距互为相反数的直线方程为___.16、设l ,m ,n 为三条不同的直线,α、β为两个不同的平面,给出下列四个判断: ①若l ⊥α,m ⊥l ,m ⊥β,则α⊥β;②若m ⊂β,n 是l 在β内的射影,n ⊥m ,则m ⊥l ;③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;④若球的表面积扩大为原来的16倍,则球的体积扩大为原来的32倍;其中正确的为___.三、解答(共70分)17、(10分)如图,在平行四边形ABCD 中,边AB 所在直线的方程为022=--y x ,点C(2,0).(Ⅰ)求直线CD 的方程;(Ⅱ)求AB 边上的高CE 所在直线的方程.18、(12分)如图,长方体ABCD −A 1B 1C 1D 1中,AB =AD =1,AA 1=2,点P 为DD 1的中点。

(1)求证:直线BD 1∥平面PAC ;21、(12分)已知直线l的方程为(2−m)x+(2m+1)y+3m+4=0,其中m∈R.(1)求证:直线l恒过定点;(2)当m变化时,求点P(3,1)到直线l的距离的最大值;(3)若直线l分别与x轴、y轴的负半轴交于A,B两点,求△AOB面积的最小值及此时直线l的方程。

城阳区第一中学2018-2019学年高二上学期第二次月考试卷物理

城阳区第一中学2018-2019学年高二上学期第二次月考试卷物理

城阳区第一中学2018-2019学年高二上学期第二次月考试卷物理班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2017武昌模拟)一质量为m的带电小球,在竖直方向的匀强电场中以水平速度抛出,小球的加速度竖直向下,大小为2g/3,空气阻力不计。

小球在下落h个过程中,关于其能量的变化,下列说法中正确的是A.动能增加了mgh/3B.电势能增加了mgh/3C.重力势能减少了2mgh/3D.机械能减少了mgh/3【答案】BD【解析】2.一根长为L、横截面积为S的金属棒,其材料的电阻率为,棒内单位体积自由电子数为n,电子的质量为m,电荷量为e。

在棒两端加上恒定的电压时,棒内产生电流,自由电子定向运动的平均速率为v,若已知金属棒内的电场为匀强电场,则金属棒内的电场强度大小为A. B.C. D.【答案】C【解析】电场强度可表示为E=①,其中L为金属棒长度,U为金属棒两端所加的电动势,而U=IR②,其中③,④,联立①②③④,可得E=nevρ,故C项正确.视频3.横截面积为S的铜导线,流过的电流为I,设单位体积的导体中有n个自由电子,电子的电荷量为e,此时电子的定向移动的平均速率设为v,在时间内,通过导线横截面的自由电子数为A. B.C. D.【答案】A【解析】根据电流的微观表达式I=nevS,在△t时间内通过导体横截面的自由电子的电量Q=I△t,则在△t时间内,通过导体横截面的自由电子的数目为,将I=nevS代入得,选项A正确,BCD错误;故选A.点睛:本题考查电流的微观表达式和定义式综合应用的能力,电流的微观表达式I=nqvs,是联系宏观与微观的桥梁,常常用到.4.一个物体以初速度v0沿光滑斜面向上运动,其速度v随时间t变化的规律如图所示,在连续两段时间m 和n内对应面积均为S,则b时刻瞬时速度v b的大小为A. B.C. D.【答案】C【解析】设b点的速度为v b,加速度为a,根据位移时间公式:可得:和,速度位移间的关系为:v b=v a+am,联立解得:,故C正确,ABD错误。

山东省青岛市城阳第一中学高二生物下学期期末试题含解析

山东省青岛市城阳第一中学高二生物下学期期末试题含解析

山东省青岛市城阳第一中学高二生物下学期期末试题含解析一、选择题(本题共40小题,每小题1.5分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 孟德尔选用豌豆作为遗传实验材料的理由及对豌豆进行异花授粉前的处理是:①豌豆是闭花授粉植物;②豌豆在自然状态下是纯种;③用豌豆作实验材料有直接经济价值;④各品种间具有一些稳定的、差异较大而且容易区分的性状;⑤开花期母本去雄,然后套袋;⑥花蕾期母本去雄,然后套袋。

A. ①②③④⑥B. ①②⑤⑥C.①②④⑥ D.②③④⑥参考答案:C2. 马(2N=64)和驴(2N=62)杂交能产生后代称骡子,能够正常发育,但不能生育,这种情况称之为(),上述情况产生的原因是()A、杂交育种;染色体结构发生了变化B、生殖隔离;发生了突变C、基因重组;马和驴的遗传物质有本质区别D、生殖隔离;减数分裂过程中联会紊乱参考答案:D3. 下列关于种群数量变化的叙述中,不正确的是A.在理想条件下,种群数量增长的数学模型为:N t=N0λtB.一个物种引入新的地区后,一定呈“J”型增长C.对家鼠等有害动物的控制,要尽量降低其K值D.一个呈“S”型增长的种群,数量在K/2左右时增长率最大参考答案:B4. 脂质存在于所有的细胞中,是组成细胞和生物体的重要的有机化合物.常见的脂质有脂肪、磷脂和固醇等.下列对脂质描述错误的是()A.磷脂在动物的脑、卵和大豆种子中含量很丰富,是所有细胞都必不可少的成分B.等量的脂肪比糖类完全氧化放出的能量多,因而是生物体利用的主要能源物质C.胆固醇是构成动物细胞膜的重要成分,但在膳食中要限制高胆固醇食物的过量摄入D.人体中有的激素和维生素也是脂质,脂质分子中O的相对含量远远少于糖类参考答案:B【考点】1N:脂质的种类及其功能.【分析】脂质主要是由C、H、O 3种化学元素组成,有些还含有N和P.脂质包括脂肪、磷脂、和固醇.脂肪是生物体内的储能物质.除此以外,脂肪还有保温、缓冲、减压的作用;磷脂是构成包括细胞膜在内的膜物质重要成分;固醇类物质主要包括胆固醇、性激素、维生素D等,这些物质对于生物体维持正常的生命活动,起着重要的调节作用.【解答】解:A、磷脂是构成包括细胞膜在内的膜物质重要成分,磷脂在动物的脑、卵和大豆种子中含量很丰富,A正确;B、脂肪是生物体内的储能物质,糖类是主要的能源物质,B错误;C、胆固醇是构成动物细胞膜的重要成分,在人体内还参与血液中脂质的运输,过多摄入胆固醇,会造成血管堵塞,C正确;D、固醇类物质主要包括胆固醇、性激素、维生素D等,脂质分子中O的相对含量远远少于糖类,D正确.故选:B.【点评】本题考查脂质的分类和功能,对基础知识的记忆和理解是解题的关键.5. 在下列物质或过程中,不会在人体内环境中出现的是( )①血红蛋白②葡萄糖③葡萄糖分解产生丙酮酸和还原氢④二氧化碳⑤食物中蛋白质分解成氨基酸⑥甲状腺激素的运输⑦乙酰胆碱⑧尿素⑨维生素A.②③④⑥ B.①③⑤ C.①③⑦ D .③⑤⑥⑧⑨参考答案:B6. 如图表示刺激强度逐渐增加时,下一个神经元膜电位的变化规律,下列叙述正确的是()A.刺激要达到一定的强度,才能诱导神经细胞产生兴奋B.刺激强度达到S5以后,随自己强度增加兴奋逐渐增强C.兴奋时,细胞膜对Na+通透性增大,Na+内流D.膜内外K+、Na+分布不均匀是兴奋传导的基础参考答案:ACD【考点】D6:细胞膜内外在各种状态下的电位情况;D9:神经冲动的产生和传导.【分析】根据题意和图示分析可知:刺激强度从S1增加到S4过程中,没有电位变化;S5增强到S8过程中,电位有变化,但电位变化并没随刺激增强而增强.细胞膜内外K+、Na+分布不均匀是神经纤维兴奋传导的基础.兴奋产生时未兴奋部位的膜电位为外正内负,兴奋部位的膜电位为外负内正.【解答】解:A、由图中曲线可知,刺激强度低时,膜电位无变化,当刺激强度达到S5时,膜电位发生改变,说明刺激要达到一定的强度才能诱导神经细胞产生动作电位,A正确;B、刺激强度达到S5以后,虽然刺激强度不断增强,但兴奋强度不再增强,B错误;C、兴奋时,细胞膜对Na+通透性增大,Na+内流,使膜电位变为内正外负,C正确;D、K+主要存在于细胞内,Na+主要存在于细胞外,离子的分布不均匀是神经纤维上兴奋传导的基础,D 正确.故选:ACD.【点评】本题考查神经细胞膜电位变化的相关知识,意在考查学生的识图能力和判断能力,运用所学知识综合分析问题的能力.7. 下列各项中能被看作是进入内环境的是()A. 精子进入输卵管与卵受精B. 牛奶喝入胃中C. 静脉注射胰岛素D. 血液中的氧进入组织细胞中参考答案:C8. 镇疼药并不损伤神经元结构,却能在一段时间内阻断神经冲动向感觉中枢的传导,它的作用部位在A.细胞体B.轴突C.突触间隙D.树突参考答案:C9. 影响花药离体培养的主要因素是A.材料的选择与培养基的组成 B.亲本植株的生理状况C.选择合适的花粉发育时期 D.材料的低温处理与接种密度参考答案:A10. 并指Ⅰ型是一种人类遗传病,该病受一对等位基因(A,a)控制。

城阳区高级中学2018-2019学年上学期高二数学12月月考试题含解析

城阳区高级中学2018-2019学年上学期高二数学12月月考试题含解析

城阳区高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________ 一、选择题1.∃x∈R,x2﹣2x+3>0的否定是()A.不存在x∈R,使∃x2﹣2x+3≥0 B.∃x∈R,x2﹣2x+3≤0C.∀x∈R,x2﹣2x+3≤0 D.∀x∈R,x2﹣2x+3>02.下列图象中,不能作为函数y=f(x)的图象的是()A.B.C.D.3.已知a=,b=20.5,c=0.50.2,则a,b,c三者的大小关系是()A.b>c>a B.b>a>c C.a>b>c D.c>b>a4.过点(﹣1,3)且平行于直线x﹣2y+3=0的直线方程为()A.x﹣2y+7=0 B.2x+y﹣1=0 C.x﹣2y﹣5=0 D.2x+y﹣5=05.已知函数f(x)满足f(x)=f(π﹣x),且当x∈(﹣,)时,f(x)=e x+sinx,则()A.B.C.D.6.已知,y满足不等式430,35250,1,x yx yx-+≤⎧⎪+-≤⎨⎪≥⎩则目标函数2z x y=+的最大值为()A .3B .132C .12D .15 7. 已知抛物线24y x =的焦点为F ,(1,0)A -,点P 是抛物线上的动点,则当||||PF PA 的值最小时,PAF ∆的面积为( )A.2B.2C. D. 4【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力. 8. 如图,设全集U=R ,M={x|x >2},N={0,1,2,3},则图中阴影部分所表示的集合是( )A .{3}B .{0,1}C .{0,1,2}D .{0,1,2,3}9. 等比数列{a n }中,a 3,a 9是方程3x 2﹣11x+9=0的两个根,则a 6=( ) A .3B.C .±D .以上皆非10.若直线2y x =上存在点(,)x y 满足约束条件30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩则实数m 的最大值为 A 、1- B 、 C 、32D 、2 11.用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数12.已知α是△ABC 的一个内角,tan α=,则cos (α+)等于( )A. B.C.D.二、填空题13.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角∠MAN=60°,C 点的仰角∠CAB=45°以及∠MAC=75°;从C 点测得∠MCA=60°.已知山高BC=100m ,则山高MN= m .14.若与共线,则y= .15.设函数32()(1)f x x a x ax =+++有两个不同的极值点1x ,2x ,且对不等式12()()0f x f x +≤ 恒成立,则实数的取值范围是 .16.已知1a b >>,若10log log 3a b b a +=,b a a b =,则a b += ▲ .17.已知函数f (x )=,若关于x 的方程f (x )=k 有三个不同的实根,则实数k 的取值范围是 .18.设数列{a n }的前n 项和为S n ,已知数列{S n }是首项和公比都是3的等比数列,则{a n }的通项公式a n = .三、解答题19.【常州市2018届高三上武进区高中数学期中】已知函数()()221ln f x ax a x x =+--,R a ∈.⑴若曲线()y f x =在点()()1,1f 处的切线经过点()2,11,求实数a 的值; ⑵若函数()f x 在区间()2,3上单调,求实数a 的取值范围; ⑶设()1sin 8g x x =,若对()10,x ∀∈+∞,[]20,πx ∃∈,使得()()122f x g x +≥成立,求整数a 的最小值.20.已知函数f (x )=x 3+ax+2.(Ⅰ)求证:曲线=f (x )在点(1,f (1))处的切线在y 轴上的截距为定值;(Ⅱ)若x ≥0时,不等式xe x +m[f ′(x )﹣a]≥m 2x 恒成立,求实数m 的取值范围.21.已知函数f(x)=alnx﹣x(a>0).(Ⅰ)求函数f(x)的最大值;(Ⅱ)若x∈(0,a),证明:f(a+x)>f(a﹣x);(Ⅲ)若α,β∈(0,+∞),f(α)=f(β),且α<β,证明:α+β>2α22.已知抛物线C:x2=2py(p>0),抛物线上一点Q(m,)到焦点的距离为1.(Ⅰ)求抛物线C的方程(Ⅱ)设过点M(0,2)的直线l与抛物线C交于A,B两点,且A点的横坐标为n(n∈N*)(ⅰ)记△AOB的面积为f(n),求f(n)的表达式(ⅱ)探究是否存在不同的点A,使对应不同的△AOB的面积相等?若存在,求点A点的坐标;若不存在,请说明理由.23.某滨海旅游公司今年年初用49万元购进一艘游艇,并立即投入使用,预计每年的收入为25万元,此外每年都要花费一定的维护费用,计划第一年维护费用4万元,从第二年起,每年的维修费用比上一年多2万元,设使用x年后游艇的盈利为y万元.(1)写出y与x之间的函数关系式;(2)此游艇使用多少年,可使年平均盈利额最大?24.如图,三棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O 为AC中点.(Ⅰ)证明:A1O⊥平面ABC;(Ⅱ)求直线A1C与平面A1AB所成角的正弦值;(Ⅲ)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置.城阳区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:因为特称命题的否定是全称命题,所以,∃x∈R,x2﹣2x+3>0的否定是:∀x∈R,x2﹣2x+3≤0.故选:C.2.【答案】B【解析】解:根据函数的定义可知,对应定义域内的任意变量x只能有唯一的y与x对应,选项B中,当x >0时,有两个不同的y和x对应,所以不满足y值的唯一性.所以B不能作为函数图象.故选B.【点评】本题主要考查函数图象的识别,利用函数的定义是解决本题的关键,注意函数的三个条件:非空数集,定义域内x的任意性,x对应y值的唯一性.3.【答案】A【解析】解:∵a=0.50.5,c=0.50.2,∴0<a<c<1,b=20.5>1,∴b>c>a,故选:A.4.【答案】A【解析】解:由题意可设所求的直线方程为x﹣2y+c=0∵过点(﹣1,3)代入可得﹣1﹣6+c=0 则c=7∴x﹣2y+7=0故选A.【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x﹣2y+c=0.5.【答案】D【解析】解:由f(x)=f(π﹣x)知,∴f()=f(π﹣)=f(),∵当x∈(﹣,)时,f(x)=e x+sinx为增函数∵<<<,∴f()<f()<f(),∴f()<f()<f(),故选:D6.【答案】C考点:线性规划问题.【易错点睛】线性规划求解中注意的事项:(1)线性规划问题中,正确画出不等式组表示的平面区域是解题的基础.(2)目标函数的意义,有的可以用直线在y轴上的截距来表示,还有的可以用两点连线的斜率、两点间的距离或点到直线的距离来表示.(3)线性目标函数的最值一般在可行域的顶点或边界上取得,特别地对最优整数解可视情况而定.7.【答案】B【解析】设2(,)4yP y,则21||||yPFPA+=.又设214yt+=,则244y t=-,1t…,所以||||2PFPA==,当且仅当2t=,即2y=±时,等号成立,此时点(1,2)P±,PAF∆的面积为11||||22222AF y⋅=⨯⨯=,故选B.8.【答案】C【解析】解:由图可知图中阴影部分所表示的集合∁M ∩N , ∵全集U=R ,M={x|x >2},N={0,1,2,3}, ∴∁M ={x|x ≤2}, ∴∁M ∩N={0,1,2}, 故选:C【点评】本题主要考查集合的基本运算,根据条件确定集合的基本关系是解决本题的关键.9. 【答案】C【解析】解:∵a 3,a 9是方程3x 2﹣11x+9=0的两个根, ∴a 3a 9=3,又数列{a n }是等比数列,则a 62=a 3a 9=3,即a 6=±.故选C10.【答案】B【解析】如图,当直线m x =经过函数x y 2=的图象 与直线03=-+y x 的交点时,函数x y 2=的图像仅有一个点P 在可行域内,由230y x x y =⎧⎨+-=⎩,得)2,1(P ,∴1≤m .11.【答案】B【解析】解:∵结论:“自然数a ,b ,c 中恰有一个偶数”可得题设为:a ,b ,c 中恰有一个偶数∴反设的内容是 假设a ,b ,c 中至少有两个偶数或都是奇数.故选B .【点评】此题考查了反证法的定义,反证法在数学中经常运用,当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓“正难则反“.12.【答案】B【解析】解:由于α是△ABC 的一个内角,tan α=, 则=,又sin 2α+cos 2α=1,42541415432解得sin α=,cos α=(负值舍去).则cos (α+)=coscos α﹣sinsin α=×(﹣)=.故选B .【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题.二、填空题13.【答案】 150【解析】解:在RT △ABC 中,∠CAB=45°,BC=100m ,所以AC=100m .在△AMC 中,∠MAC=75°,∠MCA=60°,从而∠AMC=45°,由正弦定理得,,因此AM=100m .在RT △MNA 中,AM=100m ,∠MAN=60°,由得MN=100×=150m .故答案为:150.14.【答案】 ﹣6 .【解析】解:若与共线,则2y ﹣3×(﹣4)=0解得y=﹣6 故答案为:﹣6【点评】本题考查的知识点是平面向量共线(平行)的坐标表示,其中根据“两个向量若平行,交叉相乘差为零”的原则,构造关于y 的方程,是解答本题的关键.15.【答案】1(,1],22⎡⎤-∞-⎢⎥⎣⎦【解析】试题分析:因为12()()0f x f x +≤,故得不等式()()()332212121210x x a x x a x x ++++++≤,即()()()()()221212121212123120x x x x x x a x x x x a x x ⎡⎤⎡⎤++-+++-++≤⎣⎦⎣⎦,由于()()2'321f x x a x a =+++,令()'0f x =得方程()23210x a x a +++=,因()2410a a ∆=-+> , 故()12122133x x a a x x ⎧+=-+⎪⎪⎨⎪=⎪⎩,代入前面不等式,并化简得()1a +()22520a a -+≥,解不等式得1a ≤-或122a ≤≤,因此, 当1a ≤-或122a ≤≤时, 不等式()()120f x f x +≤成立,故答案为1(,1],22⎡⎤-∞-⎢⎥⎣⎦.考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.【思路点晴】本题主要考查利用导数研究函数的极值点、韦达定理及高次不等式的解法,属于难题.要解答本题首先利用求导法则求出函数()f x 的到函数,令()'0f x =考虑判别式大于零,根据韦达定理求出1212,x x x x +的值,代入不等式12()()0f xf x +≤,得到关于的高次不等式,再利用“穿针引线”即可求得实数的取值范围.111] 16.【答案】 【解析】试题分析:因为1a b >>,所以log 1b a >,又101101log log log log 33log 33a b b b b b a a a a +=⇒+=⇒=或(舍),因此3a b =,因为b a a b =,所以3333,1b b b b b bb b a =⇒=>⇒=a b +=考点:指对数式运算17.【答案】 (0,1) .【解析】解:画出函数f (x )的图象,如图示:令y=k ,由图象可以读出:0<k <1时,y=k 和f (x )有3个交点, 即方程f (x )=k 有三个不同的实根, 故答案为(0,1).【点评】本题考查根的存在性问题,渗透了数形结合思想,是一道基础题.18.【答案】 .【解析】解:∵数列{S n }是首项和公比都是3的等比数列,∴S n =3n.故a 1=s 1=3,n ≥2时,a n =S n ﹣s n ﹣1=3n ﹣3n ﹣1=2•3n ﹣1,故a n =.【点评】本题主要考查等比数列的通项公式,等比数列的前n 项和公式,数列的前n 项的和Sn 与第n 项an 的关系,属于中档题.三、解答题19.【答案】⑴2a =⑵11,,64⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭⑶2【解析】试题分析:(1)根据题意,对函数f x ()求导,由导数的几何意义分析可得曲线y f x =()在点11f (,())处的切线方程,代入点211(,),计算可得答案; (2)由函数的导数与函数单调性的关系,分函数在(23,)上单调增与单调减两种情况讨论,综合即可得答案;(3)由题意得,2min max f x g x +≥()(),分析可得必有()()215218f x ax a x lnx +--≥= ,对f x ()求导,对a 分类讨论即可得答案. 试题解析:⑵()()()211'ax x f x x-+=,∴若函数()f x 在区间()2,3上单调递增,则210y ax =-≥在()2,3恒成立,410{ 610a a -≥∴-≥,得14a ≥;若函数()f x 在区间()2,3上单调递减,则210y ax =-≤在()2,3恒成立,410{610a a -≤∴-≤,得16a ≤,综上,实数a 的取值范围为11,,64⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭;⑶由题意得,()()min max 2f x g x +≥,()max 128g x g π⎛⎫== ⎪⎝⎭,()min 158f x ∴≥,即()()21521ln 8f x ax a x x =+--≥,由()()()()()222112111'221ax a x ax x f x ax a x x x+---+=+--==, 当0a ≤时,()10f <,则不合题意;当0a >时,由()'0f x =,得12x a=或1x =-(舍去), 当102x a<<时,()'0f x <,()f x 单调递减, 当12x a>时,()'0f x >,()f x 单调递增. ()min 11528f x f a ⎛⎫∴=≥ ⎪⎝⎭,即117ln 428a a --≥, 整理得,()117ln 2228a a -⋅≥, 设()1ln 2h x x x =-,()21102h x x x∴=+>',()h x ∴单调递增,a Z ∈,2a ∴为偶数,又()172ln248h =-<,()174ln488h =->,24a ∴≥,故整数a 的最小值为2。

城阳区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

城阳区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

城阳区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知三个数1a -,1a +,5a +成等比数列,其倒数重新排列后为递增的等比数列{}n a 的前三 项,则能使不等式1212111n na a a a a a +++≤+++成立的自然数的最大值为( ) A .9 B .8 C.7D.5 2.正方体的内切球与外接球的半径之比为() A.B .C .D .3. 以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C ,其左、右焦点分别是F 1,F 2,已知点M 坐标为(2,1),双曲线C 上点P (x0,y 0)(x 0>0,y 0>0)满足=,则﹣S( )A .2B .4C .1D .﹣14. 已知集合},052|{2Z x x x x M ∈<+=,},0{a N =,若∅≠N M ,则=a ( ) A .1- B . C .1-或 D .1-或2- 5. 如图甲所示, 三棱锥P ABC - 的高8,3,30PO AC BC ACB ===∠= ,,M N 分别在BC 和PO 上,且(),203CM x PN x x ==∈(,,图乙的四个图象大致描绘了三棱锥N AMC -的体积y 与 的变化关系,其中正确的是( )A .B .C. D .1111] 6. 方程x= 所表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分7. ABC ∆中,“A B >”是“cos 2cos 2B A >”的( ) A. 充分必要条件 B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.8. △ABC 中,A (﹣5,0),B (5,0),点C 在双曲线上,则=( )A .B .C .D .± 9. 已知a=log 20.3,b=20.1,c=0.21.3,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <a <b C .a <c <b D .b <c <a10.底面为矩形的四棱锥P -ABCD 的顶点都在球O 的表面上,且O 在底面ABCD 内,PO ⊥平面ABCD ,当四棱锥P -ABCD 的体积的最大值为18时,球O 的表面积为( ) A .36π B .48π C .60πD .72π11.已知在数轴上0和3之间任取一实数,则使“2log 1x <”的概率为( ) A .14 B .18 C .23 D .11212.如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是( )A .i ≥7?B .i >15?C .i ≥15?D .i >31?二、填空题13.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则()()22a cb d -+-的最小值为 ▲ .14.【徐州市2018届高三上学期期中】已知函数(为自然对数的底数),若,则实数 的取值范围为______.15.下列命题:①函数y=sinx 和y=tanx 在第一象限都是增函数;②若函数f (x )在[a ,b]上满足f (a )f (b )<0,函数f (x )在(a ,b )上至少有一个零点; ③数列{a n }为等差数列,设数列{a n }的前n 项和为S n ,S 10>0,S 11<0,S n 最大值为S 5;④在△ABC 中,A >B 的充要条件是cos2A <cos2B ;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强. 其中正确命题的序号是 (把所有正确命题的序号都写上). 16.设,则17.已知,x y 满足41y xx y x ≥⎧⎪+≤⎨⎪≥⎩,则22223y xy x x -+的取值范围为____________. 18.【南通中学2018届高三10月月考】已知函数()32f x x x =-,若曲线()f x 在点()()1,1f 处的切线经过圆()22:2C x y a +-=的圆心,则实数a 的值为__________.三、解答题19.对于定义域为D 的函数y=f (x ),如果存在区间[m ,n]⊆D ,同时满足: ①f (x )在[m ,n]内是单调函数;②当定义域是[m ,n]时,f (x )的值域也是[m ,n]. 则称[m ,n]是该函数的“和谐区间”.(1)证明:[0,1]是函数y=f (x )=x 2的一个“和谐区间”.(2)求证:函数不存在“和谐区间”.(3)已知:函数(a ∈R ,a ≠0)有“和谐区间”[m ,n],当a 变化时,求出n ﹣m 的最大值.20.已知函数f (x )=lnx ﹣kx+1(k ∈R ).(Ⅰ)若x 轴是曲线f (x )=lnx ﹣kx+1一条切线,求k 的值;(Ⅱ)若f (x )≤0恒成立,试确定实数k 的取值范围.21.(本小题满分12分)已知函数()2ln f x ax bx x =+-(,a b ∈R ).(1)当1,3a b =-=时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值;(2)当0a =时,是否存在实数b ,当(]0,e x ∈(e 是自然常数)时,函数()f x 的最小值是3,若存在,求出b 的值;若不存在,说明理由;22.如图,直四棱柱ABCD ﹣A 1B 1C 1D 1的底面是等腰梯形,AB=CD=AD=1,BC=2,E ,M ,N 分别是所在棱的中点.(1)证明:平面MNE ⊥平面D 1DE ; (2)证明:MN ∥平面D 1DE .23.在数列中,,,其中,.(Ⅰ)当时,求的值;(Ⅱ)是否存在实数,使构成公差不为0的等差数列?证明你的结论; (Ⅲ)当时,证明:存在,使得.24.(本小题满分12分)已知两点)0,1(1 F 及)0,1(2F ,点P 在以1F 、2F 为焦点的椭圆C 上,且1PF 、21F F 、 2PF 构成等差数列. (I )求椭圆C 的方程;(II )设经过2F 的直线m 与曲线C 交于P Q 、两点,若22211PQ F P F Q =+,求直线m 的方程.城阳区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案) 一、选择题1. 【答案】C【解析】试题分析:因为三个数1,1,5a a a -++等比数列,所以()()()2115,3a a a a +=-+∴=,倒数重新排列后恰好为递增的等比数列{}n a 的前三项,为111,,842,公比为,数列1n a ⎧⎫⎨⎬⎩⎭是以为首项,12为公比的等比数列,则不等式1212111n n a a a a a a +++≤+++等价为()1181122811212n n ⎛⎫-- ⎪⎝⎭≤--,整理,得722,17,n n n N +≤∴≤≤≤∈,故选C. 1考点:1、等比数列的性质;2、等比数列前项和公式. 2. 【答案】C【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长, 设正方体的棱长为:2a ,所以内切球的半径为:a ;外接球的直径为2a ,半径为:a ,所以,正方体的内切球与外接球的半径之比为:故选C3. 【答案】 A【解析】解:∵椭圆方程为+=1,∴其顶点坐标为(3,0)、(﹣3,0),焦点坐标为(2,0)、(﹣2,0), ∴双曲线方程为,设点P (x,y),记F 1(﹣3,0),F 2(3,0), ∵=,∴=,整理得:=5,化简得:5x=12y ﹣15,又∵,∴5﹣4y 2=20,解得:y=或y=(舍),∴P (3,),∴直线PF 1方程为:5x ﹣12y+15=0,∴点M 到直线PF 1的距离d==1,易知点M 到x 轴、直线PF 2的距离都为1,结合平面几何知识可知点M (2,1)就是△F 1PF 2的内心.故﹣===2,故选:A .【点评】本题考查椭圆方程,双曲线方程,三角形面积计算公式,注意解题方法的积累,属于中档题.4. 【答案】D 【解析】试题分析:由{}{}1,2,025,0522--=⎭⎬⎫⎩⎨⎧∈<<-=∈<+=Z x x x Z x x x x M ,集合{}a N ,0=, 又φ≠N M ,1-=∴a 或2-=a ,故选D . 考点:交集及其运算. 5. 【答案】A 【解析】考点:几何体的体积与函数的图象.【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题.6. 【答案】C【解析】解:x=两边平方,可变为3y 2﹣x 2=1(x ≥0),表示的曲线为双曲线的一部分;故选C .【点评】本题主要考查了曲线与方程.解题的过程中注意x 的范围,注意数形结合的思想.7. 【答案】A.【解析】在ABC ∆中2222cos 2cos 212sin 12sin sin sin sin sin B A B A A B A B >⇒->-⇔>⇔>A B ⇔>,故是充分必要条件,故选A.8. 【答案】D【解析】解:△ABC 中,A (﹣5,0),B (5,0),点C 在双曲线上,∴A 与B 为双曲线的两焦点,根据双曲线的定义得:|AC ﹣BC|=2a=8,|AB|=2c=10,则==±=±.故选:D .【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目.9. 【答案】C【解析】解:由对数和指数的性质可知, ∵a=log 20.3<0 b=20.1>20=1 c=0.21.3 < 0.20=1∴a <c <b 故选C .10.【答案】【解析】选A.设球O 的半径为R ,矩形ABCD 的长,宽分别为a ,b , 则有a 2+b 2=4R 2≥2ab ,∴ab ≤2R 2,又V 四棱锥P -ABCD =13S 矩形ABCD ·PO=13abR ≤23R 3. ∴23R 3=18,则R =3, ∴球O 的表面积为S =4πR 2=36π,选A. 11.【答案】C 【解析】试题分析:由2log 1x <得02x <<,由几何概型可得所求概率为202303-=-.故本题答案选C. 考点:几何概型. 12.【答案】C【解析】解:模拟执行程序框图,可得 S=2,i=0不满足条件,S=5,i=1 不满足条件,S=8,i=3 不满足条件,S=11,i=7 不满足条件,S=14,i=15由题意,此时退出循环,输出S 的值即为14, 结合选项可知判断框内应填的条件是:i ≥15? 故选:C .【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S ,i 的值是解题的关键,属于基本知识的考查.二、填空题13.【答案】5 【解析】考点:利用导数求最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f′(x)>0或f′(x)<0求单调区间;第二步:解f′(x)=0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.14.【答案】【解析】令,则所以为奇函数且单调递增,因此即点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内15.【答案】②③④⑤【解析】解:①函数y=sinx和y=tanx在第一象限都是增函数,不正确,取x=,,但是,,因此不是单调递增函数;②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点,正确;③数列{a n}为等差数列,设数列{a n}的前n项和为S n,S10>0,S11<0,∴=5(a6+a5)>0,=11a6<0,∴a5+a6>0,a6<0,∴a5>0.因此S n最大值为S5,正确;④在△ABC中,cos2A﹣cos2B=﹣2sin(A+B)sin(A﹣B)=2sin(A+B)sin(B﹣A)<0⇔A>B,因此正确;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确.其中正确命题的序号是②③④⑤.【点评】本题综合考查了三角函数的单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题.16.【答案】9【解析】由柯西不等式可知17.【答案】[]2,6 【解析】考点:简单的线性规划.【方法点睛】本题主要考查简单的线性规划.与二元一次不等式(组)表示的平面区域有关的非线性目标函数的最值问题的求解一般要结合给定代数式的几何意义来完成.常见代数式的几何意义:(1表示点(),x y 与原点()0,0的距离;(2(),x y 与点(),a b 间的距离;(3)yx可表示点(),x y 与()0,0点连线的斜率;(4)y bx a --表示点(),x y 与点(),a b 连线的斜率.18.【答案】2-【解析】结合函数的解析式可得:()311211f =-⨯=-,对函数求导可得:()2'32f x x =-,故切线的斜率为()2'13121k f ==⨯-=,则切线方程为:()111y x +=⨯-,即2y x =-,圆C :()222x y a +-=的圆心为()0,a ,则:022a =-=-.三、解答题19.【答案】【解析】解:(1)∵y=x2在区间[0,1]上单调递增.又f(0)=0,f(1)=1,∴值域为[0,1],∴区间[0,1]是y=f(x)=x2的一个“和谐区间”.(2)设[m,n]是已知函数定义域的子集.∵x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数在[m,n]上单调递增.若[m,n]是已知函数的“和谐区间”,则故m、n是方程的同号的相异实数根.∵x2﹣3x+5=0无实数根,∴函数不存在“和谐区间”.(3)设[m,n]是已知函数定义域的子集.∵x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数在[m,n]上单调递增.若[m,n]是已知函数的“和谐区间”,则故m、n是方程,即a2x2﹣(a2+a)x+1=0的同号的相异实数根.∵,∴m,n同号,只须△=a2(a+3)(a﹣1)>0,即a>1或a<﹣3时,已知函数有“和谐区间”[m,n],∵,∴当a=3时,n﹣m取最大值20.【答案】【解析】解:(1)函数f(x)的定义域为(0,+∞),f′(x)=﹣k=0,∴x=,由ln﹣1+1=0,可得k=1;(2)当k ≤0时,f ′(x )=﹣k >0,f (x )在(0,+∞)上是增函数;当k >0时,若x ∈(0,)时,有f ′(x )>0,若x ∈(,+∞)时,有f ′(x )<0,则f (x )在(0,)上是增函数,在(,+∞)上是减函数. k ≤0时,f (x )在(0,+∞)上是增函数, 而f (1)=1﹣k >0,f (x )≤0不成立,故k >0,∵f (x )的最大值为f (),要使f (x )≤0恒成立,则f ()≤0即可,即﹣lnk ≤0,得k ≥1.【点评】本题考查导数的几何意义,考查函数单调区间的求法,确定实数的取值范围,渗透了分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.21.【答案】【解析】【命题意图】本题考查利用导数研究函数的单调性与最值、不等式的解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、探究能力、运算求解能力.(2)当0a =时,()ln f x bx x =-.假设存在实数b ,使()(]()ln 0,e g x bx x x =-∈有最小值3,11()bx f x b x x-'=-=.………7分 ①当0b ≤时,()f x 在(]0,e 上单调递减,()min 4()e 13,f x f be b e==-==(舍去).………8分 ②当10e b <<时,()f x 在10,b ⎛⎫ ⎪⎝⎭上单调递减,在1,e b ⎛⎤⎥⎝⎦上单调递增, ∴2min 1()1ln 3,e f x g b b b ⎛⎫==+== ⎪⎝⎭,满足条件.……………………………10分③当1e b ≥时,()f x 在(]0,e 上单调递减,()min 4()e e 13,ef xg b b ==-==(舍去),………11分综上,存在实数2e b =,使得当(]0,e x ∈时,函数()f x 最小值是3.……………………………12分22.【答案】【解析】证明:(1)由等腰梯形ABCD 中,∵AB=CD=AD=1,BC=2,N 是AB 的中点,∴NE ⊥DE , 又NE ⊥DD 1,且DD 1∩DE=D , ∴NE ⊥平面D 1DE , 又NE ⊂平面MNE , ∴平面MNE ⊥平面D 1DE .… (2)等腰梯形ABCD 中,∵AB=CD=AD=1,BC=2,N 是AB 的中点,∴AB ∥DE ,∴AB ∥平面D 1DE , 又DD 1∥BB 1,则BB 1∥平面D 1DE ,又AB ∩BB 1=B ,∴平面ABB 1A 1∥平面D 1DE , 又MN ⊂平面ABB 1A 1,∴MN ∥平面D 1DE .…23.【答案】【解析】【知识点】数列综合应用【试题解析】(Ⅰ),,.(Ⅱ)成等差数列,,即,,即.,.将,代入上式,解得.经检验,此时的公差不为0.存在,使构成公差不为0的等差数列.(Ⅲ),又,令.由,,……,将上述不等式相加,得,即.取正整数,就有24.【答案】【解析】【命题意图】本题考查椭圆标准方程和定义、等差数列、直线和椭圆的位置关系等基础知识,意在考查转化与化归的数学思想的运用和综合分析问题、解决问题的能力.(II )①若m 为直线1=x ,代入13422=+y x 得23±=y ,即)23 , 1(P ,)23 , 1(-Q直接计算知29PQ =,225||||2121=+Q F P F ,22211PQ F PF Q ?,1=x 不符合题意 ; ②若直线m 的斜率为k ,直线m 的方程为(1)y k x =-由⎪⎩⎪⎨⎧-==+)1(13422x k y y x 得0)124(8)43(2222=-+-+k x k x k 设11(,)P x y ,22(,)Q x y ,则2221438k k x x +=+,222143124k k x x +-=⋅由22211PQ F P F Q =+得,110F P FQ ? 即0)1)(1(2121=+++y y x x ,0)1()1()1)(1(2121=-⋅-+++x k x k x x0)1())(1()1(2212212=+++-++k x x k x x k代入得0438)1()143124)(1(222222=+⋅-+++-+k k k k k k ,即0972=-k 解得773±=k ,直线m 的方程为)1(773-±=x y。

城阳区一中2018-2019学年高二上学期第二次月考试卷数学

城阳区一中2018-2019学年高二上学期第二次月考试卷数学

城阳区一中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知x,y满足时,z=x﹣y的最大值为()A.4 B.﹣4 C.0 D.22.执行如图的程序框图,则输出S的值为()A.2016 B.2 C.D.﹣13.已知直线y=ax+1经过抛物线y2=4x的焦点,则该直线的倾斜角为()A.0 B.C.D.4.命题“设a、b、c∈R,若ac2>bc2则a>b”以及它的逆命题、否命题、逆否命题中,真命题的个数为()A.0 B.1 C.2 D.35.由直线与曲线所围成的封闭图形的面积为()AB1CD6.下列函数中,为奇函数的是()A.y=x+1 B.y=x2C.y=2x D.y=x|x|7. 下列函数在(0,+∞)上是增函数的是( )A.B .y=﹣2x+5C .y=lnxD .y=8. 若y x ,满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≤-+≥+-0033033y y x y x ,则当31++x y 取最大值时,y x +的值为( )A .1-B .C .3-D .39. 设公差不为零的等差数列{}n a 的前n 项和为n S ,若4232()a a a =+,则74Sa =( )A .74B .145C .7D .14【命题意图】本题考查等差数列的通项公式及其前n 项和,意在考查运算求解能力.10.如图所示,函数y=|2x ﹣2|的图象是( )A. B. C. D.11.过点),2(a M -,)4,(a N 的直线的斜率为21-,则=||MN ( ) A .10 B .180 C .36 D .5612.已知向量(1,2)a =,(1,0)b =,(3,4)c =,若λ为实数,()//a b c λ+,则λ=( ) A .14 B .12C .1D .2 二、填空题13.下列命题:①集合{},,,a b c d 的子集个数有16个; ②定义在R 上的奇函数()f x 必满足(0)0f =;③2()(21)2(21)f x x x =+--既不是奇函数又不是偶函数; ④A R =,B R =,1:||f x x →,从集合A 到集合B 的对应关系f 是映射; ⑤1()f x x=在定义域上是减函数. 其中真命题的序号是 .14.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,则点M 的横坐标x= .15.已知面积为的△ABC 中,∠A=若点D 为BC 边上的一点,且满足=,则当AD 取最小时,BD 的长为 .16.已知命题p :∃x ∈R ,x 2+2x+a ≤0,若命题p 是假命题,则实数a 的取值范围是 .(用区间表示)17.已知△ABC 的面积为S ,三内角A ,B ,C 的对边分别为,,.若2224S a b c +=+, 则sin cos()4C B π-+取最大值时C = .18.若函数()f x 的定义域为[]1,2-,则函数(32)f x -的定义域是 .三、解答题19.为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题: (1)求出频率分布表中①、②、③、④、⑤的值;(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S20.(本小题满分12分)已知数列{}n a 的各项均为正数,12a =,114n n n na a a a ++-=+.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和n S .21.已知命题p :不等式|x ﹣1|>m ﹣1的解集为R ,命题q :f (x )=﹣(5﹣2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.22.(本小题满分12分)两个人在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中 放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设,,x y z 分别表示甲,乙,丙3个 盒中的球数.(1)求0x =,1y =,2z =的概率;(2)记x y ξ=+,求随机变量ξ的概率分布列和数学期望.【命题意图】本题考查频离散型随机变量及其分布列等基础知识,意在考查学生的统计思想和基本的运算能力.23.(本小题满分12分)已知直三棱柱111C B A ABC -中,上底面是斜边为AC 的直角三角形,F E 、分别是11AC B A 、的中点.(1)求证://EF 平面ABC ; (2)求证:平面⊥AEF 平面B B AA 11.24.已知数列{a n}的首项为1,前n项和S n满足=+1(n≥2).(Ⅰ)求S n与数列{a n}的通项公式;(Ⅱ)设b n=(n∈N*),求使不等式b1+b2+…+b n>成立的最小正整数n.城阳区一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:由约束条件作出可行域如图,联立,得A(6,2),化目标函数z=x﹣y为y=x﹣z,由图可知,当直线y=x﹣z过点A时,直线在y轴上的截距最小,z有最大值为4.故选:A.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.2.【答案】B【解析】解:模拟执行程序框图,可得s=2,k=0满足条件k<2016,s=﹣1,k=1满足条件k<2016,s=,k=2满足条件k<2016,s=2.k=3满足条件k<2016,s=﹣1,k=4满足条件k<2016,s=,k=5…观察规律可知,s的取值以3为周期,由2015=3*671+2,有满足条件k<2016,s=2,k=2016不满足条件k<2016,退出循环,输出s的值为2.故选:B.【点评】本题主要考查了程序框图和算法,依次写出前几次循环得到的s,k的值,观察规律得到s的取值以3为周期是解题的关键,属于基本知识的考查.3.【答案】D【解析】解:抛物线y2=4x的焦点(1,0),直线y=ax+1经过抛物线y2=4x的焦点,可得0=a+1,解得a=﹣1,直线的斜率为﹣1,该直线的倾斜角为:.故选:D.【点评】本题考查直线的倾斜角以及直线的斜率的关系,抛物线的简单性质的应用,考查计算能力.4.【答案】C【解析】解:命题“设a、b、c∈R,若ac2>bc2,则c2>0,则a>b”为真命题;故其逆否命题也为真命题;其逆命题为“设a、b、c∈R,若a>b,则ac2>bc2”在c=0时不成立,故为假命题故其否命题也为假命题故原命题及其逆命题、否命题、逆否命题中,真命题的个数为2个故选C【点评】本题考查的知识点是四种命题的真假判断,不等式的基本性质,其中熟练掌握互为逆否的两个命题真假性相同,是解答的关键.5.【答案】D【解析】由定积分知识可得,故选D。

城阳区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

城阳区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

城阳区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知i 为虚数单位,则复数所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 2. 将函数x x f ωsin )(=(其中0>ω)的图象向右平移4π个单位长度,所得的图象经过点 )0,43(π,则ω的最小值是( ) A .31 B . C .35D .3. 有30袋长富牛奶,编号为1至30,若从中抽取6袋进行检验,则用系统抽样确定所抽的编号为( ) A .3,6,9,12,15,18 B .4,8,12,16,20,24 C .2,7,12,17,22,27 D .6,10,14,18,22,264. 如图F 1、F 2是椭圆C 1:+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )A .B .C .D .5. 已知直线l 1 经过A (﹣3,4),B (﹣8,﹣1)两点,直线l 2的倾斜角为135°,那么l 1与l 2( ) A .垂直 B .平行 C .重合 D .相交但不垂直6. 在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( ) A .725B .725- C. 725± D .24257. 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A .(2,+∞)B .(0,2)C .(4,+∞)D .(0,4)8. 设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式<0的解集为( )A .(﹣1,0)∪(1,+∞)B .(﹣∞,﹣1)∪(0,1)C .(﹣∞,﹣1)∪(1,+∞)D .(﹣1,0)∪(0,1)9. 椭圆22:143x y C +=的左右顶点分别为12,A A ,点P 是C 上异于12,A A 的任意一点,且直线1PA 斜率的取值范围是[]1,2,那么直线2PA 斜率的取值范围是( )A .31,42⎡⎤--⎢⎥⎣⎦ B .33,48⎡⎤--⎢⎥⎣⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤⎢⎥⎣⎦【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力.10.如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形.则该几何体表面积等于( )A .12+B .12+23πC .12+24πD .12+π11.复数满足2+2z1-i =i z ,则z 等于( )A .1+iB .-1+iC .1-iD .-1-i12.某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为( )A .20+2πB .20+3πC .24+3πD .24+3π二、填空题13.如图,在平行四边形ABCD 中,点E 在边CD 上,若在平行四边形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率是 .14.设函数f (x )=则函数y=f (x )与y=的交点个数是 .15.将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S 的最小值是 .16.已知()f x 是定义在R 上函数,()f x '是()f x 的导数,给出结论如下: ①若()()0f x f x '+>,且(0)1f =,则不等式()x f x e -<的解集为(0,)+∞; ②若()()0f x f x '->,则(2015)(2014)f ef >; ③若()2()0xf x f x '+>,则1(2)4(2),n n f f n N +*<∈;④若()()0f x f x x'+>,且(0)f e =,则函数()xf x 有极小值0; ⑤若()()xe xf x f x x'+=,且(1)f e =,则函数()f x 在(0,)+∞上递增.其中所有正确结论的序号是 . 17.如图,P 是直线x +y -5=0上的动点,过P 作圆C :x 2+y 2-2x +4y -4=0的两切线、切点分别为A 、B ,当四边形P ACB 的周长最小时,△ABC 的面积为________.18.若实数x ,y 满足x 2+y 2﹣2x+4y=0,则x ﹣2y 的最大值为 .三、解答题19.请你设计一个包装盒,如图所示,ABCD 是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E 、F 在AB 上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x (cm ).(1)若广告商要求包装盒侧面积S (cm 2)最大,试问x 应取何值?(2)若广告商要求包装盒容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.20.(本小题满分12分)已知向量(cos sin ,sin )m x m x x w w w =-a ,(cos sin ,2cos )x x n x w w w =--b ,设函数()()2n f x x R =??a b的图象关于点(,1)12p对称,且(1,2)w Î. (I )若1m =,求函数)(x f 的最小值;(II )若()()4f x f p£对一切实数恒成立,求)(x f y 的单调递增区间.【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.21.已知函数f(x)=sin2x•sinφ+cos2x•cosφ+sin(π﹣φ)(0<φ<π),其图象过点(,.)(Ⅰ)求函数f(x)在[0,π]上的单调递减区间;(Ⅱ)若x0∈(,π),sinx0=,求f(x0)的值.22.设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x)的图象关于直线x=﹣对称,且f′(1)=0(Ⅰ)求实数a,b的值(Ⅱ)求函数f(x)的极值.23.已知函数f(x)=sinωxcosωx﹣cos2ωx+(ω>0)经化简后利用“五点法”画其在某一个周期内的图象ππ(Ⅰ)请直接写出①处应填的值,并求函数f(x)在区间[﹣,]上的值域;(Ⅱ)△ABC的内角A,B,C所对的边分别为a,b,c,已知f(A+)=1,b+c=4,a=,求△ABC的面积.24.已知椭圆E:=1(a>b>0)的焦距为2,且该椭圆经过点.(Ⅰ)求椭圆E的方程;(Ⅱ)经过点P(﹣2,0)分别作斜率为k1,k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN与y轴垂直时,求k1k2的值.城阳区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】A【解析】解: ==1+i ,其对应的点为(1,1),故选:A .2. 【答案】D考点:由()ϕω+=x A y sin 的部分图象确定其解析式;函数()ϕω+=x A y sin 的图象变换. 3. 【答案】C【解析】解:从30件产品中随机抽取6件进行检验, 采用系统抽样的间隔为30÷6=5, 只有选项C 中编号间隔为5, 故选:C .4. 【答案】 D【解析】解:设|AF 1|=x ,|AF 2|=y ,∵点A 为椭圆C 1: +y 2=1上的点,∴2a=4,b=1,c=;∴|AF 1|+|AF 2|=2a=4,即x+y=4;① 又四边形AF 1BF 2为矩形,∴+=,即x 2+y 2=(2c )2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2m ,焦距为2n ,则2m=|AF2|﹣|AF 1|=y ﹣x=2,2n=2c=2,∴双曲线C 2的离心率e===.故选D .【点评】本题考查椭圆与双曲线的简单性质,求得|AF 1|与|AF 2|是关键,考查分析与运算能力,属于中档题.5. 【答案】A【解析】解:由题意可得直线l 1的斜率k 1==1,又∵直线l 2的倾斜角为135°,∴其斜率k 2=tan135°=﹣1, 显然满足k 1•k 2=﹣1,∴l 1与l 2垂直 故选A6. 【答案】A 【解析】考点:正弦定理及二倍角公式.【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如θθθθθ2222sin cos 2cos ,1cos sin -==+,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定理R CcB b A 2sin sin sin a ===,余弦定理A bc c b a cos 2222-+=, 实现边与角的互相转化. 7. 【答案】C【解析】解:令f (x )=x 2﹣mx+3, 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则f (1)=1﹣m+3<0, 解得:m ∈(4,+∞),故选:C .【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档.8. 【答案】D【解析】解:由奇函数f (x )可知,即x 与f (x )异号,而f (1)=0,则f (﹣1)=﹣f (1)=0,又f (x )在(0,+∞)上为增函数,则奇函数f (x )在(﹣∞,0)上也为增函数,当0<x <1时,f (x )<f (1)=0,得<0,满足;当x >1时,f (x )>f (1)=0,得>0,不满足,舍去;当﹣1<x <0时,f (x )>f (﹣1)=0,得<0,满足;当x <﹣1时,f (x )<f (﹣1)=0,得>0,不满足,舍去;所以x 的取值范围是﹣1<x <0或0<x <1. 故选D .9. 【答案】B10.【答案】C【解析】解:根据几何体的三视图,得; 该几何体是一半圆台中间被挖掉一半圆柱, 其表面积为S=[×(2+8)×4﹣2×4]+[×π•(42﹣12)+×(4π×﹣π×)+×8π]=12+24π. 故选:C .【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目.11.【答案】【解析】解析:选D.法一:由2+2z1-i=i z 得2+2z =i z +z , 即(1-i )z =-2,∴z =-21-i =-2(1+i )2=-1-i.法二:设z =a +b i (a ,b ∈R ), ∴2+2(a +b i )=(1-i )i (a +b i ), 即2+2a +2b i =a -b +(a +b )i ,∴⎩⎪⎨⎪⎧2+2a =a -b2b =a +b , ∴a =b =-1,故z =-1-i. 12.【答案】B【解析】由已知中的三视图,可知该几何体是一个以侧视图为底面的柱体(一个半圆柱与正方体的组合体),其底面面积S=2×2+=4+,底面周长C=2×3+=6+π,高为2,故柱体的侧面积为:(6+π)×2=12+2π,故柱体的全面积为:12+2π+2(4+)=20+3π,故选:B【点评】本题考查的知识点是简单空间图象的三视图,其中根据已知中的视图分析出几何体的形状及棱长是解答的关键.二、填空题13.【答案】.【解析】解:由题意△ABE 的面积是平行四边形ABCD 的一半, 由几何概型的计算方法,可以得出所求事件的概率为P=,故答案为:.【点评】本题主要考查了几何概型,解决此类问题的关键是弄清几何测度,属于基础题.14.【答案】 4 .【解析】解:在同一坐标系中作出函数y=f (x )=的图象与函数y=的图象,如下图所示,由图知两函数y=f (x )与y=的交点个数是4. 故答案为:4.15.【答案】 .【解析】解:设剪成的小正三角形的边长为x ,则:S==,(0<x <1)令3﹣x=t ,t ∈(2,3),∴S===,当且仅当t=即t=2时等号成立;故答案为:.16.【答案】②④⑤【解析】解析:构造函数()()x g x e f x =,()[()()]0xg x e f x f x ''=+>,()g x 在R 上递增,∴()xf x e-<()1x e f x ⇔<()(0)g x g ⇔<0x ⇔<,∴①错误;构造函数()()x f x g x e =,()()()0xf x f xg x e'-'=>,()g x 在R 上递增,∴(2015)(2014)g g >, ∴(2015)(2014)f ef >∴②正确;构造函数2()()g x x f x =,2()2()()[2()()]g x xf x x f x x f x xf x '''=+=+,当0x >时,()0g x '>,∴1(2)(2)n n g g +>,∴1(2)4(2)n n f f +>,∴③错误;由()()0f xf x x '+>得()()0xf x f x x '+>,即()()0xf x x'>,∴函数()xf x 在(0,)+∞上递增,在(,0)-∞上递减,∴函数()xf x 的极小值为0(0)0f ⋅=,∴④正确;由()()x e xf x f x x '+=得2()()x e xf x f x x-'=,设()()xg x e xf x =-,则()()()xg x e f x xf x ''=--(1)x x x e e e x x x=-=-,当1x >时,()0g x '>,当01x <<时,()0g x '<,∴当0x >时,()(1)0g x g ≥=,即()0f x '≥,∴⑤正确.17.【答案】【解析】解析:圆x 2+y 2-2x +4y -4=0的标准方程为(x -1)2+(y +2)2=9. 圆心C (1,-2),半径为3,连接PC ,∴四边形P ACB 的周长为2(P A +AC ) =2PC 2-AC 2+2AC =2PC 2-9+6.当PC 最小时,四边形P ACB 的周长最小. 此时PC ⊥l .∴直线PC 的斜率为1,即x -y -3=0,由⎩⎪⎨⎪⎧x +y -5=0x -y -3=0,解得点P 的坐标为(4,1), 由于圆C 的圆心为(1,-2),半径为3,所以两切线P A ,PB 分别与x 轴平行和y 轴平行, 即∠ACB =90°,∴S △ABC =12AC ·BC =12×3×3=92.即△ABC 的面积为92.答案:9218.【答案】10【解析】【分析】先配方为圆的标准方程再画出图形,设z=x ﹣2y ,再利用z 的几何意义求最值,只需求出直线z=x ﹣2y 过图形上的点A 的坐标,即可求解.【解答】解:方程x2+y2﹣2x+4y=0可化为(x﹣1)2+(y+2)2=5,即圆心为(1,﹣2),半径为的圆,(如图)设z=x﹣2y,将z看做斜率为的直线z=x﹣2y在y轴上的截距,经平移直线知:当直线z=x﹣2y经过点A(2,﹣4)时,z最大,最大值为:10.故答案为:10.三、解答题19.【答案】【解析】解:设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30﹣x),0<x<30.(1)S=4ah=8x(30﹣x)=﹣8(x﹣15)2+1800,∴当x=15时,S取最大值.(2)V=a2h=2(﹣x3+30x2),V′=6x(20﹣x),由V′=0得x=20,当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0;∴当x=20时,包装盒容积V(cm3)最大,此时,.即此时包装盒的高与底面边长的比值是.20.【答案】21.【答案】【解析】(本小题满分12分)φ解:(Ⅰ)f(x)=+﹣=+=)由f(x)图象过点()知:所以:φ=所以f(x)=令(k∈Z)即:所以:函数f(x)在[0,π]上的单调区间为:(Ⅱ)因为x0∈(π,2π),则:2x0∈(π,2π)则:=sin所以=)=【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数单调区间的确定,三角函数的求值问题,属于基础题型.22.【答案】【解析】解:(Ⅰ)因f(x)=2x3+ax2+bx+1,故f′(x)=6x2+2ax+b从而f′(x)=6y=f′(x)关于直线x=﹣对称,从而由条件可知﹣=﹣,解得a=3又由于f′(x)=0,即6+2a+b=0,解得b=﹣12(Ⅱ)由(Ⅰ)知f(x)=2x3+3x2﹣12x+1f′(x)=6x2+6x﹣12=6(x﹣1)(x+2)令f′(x)=0,得x=1或x=﹣2当x∈(﹣∞,﹣2)时,f′(x)>0,f(x)在(﹣∞,﹣2)上是增函数;当x∈(﹣2,1)时,f′(x)<0,f(x)在(﹣2,1)上是减函数;当x∈(1,+∞)时,f′(x)>0,f(x)在(1,+∞)上是增函数.从而f(x)在x=﹣2处取到极大值f(﹣2)=21,在x=1处取到极小值f(1)=﹣6.23.【答案】【解析】解:(Ⅰ)①处应填入.=.∵T=,∴,,即.∵,∴,∴,从而得到f(x)的值域为.(Ⅱ)∵,又0<A<π,∴,得,.由余弦定理得a2=b2+c2﹣2bccosA==(b+c)2﹣3bc,即,∴bc=3.∴△ABC的面积.【点评】本小题主要考查三角函数的图象与性质、两角和与差的三角函数、解三角形等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题.24.【答案】【解析】解:(Ⅰ)由题意得,2c=2,=1;解得,a2=4,b2=1;故椭圆E的方程为+y2=1;(Ⅱ)由题意知,当k1=0时,M点的纵坐标为0,直线MN与y轴垂直,则点N的纵坐标为0,故k2=k1=0,这与k2≠k1矛盾.当k1≠0时,直线PM:y=k1(x+2);由得,(+4)y2﹣=0;解得,y M=;∴M(,),同理N(,),由直线MN与y轴垂直,则=;∴(k2﹣k1)(4k2k1﹣1)=0,∴k2k1=.【点评】本题考查了椭圆方程的求法及椭圆与直线的位置关系的判断与应用,属于中档题.。

城阳区高中2018-2019学年高二上学期数学期末模拟试卷含解析参考

城阳区高中2018-2019学年高二上学期数学期末模拟试卷含解析参考

城阳区高中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )A .24B .80C .64D .2402. 已知集合M={0,1,2},则下列关系式正确的是( ) A .{0}∈M B .{0}∉M C .0∈M D .0⊆M3. 设D 为△ABC 所在平面内一点,,则( )A .B .C .D .4. △ABC 的内角A ,B ,C 所对的边分别为,,,已知a =b =6A π∠=,则B ∠=( )111]A .4π B .4π或34π C .3π或23π D .3π5. △ABC 的三内角A ,B ,C 所对边长分别是a ,b ,c ,设向量,,若,则角B 的大小为( )A .B .C .D .6. 已知三棱锥S ABC -外接球的表面积为32π,090ABC ∠=,三棱锥S ABC -的三视图如图 所示,则其侧视图的面积的最大值为( )A .4B .C .8D .7. 已知集合23111{1,(),,}122i A i i i i -=-+-+(其中为虚数单位),2{1}B x x =<,则A B =( ) A .{1}- B .{1} C .{1,}2- D .{}28. 设函数f (x )=,f (﹣2)+f (log 210)=( )A .11B .8C .5D .29. 已知定义在R 上的可导函数y=f (x )是偶函数,且满足xf ′(x )<0, =0,则满足的x 的范围为( )A .(﹣∞,)∪(2,+∞)B .(,1)∪(1,2)C .(,1)∪(2,+∞)D .(0,)∪(2,+∞)10.定义在(0,+∞)上的函数f (x )满足:<0,且f (2)=4,则不等式f (x )﹣>0的解集为( ) A .(2,+∞)B .(0,2)C .(0,4)D .(4,+∞)11.已知某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N 1(90,86)和ξ2:N 2(93,79),则以下结论正确的是( )A .第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定B .第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定C .第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定D .第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定12.已知集合{2,1,1,2,4}A =--,2{|log ||1,}B y y x x A ==-∈,则A B =( )A .{2,1,1}--B .{1,1,2}-C .{1,1}-D .{2,1}--【命题意图】本题考查集合的交集运算,意在考查计算能力.二、填空题13.圆柱形玻璃杯高8cm ,杯口周长为12cm ,内壁距杯口2cm 的点A 处有一点蜜糖.A 点正对面的外壁(不是A 点的外壁)距杯底2cm 的点B 处有一小虫.若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少 cm .(不计杯壁厚度与小虫的尺寸)14.已知一组数据1x ,2x ,3x ,4x ,5x 的方差是2,另一组数据1ax ,2ax ,3ax ,4ax ,5ax (0a >)的标准差是a = .15.对任意实数x ,不等式ax 2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 . 16.经过A (﹣3,1),且平行于y 轴的直线方程为 .17.如图所示,在三棱锥C ﹣ABD 中,E 、F 分别是AC 和BD 的中点,若CD=2AB=4,EF ⊥AB ,则EF 与CD 所成的角是 .18.已知数列1,a 1,a 2,9是等差数列,数列1,b 1,b 2,b 3,9是等比数列,则的值为 .三、解答题19.已知直线l 1:(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立直角坐标系,圆C 1:ρ2﹣2ρcos θ﹣4ρsin θ+6=0.(1)求圆C 1的直角坐标方程,直线l 1的极坐标方程; (2)设l 1与C 1的交点为M ,N ,求△C 1MN 的面积.20.已知函数3()1xf xx=+,[]2,5x∈.(1)判断()f x的单调性并且证明;(2)求()f x在区间[]2,5上的最大值和最小值.21.已知函数,.(Ⅰ)求函数的最大值;(Ⅱ)若,求函数的单调递增区间.22.武汉市为增强市民交通安全意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)分别求第3,4,5组的频率;(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(3)在(2)的条件下,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.23.【徐州市第三中学2017~2018学年度高三第一学期月考】为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆O 及等腰直角三角形EFH ,其中FE FH ⊥,为裁剪出面积尽可能大的梯形铁片ABCD (不计损耗),将点,A B 放在弧EF 上,点,C D 放在斜边EH 上,且////AD BC HF ,设AOE θ∠=.(1)求梯形铁片ABCD 的面积S 关于θ的函数关系式;(2)试确定θ的值,使得梯形铁片ABCD 的面积S 最大,并求出最大值.24.已知F1,F2分别是椭圆=1(9>m>0)的左右焦点,P是该椭圆上一定点,若点P在第一象限,且|PF1|=4,PF1⊥PF2.(Ⅰ)求m的值;(Ⅱ)求点P的坐标.城阳区高中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】B 【解析】 试题分析:8058631=⨯⨯⨯=V ,故选B. 考点:1.三视图;2.几何体的体积. 2. 【答案】C【解析】解:对于A 、B ,是两个集合的关系,不能用元素与集合的关系表示,所以不正确; 对于C ,0是集合中的一个元素,表述正确.对于D ,是元素与集合的关系,错用集合的关系,所以不正确. 故选C【点评】本题考查运算与集合的关系,集合与集合的关系,考查基本知识的应用3. 【答案】A 【解析】解:由已知得到如图由===;故选:A .【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为.4. 【答案】B 【解析】试题分析:由正弦定理可得:(),sin 0,,sin 24sin6B B B B πππ=∴=∈∴= 或34π,故选B.考点:1、正弦定理的应用;2、特殊角的三角函数. 5. 【答案】B 【解析】解:若,则(a+b)(sinB﹣sinA)﹣sinC(a+c)=0,由正弦定理可得:(a+b)(b﹣a)﹣c(a+c)=0,化为a2+c2﹣b2=﹣ac,∴cosB==﹣,∵B∈(0,π),∴B=,故选:B.【点评】本题考查了正弦定理与余弦定理的应用、向量数量积运算性质,考查了推理能力与计算能力,是一道基础题.6.【答案】A【解析】考点:三视图.【方法点睛】本题主要考查几何体的三视图,空间想象能力.空间几何体的三视图是分别从空间几何体的正面,左面,上面用平行投影的方法得到的三个平面投影图.因此在分析空间几何体的三视图时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱,面的位置,再确定几何体的形状,即可得到结果. 要能够牢记常见几何体的三视图.7.【答案】D【解析】考点:1.复数的相关概念;2.集合的运算8.【答案】B【解析】解:∵f(x)=,∴f(﹣2)=1+log24=1+2=3,=5,∴f(﹣2)+f(log210)=3+5=8.故选:B.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.9.【答案】D【解析】解:当x>0时,由xf′(x)<0,得f′(x)<0,即此时函数单调递减,∵函数f(x)是偶函数,∴不等式等价为f(||)<,即||>,即>或<﹣,解得0<x<或x>2,故x的取值范围是(0,)∪(2,+∞)故选:D【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键.10.【答案】B【解析】解:定义在(0,+∞)上的函数f(x)满足:<0.∵f(2)=4,则2f(2)=8,f(x)﹣>0化简得,当x<2时,⇒成立.故得x<2,∵定义在(0,+∞)上.∴不等式f(x)﹣>0的解集为(0,2).故选B.【点评】本题考查了构造已知条件求解不等式,从已知条件入手,找个关系求解.属于中档题.11.【答案】C【解析】解:∵某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N 1(90,86)和ξ2:N 2(93,79), ∴μ1=90,▱1=86,μ2=93,▱2=79,∴第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定, 故选:C .【点评】本题考查正态分布曲线的特点,考查学生分析解决问题的能力,比较基础.12.【答案】C【解析】当{2,1,1,2,4}x ∈--时,2log ||1{1,1,0}y x =-∈-,所以AB ={1,1}-,故选C .二、填空题13.【答案】 10 cm【解析】解:作出圆柱的侧面展开图如图所示,设A 关于茶杯口的对称点为A ′,则A ′A=4cm ,BC=6cm ,∴A ′C=8cm ,∴A ′B==10cm .故答案为:10.【点评】本题考查了曲面的最短距离问题,通常转化为平面图形来解决.14.【答案】2 【解析】试题分析:第一组数据平均数为2)()()()()(,2524232221=-+-+-+-+-∴x x x x x x x x x x x ,22222212345()()()()()8,4,2ax ax ax ax ax ax ax ax ax ax a a -+-+-+-+-=∴=∴=.考点:方差;标准差.15.【答案】 (﹣4,0] .【解析】解:当a=0时,不等式等价为﹣4<0,满足条件;当a≠0时,要使不等式ax2﹣2ax﹣4<0恒成立,则满足,即,∴解得﹣4<a<0,综上:a的取值范围是(﹣4,0].故答案为:(﹣4,0].【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论.16.【答案】x=﹣3.【解析】解:经过A(﹣3,1),且平行于y轴的直线方程为:x=﹣3.故答案为:x=﹣3.17.【答案】30°.【解析】解:取AD的中点G,连接EG,GF则EG DC=2,GF AB=1,故∠GEF即为EF与CD所成的角.又∵FE⊥AB∴FE⊥GF∴在Rt△EFG中EG=2,GF=1故∠GEF=30°.故答案为:30°【点评】此题的关键是作出AD的中点然后利用题中的条件在特殊三角形中求解,如果一味的想利用余弦定理求解就出力不讨好了.18.【答案】.【解析】解:已知数列1,a1,a2,9是等差数列,∴a1+a2 =1+9=10.数列1,b 1,b 2,b 3,9是等比数列,∴ =1×9,再由题意可得b 2=1×q 2>0 (q 为等比数列的公比),∴b 2=3,则=,故答案为.【点评】本题主要考查等差数列、等比数列的定义和性质应用,属于中档题.三、解答题19.【答案】 【解析】解:(1)∵,将其代入C 1得:,∴圆C 1的直角坐标方程为:. 由直线l 1:(t 为参数),消去参数可得:y=x ,可得(ρ∈R ). ∴直线l 1的极坐标方程为:(ρ∈R ).(2),可得⇒,∴.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.20.【答案】(1)增函数,证明见解析;(2)最小值为,最大值为2.5. 【解析】试题分析:(1)在[]2,5上任取两个数12x x <,则有1212123()()()0(1)(1)x x f x f x x x --=<++,所以()f x 在[]2,5上是增函数;(2)由(1)知,最小值为(2)2f =,最大值为5(5)2f =.试题解析:在[]2,5上任取两个数12x x <,则有12121233()()11x x f x f x x x -=-++12123()(1)(1)x x x x -=++0<, 所以()f x 在[]2,5上是增函数.所以当2x =时,min ()(2)2f x f ==, 当5x =时,max 5()(5)2f x f ==. 考点:函数的单调性证明.【方法点晴】本题主要考查利用定义法求证函数的单调性并求出单调区间,考查化归与转化的数学思想方法.先在定义域内任取两个数12x x <,然后作差12()()f x f x -,利用十字相乘法、提公因式法等方法化简式子成几个因式的乘积,判断最后的结果是大于零韩式小于零,如果小于零,则函数为增函数,如果大于零,则函数为减函数.1 21.【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】(Ⅰ)由已知当 ,即, 时,(Ⅱ)当时,递增即,令,且注意到函数的递增区间为22.【答案】【解析】解:(1)由题意可知第3组的频率为0.06×5=0.3,第4组的频率为0.04×5=0.2, 第5组的频率为0.02×5=0.1;(2)第3组的人数为0.3×100=30, 第4组的人数为0.2×100=20, 第5组的人数为0.1×100=10; 因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组=3;第4组=2;第5组=1;应从第3,4,5组各抽取3,2,1名志愿者.(3)记第3组3名志愿者为1,2,3;第4组2名志愿者为4,5;第5组1名志愿者为6;在这6名志愿者中随机抽取2名志愿者有:(1,2),(1,3),(1,4),(1,5),(1,6), (2,3),(2,4),(2,5),(2,6), (3,4),(3,5),(3,6), (4,5),(4,6), (5,6);共有15种,第4组2名志愿者为4,5;至少有一名志愿者被抽中共有9种,所以第4组至少有一名志愿者被抽中的概率为.【点评】本题考查列举法计算基本事件数及事件发生的概率,频率分布直方图,考查计算能力.23.【答案】(1)()21sin cos S θθ=+,其中02πθ<<.(2)6πθ=时,max S =【解析】试题分析:(1)求梯形铁片ABCD 的面积S 关键是用θ表示上下底及高,先由图形得AOE BOF θ∠=∠=,这样可得高2cos AB θ=,再根据等腰直角三角形性质得()1cos sin AD θθ=-+,()1cos sin BC θθ=++最后根据梯形面积公式得()2AD BC AB S +⋅=()21sin cos θθ=+,交代定义域02πθ<<.(2)利用导数求函数最值:先求导数()'f θ()()22sin 1sin 1θθ=--+,再求导函数零点6πθ=,列表分析函数单调性变化规律,确定函数最值试题解析:(1)连接OB ,根据对称性可得AOE BOF θ∠=∠=且1OA OB ==, 所以1cos sin AD θθ=-+,1cos sin BC θθ=++,2cos AB θ=, 所以()2AD BC ABS +⋅=()21sin cos θθ=+,其中02πθ<<.考点:利用导数求函数最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f′(x)>0或f′(x)<0求单调区间;第二步:解f′(x)=0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.24.【答案】【解析】解:(Ⅰ)由已知得:|PF2|=6﹣4=2,在△PF1F2中,由勾股定理得,,即4c2=20,解得c2=5.∴m=9﹣5=4;(Ⅱ)设P点坐标为(x0,y0),由(Ⅰ)知,,,∵,,∴,解得.∴P().【点评】本题考查椭圆方程的求法,考查了椭圆的简单性质,属中档题.。

城阳区一中2018-2019学年上学期高二数学12月月考试题含解析

城阳区一中2018-2019学年上学期高二数学12月月考试题含解析

城阳区一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 正方体的内切球与外接球的半径之比为( )A .B .C .D .2. 直角梯形OABC 中,,1,2AB OC AB OC BC ===,直线:l x t =截该梯形所得位于左边图 形面积为,则函数()S f t =的图像大致为( )3. 已知向量||=, •=10,|+|=5,则||=( )A .B .C .5D .254. 设曲线2()1f x x =+在点(,())x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象 可以为( )A .B . C. D .5. 如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形 ②不存在点D ,使四面体ABCD 是正三棱锥 ③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上 其中真命题的序号是( )A .①②B .②③C .③D .③④6. 已知f (x )是定义在R 上周期为2的奇函数,当x ∈(0,1)时,f (x )=3x ﹣1,则f (log 35)=( )A .B .﹣C .4D .7. 对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为( )A .92%B .24%C .56%D .5.6%8. 函数2-21y x x =-,[0,3]x ∈的值域为( ) A. B. C. D.9. 若全集U={﹣1,0,1,2},P={x ∈Z|x 2<2},则∁U P=( ) A .{2} B .{0,2}C .{﹣1,2}D .{﹣1,0,2}10.如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是( )A .i ≥7?B .i >15?C .i ≥15?D .i >31?11.已知函数()x F x e =满足()()()F x g x h x =+,且()g x ,()h x 分别是R 上的偶函数和奇函数, 若(0,2]x ∀∈使得不等式(2)()0g x ah x -≥恒成立,则实数的取值范围是( )A .(-∞B .(-∞C .D .)+∞ 12.已知集合M={1,4,7},M ∪N=M ,则集合N 不可能是( ) A .∅ B .{1,4}C .MD .{2,7}二、填空题13.已知关于的不等式20x ax b ++<的解集为(1,2),则关于的不等式210bx ax ++>的解集 为___________.14.函数f (x )=的定义域是 .15.等差数列{}n a 的前项和为n S ,若37116a a a ++=,则13S 等于_________. 16.若6()mx y +展开式中33x y 的系数为160-,则m =__________.【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想.17.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则PQ 的最小值为( ) A .1310 B .3 C .4 D .2110【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.18.设α为锐角, =(cos α,sin α),=(1,﹣1)且•=,则sin (α+)= .三、解答题19.已知函数f (x )=lnx ﹣ax+(a ∈R ).(Ⅰ)当a=1时,求曲线y=f (x )在点(1,f (1))处的切线方程; (Ⅱ)若函数y=f (x )在定义域内存在两个极值点,求a 的取值范围.20.设点P 的坐标为(x ﹣3,y ﹣2).(1)在一个盒子中,放有标号为1,2,3的三张卡片,现在从盒子中随机取出一张卡片,记下标号后把卡片放回盒中,再从盒子中随机取出一张卡片记下标号,记先后两次抽取卡片的标号分别为x 、y ,求点P 在第二象限的概率;(2)若利用计算机随机在区间上先后取两个数分别记为x 、y ,求点P 在第三象限的概率.21.如图,点A 是以线段BC 为直径的圆O 上一点,AD ⊥BC 于点D ,过点B 作圆O 的切线,与CA 的延长线相交于点E ,点G 是AD 的中点,连接CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P . (1)求证:BF=EF ;(2)求证:PA 是圆O 的切线.22.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,且60oABC ∠=,侧面PDC 为等边三角形,且与底面ABCD 垂直,M 为PB 的中点. (Ⅰ)求证:PA ⊥DM ;(Ⅱ)求直线PC 与平面DCM 所成角的正弦值.23.(本小题满分12分)已知数列{n a }的前n 项和为n S ,且满足*)(2N n a n S n n ∈=+. (1)证明:数列}1{+n a 为等比数列,并求数列{n a }的通项公式;(2)数列{n b }满足*))(1(log 2N n a a b n n n ∈+⋅=,其前n 项和为n T ,试求满足201522>++nn T n 的最小正整数n .【命题意图】本题是综合考察等比数列及其前n 项和性质的问题,其中对逻辑推理的要求很高.24.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名55(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌213.841 6.635附:K2=.城阳区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】C【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长, 设正方体的棱长为:2a ,所以内切球的半径为:a ;外接球的直径为2a ,半径为:a ,所以,正方体的内切球与外接球的半径之比为:故选C2. 【答案】C 【解析】试题分析:由题意得,当01t <≤时,()2122f t t t t =⋅⋅=,当12t <≤时, ()112(1)2212f t t t =⨯⨯+-⋅=-,所以()2,0121,12t t f t t t ⎧<≤=⎨-<≤⎩,结合不同段上函数的性质,可知选项C 符合,故选C.考点:分段函数的解析式与图象. 3. 【答案】C【解析】解:∵;∴由得,=;∴;∴.故选:C .4. 【答案】A【解析】试题分析:()()()()()2,cos 2cos ,,cos cos g x x g x x x x g x g x x x ==-=--=,()cos y g x x ∴=为奇函数,排除B ,D ,令0.1x =时0y >,故选A. 1 考点:1、函数的图象及性质;2、选择题“特殊值”法. 5. 【答案】D【解析】【分析】对于①可构造四棱锥CABD 与四面体OABC 一样进行判定;对于②,使AB=AD=BD ,此时存在点D ,使四面体ABCD 是正三棱锥;对于③取CD=AB ,AD=BD ,此时CD 垂直面ABD ,即存在点D ,使CD 与AB 垂直并且相等,对于④先找到四面体OABC 的内接球的球心P ,使半径为r ,只需PD=r ,可判定④的真假.【解答】解:∵四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,∴AC=BC=,AB=当四棱锥CABD 与四面体OABC 一样时,即取CD=3,AD=BD=2 此时点D ,使四面体ABCD 有三个面是直角三角形,故①不正确使AB=AD=BD ,此时存在点D ,使四面体ABCD 是正三棱锥,故②不正确;取CD=AB ,AD=BD ,此时CD 垂直面ABD ,即存在点D ,使CD 与AB 垂直并且相等,故③正确; 先找到四面体OABC 的内接球的球心P ,使半径为r ,只需PD=r 即可 ∴存在无数个点D ,使点O 在四面体ABCD 的外接球面上,故④正确 故选D6. 【答案】B【解析】解:∵f (x )是定义在R 上周期为2的奇函数,∴f (log 35)=f (log 35﹣2)=f (log 3),∵x ∈(0,1)时,f (x )=3x﹣1∴f (log 3)═﹣故选:B7. 【答案】C【解析】解:这次测验的优秀率(不小于80分)为0.032×10+0.024×10=0.56 故这次测验的优秀率(不小于80分)为56%故选C【点评】在解决频率分布直方图时,一定注意频率分布直方图的纵坐标是.8. 【答案】A 【解析】试题分析:函数()222112y x x x =--=--在区间[]0,1上递减,在区间[]1,3上递增,所以当x=1时,()()min 12f x f ==-,当x=3时,()()max 32f x f ==,所以值域为[]2,2-。

城阳区第一中学校2018-2019学年高二上学期第二次月考试卷数学

城阳区第一中学校2018-2019学年高二上学期第二次月考试卷数学

城阳区第一中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. A 是圆上固定的一定点,在圆上其他位置任取一点B ,连接A 、B 两点,它是一条弦,它的长度大于等于半径长度的概率为( )A .B .C .D .2. 设,,a b c 分别是ABC ∆中,,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ++=与sin sin 0bx B y C -+=的位置关系是( )A .平行B . 重合C . 垂直D .相交但不垂直3. 已知函数f (x )=1+x ﹣+﹣+…+,则下列结论正确的是( )A .f (x )在(0,1)上恰有一个零点B .f (x )在(﹣1,0)上恰有一个零点C .f (x )在(0,1)上恰有两个零点D .f (x )在(﹣1,0)上恰有两个零点4. 下面的结构图,总经理的直接下属是( )A .总工程师和专家办公室B .开发部C .总工程师、专家办公室和开发部D .总工程师、专家办公室和所有七个部5. 如图Rt △O ′A ′B ′是一平面图形的直观图,斜边O ′B ′=2,则这个平面图形的面积是( )A .B .1C .D .6. 设等比数列{a n }的公比q=2,前n 项和为S n ,则=( )A .2B .4C .D .7. 圆222(2)x y r -+=(0r >)与双曲线2213y x -=的渐近线相切,则r 的值为( )A B .2 C D .【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力.8. 若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列结论正确的是( ) A .α∥β,l ⊂α,n ⊂β⇒l ∥n B .α∥β,l ⊂α⇒l ⊥β C .l ⊥n ,m ⊥n ⇒l ∥m D .l ⊥α,l ∥β⇒α⊥β9. 集合{}|42,M x x k k Z ==+∈,{}|2,N x x k k Z ==∈,{}|42,P x x k k Z ==-∈,则M ,N ,P 的关系( )A .M P N =⊆B .N P M =⊆C .M N P =⊆D .M P N == 10.数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=( )A .1B .2C .3D .411.若动点),(),(2211y x B y x A 、分别在直线: 011=-+y x 和2l :01=-+y x 上移动,则AB 中点M 所在直线方程为( )A .06=--y xB .06=++y xC .06=+-y xD .06=-+y x 12.已知点F 是抛物线y 2=4x 的焦点,点P 在该抛物线上,且点P 的横坐标是2,则|PF|=( ) A .2 B .3 C .4 D .5二、填空题13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sinAsinB+sinBsinC+cos2B=1.若C=,则= .14.过点(0,1)的直线与x 2+y 2=4相交于A 、B 两点,则|AB|的最小值为 . 15.在中,角、、所对应的边分别为、、,若,则_________16.设函数f (x )=,①若a=1,则f (x )的最小值为 ;②若f (x )恰有2个零点,则实数a 的取值范围是 .17.已知实数x,y满足约束条,则z=的最小值为.18.已知正方体ABCD﹣A1B1C1D1的一个面A1B1C1D1在半径为的半球底面上,A、B、C、D四个顶点都在此半球面上,则正方体ABCD﹣A1B1C1D1的体积为.三、解答题19.已知椭圆的离心率,且点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆交于、两点,且线段的垂直平分线经过点.求(为坐标原点)面积的最大值.20.已知△ABC的三边是连续的三个正整数,且最大角是最小角的2倍,求△ABC的面积.21.已知双曲线C:与点P(1,2).(1)求过点P(1,2)且与曲线C只有一个交点的直线方程;(2)是否存在过点P的弦AB,使AB的中点为P,若存在,求出弦AB所在的直线方程,若不存在,请说明理由.22.已知函数g(x)=f(x)+﹣bx,函数f(x)=x+alnx在x=1处的切线l与直线x+2y=0垂直.(1)求实数a的值;(2)若函数g(x)存在单调递减区间,求实数b的取值范围;(3)设x1、x2(x1<x2)是函数g(x)的两个极值点,若b,求g(x1)﹣g(x2)的最小值.23.已知函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示;(1)求ω,φ;(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)的图象,若y=g(x)图象的一个对称点为(,0),求θ的最小值.(3)对任意的x∈[,]时,方程f(x)=m有两个不等根,求m的取值范围.24.已知数列{a n}满足a1=3,a n+1=a n+p•3n(n∈N*,p为常数),a1,a2+6,a3成等差数列.(1)求p的值及数列{a n}的通项公式;(2)设数列{b n}满足b n=,证明b n≤.城阳区第一中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】解:在圆上其他位置任取一点B ,设圆半径为R , 则B 点位置所有情况对应的弧长为圆的周长2πR ,其中满足条件AB 的长度大于等于半径长度的对应的弧长为2πR ,则AB 弦的长度大于等于半径长度的概率P==.故选B .【点评】本题考查的知识点是几何概型,其中根据已知条件计算出所有基本事件对应的几何量及满足条件的基本事件对应的几何量是解答的关键.2. 【答案】C 【解析】试题分析:由直线sin 0A x ay c ++=与sin sin 0bx B y C -+=,则sin (sin )2sin sin 2sin sin 0A b a B R A B R A B ⋅+⋅-=-=,所以两直线是垂直的,故选C. 1 考点:两条直线的位置关系. 3. 【答案】B【解析】解:∵f ′(x )=1﹣x+x 2﹣x 3+…+x 2014=(1﹣x )(1+x 2+…+x 2012)+x 2014; ∴f ′(x )>0在(﹣1,0)上恒成立; 故f (x )在(﹣1,0)上是增函数;又∵f (0)=1,f (﹣1)=1﹣1﹣﹣﹣…﹣<0;故f (x )在(﹣1,0)上恰有一个零点;故选B .【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题.4. 【答案】C【解析】解:按照结构图的表示一目了然, 就是总工程师、专家办公室和开发部.读结构图的顺序是按照从上到下,从左到右的顺序.故选C .【点评】本题是一个已知结构图,通过解读各部分从而得到系统具有的功能,在解读时,要从大的部分读起,一般而言,是从左到右,从上到下的过程解读.5. 【答案】D【解析】解:∵Rt △O'A'B'是一平面图形的直观图,斜边O'B'=2,∴直角三角形的直角边长是,∴直角三角形的面积是,∴原平面图形的面积是1×2=2故选D .6. 【答案】C【解析】解:由于q=2,∴∴;故选:C .7. 【答案】C8. 【答案】D【解析】解:对于A ,α∥β,l ⊂α,n ⊂β,l ,n 平行或 异面,所以错误; 对于B ,α∥β,l ⊂α,l 与β 可能相交可能平行,所以错误;对于C ,l ⊥n ,m ⊥n ,在空间,l 与m 还可能异面或相交,所以错误. 故选D .9. 【答案】A 【解析】试题分析:通过列举可知{}{}2,6,0,2,4,6M P N ==±±=±±±,所以M P N =⊆.考点:两个集合相等、子集.110.【答案】A【解析】解:设等差数列{a n}的公差为d,由a1+1,a3+2,a5+3构成等比数列,得:(a3+2)2=(a1+1)(a5+3),整理得:a32+4a3+4=a1a5+3a1+a5+3即(a1+2d)2+4(a1+2d)+4=a1(a1+4d)+4a1+4d+3.化简得:(2d+1)2=0,即d=﹣.∴q===1.故选:A.【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.11.【答案】D【解析】考点:直线方程12.【答案】B【解析】解:抛物线y2=4x的准线方程为:x=﹣1,∵P到焦点F的距离等于P到准线的距离,P的横坐标是2,∴|PF|=2+1=3.故选:B.【点评】本题考查抛物线的性质,利用抛物线定义是解题的关键,属于基础题.二、填空题13.【答案】=.【解析】解:在△ABC中,角A,B,C的对边分别为a,b,c,∵已知sinAsinB+sinBsinC+cos2B=1,∴sinAsinB+sinBsinC=2sin2B.再由正弦定理可得ab+bc=2b2,即a+c=2b,故a,b,c成等差数列.C=,由a,b,c成等差数列可得c=2b﹣a,由余弦定理可得(2b﹣a)2=a2+b2﹣2abcosC=a2+b2+ab.化简可得5ab=3b2,∴=.故答案为:.【点评】本题主要考查等差数列的定义和性质,二倍角公式、余弦定理的应用,属于中档题.14.【答案】2【解析】解:∵x2+y2=4的圆心O(0,0),半径r=2,∴点(0,1)到圆心O(0,0)的距离d=1,∴点(0,1)在圆内.如图,|AB|最小时,弦心距最大为1,∴|AB|min=2=2.故答案为:2.15.【答案】【解析】因为,所以,所以,所以答案:16.【答案】≤a<1或a≥2.【解析】解:①当a=1时,f(x)=,当x<1时,f(x)=2x﹣1为增函数,f(x)>﹣1,当x>1时,f(x)=4(x﹣1)(x﹣2)=4(x2﹣3x+2)=4(x﹣)2﹣1,当1<x<时,函数单调递减,当x>时,函数单调递增,故当x=时,f(x)min=f()=﹣1,②设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a)若在x<1时,h(x)=与x轴有一个交点,所以a>0,并且当x=1时,h(1)=2﹣a>0,所以0<a<2,而函数g(x)=4(x﹣a)(x﹣2a)有一个交点,所以2a≥1,且a<1,所以≤a<1,若函数h(x)=2x﹣a在x<1时,与x轴没有交点,则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2﹣a≤0时,即a≥2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是≤a<1,或a≥2.17.【答案】.【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z==32x+y,设t=2x+y,则y=﹣2x+t,平移直线y=﹣2x+t,由图象可知当直线y=﹣2x+t经过点B时,直线y=﹣2x+t的截距最小,此时t最小.由,解得,即B(﹣3,3),代入t=2x+y得t=2×(﹣3)+3=﹣3.∴t最小为﹣3,z有最小值为z==3﹣3=.故答案为:.【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.18.【答案】2.【解析】解:如图所示,连接A1C1,B1D1,相交于点O.则点O为球心,OA=.设正方体的边长为x,则A1O=x.在Rt△OAA1中,由勾股定理可得:+x2=,解得x=.∴正方体ABCD﹣AB1C1D1的体积V==2.1故答案为:2.三、解答题19.【答案】【解析】【知识点】圆锥曲线综合椭圆【试题解析】(Ⅰ)由已知,点在椭圆上,,解得.所求椭圆方程为(Ⅱ)设,,的垂直平分线过点, 的斜率存在.当直线的斜率时,当且仅当时,当直线的斜率时,设.消去得:由.①,,的中点为由直线的垂直关系有,化简得②由①②得又到直线的距离为,时,.由,,解得;即时,;综上:;20.【答案】【解析】解:由题意设a=n、b=n+1、c=n+2(n∈N+),∵最大角是最小角的2倍,∴C=2A,由正弦定理得,则,∴,得cosA=,由余弦定理得,cosA==,∴=,化简得,n=4,∴a=4、b=5、c=6,cosA=,又0<A<π,∴sinA==,∴△ABC的面积S===.【点评】本题考查正弦定理和余弦定理,边角关系,三角形的面积公式的综合应用,以及方程思想,考查化简、计算能力,属于中档题.21.【答案】【解析】解:(1)当直线l的斜率不存在时,l的方程为x=1,与曲线C有一个交点.…当直线l的斜率存在时,设直线l的方程为y﹣2=k(x﹣1),代入C的方程,并整理得(2﹣k2)x2+2(k2﹣2k)x﹣k2+4k﹣6=0 (*)(ⅰ)当2﹣k2=0,即k=±时,方程(*)有一个根,l与C有一个交点所以l的方程为…(ⅱ)当2﹣k2≠0,即k≠±时△=[2(k2﹣2k)]2﹣4(2﹣k2)(﹣k2+4k﹣6)=16(3﹣2k),①当△=0,即3﹣2k=0,k=时,方程(*)有一个实根,l与C有一个交点.所以l的方程为3x﹣2y+1=0…综上知:l的方程为x=1或或3x﹣2y+1=0…(2)假设以P为中点的弦存在,设为AB,且A(x1,y1),B(x2,y2),则2x12﹣y12=2,2x22﹣y22=2,两式相减得2(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2)…又∵x1+x2=2,y1+y2=4,∴2(x1﹣x2)=4(y1﹣y2)即k AB==,…∴直线AB的方程为y﹣2=(x﹣1),…代入双曲线方程2x2﹣y2=2,可得,15y2﹣48y+34=0,由于判别式为482﹣4×15×34>0,则该直线AB存在.…【点评】本题考查了直线和曲线的交点问题,考查直线方程问题,考查分类讨论思想,是一道中档题.22.【答案】【解析】解:(1)∵f(x)=x+alnx,∴f′(x)=1+,∵f(x)在x=1处的切线l与直线x+2y=0垂直,∴k=f′(x)|x=1=1+a=2,解得a=1.(2)∵g(x)=lnx+x2﹣(b﹣1)x,∴g′(x)=+x﹣(b﹣1)=,x>0,由题意知g′(x)<0在(0,+∞)上有解,即x++1﹣b<0有解,∵定义域x>0,∴x+≥2,x+<b﹣1有解,只需要x+的最小值小于b﹣1,∴2<b﹣1,解得实数b的取值范围是{b|b>3}.(3)∵g(x)=lnx+x2﹣(b﹣1)x,∴g′(x)=+x﹣(b﹣1)=,x>0,由题意知g′(x)<0在(0,+∞)上有解,x1+x2=b﹣1,x1x2=1,∵x>0,设μ(x)=x2﹣(b﹣1)x+1,则μ(0)=[ln(x1+x12﹣(b﹣1)x1]﹣[lnx2+x22﹣(b﹣1)x2]=ln+(x12﹣x22)﹣(b﹣1)(x1﹣x2)=ln+(x12﹣x22)﹣(x1+x2)(x1﹣x2)=ln﹣(﹣),∵0<x1<x2,∴设t=,0<t<1,令h(t)=lnt﹣(t﹣),0<t<1,则h′(t)=﹣(1+)=<0,∴h(t)在(0,1)上单调递减,又∵b≥,∴(b﹣1)2≥,由x1+x2=b﹣1,x1x2=1,可得t+≥,∵0<t<1,∴由4t2﹣17t+4=(4t﹣1)(t﹣4)≥0得0<t≤,∴h(t)≥h()=ln﹣(﹣4)=﹣2ln2,故g(x1)﹣g(x2)的最小值为﹣2ln2.【点评】本题考查导数的运用:求切线的斜率和单调区间、极值,考查函数的最小值的求法,解题时要认真审题,注意函数的单调性的合理运用.23.【答案】【解析】解:(1)根据函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象,可得•=,求得ω=2.再根据五点法作图可得2•+φ=,求得φ=﹣,∴f(x)=2sin(2x﹣).(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)=2sin=2sin(2x+2θ﹣)的图象,∵y=g(x)图象的一个对称点为(,0),∴2•+2θ﹣=kπ,k∈Z,∴θ=﹣,故θ的最小正值为.(3)对任意的x∈[,]时,2x﹣∈[,],sin(2x﹣)∈,即f(x)∈,∵方程f(x)=m有两个不等根,结合函数f(x),x∈[,]时的图象可得,1≤m<2.24.【答案】【解析】(1)解:∵数列{a n}满足a1=3,a n+1=a n+p•3n(n∈N*,p为常数),∴a2=3+3p,a3=3+12p,∵a1,a2+6,a3成等差数列.∴2a2+12=a1+a3,即18+6p=6+12p 解得p=2.∵a n+1=a n+p•3n,∴a2﹣a1=2•3,a3﹣a2=2•32,…,a n﹣a n﹣1=2•3n﹣1,将这些式子全加起来得a n﹣a1=3n﹣3,∴a n=3n.(2)证明:∵{b n}满足b n=,∴b n=.设f(x)=,则f′(x)=,x∈N*,令f′(x)=0,得x=∈(1,2)当x∈(0,)时,f′(x)>0;当x∈(,+∞)时,f′(x)<0,且f(1)=,f(2)=,∴f(x)max=f(2)=,x∈N*.∴b n≤.【点评】本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意构造法的合理运用.。

山东省青岛市城阳第一中学2018年高二生物测试题含解析

山东省青岛市城阳第一中学2018年高二生物测试题含解析

山东省青岛市城阳第一中学2018年高二生物测试题含解析一、选择题(本题共40小题,每小题1.5分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 下列关于细胞工程的叙述中,正确的是A.植物细胞必须先用胰蛋白酶处理细胞获得原生质体B.克隆动物技术只用到细胞核移植和胚胎移植两方面技术C.经细胞核移植培育出新个体只具有一个亲本的遗传性状D.用于培养的植物器官属于外植体参考答案:D2. 在如下食物网中,如果食草动物全部死亡,则杂食性动物数量()A.增多 B。

减少 C.不变 D。

先减少后不变参考答案:A3. 下面是某真核生物体内一种蛋白质的肽链结构示意图(图甲,其中的数字为氨基酸序号)及肽链的部分放大图(图乙),请据图判断下列叙述正确的是该肽链的合成需要脱去124个水分子B.控制这条肽链合成的基因至少含有372个碱基对C.从图乙可推知该肽链至少含有2个游离的羧基D.图乙中氨基酸种类的不同决定于结构①②④⑥⑧参考答案:B4. 下图是同一种动物体内有关细胞分裂的一组图像。

下列说法正确的是()(1)具有同源染色体的细胞有①②③(2)动物睾丸中可能同时出现以上细胞(3)③所示的细胞中有2个四分体(4)进行有丝分裂的细胞为①和③(5)④中发生了等位基因的分离A.(1)(2)(5) B.(2)(4)(5) C.(1)(3)(4) D.(1)(2)(4)参考答案:D5. 下表为黄豆和玉米干种子中4类重要有机物的元素组成及含量表(单位:g/100g)。

分析表中信息可推知,种子细胞中()A.丁只分布在细胞核中 B.丙构成细胞膜的基本支架C.丁的合成需要甲的参与D.甲.乙.丁都是由单体连接而成的多聚体参考答案:D6. 图一是将含有生长素的琼脂块放在切去尖端的胚芽鞘的一侧,胚芽鞘弯曲的情况(弯曲角度用A表示);图二是生长素对胚芽鞘生长的促进作用示意图。

由此我们可以判断下列说法错误的是A.琼脂块中生长素浓度在b点时A具有最大值B.当生长素浓度小于b点浓度时,随生长素浓度的增加A逐渐减小C.只有生长素浓度高于c点浓度时,生长素才会抑制胚芽鞘的生长D.由图二可知生长素对于胚芽鞘的生长作用具有两重性参考答案:A7. 下列关于突触结构和功能的叙述中,错误的是A.突触前膜与后膜之间有间隙B.兴奋在突触处由电信号转变成化学信号,再转变成电信号C.兴奋在突触处只能由前膜传向后膜D.突触前后两个神经元的兴奋是同步的参考答案:D8. 下列关于免疫的叙述正确的是( )A.无胸腺小鼠具有正常的体液免疫功能B.T淋巴细胞可以产生多种抗体C.在体液免疫过程中,每个效应B细胞只分泌一种特异性抗体D.当同种抗原再次进入机体时,产生的效应B细胞均来自记忆细胞参考答案:C9. 奥运会,其反兴奋剂的力度一届超过一届,检测手段也更为先进。

城阳区第一中学校2018-2019学年高二上学期第二次月考试卷物理

城阳区第一中学校2018-2019学年高二上学期第二次月考试卷物理

城阳区第一中学校2018-2019学年高二上学期第二次月考试卷物理班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.甲、乙两物体在同一直线上做直线运动的速度﹣时间图象如图所示,则()A. 前3秒内甲、乙运动方向相反B. 前3秒内甲的位移大小是9mC. 甲、乙两物体一定是同时同地开始运动D. t=2s时,甲、乙两物体可能恰好相遇【答案】BD2.如图所示,质量为60 g的铜棒长L=20 cm,两端与等长的两细软铜线相连,吊在磁感应强度B=0.5 T、方向竖直向上的匀强磁场中。

当棒中通过恒定电流I后,铜棒能够向上摆动的最大偏角θ=60°,取重力加速度g=10 m/s2,则铜棒中电流I的大小是A. A B.AC.6 A D.A【答案】A【解析】铜棒上摆的过程,根据动能定理有FL sin 60°–mgL(1–cos 60°)=0,安培力F=BIL,解得I=A,选A。

3.电视机中有一个传感器,能将遥控器发出的红外线信号转化为电信号,下列装置中也利用了这种传感器的是A. 电话机的话筒B. 楼道里的声控开关C. 空调中的遥控接收器D. 冰箱中的温控器【答案】C【解析】试题分析:用遥控器调换电视机的频道的过程,实际上就是传感器把光信号转化为电信号的过程.电话机的话筒是将声音转化为电信号,A 错误;楼道中照明灯的声控开关将声信号转化为电信号,调机接收遥控信号的装置将光信号转化为电信号,C 正确;冰箱中控制温度的温控器将温度转化为电信号.故D 错误.4. 如图所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连,弹簧处于自然长度时物块位于O 点(图中未画出)物块的质量为m ,AB=a ,物块与桌面间的动摩擦因数为μ.现用水平向右的力将物块从O 点缓慢拉至A 点,拉力做的功为W .撤去拉力后物块由静止向左运动,经O 点到达B 点时速度减小为零,重力加速度为g .则上述过程中()A .物块在A 点时,弹簧的弹性势能等于1-2W mga μB .物块在B 点时,弹簧的弹性势能小于3-2W mgaμC.经O 点时,物体的动能等于-W mgaμD .物块动能最大时,弹簧的弹性势能小于物块在B 点时弹簧的弹性势能【答案】B 【解析】5. 如图所示,足够长的光滑金属导轨MN 、PQ 平行放置,且都倾斜着与水平面成夹角θ.在导轨的最上端M 、P 之间接有电阻R ,不计其它电阻.导体棒ab 从导轨的最底端冲上导轨,当没有磁场时,ab 上升的最大高度为H ;若存在垂直导轨平面的匀强磁场时,ab 上升的最大高度为h .在两次运动过程中ab 都与导轨保持垂直,且初速度都相等.关于上述情景,下列说法正确的是( )A. 两次上升的最大高度相比较为H <hB. 有磁场时导体棒所受合力的功大于无磁场时合力的功C. 有磁场时,电阻R 产生的焦耳热为212mv D. 有磁场时,ab 上升过程的最小加速度为g sin θ【答案】D 【解析】6. 有一台小型直流电动机,经测量:在实际工作过程中两端电压U=5V ,通过的电流I=1A ,电机线圈电阻,这台电机工作5分钟时间将电能转化为焦耳热和机械能的值为A. 焦耳热为30JB. 焦耳热为1500JC. 机械能为1500JD. 机械能为1470J【答案】AD【解析】根据焦耳定律可得焦耳热为:,故A 正确,B 错误;电动机做的总功为:W=UIt=5×1×5×60J=1500J,机械能为:E=W-Q=1500-30J=1470J,故D正确,C错误。

城阳区第一高级中学2018-2019学年高二上学期第一次月考试卷化学

城阳区第一高级中学2018-2019学年高二上学期第一次月考试卷化学

城阳区第一高级中学2018-2019学年高二上学期第一次月考试卷化学班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.下列说法不正确的是()A.甲烷和苯都可以与氯气发生取代反应B.乙烯、溴苯分子中的所有原子都处于同一平面上C.CH3CH2CH(CH3)CH(CH3)2的名称是2, 3-二甲基戊烷D.乙炔、乙烯、苯都能使溴水褪色,其褪色原理相同,都发生加成反应的是2.常温下,化学键分解成气态原子所需要的能量用E表示。

根据表中信息判断下列说法不正确...A.B. 表中最稳定的共价键是H-F键C.D.3.由铁、锌、铝、镁四种金属中的两种组成的混合物10g,与足量盐酸反应产生的氢气在标准状况下为11.2L,则混合物中一定含有的金属是()A.铁B.锌C.铝D.镁4.轴烯是一类独特的星形环烃。

三元轴烯()与苯()A.均为芳香烃B.互为同素异形体C.互为同系物D.互为同分异构体5.下列说法正确的是A.SiO2是酸性氧化物,它不溶于水也不溶于任何酸B.SiO2制造玻璃的主要原料之一,它在常温下不与NaOH溶液反应C.因高温时SiO2与Na2CO3反应放出CO2,所以H2SiO3酸性比H2CO3强D.CO2通入水玻璃中可得硅酸6.下列有关实验现象或结论的描述不正确的是()A.FeCl2溶液与铁氰化钾液混合后得到特征蓝色沉淀,利用此反应可检验Fe2+B.向饱和食盐水中加入少量浓盐酸,看到溶液振荡,溶液变浑浊C.某温度下,向AgCl饱和溶液中加入蒸馏水,AgCl的溶解度、Ksp均增大D.处理含有Hg2+离子的废水可加入硫化钠,使Hg2+离子转化为HgS沉淀7.全钒液流电池,简称钒电池,它的电能是以化学能的方式存储在不同价态钒离子的硫酸电解液中,采用质子交换膜作为电池组的隔膜,电解质溶液平行流过电极表面并发生电化学反应。

电池总反应为VO2++V3++H2O V2++VO2++2H+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年第一学期城阳一中高二期末试题一、现代文阅读(26分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。

以“工匠精神”锻造文学语言文学界存在一种误解,认为文学创作就是虚构故事,把故事编得好看就行,似乎越来越少有人提及文学语言;兼之网络化、娱乐化用语的大量运用,使得文学语言渐有粗鄙化、简单化和平庸化之嫌。

对叙事文学而言,构思故事当然是必需,但故事是通过语言传达出来的,语言才是文学的全部肌体,是文学的活的灵魂。

文学之美首先体现为语言之美。

一个成熟的作家,首先应该是一个语言使用的方家。

作家贾平凹每天练笔,三五个句子,随想随写。

其实文学语言就是这么积淀来的。

语言积淀另一个重要途径是阅读文学经典。

对于有志于文学的人来说,读文学经典,关键在品出语言的味道、语言的魅力、语言的美感。

古往今来的经典文学作品,往往一开头就能见出作家语言的功力和语言风格的取向。

譬如鲁迅的《故乡》,开头一段写景,即用了大量具有拟人化特征的词组:深冬、阴晦、冷风、呜呜作响、篷隙、苍黄、荒村、活气、悲凉。

这寂静的荒村,马上就活起来了。

鲁迅的语言体系,是对绍兴官话和现代白话的融会与改造,虽已属纯然的现代白话,但这白话,并非一般的俗语和口语,而是经过高度修饰、提炼和改造了的文学语言。

鲁迅对现代白话进行了文学的改造,并形成了自己风格鲜明的语言范式。

与之相异,魔幻现实主义作家马尔克斯长于情景跳跃式和时空交错式的语言。

《百年孤独》的开篇就为我们呈现了这样一种荒诞式的情境:“多年以后,奥雷连诺上校站在行刑队面前,准会想起父亲带他去参观冰块的那个遥远的下午。

”马尔克斯将过去、现在和未来发生的事在一句话中呈现,以这种荒诞叙事为开端,奠定了《百年孤独》的文学基调。

此种突兀的文学语言,在《百年孤独》中比比皆是。

文学大师就像建筑巨匠,一定对语言有一种如琢如磨的“工匠精神”。

反观我们的语言态度,一个越发明显的事实是,我们的文学语言乃至生活语言,似乎正变得越来越贫乏、干瘪,汉语本身的简洁之美、音律之美和灵动之美,已然十分难得。

比如表示“看”这个动作的词汇,今天的文学作品中,一般只有三五种,而在古代汉语中,则有数十种之多,诸如睨、瞟、瞄、眨、瞪、眺、睬、瞥、盯、睹、嘹、眦、嗔、晌、睇、觑等等,且不同词汇皆有微妙的动作差异,生动形象,姿态万千。

那么,如何让文学语言变得鲜活、灵动、丰富呢?文学语言不应丢弃汉语的深厚传统,要善于从现代书面语、地域方言、古代汉语、日用口语等多种语言形态中汲取鲜活丰富的活性元素,熔铸为自成一体的特色文学语言。

贾平凹的小说语言,多游走于现代白话、关中话、陕南商州话和古语之间,于《红楼梦》语言借鉴尤多,又汲取了张爱玲的小说语言,近则与沈从文、孙犁相衔接,再加上他的勤奋练笔,于是锻造出了贾氏独特的文学语言。

优秀的文学语言,一定是在古今中外经典文学作品的语言基础上的融会贯通和自我创造,需要一种几十年如一日地平凡劳作的“工匠精神”。

语言上没有这样的硬功夫,文学精品就只能是空中楼阁。

(选自《人民日报》,2017年08月04日,有删改) 1.下列关于原文内容的理解和分析,正确的一项是()(3分)A.网络化、娱乐化用语的大量运用,使文学语言逐步有了粗鄙化、简单化和平庸化的倾向。

B.叙事文学必须构思故事,而故事通过语言传达,作为文学肌体的语言,才是叙事文学的重心。

C.文学作品《故乡》《百年孤独》的经典开头,显示出两位作家语言功力的高超和语言风格的取向。

D.优秀的文学语言,必定是在对古今中外经典文学作品语言融会贯通基础上的自我创造。

2.下列对原文论证的相关分析,不正确的一项是()(3分)A.文章把文学创作不重视锻造文学语言作为立论前提,进而明确了语言对于文学的重要意义。

B.文章把文学大师与建筑巨匠进行类比,援引古今中外实例,充分论证了一个成熟的作家是语言使用方家的观点。

C.文学语言要从多种语言形态中汲取鲜活丰富的活性元素,熔铸并自成一体,贾平凹独特的文学语言是最好的明证。

D.对于锻造文学语言,文章先提出问题,接着具体分析,最后明确解决的办法,层次分明。

3.根据原文内容,下列说法不正确的一项是()(3分)A.如果能够阅读文学经典,品出语言的味道、魅力和美感,再经常练笔,语言积淀就有了可能。

B.如果不经过高度修饰、提炼和改造,鲁迅作品的文学语言就很难形成自我鲜明的风格。

C.如果有了对语言如琢如磨的“工匠精神”,我们的文学语言也会由贫乏、干瘪变得丰富、鲜活。

D.只要文学把故事编得好看,而且还有语言上的硬功夫,这样文学精品就不会是空中楼阁。

(二)文学类文本阅读(本题共4小题,17分)阅读下面的文字,完成4~7题。

一篱秋色扁豆花周寿鸿①秋风起,豆花开。

九月,是扁豆花的月令。

②月色如水的夜晚,扁豆丛里秋虫浅唱低吟。

明代王伯稠诗云:“豆花初放晚凉凄,碧叶荫中络纬啼”,扬州八怪之一的金农有咏:“昨夜庭前叶有声,篱豆花开蟋蟀鸣。

”汪曾祺在《食豆饮水斋闲笔》中,也有“暑尽天凉,月色如水,听纺织娘在扁豆架下沙沙振羽,至有情味”的描述。

③扁豆是一种生性随和的豆蔬。

乡下种扁豆,不择地点,墙角、树下、灌木丛边,随处可点几颗,不用施肥浇水。

村人护院,多以树枝、秸秆编为篱笆,家家户户,种豆篱笆下。

秋天到了,扁豆花、扁豆荚缀满篱笆,蓬蓬勃勃,挤挤挨挨,把庭院遮掩得密匝匝的。

也有一些人家,在菜园内搭了豆棚,棚上豆荚累累,地上一畦绿韭青椒、红番紫茄。

开门推窗,秋实满园,让人有说不出的欢喜。

④一篱秋色,数扁豆花最美。

⑤整个夏天,扁豆牵藤绕蔓,攀墙爬架,或扶摇直上,或匍匐前行,一个劲儿扩张地盘,却只长叶不开花。

秋风为号,扁豆蔓儿仿佛突然醒了,矮棚浮绿,纤蔓萦红,一开就是一连串。

白扁豆开白花,红扁豆开紫花,粉白如云,艳紫如霞,轻盈似蝶,一嘟噜一嘟噜,在风中发出盈盈的笑声。

⑥记忆中的老家,村路弯弯,巷陌纤纤,篱笆挨着篱笆,家家的篱笆爬满了红红白白的扁豆花。

走在村巷的路上,仿佛走在扁豆花的长廊,心里充满了温暖。

如今,家家户户早已没了篱笆,院墙建得越来越高,再也见不到这种画面了。

⑦汪曾祺说,“扁豆花是最具平民色彩的花”。

⑧秋风秋雨中,扁豆花一扫秋天的寂寥,仍然摇曳生姿,顾盼多情。

这个时节的雨有一个诗意的名称:豆花雨。

晚明诗人曹学佺的“疏篱豆花雨,远水荻芦烟”,让扁豆花美得疏朗迷离;清代学者查学礼的“最怜秋满疏篱外,带雨斜开扁豆花”,让扁豆花美得妩媚多情,楚楚可怜。

最有名的就是郑板桥的那副对联了——“一庭春雨瓢儿菜,满架秋风扁豆花”,让扁豆花美得平静、亲切、淡泊。

当年流落到苏北小镇安丰、寄寓于大悲庵里的郑板桥,随遇而安,笑对秋风秋雨,写美了田园风光。

⑨中秋前后,扁豆藤蔓上一串串像宝塔似的花穗,纷纷落了,长出了一串串月牙状的扁豆。

扁豆生长很快,不久便挂满了豆棚或篱笆。

前面的花落了,结了豆荚,后面的花又开了,总有一串串宝塔似的花穗在风中摇曳。

秋意渐深,其他的花儿都谢了,它还在且落且开,不知疲倦似的,要不是霜冻来了,真不知道要开到什么时候。

⑩寒霜时节,藤蔓干枯了,花朵萎落了,风吹打着发黄的叶片,还有不少没吃完的扁豆皱巴巴地耷拉在枝头,好像在幽幽叹息。

秋尽了,冬天真的要来了。

⑪汪曾祺喜欢扁豆花的世俗与淡泊。

在小说《钓鱼的医生》中,他写王淡人的家:“进了过道,是一个小院子。

院里种着鸡冠、秋葵、凤仙一类既不花钱,又不费事的草花。

有一架扁豆。

还有一畦瓢菜。

这地方不吃瓢菜,也没有人种。

这一畦瓢菜是王淡人从外地找了种子,特为种来和扁豆配对的。

”⑫济世救人的王淡人医生,喜欢郑板桥的满架秋风的淡泊。

他有一帮穷朋友,经常聚到一起品尝他钓的鱼,还有他种的扁豆、瓢菜。

王淡人的原型是汪曾祺父亲汪淡如,也包含了他自己的“人间送小温”情怀。

⑬在老家,清炒扁豆角、扁豆烧芋头、扁豆烧土豆,是乡亲们秋季的主打菜肴。

来了客人,可以在豆棚下现摘扁豆,做“扁豆红烧肉”。

扁豆的清香,肉的肥腴,融合在一起,味道极美。

这是待客的好菜。

家常的做法,是红烧酱焖。

将扁豆撕去两头筋脉,下素油锅煸炒。

然后倒了酱油,盖上锅盖,改文火焖至扁豆酥烂。

袁枚在《随园食单》中说“现采扁豆……单炒者油重为佳”,信然。

扁豆荚粗粝多筋,以红烧酱焖,重油相调,适其味也。

⑭扁豆入诗,古今多有佳句。

扁豆也是入画的,有不少名家喜欢以之作小品。

白石老人也爱画扁豆,寥寥数笔,扁豆花红红白白,扁豆荚随风摇曳,再加上只蚂蚱,或者蟋蟀,或者小鸟,满纸秋色喜人。

⑮“文革”期间,汪曾祺处境窘迫,一家五口住在一个拥挤霉湿的大杂院。

他用破缸种了一架扁豆,扁豆藤疯长,爬墙过壁,遮住了前屋人家的窗户。

秋天,扁豆长成了,他摘了几斤送给人家。

对方说,能不能送我一幅扁豆花的画?汪曾祺连忙答应。

后来,这幅扁豆花,一直挂在前屋人家的显眼处。

⑯人生秋至,心里有扁豆花,生活中就更有温暖。

(选自《散文选刊》2018年3期)4.下列对文章的理解与分析,不正确的一项是()(3分)A. “一篱秋色,数扁豆花最美”独句成段,与上文作者对“绿韭青椒、红番紫茄”的情感形成反差,突出强调了扁豆花美丽,抒发了对扁豆花的赞美之情,并引出下文。

B. 第五自然段第一句采用拟人化的动词“牵藤绕蔓,攀墙爬架,或扶摇直上,或匍匐前行”“扩张地盘”生动地表现了扁豆苗在夏天的蓬勃生长之态,为后面写扁豆开花结果蓄势。

C.文章采用了叙述、描写、抒情等多种表达方式,语言生动典雅,并融入了郑板桥、汪曾祺、汪淡如等人的典型事例,形象鲜明,可读性强。

D. 文中多处写汪曾祺及其作品,巧妙地将汪曾祺在困境中表现出来的开朗平和的人生态度与扁豆花的品格融为一体。

5.文章第二段引用名人佳句,请分析其作用。

(4分)6.请从修辞角度赏析第⑤段划线的句子。

(6分)7.文章结尾写道“人生秋至,心里有扁豆花,生活中就更有温暖”,请结合全文,谈谈对这句话的理解。

(4分)二、古诗文阅读(47分)(一)阅读下面的文言文,完成8~11题。

(17分)绛侯周勃者,沛人也。

其先卷人,徙沛。

高祖之为沛公初起,勃以中涓从攻胡陵,下方与。

方与反,与战,却适。

后章邯破杀项梁,沛公与项羽引兵东如砀。

楚怀王封沛公号安武侯,为砀郡长。

沛公拜勃为虎贲令,以令从沛公定魏地。

攻东郡尉于城武,破之。

破秦军于蓝田。

至咸阳,灭秦。

项羽至,以沛公为汉王。

汉王赐勃爵为威武侯。

从入汉中,拜为将军。

还定三秦,至秦,赐食邑怀德。

攻槐里、好畤,最①。

击赵贲、内史保于咸阳,最。

围章邯废丘。

转击项籍。

攻曲逆,最。

还守敖仓,追项籍。

籍已死,因东定楚地泗水、东海郡,凡得二十二县。

还守洛阳、栎阳,赐与颖阴侯共食钟离。

赐爵列侯,剖符世世勿绝。

食绛八千一百八十户,号绛侯。

勃为人木强敦厚高帝以为可属大事勃不好文学每召诸生说士东乡坐而责之趣为我语。

其椎②少文如此。

文帝即立,以勃为右丞相,赐金五千斤,食邑万户。

相关文档
最新文档