吸附式制冷物理化学工质对分类及特点
知识物件上传—吸附式制冷技术发展-能源知识库
吸附式製冷技術發展熱驅動製冷系統不僅可以利用工業餘熱或回收廢熱驅動,亦可以利用太陽能熱水驅動,在提供工業冷卻與商業空調的需求的同時,有助於提高整體能源的使用效率與善用再生能源,是發展再生能源空調系統最重要的技術發展項目之一,因此熱能驅動製冷技術在國內外,再度受到各國重視與廣泛的討論,如何以政策配合民間推動與落實冷熱電三生系統的應用,以提高整體能源的使用效率,對節能減碳作出貢獻。
固體吸附式製冷系統的驅動熱源溫度較吸收式製冷系統低,被冀望是發展太陽能空調系統的較佳方案,緣此,本文特別以吸附式製冷系統為題,比較說明兩種熱驅動製冷系統的運轉原理與特性,介紹國內外吸附式製冷系統的發展與應用現況,探討現階段推動商業化普及應用的障礙,以及未來可能的技術發展重點。
一、國內技術發展現況溴化鋰-水吸收式製冷系統論及熱驅動製冷系統在空調的應用,首推技術發展與商品成熟度最高的吸收式製冷系統(習稱吸收式冰水機、吸收式冷凍機),圖1所示為單效應溴化鋰-水吸收式製冷系統的結構與循環示意圖。
吸收式製冷系統的工作流體以水為冷媒、以溴化鋰水溶液為吸收劑,溴化鋰水溶液對水氣具有高度的親合性(吸收力),因此利用這種特性發展出吸收式製冷系統。
吸收式製冷系統的運轉原理為,當冷媒在蒸發器的低壓下(真空)吸收冰水的熱量蒸發時,使冰水降溫產生製冷效果;蒸發的氣態冷媒被吸收器的溴化鋰溶液所吸收以維持蒸發器的低壓狀態;吸收氣態冷媒的溴化鋰溶液濃度降低,吸收能力也隨著降低,為維持溴化鋰溶液強烈的吸收力,利用溶液泵浦將溴化鋰溶液送到發生器加熱,使溴化鋰溶液的濃度提高以恢復其高度的吸收力;在發生器加熱溴化鋰溶液產生的氣態冷媒被送到冷凝器液化後再送至蒸發器製冷,在發生器提高濃度後的溴化鋰溶液吸收能力提高,被送到吸收器吸收蒸發的氣態冷媒,如此構成連續式的單效應吸收式製冷循環。
圖1 單效應溴化鋰-水吸收式製冷循環密閉式固體吸附製冷系統圖2所示為密閉式固體吸附式製冷系統的結構與循環示意圖。
第五节-吸附式制冷
制冷循环的种类
吸附式制冷
• 1、吸附制冷定义:
某些固体物质在一定的温度及压力下,
能吸附某种气体或水蒸汽,在另一温度及
压力下,又能将它释放出来。这种吸附与
解吸的过程引起的压力变化,相当于制冷
压缩机的作用。固体吸附制冷就是根据这
一原理来实现的。
吸附式制冷
➢ 吸附:物质内部的分子和周围分子有互
破坏臭氧层的物质,值得开发。
(2)吸附式制冷可采用余热驱动,不仅对电力的紧张供应
可起到减缓作用,而且能有效利用大量低品位热能,如
太阳能,清洁没有污染。
(3)太阳能吸附式制冷具有结构简单,无运动部件,噪声
低,寿命长等特点。
吸附式制冷
3、吸附式制冷的缺点
(1)固体吸附剂为多微孔介质,比表面积大,导热性能很低
吸附式制冷
,因而吸附/解吸时间长。(可以开发新型吸附剂,从吸收
式制冷系统采用液体工质中是否可以有所启发?)
(2)单位质量吸附剂的制冷功率较小,使得制冷机尺寸较
大,吸附式制冷系统的功率远不如吸收式制冷系统,原因何
在?(强化传热,提高附剂的传热性能和单位吸附剂的制
冷功率,减小制冷机的尺寸 )
吸附式制冷
吸附制冷技术的应用
吸收热量达到一定的温度或温度范围来
克服作用力。
吸附式制冷
吸附式制冷
太阳能吸附制冷原理图
一个基本的吸附式制冷系统由吸附床
(集热器) 、冷凝器、蒸发器和阀门等构成。
工作过程由热解吸和冷却吸附组成。
基本循环过程是利用太阳能或者其他热源,
使吸附剂和吸附质形成的混合物(或络合物)
在吸附器中发生解吸, 放出高温高压的制冷
剂气体进入冷凝器,冷凝出来的制冷剂液体
吸附式制冷的工作原理
吸附式制冷的工作原理一、引言吸附式制冷是一种新型的制冷技术,它具有无霜结、无噪音、无振动等优点,因此在空调、冰箱等领域得到了广泛应用。
本文将详细介绍吸附式制冷的工作原理。
二、吸附式制冷的基本原理1. 吸附剂的选择吸附式制冷系统中,吸附剂是起关键作用的物质。
一般来说,吸附剂应该具有以下特点:高吸收能力、低解吸能力、化学稳定性好等。
常见的吸附剂有硅胶、分子筛等。
2. 吸附与解吸过程在吸附式制冷系统中,通过控制压力和温度来实现气体在固体表面上的吸附和解吸过程。
当压力升高时,气体会被固体表面上的孔隙所吸收;当压力下降时,气体会从固体表面上脱离出来,这个过程叫做解吸。
3. 热量传递在制冷过程中,热量需要被传递到外部环境中去。
吸附式制冷系统中,热量传递主要通过两种方式:一是通过吸附剂和气体之间的热传导;二是通过吸附剂和外部环境之间的热传导。
三、吸附式制冷的工作流程1. 吸附过程在吸附过程中,吸附剂会从低压区域向高压区域移动,同时吸收气体。
当气体被完全吸收后,压力达到最高点。
2. 膨胀过程在膨胀过程中,气体会从高压区域向低压区域移动,同时释放出来。
这个过程需要消耗一定的能量。
3. 冷却过程在冷却过程中,气体会被冷却到低温状态。
此时,气体的温度会比外界环境低很多。
4. 解吸过程在解吸过程中,低温下的气体会被重新释放出来,并且被带回到高压区域。
这个过程需要消耗一定的能量。
四、总结综上所述,吸附式制冷技术是一种新型的制冷技术,在空调、冰箱等领域得到了广泛应用。
吸附式制冷的基本原理是通过控制压力和温度来实现气体在固体表面上的吸附和解吸过程,同时通过热量传递实现制冷效果。
了解吸附式制冷的工作原理,对于我们更好地使用这种新型技术具有重要意义。
太阳能吸附式制冷
普及问题 要把太阳能吸附式制冷空调得到大范围的普及,是需 要多方面共同努力才能完成的。 吸附式制冷作为一种新的尚不成熟技术,需要政府的 直接支持才能发展,得到发展才能谈 普及。这是一种有利于国家发展的技术,是可持续发展的。 太阳能吸附式制冷空调是一种节能无污染的新产品, 可以提高生活水平。群众应该改变旧的 观念,积极接受新的知识,提高环保意识和可持续发展的 意识,支持对环境有利对自己和子孙未来有利的科学技术。
32
5 85 3.6
º C
t/h º C t/h MPa MPa MPa
能够在55-85oC热源温度下有 效工作; 适合太阳能以及其它低品位热 能应用; 目前已小批量生产
冷却水流量 热水进口温度 热水流量
COP
冷冻水系统工作压力 冷却水系统工作压力 热水系统工作压力
0.4
0.6 0.6 0.6
成本问题
如其他一切新兴科学技术一样,吸附式制冷技术需要 投入大量的科研经费,这势必会增加产品的成本,也就提 高了产品的市场价格,使新生的技术难以竞争。为此,政 府是可以有作为的,一通过政府的方向性的调控引导群众 购买新兴的吸附式制冷空调,增强其市场竞争力,二通过 国家财政来支持吸附式制冷技术的研究,国外这方面做得 不错,给企业补贴我国也应该对该技术在经济上有所支持。 在法律上,今年我国颁布了《可再生能源法》使各项工作 有法可依。 另外就是企业积极参与市场竞争,竞争可以驱动企业 不断提高生产效率,降低成本,学会在市场中生存。
应用问题
如何将太阳能空调应用也是个很重要的问题。 如何实现太阳能利用与建筑的一体化是目前研究的热点。 要实现太阳能空调的大范围应用是涉及到多方面的问题: 法律,城市规划,能耗,成本等 图
制冷机组性能
吸附式制冷的制冷原理
吸附式制冷的制冷原理吸附式制冷是一种利用吸附剂对气体份子进行吸附和脱附的原理来实现制冷的技术。
该技术主要应用于低温制冷和低温储能领域。
一、吸附式制冷的基本原理吸附式制冷系统由吸附器、脱附器、蒸发器和冷凝器等组成。
其中,吸附器和脱附器是吸附剂的主要工作区域,蒸发器和冷凝器则是制冷循环的关键部份。
在吸附式制冷系统中,吸附剂是一个关键的组成部份。
吸附剂通常是一种多孔材料,具有高表面积和良好的吸附性能。
常见的吸附剂有活性炭、份子筛和金属有机骨架材料等。
制冷过程中,吸附剂首先处于吸附状态。
当制冷剂通过吸附器时,吸附剂的孔隙结构会吸附制冷剂中的气体份子。
此时,吸附剂会释放出吸附剂内部的热量,使制冷剂的温度降低。
然后,吸附剂将制冷剂输送到脱附器中。
在脱附器中,吸附剂经过加热,释放出吸附剂中吸附的制冷剂份子。
这个过程称为脱附。
脱附过程中,吸附剂会吸收外部的热量,使制冷剂的温度升高。
然后,制冷剂再次进入吸附器,循环进行吸附和脱附过程,从而实现制冷效果。
二、吸附式制冷的工作原理吸附式制冷系统的工作原理可以分为两个主要的循环:吸附循环和脱附循环。
1. 吸附循环在吸附循环中,制冷剂从蒸发器中进入吸附器。
在吸附器中,制冷剂被吸附剂吸附,同时释放出热量。
此时,制冷剂的温度降低,变成低温制冷剂。
然后,低温制冷剂进入脱附器。
2. 脱附循环在脱附循环中,吸附剂通过加热,释放出吸附的制冷剂份子。
这个过程称为脱附。
脱附过程中,吸附剂吸收外部的热量,使制冷剂的温度升高。
然后,制冷剂再次进入吸附器,循环进行吸附和脱附过程。
通过不断循环吸附和脱附过程,吸附式制冷系统可以实现制冷效果。
而且,吸附剂的选择和控制可以根据需要进行调整,以实现不同温度范围的制冷要求。
三、吸附式制冷的优点和应用吸附式制冷技术具有以下几个优点:1. 低温制冷能力强:吸附剂具有高表面积和良好的吸附性能,可以实现较低的制冷温度。
2. 能源效率高:吸附式制冷系统可以利用废热或者低温热源进行制冷,提高能源利用效率。
吸收式制冷和吸附式制冷
一、制冷技术1、吸收式制冷吸收式制冷是利用某些具有特殊性质的工质对,通过一种物质对另一种物质的吸收和释放,产生物质的状态变化,从而伴随吸热和放热过程。
吸收式制冷的原理:常用的工质对有氨水和水/溴化锂。
吸收制冷的基本原理一般分为以下五个步骤:(1)利用工作热源(如水蒸气、热水及燃气等)在发生器中加热由溶液泵从吸收器输送来的具有一定浓度的溶液,并使溶液中的大部分低沸点制冷剂蒸发出来。
(2)制冷剂蒸气进入冷凝器中,又被冷却介质冷凝成制冷剂液体,再经节流器降压到蒸发压力。
(3)制冷剂经节流进入蒸发器中,吸收被冷却系统中的热量而激化成蒸发压力下的制冷剂蒸气。
(4)在发生器A中经发生过程剩余的溶液(高沸点的吸收剂以及少量未蒸发的制冷剂)经吸收剂节流器降到蒸发压力进入吸收器中,与从蒸发器出来的低压制冷剂蒸气相混合,并吸收低压制冷剂蒸气并恢复到原来的浓度。
(5)吸收过程往往是一个放热过程,故需在吸收器中用冷却水来冷却混合溶液。
在吸收器中恢复了浓度的溶液又经溶液泵升压后送入发生器中继续循环。
吸收式制冷机利用溶液在一定条件下能析出低沸点组分的蒸气,在另一条件下又能强烈地吸收低沸点组分蒸气这一特性完成制冷循环。
目前吸收式制冷机中多采用二元溶液作为工质,习惯上称低沸点组分为制冷剂,高沸点组分为吸收剂,二者组成工质对。
原理图:吸收式制冷的特点:吸收式制冷以自然存在的水或氨等为制冷剂,对环境和大气臭氧层无害;以热能为驱动能源,除了利用锅炉蒸气、燃料产生的热能外,还可以利用余热、废热、太阳能等低品位热能,在同一机组中还可以实现制冷和制热(采暖)的双重目的。
整套装置除了泵和阀件外,绝大部分是换热器,运转安静,振动小;同时,制冷机在真空状态下运行,结构简单,安全可靠,安装方便。
在当前能源紧缺,电力供应紧张,环境问题日益严峻的形势下,吸收式制冷技术以其特有的优势已经受到广泛的关注。
(1) 无原动力,直接使用热原理,因此机器坚固亦无震动,少噪音,能安装于任何地点,从地室一直到屋顶均可。
物理吸附和化学吸附的异同
物理吸附和化学吸附的异同根据吸附剂表面与被吸附物之间作用力的不同,吸附可分为物理吸附与化学吸附。
同一物质,可能在低温下进行物理吸附而在高温下为化学吸附,或者两者同时进行。
吸附作用的大小跟吸附剂的性质和表面的大小、吸附质的性质和浓度的大小、温度的高低等密切相关。
如活性炭的表面积很大,吸附作用强;活性炭易吸附]沸点高的气体,难吸附沸点低的气体。
物理吸附是被吸附的流体分子与固体表面分子间的作用力为分子间吸引力,即所谓的范德华力(Vander waals)。
因此,物理吸附又称范德华吸附,它是一种可逆过程。
当固体表面分子与气体或液体分子间的引力大于气体或液体内部分子间的引力时,气体或液体的分子就被吸附在固体表面上。
从分子运动观点来看,这些吸附在固体表面的分子由于分子运动,也会从固体表面脱离而进入气体(或液体)中去,其本身不发生任何化学变化。
随着温度的升高,气体(或液体)分子的动能增加,分子就不易滞留在因体表面上,而越来越多地逸入气体(或液体中去,即所谓“脱附”。
这种吸附—脱附的可逆现象在物理吸附中均存在。
工业上就利用这种现象,借改变操作条件,使吸附的物质脱附,达到使吸附剂再生,回收被吸附物质而达到分离的目的。
物理吸附有以下特点:①气体的物理吸附类似于气体的液化和蒸气的凝结,故物理吸附热较小,与相应气体的液化热相近;②气体或蒸气的沸点越高或饱和蒸气压越低,它们越容易液化或凝结,物理吸附量就越大;③物理吸附一般不需要活化能,故吸附和脱附速率都较快;任何气体在任何固体上只要温度适宜都可以发生物理吸附,没有选择性;④物理吸附可以是单分子层吸附,也可以是多分子层吸附;⑤被吸附分子的结构变化不大,不形成新的化学键,故红外、紫外光谱图上无新的吸收峰出现,但可有位移;⑥物理吸附是可逆的;⑦固体自溶液中的吸附多数是物理吸附。
太阳能吸附式制冷综述
太阳能吸附式制冷综述学号姓名摘要:介绍了太阳能吸附式制冷的基本原理与特点,对吸附式制冷技术的研究现状做了简要的分析,包括吸附工质对的性能、吸附床强化、系统循环与结构。
在此基础上,介绍了太阳能吸附式制冷的应用,主要应用的方面有低温储粮、制冷与供热联合、吸附式空调。
关键词:吸附式制冷研究现状应用1. 前言随着能源与环境问题与社会经济发展矛盾的日益突出,新能源的发展越来越受到各国的关注,对风能、水能、潮汐能的开发与研究力度不断增加,而这些能源的利用与发展根本上说是离不开太阳的。
在制冷空调领域,太阳能制冷不仅可以减少电力消耗,同时由于没有采用氟氯烃类物质,不会对大气臭氧层产生破坏,属于清洁能源,符合环保要求。
另外,采用太阳能制冷其热量的供给和冷量的需求在季节和数量上高度匹配,在夏季太阳辐射强、气温高,制冷量就越大。
因此,利用太阳能制冷技术对节约常规能源,保护自然环境都具有十分重要的意义。
太阳能固体吸附式制冷技术由于利用了太阳能而减少了对传统能源的使用,井通过使用天然友好的制冷剂从而避免了对环境的破坏。
太阳能固体吸附式制冷具有结构简单、初投资少、运行费用低、无运动部件、噪音小、寿命长且能适用于振动或旋转等场所的优点。
而且,太阳能在时间和地域上的分布特征与制冷空调的用能特征具有高度的匹配性,因此,利用太阳热能驱动的固体吸附式制冷技术的研究具有极大的潜力和优势[1]。
2. 太阳能固体吸附式制冷基本原理固体吸附式制冷是利用固体吸附剂(如沸石、活性炭、氯化钙)对制冷剂(如水、甲醇、氨)的吸附和解吸作用实现制冷循环的,这种吸附与解吸的过程引起压力的变化,相当于制冷压缩机的作用,吸附剂的再生可以在65~200℃下进行,这很适合于太阳能的利用。
吸附式制冷具有结构简单、运行费用低、无噪音、无环境污染、基本不含动力部件,能有效利用低品味热源等一系列有点[2]。
太阳辐射具有间歇性,因而太阳能吸附制冷系统都是以基本循环工作方式运行制冷的,Critoph把太阳能固体吸附式制冷循环描述成四个阶段,即定容加热过程、定压脱附过程、定容冷却过程、定压吸附过程[4]。
吸附式制冷系统中吸附工质对的探索和实验研究
An We n z hu o , Li u Ze q i n, P e i Fe n g
( T h e T i a n j i n K e y L a b o r a t o r y o f R e f i r g e r a t i o n , S c h o o l o f Me c h a n i c l a E n g i n e e r i n g , T i a n j i n U n i v e r s i t y o f C o mm e r c e , T i a n j i n 3 0 0 1 3 4 ,C h i n a )
六种常见制冷方式
六种常见制冷方式一、蒸汽式压缩制冷原理:在蒸汽压缩制冷循环系统中,压缩机从蒸发器吸入低温低压的制冷剂蒸汽,经压缩机绝热压缩成为高温高压的过热蒸汽,再压入冷凝器中定压冷却,并向冷却介质放出热量,然后冷却为过冷液态制冷剂,液态制冷剂经膨胀阀(或毛细管)绝热节流成为低压液态制冷剂,在蒸发器内蒸发吸收空调循环水(空气)中的热量,从而冷却空调循环水(空气)达到制冷的目的,流出低压的制冷剂被吸入压缩机,如此循环工作。
压缩机功能:把制冷剂蒸气从低压状态压缩至高压状态,创造了制冷剂在冷凝器中常温液化的条件。
被称为整个装置的“心脏”。
冷凝器功能:使压缩机排出的制冷剂过热蒸气冷却,并凝结为制冷剂液体,在冷凝器内制冷剂的热量排放给冷却介质。
分类:水冷式冷凝器、风冷式冷凝器、蒸发式冷凝器。
风冷式冷凝器:使用和安装方便,不需要冷却水、热量由分机将其带入大气中。
但同样传热系数低,相对其他类型重量偏大,翅片表面会积灰是散热能力下降,须及时清理。
蒸发器功能:依靠制冷剂液体的蒸发来吸收冷却介质热量的换热设备,它在制冷系统中的任务是对外输出冷量。
分类:满液式(沉浸式)蒸发器、干式蒸发器。
干式蒸发器:沉浸式蛇管、壳管式、板式、喷淋式等。
节流装置功能:截流降压:高压常温的制冷剂流过膨胀阀后,就变为低压、低温的制冷剂液体。
控制制冷剂流量:膨胀阀通过感温包感受蒸发器出口处制冷剂过热度的变化来控制阀的开度,调节进入蒸发器的制冷剂流量,使其流量与蒸发器的热负荷相匹配。
控制过热度:膨胀阀具有控制蒸发器出口制冷剂过热度的功能,即保持蒸发器的传热面积的充分利用,又防止压缩机冲缸事故的发生。
分类:手动节流阀、热力膨胀阀、毛细管、电子膨胀阀、浮球板、固定孔板、可变孔板。
二、蒸汽吸收式制冷以制冷剂-吸收剂为工作流体,称为吸收工质对。
常用工质对:溴化锂-水(制冷剂是水)、氨-水(制冷剂是氨)-低沸点工质是制冷剂。
装置:吸收式制冷装置由发生器、冷凝器、蒸发器、吸收器、循环泵、节流阀等部件组成,工作介质包括制取冷量的制冷剂和吸收、解吸制冷剂的吸收剂,二者组成工质对。
吸附的分类
吸附的分类吸附是指某种气体,液体或者被溶解的固体的原子,离子或者分子附着在某表面上。
这一过程使得表面上产生由吸附物构成的膜。
吸附不同于吸收,吸收是指作为吸附物的液体浸入或者溶解于另一液体或固体中的过程。
吸附仅限于固体表面,而吸收同时作用于表面和内部¹。
吸附的类型根据吸附过程中是否发生化学反应,吸附可以分为物理吸附和化学吸附²。
物理吸附物理吸附是指在吸附过程中物质不改变原来的性质,只是由于分子间的范德华力而使得吸附物分子与固体表面分子相互吸引。
因此物理吸附的能量较小,一般在5~40 kJ/mol之间,被吸附的物质很容易再脱离,只要升高温度或者降低压力,就可以使被吸附的物质逐出固体表面。
物理吸附通常是多层吸附,即在第一层分子之上还可以形成第二层、第三层等多层分子。
物理吸附对温度和压力比较敏感,温度升高或者压力降低都会导致物理吸附减少。
物理吸附对气体或液体的性质没有特殊要求,只要有范德华力存在,就可以发生物理吸附。
化学吸附化学吸附是指在吸附过程中不仅有范德华力,还运用化学键的力,使得固体表面分子与气体或液体分子之间形成共价键或离子键等化学键。
因此化学吸附的能量较大,一般在80~800 kJ/mol之间,要逐出被吸附的物质需要较高的温度或者较低的压力,而且被吸附的物质即使被逐出,也已经产生了化学变化,不再是原来的物质了。
化学吸附通常是单层吸附,即只有第一层分子与固体表面形成化学键,第二层及以上的分子只能通过范德华力与第一层分子相互作用。
化学吸附对温度和压力不太敏感,温度升高或者压力降低对化学键影响不大。
化学吸附对气体或液体的性质有特殊要求,必须能够与固体表面形成化学键才能发生化学吸附。
吸附剂的分类根据不同的标准,可以将用于实现吸附过程的固体材料称为吸附剂,并按照以下几种方式进行分类³。
按孔径大小分类粗孔和细孔:粗孔指孔径大于50 nm的孔道,细孔指孔径小于2 nm的孔道。
粗孔吸附剂的表面积较小,但孔道容易通畅,适用于吸附大分子的物质。
吸附式制冷
一、吸附式制冷工作原理吸附式制冷是通过吸附剂在较低的温度下(一般为当地气温)吸附制冷剂,在较高的温度下脱附制冷剂,通过吸附脱附循环来实现。
通常是固体对气体的吸附,它的主要装置由吸附器、冷凝器、蒸发器、节流阀等组成,见图1。
吸附式制冷的工质对大致可分为沸石分子筛系、硅胶系、活性炭系等。
沸石分子筛系由于它的脱附温度较高,通常在280℃~300℃,所以,一般用于高温余热回收。
例如:回收汽车高温排气余热,用于汽车空调。
硅胶系的脱附温度较低,一般从50℃左右开始脱附至120℃,可以完全脱水,但不耐高温(不超过120℃)。
因此,硅胶系很适合以低品位热源为动力的吸附式制冷。
例如:回收发动机系统70℃"-'80℃冷却废热,制取空调用水。
活性炭系能够吸附水、甲醇、乙醇等许多制冷剂蒸汽,活性炭——水在0℃以下很难使用,且会结冰;活性炭——甲醇有剧毒,能导致失明。
因次,从安全和实用角度考虑,活性炭——乙醇比较适宜在低品位热能种的应用。
三、传统汽车空调的缺点(1)汽车空调系统降低了发动机动力性能,增加整车负载。
汽车空调系统绝大部分采用压缩式制冷循环,如图l所示,并分为直连式和独立式两大类。
采用直连式驱动时,压缩机动力来自汽车发动机,因此空调系统工作时必然降低发动机动力性能。
由于压缩机转速随车速变化,汽车制动时会停止制冷。
对于独立式汽车空调,增设专用发动机不仅减少汽车空间,而且增加整车负载,增大燃油消耗。
(2)汽车空调系统制冷剂污染环境。
目前,汽车空调系统制冷剂主要采用R134a。
1996年以前的汽车空调制冷剂多用R12,该制冷剂对臭氧层破坏严重,我国已于2010年全面完成了CFc类工质的替代。
R134作为R12的替代产物,虽然不破坏臭氧层但其全球变暖潜值为1300。
到2017年,欧盟将禁止新生产的汽车空调使用G形P值大于150的制冷剂。
因此,研究开发利用汽车余热和可再生能源驱动的汽车空调系统,是汽车空调技术发展与进步的必然要求。
环保型吸附制冷工质对及其制冷性能
2005 年 4 月Journal of Chemical Engineering of Chinese Universities Apr. 2005 文章编号:1003-9015(2005)02-0175-06环保型吸附制冷工质对及其制冷性能崔群1, 朱跃钊2, 陈海军1, 姚虎卿1(南京工业大学 1.化学化工学院, 2.机械与动力工程学院, 江苏南京210009)摘要:选取13X分子筛、凹凸棒土和氯化锶等为主要吸附材料,制备了一系列有着优良吸附性能的复合吸附剂(M4-0132、M1-9906、M1-0001和M2-0003)。
测定了水、乙醇在自制复合吸附剂上的吸附等温线。
根据吸附等温线拟合参数对水、乙醇与自制复合吸附剂组成的吸附工质对的特征吸附功计算表明:复合吸附剂-水吸附工质对的特征吸附功约为13X分子筛-水的12%~29%;复合吸附剂-乙醇吸附工质对的特征吸附功约为活性炭-乙醇的10%~20%。
采用吸附制冷体系(液体-气体-吸附剂)的稳态平衡方程,对水和乙醇与复合吸附剂组成的吸附工质对适合的制冷场合分析表明:M4-0132-水和M1-0001-水工质对可用于大循环量的制冷体系,例如空调系统的场合;M1-9906-乙醇和M2-0003-乙醇工质对可用于低温制冷体系,例如制冰和冷冻系统的场合。
M1-9906-水工质对的吸附制冷量是13X-水的2.0~2.5倍;在60~120℃再生条件下,M4-0132-水工质对的吸附制冷量为441~924kJ⋅kg−1。
40~100℃再生条件下,M1-0001-乙醇工质对的吸附制冷量315~909kJ⋅kg−1,是活性炭-乙醇的2.2~5.9倍。
关键词:吸附制冷;复合吸附剂;特征吸附功;吸附工质对;吸附制冷量中图分类号:TB612;TB616;TQ424文献标识码:AStudies on Environmentally Benign Adsorption Refrigeration WorkingPairs and their Refrigeration PerformanceCUI Qun1, ZHU Yue-zhao2, CHEN Hai-jun1, YAO Hu-qing1(1. College of Chemistry and Chemical Engineering,2. College of Mechanical and Power Engineering,Nanjing University of Technology, Nanjing 210009, China)Abstract: Composite adsorbents (M4-0132,M1-9906,M1-0001 and M2-0003), which demonstrate favorable adsorption refrigeration performance,were prepared through combining a series of main adsorptive materials, such as 13X molecular sieve, concavo-convex stick stone and strontium chloride. Adsorption isotherms of water or ethanol on composite adsorbents were determined. According to the fitting parameters of the adsorption isotherms, the calculations show that the characteristic adsorption work of self-prepared composite adsorbents-water adsorption working pairs is about 12%~29% that of 13X molecular sieve-water pair, and that of composite adsorbents-ethanol pairs is approximately10%~20% that of activated carbon-ethanol pair. The stable state equilibrium equation for adsorption refrigeration system (liquid-vapor-adsorbent) was set up. The favorable refrigeration systems (situations) of working pairs, consisted of water and ethanol with composite adsorbents, were discussed, and the results show that: M4-0132-water and M1-0001-water pairs can be utilized for refrigeration system requiring larger cooling cycle volume, i.e air conditioning system, while M1-9906-ethanol and M2-0003-ethanol pairs are more preferable to low-temperature refrigeration system, i.e ice-making and chilling system. Adsorption refrigeration volume of M1-9906-water pairs is 2.0~2.5 times that of 13X-water. Regenerated at temperature of 60~120℃, adsorption refrigeration volume of M4-0132-water pairs is 441~924kJ⋅kg−1, while regenerated at 40~100℃, said cooling volume of M1-0001-alcohol pairs is 315~909kJ⋅kg−1, which is 2.2~5.9 times that of activated carbon-ethanol pairs.Key words: adsorption refrigeration; composite adsorbent; characteristic adsorption work; adsorption working pairs; adsorption refrigeration volume收稿日期:2003-01-04;修订日期:2004-11-17。
吸附式制冷
影响活性氧化铝吸附性能的主要因素
颗粒粒径 原水PH值 原水初始氟浓度 原水碱度 砷的影响
活性炭(activated carbon)
(活性炭主成分除了碳以外还有氧、氢以及少量灰分。)
蜂 窝 活 性 炭
木质柱状活性炭
椰壳活性炭
木质活性炭 活 性 炭 纤 维
活性炭的吸附行为
气体吸附
溶液吸附
当气体的相对压力 适宜时,在活性炭的 中孔内可发生毛细凝 结,大孔则是单层或 多层吸附,微孔的吸 附机制是微孔填充。 对活性炭吸附起主要 作用的是由微孔提供 的巨大表面积。
常用制冷剂
•
•
•
1.水(R-718)
水无毒、无污染,不可燃、来源丰富。是一种 天然制冷剂. 它能很好的满足上述制冷剂的要求 但它对于蒸发温度低于0°的场合是不适用的, 因为低于0°后水会结冰,造成管路破坏。
• 2.二氧化碳 (CO2) (R-744)
•
二氧化碳(CO2)是一种天然制冷剂. 它在19世纪末20世 纪初停止使用,现在正在研究重新对它的使用。用于蒸气 压缩循环正位移压缩机。在32℃ 时CO2的冷凝压力超过 6MPA,这是一个挑战。而且,CO2的临界点很低,能效 差。尽管如此,仍可能有一些应用,如复叠制冷,CO2将 是有用的。
太阳能吸附制冷技术的总结和展望
太阳能制冷的效率比较低,难以与其它形势的 制冷相比。因此,商业化利用仍有较大的差距。 为加快商业化进程,如下工作必须进一步加强: 保持吸附制冷的稳定性; 提高发生器的集热效率; 优化设计太阳能驱动的吸附式制冷系统的 主要部 件,以实现系统的最优匹配; 深入制冷材料的研究。
T T
P
T
蒸发器
吸 附 式 制 冷 的 工 作 循 环
吸附式制冷的制冷原理
吸附式制冷的制冷原理吸附制冷系统是以热能为动力的能量转换系统。
其道理是:一定的固体吸附剂对某种制冷剂气体具有吸附作用。
吸附能力随吸附温度的不同而不同。
周期性地冷却和加热吸附剂,使之交替吸附和解析。
解析时,释放出制冷剂气体,并使之凝为液体;吸附时,制冷级液体蒸发,产生制冷作用。
所以,吸附制冷的工作介质是吸附剂-制冷剂工质对,工质对有多种,按吸附的机理说,有物理吸附与化学吸附之别。
以常见的沸石-水吸附对为例。
沸石是一种铝硅酸盐矿物,它能够吸附水蒸气,且吸附能力的变化对温度特别敏感。
因而它们是较理想的吸附制冷工质对之一。
图1示出一个利用太阳能驱动的沸石-水吸附制冷系统原理。
它包括吸附床、冷凝器和蒸发器,用管道连接成一个封闭的系统。
吸附床是充装了吸附剂(沸石)的金属盒;制冷剂液体(水)贮集在蒸发器中。
白天,吸附床受到日照加热,沸石温度升高,产生解吸作用。
从沸石中脱附出水蒸气,系统内的水蒸气压力上升,达到与环境温度对应的饱和压力时,水蒸气在冷凝器中凝结,同时放出潜热,凝水贮存在蒸发器中。
夜间,吸附床冷下来,沸石温度逐渐降低,它吸附水蒸气的能力逐步提高,造成系统内气体压力降低,同时,蒸发器中的水不断蒸发出来,用以补充沸石对水蒸气的吸附。
蒸发过程吸热,达到制冷的目的。
如果采用其它热源,只要保证能够交替地加热和冷却吸附床,使沸石周期性地解析和吸附,同样能达到制冷的目的。
由上可知,吸附制冷属于液体汽化制冷。
与蒸气压缩式制冷机相类比,吸附床起到压缩机的作用。
但上述吸附系统只能间歇制冷。
吸附器处于吸附过程中产生冷效应,吸附结束后必须有一个解析过程使吸附剂状态还原,这时将停止制冷。
为了连续制冷,可以采用两个吸附器。
美国学者乔纳斯(Jones)还提出用三个或四个吸附器进行系统循环,不仅实现连续制冷,还可以利用一个吸附床的排热去加热另一个吸附床,从而使热能充分利用。
现在对吸附制冷的研究正在不断深入和发展。
为了使吸附制冷成为一种使用话的制冷方式,人们在吸附工质对及其吸附机理、改善吸附床传热传质、以及吸附制冷的系统结构方面进行不懈的努力。
吸收和吸附式制冷
线代表水的特
0
图2-131 氨水溶液的p—t图
图2-133
氨水溶液的h— 图
(3)溶液的h 图
如图2-133为氨水溶液的
图h。
3、液固相平衡
在一定的温度下, 溶质在溶剂中的溶解量是有限的。这时的溶液称为 饱和溶液, 这时的温度称为 结晶温度。图2-134为溴化锂溶液的液固相平 衡图。等质量分数线簇右下方的一条曲线就是溶液的 结晶曲线。
浓度复迭 压力复迭
多种 多效循环
图2-142 多效溴化锂-水吸收式制冷机性能曲
(二)吸收式供热(采暖)循环
溴化锂吸收式 制热技术
溴化锂吸收式冷热水机组 溴化锂吸收式热泵机组
(1)溴化锂吸收式冷热水机组
通常以燃油、燃气为能源。此时机组中的发生器相当于一台溴化 锂溶液锅炉。通过发生器中产生的高温制冷剂加热
如图2-129所示:
➢ 在 压缩式 制冷循环中
利用 压缩机 液化制冷剂蒸气
➢ 在 吸收和吸附式 制冷循环中
利用 液体吸收剂或固体吸附剂 液化制冷剂蒸气
吸收或吸附式制冷与压缩式制冷相比有以下特点:
(1)可以利用各种热能驱动 (2)可以大量节约用电 (3)结构简单,运动部件少,安全可靠 (4)对环境和大气臭氧层无害 (5)热力系数COP低于压缩式制冷循环
f1(V s ) f2 (x) 或 x f ()
D—R 方程:
x
x0
exp
k
2
(2-84)
在实验中存在三种与式(2-84)偏离的形式
x
2
2
x01
exp
k1
x02
expk2
(2-85)
吸附制冷技术
吸附制冷技术吸附制冷技术是一种现代的冷却技术,它利用吸附材料与工质产生的物理、化学吸附作用来实现冷却过程。
与传统的制冷技术相比,吸附制冷技术具有能耗低、稳定性好等优点,因此在制冷领域得到了广泛的应用。
本文将从吸附制冷技术的基本原理、工作循环、应用前景等方面进行阐述,旨在加深人们对此技术的了解与认识。
一、吸附制冷技术的基本原理吸附制冷技术的基本原理是在控制温度和压力的条件下,将吸附剂吸附工质,然后利用外部热源升高温度,使吸附剂释放工质,从而在吸收与释放工质的过程中完成冷却。
为了实现这种过程,需要选择合适的吸附剂和工质。
吸附剂通常为一种多孔材料,具有高的表面积和静电荷,可以与工质分子产生物理或化学吸附作用。
常见的吸附剂有活性炭、硅胶、分子筛等。
工质是吸附制冷的核心,它是通过吸附剂与外界交互完成制冷循环的物质。
根据工质类型的不同,吸附制冷可分为化学吸附制冷和物理吸附制冷两种。
化学吸附制冷是指通过水吸收、水解或氢气和氧气形成水和氢物质,从而实现冷却。
它的主要工作循环包括:1. 吸附工质:在低温情况下,吸附剂吸附工质。
2. 加热解除吸附:在较高的温度下,加热吸附剂迫使工质脱离吸附剂。
3. 冷却回收工质:工质被冷凝器冷却并回收了。
4. 再生吸附剂:吸附剂需要再次回到其初始状态。
物理吸附制冷是指通过物理吸附机制使工质与吸附剂相结合,实现冷却。
物理吸附制冷的工作循环与化学吸附制冷相似,只是制冷方式和工质类型的不同。
物理吸附制冷的工质有乙烷、丙烷、甲烷和氢气等。
二、吸附制冷技术的特点与优点1. 噪音低:吸附制冷系统没有压缩机,因此产生的噪音要比传统制冷技术的噪音低。
2. 可以利用太阳能等可再生能源:利用太阳能、风能等可再生能源驱动吸附制冷系统,可以进一步减少碳排放,实现环保目标。
3. 操作简单:吸附制冷技术不需要机械调节和维护。
当控制良好时,它可以实现自动化操作。
4. 维护费用低:吸附制冷系统的零部件很少,因此维护和保养成本很低。
吸附的分类
吸附的分类吸附是一种物质与另一种物质之间的作用力,使得前者能够附着在后者的表面上。
吸附可以分为物理吸附和化学吸附两种类型。
一、物理吸附物理吸附又称为低温吸附,是指在较低温度下发生的吸附现象。
物理吸附的特点是吸附剂与被吸附物之间的作用力较弱,主要是范德华力。
物理吸附通常发生在气体与固体之间或液体与固体之间的接触界面上。
物理吸附在许多领域都有广泛的应用。
例如在环境保护方面,物理吸附可以用来去除空气中的污染物。
通过将活性炭等吸附剂暴露在空气中,吸附剂表面的孔隙结构能够有效地吸附并去除空气中的有害气体。
此外,物理吸附还可以用于气体的分离和储存。
在工业领域,物理吸附可以用来提取和纯化天然气中的甲烷等有用物质。
二、化学吸附化学吸附是指在较高温度下发生的吸附现象。
化学吸附的特点是吸附剂与被吸附物之间的作用力较强,主要是化学键的形成。
化学吸附通常发生在气体与固体之间或液体与固体之间的接触界面上。
化学吸附在许多领域都有重要的应用。
例如在催化剂领域,化学吸附是催化反应发生的基础。
催化剂通过吸附反应物分子,使其形成中间体,从而促进反应的进行。
化学吸附还可以用于废水处理和储能技术等方面。
通过将吸附剂放入废水中,吸附剂表面的活性位点能够与废水中的污染物发生化学反应,将其转化为无害物质。
在储能技术中,化学吸附可以用来储存氢气等能源,以便在需要时释放出来。
除了物理吸附和化学吸附之外,还有其他一些特殊类型的吸附。
例如生物吸附是指生物体对某些物质的吸附作用。
生物吸附广泛应用于生物工程和环境科学领域,用于废水处理、生物传感器等方面。
另外,离子交换吸附是指通过离子交换树脂等吸附剂,将溶液中的离子吸附下来并释放出其他离子。
离子交换吸附在水处理和药物制剂等领域有重要的应用。
吸附作为一种物质间的作用力,具有广泛的应用。
不论是物理吸附、化学吸附还是其他特殊类型的吸附,都在各个领域发挥着重要的作用。
通过研究吸附的机理和特性,我们可以更好地利用吸附现象来解决实际问题,推动科技的发展和社会的进步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、吸附式制冷的吸附剂--制冷剂工质对有哪些?
1.1理想工质对:
吸附制冷工质对应该满足以下的几点要求:(1)吸附容量大;(2)制冷剂的蒸发
潜热大,工质对的吸附热小;(3)吸附剂的吸附对温度的变化敏感;(4)吸附等温线
比较平坦;(5)具有良好的导热性和扩散性;(6)整个系统能够处于正压的操作;(7)
工质对要有良好的化学稳定性以及热稳定性;(8)制冷剂要求无毒性、无腐蚀性、无污染;(9)来源容易,价廉易得、
1.2现有工质对
吸附剂一般为固体介质,
物理吸附常使用分子筛-水、活性炭-甲醇、活性炭-氨等制冷工质对,(分子间范
德华力)
化学吸附常使用氯化钙-氨、氯化镍-氨、金属氢化物等制冷工质对。
(化学键作
用)
①以活性炭为吸附剂活性炭一甲醇、活性炭一氨、活性炭--乙醇、活性
炭--水、活性炭--R11、活性炭-R12、活性炭一R22、活性炭--R113、活性炭--
R114、活性炭一R318等;
②以沸石分子筛为吸附剂沸石分子筛一水、沸石分子筛一氨、沸石分子
筛一甲醇、沸石分子筛--R11、沸石分子筛-R12、沸石分子筛-R22、沸石分子筛-
R114等;
③以硅胶为吸附剂硅胶-水、硅胶--甲醇、硅胶一二氧化硫、硅胶一丙
酮、硅胶-乙醇、硅胶-二乙基胺;
④以无机盐为吸附剂氯化钙一氨、氯化锶一氨、硫氰酸钠--氨、氯化银
一氨、氯化锰一氨等。
(化学吸附)
2、物理式吸附的特点是什么,在暖通空调行业的应用有哪些?
物理吸附是借助分子间力,吸附力弱,吸附热小(8~20kJ/mol),接近于气体的液
化热,且是可逆的,无选择性,分子量越大越容易发生,吸附稳定性不高,吸附与
解吸速率都很快,可单分子层或多分子层吸附,不需要活化能。
制冷工质对:分子筛-水、活性炭-甲醇、活性炭-氨等
2.1以活性炭为吸附剂的工质对
优点:
活性炭具有非极性的表面,为疏水性和亲有机物的吸附剂,具有高度多孔结构,大比
表面积。
它的吸附容量大,解吸容易,化学稳定性和热稳定性好,长期操作后仍能基本保
持原有的吸附性能,已被广泛应用。
在吸附式制冷循环中,活性炭系列工质对大多具有较
高的制冷系数.
在活性炭系列工质对中,活性炭,甲醇被认为是最有前途的工质对。
甲醇分子直径小,易于吸附,蒸发潜热较大,更重要的是甲醇能在0℃以下蒸发,要求的脱附温度不高,具有较好的系统性能,非常适合在太阳能制冰机中使用
缺点:
在温度大于150℃时,甲醇在活性炭存在的情况下会发生反应.反应产物二甲醚CCH3-
O-CH3)的性质与甲醇有很大差异,在系统操作工况下,二甲醚为气态,成为系统中的不凝
性气体,破坏了系统的真空度,使传热传质性能恶化。
据称铜也有类似的催化作用,在选
择设备材质时应引起注意。
此外,甲醇是一种毒性较大的化学物质,大量吸入可致人死亡,使用时应严格防止泄漏,尤其不宜在小型密闭空间、特别是有震动的场所如汽车、船舱内
使用。
系统需要负压操作也使设备的密封问题较为突出,直接影响设备的使用寿命及大面
积推广。
(可以用乙醇替代)
2.2以沸石分子筛为吸附剂的工质对
可以看出,沸石吸水量大,对温度变化敏感,曲线为非线性,吸附能力不至于随压力有大幅度下降,所以能维持体系的压力在较低的水平,而达到制冷效果。
沸石一水工质对最
常用于热源温度较高的废热回收制冷或热泵循环。
而NaY-H20, 13X-H20是其中较为理想
的组合。
其解析温度范围较宽(70一250℃),吸附热(3200-4200kJ/kg),蒸发潜热(2400一
2600kJ/kg)。
沸石一水性能稳定,在高温下不起反应,且经过多次的吸附一解析后,吸附性能基本不变。
因沸石一水的解析温度较高,温度的变化范围大,冷凝温度的升高对系统的制冷
量和COP影响不大,所以沸石-水吸附工质对比较适合用在舰船、汽车、工程机械的尾气加
热吸附制冷空调方面。
2.3以硅胶为吸附剂的工质对
硅胶是一种坚硬无定形链状和网状结构的硅
酸聚合物颗粒,其分子式为Si02·nH20,为一种亲水性的极性吸附剂。
当硅胶吸附体
中的水分时,可达其自身重量的50%。
硅胶价格低,人们对其性状较为熟。
硅胶一水工质对属于低温工质对(高于120℃时,硅胶会被烧毁失去吸附能力),所以硅胶
一水工质对适用于低温热源驱动的制冷循环,其吸附热大约为2500kJ/kg。
而且硅胶可以永
久使用,具有免更换的特点。
随着硅胶一水吸附式制冷研究的深人,从理论到产品的开发已
达到了一定的水平,日本的硅胶一水吸附制冷机已经实现了商业化。
3、化学式吸附的特点是什么,在暖通空调行业的应用有哪些?
化学吸附与一般的化学反应相似,是借助于化学键力,遵从化学热力学和化学动力
学的传统定律,具有选择性特征,吸附热大(40~800kJ/mol),吸附很稳定,一般
是不可逆的,尤其是饱和烃分子的解离吸附更是如此,吸附是单分子层的,具有饱
和性。
化学吸附常使用制冷工质对:氯化钙-氨、氯化镍-氨、金属氢化物等
3.1以无机盐为吸附剂的工质对
以无机盐为吸附剂所组成的工质对,其吸附过程发生的是化学吸附。
与分子间范德华力引起的物理吸附不同,化学吸附是固体表面与被吸附物质间化学键力起作
用的结果,吸附和脱附过程伴随着化学反应。
CaCl2-NH3和SrC12-NH3是其中性能
较优的工质对,其制冷量大,制冷系数较高,所需驱动热源温度较低。
更重要的是
系统在稍高于常压的正压下运行,工程特性较易保证。
NH3是最常用的致冷剂之一,人们对其性质非常熟悉,
且不对环境产生破坏作用。
设备可采用普通低碳钢制造,价格低廉,NH3在无水条
件下对设备的腐蚀轻微。
在太阳能吸附式制冷工况下,1 mol CaC12可驱动6 mol
NH3用于制冷,而1 mol SrC12可驱动7 mol NH3。
K. Speidel等对SrC12 NH3系统进行了研究并研制出太阳能吸附式制冷样机,其样机采用2.1㎡太阳能真空管集热器和自然空冷冷凝器,在反应器中装填了
7.2kgSrC12,获得满意的制冷效果。
也门认为,该样机具有优良的制冷性能,对环
境条件要求不高,可在日间40-45℃、夜间30℃条件下运行,尤其适合于环境温度
较高的热带、亚热带贫困地区使用,预计设备寿命可达20年。
研究结果显示出这
类工质对广阔的应用前景。
与其它制冷方式和工质对相比,以CaCl2-NH,和SrCl2-NH3为工质对的化学吸附式制冷存在以下明显的优势:
(1)采用环境友好工质对,不对臭氧层及环境产生破坏;
(2)对驱动热源品位要求不高,适合采用太阳育色及低温余热;
(3)可100%使用热能驱动制冷,适用于贫困、边远、落后的无电地区;
(4)用太阳能驱动时,对昼夜温差要求不高,可用于环境温度较高的热带、
亚热带地区;
(5)系统在稍高于常压的正压下操作,工程特性易于保证;
(6)对设备材料要求不高,设备成本较低;
(7)能获得0℃以下的冷量,可用于制冰:
(8)工质间相容性好,可长期运行;
(9)与同样是热能驱动的吸收式制冷相比,本系统无运动部件,无吸收精馏等设备,无溶液泵,无需使用辅助电源,结构简单可靠,制造、操作、维护方便。