[优质版]钦州市八年级上期末数学试卷(有答案)

合集下载

广西钦州市八年级上期末考试数学试卷(2)有答案-精华版

广西钦州市八年级上期末考试数学试卷(2)有答案-精华版

2017-2018学年广西钦州市八年级(上)期末数学试卷一、选择题(每小题3分,共36分)1.在以下四个标志中,是轴对称图形的是()A.B.C.D.2.下列每组数分别表示三根小棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.1、2、3 B.2、3、5 C.2、3、6 D.3、5、73.下列运算不正确的是()A.x2•x3=x5B.(x2)3=x6C.x3+x3=2x6D.(﹣2x)3=﹣8x34.生物界和医学界对病毒的研究从来没有停过脚步,最近科学家发现了一种病毒的长度约为0.00000456mm,则数据0.00000456用科学记数法表示为()A.4.56×10﹣5B.0.456×10﹣7C.4.56×10﹣6D.4.56×10﹣85.要使分式有意义,则x应满足的条件是()A.x>﹣1 B.x<﹣1 C.x≠1 D.x≠﹣16.在平面直角坐标系中,点P(﹣2,3)关于y轴的对称点在()A.第四象限B.第三象限C.第二象限D.第一象限7.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF8.已知等腰△ABC的两条边长分别是5和6,则△ABC的周长为()A.11 B.16 C.17 D.16或179.下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2﹣9+x=(x﹣3)(x+3)+xC.(x+1)(x+2)=x2+3x+2 D.x2y﹣y=(x﹣1)(x+1)y10.用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS11.甲、乙两个工程队进行污水管道整修,已知乙比甲每天多修3km,甲整修6km的工作时间与乙整修8km的工作时间相等,求甲、乙两个工程队每天分别整修污水管道多少km?设甲每天整修xkm,则可列方程为()A.B. C. D.12.如图,已知AC﹣BC=3,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长是15,则AC的长为()A.6 B.7 C.8 D.9二、填空题(每小题3分,共18分)13.计算:(a+1)(a﹣3)= .14.钝角三角形三边上的中线的交点在此三角形(填写“内”或“外”或“边上”).15.若分式的值为0,则y= .16.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=.17.如图,点O在△ABC内,且到三边的距离相等,若∠A=60°,则∠BOC= .18.先阅读后计算:为了计算4×(5+1)×(52+1)的值,小黄把4改写成5﹣1后,连续运用平方差公式得:4×(5+1)×(52+1)=(5﹣1)×(5+1)×(52+1)=(52﹣1)×(52+1)=252﹣1=624.请借鉴小黄的方法计算:(1+)××××××,结果是.三、解答题(本大题共8小题,共66分)19.(8分)(1)计算:(6x2﹣8xy)÷2x;(2)分解因式:a3﹣6a2+9a.20.(6分)如图,已知A(0,4)、B(﹣2,2)、C(3,0).(1)作△ABC关于x轴对称的△A1B1C1,并写出点B的对应点B1的坐标;(2)求△A1B1C1的面积S.21.(6分)解分式方程: =﹣2.22.(8分)先化简再求值:,其中x=.23.(8分)如图,已知AB=DC,AC=DB.求证:∠1=∠2.24.(10分)如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.(1)求证:DB=DE;(2)过点D作DF垂直BE,垂足为F,若CF=3,求△ABC的周长.25.(8分)某校积极开展科技创新活动,在一次用电脑程序控制小型赛车进行50m比赛的活动中,“梦想号”和“创新号”两辆赛车在比赛前进行结对练习,两辆车从起点同时出发,“梦想号”到达终点时,“创新号”离终点还差2m.已知“梦想号”的平均速度比“创新号”的平均速度快0.1m/s.(1)求“创新号”的平均速度;(2)如果两车重新开始练习,“梦想号”从起点向后退2m,两车同时出发,两车能否同时到达终点?请说明理由.26.(12分)如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC,△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)直接写出AB与AP所满足的数量关系:,AB与AP的位置关系:;(2)将△ABC沿直线l向右平移到图2的位置时,EP交AC于点Q,连接AP,BQ,求证:AP=BQ;(3)将△ABC沿直线l向右平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ,试探究AP=BQ是否仍成立?并说明理由.2017-2018学年广西钦州市八年级(上)期末数学试卷参考答案一、选择题(每小题3分,共36分)1-5:CDCCD 6-10:DBDDD 11-12:BD二、填空题(每小题3分,共18分)13. a2﹣2a﹣3.14.内.15.﹣1.16.240°.17.120°.18.2﹣.三、解答题(本大题共8小题,共66分)19.(1)解:原式=2x(3x﹣4y)÷2x=3x﹣4y(2)解:原式=a(a2﹣6a+9)=a(a﹣3)220.解:(1)如图△A1B1C1即为所求作,B1(﹣2,﹣2);(2)△A1B1C1的面积S=4×5﹣(2×2+2×5+3×4)=7.21.解:方程两边都乘以2(x﹣1)得:2x=3﹣4(x﹣2),解得:x=,检验:把x=代入2(x﹣1)≠0,所以x=是原方程的解,所以原方程的解为x=.22.解:原式=÷=•=,当x=时,原式==.23.证明:连接AD.在△ADB和△DAC中,,∴△ADB≌△DAC(SSS),∴∠1=∠224.(1)证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∴∠DBC=30°(等腰三角形三线合一),∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边).(2)∵DF⊥BE,由(1)知,DB=DE,∴DF垂直平分BE,∵∠CDE=∠CED=∠BCD=30°,∴∠CDF=30°,∵CF=3,∴DC=6,∵AD=CD,∴AC=12,∴△ABC的周长=3AC=36.25.解:(1)设“创新号”赛车的平均速度为x m/s,则“梦想号”赛车的平均速度为(x+0.1)m/s.根据题意列方程得: =,解得 x=2.4经检验:x=2.4是原分式方程的解且符合题意.答:“创新号”的平均速度为2.4 m/s.(2)“梦想号”到达终点的时间是=20.8s,“创新号”到达终点的时间是=20.83s,所以,两车不能同时到达终点,“梦想号”先到.26.解:(1)AB=AP;AB⊥AP;证明:∵AC⊥BC且AC=BC,∴△ABC为等腰直角三角形,∴∠BAC=∠ABC=(180°﹣∠ACB)=45°,易知,△ABC≌△EFP,同理可证∠PEF=45°,∴∠BAP=45°+45°=90°,∴AB=AP且AB⊥AP;故答案为:AB=AP AB⊥AP(2)证明:∵EF=FP,EF⊥FP∴∠EPF=45°.∵AC⊥BC,∴∠CQP=∠EPF=45°∴CQ=CP在 Rt△BCQ和Rt△ACP中,∴Rt△BCQ≌Rt△ACP (SAS).∴AP=BQ.(3)AP=BQ成立,理由如下:∵EF=FP,EF⊥FP,∴∠EPF=45°.∵AC⊥BC∴∠CPQ=∠EPF=45°∴CQ=CP在 Rt△BCQ和Rt△ACP中,∴Rt△BCQ≌Rt△ACP (SAS).∴AP=BQ.。

广西钦州市八年级上册期末数学试卷(有答案)【精编】.doc

广西钦州市八年级上册期末数学试卷(有答案)【精编】.doc

广西钦州市八年级(上)期末数学试卷一、选择题(每小题3分,共36分)1.(3分)在以下四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)下列每组数分别表示三根小棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.1、2、3 B.2、3、5 C.2、3、6 D.3、5、73.(3分)下列运算不正确的是()A.2•3=5B.(2)3=6C.3+3=26D.(﹣2)3=﹣834.(3分)生物界和医学界对病毒的研究从没有停过脚步,最近科学家发现了一种病毒的长度约为0.00000456mm,则数据0.00000456用科学记数法表示为()A.4.56×10﹣5B.0.456×10﹣7 C.4.56×10﹣6D.4.56×10﹣85.(3分)要使分式有意义,则应满足的条件是()A.>﹣1 B.<﹣1 C.≠1 D.≠﹣16.(3分)在平面直角坐标系中,点P(﹣2,3)关于y轴的对称点在()A.第四象限B.第三象限C.第二象限D.第一象限7.(3分)如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF8.(3分)已知等腰△ABC的两条边长分别是5和6,则△ABC的周长为()A.11 B.16 C.17 D.16或179.(3分)下列等式从左到右的变形,属于因式分解的是()A.a(﹣y)=a﹣ay B.2﹣9+=(﹣3)(+3)+C.(+1)(+2)=2+3+2 D.2y﹣y=(﹣1)(+1)y10.(3分)用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS11.(3分)甲、乙两个工程队进行污水管道整修,已知乙比甲每天多修3m,甲整修6m 的工作时间与乙整修8m的工作时间相等,求甲、乙两个工程队每天分别整修污水管道多少m?设甲每天整修m,则可列方程为()A.B.C.D.12.(3分)如图,已知AC﹣BC=3,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长是15,则AC的长为()A.6 B.7 C.8 D.9二、填空题(每小题3分,共18分)13.(3分)计算:(a+1)(a﹣3)=.14.(3分)钝角三角形三边上的中线的交点在此三角形(填写“内”或“外”或“边上”).15.(3分)若分式的值为0,则y=.16.(3分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=.17.(3分)如图,点O在△ABC内,且到三边的距离相等,若∠A=60°,则∠BOC=.18.(3分)先阅读后计算:为了计算4×(5+1)×(52+1)的值,小黄把4改写成5﹣1后,连续运用平方差公式得:4×(5+1)×(52+1)=(5﹣1)×(5+1)×(52+1)=(52﹣1)×(52+1)=252﹣1=624.请借鉴小黄的方法计算:(1+)××××××,结果是.三、解答题(本大题共8小题,共66分)19.(8分)(1)计算:(62﹣8y)÷2;(2)分解因式:a3﹣6a2+9a.20.(6分)如图,已知A(0,4)、B(﹣2,2)、C(3,0).(1)作△ABC关于轴对称的△A1B1C1,并写出点B的对应点B1的坐标;(2)求△A1B1C1的面积S.21.(6分)解分式方程:=﹣2.22.(8分)先化简再求值:,其中=.23.(8分)如图,已知AB=DC,AC=DB.求证:∠1=∠2.24.(10分)如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.(1)求证:DB=DE;(2)过点D作DF垂直BE,垂足为F,若CF=3,求△ABC的周长.25.(8分)某校积极开展科技创新活动,在一次用电脑程序控制小型赛车进行50m比赛的活动中,“梦想号”和“创新号”两辆赛车在比赛前进行结对练习,两辆车从起点同时出发,“梦想号”到达终点时,“创新号”离终点还差2m.已知“梦想号”的平均速度比“创新号”的平均速度快0.1m/s.(1)求“创新号”的平均速度;(2)如果两车重新开始练习,“梦想号”从起点向后退2m,两车同时出发,两车能否同时到达终点?请说明理由.26.(12分)如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC,△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)直接写出AB与AP所满足的数量关系:,AB与AP的位置关系:;(2)将△ABC沿直线l向右平移到图2的位置时,EP交AC于点Q,连接AP,BQ,求证:AP=BQ;(3)将△ABC沿直线l向右平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ,试探究AP=BQ是否仍成立?并说明理由.广西钦州市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)在以下四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项符合题意;D、不是轴对称图形,故本选项不符合题意.故选:C.2.(3分)下列每组数分别表示三根小棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.1、2、3 B.2、3、5 C.2、3、6 D.3、5、7【解答】解:A、1+2=3,不能组成三角形,故此选项错误;B、2+3=5,不能组成三角形,故此选项错误;C、2+3<6,不能组成三角形,故此选项错误;D、3+5>7,能组成三角形,故此选项正确;故选:D.3.(3分)下列运算不正确的是()A.2•3=5B.(2)3=6C.3+3=26D.(﹣2)3=﹣83【解答】解:A、2•3=5,正确;B、(2)3=6,正确;C、应为3+3=23,故本选项错误;D、(﹣2)3=﹣83,正确.故选:C.4.(3分)生物界和医学界对病毒的研究从没有停过脚步,最近科学家发现了一种病毒的长度约为0.00000456mm,则数据0.00000456用科学记数法表示为()A.4.56×10﹣5B.0.456×10﹣7 C.4.56×10﹣6D.4.56×10﹣8【解答】解:数据0.00000456用科学记数法表示为4.56×10﹣6.故选:C.5.(3分)要使分式有意义,则应满足的条件是()A.>﹣1 B.<﹣1 C.≠1 D.≠﹣1【解答】解:由题意得:1+≠0,解得:≠﹣1,故选:D.6.(3分)在平面直角坐标系中,点P(﹣2,3)关于y轴的对称点在()A.第四象限B.第三象限C.第二象限D.第一象限【解答】解:点P(﹣2,3)关于y轴的对称点是:(2,3),在第一象限.故选:D.7.(3分)如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选:B.8.(3分)已知等腰△ABC的两条边长分别是5和6,则△ABC的周长为()A.11 B.16 C.17 D.16或17【解答】解:①当腰是5,底边是6时,能构成三角形,则其周长=5+5+6=16;②当底边是5,腰长是6时,能构成三角形,则其周长=5+6+6=17.故选:D.9.(3分)下列等式从左到右的变形,属于因式分解的是()A.a(﹣y)=a﹣ay B.2﹣9+=(﹣3)(+3)+C.(+1)(+2)=2+3+2 D.2y﹣y=(﹣1)(+1)y【解答】解:A、a(﹣y)=a﹣ay是整式的乘法,故A错误;B、2﹣9+=(﹣3)(+3)+,不是因式分解,故B错误;C、(+1)(+2)=2+3+2是整式的乘法,故C错误;D、2y﹣y=(﹣1)(+1)y是因式分解,故D正确;故选:D.10.(3分)用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS【解答】解:在△OEC和△ODC中,∵,∴△OEC≌△ODC(SSS),故选:D.11.(3分)甲、乙两个工程队进行污水管道整修,已知乙比甲每天多修3m,甲整修6m 的工作时间与乙整修8m的工作时间相等,求甲、乙两个工程队每天分别整修污水管道多少m?设甲每天整修m,则可列方程为()A.B.C.D.【解答】解:设甲每天整修m,则可列方程为:=.故选:B.12.(3分)如图,已知AC﹣BC=3,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长是15,则AC的长为()A.6 B.7 C.8 D.9【解答】解:∵DE是AB的垂直平分线,∴EA=EB,∵△BCE的周长是15,∴EC+EB+BC=EC+EA+BC=AC+BC=15,则,解得,AC=9,BC=6,故选:D.二、填空题(每小题3分,共18分)13.(3分)计算:(a+1)(a﹣3)=a2﹣2a﹣3.【解答】解:(a+1)(a﹣3)=a2﹣3a+a﹣3=a2﹣2a﹣3,故答案为:a2﹣2a﹣3.14.(3分)钝角三角形三边上的中线的交点在此三角形内(填写“内”或“外”或“边上”).【解答】解:钝角三角形三边上的中线的交点在此三角形内.故答案为内.15.(3分)若分式的值为0,则y=﹣1.【解答】解:∵分式的值为0,∴1﹣y2=0且1﹣y≠0,解得:y=﹣1.故答案为:﹣1.16.(3分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β= 240°.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°故答案是:240°.17.(3分)如图,点O在△ABC内,且到三边的距离相等,若∠A=60°,则∠BOC=120°.【解答】解:∵点O在△ABC内,且到三边的距离相等,∴点O是三个角的平分线的交点,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=(180°﹣60°)=60°,在△BCO中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣60°=120°.故答案为:120°.18.(3分)先阅读后计算:为了计算4×(5+1)×(52+1)的值,小黄把4改写成5﹣1后,连续运用平方差公式得:4×(5+1)×(52+1)=(5﹣1)×(5+1)×(52+1)=(52﹣1)×(52+1)=252﹣1=624.请借鉴小黄的方法计算:(1+)××××××,结果是2﹣.【解答】解:原式=2×(1﹣)×(1+)××××××=2×(1﹣)××××××=2×(1﹣)×××××…=2×(1﹣)×(1+)=2×(1﹣)=2﹣故答案为:2﹣.三、解答题(本大题共8小题,共66分)19.(8分)(1)计算:(62﹣8y)÷2;(2)分解因式:a3﹣6a2+9a.【解答】(1)解:原式=2(3﹣4y)÷2=3﹣4y(2)解:原式=a(a2﹣6a+9)=a(a﹣3)220.(6分)如图,已知A(0,4)、B(﹣2,2)、C(3,0).(1)作△ABC关于轴对称的△A1B1C1,并写出点B的对应点B1的坐标;(2)求△A1B1C1的面积S.【解答】解:(1)如图△A1B1C1即为所求作,B1(﹣2,﹣2);(2)△A1B1C1的面积S=4×5﹣(2×2+2×5+3×4)=7.21.(6分)解分式方程:=﹣2.【解答】解:方程两边都乘以2(﹣1)得:2=3﹣4(﹣2),解得:=,检验:把=代入2(﹣1)≠0,所以=是原方程的解,所以原方程的解为=.22.(8分)先化简再求值:,其中=.【解答】解:原式=÷=•=,当=时,原式==.23.(8分)如图,已知AB=DC,AC=DB.求证:∠1=∠2.【解答】证明:连接AD.在△ADB和△DAC中,,∴△ADB≌△DAC(SSS),∴∠1=∠224.(10分)如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.(1)求证:DB=DE;(2)过点D作DF垂直BE,垂足为F,若CF=3,求△ABC的周长.【解答】(1)证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∴∠DBC=30°(等腰三角形三线合一),∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边).(2)∵DF⊥BE,由(1)知,DB=DE,∴DF垂直平分BE,∵∠CDE=∠CED=∠BCD=30°,∴∠CDF=30°,∵CF=3,∴DC=6,∵AD=CD,∴AC=12,∴△ABC的周长=3AC=36.25.(8分)某校积极开展科技创新活动,在一次用电脑程序控制小型赛车进行50m比赛的活动中,“梦想号”和“创新号”两辆赛车在比赛前进行结对练习,两辆车从起点同时出发,“梦想号”到达终点时,“创新号”离终点还差2m.已知“梦想号”的平均速度比“创新号”的平均速度快0.1m/s.(1)求“创新号”的平均速度;(2)如果两车重新开始练习,“梦想号”从起点向后退2m,两车同时出发,两车能否同时到达终点?请说明理由.【解答】解:(1)设“创新号”赛车的平均速度为m/s,则“梦想号”赛车的平均速度为(+0.1)m/s.根据题意列方程得:=,解得=2.4经检验:=2.4是原分式方程的解且符合题意.答:“创新号”的平均速度为2.4 m/s.(2)“梦想号”到达终点的时间是=20.8s,“创新号”到达终点的时间是=20.83s,所以,两车不能同时到达终点,“梦想号”先到.26.(12分)如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC,△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)直接写出AB与AP所满足的数量关系:AB=AP,AB与AP的位置关系:AB⊥AP;(2)将△ABC沿直线l向右平移到图2的位置时,EP交AC于点Q,连接AP,BQ,求证:AP=BQ;(3)将△ABC沿直线l向右平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ,试探究AP=BQ是否仍成立?并说明理由.【解答】解:(1)AB=AP;AB⊥AP;证明:∵AC⊥BC且AC=BC,∴△ABC为等腰直角三角形,∴∠BAC=∠ABC=(180°﹣∠ACB)=45°,易知,△ABC≌△EFP,同理可证∠PEF=45°,∴∠BAP=45°+45°=90°,∴AB=AP且AB⊥AP;故答案为:AB=AP AB⊥AP(2)证明:∵EF=FP,EF⊥FP∴∠EPF=45°.∵AC⊥BC,∴∠CQP=∠EPF=45°∴CQ=CP在Rt△BCQ和Rt△ACP中,∴Rt△BCQ≌Rt△ACP (SAS).∴AP=BQ.(3)AP=BQ成立,理由如下:∵EF=FP,EF⊥FP,∴∠EPF=45°.∵AC⊥BC∴∠CPQ=∠EPF=45°∴CQ=CP在Rt△BCQ和Rt△ACP中,∴Rt△BCQ≌Rt△ACP (SAS).∴AP=BQ.。

钦州市八年级上册数学期末考试试卷

钦州市八年级上册数学期末考试试卷

钦州市八年级上册数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2015八下·深圳期中) 下列图形中,是轴对称图形,但不是中心对称图形的是()A .B .C .D .2. (2分) (2019七下·通化期中) 过A(4,-3)和B(-4,-3)两点的直线一定()A . 垂直于x轴B . 与y轴相交但不平行于x轴C . 平行于x轴D . 与x轴、y轴都不平行3. (2分) (2020八下·成都期中) 如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD,若BD=1,则AC的长是()A . 2B . 2C . 4D . 44. (2分)如果两个有理数的绝对值相等,且这两个数在数轴上对应的两点之间的距离为4,那么这两个数分别是()A . 4和-4B . 2和-2C . 0和4D . 0和-45. (2分) (2019八上·萧山期末) 如图,在中,于点E,于点D;点F是AB的中点,连结DF,EF,设,,则A .B .C .D .6. (2分) (2017八下·明光期中) 如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,则b的面积为()A . 3B . 4C . 5D . 77. (2分) (2019八下·北京期末) 如图,直线的图象如图所示.下列结论中,正确的是()A .B . 方程的解为;C .D . 若点A(1,m)、B(3,n)在该直线图象上,则.8. (2分)如图,AC=DF , BC=EF , AD=BE ,∠BAC=72°,∠F=32°,则∠ABC=()A . 120°B . 76°C . 127°D . 104°二、填空题 (共10题;共10分)9. (1分) (2019七下·重庆期中) 已知:的平方根是,的立方根为3,则的算术平方根为________.10. (1分)抛物线y=2x2+8x+5的顶点坐标为________.11. (1分)如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=6,若点P是边AB上的一个动点,以每秒3个单位的速度按照从A→B→A运动,同时点Q从B→C以每秒1个单位的速度运动,当一个动点到达终点时,另一个动点也随之停止运动.在运动过程中,设运动时间为t,若△BPQ为直角三角形,则t的值为________.12. (1分) (2018八上·东台期中) 已知△ABC≌△FED,∠A=30°,∠B=80°,则∠D=________.13. (1分)如图,E是正方形ABCD一边上的中点,AB=4,动点P从A→B→C→D在正方形的边上运动,若△PAE为等腰三角形时,则AP的长为________.14. (1分) (2017八上·阿荣旗期末) 如图,△ABC中,∠C=90°,AD平分∠BAC,CD=2,则点D到AB的距离是________.15. (1分) (2017七下·武清期中) 写出一个大于﹣1而小于3的无理数________.16. (1分) (2016九上·大石桥期中) 一个y关于x的函数同时满足两个条件:①图象过(2,1)点;②当x>0时,y随x的增大而减小.这个函数解析式为________.(写出一个即可)17. (1分) (2016八上·埇桥期中) 已知点(﹣5,y1),(0,y2)都在直线y=﹣3x+2上,则y1 , y2的大小关系是________18. (1分) (2019八下·舒城期末) 如图,在矩形ABCD中,AB=8,AD=3,点E是CD的中点,连接AE,将△ADE 沿直线AE折叠,使点D落在点F处,则线段CF的长度是________.三、解答题 (共8题;共77分)19. (5分)(2018·霍邱模拟) 计算:+|﹣4|+(﹣1)0﹣()﹣1 .20. (5分)(2017·东城模拟) 如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC、AB于点M、N,再分别以点M、N为圆心,大于 MN的长为半径画弧,两弧交于点P,作射线AP交变BC 于点D,若CD=4,AB=15,求△ABD的面积.21. (5分) (2018八上·惠山月考) 如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度.(滑轮上方的部分忽略不计)22. (15分) (2017八下·重庆期中) 如图,在Rt△ABC中,∠ACB=90°,过点C的直线m∥AB,D为AB边上一点,过点D作DE⊥BC,交直线m于点E,垂足为点F,连接CD,BE.(1)求证:CE=AD;(2)当点D是AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)当∠A的大小满足什么条件时,四边形BECD是正方形?(不需要证明)23. (10分)如图①,是两个全等的直角三角形硬纸板(直角边分别为a,b,斜边为c).(1)用这样的两个三角形构造成如图②的图形,请利用这个图形验证勾股定理.(2)假设图①中的直角三角形有若干个,请运用图①中所给的直角三角形拼出另一种能验证勾股定理的图形,画出拼后的图形并利用这个图形验证勾股定理.24. (7分) (2017九上·平舆期末) 已知:二次函数y=ax2+bx+c(a≠0)中的x和y满足下表:x…012345…y…30﹣10m8…(1)可求得m的值为________;(2)求出这个二次函数的解析式;(3)当y>3时,x的取值范围为________.25. (15分)(2017·新吴模拟) 如图,一次函数y= x+m与坐标轴交于A,B两点,点C在直线AB上,且AC=2AB,以A为旋转中心,逆时针旋转线段AC,使得点C恰好落在Y轴正半轴上点C′处.(1)求∠CAC′的正切值;(2)点E是直线AC′上一点,连接CE,BE,若△ACE与△BCE相似,且m=1,求此时点E的坐标;(3)在(2)的条件下,作CD垂直于X轴,将△AOC′沿Y轴向下以每秒2个单位长度的速度向下运动,将△ACD沿着CA方向在直线AC上衣每秒单位长度的速度运动,求出在此运动过程中两三角形重叠部分面积的最大值以及当时的t值.26. (15分) (2019八下·东至期末) 如图(1),在矩形ABCD中,M、N分别是AB、CD的中点,作射线MN,连接MD、MC(1)请直接写出线段MD与MC的数量关系;(2)将矩形ABCD变为平行四边形,其中∠A为锐角,如图(2),AB=2BC,M、N分别是AB、CD的中点,过点C作CE⊥AD交射线AD于点E,交射线MN于点F,连接ME、MC,求证:ME=MC;(3)写出∠BME与∠AEM的数量关系,并证明你的结论.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共77分)19-1、20-1、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、。

钦州市八年级上册数学期末考试试卷

钦州市八年级上册数学期末考试试卷

钦州市八年级上册数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020七上·温州期末) 在0.23,,-2,四个数中,属于无理数的是()A . 0.23B .C . -2D .2. (2分)如果一个数的算术平方根等于它本身,那么这个数是()A . 0B . 1C . 0或1D . -1或0或13. (2分)(2018·邯郸模拟) 下列运算中,正确的是()A .B .C .D .4. (2分)如图,已知A.D.C.F在同一条直线上,AB=DE , BC=EF ,要使△ABC≌△DEF ,还需要添加一个条件是()A . BC∥EFB . ∠B=∠FC . AD=CFD . ∠A=∠EDF5. (2分) (2019八上·鄞州期中) 下列命题是真命题的是A . 三角形的三条高线相交于三角形内一点B . 等腰三角形的中线与高线重合C . 三边长为,,的三角形为直角三角形D . 到线段两端距离相等的点在这条线段的垂直平分线上6. (2分)(2017·武汉) 计算(x+1)(x+2)的结果为()A . x2+2B . x2+3x+2C . x2+3x+3D . x2+2x+27. (2分)(2017·天津) 如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A . BCB . CEC . ADD . AC8. (2分) (2016八上·南宁期中) 尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于长为半径画弧,两弧在∠AOB内部交于点P,作射线OP.由作法得△OCP≌△ODP的依据是()A . SASB . ASAC . AASD . SSS9. (2分)下列说法正确是()A . |a|是正数B . 若a>|b|,则a>bC . 若a<b,则|a|<|b|D . 若|a|=5,则a=-510. (2分) (2018七下·平定期末) 某中学开展“阳光体育一小时”活动,根据学校实际情况,决定开设①踢毽子;②篮球;③跳绳;④乒乓球四种运动项目.为了解学生最喜欢哪一种运动项目,随机抽取了一部分学生进行调查,并将调查结果绘制成如下不完整的两个统计图,依据图中信息,得出下列结论中正确的是()A . 本次共调查300名学生B . 扇形统计图中,喜欢篮球项目的学生部分所对应的扇形圆心角大小为45°C . 喜欢跳绳项日的学生人数为60人D . 喜欢篮球项目的学生人数为30人二、填空题 (共8题;共8分)11. (1分)因式分解:a2+3a=________12. (1分) (2016八上·孝南期中) 如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是________.13. (1分)我校有一楼梯的侧面视图如图所示,其中AB=4米,∠BAC=30°,∠C=90°,因09年第一场暴雪路滑,要求整个楼梯铺设红色地毯,则在AB段楼梯所铺地毯的总长度应为________米.(可以保留根号)14. (1分)计算:(﹣a2)•a3=________15. (1分)如图,在平面直角坐标系中直线y=x-2与y轴相交于点A,与反比例函数在第一象限内的图象相交于点B(m,2).将直线y=x-2向上平移后与反比例函数图象在第一象限内交于点C,且△ABC的面积为18,求平移后的直线的函数关系式是________ .16. (1分) (2018七下·中山期末) 不等式2(x+1)<6的解集为________.17. (1分)(2017·新泰模拟) 如图,四边形ABCD内接于⊙O,AB是直径,过C点的切线与AB的延长线交于P点,若∠P=40°,则∠D的度数为________.18. (1分)定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为(其中k是使为奇数的正整数),运算重复进行下去.例如:取n=26,运算如图3-3-9所示.图3-3-9若n=449,则第449次“F”运算的结果是________.三、解答题 (共9题;共74分)19. (10分) (2020七下·新乡期中) 计算:(1);(2) .20. (5分),其中x= .21. (5分) (2019九上·淮阴期末) 已知:如图,在△ABC中,AB=AC,D为CA延长线上一点,DE⊥BC,交线段AB于点F.请找出一组相等的线段(AB=AC除外)并加以证明.22. (10分) (2018八上·徐州期末) 如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC.CF平分∠DCE.求证:(1)△ACD≌△BEC;(2)CF⊥DE.23. (13分)(2017·张湾模拟) 为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛.赛后组委会整理参赛同学的成绩,并制作了如下不完整的频数分布表和频数分布直方图.频数百分比分数段(分数为x分)60≤x<70820%70≤x<80a30%80≤x<9016b%90≤x<100410%请根据图表提供的信息,解答下列问题:(1)表中的a=________,b=________;(2)请补全频数分布直方图;(3)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应的圆心角的度数是________;(4)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽取2名同学接受电视台记者采访,请用列表或画树状图的方法求正好抽到一名男同学和一名女同学的概率.24. (5分)(2018·十堰) 如图,一艘海轮位于灯塔C的北偏东45方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔C的南偏东30°方向上的B处,求此时船距灯塔的距离(参考数据:≈1.414,≈1.732,结果取整数).25. (10分) (2015九下·深圳期中) 如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.(1)求证:DE=AB.(2)以D为圆心,DE为半径作圆弧交AD于点G.若BF=FC=1,试求的长.26. (10分) (2016八上·宜兴期中) 如图1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小敏将一块三角板中含45°角的顶点放在A上,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC 于点D,直角边所在的直线交直线BC于点E.(1)小敏在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请你证明小敏发现的结论;(2)当0°<α≤45°时,小敏在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2.同组的小颖和小亮随后想出了相同的方法进行解决:将△ABD沿AD所在的直线对折得到△ADF(如图2);请证明小敏的发现的是正确的.27. (6分) (2017九上·平舆期末) 如图①,矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°,将∠MPN绕点P从PB处开始按顺时针方向旋转,PM交边AB(或AD)于点E,PN交边AD(或CD)于点F,当PN旋转至PC处时,∠MPN的旋转随即停止.(1)特殊情形:如图②,发现当PM过点A时,PN也恰巧过点D,此时,△ABP________△PCD(填“≌”或“~”);(2)类比探究:如图③,在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共9题;共74分)19-1、19-2、20-1、21-1、22-1、22-2、23-1、23-2、23-3、23-4、24-1、25-1、25-2、26-1、26-2、27-1、27-2、。

广西钦州市八年级上学期数学期末考试试卷

广西钦州市八年级上学期数学期末考试试卷

广西钦州市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共27分)1. (2分)计算2a•3b的结果是()A . 5abB . 3abC . 6abD . 6a2. (2分)点P(x,y)在第二象限内,且|x|=2,|y|=3,则点P关于y轴的对称点的坐标为()A . (2,3)B . (﹣2,﹣3)C . (3,﹣2)D . (﹣3,2)3. (2分)据悉,世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00000007克,用科学记数法表示此数正确的是()A . 7.0×108B . 7.0×10-8C . 0.7×109D . 0.7×10-94. (2分) (2019八下·余杭期中) 若多边形的边数由3增加到n(n为大于3的正整数),则其外角和的度数()A . 增加B . 减少C . 不变D . 不能确定5. (2分)若中的x和y都扩大到原来的2倍,那么分式的值()A . 缩小为原来的一半B . 不变C . 扩大到原来的2倍D . 扩大到原来的4倍6. (5分)已知a,b都是整数,且满足a2+b2+1<2a﹣2b,则a+b=()A . 0B . 1C . 2D . 37. (2分)(2017·虎丘模拟) 如图,四边形ABCD是边长为的正方形,以CD为边作等边三角形CDE,BE 与AC相交于点M,则DM的长为()A . +1B . +1C . 2D . 2 ﹣8. (2分)下列说法正确的是()A . x2+3x=0是二项方程B . xy﹣2y=2是二元二次方程C . 是分式方程D . x2-=1是无理方程9. (2分)(2017·沂源模拟) 如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A . m+3B . m+6C . 2m+3D . 2m+610. (2分)一个不透明的盒子里装有2个白球,2个红球,若干个黄球,这些球除了颜色外,没有任何其他区别.若从这个盒子中随机摸出一个是黄球的概率是,则盒子中黄球的个数是()A . 2B . 4C . 6D . 811. (2分)如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面的结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB平分∠AMC,其中结论正确的有()A . 1个B . 2个C . 3个D . 4个12. (2分) (2019八上·慈溪期末) 如图,锐角中,,若想找一点P,使得与互补,甲、乙、丙三人作法分别如下:甲:以B为圆心,AB长为半径画弧交AC于P点,则P即为所求;乙:分别以B,C为圆心,AB,AC长为半径画弧交于P点,则P即为所求;丙:作BC的垂直平分线和的平分线,两线交于P点,则P即为所求.对于甲、乙、丙三人的作法,下列叙述正确的是()A . 三人皆正确B . 甲、丙正确,乙错误C . 甲正确,乙、丙错误D . 甲错误,乙、丙正确二、填空题 (共5题;共5分)13. (1分) (2019八下·江苏月考) 若分式的值为0,则x的值为________14. (1分)若|m﹣2|+(n﹣4)2=0,则m=________ ,n=________ .15. (1分) (2015八上·江苏开学考) 分解因式: ________.16. (1分) (2019八上·道外期末) 等腰三角形一腰上的高与另一腰的夹角为,则这个等腰三角形的一个底角度数为________.17. (1分)如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,点P的速度都是1cm/s,点Q的速度都是2cm/s当点P到达点B时,P、Q两点停止.当t=________时,△PBQ是直角三角形.三、解答题 (共8题;共57分)18. (5分)计算(1)(x﹣2y)(x+y)(2)a3•a8•a+(a2)6+(﹣2a4)3.19. (10分) (2017七下·萧山期中) 化简:(1)(3a5b3﹣a4b2)÷(﹣a2b)2(2) a(3﹣a)﹣(1+a)(1﹣a)20. (10分)计算:(1) 2 ﹣(2) =4.21. (5分)(2017八下·射阳期末) 先化简,再求的值,且a、b满足.22. (5分) (2019八下·博乐月考) 如图,点E,F是平行四边形ABCD对角线BD上的点,且BF=DE.求证:AE=CF.23. (10分) (2020八上·丹江口期末) 如图,已知,, .①作关于轴的对称图形 ;② 为轴上一点,请在图中找出使的周长最小时的点并直接写出此时点的坐标(保留作图痕迹)24. (2分) (2018八上·东台月考) 如图,已知:在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD.图中的CE、BD有怎样的大小和位置关系?试证明你的结论.25. (10分)(2019·重庆模拟) 时代天街某商场经营的某品牌书包,6月份的销售额为20000元,7月份因为厂家提高了出厂价,商场把该品牌书包售价上涨20%,结果销量减少50个,使得销售额减少了2000元.(1)求6月份该品牌书包的销售单价;(2)若6月份销售该品牌书包获利8000元,8月份商场为迎接中小学开学做促销活动,该书包在6月售价的基础上一律打八折销售,若成本上涨5%,则销量至少为多少个,才能保证8月份的利润比6月份的利润至少增长6.25%?参考答案一、单选题 (共12题;共27分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共8题;共57分)18-1、18-2、19-1、19-2、20-1、20-2、21-1、22-1、23-1、24-1、25-1、25-2、。

2019-2020年八年级上期末数学试卷(有答案)l

2019-2020年八年级上期末数学试卷(有答案)l

2019-2020学年广西钦州市钦州港区八年级(上)期末数学试卷一、选择题:本大题共12小题:每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合要求的,请将符合要求答案前的字母填入题后的括号内1.(3分)若一个正多边形的每一个外角都等于40°,则这个正多边形的边数是()A.7B.8C.9D.102.(3分)点P(﹣1,3)关于y轴对称的点是()A.(﹣1,﹣3)B.(1,﹣3)C.(1,3)D.(﹣3,1)3.(3分)用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)4.(3分)如图所示,在△ABC中,∠ABC和∠ACB的角平分线相交于点O,若∠BOC=140°,则∠A的度数是()A.40°B.90°C.100°D.140°5.(3分)到三角形的三个顶点距离相等的点是()A.三条角平分线的交点B.三条边的垂直平分线的交点C.三条高的交点D.三条中线的交点6.(3分)下列计算中正确的是()A.a2+b3=2a5B.a4÷a=a4C.a2•a4=a8D.(﹣a2)3=﹣a67.(3分)下列各式中能用平方差公式是()A.(x+y)(y+x)B.(x+y)(y﹣x)C.(x+y)(﹣y﹣x)D.(﹣x+y)(y﹣x)8.(3分)下列各式中的变形,错误的是(()A.=﹣B.=C.=D.=9.(3分)已知,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,下列说法:①AD平分∠EDF;②△EBD≌△FCD;③BD=CD;④AD⊥BC其中正确的有()A.1个B.2个C.3个D.4个10.(3分)如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3B.3C.0D.111.(3分)若把分式:中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.缩小2倍D.扩大4倍12.(3分)计算÷(a﹣)的正确结果是()A.B.1C.D.﹣1二、填空题:本大题共6小题,每小题3分,共18分,请将答案填写在题中的横线上13.(3分)等腰三角形一边长等于5,一边长等于10,则它的周长是.14.(3分)已知1nm(纳米)=0.000 000 001m,则 4.5纳米用科学记数法表示为m.15.(3分)在Rt△ABC中,∠C=90°,∠A=30°,BC=4cm,则AB=cm.16.(3分)如果a+b=3,ab=4,那么a2+b2的值是.17.(3分)如图,若AB=DE,BE=CF,要证△ABF≌△DEC,需补充条件(填写一个即可).18.(3分)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE是AB的垂直平分线,则∠B的度数是.三、解答题:本大题共7小题,共66分,解答时应写出文字说明或演算步骤19.(11分)(1)计算下列各题:①(﹣3x)2•4x2②﹣8a2b3÷4ab2③(2x+3)(2x﹣3)﹣(x+2)(2x﹣1)(2)分解因式:①8x2﹣2y2②3ax2+6axy+3ay220.(14分)(1)计算:①÷②(x﹣2+)÷(2)解下列方程:①=②=+121.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,AB=13cm,BC=12cm,AC=5cm①作出△ABC的高线CD;②求CD的长.(2)已知,如图2,△ABC中,∠ABC=26°,∠C=48°,BD⊥CA于点D,∠BAC的平分线EA 交BD的延长线于点F,求∠F的度数.22.(9分)(1)如图1,已知,AB∥CD,AD∥BC.求证:△ABC≌△CDA;(2)如图2,已知AB=DC,AE=DF,BF=CE.求证:AF=DE.23.(6分)如图,利用关于坐标轴对称的点的坐标的特点,分别画出与△ABC关于x轴和y 轴对称的图形.24.(8分)A、B两地相距150km,乙车从A地开出30min后,甲车也从A地出发,结果两车同时到达B地.已知甲车的速度是乙车速度的1.2倍,求甲、乙两车的速度.25.(8分)如图,以△ABC的边AB、AC向外作等边△ABD和等边△ACE,连接BE、CD.问:线段BE和CD有什么数量关系?试证明你的结论.2019-2020学年广西钦州市钦州港区八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题:每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合要求的,请将符合要求答案前的字母填入题后的括号内1.(3分)若一个正多边形的每一个外角都等于40°,则这个正多边形的边数是()A.7B.8C.9D.10【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:∵360÷40=9,∴这个多边形的边数是9.故选:C.【点评】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.2.(3分)点P(﹣1,3)关于y轴对称的点是()A.(﹣1,﹣3)B.(1,﹣3)C.(1,3)D.(﹣3,1)【分析】由题意可分析可知,关于y轴对称的点,纵坐标相同,横坐标互为相反数.【解答】解:根据轴对称的性质,得点P(﹣1,3)关于y轴对称的点是(1,3).故选:C.【点评】本题考查了好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3.(3分)用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)【分析】我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.【解答】解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选:A.【点评】本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.4.(3分)如图所示,在△ABC中,∠ABC和∠ACB的角平分线相交于点O,若∠BOC=140°,则∠A的度数是()A.40°B.90°C.100°D.140°【分析】先根据BO平分∠ABC,CO平分∠ACB,可得∠ABC=2∠1,∠ACB=2∠2,再根据三角形内角和定理计算出∠1+∠2的度数,进而得到∠ABC+∠ACB,即可算出∠A的度数.【解答】解:∵BO平分∠ABC,CO平分∠ACB,∴∠ABC=2∠1,∠ACB=2∠2,∵∠BOC=140°,∴∠1+∠2=180°﹣140°=40°,∴∠ABC+∠ACB=2×40°=80°,∴∠A=180°﹣80°=100°,故选:C.【点评】此题主要考查了三角形内角和定理,角平分线的定义,整体思想的利用是解题的关键.5.(3分)到三角形的三个顶点距离相等的点是()A.三条角平分线的交点B.三条边的垂直平分线的交点C.三条高的交点D.三条中线的交点【分析】根据到线段两端点的距离相等的点在这条线段的垂直平分线上得出即可.【解答】解:∵OA=OB,∴O在线段AB的垂直平分线上,∵OC=OA,∴O在线段AC的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,即O是△ABC的三边垂直平分线的交点,故选:B.【点评】本题考查了对线段垂直平分线性质的理解和运用,注意:线段两端点的距离相等的点在这条线段的垂直平分线上.6.(3分)下列计算中正确的是()A.a2+b3=2a5B.a4÷a=a4C.a2•a4=a8D.(﹣a2)3=﹣a6【分析】根据合并同类项,可判断A;根据同底数幂的除法,可判断B;根据同底数幂的乘法,可判断C;根据积的乘方,可判断D.【解答】解:A、不是同类项不能合并,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、同底数幂的乘法底数不变指数相加,故C错误;D、积的乘方等于乘方的积,故D正确;故选:D.【点评】本题考查了积的乘方,积的乘方等于每一个因式分别乘方,再把所得的幂相乘.7.(3分)下列各式中能用平方差公式是()A.(x+y)(y+x)B.(x+y)(y﹣x)C.(x+y)(﹣y﹣x)D.(﹣x+y)(y﹣x)【分析】利用平方差公式的结构特征判断即可得到结果.【解答】解:能用平方差公式是(x+y)(y﹣x)=y2﹣x2,故选:B.【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键.8.(3分)下列各式中的变形,错误的是(()A.=﹣B.=C.=D.=【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.【解答】解:A、=﹣,故A正确;B、分子、分母同时乘以﹣1,分式的值不发生变化,故B正确;C、分子、分母同时乘以3,分式的值不发生变化,故C正确;D、≠,故D错误;故选:D.【点评】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.9.(3分)已知,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,下列说法:①AD平分∠EDF;②△EBD≌△FCD;③BD=CD;④AD⊥BC其中正确的有()A.1个B.2个C.3个D.4个【分析】在等腰三角形中,顶角的平分线即底边上的中线,垂线.利用三线合一的性质,进而可求解,得出结论.【解答】解:∵△ABC是等腰三角形,AD是角平分线,∴BD=CD,且AD⊥BC,又BE=CF,∴△EBD≌△FCD,且△ADE≌△ADF,∴∠ADE=∠ADF,即AD平分∠EDF.所以四个都正确.故选:D.【点评】本题考查了全等三角形的判定和性质;熟练掌握三角形的性质,理解等腰三角形中中线,平分线,垂线等线段之间的区别与联系,会求一些简单的全等三角形.做题时,要结合已知条件与全等的判定方法对选项逐一验证.10.(3分)如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3B.3C.0D.1【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把m看作常数合并关于x 的同类项,令x的系数为0,得出关于m的方程,求出m的值.【解答】解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故选:A.【点评】本题主要考查了多项式乘多项式的运算,根据乘积中不含哪一项,则哪一项的系数等于0列式是解题的关键.11.(3分)若把分式:中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.缩小2倍D.扩大4倍【分析】依题意,分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可.【解答】解:分别用2x和2y去代换原分式中的x和y,得=,可见新分式是原分式的.故选:C.【点评】解题的关键是抓住分子、分母变化的倍数.规律总结:解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.12.(3分)计算÷(a﹣)的正确结果是()A.B.1C.D.﹣1【分析】首先计算括号内的,然后根据分式的除法法则进行计算.【解答】解:原式===.故选:A.【点评】对于一般的分式混合运算来讲,其运算顺序与整式混合运算一样,是先乘方,再乘除,最后算加减,如果遇括号要先算括号里面的.在此基础上,有时也应该根据具体问题的特点,灵活应变,注意方法.在分式的乘除运算中,注意利用因式分解进行约分.二、填空题:本大题共6小题,每小题3分,共18分,请将答案填写在题中的横线上13.(3分)等腰三角形一边长等于5,一边长等于10,则它的周长是25.【分析】此题先要分类讨论,已知等腰三角形的一边等于10cm,另一边等于5cm,先根据三角形的三边关系判定能否组成三角形,若能则求出其周长.【解答】解:当5为腰,10为底时,∵5+5=10,∴不能构成三角形;当腰为10时,∵5+10>10,∴能构成三角形,∴等腰三角形的周长为:10+10+5=25.故答案为:25.【点评】此题考查了等腰三角形的基本性质及分类讨论的思想方法,另外求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.14.(3分)已知1nm(纳米)=0.000 000 001m,则4.5纳米用科学记数法表示为 4.5×10﹣9m.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:4.5纳米=0.000 000 001×4.5米=4.5×10﹣9米;故答案为:4.5×10﹣9.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15.(3分)在Rt△ABC中,∠C=90°,∠A=30°,BC=4cm,则AB=8cm.【分析】根据题意和在直角三角形中,30°角所对的直角边是斜边的一半,可以求得AB的长.【解答】解:∵在Rt△ABC中,∠C=90°,∠A=30°,BC=4cm,∴AB=2BC=8cm,故答案为;8【点评】本题考查含30度角的直角三角形,解答本题的关键是明确在直角三角形中,30°角所对的直角边是斜边的一半.16.(3分)如果a+b=3,ab=4,那么a2+b2的值是1.【分析】直接利用已知结合完全平方公式计算得出答案.【解答】解:∵a+b=3,ab=4,∴(a+b)2=a2+2ab+b2=9,∴a2+b2=9﹣2×4=1.故答案为:1.【点评】此题主要考查了完全平方公式,正确应用公式是解题关键.17.(3分)如图,若AB=DE,BE=CF,要证△ABF≌△DEC,需补充条件AF=DC(填写一个即可).【分析】根据等式的性质可得BF=EC,再添加AF=DC可利用SSS判定△ABF≌△DEC.【解答】解:添加AF=DC,∵BE=CF,∴BE+EF=CF+EF,即BF=EC,在△ABF和△DEC中,∴△ABF≌△DEC(SSS),故答案为:AF=DC.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.18.(3分)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE是AB的垂直平分线,则∠B的度数是30°.【分析】由在△ABC中,∠C=90°,AD是∠CAB的平分线,DE是AB的垂直平分线,易得∠B=∠DAB=∠CAD,继而求得∠B的度数.【解答】解:∵DE是AB的垂直平分线,∴AD=BD,∴∠DAB=∠B,∵AD是∠CAB的平分线,∴∠CAD=∠DAB,∵在△ABC中,∠C=90°,∴3∠B=90°,∴∠B=30°故答案为:30°【点评】此题考查了线段垂直平分线的性质以及直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.三、解答题:本大题共7小题,共66分,解答时应写出文字说明或演算步骤19.(11分)(1)计算下列各题:①(﹣3x)2•4x2②﹣8a2b3÷4ab2③(2x+3)(2x﹣3)﹣(x+2)(2x﹣1)(2)分解因式:①8x2﹣2y2②3ax2+6axy+3ay2【分析】(1)①先算乘方,再算乘法即可;②根据单项式除以单项式法则求出即可;③先算乘法,再合并同类项即可;(2)①先提取公因式,再根据平方差公式进行分解即可;②先提取公因式,再根据完全平方公式进行分解即可.【解答】解:(1)①(﹣3x)2•4x2=9 x2•4x2=36x4;②﹣8a2b3÷4ab2=﹣2ab;③(2x+3)(2x﹣3)﹣(x+2)(2x﹣1)=4x2﹣9﹣2x2+x﹣4x+2=2x2﹣3x﹣7;(2)①8x2﹣2y2=2(4x2﹣y2)=2(2x+y)(2x﹣y);②3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)2.【点评】本题考查了整式的混合运算和因式分解,能熟练地运用整式的运算法则进行化简是解(1)的关键,能选择适当的方法分解因式是解(2)的关键.20.(14分)(1)计算:①÷②(x﹣2+)÷(2)解下列方程:①=②=+1【分析】(1)根据分式混合运算顺序和运算法则计算可得;(2)方程两边都乘以最简公分母,化分式方程为整式方程,解之求得x的值,检验可得答案.【解答】解:(1)①原式=•=;②原式=•=•=﹣x﹣1;(2)①方程两边同乘x(x﹣2),得3x=9(x﹣2),解得:x=3,检验:当x=3时,x(x﹣2)≠0,所以,原分式方程的解为x=3;②方程两边同乘(x﹣1)(2x+3),得:(2x﹣3)(2x+3)=(2x﹣4)(x﹣1)+(x﹣1)(2x+3),解得:x=2,检验:当x=2时,(x﹣1)(2x+3)≠0,所以,原分式方程的解为x=2.【点评】本题主要考查解分式方程和分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则与解分式方程的步骤.21.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,AB=13cm,BC=12cm,AC=5cm①作出△ABC的高线CD;②求CD的长.(2)已知,如图2,△ABC中,∠ABC=26°,∠C=48°,BD⊥CA于点D,∠BAC的平分线EA 交BD的延长线于点F,求∠F的度数.【分析】(1)①作出△ABC的高线CD即可;②依据直角三角形,利用面积法进行计算即可得到CD的长;(2)依据三角形内角和定理,即可得到∠BAC的度数,再根据角平分线的定义以及对顶角相等,即可得到∠FAD的度数,进而得出∠F的度数.【解答】解:(1)①作出△ABC的高线CD如图所示:②∵AC×BC=AB×CD,∴AC×BC=AB×CD,∵AB=13,BC=12,AC=5,∴5×12=13×CD,∴CD=.(2)∵∠C+∠ABC+∠BAC=180°,∴∠BAC=180°﹣∠C﹣∠ABC.∵∠ABC=26°,∠C=48°,∴∠BAC=180°﹣48°﹣26°=106°.∵EA平分∠BAC,∴∠EAC=∠BAC=53°,∵BD⊥CA,∴∠ADF=90°.∴∠F+∠DAF=90°,∵∠DAF=∠EAC=53°,∴∠F=90°﹣∠DAF=90°﹣53°=37°.【点评】本题考查了三角形内角和定理和角平分线定义的应用,能求出∠CAE的度数是解此题的关键,解题时注意:三角形内角和等于180°.22.(9分)(1)如图1,已知,AB∥CD,AD∥BC.求证:△ABC≌△CDA;(2)如图2,已知AB=DC,AE=DF,BF=CE.求证:AF=DE.【分析】(1)根据平行线的性质和全等三角形的判定证明即可;(2)根据等式的性质和全等三角形的判定和性质证明即可.【解答】(1)证明:∵AB∥CD,∴∠BAC=∠DCA,∵AD∥BC∴∠BCA=∠DAC,在△ABC和△CDA中∴△ABC≌△CDA(ASA)(2)∵BF=CE,∴BF+EF=CE+EF.∴BE=CF.在△ABE和△DCF中∴△ABE≌△DCF(SSS).∴∠B=∠C,在△ABF和△DCE中∴△ABF≌△DCE(SAS)∴AF=DE.【点评】本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.23.(6分)如图,利用关于坐标轴对称的点的坐标的特点,分别画出与△ABC关于x轴和y 轴对称的图形.【分析】直接利用关于x,y轴对称点的性质得出对应点位置进而得出答案.【解答】解:如图所示:与△ABC关于x轴对称图形为△A2B2C2,与△ABC关于y轴对称图形为△A1B1C1.【点评】此题主要考查了轴对称变换,正确得出对应点位置是解题关键.24.(8分)A、B两地相距150km,乙车从A地开出30min后,甲车也从A地出发,结果两车同时到达B地.已知甲车的速度是乙车速度的1.2倍,求甲、乙两车的速度.【分析】设乙车的速度是x km/h,则甲车的速度是1.2xkm/h,根据“A、B两地相距150km,乙车从A地开出30min后,甲车也从A地出发,结果两车同时到达B地”,列出关于x的分式方程,解之验证即可.【解答】解:设乙车的速度是x km/h,则甲车的速度是1.2xkm/h,根据题意得:﹣=,解得:x=50,经检验:x=50是方程的解且符合实际意义,1.2x=60km/h,答:甲车的速度为50km/h,乙车的速度为60km/h.【点评】本题考查了分式方程的应用,正确找出等量关系,列出分式方程是解题的关键.25.(8分)如图,以△ABC的边AB、AC向外作等边△ABD和等边△ACE,连接BE、CD.问:线段BE和CD有什么数量关系?试证明你的结论.【分析】由△ABD与△ACE都是等边三角形,得到三对边相等,两个角相等,都为60度,利用等式的性质得到夹角相等,利用SAS得到△CAD与△EAB全等,利用全等三角形的对应边相等即可得证.【解答】解:BE=CD,证明如下:∵△ABD是等边三角形,∴AB=AD;∠BAD=60°,∵△ACE是等边三角形,∴AE=AC;∠EAC=60°,∴∠EAC=∠BAD=60°,∴∠EAC+∠BAC=∠BAD+∠BAC,∴∠BAE=∠DAC.在△BAE和△DAC中∴△BAE≌△DAC(SAS)∴BE=CD.【点评】此题考查全等三角形的判定和性质,关键是根据等边三角形的性质得出夹角相等.。

广西钦州市八年级上学期数学期末考试试卷

广西钦州市八年级上学期数学期末考试试卷

广西钦州市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018九上·番禺期末) 下列图形中,既是轴对称图形又是中心对称图形的是().A .B .C .D .2. (2分) (2019八上·新兴期中) 在直角坐标系中将点(-2,3)关于y轴的对称点坐标是()A . (2,-3)B . (-2,-3)C . (2,3)D . (3,-2)3. (2分) (2018八上·天河期末) 若分式有意义,则()A . x≠1B . x≠0C . x≠-1D . x≠±14. (2分)下列运算正确的是()A . (﹣2a)3=﹣6a3B . (a2)3=a5C . a6÷a3=a2D . 2a3•a=2a45. (2分)下列等式从左到右的变形,属于因式分解的是()A . a(x﹣y)=ax﹣ayB . x2+2x+1=x(x+2)+1C . (x+1)(x+3)=x2+4x+3D . x3﹣x=x(x+1)(x﹣1)6. (2分) (2019八上·浦东期末) 下列各式中为最简二次根式的是()A .B .C .D .7. (2分)如下图,在边长为a的正方形中,剪去一个边长为b的小正方形(a<b),将余下部分剪开后拼成一个梯形,根据两个图形阴影面积的关系,可以得到一个关于a,b的恒等式为()A . (a-b)2=a2-2ab+b2B . (a+b)2=a2+2ab+b2C .a2-b2=(a+b)(a-b)D . a2+ab=a(a+b)8. (2分) (2018八上·洛阳期中) 如图,小明把一块三角形玻璃打碎成三块,现在要到玻璃店去配一块完全一样的玻璃,则最省事的方法是带第③块去,理由是根据全等的判定定理()A . SASB . AASC . SSSD . ASA9. (2分) (2015八上·惠州期末) 把分式中的分子分母的x、y都同时扩大为原来的2倍,那么分式的值将是原分式值的()A . 2倍B . 4倍C .D . 不变10. (2分)(2018·青羊模拟) 如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A .B .C .D .二、填空题 (共4题;共4分)11. (1分) (2019七上·松江期末) 将0.000025用科学记数法表示为________.12. (1分) (2017八下·大庆期末) 要使在实数范围内有意义,应满足的条件是________13. (1分)(2018·安顺) 若是关于x的完全平方式,则m=________ .14. (1分) (2020八下·武汉期中) 如图,等腰三角形纸片ABC中,AD⊥BC与点D,BC=2,AD= ,沿AD 剪成两个三角形.用这两个三角形拼成平行四边形,该平行四边形中较长对角线的长为________.三、解答题 (共10题;共96分)15. (10分) (2019八下·昭通期中) 计算:(1);(2)16. (10分) (2016七上·昌邑期末) 计算:(1)﹣×(0.5﹣)÷(﹣)(2)﹣22﹣[(﹣3)×(﹣)﹣(﹣2)3](3)当x=2,y= 时,化简求值:x﹣(﹣)﹣(2x﹣ y2)17. (15分) (2017七下·石景山期末)18. (5分) (2020八上·黄石期末) 已知△ABC,顶点A、B、C都在正方形方格交点上,正方形方格的边长为1.(1)写出A、B、C的坐标;(2)请在平面直角坐标系中画出△ABC关于x轴对称的△A1B1C1;(3)在y轴上找到一点D,使得CD+BD的值最小,(在图中标出D点位置即可,保留作图痕迹)19. (5分) (2018八上·重庆期中) 如图,点D、B在AF上,AD=FB,AC=EF,∠A=∠F.求证:∠C=∠E.20. (5分) (2016九上·海门期末) 计算题(1)计算:﹣2﹣1+| ﹣2|﹣3sin30°(2)先化简,再求值:÷(﹣1),其中a=3.21. (10分) (2019八下·东莞月考) 计算:(1)(2)(3)(7+4 )(7﹣4 )﹣(3 ﹣1)2(4) | ﹣ |+| ﹣2|+22. (10分)某工厂计划在规定时间内生产24 000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24 000个零件的生产任务,求原计划安排的工人人数.23. (11分)(2017·娄底模拟) 如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO 的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F= ,求cos∠ACB的值和线段PE的长.24. (15分)(2018·河南模拟) 如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P.(1)把△ABC绕点A旋转到图1,BD,CE的关系是(选填“相等”或“不相等”);简要说明理由;(2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图2中作出旋转后的图形,求PD的值,简要说明计算过程;(3)在(2)的条件下写出旋转过程中线段PD的最小值为________,最大值为________.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、解答题 (共10题;共96分)15-1、15-2、16-1、16-2、16-3、17-1、18-1、18-2、18-3、19-1、20-1、20-2、21-1、21-2、21-3、21-4、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、第11 页共11 页。

钦州市八年级上学期数学期末考试试卷

钦州市八年级上学期数学期末考试试卷

钦州市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共20题;共33分)1. (2分) (2015八下·南山期中) 下列标志既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)下列式子中,为最简分式的是()A .B .C .D .3. (2分)长度为1㎝、2㎝、3㎝、4㎝、5㎝的五条线段,若以其中的三条线段为边构成三角形,可以构成不同的三角形共有()A . 2个B . 3个C . 4个D . 5个4. (2分)某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带③去,这样做根据的三角形全等判定方法为()A . SASB . ASAC . AASD . SSS5. (2分)如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么,下列说法错误的是()A . △EBD是等腰三角形,EB=EDB . 折叠后∠ABE和∠CBD一定相等C . 折叠后得到的图形是轴对称图形D . △EBA和△EDC一定是全等三角形6. (2分) (2019七下·番禺期中) 如图,已知AB∥CD,BC平分∠ABE,∠C=32°,则∠BED的度数是()A .B .C .D .7. (2分)下列计算正确的有几个()①;②;③;④.A . 0个B . 1个C . 2个D . 3个8. (2分) (2017八上·扶沟期末) 已知分式的值为0,那么x的值是()A . ﹣1B . ﹣2C . 1D . 1或﹣29. (2分) (2015八下·六合期中) 等腰三角形的一腰长为13,底边长为10,则它的面积为()A . 65B . 60C . 120D . 13010. (2分) (2017七下·盐都期中) 已知x2+kx+16是一个完全平方式,则的值为()A . 4B . 8C . -8D . ±811. (2分) (2015八上·惠州期末) 把分式中的分子分母的x、y都同时扩大为原来的2倍,那么分式的值将是原分式值的()A . 2倍B . 4倍C .D . 不变12. (2分)(2019·合肥模拟) 已知边长为4的等边△ABC , D、E、F分别为边AB、BC、AC的中点,P为线段DE上一动点,则PF+PC的最小值为()A . 4B .C .D .13. (1分) (2017七下·杭州期中) 雾霾天气是由于空气中含有颗粒物过多造成的.现测得有一种颗粒物的直径为0.0000025m,这个数据用科学记数法表示为________m.14. (1分) (2017七下·门头沟期末) 因式分解: ________15. (1分)(2018七下·长春月考) 如图在Rt△ABC中,∠C=90°,若沿图中虚线MN剪去∠C,则∠BMN+∠ANM=________度.16. (1分) (2016九上·南充开学考) ﹣ + ﹣30﹣ =________.17. (1分) (2017·新化模拟) 如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E,若BC=3,则DE的长为________.18. (1分) (2019九下·临洮月考) 如图,,,分别为,的中点,若,,则的长是________.19. (2分)计算:82011×(﹣0.125)2011=________;已知am=2,an=3,则a2n﹣m=________.20. (1分) (2019八上·江岸期末) 关于x的分式方程无解,则m=________.二、解答题 (共5题;共50分)21. (5分)(2017·湖州模拟) 解方程: = .22. (5分)(2017·黄冈模拟) 先化简,再求值:(﹣x﹣1)÷ ,其中x= ,y= .23. (15分) (2016八上·安陆期中) 在等边△ABC外侧作直线AP,点B关于直线AP的对称点为D,连接BD,CD,其中CD交直线AP于点E.(1)依题意补全图1;(2)若∠PAB=30°,求∠ACE的度数;(3)如图2,若60°<∠PAB<120°,判断由线段AB,CE,ED可以构成一个含有多少度角的三角形,并证明.24. (15分) (2019七上·南山期末) 如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.(3)若C在线段AB的延长线上,且满足AC-BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,并直接写出你的结论.25. (10分)(2017·广州) 甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.参考答案一、单选题 (共20题;共33分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、二、解答题 (共5题;共50分)21-1、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、。

广西钦州市八年级上学期数学期末考试试卷

广西钦州市八年级上学期数学期末考试试卷

广西钦州市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2020九上·罗山期末) 如图是用围棋棋子在6×6的正方形网格中摆出的图案,棋子的位置用有序数对表示,如A点为(5,1),若再摆一黑一白两枚棋子,使这9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是()A . 黑(1,5),白(5,5)B . 黑(3,2),白(3,3)C . 黑(3,3),白(3,1)D . 黑(3,1),白(3,3)2. (2分)在实数:、、、、、中,无理数有()A . 1个B . 2个C . 3个D . 4个3. (2分) (2020八上·靖江期中) 下列等式:① ,② ,③ ,④,⑤ ,⑥ ;正确的有()A . 2个B . 3个C . 4个D . 5个4. (2分)若不等式| x-2 |+| x+6 |≥k永远成立,则()A . k≤4B . k<4C . k≤8D . k<85. (2分)如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x-y=2,③2xy+4=49,④x+y=9.其中说法正确的是()A . ①②B . ①②③C . ①②④D . ①②③④6. (2分)(2018·吉林模拟) 如图,点的坐标为(,),点是轴正半轴上的一动点,以为边作等腰直角,使,设点的横坐标为,点的纵坐标为,能表示与的函数关系的图象大致是()A .B .C .D .7. (2分) (2018九上·广州期中) 如图,△ABC绕着点O逆时针旋转到△DEF的位置,则旋转中心及旋转角分别是()A . 点B, ABOB . 点O, AOBC . 点B, BOED . 点 O, AOD8. (2分)(2019·湖州模拟) 如图,在△ABC中,AB=AC,∠BAC=70°,∠BAC的平分线与AB的垂直平分线交于点O,点E、F分别在BC、AC上,点C沿EF折叠后与点O重合,则∠BEO的度数是()A . 20°B . 35°C . 40°D . 55°二、填空题 (共8题;共8分)9. (1分) (2019七下·莲湖期末) 如图,点P关于OA、OB的对称点分别为C、D,连结CD,交OA于M,交OB于N,若△PMN的周长=8厘米,则CD为________厘米10. (1分) (2019七下·富宁期中) 如图所示,AB交CD于O点,OA=OB,请你添加一个条件,使得△AOC≌△BOD,你添加的条件是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年广西钦州市八年级(上)期末数学试卷一、选择题(每小题3分,共36分)1.(3分)在以下四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)下列每组数分别表示三根小棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.1、2、3 B.2、3、5 C.2、3、6 D.3、5、73.(3分)下列运算不正确的是()A.x2•x3=x5 B.(x2)3=x6C.x3+x3=2x6D.(﹣2x)3=﹣8x34.(3分)生物界和医学界对病毒的研究从没有停过脚步,最近科学家发现了一种病毒的长度约为0.00000456mm,则数据0.00000456用科学记数法表示为()A.4.56×10﹣5B.0.456×10﹣7C.4.56×10﹣6D.4.56×10﹣85.(3分)要使分式有意义,则x应满足的条件是()A.x>﹣1 B.x<﹣1 C.x≠1 D.x≠﹣16.(3分)在平面直角坐标系中,点P(﹣2,3)关于y轴的对称点在()A.第四象限B.第三象限C.第二象限D.第一象限7.(3分)如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF8.(3分)已知等腰△ABC的两条边长分别是5和6,则△ABC的周长为()A.11 B.16 C.17 D.16或179.(3分)下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2﹣9+x=(x﹣3)(x+3)+xC.(x+1)(x+2)=x2+3x+2 D.x2y﹣y=(x﹣1)(x+1)y10.(3分)用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS11.(3分)甲、乙两个工程队进行污水管道整修,已知乙比甲每天多修3km,甲整修6km的工作时间与乙整修8km的工作时间相等,求甲、乙两个工程队每天分别整修污水管道多少km?设甲每天整修xkm,则可列方程为()A. B. C. D.12.(3分)如图,已知AC﹣BC=3,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长是15,则AC的长为()A.6 B.7 C.8 D.9二、填空题(每小题3分,共18分)13.(3分)计算:(a+1)(a﹣3)= .14.(3分)钝角三角形三边上的中线的交点在此三角形(填写“内”或“外”或“边上”).15.(3分)若分式的值为0,则y= .16.(3分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=.17.(3分)如图,点O在△ABC内,且到三边的距离相等,若∠A=60°,则∠BOC= .18.(3分)先阅读后计算:为了计算4×(5+1)×(52+1)的值,小黄把4改写成5﹣1后,连续运用平方差公式得:4×(5+1)×(52+1)=(5﹣1)×(5+1)×(52+1)=(52﹣1)×(52+1)=252﹣1=624.请借鉴小黄的方法计算:[](1+)××××××,结果是.三、解答题(本大题共8小题,共66分)19.(8分)(1)计算:(6x2﹣8xy)÷2x;(2)分解因式:a3﹣6a2+9a.20.(6分)如图,已知A(0,4)、B(﹣2,2)、C(3,0).(1)作△ABC关于x轴对称的△A1B1C1,并写出点B的对应点B1的坐标;(2)求△A1B1C1的面积S.21.(6分)解分式方程: =﹣2.22.(8分)先化简再求值:,其中x=.23.(8分)如图,已知AB=DC,AC=DB.求证:∠1=∠2.24.(10分)如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.(1)求证:DB=DE;(2)过点D作DF垂直BE,垂足为F,若CF=3,求△ABC的周长.25.(8分)某校积极开展科技创新活动,在一次用电脑程序控制小型赛车进行50m比赛的活动中,“梦想号”和“创新号”两辆赛车在比赛前进行结对练习,两辆车从起点同时出发,“梦想号”到达终点时,“创新号”离终点还差2m.已知“梦想号”的平均速度比“创新号”的平均速度快0.1m/s.(1)求“创新号”的平均速度;(2)如果两车重新开始练习,“梦想号”从起点向后退2m,两车同时出发,两车能否同时到达终点?请说明理由.26.(12分)如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC,△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)直接写出AB与AP所满足的数量关系:,AB与AP的位置关系:;(2)将△ABC沿直线l向右平移到图2的位置时,EP交AC于点Q,连接AP,BQ,求证:AP=BQ;(3)将△ABC沿直线l向右平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ,试探究AP=BQ是否仍成立?并说明理由.2017-2018学年广西钦州市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)在以下四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项符合题意;D、不是轴对称图形,故本选项不符合题意.故选:C.2.(3分)下列每组数分别表示三根小棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.1、2、3 B.2、3、5 C.2、3、6 D.3、5、7【解答】解:A、1+2=3,不能组成三角形,故此选项错误;B、2+3=5,不能组成三角形,故此选项错误;C、2+3<6,不能组成三角形,故此选项错误;D、3+5>7,能组成三角形,故此选项正确;故选:D.3.(3分)下列运算不正确的是()A.x2•x3=x5 B.(x2)3=x6C.x3+x3=2x6D.(﹣2x)3=﹣8x3【解答】解:A、x2•x3=x5,正确;B、(x2)3=x6,正确;C、应为x3+x3=2x3,故本选项错误;D、(﹣2x)3=﹣8x3,正确.故选:C.4.(3分)生物界和医学界对病毒的研究从没有停过脚步,最近科学家发现了一种病毒的长度约为0.00000456mm,则数据0.00000456用科学记数法表示为()A.4.56×10﹣5B.0.456×10﹣7C.4.56×10﹣6D.4.56×10﹣8【解答】解:数据0.00000456用科学记数法表示为4.56×10﹣6.故选:C.5.(3分)要使分式有意义,则x应满足的条件是()A.x>﹣1 B.x<﹣1 C.x≠1 D.x≠﹣1【解答】解:由题意得:1+x≠0,解得:x≠﹣1,故选:D.6.(3分)在平面直角坐标系中,点P(﹣2,3)关于y轴的对称点在()A.第四象限B.第三象限C.第二象限D.第一象限【解答】解:点P(﹣2,3)关于y轴的对称点是:(2,3),在第一象限.故选:D.7.(3分)如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF【解答】解:A、根据AB=DE,BC=E F和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选:B.8.(3分)已知等腰△ABC的两条边长分别是5和6,则△ABC的周长为()A.11 B.16 C.17 D.16或17【解答】解:①当腰是5,底边是6时,能构成三角形,则其周长=5+5+6=16;②当底边是5,腰长是6时,能构成三角形,则其周长=5+6+6=17.故选:D.9.(3分)下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2﹣9+x=(x﹣3)(x+3)+xC.(x+1)(x+2)=x2+3x+2 D.x2y﹣y=(x﹣1)(x+1)y【解答】解:A、a(x﹣y)=ax﹣ay是整式的乘法,故A错误;B、x2﹣9+x=(x﹣3)(x+3)+x,不是因式分解,故B错误;C、(x+1)(x+2)=x2+3x+2是整式的乘法,故C错误;D、x2y﹣y=(x﹣1)(x+1)y是因式分解,故D正确;故选:D.10.(3分)用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS【解答】解:在△OEC和△ODC中,∵,∴△OEC≌△ODC(SSS),故选:D.11.(3分)甲、乙两个工程队进行污水管道整修,已知乙比甲每天多修3km,甲整修6km的工作时间与乙整修8km的工作时间相等,求甲、乙两个工程队每天分别整修污水管道多少km?设甲每天整修xkm,则可列方程为()A. B. C. D.【解答】解:设甲每天整修xkm,则可列方程为:=.故选:B.12.(3分)如图,已知AC﹣BC=3,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长是15,则AC的长为()A.6 B.7 C.8 D.9【解答】解:∵DE是AB的垂直平分线,∴EA=EB,∵△BCE的周长是15,∴EC+EB+BC=EC+EA+BC=AC+BC=15,则,解得,AC=9,BC=6,故选:D.二、填空题(每小题3分,共18分)13.(3分)计算:(a+1)(a﹣3)= a2﹣2a﹣3 .【解答】解:(a+1)(a﹣3)=a2﹣3a+a﹣3=a2﹣2a﹣3,故答案为:a2﹣2a﹣3.14.(3分)钝角三角形三边上的中线的交点在此三角形内(填写“内”或“外”或“边上”).【解答】解:钝角三角形三边上的中线的交点在此三角形内.故答案为内.15.(3分)若分式的值为0,则y= ﹣1 .【解答】解:∵分式的值为0,∴1﹣y2=0且1﹣y≠0,解得:y=﹣1.故答案为:﹣1.16.(3分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β= 240°.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°故答案是:240°.17.(3分)如图,点O在△ABC内,且到三边的距离相等,若∠A=60°,则∠BOC= 120°.【解答】解:∵点O在△ABC内,且到三边的距离相等,∴点O是三个角的平分线的交点,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=(180°﹣60°)=60°,在△BCO中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣60°=120°.故答案为:120°.18.(3分)先阅读后计算:为了计算4×(5+1)×(52+1)的值,小黄把4改写成5﹣1后,连续运用平方差公式得:4×(5+1)×(52+1)=(5﹣1)×(5+1)×(52+1)=(52﹣1)×(52+1)=252﹣1=624.请借鉴小黄的方法计算:(1+)××××××,结果是2﹣.【解答】解:原式=2×(1﹣)×(1+)××××××=2×(1﹣)××××××=2×(1﹣)×××××…=2×(1﹣)×(1+)=2×(1﹣)=2﹣故答案为:2﹣.三、解答题(本大题共8小题,共66分)19.(8分)(1)计算:(6x2﹣8xy)÷2x;(2)分解因式:a3﹣6a2+9a.【解答】(1)解:原式=2x(3x﹣4y)÷2x=3x﹣4y(2)解:原式=a(a2﹣6a+9)=a(a﹣3)220.(6分)如图,已知A(0,4)、B(﹣2,2)、C(3,0).(1)作△ABC关于x轴对称的△A1B1C1,并写出点B的对应点B1的坐标;(2)求△A1B1C1的面积S.【解答】解:(1)如图△A1B1C1即为所求作,B1(﹣2,﹣2);(2)△A1B1C1的面积S=4×5﹣(2×2+2×5+3×4)=7.21.(6分)解分式方程: =﹣2.【解答】解:方程两边都乘以2(x﹣1)得:2x=3﹣4(x﹣2),解得:x=,检验:把x=代入2(x﹣1)≠0,所以x=是原方程的解,所以原方程的解为x=.22.(8分)先化简再求值:,其中x=.【解答】解:原式=÷=•=,当x=时,原式==.23.(8分)如图,已知AB=DC,AC=DB.求证:∠1=∠2.【解答】证明:连接AD.在△ADB和△DAC中,,∴△ADB≌△DAC(SSS),∴∠1=∠224.(10分)如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.(1)求证:DB=DE;(2)过点D作DF垂直BE,垂足为F,若CF=3,求△ABC的周长.【解答】(1)证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∴∠DBC=30°(等腰三角形三线合一),∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边).(2)∵DF⊥BE,由(1)知,DB=DE,∴DF垂直平分BE,∵∠CDE=∠CED=∠BCD=30°,∴∠CDF=30°,∵CF=3,∴DC=6,∵AD=CD,∴AC=12,∴△ABC的周长=3AC=36.25.(8分)某校积极开展科技创新活动,在一次用电脑程序控制小型赛车进行50m比赛的活动中,“梦想号”和“创新号”两辆赛车在比赛前进行结对练习,两辆车从起点同时出发,“梦想号”到达终点时,“创新号”离终点还差2m.已知“梦想号”的平均速度比“创新号”的平均速度快0.1m/s.(1)求“创新号”的平均速度;(2)如果两车重新开始练习,“梦想号”从起点向后退2m,两车同时出发,两车能否同时到达终点?请说明理由.【解答】解:(1)设“创新号”赛车的平均速度为x m/s,则“梦想号”赛车的平均速度为(x+0.1)m/s.根据题意列方程得: =,解得 x=2.4经检验:x=2.4是原分式方程的解且符合题意.答:“创新号”的平均速度为2.4 m/s.(2)“梦想号”到达终点的时间是=20.8s,“创新号”到达终点的时间是=20.83s,所以,两车不能同时到达终点,“梦想号”先到.26.(12分)如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC,△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)直接写出AB与AP所满足的数量关系:AB=AP ,AB与AP的位置关系:AB⊥AP ;(2)将△ABC沿直线l向右平移到图2的位置时,EP交AC于点Q,连接AP,BQ,求证:AP=BQ;(3)将△ABC沿直线l向右平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ,试探究AP=BQ是否仍成立?并说明理由.【解答】解:(1)AB=AP;AB⊥AP;证明:∵AC⊥BC且AC=BC,∴△ABC为等腰直角三角形,∴∠BAC=∠ABC=(180°﹣∠ACB)=45°,易知,△ABC≌△EFP,同理可证∠PEF=45°,∴∠BAP=45°+45°=90°,∴AB=AP且AB⊥AP;故答案为:AB=AP AB⊥AP(2)证明:∵EF=FP,EF⊥FP∴∠EPF=45°.∵AC⊥BC,∴∠CQP=∠EPF=45°∴CQ=CP在 Rt△BCQ和Rt△ACP中,∴Rt△BCQ≌Rt△ACP (SAS).∴AP=BQ.(3)AP=BQ成立,理由如下:∵EF=FP,EF⊥FP,∴∠EPF=45°.∵AC⊥BC∴∠CPQ=∠EPF=45°∴CQ=CP在 Rt△BCQ和Rt△ACP中,∴Rt△BCQ≌Rt△ACP (SAS).∴AP=BQ.。

相关文档
最新文档