[09.11]工科高数第四章答案

合集下载

高等数学课后习题答案第四章2

高等数学课后习题答案第四章2

习题4-1(A)1、什么是)(x f 的原函数?原函数与函数的导数以及不定积分有什么关系?解答:见书上定义。

原函数的全体就是函数的不定积分。

原函数是一个函数,不定积分适宜个函数的集合。

2、证明x x 22cos sin −及x 2cos 21−都是同一个函数的原函数,试分析为什么同一个函数会有几个不同的原函数?解:由于x x x x 2sin cos sin 2)(sin 2==′)x x x x 2sin cos sin 2)(cos 2==′x x 2sin )2cos 21(=′−所以他们都是x 2sin 的原函数。

因为一个函数的原函数有无穷多个,即当)(x F 是)(x f 的原函数时,C x F +)(也是)(x f 的原函数时,其中C 为任意的常数。

3、利用基本公式求下列不定积分(1)、C x dx +−=−∫221(2)、=∫dx x 331=+⋅=∫C x dx x323233131=+C x 3221(3)、Cx dx x +−=+−∫arctan 112(4)、cx dx x++−∫arcsin 112(5)、dx e e xx ∫−−)(21C chx dx shx +==∫(6)、=∫dx ex x 2Ce e dx e x x +=∫2ln )2(2((7)、Ce C e edx e dx e x x x x+⋅−=+==∫∫1211ln 1)1(1x(8)、dx x x∫2cos sin Cx dx x x +==∫sec tan sec (9)、C x x xdx x +−=∫csc cot csc cot (10)、C C dx xx x +−=+=∫33ln 31ln 31314、求下列不定积分(1)、Cx C x dx x x xx++=+⋅+=+∫3322332)32((2)、Cxx x x dx x x x x ++−−=−+−∫322433121ln 4)1112((3)、dx xx x ∫++332Cx x x dx x x x +++=++=∫−21225212362152)3((4)、dx x x x ∫++)1(21222=+++=∫dx x x x x )1()1(2222C x x dx xx ++−=++∫arctan 1)111(22(5)、dx xx ∫−+4211Cx dx x+=−=∫arcsin 112(6)、dx e e x x ∫+−112Cx e dx e x x +−=−=∫)1((7)、dx x x x∫−sin cos 2cos Cx x dx x x +−=+=∫sin cos )sin (cos (8)、∫−dx x x x )tan (sec sec C x x dx x x x +−=−∫sec tan )tan sec (sec 25、求解下列问题(1)、设曲线上点),(y x 处切线的斜率为)0(12>+x xx ,并且曲线经过点)2,1(−,求曲线的方程解:由题设有)0(1)(2>+=′x x x x f 所以2312)(2−−=x x x f 经过点)2,1(−有2121−=+−C 23−=C 所以Cx x dx xx x f +−=+=∫12)1()(22(2)、一个直线运动的物体,在t 时刻的运动加速度为1)(2+=t t a ,并且当0=t 时,速度为1)(=t v ,距离0)0(=s ,求物体的运动规律解:Ct t dt t dt t a t v ++=+==∫∫3)1()()(321)0(==C v ,所以13)(3++=t t t v Ct t t dt t t dt t v t s +++=++==∫∫2432112)13()()(0)0(==C s 所以tt t t s ++=242112)((3)、某商品的需求量Q 是它的价格p 的函数,该商品的最大需求量为1000(即p=0时,Q=1000),并且知道需求量的变化率为p p Q 31(3ln 1000)(⋅−=′,求该商品的需求函数解:∫′=dp p Q p Q )()(C p+−⋅−=3ln 131(3ln 1000C p +⋅=31(1000==1000)0(Q C +=1000,0=C 所以=)(p Q p )31(1000⋅=(B)1、计算下列不定积分(1)、=+∫dx x x 221C x x dx x+−==+−∫arctan 111(2(2)、dx x x ∫+)1(122=+−+=∫dx x x x x )1(12222C x x dx xx +−−=+−∫arctan 1)111(22(3)、dx x ∫2cot Cx x dx x +−−=−=∫cot )1(csc 2(4)、dx x ∫2sin 2C x x dx x +−=−=∫)sin (212cos 1(5)、dx x f ∫′+)](1[Cx f x ++=)(2、一个质点做直线运动,已经知道加速度为t t t a sin 312)(2−=,如果当0=t 时,初速度3,500==s v ,求该质点的运动速度,及运动方程解:Ct t t t dt t a t v ++=−==∫∫cos 34)sin 312()()(3252)0(=+=C v ,所以解得2==)(t v 2cos 34)(3++=t t t v C t t t dt t t dt t v t s ++−=++==∫∫2sin 3)2cos 34()()(433)0(==C s ,所以32sin 3)(4++−=t t t t s 3、生产某产品Q 个单位所需要的成本C 是Q 的函数,已经知道固定成本为20元,边际成本函数为102+=Q C M ,求总成本的函数)(Q C 解:CQ Q dQ Q Q C ++=+=∫10)102()(220)0(=C C 所以2010)(2++=Q Q Q C 4-2(A )1、设)(x F 是)(x f 原函数,求下列各式的积分(1)、dx x f ∫)2(C x F x d x f +==∫)2(21)2()2(21(2)、dx x x f ∫)(2Cx F x d x f +==∫)(21)()](21222(3)、dx kx f ∫−)1()0()1(1)1()1(1≠+−−=−−−=∫k C kx F kkx d kx f k (4)、=∫dx x x f )ln 2(Cx F x d x f +=∫)ln 2(21)ln 2()ln 2(21(5)、xdx x f sin )2(cos ∫−C x F x d x f +−−=−−−=∫)2(cos )2(cos )2(cos (6)、dxx x f ∫−2sec )2tan 3(c x F x d x x f +−=−−=∫)2tan 3(31)2tan 3(sec )2tan 3(312(7)、dx e e f x x∫−−+)1(Ce F e d ef x x x ++−=++−=−−∫)1()1()1((8)、dx x x f ∫+−21)arctan 1(C x F x x d xx f +−−=−+−−=∫)arcsin 1()arcsin 1(1)arctan 1(22、设∫=dx x f I )(,如果做变换)(t x ϕ=后得到∫′=dt t t f I )()]([(ϕϕ,则按下列给出的条件写出换元后的积分(1)、t x dx ee I xxln ,1=+=∫解:设t x ln =,有dttdx 1=C e C t dt t dt t t t dx ee I x x x ++=++=+=⋅+=+=∫∫∫)1ln()1ln(11111(2)、)0(,,12+∞<≤=+=∫t t x dx xx I 解:设tdtdx t x 2,2==Ct t t t dt t t t dt t t I ++−+−=+−+−=+=∫∫)1ln(2232)111(2122323C x x x x ++−+−=)1ln(223223)0(+∞<≤t 3(3)、)0(,cos 2,44122π<<=−−+=∫t t x dx xx I 解:设tdtdx t x sin 2,cos 2−==C x xC t t dt t tdt t t I +−=+−=+=+=∫∫2arccos cos 2)sin 21(sin 2sin 2sin 21(4)、,1,121163+=−+−+=∫t x dx x x I (或者t x =−61)解:设dtt dx t x 566,1=+=dt t tt I 523621⋅++=∫(5)、t x dx x x I tan ,)1(323=+=∫(或者t x =−61)解:tdt dx t x 2sec ,tan ==,tdt t t I 2323sec )(sec )(tan ∫=tdt tt ∫=43sec tan dt t t ∫=cos sin 3(6)、tx x dx xxI 1),10(,11=<<−=∫解:设dt tdx tx 21,1−===−−⋅=∫dt t t t t I )1(122∫−−12t dt3、求下列不定积分(1)、dx x ∫−5)13(C x x d x +−=−−=∫65)13(181)13()13(31(2)、dx e x ∫−4Ce x x d e x x +−=−−=−−∫4441)4(41(3)、dx x x ∫−52)5(52122−−=∫x d x Cx x +−−=5)5(3122(4)、dt t t ∫−3325Ct t d t +−=−−=∫−3233313)5(21)5()5(31(5)、dx x x∫2cos 12C x x d x +−=−=∫2sin 21)2(1cos 21(6)、dx xx ∫−arcsin 112Cx x d x+==∫)ln(arcsin )(arcsin arcsin 1(7)、dx x x ∫−1tan cos 12Cx x d x +−=−−=∫1tan 2)1(tan 1tan 1(8)、dx x x ∫2ln 1=C x x d x+−=∫ln 1)(ln ln 12(9)、dx x x ∫+462Cx x d x +=+=∫2arctan 612(2(11613323(10)、dx x ∫−29161C xx d x+=−⋅=∫43arctan 31)43()43(1134412(11)、dx x x ∫sin cos 5C x x xd +−=−=∫65cos 61)(cos cos (12)、dx x x ∫33sin cos Cx x x d x x +−=−=∫6432sin 61sin 41)(sin sin )sin 1((13)、dx x x ∫+3sin 2cos Cx x d x ++=++=∫)3sin 2ln()3sin 2(3sin 21(14)、dx x x x ∫+2sin sin cos 32C x x d x ++=++=∫)2ln(sin 31)2(sin 2sin 131333(15)、dxxx ∫+1解:设tdtdx t x 2,2==dx x x∫+1C t t t t dt t t t t tdt t ++−+−=+−+−=+⋅=∫∫)1ln(2232111(2122322C x x x x x ++−+−=)1ln(2232(16)、dxxx ∫−−+22441解:设tdtdx t x cos 2,sin 2==dx x x ∫−−+22441C t t tdt t t ++=⋅+=∫sin 2cos 2cos 2cos 21Cx x++=2arcsin (17)、dx xx x ∫+−441解:设dtt dx t x 344,==dx x x x ∫+−4341C t t t dt t t dx t t t t +++−=++−=⋅+−=∫∫)1ln(882122(44)1(1232Cx x x +++−=)1ln(88244(18)、dxx ∫++3211解:设tdtdx t x ==+,32=++∫dx x 3211=+∫t tdt 1Cx x C t t dt t +++−+=++−=+−∫)321ln(32)1ln(111((B)1、求下列不定积分(1)、dx x x ∫+2sin 12sin Cx xx d ++=++=∫222sin 12sin 1)sin 1((2)、=−∫dx xx4cos 12sin Cx dx x x d +=−−∫)arccos(cos )(cos 1)(cos 2222(3)、dx x x x ∫+−21arctan −+=∫dx x x 21dxx x∫+21arctan −+=∫)(112122x d x ∫)(arctan arctan x xd C x x +−+=22)(arctan 21)1ln(21(4)、Cx x x x x x d dx x x x +−==+∫∫ln 1)ln ()ln ()ln (ln 122(5)、C x x dx x x xd cox dx x x +−=+⋅−=∫∫∫5sin 101sin 21cos 21)5(551213sin 2sin (6)、dx x x ∫2cos 3sin Cx x dx x x xd +−−=+⋅=∫∫5cos 101cos 21sin 21)5(5sin 5121(7)、dx x x ∫sec tan 3Cx x x d x +−=−=∫sec sec 31)(sec )1(sec 32(8)、Cx x d x dx x x x +==∫∫433)tan (ln 41)tan (ln )tan (ln cos sin )tan (ln (9)、dx x x x ∫+++32321C x x x x d x x +++=++++=∫322232)32(43)32(32121(10)、dx x x x ∫+)1(arctan C x x d x +==∫2arctan )(arctan arctan 2(11)、dx x x x ∫++542dx x x x ∫++−+=54442212dx x x x x d ∫++++=54)54(212dx x x d ∫+++−1)2()2(22C x x x ++−++=)2arctan(2)54ln(212(12)、dx x x x ∫−−542dx x x x ∫−−+−=54442212dx x x x x d ∫−−−−=54)54(2122dx x x ∫+−+)1)(5(12dx x x x x d ∫−−−−=54)54(2122dx x x 1151(31+−−+∫C x x x x ++−+−−=15ln 31)54ln(212C x x x x ++−−+++−=)1ln(31)5ln(31)1ln(21)5ln(21C x x +++−=)1ln(61)5ln(652、求下列不定积分(1)、dxx ∫++3211解:设dtt dx t x t x 2333,2,2=−==+dx x ∫++3211dt t t ∫+=132∫++−=dt tt )111(3C t t t ++−−=)1ln(33232C x x x +++−+−++=)21ln(3)2(3)21(23331323(2)、dxx ∫−29解:设tdtdx t x cos 3,sin 3==dx x ∫−29C t t dt t dt t ++=+==∫∫2sin 4929)2cos 1(29cos 92C x x x +−+=29213arcsin 29(3)、dxx x ∫++1)2(1解:设tdtdx t x t x 2.1,12=−==+dx x x ∫++1)2(1Cx C t dx t t t++=+=+=∫1arctan 2arctan 2)1(22(4)、dxx x ∫−−−412121解:设dtt dx t x 342,12==−dx x x ∫−−−412121dt t t t ∫−=)1(23C t t t dt t t +−++=−++=∫)1ln(22)11122Cx x x +−−+−+−=)112ln(21221244(5)、dxx ∫−232)1(1解:设dxtdt t x ==cos ,sin dx x ∫−232)1(1C xxC t t tdt +−=+==∫231tan cos cos (6)、dxxa x∫−221解:设dxtdt a t a x =−=sin ,cosdx x a x∫−221Ct t at a t a tdt a +−=⋅−=∫tan sec ln 1cos sin sin C xx a a a +−−=22ln 1(7)、dxx a ∫+2322)(1解:设tdta dx t a x 2sec ,tan ==dx x a ∫+2322)(1C t a t a tdt a +==∫sin 1sec sec 2332C x a x a ++⋅=2221(8)、dxex∫+11解:设12,1,122−=−==+t tdtdx t e t e x x dx e x ∫+11C t t dt t t t ++−=−=∫11ln )1(22C e e x x +++−+=1111ln 3、设)(x F 是)(x f 的原函数,求下列不定积分(1)、dx x x f ∫cos )sin 2(C x F t d x f +==∫)sin 2(21)sin 2()sin 2(21(2)、dx x x f ∫−)1(2Cx F x d x f +−−=−−−=∫)1(21)1()1(21222(3)、xdx xx f tan cos )(tan 22∫C x F x d x f +==∫)(tan 21)(tan )(tan 21222(4)、dx x F x f ∫+)(1)(2Cx F x F x F d +=+=∫)(arctan )(1)((24-3(A )1、求下列积分(1)、∫xdx x sin C x x x xdx x x +−=+−=∫cos sin cos cos (2)、dx xx ∫2cos C x x x dx x x x ++=−=∫2cos 42sin 22sin 22sin2(3)、=⋅−=∫∫dx x x x x dx xx123ln 23ln 32323dxx x x ∫−−313223ln 23C x x +−=)3ln 2(4332(4)、)1(ln ≠∫n xdx x n ∫+−+=+dx x n x x n n n 11ln 111C x n x x n n n ++−+=++121)1(1ln 11(5)、∫−dx xe x ∫−−+−=dx e xe x x =+−−=−−C e xe x x C x e x ++−=−)1((6)、∫+dx x x )1sin(∫+++−=dx x x x )1cos()1cos(++−+=)1cos()1sin(x x x (7)、∫xdx x cos 2∫−=xdx x x x sin 2sin 2]cos cos 2[sin 2∫+−−=xdx x x x x Cx x x x ++−=cos 2sin )2(2(8)、∫dx x x 2cos 22∫+⋅=dx x x 2cos 12xdx x dx x cos 212122∫∫+=dx x x x x x ∫−+=sin sin 216123]cos cos [sin 216123dx x x x x x x ∫+−−+=C x x x x x x +−++=sin cos sin 216123C x x x x x ++−+=cos sin )121(6123(9)、∫−xdx x 2sin )1(2∫∫−=xdxxdx x 2sin 2sin 2x xdx x x x 2cos 212cos 2cos 212++−=∫x xdx x x x x 2cos 212sin 212sin 212cos 212+−+−=∫C x x x x x x ++++−=2cos 212cos 412sin 212cos 212C x x x x ++−−=2sin 212cos )43(212(10)、∫+dx x )1ln(2∫+−+=dx x x x x 22212)1ln(=+−−+=∫dx xx x )122()1ln(22C x x x x ++−+=arctan 22)1ln(2(11)、∫xdx arctan ∫+−=dx xx x x 21arctan ∫++−=221)1(21arctan x x d x xC x x x ++−=)1ln(21arctan 2(12)、∫xdx arccos ∫−+=dxx xx x 21arccos ∫−+=dt t tt x x )sin (sin cos arccos C t x x ++=sin arccos Cx x x +−+=21arccos (13)、∫−dx e x x 2∫−−+−=dx xe e x x x 22∫−−−+−−=dx e xe e x x x x 222C e x x x +++−=−)22(2(14)、∫dx e x ∫=dt te t 2∫−=dt e te t t 22C e t t +−=)1(2C ex x +−=)1(2(15)、∫++dx x x )1ln(2dx x x x x x ∫+−++=221)1ln(∫++−++=2221)1(21)1ln(x x d x x x Cx x x x ++−++=221)1ln((16)、∫−xdx e x cos I ==I ∫−xdx e x cos ∫−−+=xdx e x e x x sin sin ∫−−−−−=xdx e x e x e x x x cos cos sin =I Ix e x e x x −−−−cos sin =I C x x e x +−−)cos (sin 21(B)1、求下列积分(1)、∫dx x 2)(ln ∫−=xdx x x ln 2ln 2∫+−=dx x x x x 2ln 2ln 2Cx x x x x ++−=2ln 2ln 2(2)、∫+dx x x )1ln(2∫+−+=dx x x x x 23221)1ln(2∫+−−+=dx x x x x x 1()1ln(2222C x x x x x +++−+=)1ln(21)1ln(22222C x x x +−++=2)1ln(21222(3)、∫xdx x arctan ∫+−=dx x x x x 222121arctan 2∫+−−=dx xx x 111(21arctan 222C x x x x ++−=arctan 212arctan 22C x x x +−+=2arctan 212(4)、∫dx x x )ln(ln )(ln ln 1ln )ln(ln ln )(ln )ln(ln x d x x x x x d x ∫∫⋅−==C x x x +−=ln )ln(ln ln Cx x +−=]1)[ln(ln ln (5)、∫dx ex 3∫=dt e t t 23∫−=dt te e t t t 632∫+−=dt e te e t t t t 6632C e te e t t t t ++−=6632C ex x x ++−=3)22(3332(6)、∫−dx x e x 2sin 2∫−=dx x e I x 2sin 2∫−−+−=dx x e x e x x 2cos 412sin 2122∫−−−−−+−=dx x e x e x e x x x 2sin 161)2cos 21(412sin 21222=I I x e x e x x 1612cos 812sin 2122−−−−−C e x x x ++−=−2]2cos 2sin 4[172(7)、∫xdx x 2cos ∫∫−+=+=x x x x dx x x x 2sin 412sin 4141)2cos (212C x x x x +++=2cos 812sin 41412(8)、∫dx x x 2cos C x x x xdx x x ++=−=∫cos ln tan tan tan (9)、∫xdx x arctan 2∫+−=dx x x x x 233131arctan 3∫+−−=dx xx x x x )1(31arctan 323C x x x x +++−=)1ln(616arctan 32232、设)(x F 是)(x f 的原函数,求∫′dx x f x )(解:∫∫−=′dx x f x xf dx x f x )()()(C x F x xf +−=)()(3、求∫−′′dx x f x )1(解:∫−′′dx x f x )1(∫−′+−′−=dx x f x f x )1()1(Cx f x f x +−−−′−=)1()1(。

高等数学第4章课后习题答案(科学出版社)

高等数学第4章课后习题答案(科学出版社)

第四章 习题解答习 题 4-11.求下列不定积分:(1);(2) 2(23)d x x x +⎰;(3)⎰+)1(d 22x x x;(4) 2cot d x x ⎛⎫+⎪⎭⎰;(6) 21(1)x x -⎰; (7)1d 1cos 2xx +⎰;(9)221d sin cos x x x ⎰;(10){}max ||,1d x x ⎰.2.设某曲线上任意点处的切线的斜率等于该点横坐标的立方,又知该曲线通过原点,求此曲线方程.3.验证函数21sin 2x ,21cos 2x -,1cos 24x -是某同一函数的原函数.解答:1.求下列不定积分: (1)解53225125212d 1()3x x x C x C --+-==+=-++-⎰. (2)解:⎰+x x xd )32(2C xx x +3ln 29+6ln 62+2ln 24=(3)=+-=+⎰⎰⎰22221d d )1(d x x x x x x x C x x+--arctan 1(4) 解:⎰⎰⎰-+-=+-x x x x x x x d )1(csc d 11d )cot 11(2222=C x xx +cot arcsin(5)1131352222222242(2)d 235x x x x x x x x x C -==-+=-++⎰⎰(6) 33571244444214(1)(1)d ()d 47x x x x x x x x x C x ----=-⋅=-=++⎰⎰⎰(7) 解2111d d tan 1cos 22cos 2x x x C x x ==++⎰⎰ (8) 解:⎰x x x x d sin cos 2cos 22⎰⎰-=-=x xx x x x x x d )cos 1sin 1(d sin cos sin cos 222222 C x x +--=tan cot(9) 解:222222221sin cos 11d d d d sin cos sin cos cos sin x x x x x x x x x x x x +==+⎰⎰⎰⎰ 22sec d csc d tan cot x x x x x x C =+=-+⎰⎰(10) 解:},,1max{)(x x f =设⎪⎩⎪⎨⎧>≤≤--<-=1,11,11,)(x x x x x x f 则.上连续在),()(+∞-∞x f ,)(x F 则必存在原函数,1>,+211≤≤1,+1<,+21=)(32212x C x x C x x C x x F 须处处连续,有又)(x F)+21(lim =)+(lim 121→21→+C x C x x x ,,21112C C +-=+-即 )(lim )21(lim 21321C x C x x x +=+-+→→ ,,12123C C +=+即 ,1C C =联立并令.1,2132C C C C +==+可得.1,12111,211,21},1max{22⎪⎪⎪⎩⎪⎪⎪⎨⎧>++≤≤-++-<+-=⎰x C x x C x x C x dx x 故2. 解:设所求曲线方程为)(x f y =,其上任一点),(y x 处切线的斜率为3d d x xy=,从而 ⎰+==C x x x y 4341d .由0)0(=y ,得0=C ,因此所求曲线方程为441x y =. 3.解:x 2sin 21x x cos sin =, x x x sin cos cos 212='⎪⎭⎫ ⎝⎛- x x x x cos sin 2sin 212cos 41=='⎪⎭⎫⎝⎛-所以x 2sin 21、 x 2cos 21-、 x 2cos 41-都是x x cos sin 的原函数.习 题 4-2 1.求下列不定积分: (1) 1d 12x x -⎰; (2) 100(23)d x x -⎰;(3) 12ed xx x ⎰; (4)211sin()d x x x ⎰;(5) ⎰-294d x x;(7) 1d ln lnln x x x x⎰;(8)x e x d 11⎰+;(9)⎰+3xx dx ; (10)x x x x x d )cos 2(sin sin 2cos 2⎰+-; (11)3cos d x x ⎰; (12)⎰+x x d 412;(14)2sin d cos 6cos 12x xx x -+⎰;(15)x ; (16) dx x ⎰5cos(17) ⎰x x x d cos sin 52(18)cos5sin 4d x x x ⎰;(19)⎰+x xx d sin 1sin ; (20)x exd 112⎰+(21) xx ⎰;(22)x x⎰. 2. 求下列积分: (1) sin 2d x x x ⎰;(2)⎰-x e x xd 2;(3)()⎰-x x x d 1ln ;(4)(31)sin 3d x x x +⎰; (5)x x d sin3⎰;(6) e sin 2d x x x -⎰; (7) 2arctan d x x x ⎰;(8) 2cos d x x x ⎰;(9)x ;(10)⎰x x e xd sin ;(11)3csc d x x ⎰;(12)()d xf x x ''⎰.3.已知x x f 22tan )(sin =',求函数)(x f .4. 已知xe xf -=)(,求不定积分⎰'x xx f d )(ln . 5. 求e d n xn I x x =⎰的递推公式,其中n 为自然数,并计算2I 的值.6. 已知)(u f 有二阶连续的导数,求∫d )e (′′e2x f x x;解答:1.求下列不定积分:(1) 解: 令2u x =,有2sin 2d sin 2(2)d sin d cos x x x x x u u u C '===-+⎰⎰⎰,将2u x =回代,得2sin 2d x x ⎰cos 2x C =-+. (2) 解 10010010111(23)d (23)d(23)(23)3303x x x x x C -=---=--+⎰⎰ (3) 解:⎰x xexd 21C e x e x x +=)1-d( =11∫(4) 解:211111sin()d sin d()cos x C x x x x x=-=+⎰⎰ (5) 解:=-⎰294d x xc xx x x x +|323+2|ln 121=d 321+3+2141∫ (6) 解:x x x x d )ln (ln 12⎰+C xx x x x x +-==⎰ln 1)ln d()ln (12(7) 解:x x x x d ln ln ln 1⎰C x x x x x x +===⎰⎰ln ln ln )ln d(ln ln ln 1)d(ln ln ln ln 1(8) 解:x ee x e e e x e xxx x x x d )11(d 11d 11⎰⎰⎰+-=+-+=+=C e x x ++-)1ln( (9) 解 令)0( 6>=t t x ,则⎰⎰+=+23536t t dtt x x dxdt tt t )111(62⎰+-+-=C t t t t ++-+-=))1ln(23(623C x x x x ++-+-=)1ln(6 6 32663(10) 解:)cos 2+(sin d )cos 2+(sin 1 =d )cos 2+(sin sin 2cos∫∫22x x x x x x x x x =C xx ++-cos 2sin 1(11) 解:⎰x x d cos 3⎰=x x x d cos cos 2)d(sin sin 12⎰-=x x C xx +-=3sin sin 3 (12) 解:∫∫2d 2+1121=d +4122x xx x =C x +2arctan 21. (13)解:2x 231arcsin d(arcsin )(arcsin )3x x x C ==+⎰.(14)解:22sin d d(cos 3)cos 6cos 12(cos 3)3x x x C x x x -=-=-+-+⎰⎰ (15) 解:x x x xd )1(arctan ⎰+)d()(1arctan 2d 1arctan 22x x xx x x ⎰⎰+=+=C x x x +==⎰2)(arctan)d(arctan arctan2(16) x x x x x x sin d )sin -1( =sin d cos =d cos ∫∫∫2245=C x x x ++-52sin 51sin 32sin .(17) ⎰⎰⎰+-=-=x x x x x x x x x x sin d )sin sin 2(sin sin d )sin 1(sin d cos sin 64222252c x x x ++-=753sin 71sin 52sin 31 (18) 解:C x x x x x x x x ++-=-=⎰⎰cos 219cos 181d 2sin 9sin d 4sin 5cos (19) 解:∫∫∫d )tan +sec (tan =d sin -1)sin +1(sin =d sin +1sin 22x x x x x xx x x x x ⎰-+=x x x x d )1sec sec (tan 2=C x x x +-+tan sec .(20) 解:令)1ln(212-=t x ,则t t t x d 1d 2-=,于是C t t t t t t t t x ex ++-=-=-⋅=+⎰⎰⎰11ln 21d 11d 11d 11222 =C x e e x x +-++-)212ln(2122(21) 解:设sin (0)2x a t t π=<<,d cos d x a t t =,则22421sin cos cos d sin 2d 4x x a t a t a t t a t t =⋅⋅=⋅⎰⎰⎰ 444111(1cos 4)d sin 48832a t t a t a t C =-=-+⎰ 44211sin cos (12sin )88a t a t t t C =--+42211arcsin 2)88x a a x C a =--+. (22) 解:令sec x a t =,d sec tan d x a t t t =⋅,则22tan sec tan d tan d (sec 1)d sec a t a t t t a t t a t t a t =⋅⋅==-⎰⎰⎰ (tan )a t t C =-+arccos )a a C x=-+.2.求下列不定积分(1)解:⎰x x x d 2sin )2cos d(21⎰-=x x ⎰+-=x x x x d 2cos 212cos 2 C x x x ++-=2sin 412cos 2(2)解:⎰-x e x x d 2⎰⎰---+-=-=x xe e x e x xx x d 2d 22⎰⎰-----+--=--=x e xe e x e x e x xx x x x d 22d 222C e xe ex x x x+---=---222(3)解:()⎰-x x x d 1ln ()⎰⎪⎪⎭⎫⎝⎛-=2d 1ln 2x x()⎰---=x x x x x d 11211ln 222 ()⎰⎪⎭⎫⎝⎛-++--=x x x x x d 111211ln 22()()C x x x x x +-----=1ln 2121411ln 222(4)(31)sin 3d x x x +⎰1(31)d(cos3)3x x =+-⎰ 1(31)cos3cos3d 3x x x x =-++⎰11(31)cos3sin 333x x x C =-+++.(5)解:令t x =3,则3t x =,t t dx d 32=原式⎰⎰-=⋅=t t t t t cos d 3d 3sin 22∫∫sin d 6+cos 3=d 2cos 3+cos 3=22t t t t t t tt t⎰-+-=t t t t t t d sin 6sin 6cos 32C t t t t t +++-=cos 6sin 6cos 32C x x x x x +++-=333332cos 6sin 6cos 3(6)解:因为⎰-x x e x d 2sin ⎰--=x e x d 2sin )2d(sin 2sin ⎰--+-=x e x e xx)d(2cos 22sin ⎰----=x x e x x e )2d(cos 22cos 22sin ⎰---+--=x e x e x e x x x⎰------=x x e x e x e x x x d 2sin 42cos 22sin于是⎰-x x exd 2sin C xe x e x x +--=--52cos 22sin(7)解:⎰x x x d arctan 2⎰⎰-==x x x x x x arctan d 3arctan 33d arctan 333∫d +131arctan 3=233x x x x x ⎰+-+-=x x xx x x x d 131arctan 3233 C x x x x +++-=)1ln(31arctan 3223 (8)解:⎰x x x d cos 2⎰⎰+=+=x x x x x x xd )2cos (21d 22cos 1⎰+=x x x x d 2cos 2142 ⎰+=x x x 2sin d 4142⎰-+=x x x x x d 2sin 412sin 4142 C x x x x +-+=2cos 812sin 4142 (9)解:⎰x x xd arcsin 1⎰⎰-==x x x x x x arcsind 2arcsin2d arcsin2∫d 11arcsin 2=x xxx C x x x +-+=12arcsin 2 (10)解:e sin d sin d e x xx x x =⎰⎰e sin e d sin x x x x =-⎰e sin e cos d x x x x x =-⎰e sin cos d e x x x x =-⎰e sin (e cos e d cos )x x x x x x =--⎰ e sin e cos e sin d x x x x x x x =--⎰.因此得2e sin d e (sin cos )x xx x x x =-⎰.即1e sin d e (sin cos )2xxx x x x C =-+⎰.(11)解:32csc d csc (csc )d csc d(cot )x x x x x x x ==-⎰⎰⎰2csc cot cot csc d x x x x x =--⋅⎰3csc cot csc d csc d x x x x x x =--+⎰⎰ 3csc cot csc d ln csc cot x x x x x x =--+-⎰,从而 31csc d (csc cot ln csc cot )2x x x x x x C =---+⎰(12)解 ⎰''x x f x d )(C x f x f x x x f x f x x f x +-'='-'='=⎰⎰)()(d )()()(d3.已知x x f 22tan )(sin =',求函数)(x f .解 依题求得xx x f -='1)(,因此 C x x x x xx x x x f +---=--=-=⎰⎰⎰|1|ln d d 11d 1)(. 4. 已知xe xf -=)(,求不定积分⎰'x xx f d )(ln . 解=+='='⎰⎰C x f x x f x xx f )(ln ln d )(ln d )(ln C x +1.5. 解 11e d de e e d e n x n x n x n x n xn n I x x x x n x x x nI --===-=-⎰⎰⎰,即1e n x n n I x nI -=-为所求递推公式.而221e 2x I x I =-,11e d de e e d e e x x x x x xI x x x x x x C ===-=-+⎰⎰⎰,故22(22)e x I x x C =-++.(12C C =-)6. 解⎰''x f x xd )e (e2()⎰''=x x x f e d )e (e []⎰'=)e (d e x x f⎰'-'=)e (d )e ()e (e x x xx f f C f f x x x +-'=)e ()e (e习 题 4-31. 求下列积分: (1) sin 2d x x x ⎰;(2)⎰-x e x xd 2;(3)()⎰-x x x d 1ln ;(4)(31)sin 3d x x x +⎰; (5)x x d sin3⎰;(6) e sin 2d x x x -⎰; (7) 2arctan d x x x ⎰;(8) 2cos d x x x ⎰;(9)x ;(10)⎰x x e xd sin ;(11)3csc d x x ⎰;(12)()d xf x x ''⎰.2. 求e d n xn I x x =⎰的递推公式,其中n 为自然数,并计算2I 的值.3. 已知)(u f 有二阶连续的导数,求⎰''x f x xd )e (e2;解答1.求下列不定积分 (1)解:⎰x x x d 2sin )2cos d(21⎰-=x x ⎰+-=x x x x d 2cos 212cos 2 C x x x ++-=2sin 412cos 2(2)解:⎰-x e x x d 2⎰⎰---+-=-=x xe e x e x xx x d 2d 22⎰⎰-----+--=--=x e xe e x e x e x xx x x x d 22d 222C e xe ex x x x+---=---222(3)解:()⎰-x x x d 1ln ()⎰⎪⎪⎭⎫⎝⎛-=2d 1ln 2x x()⎰---=x x x x x d 11211ln 222()⎰⎪⎭⎫⎝⎛-++--=x x x x x d 111211ln 22()()C x x x x x +-----=1ln 2121411ln 222(4)(31)sin 3d x x x +⎰1(31)d(cos3)3x x =+-⎰ 1(31)cos3cos3d 3x x x x =-++⎰11(31)cos3sin 333x x x C =-+++.(5)解:令t x =3,则3t x =,t t dx d 32=原式⎰⎰-=⋅=t t t t t cos d 3d 3sin 22∫∫sin d 6+cos 3=d 2cos 3+cos 3=22t t t t t t tt t⎰-+-=t t t t t t d sin 6sin 6cos 32C t t t t t +++-=cos 6sin 6cos 32C x x x x x +++-=333332cos 6sin 6cos 3(6)解:因为⎰-x x e x d 2sin ⎰--=x e x d 2sin )2d(sin 2sin ⎰--+-=x e x e xx)d(2cos 22sin ⎰----=x x e x x e )2d(cos 22cos 22sin ⎰---+--=x e x e x e x x x ⎰------=x x e x e x e x x x d 2sin 42cos 22sin于是⎰-x x exd 2sin C xe x e x x +--=--52cos 22sin(7)解:⎰x x x d arctan 2⎰⎰-==x x x x x x arctan d 3arctan 33d arctan 333∫d +131arctan 3=233x x x x x ⎰+-+-=x x xx x x x d 131arctan 3233 C x x x x +++-=)1ln(31arctan 3223 (8)解:⎰x x x d cos 2⎰⎰+=+=x x x x x x xd )2cos (21d 22cos 1⎰+=x x x x d 2cos 2142⎰+=x x x 2sin d 4142⎰-+=x x x x x d 2sin 412sin 4142 C x x x x +-+=2cos 812sin 4142 (9)解:⎰x x xd arcsin 1⎰⎰-==x x x x x x arcsind 2arcsin2d arcsin2∫d 11arcsin 2=x xxx C x x x +-+=12arcsin 2 (10)解:e sin d sin d e x xx x x =⎰⎰e sin e d sin x x x x =-⎰e sin e cos d x x x x x =-⎰e sin cos d e x x x x =-⎰e sin (e cos e d cos )x x x x x x =--⎰ e sin e cos e sin d x x x x x x x =--⎰.因此得2e sin d e (sin cos )x xx x x x =-⎰.即1e sin d e (sin cos )2xxx x x x C =-+⎰. (11)解:32csc d csc (csc )d csc d(cot )x x x x x x x ==-⎰⎰⎰2csc cot cot csc d x x x x x =--⋅⎰3csc cot csc d csc d x x x x x x =--+⎰⎰ 3csc cot csc d ln csc cot x x x x x x =--+-⎰,从而 31csc d (csc cot ln csc cot )2x x x x x x C =---+⎰(12)解 ⎰''x x f x d )(C x f x f x x x f x f x x f x +-'='-'='=⎰⎰)()(d )()()(d2. 解 11e d de e e d e n x n x n x n x n xn n I x x x x n x x x nI --===-=-⎰⎰⎰,即1e n x n n I x nI -=-为所求递推公式.而221e 2x I x I =-,11e d de e e d e e x x x x x xI x x x x x x C ===-=-+⎰⎰⎰,故22(22)e x I x x C =-++.(12C C =-)3. 解⎰''x f x x d )e (e 2()⎰''=x x x f e d )e (e []⎰'=)e (d e x x f⎰'-'=)e (d )e ()e (e x x xx f f C f f x x x +-'=)e ()e (e .习题4-4求下列不定积分:(1)23d 56x x x x +-+⎰; (2)21d (1)x x x -⎰;(3)22d (1)(1)xx x x +++⎰; (4)3224d 56x x x x x +++⎰.x x x d )+1(1 5∫28)(; (6)2d 3sin xx+⎰;(7)⎰++311d xx(8)sin d 1cos x xx x ++⎰.解答 (1) 解233(3)(2)56(2)(3)23(2)(3)x x A B A x B x x x x x x x x x ++-+-==+=-+------,即3(3)(2)x A x B x +=-+-,比较系数知1323A B A B +=⎧⎨--=⎩(或者用赋值法:分别在3(3)(2)x A x B x +=-+-中令3x =与2x =,也可解出A 与B ),解之得56A B =-⎧⎨=⎩,于是62356d ()d ln(3)5ln 25623x x x x x C x x x x +-=+=---+-+--⎰⎰65(3)ln 2x C x -=+-.(2) 解 令221(1)1(1)A B Cx x x x x =++---,用待定系数法或者用赋值法可求出1A =,1B =-,1C =,故221111d []d (1)1(1)x x x x x x x =-+---⎰⎰2111d d d 1(1)x x x x x x =-+--⎰⎰⎰1ln ln 11x x C x =---+-. (3) 解 因为222211(1)(1)11x x x x x x x x -+=+++++++,所以 2222d 1()d (1)(1)11x x x x x x x x x x -+=+++++++⎰⎰222221d(1)1d(1)1d 212121x x x x x x x x x +++=-+++++++⎰⎰⎰2221d()1112ln(1)ln(1)13222()24x x x x x +=-+++++++⎰2211ln 21x C x x +=-++++.(4) 解 由于32224615656x x x x x x x x +-=--++++ 98132x x x =--+++,则 322498d (1)d 5632x x x x x x x x x +=--+++++⎰⎰219ln 38ln 22x x x x C =--++++. (5)解 ⎰⎰⎰+=+=+2888288728)1()1()1(1x x dx dx x x x dx x x =C xx +)1+1ln(+118188(6)解⎰+x x 2sin 3d ⎰-=x x 2cos 7d 2x u tan =⎰+243d u u ⎰+=2)32(1d 31u uC x +=3tan 2arctan 321(7)解 ⎰++311d xx31x t +=⎰+t t t 1d 32t t t d )111(3⎰++-=C t t t +++-=1ln 232 (8)解 注意到sin d d(1cos )x x x =-+及211d d d(tan )1cos 22cos2xx x x x ==+,可将原来的积分拆为两项,然后积分,即sin sin d d d 1cos 1cos 1cos x x x x x x x x x x +=++++⎰⎰⎰1d(tan )d(1cos )21cos x x x x=-++⎰⎰tantan d ln(1cos )22x xx x x =--+⎰1tan 2ln cos ln(1cos )22x xx x C =+-++21tan 2ln cos ln(2cos )222x x xx C =+-+1tan (ln 2)2x x CC C =+=-.习题4-5利用积分表计算下列不定积分: (1);(2)3ln d x x ⎰; (3)221d (1)x x +⎰;(4);(5)x x ⎰; (6)(7) 6cos d x x ⎰;(8)2e sin3d x x x -⎰.解答 (1)解:因为⎰+-245d xx x ⎰-+-=2)2(1)2d(x x在积分表中查得公式(73)C a x x a x x +++=+⎰)ln(d 2222现在1=a ,2-=x x ,于是⎰+-245d x x xC x x x +-+-+=)245ln(2(2)⎰x x d ln 3解:在积分表中查得公式(135)⎰⎰--=x x n x x x x n n n d ln )(ln d ln 1 现在3=n ,重复利用此公式三次,得⎰x x d ln3C x x x x x x x +-+-=6ln 6ln 3ln 23.(3)=+⎰x x d )1(122解:在积分表中查得公式(28)⎰⎰+++=+bax xb b ax b x x ax b 2222d 21)(2d )(1 于是现在1=a ,1=b ,于是=+⎰x x d )1(122 C x x xx x x x +++=+++⎰arctan )1(21d 21)1(2222 (4)⎰-1d 2x xx解:在积分表中查得公式(51)C xaa x ax x+=-⎰arccos 1d 12 于是现在1=a ,于是⎰-1d 2x xx C x+=1arccos(5)x x x xd 222-⎰解:令1-=x t ,因为x x x xd 222-⎰x x x d 1)1(22--=⎰t t t t d 1)12(22-++=⎰由积分表中公式(56)、(55)、(54)C a x x a a x a x x x a x x+-+---=-⎰2222222222ln 8)2(8dC a x x a x x +-=-⎰32222)(31dC a x x a a x x x a x +-+--=-⎰2222222ln 22d于是x x x x d 222-⎰2222)1())1(2[81a x a x x -----= C a x a x x a +--+--+--322222])1[(31)1(1ln 85. (6)⎰-12d 2x xx解:在积分表中查得公式(16)、(15)⎰⎰+-+-=+b ax x xb a bx b ax b ax xxd 2d 2C bbax b bax xx +-+-=+⎰arctan2d 于是现在2=a ,1-=b ,于是=-⎰12d 2x x x⎰-+-12d 12x x xx x C x x x +-+-=12arctan 212 (7) ⎰x x d cos 6解:在积分表中查得公式(135)⎰⎰----=x x nn x x n x x n n n d cos 1sin cos 1d cos 21 现在6=n ,重复利用此公式三次,得⎰x x d cos 6C x x x x •x x ++++=)22sin 41(2415sin cos 245sin cos 6135. (8)x x e xd 3sin 2⎰-解:在积分表中查得公式(128)C bx b bx a e ba x bx e axax +-+=⎰)cos sin (1d sin 22 现在2-=a ,3=b ,于是C x x e x x e axx+--=⎰-)3cos 33sin 2(131d 3sin 2 C x x e ax++-=)3cos 33sin 2(131复习题A一、选择题1. 设)(x F 是)(x f 的一个原函数,则等式( )成立。

高等数学 第四章不定积分课后习题详解.doc

高等数学 第四章不定积分课后习题详解.doc

第4章不定积分内容概要课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)思路: 被积函数52x -=,由积分表中的公式(2)可解。

解:532223x dx x C --==-+⎰★(2)dx-⎰ 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:1141113332223()24dx x x dx x dx x dx x x C --=-=-=-+⎰⎰⎰⎰ ★(3)22x x dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:2232122ln 23x x x x dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰⎰ ★★(5)4223311x x dx x +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。

解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

解:2221arctan .11x dx dx dx x x C x x =-=-+++⎰⎰⎰ 注:容易看出(5)(6)两题的解题思路是一致的。

一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。

★(7)x dx x x x⎰34134(-+-)2 思路:分项积分。

高数上册第4章练习册答案

高数上册第4章练习册答案

(1)
n 1

n
( x a)n 在 x 0 时发散,在 x 0 处收敛,则常数 a ( n
(C)2
n
).
(B)-1
(D)2
n ( a ) n ( x a) 收敛,由此知 a 1 .当 1 a 1 时,由于 ( 1) 的收敛半径为 1, n n n 1 n 1 因此该幂级数在区间 (a 1, a 1) 内收敛,特别地,在 (0, a 1) 内收敛,此与幂级数在 x 0 时发散矛盾,
sin t sin x t x n sin(n t ) dx dt (1)n dt , n 0 0 n t x n t sin t sin t 所以 un ( 1) n dt 是交错级数。由于数列 dt 单调减少收敛于零,所以是 un 收 0 n t 0 n t n 1 n 1 n 1
同步练习
(1) n n (1) n

(1) n (1) n n 1 , [ n (1) n ] n 1 n 1 n 1

(1) n n 1 收敛, 发散,所以原级数发散. n 1 n2 n 1 n2
2. p 1 , p 1 3.条件收敛
2 3 n 1 1 1 1 x x x x 1 2 x 2 1 x 2 2 2 2 2 2 2. f ( x) sin 2 x 展开成 Maclaurn 级数为( )
的,所以
u
n 1

n
条件收敛的。
二、选择题: 1 选(B ). 对于(B ) :因为 lim u n
n
1 (A )为条件收敛; (C) (D)为绝对收敛. 0 而发散; 3

高数总复习题4参考答案

高数总复习题4参考答案

第四章不定积分参考答案一、填空题1.设()f x 是连续函数,则()_______df x dx dx=⎰. );(x f 2.设()f x 是连续函数,则()______.f x dx '=⎰ ;)(C x f +3.设C x F dx x f +=⎰)()(,则=⋅⎰dx x f x )(cos sin C x F +-)(cos5.设C x F dx x f +=⎰)()(,则=⎰dx x xf )(' C x F x xf +-)()(8.若2x e-是)(x f 的一个原函数,则()xf x dx '=⎰ 2221()xx e C ---+9.已知一曲线在各点的切线斜率为其切点横坐标的3倍,且通过点(0,1),此曲线方程为______________.2322.y x =+ 12.如果22)]([)(12x f dx d x f x=+,且0)0(=f ,则=)(x f x arctan 15.设x x f +='1)(ln (0>x ),则=)(x f C e x x++ 二、单项选择题1.下列函数中,是同一函数的原函数的是( C )A.212sin .x 与124cos ;x B. ln ln x 与2ln ;x C.212sin x 与124cos ;x - D. 22tan x与22csc .x2. 下列等式中正确的是( A )A.sin cos ;xdx x C =-+⎰ B. 344();x dx x C ---=+⎰ C. 23;x dx x C =+⎰ D. 33.x x dx C =+⎰3. 函数cos xex 是函数(B )的原函数A .sin ;xex - B. (cos sin );x e x x - C. sin ;x e x D. (cos sin ).x e x x +4. 在积分曲线族⎰中,过点(0,1)的积分曲线方程为( B )A. 1;B. 5215;+ C. D. 552.C +5. 若函数()f x 的导函数是sin x ,则()f x 的一个原函数为( B )A. 1sin ;x +B. 1sin ;x -C. 1cos ;x +D. 1cos .x -6.设()x f 是()x g 的原函数,则下列各式中正确的是 BA .()()C x g dx x f +=⎰B .()()C x f dx x g +=⎰ C .()()C x g dx x f +=⎰'D .()()C x f dx x g +=⎰'7.函数()x x f 2=是函数()xx g 21=的 CA .反函数B .导函数C .原函数D .不定积分8.下列各式中等于()x f 的是 D A .()⎰x df B .()dx x f d⎰ C .()dx x f ⎰' D .()()'dx x f ⎰’9.设C x dx x f ++=⎰12)(2,则=+⎰dx x xf )12(2DA .C x x ++122B .C x ++12212 C .C x ++12412 D .C x +++1)12(2412 10.设导数)(')('x f x g =,则下列各式中正确的是 BA .)()(x f x g =B .C x f x g +=)()(C .dx x f dx x g ⎰⎰=)()(D .C dx x f dx x g +=⎰⎰)()(11.函数x 2cos π的一个原函数是_______________ A A .x 2sin2ππB .x 2sin2ππC .x 2sin2ππ-D .x 2sin2ππ-14.设C x dx x f x++=⎰)1ln()(,则=⎰dx x x f )( D A .C x ++)1ln(1B .C x x ++)1ln( C .C x x ++3232D .C x x ++22 15.在区间),(b a 内,如果)(')('x g x f =,则下列各式中一定成立的是 A .)()(x g x f = B .1)()(+=x g x fC .[][]')(')(⎰⎰=dx x g dx x f D .dx x g dx x f ⎰⎰=)(')('16.若x 2sin 是)(x f 的一个原函数,则=⎰dx x f x )( D A .sin 2cos 2x x x C ++ B .sin 2cos 2x x x C -+C .C x x x +-2cos 212sinD .C x x x ++2cos 212sin 18.不定积分=⎰dx x22sin C A .C x+22cos 2 B .C x x ++sin C .Cx x +-)sin (21 D .C x+-22sin 21 19.对于不定积分()f x dx ⎰,在下列等式中正确的是 D .(A )[()]()d f x dx f x =⎰; (B )()()df x f x =⎰;(C )()()f x dx f x '=⎰; (D )()()df x dx f x dx=⎰. 20.f (x)在[a,b]连续,()()d xax f t t φ=⎰,则( A )。

高等数学 第四章不定积分课后习题详解

高等数学 第四章不定积分课后习题详解

第4章不定积分内容概要课后习题全解习题411、求下列不定积分:知识点:直接积分法得练习——求不定积分得基本方法。

思路分析:利用不定积分得运算性质与基本积分公式,直接求出不定积分!★(1)思路: 被积函数 ,由积分表中得公式(2)可解。

解:★(2)思路:根据不定积分得线性性质,将被积函数分为两项,分别积分。

解:1141113332223()24dx x x dx x dx x dx x x C ---=-=-=-+⎰⎰⎰⎰★(3)思路:根据不定积分得线性性质,将被积函数分为两项,分别积分。

解:★(4)思路:根据不定积分得线性性质,将被积函数分为两项,分别积分。

解:★★(5)思路:观察到后,根据不定积分得线性性质,将被积函数分项,分别积分。

解:42232233113arctan 11x x dx x dx dx x x C x x++=+=++++⎰⎰⎰ ★★(6)思路:注意到,根据不定积分得线性性质,将被积函数分项,分别积分。

解:注:容易瞧出(5)(6)两题得解题思路就是一致得。

一般地,如果被积函数为一个有理得假分式,通常先将其分解为一个整式加上或减去一个真分式得形式,再分项积分。

★(7)思路:分项积分。

解:3411342x dx xdx dx x dx x dx x xx x --=-+-⎰⎰⎰⎰⎰34134(-+-)2★(8)思路:分项积分。

解:2231(323arctan 2arcsin .11dx dx x x C x x -=-=-+++⎰⎰ ★★(9)思路:?瞧到,直接积分。

解:★★(10)思路:裂项分项积分。

解:222222111111()arctan .(1)11dx dx dx dx x C xx x x x x x =-=-=--++++⎰⎰⎰⎰ ★(11)解:★★(12)思路:初中数学中有同底数幂得乘法: 指数不变,底数相乘。

显然。

解:★★(13)思路:应用三角恒等式“”。

第四章习题解答

第四章习题解答

0)
(
1 e
1 e2
)
(1
1)
1 e2
1 1 ; e e2
E[(
X1
X
2
)2
]
(0
0)2
(1
1) e
(0
1)2
0
(1
0)2
(
1 e
1 e2
)
(1
1) 2
1 e2
1 e
3 e2

D( X1
X2)
1 e
3 e2
(1 e
1 e2
)2
1 e
2 e2
2 e3
1 e4

解法二 由⑴可求得 X1 X 2
44 32
44
16
P{X
2}
C42 (C42 C21C41 ) 44
21 ,P{X 64
3}
C43 44
1 64
,即
X
0 1 2 3
3 32
9 21 1 16 64 64

所以
EX 0 3 1 9 2 21 3 1 81 . 32 16 64 64 64
又 E( X 2 ) 02 3 12 9 22 21 32 1 129 ,所以
i j, i, j 1, 2,
i j,
, n .所以
Байду номын сангаас
C
ov( X1,Y )
C ov( X1,
1 n
n i 1
Xi)
1 n
n i 1
C ov( X1,
Xi)
2 n
,选(A).
同理可计算得
D( X1
Y
)
n

高等数学课后习题答案--第四章

高等数学课后习题答案--第四章
λ1 (a11 x1 + a12 x2 + a13 x3 ) λ 2 (a21 x1 + a 22 x2 + a 23 x3 ) λ 3 (a31 x1 + a32 x2 + a33 x3 ) 0 【提示】 经过第一次变换后矩阵变为
a11 0 0 a12 a22 a11 − a21 a12 a11 a32 a11 − a31 a12 a11 a23 a11 − a21 a13 , a11 a33 a11 − a31 a13 a11 a13
2 2 2 1 2. 设 A = 1 − 1 ,B = − 1 3 ,计算 2A-3B,5A+2B。 1 − 3 5 − 2 −2 1 12 14 2. 【答案】(1) 5 1 . − 11 ; (2) 3 − 13 0 15 − 19 2 1 2 1 −4 2 3. 设 A = −1 4 − 2 ,B = − 1 3 ,C = 1 5 − 2 1 A(2B-3C)。 4 −1 15 − 14 3 【答案】AB = − 15 14 ; BA = − 4 16 7 − 28 2 − 1 , 计算 AB,BA,AC,CA, − 3
~ ~ = 0 ,则 a a a + a a a + a a a − a a a − a a a − a a a = 0 , 于是, 若a 33 11 22 33 13 21 32 12 23 31 11 23 32 12 21 33 13 22 31
记 L1 , L2 , L3 分别表示第1,2,3个方程的左端, 有

高等数学课后习题答案--第四章不定积分

高等数学课后习题答案--第四章不定积分

第四章不定积分典型例题解析例1 求下列不定积分.(1)2dxx x ⎰. (2)3(1)(1)x x dx +-⎰.分析利用幂函数的积分公式111n n x dx x C n +=++⎰求积分时,应当先将被积函数中幂函数写成负指数幂或分数指数幂的形式.解(1)5322512252121()3dx x dx x C x C x x--+-==+=-++-⎰⎰. (2)35312222323122(1)(1)(1)353x x dx x x x dx x x x x C +-=+--=+--+⎰⎰.例2求21()x dx x+⎰. 分析 将被积函数的平方展开,可化为幂函数的和.解 122211()(2)x dx x x dx x x+=++⎰⎰12212x dx x dx dx x =++⎰⎰⎰ 32314ln 33x x x C =+++. 例3求下列不定积分.(1)2523x xxe dx ⋅-⋅⎰.(2)4223311x x dx x +++⎰.分析 (1)将被积函数拆开,用指数函数的积分公式;(2)分子分母都含有偶数次幂,将其化成一个多项式和一个真分式的和,然后即可用公式.解(1)22()5()2522332()5()3331ln 3ln 2ln 3x xxxx x x e e e dx dx dx C ⋅⋅⋅-⋅=-=-+--⎰⎰⎰. (2)42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰. 例4求下列不定积分.(1)24221(1)x x dx x x +++⎰. (2)421x dx x+⎰. (3)221(1)dx x x +⎰. 分析根据被积函数分子、分母的特点,利用常用的恒等变形,例如:分解因式、直接拆项、“加零”拆项、指数公式和三角公式等等,将被积函数分解成几项之和即可求解.解 (1)242222111(1)(1)1x x dx dx x x x x ++=+-++⎰⎰ 22111dx dx dx x x =+-+⎰⎰⎰1arctan x x C x=--+. (2)4422(1)111x x dx dx x x-+=++⎰⎰ 222(1)(1)11x x dx x -++=+⎰221(1)1x dx dx x =-++⎰⎰C x x x ++-=arctan 313. (3)22222211(1)(1)x x dx dx x x x x +-=++⎰⎰22111dx dx x x =-+⎰⎰1arctan x C x=--+.例5 求下列不定积分. (1)11cos2dx x +⎰. (2)cos2cos sin xdx x x-⎰.(3)2cot xdx ⎰. (4)22cos2sin cos xdx x x⎰.分析 当被积函数是三角函数时,常利用一些三角恒等式,将其向基本积分公式表中有的形式转化,这就要求读者要牢记基本积分公式表.解 (1)2111tan 1cos22cos 2dx dx x C x x ==++⎰⎰.(2)22cos2cos sin cos sin cos sin x x xdx dx x x x x-=--⎰⎰(cos sin )sin cos x x dx x x C =+=-+⎰.(3)22cot (csc 1)cot xdx x dx x x C =-=--+⎰⎰. (4)222222cos2cos sin sin cos sin cos x x xdx dx x x x x-=⎰⎰ 2211sin cos dx dx x x=-⎰⎰ 22csc sec xdx xdx =-⎰⎰cot tan x x C =--+.例6 求下列不定积分.(1)99(79)x dx -⎰. (2)12()nx ax b dx +⎰.(0a ≠) (3)232(cos )x dx x ⎰. (4)(1)x x +.(5)1sin(ln )x dx x ⎰. (6)211cos()dx x x⎰.(7)2cos sin 6sin 12xdx x x -+⎰. (8).(9). (10)2. (11)322(arctan )1x x dx x ++⎰.分析 这些积分都没有现成的公式可套用,需要用第一类换元积分法. 解 (1)999910011(79)(79)(79)(79)7700x dx x d x x C -=--=-+⎰⎰. (2)112221()()()2n nx ax b dx ax b d ax b a+=++⎰⎰12()2(1)n n n ax b C a n +=+++. (3)232(cos )x dx x ⎰333211tan 3(cos )3dx x C x ==+⎰.(4)2C ==.(5)1sin(ln )x dx x⎰sin(ln )(ln )cos(ln )x d x x C ==-+⎰.(6)211cos dx x x ⎰111cos ()sin d C x x x=-=-+⎰. (7)2cos sin 6sin 12xdxx x -+⎰2(sin 3)(sin 3)3d x C x -==+-+⎰. (8)(tan )arcsin(tan )x x C ==+.(9)12[1(cot )](cot )x d x =-+⎰12cot (cot )cot d x x d x =--⎰⎰ 322cot (cot )3x x C =--+.(10)2231arcsin (arcsin )(arcsin )3xd x x C ==+⎰.(11)322(arctan )1x x dx x ++⎰3222(arctan )11x x dx dx x x =+++⎰⎰ 32221(1)(arctan )(arctan )21d x x d x x +=++⎰⎰ 52212ln(1)(arctan )25x x C =+++.注 用第一类换元积分法(凑微分法)求不定积分,一般并无规律可循,主要依靠经验的积累.而任何一个微分运算公式都可以作为凑微分的运算途径.因此需要牢记基本积分公式,这样凑微分才会有目标.下面给出常见的12种凑微分的积分类型.(1)11()()()(0)n n n n f ax b x dx f ax b d ax b a na-+=++≠⎰⎰; (2)1()()ln x x x xf a a dx f a daa =⎰⎰; (3)(sin )cos (sin )(sin )f x xdx f x d x =⎰⎰;适用于求形如21sin cos m n x xdx +⎰的积分,(,m n 是自然数).(4)(cos )sin (cos )(cos )f x xdx f x d x =-⎰⎰;适用于求形如21sin cos m n x xdx -⎰的积分,(,m n 是自然数).(5)2(tan )sec (tan )(tan )f x xdx f x d x =⎰⎰; 适用于求形如2tan sec m n x xdx ⎰的积分,(,m n 是自然数).(6)2(cot )csc (cot )(cot )f x xdx f x d x =-⎰⎰;适用于求形如是2cot csc m n x xdx ⎰的积分,(,m n 是自然数).(7)1(ln )(ln )ln f x dx f x d x x=⎰⎰;(8)21(arcsin )(arcsin )(arcsin )1f x dx f x d x x =-⎰⎰;(9)21(arccos )(arccos )(arccos )1f x dx f x d x x =--⎰⎰;(10)2(arctan )(arctan )(arctan )1f x dx f x d x x =+⎰⎰;(11)2(cot )(cot )(cot )1f arc x dx f arc x d arc x x =-+⎰⎰; (12)()1(())()()f x dx d f x f x f x '=⎰⎰; 例7 求下列函数的不定积分: (1)3cos xdx ⎰.(2)4sin xdx ⎰. (3)sin7cos(3)4x x dx π-⎰.(4)6csc xdx ⎰. (5)34sin cos x xdx ⎰.(6)35sec tan x xdx ⎰.分析 在运用第一类换元法求以三角函数为被积函数的积分时,主要思路就是利用三角恒等式把被积函数化为熟知的积分,通常会用到同角的三角恒等式、倍角、半角公式、积化和差公式等.解(1)被积函数是奇次幂,从被积函数中分离出cos x ,并与dx 凑成微分(sin )d x ,再利用三角恒等式22sin cos 1x x +=,然后即可积分.322coscos (sin )(1sin )(sin )xdx xd x x d x ==-⎰⎰⎰2sin sin sin d x xd x =-⎰⎰31sin sin 3x x C =-+.(2)被积函数是偶次幂,基本方法是利用三角恒等式21cos2sin 2xx -=,降低被积函数的幂次.421cos2sin ()2x xdx dx -=⎰⎰311(cos2cos4)828x x dx =-+⎰311sin 2sin 48432x x x C =-++. (3)利用积化和差公式将被积函数化为代数和的形式.1sin7cos(3)[sin(4)sin(10)]4244x x dx x x dx πππ-=++-⎰⎰ 11sin(4)(4)sin(10)(10)8442044x d x x d x ππππ=+++--⎰⎰ 11cos(4)cos(10)84204x x C ππ=-+--+. (4)利用三角恒等式22csc 1cot x x =+及2csc (cot )xdx d x =-.622222csc (csc )csc (1cot )(cot )xdx x xdx x d x ==-+⎰⎰⎰24(12cot cot )cot x x d x =-++⎰3521cot cot cot 35x x x C =---+.(5)因为322sin sin (sin )sin (cos )xdx x xdx xd x ==-,所以3424sincos sin cos (cos )x xdx x xd x =-⎰⎰24(1cos )cos (cos )x xd x =--⎰46cos (cos )cos (cos )xd x xd x =-+⎰⎰5711cos cos 57x x C =-++. (6)由于sec tan (sec )x xdx d x =,所以3524sectan sec tan (sec )x xdx x xd x =⎰⎰222sec (sec 1)(sec )x x d x =-⎰642(sec 2sec sec )(sec )x x x d x =-+⎰ 753121sec sec sec 753x x x C =-++.注利用上述方法类似可求下列积分3sinxdx ⎰、2cos xdx ⎰、cos3cos2x xdx ⎰、6sec xdx ⎰、25sin cos x xdx ⎰,请读者自行完成.例8求下列不定积分:(1)x xdx e e -+⎰.(2)x x dx e e --⎰.(3)11x dx e +⎰. 分析 可充分利用凑微分公式:x x e dx de =;或者换元,令x u e =.解(1)x x dx e e-+⎰221arctan ()1()1x x x x x e dx de e C e e ===+++⎰⎰. (2)解法1 x x dx e e--⎰221()1()1x x x x e dx de e e ==--⎰⎰, 然后用公式2211ln 2x adx C x a a x a-=+-+⎰,则x x dx e e --⎰11ln 21x x e C e -=++.解法2x x dx e e --⎰21111()()1211x xx x x de de e e e ==---+⎰⎰ 1(1)(1)()211x x x x d e d e e e -+=--+⎰⎰ 11ln 21x x e C e -=++. (3)解法1 11x dx e+⎰1(1)11x x xx xe e e dx dx e e +-==-++⎰⎰ 1(1)1xxdx d e e =-++⎰⎰ln(1)x x e C =-++.解法211xdx e+⎰(1)ln(1)11x x x x x e d e dx e C e e -----+==-=-++++⎰⎰. 解法3 令x u e =,x du e dx =,则有11x dx e +⎰1111()ln()111udu du C u u u u u=⋅=-=++++⎰⎰ ln()ln(1)1xx xe C e C e-=+=-+++. 注在计算不定积分时,用不同的方法计算的结果形式可能不一样,但本质相同.验证积分结果是否正确,只要对积分的结果求导数,若其导数等于被积函数则积分的结果是正确的.例9求下列不定积分:(1)ln tan sin cos xdx x x⎰.(2)arctan (1)x x x +.分析 在这类复杂的不定积分的求解过程中需要逐步凑微分. 解 (1)2ln tan ln tan sin cos tan cos x xdx dx x x x x=⎰⎰ln tan (tan )ln tan (ln tan )tan x d x xd x x ==⎰⎰21ln (tan )2x C =+. (2)2arctan arctan 2(1)1()x x dx d x x x x =++⎰⎰22arctan (arctan )(arctan )xd x x C ==+⎰. 例10 求21arctan1x dx x +⎰.分析 若将积分变形为1arctan (arctan )d x x ⎰,则无法积分,但如果考虑到凑出1x,将被积函数变形为221arctan 111()x x x⋅+,再将21x 与dx 结合凑成1()d x -,则问题即可解决. 解2222111arctanarctan arctan11()1111()1()x x x dx dx d x x x x x=⋅=-+++⎰⎰⎰11arctan (arctan )d x x =-⎰211(arctan )2C x=-+.例11求21ln (ln )xdx x x +⎰. 分析 仔细观察被积函数的分子与分母的形式,可知(ln )1ln x x x '=+.解221ln 11(ln )(ln )(ln )ln x dx d x x C x x x x x x+==-+⎰⎰. 例12(04研) 已知()x x f e xe -'=,且(1)0f =,则()_________f x =. 分析 先求()f x ',再求()f x . 解令x e t =,即ln x t =,从而ln ()tf t t'=.故 2ln 1()ln (ln )ln 2x f x dx xd x x C x ===+⎰⎰, 由(1)0f =,得0C =,所以21()ln 2f x x =.例13求sin 22sin dxx x+⎰.分析 被积函数为三角函数,可考虑用三角恒等式,也可利用万能公式代换.解法1sin 22sin dx x x +⎰3122sin (cos 1)4sin cos 22x d dx x x x x ⎛⎫ ⎪⎝⎭==+⎰⎰22tan 1tan 1122tan 442tan cos tan222x x d x d x x x ⎛⎫+ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎰⎰ 211tan ln tan 8242x xC =++. 解法2令cos t x =,则 sin 22sin dxx x +⎰2sin 2sin (cos 1)2sin (1cos )dx xdx x x x x ==++⎰⎰212(1)(1)dt t t =--+⎰21112811(1)dt t t t ⎛⎫=-++ ⎪-++⎝⎭⎰12(ln |1|ln |1|)81t t C t =--++++ 111ln(1cos )ln(1cos )884(1cos )x x C x =--++++. 解法3令tan 2x t =,则22sin 1t x t =+,221cos 1t x t -=+,221dx dt t =+,则 sin 22sin dx x x +⎰21111ln ||484t dt t t C t ⎛⎫=+=++ ⎪⎝⎭⎰ 211tan ln |tan |8242x xC =++.例14 求11dx x ++⎰.分析 被积函数含有根式,一般先设法去掉根号,这是第二类换元法最常用的手段之一. 解 设1x t +=,即21x t =-,2dx tdt =,则212(1)1111t dt dt t t x ==-++++⎰⎰⎰22ln 1t t C =-++212ln(11)x x C =+-+++例15 求455x x-+-⎰.分析 被积函数中有开不同次的根式,为了同时去掉根号,选取根指数的最小公倍数.解45x t -=,34dx t dt =-,则24414(1)1155dxt dt t dt t t x x-==--+++-+-⎰⎰⎰ 214(ln 1)2t t t C =--+++4414[55ln(15)]2x x x C =----++-+. 例16 243(1)(1)dxx x +-⎰解 令311x t x -=+,即3211x t =--,2326(1)t dx dt t =-,则 243(1)(1)dxx x +-⎰23322332164(1)1(1)(1)1dx t dt t t x tx t x ==⋅--⋅--+⎰⎰132313131()2221x dt C C t t x +==-⋅+=-+-⎰. 例17求224x x dx -⎰.分析被积函数中含有根式24x -,可用三角代换2sin x t =消去根式. 解 设242cos (0)2x t t π-=<<,2cos dx tdt =,则222244sin 2cos 2cos 4sin 2x x dx t t tdt t dt -=⋅⋅=⋅⎰⎰⎰12(1cos4)2sin 42t dt t t C =-=-+⎰222sin cos (12sin )t t t t C =--+2212arcsin 4(1)222x x x x C =---+.注1 对于三角代换,在结果化为原积分变量的函数时,常常借助于直角三角形.注2 在不定积分计算中,为了简便起见,一般遇到平方根时总取算术根,而省略负平方根情况的讨论.对三角代换,只要把角限制在0到2π,则不论什么三角函数都取正值,避免了正负号的讨论.例18 求221(1)dx x +⎰. 分析虽然被积函数中没有根式,但不能分解因式,而且分母中含有平方和,因此可以考虑利用三角代换,将原积分转换为三角函数的积分.解 设tan x t =,2sec dx tdt =,()2241sec x t +=,则222241sec cos (1)sec t dx dt tdt x t ==+⎰⎰⎰111(1cos2)sin 2224t dt t t C =+=++⎰ 21arctan 22(1)xx C x =+++. 例19求22x a dx x-⎰. 分析 被积函数中含有二次根式22x a -,但不能用凑微分法, 故作代换sec x a t =, 将被积函数化成三角有理式.解 令sec x a t =,sec tan dx a t tdt =⋅,则22x a dx x -⎰22tan sec tan tan (sec 1)sec a t a t tdt a tdt a t dt a t=⋅⋅==-⎰⎰⎰ (tan )a t t C =-+22(arccos )x a aa C a x-=-+.例20求248x dx x x ++⎰.解 由于2248(2)4x x x ++=++,故可设22tan x t +=,22sec dx tdt =,22(2tan 2)2sec 2sec tan 2sec 2sec 48xt t dx dt t tdt tdt t x x -⋅==-++⎰⎰⎰⎰12sec 2ln sec tan t t t C =-++22482ln(248)x x x x x C =+++++++.()12ln 2C C =+注 2ax bx c ++ 由 22222224()0244()024b ac b a x a a a ax bx c b b ac a x a a a ⎧-++>⎪⎪++⎨-⎪--++<⎪⎩可作适当的三角代换, 使其有理化.例21 求23(24)x x -+.解23(24)x x -+322[3(1)]dx x =+-⎰,令13x t -=,则322321sec 11cos sin 3sec 33[3(1)]dxt dt tdt t C t x ===++-⎰⎰⎰21324x C x x -=+-+. 故 23(24)dx x x -+⎰21324x C x x -=+-+.例22求421(1)dx x x +⎰.分析当有理函数的分母中的多项式的次数大于分子多项式的次数时,可尝试用倒代换.解 令1x t=,21dx dt t =-,于是421(1)dx x x +⎰44221111t t dt dt t t --+==-++⎰⎰221(1)1t dt dt t =---+⎰⎰31arctan 3t t t C =--+3111arctan 3C x x x=--+. 注有时无理函数的不定积分当分母次数较高时,也可尝试采用倒代换,请看下例. 例23 求22a x dx -. 解 设1x t=,2dtdx t =-,则2222241()dt a a xt t t -⋅--=1222(1)a t t dt =--⎰.当0x >时,1222222221(1)(1)2a x dx a t d a t a-=---⎰ 32222(1)3a t C a -=-+322223()3a x C a x -=-+.当0x <时,有相同的结果.故22a xdx-322223()3a x C a x -=-+.注1第二类换元法是通过恰当的变换,将原积分化为关于新变量的函数的积分,从而达到化难为易的效果,与第一类换元法的区别在于视新变量为自变量,而不是中间变量.使用第二类换元法的关键是根据被积函数的特点寻找一个适当的变量代换.注2 用第二类换元积分法求不定积分,应注意三个问题: (1)用于代换的表达式在对应的区间内单调可导,且导数不为零. (2)换元后的被积函数的原函数存在. (3)求出原函数后一定要将变量回代.注3 常用的代换有:根式代换、三角代换与倒代换.根式代换和三角代换常用于消去被积函数中的根号,使其有理化,这种代换使用广泛.而倒代换的目的是消去或降低被积函数分母中的因子的幂.注4 常用第二类换元法积分的类型: (1)(,),n n f x ax b dx t ax b +=+⎰令. (2)(,),nnax b ax bf x dx t cx d cx d++=++⎰令. (3)222(,)f x a b x dx -⎰,可令sin a x t b =或cos ax t b =. (4)222(,)f x a b x dx +⎰,可令tan a x t b =或ax sht b =.(5)222(,)f x b x a dx -⎰,可令sec a x t b =或ax cht b=.(6)当被积函数含有22(40)px qx r q pr ++-<时,利用配方与代换可化为以上(3),(4),(5)三种情形之一.(7)当被积函数分母中含有x 的高次幂时,可用倒代换1x t=.例24求下列不定积分:(1)3x xe dx -⎰.(2)2sin 4x xdx ⎰.(3)2ln x xdx ⎰.(4)arcsin xdx ⎰. (5)arctan x xdx ⎰.(6)sin ax e bxdx ⎰22(0)a b +≠.分析上述积分中的被积函数是反三角函数、对数函数、幂函数、指数函数、三角函数中的某两类函数的乘积,适合用分部积分法.解(1)3x xe dx -⎰33333111()33339xx x x x x x xd e e e dx e e C -----=-=-+=--+⎰⎰. (2)2sin 4x xdx ⎰2211(cos4)cos4cos4442x x d x x x xdx =-=-+⎰⎰22111cos4(sin 4)cos4sin 4sin 448488x x x xd x x x x xdx =-+=-+-⎰⎰211cos4sin 4cos44832x x x x x C =-+++.(3)2ln x xdx ⎰3333211ln ()ln ln 33339x x x xd x x x dx x C ==-=-+⎰⎰.(4)解法1 arcsin xdx ⎰22arcsin arcsin 11x x dx x x x C x =-=+-+-⎰.解法2 令arcsin t x =,即sin x t =,则arcsin (sin )sin sin sin cos xdx td t t t tdt t t t C ==-=++⎰⎰⎰2arcsin 1x x x C =+-+(5)解法1 arctan x xdx ⎰222211arctan arctan 2221x x xdx x dx x ==-+⎰⎰2211arctan (1)221x x dx x =--+⎰ 21arctan arctan 222x x x x C =-++. 解法221arctan arctan (1)2x xdx xd x =+⎰⎰ 22111arctan arctan 2222x x xx dx x C ++=-=-+⎰.(6)解法1sin axe bxdx ⎰11sin ()sin cos axax ax b bxd e e bx e bxdx a a a ==-⎰⎰ 21sin cos ()ax ax be bx bxd e a a=-⎰2221sin cos sin ax ax axb b e bx e xbx e bxdx a a a=--⎰ 从而21221(1)sin sin cos ax ax ax b be bxdx e bx e bx C a a a+=-+⎰,则221sin (sin cos )ax axe bxdx e a bx b bx C a b =-++⎰.解法21sin cos axaxe bxdx e d bx b =-⎰⎰,然后用分部积分,余下的解答请读者自行完成. 注在用分部积分法求()f x dx ⎰时关键是将被积表达式()f x dx 适当分成u 和dv 两部分.根据分部积分公式udv uv vdu =-⎰⎰,只有当等式右端的vdu 比左端的udv 更容易积出时才有意义,即选取u 和dv 要注意如下原则:(1)v 要容易求;(2)vdu ⎰要比udv ⎰容易积出. 例25求cos ln(cot )x x dx ⎰.分析 被积函数为三角函数与对数函数的乘积, 可采用分部积分法. 解cos ln(cot )ln(cot )(sin )x x dx x d x =⎰⎰21sin ln(cot )sin (csc )cot x x x x dx x=⋅-⋅⋅-⎰ sin ln(cot )sec x x xdx =⋅+⎰ sin ln(cot )ln sec tan x x x x C =+++例26求2ln(1)x x dx ++⎰.分析 被积函数可以看成是多项式函数与对数函数的乘积,可采用分部积分法.解 2222112ln(1)ln(1)(1)211xx x dx x x x x dx x x x++=++-⋅⋅+⋅+++⎰⎰22ln(1)1x x x x dx x=++-+⎰122221ln(1)(1)(1)2x x x x d x -=++-++⎰22ln(1)1x x x x C =++-++.例27求1x xxe dx e -⎰.分析 可利用凑微分公式x x e dx de =,然后用分部积分;另外考虑到被积函数中含有根式,也可用根式代换.解法11x x dx e -⎰2(1)1x x x xd e e ==--⎰⎰211x x x e e dx ⎡⎤=---⎣⎦⎰, 令1x t e =-,则2ln(1)x t =+,221tdtdx t=+,则 212122(arctan )1xt dte dx t t C t -==-++⎰⎰,故1x x dx e -⎰()21212arctan 1x x x x e e e Cz =---+-+21414arctan 1x x x x e e e C =---+-+.解法21x e tz -=,则1xx xe dx e -⎰22222ln(1)2ln(1)41t t dt t t dt t =+=+-+⎰⎰ 22ln(1)44arctan t t t t C =+-++21414arctan 1x x x x e e e C =---+-+.注求不定积分时,有时往往需要几种方法结合使用,才能得到结果. 例28(01研) 求2arctan xxe dx e⎰. 分析 被积函数是指数函数和反三角函数的乘积,可考虑用分部积分法. 解法12arctan x xe dx e ⎰222211arctan ()arctan 22(1)x x x x xx x de e d e e e e e --⎡⎤=-=--⎢⎥+⎣⎦⎰⎰ 21arctan arctan 2x x x xe e e e C --⎡⎤=-+++⎣⎦. 解法2 先换元,令x e t =,再用分部积分法,请读者自行完成余下的解答.例29 求3csc xdx ⎰.分析 被积函数含有三角函数的奇次幂,往往可分解成奇次幂和偶次幂的乘积,然后凑微分,再用分部积分法.解32csc csc (csc )csc (cot )xdx x x dx xd x ==-⎰⎰⎰ 2csc cot cot csc x x x xdx =--⋅⎰ 3csc cot csc csc x x xdx xdx =--+⎰⎰ 3csc cot csc ln csc cot x x xdx x x =--+-⎰,从而31csc (csc cot ln csc cot )2xdx x x x x C =---+⎰. 注用分部积分法求不定积分时,有时会出现与原来相同的积分,即出现循环的情况,这时只需要移项即可得到结果. 例30求下列不定积分:(1)22221(1)x x x e dx x ---⎰. (2)2ln 1(ln )x dx x -⎰. 解(1)2222222112(1)1(1)xx xx x xdx e dx e dx e x x x --=----⎰⎰⎰ 221()11x x e dx e d x x =+--⎰⎰ 22221111x x x x e e e e dx dx C x x x x =+-=+----⎰⎰.(2)22ln 111(ln )ln (ln )x dx dx dx x x x -=-⎰⎰⎰ 221ln (ln )(ln )x x dx dx x x x x =+-⎰⎰ ln xC x=+. 注将原积分拆项后,对其中一项分部积分以抵消另一项,或对拆开的两项各自分部积分后以抵消未积出的部分,这也是求不定积分常用的技巧之一.例31 求sin(ln )x dx ⎰.分析 这是适合用分部积分法的积分类型,连续分部积分,直到出现循环为止. 解法1 利用分部积分公式,则有1sin(ln )sin(ln )cos(ln )x dx x x x x dx x=-⋅⎰⎰ sin(ln )cos(ln )x x x dx =-⎰sin(ln )cos(ln )sin(ln )x x x x x dx =--⎰,所以1sin(ln )[sin(ln )cos(ln )]2x dx x x x C =-+⎰. 解法2 令 ln x t =,t dx e dt =,则sin(ln )x dx ⎰=sin sin sin sin cos sin t t t t t te tdt e t e tdt e t e t e tdt =-=--⎰⎰⎰,所以11sin(ln )(sin cos )[sin(ln )cos(ln )]22t tx dx e t e t C x x x C =-+=-+⎰. 例32 求ln n n I xdx =⎰,其中n 为自然数. 分析 这是适合用分部积分法的积分类型. 解11ln ln ln ln n n n n n n I xdx x x n xdx x x nI --==-=-⎰⎰,即1ln n n n I x x nI -=-为所求递推公式.而1ln ln ln I xdx x x dx x x x C ==-=-+⎰⎰.注1 在反复使用分部积分法的过程中,不要对调u 和v 两个函数的“地位”,否则不仅不会产生循环,反而会一来一往,恢复原状,毫无所得.注2 分部积分法常见的三种作用: (1)逐步化简积分形式; (2)产生循环;(3)建立递推公式.例33求积分24411(21)(23)(25)x x dx x x x +--+-⎰.分析 计算有理函数的积分可分为两步进行,第一步:用待定系数法或赋值法将有理分式化为部分分式之和;第二步:对各部分分式分别进行积分.解 用待定系数法将24411(21)(23)(25)x x x x x +--+-化为部分分式之和.设24411(21)(23)(25)212325x x A B Cx x x x x x +-=++-+--+-, 用(21)(23)(25)x x x -+-乘上式的两端得24411(23)(25)(21)(25)(21)(23)x x A x x B x x C x x +-=+-+--+-+,两端都是二次多项式,它们同次幂的系数相等,即131155311A B C A B C A B C ++=⎧⎪--+=⎨⎪-+-=-⎩, 这是关于A ,B ,C 的线性方程组,解之得12A =,14B =-,34C =.由于用待定系数法求A ,B ,C 的值计算量大,且易出错,下面用赋值法求A ,B ,C .因为等式24411(23)(25)(21)(25)(21)(23)x x A x x B x x C x x +-=+-+--+-+是恒等式,故可赋予x 为任何值.令 12x =,可得12A =.同样,令32x =-得14B =-,令52x =,得34C =,于是 24411(21)(23)(25)x x dx x x x +--+-⎰111131221423425dx dx dx x x x =-+-+-⎰⎰⎰ 113ln 21ln 23ln 25488x x x C =--++-+ 231(21)(25)ln 823x x C x --=++. 例34 求321452dx x x x +++⎰.解 32452x x x +++是三次多项式,分解因式 32322452()3()2(1)x x x x x x x x +++=+++++22(1)(32)(1)(2)x x x x x =+++=++设221(1)(2)21(1)A B Cx x x x x =+++++++,即2()(23)(22)1A B x A B C x A B C +++++++=,从而0230221A B A B C A B C +=⎧⎪++=⎨⎪++=⎩, 解得1A =,1B =-,1C =,因此3221111()45221(1)dx dx x x x x x x -=++++++++⎰⎰ 211121(1)dx dx dx x x x =-++++⎰⎰⎰ 1ln 2ln 11x x C x =+-+-++. 例35求22(1)(1)dxx x x +++⎰.解因为222211(1)(1)11x x x x x x x x -+=+++++++,所以22221()(1)(1)11dx x x dx x x x x x x -+=+++++++⎰⎰222221(1)1(1)1212121d x d x x dxx x x x x +++=-+++++++⎰⎰⎰ 2221()1112ln(1)ln(1)13222()24d x x x x x +=-+++++++⎰ 2211321ln arctan 2133x x C x x ++=-++++.例36求2425454x x dx x x ++++⎰.解设24222545414x x Ax B Cx D x x x x ++++=+++++,则有 23254()()(4)4x x A C x B D x A C x B D ++=+++++++,比较两边同次幂的系数,解得53A =,1B =,53C =-,0D =,从而 24222541535543134x x x xdx dx dx x x x x +++=-++++⎰⎰⎰2222255151ln arctan 3134164x x x dx dx dx x C x x x x +=-+=++++++⎰⎰⎰. 例37 求322456x x dx x x +++⎰.分析 322456x x x x +++是假分式,先化为多项式与真分式之和,再将真分式分解成部分分式之和.解 由于32224615656x x x x x x x x +-=--++++ 98132x x x =--+++,则 322498(1)5632x x dx x dx x x x x +=--+++++⎰⎰219ln 38ln 22x x x x C =--++++. 例38 求5632x dxx x --⎰.解 令3u x =,23du x dx =,则533636321()123232x dx x d x udux x x x u u ==------⎰⎰⎰ 1112()3(1)(2)912u du du u u u u ==++-+-⎰⎰332121ln 1ln 2ln (1)(2)999u u C x x C =++-+=+-+. 例39 求2100(1)x dx x -⎰. 分析 被积函数2100(1)x x -是有理真分式,若按有理函数的积分法来处理,那么要确定1A ,2A ,…,100A ,比较麻烦.根据被积函数的特点:分母是x 的一次因式,但幂次较高,而分子是x 的二次幂,可以考虑用下列几种方法求解.解法1 令1x t -=,dx dt =-,则222100100100(1)21(1)x t t t dx dt dt x t t --+=-=--⎰⎰⎰98991002t dt t dt t dt ---=-+-⎰⎰⎰9798991112979899t t t C ---=-⋅++ 979899111(1)(1)(1)974999x x x C ---=---+-+. 解法222100100(1)1(1)(1)x x dx dx x x -+=--⎰⎰9910011(1)(1)x dx dx x x +=-+--⎰⎰ 99100(1)21(1)(1)x dx dx x x --=+--⎰⎰ 98991001112(1)(1)(1)dx dx dx x x x =-+---⎰⎰⎰ 979899111(1)(1)(1)974999x x x C ---=---+-+. 解法3 用分部积分法.22991001[(1)](1)99x dx x d x x -=--⎰⎰29999299(1)99(1)x x dx x x =---⎰2989921[(1)]99(1)9998x xd x x -=---⎰ 299989821[]99(1)9998(1)98(1)x x dx x x x =-----⎰ 299989712199(1)9949(1)999897(1)x x C x x x =-⋅-⋅+--⋅-. 注 形如()()P x Q x 的(()P x 与()Q x 均为多项式)有理函数的积分关键是将有理真分式分解成部分分式之和,而部分分式都有具体的积分方法,对于假分式则要化为真分式与多项式之和.例40 求13221dx x x ++-⎰. 分析 这是无理函数的积分,先要去掉根号化为有理函数的积分,分子分母有理化是常用去根号的方法之一.解132213221(3221)(3221)x x dx dx x x x x x x +--=++-++-+--⎰⎰112211(32)(21)44x dx x dx =+--⎰⎰ 332211(32)(21)1212x x C =+--+. 例41 求a xdx a x+-⎰. 解法12222221a x a x xdx dx a dx dx a x a x a x a x++==+----⎰⎰⎰⎰ 1222222211()()2a dx a x d a x a x -=----⎰⎰ 22arcsin xa a x C a=--+.解法2 令 a xt a x+=-,余下的请读者自行完成. 例42求154sin 2dx x+⎰.分析被积函数是三角有理函数,可用万能公式将它化为有理函数. 解令tan t x =,211dx dt t=+,则 21154sin 2585dx dt x t t =+++⎰⎰54332543311()3()1d t t =+++⎰154arctan()333t C =++154arctan(tan )333x C =++. 注虽然万能代换公式总能求出积分,但对于具体的三角有理函数的积分不一定是最简便的方法.通常要根据被积函数的特点,采用三角公式简化积分.例43求1sin cos dxx x++⎰.解法1令tan 2xu =,则2222211211sin cos 1111dx u du du u u x x u u u +==-+++++++⎰⎰⎰ln 1tan 2x C =++.解法21sin cos dxx x ++⎰22122sin cos 2cos cos (1tan )22222dx dx x x x x x ==++⎰⎰ 2()(tan )22cos (1tan )1tan222x x d d x x x==++⎰⎰ ln 1tan2xC =++. 注 可化为有理函数的积分主要要求熟练掌握如下两类: 第一类是三角有理函数的积分,即可用万能代换tan2xu =将其化为u 的有理函数的积分. 第二类是被积函数的分子或分母中带有根式而不易积出的不定积分.对于这类不定积分,可采用适当的变量代换去掉根号,将被积函数化为有理函数的积分.常用的变量代换及适用题型可参考前面介绍过的第二类换元法.例44 求2max{,1}x dx ⎰.分析 被积函数2max{,1}x 实际上是一个分段连续函数,它的原函数()F x 必定为连续函数,可先分别求出各区间段上的不定积分, 再由原函数的连续性确定各积分常数之间的关系.解 由于221,()max{,1}1,1x x f x x x >⎧==⎨≤⎩,设()F x 为()f x 的原函数,则312331,13(),11,13x C x F x x C x x x C ⎧+⎪<-⎪=+≤⎨⎪>⎪+⎩,其中1C ,2C ,3C 均为常数,由于()F x 连续,所以121(1)(1)13F C F C -+-=-+=-=-,231(1)1(1)3F C F C -+=+==+,于是1223C C =-+,3223C C =+,记 2C C =,则32312,133max{,1},112,133x C x x dx x C x x x C⎧-+⎪<-⎪=+≤⎨⎪>⎪++⎩⎰. 注对于一些被积函数中含有绝对值符号的不定积分问题,也可以仿照上述方法处理. 例45 求x e dx -⎰. 解 当0x ≥时,1xx xe dx e dx e C ---==-+⎰⎰. 当0x <时,2xx x edx e dx e C -==+⎰⎰.因为函数x e -的原函数在(,)-∞+∞上每一点都连续,所以120lim()lim()x xx x e C e C +--→→-+=+, 即1211C C -+=+,122C C =+,记 2C C =,则2,0,0xxxe C x e dx x e C --⎧-++≥⎪=⎨<+⎪⎩⎰. 错误解答 当0x ≥时,1xx x edx e dx e C ---==-+⎰⎰.当0x <时,2xx x edx e dx e C -==+⎰⎰.故12,0,0xxxe C x e dx e C x --⎧-+≥⎪=⎨+<⎪⎩⎰. 错解分析 函数的不定积分中只能含有一个任意常数,这里出现了两个,所以是错误的.事实上,被积函数x e -在(,)-∞+∞上连续,故在(,)-∞+∞上有原函数,且原函数在(,)-∞+∞上每一点可导,从而连续.可据此求出任意常数1C 与2C 的关系,使x e -的不定积分中只含有一个任意常数.注 分段函数的原函数的求法:第一步,判断分段函数是否有原函数.如果分段函数的分界点是函数的第一类间断点, 那么在包含该点的区间内,原函数不存在.如果分界点是函数的连续点,那么在包含该点的区间内原函数存在.第二步,若分段函数有原函数,先求出函数在各分段相应区间内的原函数,再根据原函数连续的要求,确定各段上的积分常数,以及各段上积分常数之间的关系.例46 求下列不定积分:(1)sin 1cos x x dx x ++⎰.(2)3sin 2cos sin cos xx x xe dx x-⎰.(3)cot 1sin xdx x+⎰.(4)3sin cos dxx x⎰. 解(1)注意到sin (1cos )xdx d x =-+及2211(tan )1cos 2cos 2xxdx dx d x ==+,可将原来的积分拆为两项,然后积分,即sin sin 1cos 1cos 1cos x x x xdx dx dx x x x +=++++⎰⎰⎰1(tan )(1cos )21cos x xd d x x =-++⎰⎰tan tan ln(1cos )22x xx dx x =--+⎰1tan 2ln cos ln(1cos )22x xx x C =+-++21tan2ln cos ln(2cos )222x x xx C =+-+ 1tan (ln 2)2x x CC C =+=-.(2)被积函数较为复杂,直接凑微分或分部积分都比较困难,不妨将其拆为两项后再观察.3sin sin sin 2cos sin cos tan sec cos xx x x x xedx e x xdx e x xdx x-=-⎰⎰⎰ sin sin ()(sec )x x xd e e d x =-⎰⎰sin sin sin sin sec x x x x xe e dx e x e dx =--+⎰⎰ sin (sec )x e x x C =-+.(3)cot cos 1(sin )1sin sin (1sin )sin (1sin )x x dx dx d x x x x x x ==+++⎰⎰⎰11(sin )(sin )sin 1sin d x d x x x =-+⎰⎰ sin ln 1sin x C x=++.(4)当分母是sin cos m n x x 的形式时,常将分子的1改写成22sin cos x x +,然后拆项,使分母中sin x 和cos x 的幂次逐步降低直到可利用基本积分公式为止.33cos sin cos sin cos sin dx dx xdx x x x x x =+⎰⎰⎰3sin 2csc2sin d xxdx x =+⎰⎰21ln csc2cot 22sin x x C x=--+.注将被积函数拆项,把积分变为几个较简单的积分,是求不定积分常用的技巧之一.例47 求223(1)x dx x -⎰.解 考虑第二类换元积分法与分部积分法,令sin x t =,则222353235sin tan sec (sec sec )(1)cos x t dx dt t tdt t t dt x t ===--⎰⎰⎰⎰, 而53323secsec (tan )sec tan 3tan sec tdt td t t t t tdt ==-⎰⎰⎰ 353sec tan 3(sec sec )t t t t dt =--⎰.故53313sec sec tan sec 44tdt t t tdt =+⎰⎰. 又32secsec (tan )sec tan tan sec tdt td t t t t tdt ==-⎰⎰⎰ 3sec tan (sec sec )t t t t dt =--⎰,从而3111sec sec tan ln sec tan 22tdt t t t t C =+++⎰, 所以223(1)x dx x -⎰3311sec tan sec 44t t tdt =-⎰3111sec tan sec tan ln sec tan 488t t t t t t C =--++ 32211ln 8(1)161x x xC x x++=-+--.例48 求7cos 3sin 5cos 2sin x xdx x x-+⎰.解因为(5cos 2sin )2cos 5sin x x x x '+=-,所以可设7cos 3sin (5cos 2sin )(5cos 2sin )x x A x x B x x '-=+++,即7cos 3sin (5cos 2sin )(2cos 5sin )x x A x x B x x -=++-,比较系数得527253A B A B +=⎧⎨-=-⎩, 解之得1A =,1B =,故7cos 3sin 5cos 2sin x x dx x x -+⎰(5cos 2sin )(5cos 2sin )5cos 2sin x x x x dx x x'+++=+⎰ (5cos 2sin )5cos 2sin d x x dx x x+=++⎰⎰ln 5cos 2sin x x x C =+++.例49 设()F x 是()f x 的原函数,且当0x ≥时有2()()sin 2f x F x x ⋅=,又(0)1F =,()0F x ≥,求()f x .分析 利用原函数的定义,结合已知条件先求出()F x ,然后求其导数即为所求.解 因为()()F x f x '=,所以2()()sin 2F x F x x '=,两边积分得2()()sin2F x F x dx xdx '=⎰⎰,即211()sin 4228x F x x C =-+, 由(0)1F =得12C =,所以 1()sin 414F x x x =-+从而()()12sin 414f x F x x x '==-+21sin 414x x =-+.。

高等数学教材四答案完整版

高等数学教材四答案完整版

高等数学教材四答案完整版第一章:极限与连续1.1 极限的概念与性质1.1.1 数列极限的定义与性质对于数列$a_n$,当$n$趋向于无穷时,如果存在实数$a$,使得对于任意给定的正数$\varepsilon$,总存在正整数$N$,使得当$n>N$时,$|a_n-a|<\varepsilon$成立,那么我们称$a$为数列$a_n$的极限,记作$\lim_{n\to\infty} a_n=a$。

1.1.2 函数极限的定义与性质对于函数$f(x)$,当$x$趋向于$c$时,如果存在实数$L$,使得对于任意给定的正数$\varepsilon$,总存在正数$\delta$,使得当$0<|x-c|<\delta$时,$|f(x)-L|<\varepsilon$成立,那么我们称$L$为函数$f(x)$的极限,记作$\lim_{x\to c}f(x)=L$。

1.2 基本极限公式与极限计算1.2.1 三角函数极限1) $\lim_{x\to 0}\frac{\sin x}{x}=1$2) $\lim_{x\to 0}\frac{1-\cos x}{x}=0$3) $\lim_{x\to 0}\frac{\tan x}{x}=1$4) $\lim_{x\to 0}\frac{a^x-1}{x}=\ln a$,其中$a>0$1.2.2 自然对数的底$\lim_{x\to \infty}(1+\frac{1}{x})^x=e$1.2.3 无穷小与无穷大1) 当$x$趋向于$0$时,$x^n$与$x$同阶无穷小。

2) 当$x$趋向于无穷时,$a^x$与$x^n$同阶无穷大($a>1$,$n$为正整数)。

3) 当$x$趋向于无穷时,$a^x$与$b^x$同阶无穷大($a>1,b>1$)。

第二章:一元函数微分学2.1 导数的概念与性质2.1.1 导数的定义导数是描述函数变化率的概念。

(完整word版)高等数学课后习题及参考答案第四章

(完整word版)高等数学课后习题及参考答案第四章

高等数学课后习题及参考答案(第四章)习题4-11. 求下列不定积分:(1)⎰dx x 21;解 C x C x dx x dx x +-=++-==+--⎰⎰112111222.(2)⎰dx x x ; 解 C x x C x dx x dx x x +=++==+⎰⎰212323521231.(3)⎰dx x1;解C x C x dx xdx x+=++-==+--⎰⎰21211112121. (4)⎰dx x x 32; 解 C x x C x dx x dx x x+=++==+⎰⎰3313737321031371. (5)⎰dx x x 21; 解C x x C x dx xdx xx +⋅-=++-==+--⎰⎰12312511125252. (6)dx x m n ⎰; 解C x mn mC x mn dx x dx x mn m m n m nmn++=++==++⎰⎰111.(7)⎰dx x 35;解 C x dx x dx x +==⎰⎰4334555.(8)⎰+-dx x x )23(2;解 C x x x dx dx x dx x dx x x ++-=+-=+-⎰⎰⎰⎰2233123)23(2322.(9)⎰ghdh 2(g 是常数);解C ghC h gdh hgghdh +=+⋅==⎰⎰-22212122121. (10)⎰-dx x 2)2(;解 C x x x dx dx x dx x dx x x dx x ++-=+-=+-=-⎰⎰⎰⎰⎰423144)44()2(23222.(11)⎰+dx x 22)1(;解 C x x x dx dx x dx x dx x x dx x +++=++=++=+⎰⎰⎰⎰⎰3524242232512)12()1(.(12)dx x x ⎰-+)1)(1(3;解 ⎰⎰⎰⎰⎰⎰-+-=-+-=-+dx dx x dx x dx x dx x x x dx x x 23212323)1()1)(1(C x x x x +-+-=25233523231.(13)⎰-dx x x 2)1(;解C x x x dx x x xdx xx x dx xx ++-=+-=+-=-⎰⎰⎰-2523212321212252342)2(21)1(. (14)⎰+++dx x x x 1133224; 解 C x x dx x x dx x x x ++=++=+++⎰⎰arctan )113(1133322224. (15)⎰+dx x x 221;解⎰⎰⎰+-=+-=+-+=+C x x dx xdx xx dx x x arctan )111(111122222.(16)⎰+dx xe x )32(;解 C x e dx xdx e dx x e x x x ++=+=+⎰⎰⎰||ln 32132)32(.(17)⎰--+dx xx )1213(22;解 ⎰⎰⎰+-=--+=--+C x x dx xdx x dx xx arcsin 2arctan 3112113)1213(2222.(18)dx x e e x x⎰--)1(;解 C x edx xe dx xe e xxx x+-=-=-⎰⎰--21212)()1(.(19)⎰dx e x x 3;解 C e C e e dx e dx e xx x xxx++=+==⎰⎰13ln 3)3ln()3()3(3.(20)⎰⋅-⋅dx xxx 32532;解 C x C x dx dx x xx xxx+--=+-=-=⋅-⋅⎰⎰)32(3ln 2ln 5232ln )32(52])32(52[32532. (21)⎰-dx x x x )tan (sec sec ;解 ⎰⎰+-=-=-C x x dx x x x dx x x x sec tan )tan sec (sec )tan (sec sec 2.(22)⎰dx x2cos 2;解 C x x dx x dx x dx x ++=+=+=⎰⎰⎰)sin (21)cos 1(212cos 12cos 2.(23)⎰+dx x 2cos 11;解 ⎰⎰+==+C x dx xdx x tan 21cos 212cos 112.(24)⎰-dx xx xsin cos 2cos ;解 ⎰⎰⎰+-=+=--=-C x x dx x x dx xx xx dx x x x cos sin )sin (cos sin cos sin cos sin cos 2cos 22.(25)⎰dx x x x22sin cos 2cos ; 解 ⎰⎰⎰+--=-=-=C x x dx xx dx x x x x dx x x x tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222.(26)⎰-dx x x x)11(2;解 ⎰⎪⎭⎫ ⎝⎛-dx x x x 211⎰++=-=--C x x dx x x 41474543474)(.2. 一曲线通过点(e 2, 3), 且在任一点处的切线的斜率等于该点横坐标的倒数, 求该曲线的方程.解 设该曲线的方程为y =f (x ), 则由题意得xx f y 1)(='=',所以 C x dx xy +==⎰||ln 1.又因为曲线通过点(e 2, 3), 所以有=3-2=1 3=f (e 2)=ln|e 2|+C =2+C , C =3-2=1. 于是所求曲线的方程为y =ln|x |+1.3. 一物体由静止开始运动, 经t 秒后的速度是3t 2(m/s ), 问 (1)在3秒后物体离开出发点的距离是多少? (2)物体走完360m 需要多少时间?解 设位移函数为s =s (t ), 则s '=v =3 t 2, C t dt t s +==⎰323. 因为当t =0时, s =0, 所以C =0. 因此位移函数为s =t 3. (1)在3秒后物体离开出发点的距离是s =s (3)=33=27.(2)由t 3=360, 得物体走完360m 所需的时间11.73603≈=t s. 4. 证明函数x e 221, e x sh x 和e xch x 都是x x e x sh ch -的原函数.证明 x x xx x x x x x e ee e e e e e x x e 222sh ch ==--+=----. 因为x x e e 22)21(=', 所以x e 221是x x e xsh ch -的原函数.因为(e x sh x )'=e x sh x +e x ch x =e x (sh x +ch x )x x x x x x e e e e e e 2)22(=++-=--, 所以e x sh x 是xx e xsh ch -的原函数.因为(e x ch x )'=e x ch x +e x sh x =e x (ch x +sh x )x x x x x x e e e e e e 2)22(=-++=--, 所以e xch x 是xx e x sh ch -的原函数.习题4-21. 在下列各式等号右端的空白处填入适当的系数, 使等式成立(例如: )74(41+=x d dx :(1) dx = d (ax );解dx = a 1d (ax ).(2) dx = d (7x -3);解dx = 71d (7x -3).(3) xdx = d (x 2); 解xdx = 21 d (x 2).(4) x d x = d (5x 2);解x d x = 101d (5x 2).(5))1( 2x d xdx -=;解 )1( 212x d xdx --=.(6)x 3dx = d (3x 4-2);解x 3dx = 121d (3x 4-2).(7)e 2x dx = d (e 2x ); 解e 2x dx = 21 d (e 2x ).(8))1( 22x x ed dxe --+=;解 )1( 2 22x x e d dx e --+-=.(9))23(cos 23sin x d xdx =;解 )23(cos 32 23sin x d xdx -=.(10)|)|ln 5( x d xdx=; 解 |)|ln 5( 51x d x dx =. (11)|)|ln 53( x d xdx-=; 解|)|ln 53( 51x d x dx --=. (12))3(arctan 912x d x dx=+; 解 )3(arctan 31912x d x dx =+. (13))arctan 1( 12x d xdx -=-;解)arctan 1( )1( 12x d xdx --=-.(14))1( 122x d x xdx -=-.解)1( )1( 122x d x xdx --=-.2. 求下列不定积分(其中a , b , ω, ϕ均为常数): (1)⎰dt e t 5; 解 C e x d e dt e xx t +==⎰⎰55551551. (2)⎰-dx x 3)23(; 解 C x x d x dx x +--=---=-⎰⎰433)23(81)23()23(21)23(. (3)⎰-dx x 211; 解C x x d x dx x +--=---=-⎰⎰|21|ln 21)21(21121211.(4)⎰-332x dx ;解C x C x x d x xdx+--=+-⋅-=---=-⎰⎰-3232313)32(21)32(2331)32()32(3132. (5)⎰-dx e ax bx)(sin ;解C be ax ab x d e b ax d ax a dx e ax b xb xbx+--=-=-⎰⎰⎰cos 1)()(sin 1)(sin .(6)⎰dt tt sin ;解⎰⎰+-==C t t d t dt tt cos 2sin 2sin .(7)⎰⋅xdx x 210sec tan ;解 ⎰⋅xdx x 210sec tan C x x xd +==⎰1110tan 111tan tan . (8)⎰xx x dxln ln ln ;解C x x d x x d x x x x x dx +===⎰⎰⎰|ln ln |ln ln ln ln ln 1ln ln ln ln 1ln ln ln .(9)⎰+⋅+dx xx x 2211tan ;解 ⎰+⋅+dx x x x 2211tan 2222211cos 1sin 11tan x d x x x d x +++=++=⎰⎰C x x d x ++-=++-=⎰|1cos |ln 1cos 1cos 1222.(10)⎰xx dxcos sin ;解 C x x d x dx x x x x dx +===⎰⎰⎰|tan |ln tan tan 1tan sec cos sin 2.(11)⎰-+dx ee x x 1;解 ⎰-+dx e e xx 1C e de edx e e x x xx x +=+=+=⎰⎰arctan 11122.(12)⎰-dx xe x 2; 解 .21)(212222C e x d e dx xe x x x +-=--=---⎰⎰ (13)⎰⋅dx x x )cos(2;解 C x x d x dx x x +==⋅⎰⎰)sin(21)()cos(21)cos(2222. (14)⎰-dx xx 232;解C x C x x d x dx x x+--=+--=---=-⎰⎰-2212221223231)32(31)32()32(6132.(15)⎰-dx xx 4313; 解⎰⎰+--=---=-C x x d x dx x x |1|ln 43)1(11431344443.(16)⎰++dt t t ))sin((cos 2ϕωϕω; 解 C t t d t dt t t ++-=++-=++⎰⎰)(cos 31)cos()(cos 1)sin()(cos 322ϕωωϕωϕωωϕωϕω. (17)⎰dx x x3cos sin ; 解 C x C x x xd dx xx +=+=-=--⎰⎰2233sec 21cos 21cos cos cos sin . (18)⎰-+dx x x xx 3cos sin cos sin ;解 )sin cos (cos sin 1cos sin cos sin 33x x d xx dx x x x x +--=-+⎰⎰C x x x x d x x +-=--=⎰-3231)cos (sin 23)cos (sin )cos (sin .(19)⎰--dx xx 2491;解dx xx dx xdx xx ⎰⎰⎰---=--22249491491)49(49181)32()32(1121222x d x x d x --+-=⎰⎰C x x +-+=2494132arcsin 21.(20)⎰+dx x x 239;解 C x x x d xx d x x dx x x ++-=+-=+=+⎰⎰⎰)]9ln(9[21)()991(21)(9219222222223. (21)⎰-dx x 1212;解⎰⎰⎰+--=+-=-dx x x dx x x dx x )121121(21)12)(12(11212 ⎰⎰++---=)12(121221)12(121221x d x x d x C x x C x x ++-=++--=|1212|ln 221|12|ln 221|12|ln 221.(22)⎰-+dx x x )2)(1(1;解C x x C x x dx x x dx x x ++-=++--=+--=-+⎰⎰|12|ln 31|1|ln |2|(ln 31)1121(31)2)(1(1. (23)⎰xdx 3cos ;解 C x x x d x x d x xdx +-=-==⎰⎰⎰3223sin 31sin sin )sin 1(sin cos cos .(24)⎰+dt t )(cos 2ϕω; 解 C t t dt t dt t +++=++=+⎰⎰)(2sin 4121)](2cos 1[21)(cos 2ϕωωϕωϕω. (25)⎰xdx x 3cos 2sin ; 解 ⎰xdx x 3cos 2sin C x x dx x x ++-=-=⎰cos 215cos 101)sin 5(sin 21. (26)⎰dx xx 2cos cos ;解 C x x dx x x dx x x ++=+=⎰⎰21sin 23sin 31)21cos 23(cos 212cos cos .(27)⎰xdx x 7sin 5sin ; 解 C x x dx x x xdx x ++-=--=⎰⎰2sin 4112sin 241)2cos 12(cos 217sin 5sin . (28)⎰xdx x sec tan 3;解 x d x xdx x x xdx x sec tan tan sec tan sec tan 223⎰⎰⎰=⋅=C x x x d x +-=-=⎰sec sec 31sec )1(sec 32.(29)⎰-dx xx2arccos 2110;解C x d x d dx xx xxx+-=-=-=-⎰⎰⎰10ln 210)arccos 2(1021arccos 10110arccos 2arccos 2arccos 22arccos 2.(30)⎰+dx x x x )1(arctan ;解C x x d x x d x xdx x x x +==+=+⎰⎰⎰2)(arctan arctan arctan 2)1(arctan 2)1(arctan .(31)⎰-221)(arcsin xx dx;解C xx d x x x dx+-==-⎰⎰arcsin 1arcsin )(arcsin 11)(arcsin 222.(32)⎰+dx x x x 2)ln (ln 1; 解C xx x x d x x dx x x x+-==+⎰⎰ln 1)ln ()ln (1)ln (ln 122. (33)⎰dx xx xsin cos tan ln ;解⎰⎰⎰=⋅=x d x x xdx x x dx x x x tan tan tan ln sec tan tan ln sin cos tan ln 2C x x d x +==⎰2)tan (ln 21tan ln tan ln .(34)⎰-dx x a x 222(a >0);解⎰⎰⎰⎰-===-dt t a dt t a tdt a t a t a t a x dx xa x 22cos 1sin cos cos sin sin 22222222令, C x a x a x a C t a t a +--=+-=222222arcsin 22sin 421.(35)⎰-12x x dx ;解C x C t dt tdt t t t tx x x dx +=+==⋅⋅=-⎰⎰⎰1arccos tan sec tan sec 1sec 12令.或C x x d x dx xx x x dx +=--=-=-⎰⎰⎰1arccos 111111112222.(36)⎰+32)1(x dx ;解C t tdt t d t tx x dx +==+=+⎰⎰⎰sin cos tan )1(tan 1tan )1(3232令C x x ++=12.(37)⎰-dx xx 92; 解⎰⎰⎰=-=-tdt t d tt t x dx x x 222tan 3)sec 3(sec 39sec 9sec 39令 C x x C t t dt t+--=+-=-=⎰3arccos 393tan 3)1cos 1(322.(38)⎰+x dx 21; 解C x x C t t dt t tdt t tx xdx ++-=++-=+-=+=+⎰⎰⎰)21ln(2)1ln()111(11221令.(39)⎰-+211x dx ;解⎰⎰⎰⎰-=+-=+=-+dt tdt t tdt t tx x dx)2sec211()cos 111(cos cos 11sin 1122令 C xxx C t t t C t t +-+-=++-=+-=211arcsin cos 1sin 2tan .(40)⎰-+21x x dx .解⎰⎰⎰+-++=⋅+=-+dt tt tt t t tdt t t tx x x dx cos sin sin cos sin cos 21cos cos sin 1sin 12令C t t t t t d t t dt +++=+++=⎰⎰|cos sin |ln 2121)cos (sin cos sin 12121 C x x x ++-+=|1|ln 21arcsin 212.习题4-3求下列不定积分: 1. ⎰xdx x sin ; 解C x x x xdx x x x xd xdx x ++-=+-=-=⎰⎰⎰sin cos cos cos cos sin .2. ⎰xdx ln ;解 C x x x dx x x x xd x x xdx +-=-=-=⎰⎰⎰ln ln ln ln ln . 3. ⎰xdx arcsin ;解 ⎰⎰-=x xd x x xdx arcsin arcsin arcsin ⎰--=dx xx x x 21arcsinC x x x +-+=21arcsin . 4. ⎰-dx xe x ;解 ⎰⎰⎰----+-=-=dx e xe xde dx xe x x x x C x e C e xe x x x ++-=+--=---)1(. 5. ⎰xdx x ln 2; 解 ⎰⎰⎰-==x d x x x xdx xdx x ln 31ln 31ln 31ln 3332 C x x x dx x x x +-=-=⎰332391ln 3131ln 31.6. ⎰-xdx e x cos ; 解 因为⎰⎰⎰⎰------+=-==xdx e x e xde x e x d e xdx e x x x x x x sin sin sin sin sin cos ⎰⎰-----+-=-=x x x x x xde x e x e x d e x e cos cos sin cos sin⎰-----=xdx e x e x e x x x cos cos sin ,所以 C x x e C x e x e xdx e x x x x +-=+-=----⎰)cos (sin 21)cos sin (21cos .7. ⎰-dx xe x 2sin 2;解 因为⎰⎰⎰-----==x x x x de xx e x d e dx x e 22222cos 22cos 22cos 22sin⎰⎰----+=+=2sin 82cos 22cos 42cos 22222xd e x e dx x e x e x x x x⎰----+=x x x de xx e x e 2222sin 82sin 82cos 2⎰---++=dx xe x e x e x x x 2sin 162sin 82cos 2222,所以 C xx e dx x e x x ++-=--⎰)2sin 42(cos 1722sin 22.8. ⎰dx xx 2cos ;解 C xx x dx x x x x xd dx x x ++=-==⎰⎰⎰2cos 42sin 22sin 22sin 22sin 22cos .9. ⎰xdx x arctan 2; 解 ⎰⎰⎰+⋅-==dx x x x x xdx xdx x 233321131arctan 31arctan 31arctan ⎰⎰+--=+-=2232223)111(61arctan 31161arctan 31dx xx x dx x x x x C x x x x +++-=)1ln(6161arctan 31223.10. ⎰xdx x 2tan解 ⎰⎰⎰⎰⎰+-=-=-=x xd x xdx xdx x dx x x xdx x tan 21sec )1(sec tan 2222C x x x x xdx x x x +++-=-+-=⎰|cos |ln tan 21tan tan 2122.11. ⎰xdx x cos 2;解 ⎰⎰⎰⎰+=⋅-==x xd x x xdx x x x x d x xdx x cos 2sin 2sin sin sin cos 2222C x x x x x xdx x x x x +-+=-+=⎰sin 2cos 2sin cos 2cos 2sin 22. 12. ⎰-dt te t 2;解 ⎰⎰⎰----+-=-=dt e te tde dt te t t tt 2222212121 C t e C e te t t t ++-=+--=---)21(214121222.13. ⎰xdx 2ln ;解 ⎰⎰⎰-=⋅⋅-=xdx x x dx xx x x x xdx ln 2ln 1ln 2ln ln 222C x x x x x dx x x x x x x ++-=⋅+-=⎰2ln 2ln 12ln 2ln 22.14. ⎰xdx x x cos sin ; 解 ⎰⎰⎰⎰+-=-==xdx x x x xd xdx x xdx x x 2cos 412cos 412cos 412sin 21cos sin C x x x ++-=2sin 812cos 41.15. ⎰dx xx 2cos 22; 解 ⎰⎰⎰⎰-+=+=+=xdx x x x x x d x x dx x x dx x x sin sin 2161sin 2161)cos 1(212cos 2323222⎰⎰-++=++=xdx x x x x x x xd x x x cos cos sin 2161cos sin 21612323C x x x x x x +-++=sin cos sin 216123.16. ⎰-dx x x )1ln(; 解 ⎰⎰⎰-⋅--=-=-dx x x x x dx x dx x x 1121)1ln(21)1ln(21)1ln(222 ⎰-⋅++--=dx x x x x )111(21)1ln(212C x x x x x +-----=)1ln(212141)1ln(2122.17. ⎰-xdx x 2sin )1(2;解 ⎰⎰⎰⋅+--=--=-xdx x x x x d x xdx x 22cos 212cos )1(212cos )1(212sin )1(222 ⎰+--=x xd x x 2sin 212cos )1(212⎰-+--=xdx x x x x 2sin 212sin 212cos )1(212C x x x x x +++--=2cos 412sin 212cos )1(212.18. ⎰dx x x23ln ;解⎰⎰⎰⎰+-=+-=-=xdx xx x x d x x x x xd dx x x22333323ln 13ln 1ln 1ln 11ln ln⎰⎰+--=--=x d x x x x x x xd x x 22323ln 13ln 3ln 11ln 3ln 1⎰⎰---=+--=x xd x x x x dx x xx x x x 1ln 6ln 3ln 1ln 16ln 3ln 123223⎰+---=dx xx x x x x x 22316ln 6ln 3ln 1C x x x x x x x +----=6ln 6ln 3ln 123.19. ⎰dx e x3;解 ⎰⎰⎰==t t xde t dt e t t x dx e223333令⎰⎰-=-=t t t t tde e t dt te e t 636322 ⎰+-=dt e te e t t t t 6632 C e te e t t t t ++-=6632 C x x ex ++-=)22(33323.20. ⎰xdx ln cos ; 解 因为⎰⎰⋅⋅+=dx xx x x x xdx 1ln sin ln cos ln cosdx xx x x x x x xdx x x 1ln cos ln sin ln cos ln sin ln cos ⋅⋅-+=+=⎰⎰⎰-+=xdx x x x x ln cos ln sin ln cos , 所以 C x x xxdx ++=⎰)ln sin ln (cos 2ln cos .21. ⎰dx x 2)(arcsin ;解 ⎰⎰-⋅⋅-=dx xx x x x dx x 22211arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰--+=dx x x x x 2arcsin 12)(arcsin 22 C x x x x x +--+=2arcsin 12)(arcsin 22. 22. ⎰xdx e x 2sin . 解 ⎰⎰⎰-=-=xdx e e dx x e xdx e xx x x 2cos 2121)2cos 1(21sin 2, 而 dx x e x e xde xdx e x x x x ⎰⎰⎰+==2sin 22cos 2cos 2cos⎰⎰-+=+=xdx e x e x e de x x e x x x x x 2cos 42sin 22cos 2sin 22cos ,C x x e xdx e x x ++=⎰)2sin 22(cos 512cos ,所以 C x x e e xdx e x x x ++-=⎰)2sin 22(cos 10121sin 2.习题4-4求下列不定积分:1. dx x x ⎰+33;解 dx x x x x dx x x dx x x ⎰⎰⎰+-+-+=+-+=+327)93)(3(327273233⎰⎰+-+-=dx x dx x x 3127)93(2C x x x x ++-+-=|3|ln 279233123.2. ⎰-++dx x x x 103322;解 C x x x x d x x dx x x x +-+=-+-+=-++⎰⎰|103|ln )103(1031103322222.3. ⎰--+dx xx x x 3458;解 ⎰⎰⎰--++++=--+dx x x x x dx x x dx x x x x 3223458)1(8⎰⎰⎰--+-+++=dx x dx x dx x x x x 13148213123C x x x x x x +--+-+++=|1|ln 3|1|ln 4||ln 8213123.4. ⎰+dx x 133;解⎰⎰⎰+-⋅++--⋅-+=+-+-++=+dx x x x x x x dx x x x x dx x )11231122111()1211(132223⎰⎰-+-++-+--+=)21()23()21(123)1(1121|1|ln 2222x d x x x d x x xC x x x x +-++-+=312arctan31|1|ln2. 5. ⎰+++)3)(2)(1(x x x xdx;解dx x x x x x x xdx )331124(21)3)(2)(1(+-+-+=+++⎰⎰C x x x ++-+-+=|)1|ln |3|ln 3|2|(ln 21.6. ⎰-++dx x x x )1()1(122;解 ⎰⎰+--⋅++⋅=-++dx x x x dx x x x ])1(111211121[)1()1(1222 C x x x +++-+-=11|1|ln 21|1|ln 21C x x +++-=11|1|ln 212.7. dx x x )1(12+⎰; 解 C x x dx x x x dx x x ++-=+-=+⎰⎰)1ln(21||ln )11()1(1222. 8. ⎰++))(1(22x x x dx;解⎰⎰+⋅-++⋅-=++dx x x x x x x x dx )112111211())(1(222⎰++-+-=dx x x x x 1121|1|ln 21||ln 2⎰⎰+-+-+-=dx x dx x x x x 11211241|1|ln 21||ln 22C x x x x +-+-+-=arctan 21)1ln(41|1|ln 21||ln 2.9. ⎰+++)1)(1(22x x x dx; 解dx x xx x x x x x dx )111()1)(1(2222⎰⎰+-+++=+++)1ln(21112111221222+-++++++=⎰⎰x dx x x x x x ⎰++++-++=dx x x x x x 1121)1ln(21|1|ln 21222C x x x x ++++-++=312arctan 33)1ln(21|1|ln 2122. 10. ⎰+dx x 114;解dx x x x x dx x ⎰⎰+-++=+)12)(12(111224⎰⎰+-+-++++=dx x x x dx x x x 12214212214222⎰⎰+----++++=dx x x x dx x x x 1222)22(21421222)22(214222 )1212(41]12)12(12)12([82222222⎰⎰⎰⎰+-+++++-+--++++=x x dxx x dx x x x x d x x x x d C x x x x x x +-++++-++=)12arctan(42)12arctan(42|1212|ln 8222. 11. ⎰++--dx x x x 222)1(2; 解 ⎰⎰⎰++-++-=++--dx x x dx x x x dx x x x 11)1(1)1(2222222 ⎰⎰⎰++-++-+++=dx x x dx x x dx x x x 11)1(123)1(122122222 ⎰⎰++-++-++⋅-=dx x x dx x x x x 11)1(12311212222, 因为)312arctan(32)312()312(11321122+=+++=++⎰⎰x x d x dx x x , 而⎰⎰++=++dx x dx x x 22222])23()21[(1)1(1由递推公式 ⎰⎰--+-++-=+])()32()([)1(21)(122122222n n n a x dxn a x x n a a x dx ,得⎰⎰++=++dx x dx x x 22222])23()21[(1)1(1312arctan 323211231)1121()23(212222+⋅++++⋅=++++++=⎰x x x x x x dx x x x , 所以 ⎰++--dx x x x 222)1(2C x x x x x x x ++-+-+++-++⋅-=312arctan 32312arctan 3211221112122C x x x x ++-+++-=312arctan34112.12. ⎰+x dx2sin 3;解⎰⎰⎰+=-=+x d x dx x x dx tan 3tan 41cos 41sin 3222C x x d x +=+=⎰3tan 2arctan321tan )23(tan 14122.13.⎰+dx x cos 31;解 ⎰⎰⎰+=+=+)2sec 1(2cos )2(2cos 121cos 31222x x x d x dx dx x ⎰+=+=C x x x d 22tanarctan 212tan 22tan 2. 或⎰⎰+⋅++=+du u u u x u dxx 221212312tancos 31令 C xC u du u +=+=+=⎰22tan arctan212arctan21)2(122. 14.⎰+dx x sin 21;解 ⎰⎰⎰+=+=+)2cot 2(csc 2sin )2(2cos 2sin 22sin 2122x x x x d x x dx dx x⎰⎰+++-=++-=222)23()212(cot )212(cot 12cot 2cot )2(cot x x d x x x dC x ++-=312cot 2arctan 32. 或⎰⎰+⋅++=+du u u u x u dxx 221212212tansin 21令 ⎰⎰++=++=du u du u u 222)23()21(111C xC u ++=++=312tan 2arctan 32312arctan 32. 15.⎰++x x dxcos sin 1;解 ⎰⎰⎰+=+=+=++C x x xd x x dx x x dx |2tan |ln 2tan1)2(tan )2tan 1(2cos 21cos sin 12. 或⎰⎰+⋅+-+++=++du u u u u ux u xx dx2222121112112tancos sin 1令C xC u du u ++=++=+=⎰|12tan |ln |1|ln 11. 16.⎰+-5cos sin 2x x dx; 解⎰⎰⎰++=+⋅++--+=+-du u u du u u u u ux u x x dx2231125111412tan5cos sin 222222令C xC u du u ++=++=++=⎰512tan 3arctan 51513arctan 51)35()31(13122. 或⎰⎰+⋅++--+=+-du uu uu u x u x x dx2222125111412tan5cos sin 2令⎰⎰++=++=du u du u u 222)35()31(1312231C xC u ++=++=512tan 3arctan 51513arctan 51. 17. ⎰++dx x 3111;解⎰⎰⎰++-=⋅+=+=++du uu du uu ux dx x )111(33111111233令 C x x x C u u u +++++-+=+++-=)11ln(313)1(23|1|ln 332333322.18.⎰++dx x x 11)(3;解C x x x dx x x dx x x ++-=+-=++⎰⎰232233221]1)[(11)(.19.⎰++-+dx x x 1111;解 ⎰⎰⎰++-=⋅+-=+++-+du u u udu u u u x dxx x )122(221111111令C u u u +++-=|)1|ln 2221(22C x x x +++++-+=)11ln(414)1(. 20.⎰+4x x dx ;解⎰⎰⋅+=+du uu u u x xx dx 324441令C u u u du uu +++-=++-=⎰|1|ln 442)111(42 C x x x +++-=)1ln(4244.21.⎰+-xdxx x 11;解 令u x x=+-11, 则2211u u x +-=, du u u dx 22)1(4+-=,⎰⎰⎰++-=+-⋅-+⋅=+-du uu du u u u u u x dx x x )1111(2)1(41111222222 C u u u +++-=arctan 2|11|ln C xxx x x x ++-+++-+--=11arctan2|1111|ln . 22.⎰-+342)1()1(x x dx.解 令u x x =-+311, 则1133-+=u u x , 232)1(6--=u u dx , 代入得C x x C u du x x dx +-+-=+-=-=-+⎰⎰334211232323)1()1(.总习题四求下列不定积分(其中a , b 为常数):1. ⎰--x x e e dx;解 C e e de e dx e e e e dxx x xx x xxx ++-=---=-⎰⎰⎰-|11|ln 2111122.2. dx x x ⎰-3)1(; 解C x x dx x dx x dx x x+-⋅+-=----=-⎰⎰⎰2323)1(12111)1(1)1(1)1(. 3. ⎰-dx xa x 662(a >0);解 C ax a x a x d x a dx x a x +-+=-=-⎰⎰||ln 61)()()(1313333332323662. 4. ⎰++dx x x xsin cos 1;解 C x x x x d x x dx x x x ++=++=++⎰⎰|sin |ln )sin (sin 1sin cos 1.5. ⎰dx xxln ln ; 解C x x x dx x x x x x x xd dx x x +-⋅=⋅⋅-⋅==⎰⎰⎰ln ln ln ln 1ln 1ln ln ln ln ln ln ln ln ln . 6. ⎰+dx x xx 4sin 1cos sin ; 解 C x x d x x d xx dx x x x +=+=+=+⎰⎰⎰222244sin arctan 21)(sin )(sin 1121sin sin 1sin sin 1cos sin . 7. ⎰xdx 4tan ; 解 xxd x x d xx xdx tan sin tan tan cos sin tan 22244⎰⎰⎰==⎰⎰++-=+=x d x x x d x x tan )1tan 11(tan tan 1tan tan 2224c x x x c x x x ++-=++-=tan tan 31tan arctan tan tan 3133.8. ⎰xdx x x 3sin 2sin sin ; 解 ⎰⎰--=xdx x x xdx x x 3sin )cos 3(cos 213sin 2sin sin ⎰⎰+-=xdx x xdx x 3sin cos 213sin 3cos 21 ⎰⎰++=dx x x x xd )2sin 4(sin 41)3(cos 3cos 61 C x x x +--=2cos 814cos 1613cos 1212. 9. ⎰+)4(6x x dx;解 C x x dx x x x x x dx++-=+-=+⎰⎰)4ln(241||ln 41)41(41)4(6656.10.)0(>-+⎰a dx xa xa ; 解⎰⎰⎰⎰-+-=-+=-+dx xa xdx x a a du x a x a dx x a x a 2222221C x a a xa +--=22arcsin .11.⎰+)1(x x dx ;解C x x C x x x d x x x dx +++=+++=+=+⎰⎰)1ln(2))(1ln(2)(112)1(22.12. ⎰xdx x 2cos ; 解 ⎰⎰⎰+=+=x xd x dx x x x xdx x 2sin 4141)2cos (21cos 22 C x x x x xdx x x x +++=-+=⎰2cos 812sin 41412sin 412sin 414122.13. ⎰bxdx e ax cos ; 解 因为dx bx e a b bx e a bxde a bxdx e ax axax ax ⎰⎰⎰+==sin cos 1cos 1cos dx bx e ab bx e a b bx e a de bx a b bx e a ax ax axax ax ⎰⎰-+=+=cos sin cos 1sin cos 12222,所以 C bx e ab bx e a b a a bxdx e axax ax+++=⎰)sin cos 1(cos 2222C bx b bx a e b a ax +++=)sin cos (122.14.⎰+xedx 1;解⎰⎰⎰⎰+--=-=-=++du u u du u u d u u e e dxx x)1111(112)1ln(11122令.c e e c u u x x +++-+=++-=1111ln |11|ln .15.⎰-122x xdx ;解C t tdt tdt t t t tx x xdx+==⋅⋅=-⎰⎰⎰sin cos tan sec tan sec 1sec 1222令C xx +-=12. 16.⎰-2/522)(x a dx;解⎰⎰⋅=-tdt a t a ta x x a dx cos )cos (1sin )(52/522令⎰⎰+==t d t adt ta tan )1(tan1cos 112444C t at a ++=tan 1tan 31434C xa x a x a x a+-+-⋅=224322341)(31.17.⎰+241x xdx;解tdt t t tx x xdx2424secsec tan 1tan 1⋅⋅=+⎰⎰令⎰⎰==t d t tdt t tsin sin cos sin cos 4243 C t tt d t t ++-=-=⎰sin 1sin 31sin )sin 1sin 1(324 C xx x x ++++-=233213)1(.18.⎰dx x x sin ;解⎰⎰⎰=⋅=tdt t tdt t t t x dx x x sin 22sin sin 2令⎰⎰⋅+-=-=tdt t t t t d t 2cos 2cos 2cos 222⎰⎰-+-=+-=tdt t t t t t td t t sin 4sin 4cos 2sin 4cos 222 C t t t t t +++-=cos 4sin 4cos 22C x x x x x +++-=cos 4sin 4cos 2. 19. ⎰+dx x )1ln(2;解 ⎰⎰+⋅-+=+dx xx x x x dx x 22212)1ln()1ln(⎰+--+=dx x x x )111(2)1ln(22C x x x x ++-+=arctan 22)1ln(2. 20.⎰dx x x32cos sin ;解 x d x xx x d x x dx x xtan )1tan tan (tan tan cos sin cos sin 2232⎰⎰⎰+-== C x x ++-=)1ln(tan 21tan 2122.21. ⎰dx x arctan ;解 x d xx x x dx x ⎰⎰+⋅-=11arctan arctan x d xx x ⎰+⋅--=)111(arctan C x x x x ++-=arctan arctan C x x x +-+=arctan )1(. 22.dx xx⎰+sin cos 1;解C x x x d x dx x x xdx x x +-===+⎰⎰⎰|2cot 2csc |ln 222csc 22cos2sin 22cos2sin cos 1. 23.⎰+dx x x 283)1(;解 C x x x dx x dx x x +++⋅=+=+⎰⎰]arctan 1[2141)1(141)1(484428283. 提示: 已知递推公式⎰⎰--+-++-=+])()32()([)1(21)(122122222n n n a x dxn a x x n a a x dx .24. ⎰++dx x x x 234811; 解 ⎰⎰⎰++=++=++dt t t t t x dx x x x dx x x x 234123412322444884811令 ⎰⎰+++-=+++-=dt t t dt t t t )11241(41)23231(412 C t t t ++++-=|1|ln 41|2|ln 41C x x x ++++=21ln 414444. 25.⎰-416x dx; 解⎰⎰⎰++-=+-=-dx xx dx x x x dx)4141(81)4)(4(11622224C xx x ++-+=)2arctan 21|22|ln 41(81C x x x ++-+=2arctan 161|22|ln 321. 26.dx x x⎰+sin 1sin ;解 ⎰⎰⎰-=--=+dx xxx dx x x x dx x x 222cos sin sin sin 1)sin 1(sin sin 1sinC x x x dx x x x++-=+-=⎰tan sec )cos 11cos sin (22.27. dx x xx ⎰++cos 1sin ;解⎰⎰⎰⎰+=+=++dx x xdx x x dx x x x dx x x x 2cossin 212cos 212cos 2sin cos 1sin 222 ⎰⎰+=dx xx xd 2tan 2tanC xx dx x dx x x x +=+-=⎰⎰2tan 2tan 2tan 2tan .28. ⎰-dx x x x x ex23sin cos sin cos ;解 ⎰⎰⎰⋅⋅-⋅⋅=-xdx x e xdx e x dx xx x x e x x xsec tan cos cos sin cos sin sin 23sin⎰⎰-=x d e x d xe x x sec sin sin sin ⎰⎰+⋅-=x x x xde e x xde sin sin sin sec sec⎰⎰⋅⋅+⋅--=xdx e x e x dx e xe x x x x cos sec sec sin sin sin sin C e x xe x x +⋅-=sin sin sec .29.⎰+dx x x x x)(33;解dt t t dt t t t t t t x dxx x x x)111(66)()(52362633+-=⋅+=+⎰⎰⎰令C x xC t t ++=++=66)1(ln 1ln6. 30.⎰+2)1(x e dx;解⎰⎰⎰---=-⋅=++dt t t t dt t tt e e dxx x )1111(1111)1(222令 C tt t ++--=1ln )1ln(C e e x xx ++++-=11)1ln(.31. ⎰+-+dx e e e e x x xx 1243;解)()(1111222243x xx x x x xx x x x x e ed e e dx e e e e dx e e e e ------+=+-+=+-+⎰⎰⎰C e e x x +-=-)arctan( C x +=)sh 2arctan(. 32.⎰+dx e xe xx 2)1(;解⎰⎰⎰+-=++=+11)1()1()1(22x x x x xe xde d e x dx e xe⎰⎰+++-=+++-=x x x x x x de e e e x dx e e x )1(11111⎰+-++-=x x xx de e e e x )111(1C e e e x x x x ++-++-=)1ln(ln 1C e e xe x x x ++-+=)1ln(1.33. ⎰++dx x x )1(ln 22;解 dx x x x x x x dx x x ])1([ln )1(ln )1(ln 222222'++⋅-++=++⎰⎰ ⎰+⋅++-++=dx xx x x x x x 22221)1ln(2)1(ln⎰+++-++=22221)1ln(2)1(ln x d x x x x x⎰'++⋅+++++-++=dx x x x x x x x x x ])1[ln(12)1ln(12)1(ln 222222 ⎰++++-++=dx x x x x x x 2)1ln(12)1(ln 2222 C x x x x x x x +++++-++=2)1ln(12)1(ln 2222.34.⎰+dx x x2/32)1(ln ; 解 因为⎰⎰⎰++=+==⋅=+C xx C t tdt tdt t tx dx x 2232/321sin cos secsec 1tan )1(1令,所以⎰⎰⎰⋅+-+=+=+dx xx xx x x x x xd dx x x111ln )1(ln )1(ln 2222/32 C x x x x x +++-+=)1ln(1ln 22.35. ⎰-xdx x arcsin 12;解⎰⎰⎰+=⋅=-dt t t t tdt t t x xdx x )2cos (21cos sin arcsin 122令 ⎰⎰-+=+=tdt t t t t t t 2sin 412sin 41412sin 414122C t t t t +++=2cos 812sin 41412122241arcsin 121)(arcsin 41C x x x x x +--+=.36.⎰-dx xx x 231arccos ;解⎰⎰⎰--=-⋅=-2222231arccos 1arccos 1arccos x xd x dx x x x x dx x x x⎰'⋅-+--=dx x x x x x x )arccos (1arccos 12222 ⎰-⋅-⋅-+--=dx xx x x x x x x )11arccos 2(1arccos 122222⎰⎰-⋅-+--=dx x xdx x x x x x 2222arccos 12arccos 1⎰-----=32322)1(arccos 3231arccos 1x xd x x x x⎰-------=dx x x x x x x x )1(32arccos )1(3231arccos 1232322。

高等数学第三版 第四章 矩阵和线性方程组 答案

高等数学第三版 第四章 矩阵和线性方程组 答案
即一定条件下体系存在的形式。
1 mol H2 0oC, 1 atm 22.4 dm3
状态 1
1 mol H2 0oC, 0.5 atm 44.8 dm3
状态 2
状态函数 --- 描述体系宏观状态的物理量(也
称体系的性质),例如 p,V,T等。
特点:只与始态和终态有关,与途径无关。
H2O (s, 25°C, 1atm ) Hsub H2O (g, 25°C, 1atm )
Hfus
Hvap
H2O (l, 25°C, 1atm )
Hsub= Hfus +Hvap
状态定,函数定; 函数变,状态变。
分为两种性质:
广延性质 --- 与体系中物质的量成正比,相同条件下 有加和性。如 V、Cp、U、H、S、G 等。
强度性质 --- 体系中各处的性质是均匀的,与物质的量 无关。 如 P、T、C浓度 等。
例:甲醇挥发
与体系可进行能量、物质的交换Biblioteka NOTE: 其划分随需要而变
三种体系
体系与环境之间 既有能量交换又 有物质交换。
体系与环境之间 有能量交换、没 有物质交换。
体系与环境之间 既没有能量交换 也没有物质交换。
b. 状态与状态函数 (State and State function)
状态 ---- 体系所有物理性质和化学性质的综合表现,
1 cal = 4.18 J 证明能量转换关系
U = q – w 能量守恒定律
能量多种形式,不生不灭,互相转化。
U = q – w
q :体系从环境吸热(+) w: 体系对环境作功( +) 体系向环境放热(-) 环境对体系作功(-)
注意: 体系一定为封闭体系; 体系与环境之间的能量转化只有功和热两种,也 就是说如果一个体系内能U发生变化,那么其变化 过程必然是通过q 和 w与环境进行交换完成的; 这里的w包括所有形式的功。

【精品】高等数学线性代数习题答案第四章

【精品】高等数学线性代数习题答案第四章

习题4—11.验证函数f (x )=lnsin x 在[π5π,66]上满足罗尔定理的条件,并求出相应的ξ,使f ′(ξ)=0.解:显然()lnsin f x x =在5π,66x ⎡⎤⎢⎥⎣⎦上连续,在π5π,66⎛⎫⎪⎝⎭内可导,且π5π()()ln 266f f ==-,满足罗尓定理的条件。

令cos ()cot 0sin x f x x x '===,则π2x = 即存在ππ5π(,)66ξα=∈,使()0f ξ'=成立。

2。

下列函数在指定区间上是否满足罗尔定理的三个条件?有没有满足定理结论中的ξ?[][][]2(1)()1,;(2)(),;1,10,21sin ,0π(3)()0,π1,0e x f x f x x x x f x x =-=--<≤⎧=⎨=⎩解:(1)2()1e x f x =-在[]1,1-上连续,在()1,1-内可导,且(1)1,(1)1,e e f f -=-=-即(1)(1)f f -=() f x ∴在[]1,1-上满足罗尓定理的三个条件。

令2()20e x f x x '==得0x =,即存在0(1,1)ξ=∈-,使()0f ξ'=。

(2)101()1112x x f x x x x -≤<⎧==-⎨-≤≤⎩显然()f x 在(0,1),(1,2)内连续,又1111(10)lim ()lim(1)0,(10)lim ()lim(1)0,(10)(10)(1)0,即x x x x f f x x f f x x f f f --++→→→→-==-=+==-=-=+==所以()f x 在1x =处连续,而且22(00)lim ()lim(1)1(0),(20)lim ()lim(1)1(2),x x x x f f x x f f f x x f ++--→→→→+==-==-==-==即()f x 在0x =处右连续,在2x =处左连续,所以()f x 在[]0,2上连续.又1111()(1)1(1)lim lim 1,11()(1)1(1)lim lim 111x x x x f x f xf x x f x f xf x x --++-→→+→→--'===-----'===--(1)(1)() f f f x -+''∴≠∴在1x =处不可导,从而()f x 在(0,2)内不可导。

(整理)化工数学第四章答案

(整理)化工数学第四章答案
b)厚度l的时间变化趋势
由一维热传导公式可得:
其中 为潜热
两端分别积分可得
将具体数值 代入上式,用matlab解得t=6882779.6s=79.6天。
随着时间的增加,负积温逐渐累积,冰层不断加厚,但是速度越来越缓慢。
6.(√)求图示的半环形区域内的稳态温度分布( )
边界条件为:当r=c时,u=u0,其余边界保持0度。
解:首先将边界条件化零,为此令
-------------------------------------------(1)

------------------------------------------------(2)
解出
化为u的齐次边值问题
------------------------------------------(4)
2.(√)证明:
(1)圆形区域上Laplace方程 在圆对称情况下的通解为
式中r为径向极坐标,A、B为任意常数
(2)球形区域上Laplace方程 在球对称情况下的通解为
式中r为径向球坐标,A、B为任意常数
证明:(1)在极坐标下,圆型区域内,laplace方程的表达式为
在圆对称情况下

原方程可化为 ,
解:将特征值方程化为规范形式如下
显然特征根0,特征函数yn(x)带权e-2x正交
方程的通解为
为使方程有非零解,可令
通解可表示为
由边界条件和使问题有非零解,只有
因此特征值为
相应的特征函数为
10.(√)设一半径为R的均质圆盘,周边维持在温度TR,上下表面与环境有热交换,初始温度为
T0,则圆盘的温度分布可用以下问题描述
解得
(2)同理可证

高数习题4 4答案

高数习题4 4答案

高数习题4 4答案高数习题4-4答案高等数学作为大学必修课程之一,对于理工科学生来说是一门重要而又具有挑战性的学科。

其中的习题是学生们巩固知识、提高解题能力的重要途径。

本文将为大家提供高数习题4-4的答案,并对其中涉及的概念和解题方法进行详细解析。

1. 题目:已知函数f(x) = x^2 + 3x + 2,求f(-1)的值。

解析:要求f(-1)的值,只需要将x的值代入函数f(x)中即可。

将x=-1代入函数f(x),得到f(-1) = (-1)^2 + 3(-1) + 2 = 1 - 3 + 2 = 0。

答案:f(-1)的值为0。

2. 题目:已知函数g(x) = 2x^3 - 5x^2 + 3x - 1,求g(2)的值。

解析:同样地,要求g(2)的值,只需要将x的值代入函数g(x)中。

将x=2代入函数g(x),得到g(2) = 2(2)^3 - 5(2)^2 + 3(2) - 1 = 2(8) - 5(4) + 6 - 1 = 16 - 20 + 6 - 1 = 1。

答案:g(2)的值为1。

3. 题目:已知函数h(x) = e^x + ln(x),求h(1)的值。

解析:要求h(1)的值,需要将x=1代入函数h(x)中。

其中e表示自然对数的底,ln表示自然对数。

将x=1代入函数h(x),得到h(1) = e^1 + ln(1) = e + 0 = e。

答案:h(1)的值为e。

4. 题目:已知函数k(x) = sin(x) + cos(x),求k(π/4)的值。

解析:要求k(π/4)的值,需要将x=π/4代入函数k(x)中。

其中sin表示正弦函数,cos表示余弦函数。

将x=π/4代入函数k(x),得到k(π/4) = sin(π/4) + cos(π/4) =√2/2 + √2/2 = √2。

答案:k(π/4)的值为√2。

通过以上习题的解析,我们可以看出,求函数在特定点的值,只需要将该点的x值代入函数中即可。

高等数学作业集第四章答案(谢惠扬)

高等数学作业集第四章答案(谢惠扬)

第四章 不定积分第一节 不定积分的概念与性质一、 填空题1.一阶导数='⎰)sin 5(xdx x (x xsin 5)2.不定积分=⎰)(arctan x d (.arctan C x +)3.)(x f 的原函数是,ln 2x 则=⎰dx x f x )('3(C x +-2)4.设,cos 1)(2xx f =则⎰=dx x f )('(C x +2cos 1),⎰=dx x f dx d )((x 2cos 1) ⎰=dx x f )((C x +tan )5.设⎰+-=,)(`c e xe dx x f x x 则⎰=dx x f )(' (C xe x +)6.过点),(10且在横坐标为x 的点处的切线斜率为3x 的曲线方程为(1414+=x y ) 7.设x x f 22sin )(cos '=,且,0)0(=f 则=)(x f (x x +-221 ) 8.设)(x f 的一个原函数为x1,则=')(x f (32x )9.⎰=-x d xcos )1cos 1(2(C x x +--cos cos 1)二、计算题:求下列不定积分: 1.⎰+-dx xx x 4312=C x x x ++-4312134534132454 2.⎰-dx x x x )11(2 =C x x ++-41474473.dx e e xx ⎰+-112 =C x e x +- 4.⎰dx x x 22cos sin 1=C x x +-cot tan5. dx x x ⎰--3273C x x x dx x x x x +++=-++-=⎰923313)93)(3(2326.⎰-+dx xx x 324)1(C x x x dx x xx+-+=-+=⎰-3431333131032431333)(7. dx x x ⎰+)1(122dxx x x x ⎰+-+=)1()1(2222dx x ⎰=21dx x ⎰+-211C x x+--=arctan 18. ⎰dx x 2sin2C x x dx x +-=-=⎰)sin (212cos 1 9.⎰xdx 2cot C x x dx x +--=-=⎰cot )1(csc 210.⎰-x dx 2cos 1C x xdx dx x +-===⎰⎰cot 21csc 21sin 2122 11. dx x x ⎰+221⎰⎰⎰+-=+-=+-+=C x x dx x dx dx x x arctan 11111222 12. dx e xx⎰2C ee dx e x x+==⎰2ln )2()2(三、 求},1max{)(2x x f =的一个适合1)0(=F 的原函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 不定积分习题A (作业题)1.(1)原式=c x dx x +--=--⎰-3231)23(43)23(21(2)原式=c xx d x dx x x +=-=⋅⎰⎰--cos 2cos )(cos )(cos sin 2323(3)原式=x d x x x x d x arcsin2arcsin2arcsin2⎰⎰-⋅=c x x x dx xx xx x +-+⋅=⋅--⋅=⎰12arcsin 22112arcsin 22.c x dx x y +==⎰ln 13)(2=e y ,得1=c ,故1ln +=x y习题B (练习题)1.填空题 (1)c y = (2)c x+cos 2(3)c e x+-(4)xdx x x cos sin )ln(sin(5)c x +-221(6)2cos 2x x (7))2(x f(8)c x +--232)1(31(9)π+x arcsin(10)c xx+-2sin cos(11)67213123+-x x ,原题改为dx x x dx x f )()('2-=(12)c x x +-2ln ln 2 (13)c x x +---2)1ln(2.选择题(1)A (2)C (3)B (4)B (5)A (6)B (7)B (8)B(9)、D (10)、B (11)、C 3、计算下列不定积分:(1)⎰⎰+-=-=-c x x dx x x x dx x x x sec tan )tan sec (sec )tan (sec sec 2 (2)c x x xd xdx x +==⎰⎰1110210tan 111tan tan sec tan (3)cx x d x x x d x x d x x x dx x x dx x x x +=====⎰⎰⎰⎰⎰)ln(ln ln ln ln ln ln 1ln ln ln ln 1ln ln ln ln 1ln ln ln 1ln ln ln 1(4)⎰⎰⎰⎰++=++=+-=+-=+-cx x x x d x x dx x x x x dx xx x xdx x x sin cos ln )cos (sin sin cos 1sin cos sin cos cos sin 1cos sin 1tan 1tan 1(5)c t t d t dt tt +-==⎰⎰cos 2sin 2sin(6)c e x ede x dx e e dx e e e dx e xx xx x x x x x ++-=++-=+-=+-+=+⎰⎰⎰⎰|1|ln )1(11)11(1111(7)c x xd x dx x x+==⎰⎰2)2tan (ln 212tan ln 2tan ln sin 2tanln(8)c xx x x dx x x x xdx x x x xd x xd x xdx x x +-+=--=-===⎰⎰⎰⎰⎰2tan 212tan )1(sec 212tan )tan tan (21tan 21tan tan sec tan 2222222(9)c x xd x dx x x +-=---=-⎰⎰)21(2arcsin )2()21(411)1(12(10)c x x x xd dx x x x +-=-=+⎰⎰ln 1ln 1)ln (ln 12(11)⎰-dx xx 1arcsin设 t x =a r c s i n , 则 t x 2s i n =. 得到原式为:cx x x c t t t tdt t t t td tdt t tdt t t t++--=++-=--=-==⎰⎰⎰⎰2arcsin 12sin 2cos 2)cos cos (2cos 2sin 2cos sin 2cos (12)c x x x xd x x dx x x x +-+=-+-+=-++⎰⎰|103|ln )103(1031103322222(13)c e e c e e de e e de e dx e e x x xx x x x x x x x ++-=++--=+--=-=-⎰⎰⎰-|11|ln 21|1|ln |1|ln 21)1111(211112)((14)⎰⎰+==+c x x x x d x x dx x x x 252323)ln (52)ln ()ln ()ln 1()ln ((15)⎰=+t x dx x2211设原式⎰⎰++-=++-=+-=+=c x x c t t dt tdt t t |12|ln 2|1|ln )111(1 (16)311x 3132-=∴=++⎰t x t dx x x 设c x x c t t dt t t ++-+=+-=-=⎰353522)13(272)13(452272452)1(92原式(17)x t t x x x dx1arccos sec 12=∴=-⎰设原式=⎰⎰⎰+===c xx d dt t d t t 1arccos 1arccos sec tan sec 1(18)dx xx ⎰+21 设t x tan = 则x t arctan =cxx x x c tt dt t t t t d t t d t t dx x x +++-+=+-=-===+⎰⎰⎰⎰|11|ln 1|2tan |ln sec sin 1sin tan tan sin 1tan tan sec 1222原式 (19)c x x x dx x dx x x ++++-+=+-=--⎰⎰21arcsin )1(421)1(423222 (20)c exdedx x xex xx +=+-=++-+-+-⎰⎰22211211321111)1((21)c x x x dx x x x xd x x x x xd xdx x +-=-=-==⎰⎰⎰⎰3323333291ln 3131ln 31ln 3131ln 31ln ln (22)cx x x x xd xx x dx x x x x x x xd x x dx x ++-=+--=+-=-=⎰⎰⎰⎰arctan arctan )111(arctan 211arctan arctan arctan arctan(23)c x ec e x e x dx e x e x e xd x xe x x d e x dx x e x xx x x xxxx x ++=++++-=+++-=+++++-=++-=++⎰⎰⎰⎰221)1(21)1()1(2121)1(21)1()2()1(2(24)c x x x x dx x x dx x x +-+-=--+-=--+-=-+⎰⎰122ln 51))12ln(21)2ln(21(52)121)2(21(5223212 (25)cx x x c x x x dx x xdx x dx x dx x xx x D C B A D B A D C B D C B A C x D Cx x B x A x x dx x x +++++-=++-+++-=+-+++=+-++++==-===⇒⎪⎪⎩⎪⎪⎨⎧=++=++=+++=+++++++=++++⎰⎰⎰⎰⎰11ln 21221|1|ln 41|1|ln 2111211211121)1(121)121121)1(21(0,21,21002020B 11)1()1()1(1)1()1(1222222222222原式于是所以得令(26)cx x x x x d x x x d dx x x x dx x x x x x dx x x x x +-++=-+-++=-+++=-+++-+=-+-+⎰⎰⎰⎰⎰|32|ln 532(3215)32225(3222)32(5321312522222222) (27)c x x x xd x x d x dx x dx x x dx dx x x +-++-=-+-++-+-=+-++--=++=+-+⎰⎰⎰⎰⎰⎰23arctan 4)136(ln )3(4)3(18]4)3[(4)3(1214)3(84)3(343)-(x 5x 1365x 22222222(28)c x xc x x dx x x x C B A A c B A x x x x C Bx x A dx x x x ++=++-=+-+=∴=-==⇒⎪⎩⎪⎨⎧==-=++-=++++-⎰⎰|)1(|ln |1|ln 72||ln )121(0,2,1101)1(11)1(1727776777677原式则令(29)⎰⎰⎰⎰⎰⎰⎰++-=+-=+=+⋅==c x x x x xd dx x xdx x xdx dx x x xdx x x xdx x 2sin 4814sin 641162sin 2sin 161)4cos 1(1612cos 2sin 812sin 8122cos 142sin cos cos sin cos sin 3222222242(30)⎰⎰⎰⎰++=-=-=-=c x x x d x x d x x x d x x dx x x cos 1cos cos )cos 11(cos cos 1cos cos cos sin cos sin 22222234、求过点)0,21(且满足关系式11arcsin '2=-+xy x y 的曲线方程。

解:1)'arcsin (1arcsin '2=+=-+x y xy x y于是对等式二端求积分得:⎰⎰+=+∴=+c x x y dx dx x y arcsin 1)'arcsin ( 且方程过2166210),0,21(-=+-=ππc 带入方程求得 216arcsin -+-=πx x y 所以曲线方程为5、已知)(x f 的一个原函数为xx xsin 1sin +,求 dx x f x f ⎰)(')(解:22)sin 1(sin cos )'sin 1sin ()('x x xx x x x x f +-=+= C x x xC x f x df x f dx x f x f ++=+==⎰⎰222)sin 1(sin 21)(21)()()(')(6、已知曲线)(x f y =在任意点处的切线斜率为632--x ax ,且1-=x 时211=y 为极大值,试确定)(x f ,并求)(x f 的极小值。

解:⎰+--=--=C x x x a dx x ax x f 6233)63()(232由于)(x f 在1-=x 时有极大值 故0)1('=-f 且211)1(=-f 于是063)1('=-+=-a f 解得3=a 由1-=x 时211=y 可知211)1(=-f 求得2=C于是2623)(23+--=x x x x f令0)2)(1(3633)('2=-+=--=x x x x x f 求得1-=x 或2=x ,当x 在2的左侧邻近时,;0)('<x f 当x 在2的右侧邻近时,;0)('>x f于是,当2=x 时函数取到极小值,且极小值8)2(-=f7、已知曲线)(x f y =过点)21,0(-且其上任一点),(y x 处的切线斜率为)1ln(2x x +,求曲线方程。

相关文档
最新文档