高三文科数学复习单元检测试题28

合集下载

高三文科数学试卷电子版

高三文科数学试卷电子版

第1页 共4页 ◎ 第2页 共4页…………外………………内……………○……在※※装※※订※※线………○……第II卷(非选择题)二、填空题(共4题,每题5分,共20分)13.若(x2+a)(x+x)8的展开式中x8的系数为9,则a的值为.14.北宋时期的科学家沈括在他的著作《梦溪笔谈》一书中提出一个有趣的问题,大意是:酒店把酒坛层层堆积,底层摆成长方形,以后每上一层,长和宽两边的坛子各少一个,堆成一个棱台的形状(如图1),那么总共堆放了多少个酒坛?沈括给出了一个计算酒坛数量的方法——隙积术,设底层长和宽两边分别摆放a,b个坛子,一共堆了n层,则酒坛的总数S=ab+(a-1)(b-1)+(a-2)(b-2)+…+(a-n+1)(b-n+1).现在将长方形垛改为三角形垛,即底层摆成一个等边三角形,向上逐层等边三角形的每边少1个酒坛(如图2),若底层等边三角形的边上摆放10个酒坛,顶层摆放1个酒坛,那么酒坛的总数为.15.定义:如果函数f(x)在[a,b]上存在x1,x2(a<x1<x2<b)满足f'(x1)=f'(x2)=f(b)-f(a)b-a,则称函数f(x)是[a,b]上的“中值函数”.已知函数f(x)=13x3-12x2+m是[0,m]上的“中值函数”,则实数m的取值范围是.16.设函数f(x)=exx+a(x-1)+b(a,b∈R)在区间[1,3]上总存在零点,则a2+b2的最小值为.三、解答题(共6题,共70分)17.已知数列{a n}的各项均为正数,S n为其前n项和,且4S n=a n2+2a n-3.(1)求数列{a n}的通项公式;(2)若T n=a1+1S1−a3+1S3+a5+1S5-…+(-1)n+1a2n-1+1S2n-1,比较T n与1的大小.18.已知△ABC的内角A,B,C的对边分别为a,b,c,且2a sin(C+π6)=b+c.(1)求角A的大小;(2)若a=√7,BA⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ =-3,角A的平分线交边BC于点T,求AT的长.19.垃圾是人类生产和生活中产生的废弃物,由于排出量大,成分复杂多样,且具有污染性,因此需要无害化、减量化处理.某市为调查产生的垃圾数量,采用简单随机抽样的方法抽取20个镇进行分析,得到样本数据(x i,y i)(i=1,2,…,20),其中x i和y i分别表示第i个镇的人口(单位:万人)和该镇年垃圾产生总量(单位:吨),并计算得∑i=120x i=80,∑i=120y i=4 000,∑i=120(x i-x¯)2=80,∑i=120(y i-y¯)2=8 000,∑i=120(x i-x¯)(y i-y¯)=700.(1)请用相关系数说明该组数据中y与x之间的线性相关程度;(2)求y关于x的线性回归方程;(3)某机构有两款垃圾处理机器,其中甲款机器每台售价100万元,乙款机器每台售价80万元,下表是这两款垃圾处理机器的使用年限(整年)统计表:根据以往经验可知,某镇每年可获得政府支持的垃圾处理费用为50万元,若仅考虑购买机器的成本和每台机器的使用年限(使用年限均为整年),以频率估计概率,该镇选择购买哪一款垃圾处理机器更划算?参考公式:相关系数r=∑i=1n(x i-x¯)(y i-y¯)√∑i=1(x i-x¯)2∑i=1(y i-y¯)2,对于一组具有线性相关关系的数据(x i,y i)(i=1,2,…,n),其回归直线y^=b^x+a^的斜率和截距的最小二乘估计分别为b^=∑i=1nx i y i−nx-y-∑i=1nx i2−nx-2,a^=y-−b^x-.20.如图,已知各棱长均为2的直三棱柱ABC-A1B1C1中,E为AB的中点.(1)求证:BC1∥平面A1EC;(2)求点B1到平面A1EC的距离.21.已知椭圆C:y2a2+x2b2=1(a>b>0)的离心率为√22,且椭圆上一点到两个焦点的距离之和为2√2.(1)求椭圆C的标准方程.(2)过点S(-13,0)的动直线l交椭圆C于A,B两点,试问:在x轴上是否存在一个定点T,使得无论直线l如何转动,以AB为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,请说明理由.22.已知函数f(x)=lnx,g(x)=-12x.(1)令F(x)=ax·f(x)-2x2·g(x),讨论F(x)的单调性;(2)设φ(x)=f(x)x-g(x),若在(√e,+∞)上存在x1,x2(x1≠x2)使不等式|φ(x1)-φ(x2)|≥k|lnx1-lnx2|成立,求k的取值范围.第3页共4页◎第4页共4页参考答案1.D【解析】解法一 因为A ={x ||x |≤3}={x |-3≤x ≤3},(题眼)(方法点拨:含有一个绝对值的不等式的解法口诀是“大于在两边,小于在中间”,即|x |≤a 的解集是{x |-a ≤x ≤a },|x |≥a 的解集是{x |x ≤-a 或x ≥a })B ={x |x ≤2},所以A ∩B ={x |-3≤x ≤2},故选D.解法二 因为3∉B ,所以3∉(A ∩B ),故排除A,B;因为-3∈A 且-3∈B ,所以-3∈(A ∩B ),故排除C.故选D. 【备注】无 2.B【解析】解法一 z =4-3i 2-i=(4-3i)(2+i)(2-i)(2+i)=11-2i 5=115−25i,所以|z |=√(115)2+(-25)2=√5,(题眼)故选B.解法二 |z |=|4-3i2-i |=|4-3i||2-i|=√42+(-3)2√22+(-1)2=√5=√5,故选B.(方法总结:若z 1,z 2∈C ,则|z 1z 2|=|z 1|·|z 2|,|z1z 2|=|z 1||z 2|(|z 2|≠0)) 【备注】无3.A【解析】解法一 由sin x =1,得x =2k π+π2(k ∈Z ),则cos (2k π+π2)=cos π2=0,故充分性成立;又由cosx =0,得x =k π+π2(k ∈Z ),而sin(k π+π2)=1或-1,故必要性不成立.所以“sin x =1”是“cos x =0”的充分不必要条件,(判断充分、必要条件应分三步:(1)确定条件是什么,结论是什么;(2)尝试从条件推结论(充分性),从结论推条件(必要性);(3)确定条件和结论是什么关系)故选A.解法二 由sin x =1,得x =2k π+π2 (k ∈Z ),则cos(2k π+π2)=cos π2=0,故充分性成立;又cos 3π2=0,sin 3π2=-1,故必要性不成立.所以“sin x =1”是“cos x =0”的充分不必要条件,故选A. 【备注】无 4.A【解析】由题可知,数列{a n }是首项为29、公比为12的等比数列,所以S n =29[1-(12)n ]1-12=210-210-n,T n =29×28×…×210-n=29+8+…+(10-n )=2n(19-n)2,由T n >S n ,得2n(19-n)2>210-210-n,由n(19-n)2≥10,可得n 2-19n +20≤0,结合n ∈N *,可得2≤n ≤17,n ∈N *.当n =1时,S 1=T 1,不满足题意;当n ≥18时,n(19-n)2≤9,T n ≤29,S n =210-210-n>210-1>29,所以T n <S n ,不满足题意.综上,使得T n >S n 成立的n 的最大正整数值为17. 【备注】无 5.B【解析】依题意,1=a 2+b 2-2a ·b =1+1-2a ·b ,故a ·b =12,所以(a -b )·(b -c )=a ·b -b 2-(a -b )·c =(b -a )·c -12=|b -a ||c |·cos<b -a ,c >-12≤1-12=12,当且仅当b -a 与c 同向时取等号.所以(a -b )·(b -c )的最大值为12.故选B.【备注】无 6.D【解析】由已知可得∠xOP =∠P 0OP -∠P 0Ox =π2t -π3,所以由三角函数的定义可得y =3sin∠xOP =3sin(π2t -π3),故选D.【备注】无 7.B【解析】本题主要考查古典概型、排列与组合等知识,考查的学科素养是理性思维、数学应用. “礼、乐、射、御、书、数”六节课程不考虑限制因素有A 66=720(种)排法,其中“数”排在前两节,“礼”和“乐”相邻排课的排课方法可以分两类:①“数”排在第一节,“礼”和“乐”两门课程相邻排课,则有C 41A 22A 33=48(种)排法;②“数”排在第二节,“礼”和“乐”两门课程相邻排课,则有C 31A 22A 33=36(种)排法.(方法总结:解决排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置))故“数”排在前两节,“礼”和“乐”相邻排课的排法共有48+36=84(种),所以“数”排在前两节,“礼”和“乐”相邻排课的概率P =84720=760,故选B. 【备注】无 8.C【解析】解法一 由已知可得AA 1⊥底面ABC ,且AC ⊥BC ,所以V A -PBC =V P -ABC =13×S △ABC ×PA =13×12×3×4×PA =4,解得PA =2.在平面ACC 1A 1内,过点C 1作C 1H ⊥PC ,垂足为H ,如图.由CC 1⊥底面ABC ,可得CC 1⊥BC ,因为AC ⊥BC ,AC ∩CC 1=C ,所以BC ⊥平面ACC 1A 1,所以BC ⊥C 1H ,又C 1H ⊥PC ,PC ∩BC =C ,所以C 1H ⊥平面PBC ,连接BH ,故∠C 1BH 就是直线BC 1与平面PBC 所成的角.在矩形ACC 1A 1中,CP =√CA 2+AP 2=√42+22=2√5,sin∠C 1CH =cos∠PCA =AC CP =2√5=√5=C 1H CC 1=C 1H 3,故C 1H =3×√5=√5.故在△BC 1H中,sin∠C 1BH =C 1HBC 1=√53√2=√105,所以直线BC 1与平面PBC 所成角的正弦值等于√105.故选C.解法二 由已知得AA 1⊥底面ABC ,且AC ⊥BC ,所以V A -PBC =V P -ABC =13×S △ABC ×PA =13×12×3×4×PA =4,解得PA =2.如图,以C 为坐标原点,分别以CB⃗⃗⃗⃗⃗ ,CA ⃗⃗⃗⃗⃗ ,C C_1的方向为x ,y ,z 轴的正方向建立空间直角坐标系,则C (0,0,0),P (0,4,2),B (3,0,0),C 1(0,0,3),则CB⃗⃗⃗⃗⃗ =(3,0,0),CP ⃗⃗⃗⃗⃗ =(0,4,2),B ⃗ C_1=(-3,0,3).设平面BCP 的法向量为n =(x ,y ,z ),则由{n ⊥CB⃗⃗⃗⃗⃗ ,n ⊥CP⃗⃗⃗⃗ 可得{n·CB ⃗⃗⃗⃗⃗ =3x =0,n·CP ⃗⃗⃗⃗ =4y +2z =0,即{x =0,2y +z =0,得x =0,令y =1,得z =-2,所以n =(0,1,-2)为平面BCP 的一个法向量.设直线BC 1与平面PBC 所成的角为θ,则sin θ=|cos<n ,B ⃗ C_1>|=|n·B⃗⃗ C_1||n||B⃗⃗ C_1|=√(-3)2+32×√12+(-2)2=√105.故选C.【备注】求直线与平面所成角的方法:(1)定义法,①作,在直线上选取恰当的点向平面引垂线,确定垂足的位置是关键;②证,证明所作的角为直线与平面所成的角,证明的主要依据是直线与平面所成角的概念;③求,利用解三角形的知识求角.(2)向量法,sin θ=|cos<AB ⃗⃗⃗⃗⃗ ,n >|=|AB ⃗⃗⃗⃗⃗⃗·n||AB ⃗⃗⃗⃗⃗⃗||n|(其中AB 为平面α的斜线,n 为平面α的法向量,θ为斜线AB 与平面α所成的角).9.B【解析】本题主要考查集合以及自定义问题的解题方法;G =N,⊕为整数的加法时,对任意a,b ∈N ,都有a ⊕b ∈N ,取c =0,对一切a ∈G ,都有a ⊕c =c ⊕a =a ,G 关于运算⊕为“融洽集”. 【备注】无 10.D【解析】对于A,甲街道的测评分数的极差为98-75=23,乙街道的测评分数的极差为99-73=26,所以A 错误;对于B,甲街道的测评分数的平均数为75+79+82+84+86+87+90+91+93+9810=86.5,乙街道的测评分数的平均数为73+81+81+83+87+88+95+96+97+9910=88,所以B 错误;对于C,由题中表可知乙街道测评分数的众数为81,所以C 错误;对于D,甲街道的测评分数的中位数为86+872=86.5,乙街道的测评分数的中位数为87+882=87.5,所以乙的中位数大,所以D 正确. 故选D. 【备注】无 11.A【解析】本题考查函数的图象与性质,数形结合思想的应用,考查考生分析问题、解决问题的能力. 解法一 易知x =0是方程|x |-a (x 3+3x 2)=0的一个根,显然x ≠-3,当x ≠0且x ≠−3时,由|x |-a (x 3+3x 2)=0,得a =|x|x 3+3x 2,设g (x )=|x|x 3+3x 2,则g (x )的图象与直线y =a 有3个不同的交点.当x >0时,g (x )=1x 2+3x ,易知g (x )在(0,+∞)上单调递减,且g (x )∈(0,+∞).当x <0且x ≠-3时,g (x )=-1x 2+3x,g'(x )=2x+3(x 2+3x)2,令g'(x )>0,得-32<x <0,令g'(x )<0,得−3<x <−32或x <−3,所以函数g (x )在(−∞,−3)和(−3,−32)上单调递减,在(−32,0)上单调递增,且当x 从左边趋近于0和从右边趋近于−3时,g (x )→+∞,当x 从左边趋近于-3时,g (x )→−∞,当x →−∞时,g (x )→0,可作出函数g (x )的大致图象,如图所示,由图可知,a >49.综上,实数a 的取值范围是(49,+∞).解法二 易知x =0是方程|x |-a (x 3+3x 2)=0的一个根,当x ≠0时,由|x |-a (x 3+3x 2)=0,得1|x|=a (x +3),则该方程有3个不同的根.在同一坐标系内作出函数y =1|x|和y =a (x +3)的图象,如图所示.易知a >0,当y =a (x +3)与曲线y =1|x|的左支相切时,由-1x=a (x +3)得ax 2+3ax +1=0,Δ=(3a )2-4a =0,得a =49.由图可知,当a >49时,直线y =a (x +3)与曲线y =1|x|有3个不同的交点,即方程1|x|=a (x +3)有3个不同的根.综上,实数a 的取值范围是(49,+∞).【备注】【方法点拨】利用方程的根或函数零点求参数范围的方法及步骤:(1)常规思路:已知方程的根或函数的零点个数,一般利用数形结合思想转化为两个函数图象的交点个数,这时图象一定要准确,这种数形结合的方法能够帮助我们直观解题.(2)常用方法:①直接法——直接根据题设条件构建关于参数的不等式,通过解不等式确定参数范围;②分离参数法——先将参数分离,转化成求函数的值域问题加以解决;③数形结合法——先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.(3)一般步骤:①转化——把已知函数零点的存在情况转化为方程的解或两函数图象的交点的情况;②列式——根据零点存在性定理或结合函数图象列式;③结论——求出参数的取值范围或根据图象得出参数的取值范围 12.B【解析】因为圆x 2+y 2=a 2与双曲线的渐近线在第一象限的交点为M ,所以∠A 1MA 2=90°,tan∠MOA 2=ba,所以∠PMA 2=90°.因为△MPA 2是等腰三角形,所以∠MA 2P =45°.因为∠PA 2M 的平分线与y 轴平行,所以∠OA 2M =∠PA 2x ,又∠OA 2M +∠A 2MO +∠MOA 2=180°,∠OA 2M =∠A 2MO ,所以∠MOA 2=∠MA 2P =45°,(题眼)所以b a=tan∠MOA 2=1,所以C 的离心率e =c a =√a 2+b 2a 2=√1+b 2a 2=√2.故选B.【备注】无 13.1【解析】二项式(x +1x )8的展开式中,含x 6的项为C 81x 7(1x )1=8x 6,含x 8的项为C 80x 8(1x )0=x 8,所以(x 2+a )(x +1x)8的展开式中,x 8的系数为8+a =9,解得a =1.【备注】无 14.220【解析】根据题目中已给模型类比和联想,得出第一层、第二层、第三层、…、第十层的酒坛数,然后即可求解.每一层酒坛按照正三角形排列,从上往下数,最上面一层的酒坛数为1,第二层的酒坛数为1+2,第三层的酒坛数为1+2+3,第四层的酒坛数为1+2+3+4,…,由此规律,最下面一层的酒坛数为1+2+3+…+10,所以酒坛的总数为1+(1+2)+(1+2+3)+…+(1+2+3+…+10)=1+3+6+…+55=220. 【备注】无 15.(34,32)【解析】由题意,知f '(x )=x 2-x 在[0,m ]上存在x 1,x 2(0<x 1<x 2<m ),满足f '(x 1)=f '(x 2)=f(m)-f(0)m=13m 2-12m ,所以方程x 2-x =13m 2-12m 在(0,m )上有两个不相等的解.令g (x )=x 2-x-13m 2+12m (0<x <m ),则{Δ=1+43m 2-2m >0,g(0)=-13m 2+12m >0,g(m)=23m 2-12m >0,解得34<m <32.【备注】无16.e 48 【解析】设x 0为函数f (x )在区间[1,3]上的零点,则e x 0x 0+a (x 0-1)+b =0,所以点(a ,b )在直线(x 0-1)x +y +e x 0x 0=0上,(题眼)而a 2+b 2表示坐标原点到点(a ,b )的距离的平方,其值不小于坐标原点到直线(x 0-1)x +y +e x 0x 0=0的距离的平方,(名师点拨:直线外一点到直线上的点的距离大于等于该点到直线的距离)即a 2+b 2≥e 2x 0x 02(x 0-1)2+12=e 2x 0x 04-2x 03+2x 02.令g (x )=e 2xx 4-2x 3+2x 2,x ∈[1,3],则g'(x )=2e 2x (x 4-2x 3+2x 2)-e 2x (4x 3-6x 2+4x)(x 4-2x 3+x 2)2=2x(x-1)2(x-2)e 2x (x 4-2x 3+x 2)2,则当1≤x <2时,g'(x )<0,当2<x ≤3时,g'(x )>0,所以函数g (x )在区间[1,2)上单调递减,在区间(2,3]上单调递增,所以g (x )min =g (2)=e 48,所以a 2+b 2≥e 48,所以a 2+b 2的最小值为e 48. 【备注】无17.解:(1)令n =1,则4a 1=a 12+2a 1-3,即a 12-2a 1-3=0,解得a 1=-1(舍去)或a 1=3.因为4S n =a n 2+2a n -3 ①,所以4S n +1=a n+12+2a n +1-3 ②,②-①,得4a n +1=a n+12+2a n +1-a n 2-2a n ,整理得(a n +1+a n )(a n +1-a n -2)=0, 因为a n >0,所以a n +1-a n =2,所以数列{a n }是首项为3、公差为2的等差数列,所以a n =3+(n -1)×2=2n +1.(2)由(1)可得,S n =(n +2)n ,a 2n -1=4n -1,S 2n -1=(2n +1)(2n -1), 所以a 2n-1+1S 2n-1=4n (2n+1)(2n-1)=12n-1+12n+1.当n 为偶数时,a 1+1S 1−a 3+1S 3+a 5+1S 5-…+(-1)n+1a 2n-1+1S 2n-1=(1+13)-(13+15)+(15+17)-…-(12n-1+12n+1) =1-12n+1<1; 当n 为奇数时,a 1+1S 1−a 3+1S 3+a 5+1S 5-…+(-1)n+1a 2n-1+1S 2n-1=(1+13)-(13+15)+(15+17)-…+(12n-1+12n+1)=1+12n+1>1.综上,当n 为偶数时,T n <1;当n 为奇数时,T n >1. 【解析】无 【备注】无 18.无【解析】(1)由已知及正弦定理,得2sin A sin(C +π6)=sin B +sin C ,所以sin A cos C +√3sin A sin C =sinB +sin C.(有两角和或差的正弦(余弦)形式,并且其中有一个角是特殊角时,常常将其展开) 因为A +B +C =π,所以sin B =sin(A +C ),所以sin A cos C +√3sin A sin C =sin(A +C )+sin C ,则sin A cos C +√3sin A sin C =sin A cos C +cos A sin C +sin C ,即√3sin A sin C =sin C cos A +sin C.因为sin C ≠0,所以√3sin A =cos A +1,即sin(A -π6)=12. 因为0<A <π,所以A =π3.(2)由BA ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =-3可知cb cos 2π3=-3,因此bc =6. 由a 2=b 2+c 2-2bc cos∠BAC =(b +c )2-2bc -bc =7,可得b +c =√7+3×6=5. 由S △ABC =S △ABT +S △ACT 得,12bc sin π3=12c ·AT ·sin π6+12b ·AT ·sin π6,(与角平分线相关的问题,常常利用三角形的面积来解决)因此AT =bcsinπ3(b+c)sinπ6=6×√325×12=6√35. 【备注】无19.解:(1)由题意知,相关系数r =∑i=120(x i -x ¯)(y i -y ¯)√∑i=1(x i -x ¯)2∑i=1(y i -y ¯)2=√80×8 000=78=0.875, 因为y 与x 的相关系数接近于1,所以y 与x 之间具有较强的线性相关关系.(2)由题意可得,b ^=∑i=120(x i -x ¯)(y i -y ¯)∑i=120(x i-x ¯)2=70080=8.75,a ^=y -−b ^x -=4 00020-8.75×8020=200-8.75×4=165,所以y ^=8.75x +165.(将变量x ,y 的平均值代入线性回归方程,求得a ^)(3)以频率估计概率,购买一台甲款垃圾处理机器节约政府支持的垃圾处理费用X (单位:万元)的分布列为E (X )=-50×0.1+0×0.4+50×0.3+100×0.2=30(万元).购买一台乙款垃圾处理机器节约政府支持的垃圾处理费用Y (单位:万元)的分布列为E (Y )=-30×0.3+20×0.4+70×0.2+120×0.1=25(万元).因为E (X )>E (Y ),所以该镇选择购买一台甲款垃圾处理机器更划算.(根据已知数据,分别计算随机变量X 和Y 的分布列、期望,期望越大,说明节约费用的平均值越大,也就越划算)【解析】本题主要考查变量相关性分析、线性回归方程的求解、概率的计算以及随机变量期望的意义和求法,考查的学科素养是理性思维、数学应用.第(1)问,由已知数据,代入相关系数公式,求得相关系数r 即可判断x 和y 的相关程度;第(2)问,根据最小二乘估计公式,求得b ^,a ^的值,从而确定y 关于x 的线性回归方程;第(3)问,根据统计数据计算随机变量X 和Y 的分布列,并分别求期望,由期望的意义可知,数值越大表示节约的垃圾处理费用的平均值越大,从而确定购买哪一款垃圾处理机器. 【备注】无20.(1)如图,连接AC 1交A 1C 于点O ,连接OE ,则BC 1∥OE.(题眼)BC 1∥OEOE ⊂平面A 1EC BC 1⊄平面A 1EC }⇒BC 1∥平面A 1EC.(运用直线与平面平行的判定定理时,关键是找到平面内与已知直线平行的直线)(2)如图,连接A 1B ,则V A 1-ACE =12V A 1-ABC =12×13V ABC-A 1B 1C 1=12×13×√34×22×2=√33.(题眼) 根据直三棱柱的性质,易得A 1A ⊥平面ABC ,因为CE ⊂平面ABC ,所以AA 1⊥CE .因为E 为AB 的中点,△ABC 为正三角形,所以CE ⊥AB. 又AA 1∩AB =A ,AA 1,AB ⊂平面ABB 1A 1,所以CE ⊥平面ABB 1A 1, 因为A 1E ⊂平面ABB 1A 1,所以A 1E ⊥CE .在Rt△A 1CE 中,A 1E ⊥CE ,A 1C =2√2,A 1E =√5,EC =√3,所以S △A 1CE =12×√5×√3=√152. 设点A 到平面A 1EC 的距离为h ,则点B 1到平面A 1EC 的距离为2h .因为V A 1-ACE =V A-A 1CE =13×S △A 1CE ×h ,(点到平面的距离可转化为几何体的体积问题,借助等体积法来解决.等体积法:轮换三棱锥的顶点,体积不变;利用此特性,把三棱锥的顶点转换到易于求出底面积和高的位置是常用方法) 所以h =2√55,即点A 到平面A 1EC 的距离为2√55, 因此点B 1到平面A 1EC的距离为4√55.【解析】无【备注】高考文科数学对立体几何解答题的考查主要设置两小问:第(1)问通常考查空间直线、平面间的位置关系的证明;第(2)问通常考查几何体体积的计算,或利用等体积法求点到平面的距离.21.解:(1)由椭圆的定义可得2a =2√2,则a =√2, ∵椭圆C 的离心率e =ca =√22,∴c =1,则b =√a 2-c 2=1,∴椭圆C 的标准方程为y 22+x 2=1.(2)当直线l 不与x 轴重合时,设直线l 的方程为x =my -13,A (x 1,y 1),B (x 2,y 2),T (t ,0),(由于存在直线l 与x 轴重合的情形,故需进行分类讨论) 由{x =my-13y 22+x 2=1消去x 并整理,得(18m 2+9)y 2-12my -16=0,Δ=144m 2+64(18m 2+9)=144(9m 2+4)>0恒成立,则y 1+y 2=12m 18m 2+9=4m 6m 2+3,y 1y 2=-1618m 2+9. 由于以AB 为直径的圆恒过点T ,则TA ⊥TB ,TA⃗⃗⃗⃗⃗ =(my 1-t -13,y 1),TB ⃗⃗⃗⃗⃗ =(my 2-t -13,y 2), 则TA ⃗⃗⃗⃗⃗ ·TB ⃗⃗⃗⃗⃗ =(my 1-t -13)(my 2-t -13)+y 1y 2 =(m 2+1)y 1y 2-m (t +13)(y 1+y 2)+(t +13)2=-16(m 2+1)-m(t+13)×12m18m 2+9+(t +13)2=(t +13)2-(12t+20)m 2+1618m 2+9=0,∵点T 为定点,∴t 为定值,∴12t+2018=169,(分析式子结构,要使此式子的取值与m 无关,必须要将含有m 的相关代数式约去,通常采用分子与分母的对应项成比例即可解决) 解得t =1,此时TA⃗⃗⃗⃗⃗ ·TB ⃗⃗⃗⃗⃗ =(43)2-169=0,符合题意. 当直线l 与x 轴重合时,AB 为椭圆C 的短轴,易知以AB 为直径的圆过点(1,0).综上所述,存在定点T (1,0),使得无论直线l 如何转动,以AB 为直径的圆恒过定点T .【解析】本题主要考查椭圆的定义及几何性质、直线与椭圆的位置关系,考查的学科素养是理性思维、数学探索.(1)首先由椭圆的定义求得a 的值,然后根据离心率的公式求得c 的值,从而求得b 的值,进而得到椭圆C 的标准方程;(2)当直线l 不与x 轴重合时,设直线l 的方程为x =my -13,A (x 1,y 1),B (x 2,y 2),T (t ,0),与椭圆方程联立,得到y 1+y 2,y 1y 2,由题意得出TA⃗⃗⃗⃗⃗ ·TB ⃗⃗⃗⃗⃗ =0,然后根据平面向量数量积的坐标运算及T 为定点求得t 的值,当直线l 与x 轴重合时,验证即可,最后可得出结论. 【备注】无22.(1)∵F (x )=ax ·f (x )-2x 2·g (x ),∴F (x )=x +ax ·ln x , ∴F'(x )=1+a +a ln x .①当a =0时,F (x )=x ,函数F (x )在(0,+∞)上单调递增;②当a >0时,函数F'(x )=1+a +a ln x 在(0,+∞)上单调递增,令F'(x )=1+a +a ln x =0,得x =e-1-1a>0,∴当x ∈(0,e -1-1a )时,F'(x )<0,当x ∈(e -1-1a ,+∞)时,F'(x )>0,所以当a >0时,F (x )在(0,e -1-1a )上单调递减,在(e-1-1a,+∞)上单调递增;③当a <0时,函数F'(x )=1+a +a ln x 在(0,+∞)上单调递减,令F'(x )=1+a +a ln x =0,得x =e-1-1a>0,∴当x ∈(0,e -1-1a )时,F'(x )>0,当x ∈(e -1-1a ,+∞)时,F'(x )<0,∴F (x )在(0,e -1-1a )上单调递增,在(e -1-1a ,+∞)上单调递减. (2)由题意知,φ(x )=lnx x+12x,∴φ'(x )=1-lnx x 2−12x 2=1-2lnx 2x 2,令φ'(x )=0,得x =√e ,∴x >√e时,φ'(x )<0,∴φ(x )在(√e ,+∞)上单调递减.不妨设x 2>x 1>√e ,则φ(x 1)>φ(x 2),则不等式|φ(x 1)-φ(x 2)|≥k |ln x 1-ln x 2|等价于φ(x 1)-φ(x 2)≥k (ln x 2-ln x 1),即φ(x 1)+k ln x 1≥φ(x 2)+k ln x 2.令m (x )=φ(x )+k ln x ,则m (x )在(√e ,+∞)上存在单调递减区间, 即m'(x )=φ'(x )+kx=-2lnx+2kx+12x 2<0在(√e ,+∞)上有解,即-2ln x +2kx +1<0在(√e ,+∞)上有解,即在(√e ,+∞)上,k <(2lnx-12x)max .令n (x )=2lnx-12x(x >√e ),则n'(x )=3-2lnx 2x 2(x >√e ),由 n'(x )=0得x =e 32, ∴函数n (x )=2lnx-12x在(√e ,e 32)上单调递增,在(e 32,+∞)上单调递减.∴n (x )max =n (e 32)=2ln e 32-12e 32=e -32,∴k <e -32.故k 的取值范围为(-∞,e -32).【解析】本题考查利用导数研究函数的单调性和最值,考查分类讨论思想、化归与转化思想的灵活应用,考查考生的运算求解能力以及运用所学知识分析问题和解决问题的能力.(1)通过对函数求导,对参数进行分类讨论,来讨论函数的单调性;(2)依据函数的单调性将不等式转化为函数存在单调递减区间,最后转化为函数的最值问题来解决.【备注】【素养落地】本题将函数、不等式等知识融合起来,借助导数研究函数的性质,考查逻辑推理、数学运算等核心素养.【技巧点拨】解决本题第(2)问的关键是化归与转化思想的应用,先利用函数的单调性将不等式转化为φ(x1)+k ln x1≥φ(x2)+k ln x2,然后根据式子的结构特征构造函数m(x)=φ(x)+k ln x,将m(x)在(√e,+∞))max.上存在单调递减区间转化为m'(x)<0在(√e,+∞)上有解,进而转化为k<(2lnx-12x。

文科数学测试28

文科数学测试28

图1乙甲75187362479543685343212014届高三数学测试题(二十八)文科数学一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若bi i i -=⋅-44)2(,(i 是虚数单位,b 是实数),则b =( ) A .4- B .4C .8-D .82.下列说法错误..的是 ( ) A .若p q ∧为假命题,则p 、q 均为假命题. B .“1=x ”是“2320x x -+=”的充分不必要条件.C .命题“若2320x x -+=则1=x ”的逆否命题为:“若1x ≠,则2320x x -+≠”.D .命题p :x R ∃∈,使得210x x ++<. 则p ⌝:x R ∀∈, 均有210x x ++≥. 3. 已知cos tan 0θθ∙<,那么角θ是( )A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第一或第四象限角4.数列}{n a 为等差数列,=+=+=+526341,9,21a a a a a a 则( )A .12B .25C .16D .155. 图1是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数之和是( ) A .65 B .64 C .63 D .62 6.如图,一个简单空间几何体的三视图其主视图 与侧视图都是边长为2的正三角形,俯视图轮廓为正方形,则此几何体的表面积是( ) A .12 B .443+C .43D .87.条件:2p a ≤,条件:(2)0q a a -≤,则p ⌝是q ⌝的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件8.若双曲线()222213x y a o a -=>的离心率为2,则a 等于( )俯视图主视图侧视图否否3y x =-开输入x 1x <-3x ≤是2y x =1y x =+是输出y结A. 2B. 3C. 32D. 1 9.函数f (x )=1xx +的最大值为( ) (A)25(B)12(C)22(D)110.已知A 、B 、C 是△ABC 的三个顶点,2AB AB AC AB CB BC CA =⋅+⋅+⋅ ,则△ABC 为 ( ). A .等腰三角形 B .直角三角形 C.等腰直角三角形 D .既非等腰又非直角三角形二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11. 曲线324y x x =-+在点(13),处的切线的倾斜角为 .12.运行右边算法流程,若x 输入2时,输出y 的值为________ .13.已知函数23,0() 1.0x x f x x x -⎧>⎪=⎨-≤⎪⎩,则[(2)]f f -= .(二)选做题(14~15题,考生只能从中选做一题,)14.(坐标系与参数方程选做题)在极坐标系中,圆4sin ρθ=的圆心的极坐标是 15.(几何证明选讲选做题)如图,⊙O 中,ABCD 是圆内接四边形,∠110BOC = , 则∠BDC 的度数是三、 解答题:本大题共6小题,共80分。

2019年高考数学一轮复习(文科)训练题:天天练28Word版含解析.docx

2019年高考数学一轮复习(文科)训练题:天天练28Word版含解析.docx

天天练28直线与平面的平行与垂直一、选择题1. (2018-湖北省重点中学一联)设皿〃是两条不同的直线,g "是两个不同的平面,下列命题中正确的是( ) 答案:D解析:选项A,若a 丄卩,mUa, nUp,则可能加丄弘m//n, 若m, 〃异面,故A 错误;选项B,若么〃0, tnUa, “U#,则m// n, 或加,刃异面,故B 错误;选项C,若加丄/?, mUa, nUR,则a 与 〃可能相交,平行,或垂直,故C 错误;选项D,若加丄a, m//n, 贝U 〃丄a,再由YI 〃B 可得aJL0,因此D 正确.故选D.2. (2018-泉州质检)已知直线a, b,平面a, 0, aUa, bug 贝!Ju a//p, h//p v 是 u a///r 的( )A ・充分不必要条件B ・必要不充分条件C ・充耍条件D.既不充分也不必耍条件答案:B解析:因为直线Q, b 不一定相交,所以Q 〃0, b///3不一定能够 得到a 〃0;而当a//p 时,a//p, b///3 一定成立,所以“a 〃0, b//^ 是u a//[i ”的必要不充分条件.3・(2018-湖北八校联考(一))如图所示,在四边形ABCD 中, AD//BC, AD=AB, ZBCD=45。

, ZB AD=90% 将沿 BQ 折 起,使得平面48D 丄平面BCD,构成四面体A —BCD,则在四面体/ — BCD 中,下列说法正确的是()A. 平面力3D 丄平面ABCB. 平面/CD 丄平面BCDC. 平面/BC 丄平面BCD A. 若 a_L0, 加u a, nF , B. 若 a//p, mUa, C. 若加丄〃, mUa, nU/3, D. 若加丄a, m// n, n//p, /7〃0 〃 丄〃丄丄 m m a a —J —J d u 貝则贝贝D・平面ACD丄平面/3Q答案:D解析:由题意可知,/D 丄AB, AD=AB,所以ZABD=45°9故 ZDBC=45。

甘肃省兰州市2023届高三下学期诊断考试文科数学试题(含答案解析)

甘肃省兰州市2023届高三下学期诊断考试文科数学试题(含答案解析)

甘肃省兰州市2023届高三下学期诊断考试文科数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.{}5A x x =∈N 是不大于的奇数,{}3,2,3B =-,则集合A B ⋃=()A .{}3,1,3,5-B .{}3,1,2,3-C .{}3,1,2,3,5-D .{}32.已知复数z 满足()13i 24i z -=+,则z =()A .1i--B .1i+C .1i-+D .2i -+3.2022年8—12月某市场上草莓价格(单位:元/千克)x 的取值为:12,16,20,24,28,市场需求量(单位:百千克)0.520y x =-+,则市场需求量的方差为()A .8B .4C .D .24.18世纪数学家欧拉研究调和级数得到了以下的结果:当n 很大时,1111ln 23n n γ+++⋅⋅⋅+=+(常数0.557γ=⋅⋅⋅).利用以上公式,可以估计111100011000220000++⋅⋅⋅+的值为()A .()4ln 210⨯B .4ln 2+C .4ln 2-D .ln 25.已知点P 在圆22:40C x x y -+=上,其横坐标为1,抛物线()220x py p =->经过点P ,则抛物线的准线方程是()A .6y =B .12x =C .6x =D .12y =6.已知0a >,0b >2a 与2b 的等比中项,则11a b+的最小值是()A .8B .4C .3D .27.已知命题p :“若直线//a 平面α,平面//α平面β,则直线//a 平面β”,命题q :“棱长为a 的正四面体的外接球表面积是23π2a”,则以下命题为真命题的是()A .p q ∨B .p q∧C .()p q ∨⌝D .()()p q ⌝∧⌝8.如图是某算法的程序框图,若执行此算法程序,输入区间[]1,5内的任意一个实数x ,则输出的[]8,20x ∈的概率为()A .14B .34C .12D .139.攒尖是中国古建筑中屋顶的一种结构形式,常见的有圆形攒尖、三角攒尖、四角攒尖、六角攒尖等,多见于亭阁式建筑,兰州市著名景点三台阁的屋顶部分也是典型的攒尖结构.如图所示是某研究性学习小组制作的三台阁仿真模型的屋顶部分,它可以看作是不含下底面的正四棱台和正三棱柱的组合体,已知正四棱台上底、下底、侧棱的长度(单位:dm )分别为2,6,4,正三棱柱各棱长均相等,则该结构表面积为()A .28dmB .244dmC .248dm +D .28dm +10.若将函数()πcos 2cos 23f x x x ⎛⎫=++ ⎪⎝⎭的图象向左平移π6个单位,再向上平移1个单位,得到函数()y g x =的图象,则关于函数()y g x =的四个结论不正确...的是()A .()g x 的最小正周期为πB .()g x 在区间ππ,62⎡⎤⎢⎥⎣⎦上的最小值为12-C .()g x 在区间ππ,46⎡⎤-⎢⎥⎣⎦上单调递减D .()g x 的图象对称中心为π,12k ⎛⎫⎪⎝⎭11.已知双曲线()2222:10,0x y C a b a b-=>>的一条渐近线上存在关于原点O 对称的两点M 和N ,若双曲线的左、右焦点12,F F 与,M N 组成的四边形为矩形,若该矩形的面积为2,则双曲线的离心率为()AB CD 12.已知函数()()()()()()()f x x a x b x b x c x c x a =--+--+--,其中sin6a π=,33sin cos44b =,c =,则以下判断正确的是()A .函数()f x 有两个零点()1212,x x x x <,且()()110x b x c --<,()()220x b x c -->B .函数()f x 有两个零点()1212,x x x x <,且()()110x a x b --<,()()220x a x b -->C .函数()f x 有两个零点()1212,x x x x <,且()()110x b x c --<,()()220x a x b --<D .函数()f x 只有一个零点0x ,且()()000x a x b -->,()()000x b x c --<二、填空题13.在梯形ABCD 中,//AB CD ,0AD AB ⋅= ,112AD CD AB === ,则BC CD ⋅= ______.14.如图,圆锥的轴截面SAB 是边长为a 的正三角形,点,C D 是底面弧AB 的两个三等分点,则SC 与BD 所成角的正切值为______.15.用长度为1,4,8,9的4根细木棒围成一个三角形(允许连接,不允许折断),则其中某个三角形外接圆的直径可以是______(写出一个答案即可).16.定义:如果任取一个正常数T ,使得定义在R 上的函数()y f x =对于任意实数x ,存在非零常数m ,使()()f x T m f x +=,则称函数()y f x =是“ξ函数”.在①21y x =+,②3212x y -⎛⎫= ⎪⎝⎭,③3y x =,④()ln 1y x =-这四个函数中,为“ξ函数”的是______(只填写序号).三、解答题17.已知数列{}n a ,11a =,对任意的i *∈N 都有n i n a a i +-=.(1)求{}n a 的通项公式;(2)数列{}n b 满足:12n nn n b ab a ++=,且11b =,求数列{}n b 的前n 项和n S .18.如图所示的五边形SBADC 中ABCD 是矩形,2BC AB =,SB SC =,沿BC 折叠成四棱锥S ABCD -,点M 是BC 的中点,2SM =.(1)在四棱锥S ABCD -中,可以满足条件①SA =cos5SBM ∠=;③sin SAM ∠=,请从中任选两个作为补充条件,证明:侧面SBC ⊥底面ABCD ;(注:若选择不同的组合分别解答,则按第一个解答计分.)(2)在(1)的条件下求点M 到平面SAD 的距离.19.2022年第22届世界杯足球赛在卡塔尔举行,这是继韩日世界杯之后时隔20年第二次在亚洲举行的世界杯足球赛,本届世界杯还是首次在北半球冬季举行的世界杯足球赛.每届世界杯共32支球队参加,进行64场比赛,其中小组赛阶段共分为8个小组,每个小组的4支队伍进行单循环比赛共计48场,以积分的方式产生16强,之后的比赛均为淘汰赛,1/8决赛8场产生8强,1/4决赛4场产生4强,半决赛两场产生2强,三四名决赛一场,冠亚军决赛一场.下表是某五届世界杯32进16的情况统计:欧洲球队美洲球队非洲球队亚洲球队32强16强32强16强32强16强32强16强1131094515121310105514031361085240414108550515138835263合计66444525256245(1)根据上述表格完成列联表:16强非16强合计欧洲地区其他地区合计并判断是否有95%的把握认为球队进入世界杯16强与来自欧洲地区有关?(2)已知某届世界杯比赛过程中已有2支欧洲球队进入8强并相遇,胜者进入4强,此时球迷预测还将有3支欧洲球队,2支美洲球队,1支亚洲球队进入8强,并在这6支球队中两两对决进行3场比赛,产生剩下的三个4强席位,求欧洲球队不碰面的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++,()2P K k ≥0.0500.0100.001k3.8416.63510.82820.已知12,F F 是椭圆()2222:10x y E a b a b +=>>的左、右焦点,12B B 是椭圆的短轴,菱形1122F B F B 的周长为8,面积为E 的焦距大于短轴长.(1)求椭圆E 的方程;(2)若P 是椭圆E 内的一点(不在E 的轴上),过点P 作直线交E 于,A B 两点,且点P 为AB的中点,椭圆()22122:10x y E m n m n +=>>的离心率为2,点P 也在1E 上,求证:直线AB与1E 相切.21.已知函数()()ln ln N n f x x x n x n *=-∈.(1)当1n =时,求函数()y f x =的单调区间;(2)当1n >时,函数()y f x =的图象与x 轴交于P ,Q 两点,且点Q 在右侧.若函数()y f x =在点Q 处的切线为()y g x =,求证:当1x >时,()()f x g x ≥.22.在平面直角坐标系xOy 中,曲线1C 的参数方程为cos 1sin x y θθ=⎧⎨=+⎩(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos a ρρθ=+,其中1a >-.(1)当0a =时曲线1C 与曲线2C 交于M 、N 两点,求线段MN 的长度;(2)过点()3,1P -的直线l的参数方程为3,12x y ⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数)与曲线2C 交于A 、B 两点,若1PA PB ⋅=,求实数a .23.已知()212f x x x =++-.(1)解不等式()4f x ≥;(2)若对于任意正实数x ,不等式()10f x ax +->恒成立,求实数a 的取值范围.参考答案:1.C【分析】列举法表示集合A ,根据并集定义可得结果.【详解】{}13,5A = ,,{}3,2,3B =-,{}3,1,2,3,5A B ∴=- .故选:C.2.C【分析】根据复数除法规则计算即可.【详解】()()()()()24i 13i 24i 13i 24i 1i13i 13i 13i z z +++-=+⇒===-+--+故选:C.3.A【分析】由草莓价格x 的方差结合方差的性质得出市场需求量的方差.【详解】1(1216202428)205x =⨯++++=,则草莓价格x 的方差为222221(1220)(1620)(2020)(2420)(2820)325⎡⎤⨯-+-+-+-+-=⎣⎦.因为0.520y x =-+,所以市场需求量的方差为2(0.5)328-⨯=.故选:A 4.D【分析】所求式子为1111111123200002310000⎛⎫⎛⎫+++⋅⋅⋅+-+++⋅⋅⋅+ ⎪ ⎪⎝⎭⎝⎭,根据已知中的公式直接计算即可.【详解】1111111111110001100022000023200002310000⎛⎫⎛⎫++⋅⋅⋅+=+++⋅⋅⋅+-+++⋅⋅⋅+ ⎪ ⎪⎝⎭⎝⎭()20000ln 20000ln10000ln 20000ln10000ln ln 210000γγ=+-+=-==.故选:D.5.D【分析】结合圆的方程可求得P 点坐标,代入抛物线方程可确定p 的值,进而确定准线方程.【详解】将1x =代入圆C 方程得:23y =,解得:y =(P ∴或(1,P ,P 在抛物线()220x py p =->上,1∴=-或1=,解得:p =p =,∴抛物线方程为2x y =,∴抛物线的准线方程为:y =.故选:D.6.B【分析】利用等比中项的性质得到1a b +=,再利用基本不等式“1”的妙用即可得解.是2a 与2b 的等比中项,所以222a b =⋅,即22a b +=,所以1a b +=,又0a >,0b >,所以()111111224b a a b a b a b a b ⎛⎫+=++=+++≥+ ⎪⎝⎭,当且仅当ba ab=且1a b +=,即12a b ==时取等号.所以11a b+的最小值为4.故选:B .7.A【分析】根据线面的关系判断命题p 的真假,根据正四面体外接球的表面积公式计算判断命题q 的真假,结合复合命题真假的判断方法即可求解.【详解】命题p :若//a α,α//β,则//a β或a ⊂β,故命题p 为假命题;命题q :将正四面体补成一个正方体,则正方体的棱长为2,对角线长为2,所以外接球的表面积为223π4π42a ⎛⎫= ⎪ ⎪⎝⎭,故命题q 为真命题.所以命题p q ∨为真命题,命题()()()p q p q p q ∧∨⌝⌝∧⌝、、为假命题.故选:A.8.B【详解】由程序框图可知:输入[]01,5x ∈,当1n =时,满足循环体,执行循环体,0x =∈,2n =,当2n =时,满足循环体,执行循环体,此时02[2,10]x x =∈,3n =,当3n =时,满足循环体,执行循环体,此时0x =∈,4n =,当4n =时,满足循环体,执行循环体,此时04[4,20]x x =∈,5n =,当5n =时,不满足循环体,退出循环,由几何概型,得输出[8,20]x ∈的概率为20832044-=-.故选:B.9.A【分析】根据三棱柱和棱台表面积公式计算即可.【详解】由题可得正三棱柱的底面积为:2122sin 602⨯⨯⨯︒=,正三棱柱的外露表面积为:222228⨯⨯=+,=,四棱台外露表面积为:()214262⨯⨯+⨯=,该结构表面积为:288dm +.故选:A 10.B【分析】根据三角恒等变换公式,可得()π26f x x ⎛⎫=+ ⎪⎝⎭,再由函数图象的平移法则得()g x ,然后根据正弦函数的图象与性质,逐项分析选项,即可.【详解】因为()π13πcos 2cos 2cos 2cos 22cos 2223226f x x x x x x x x x ⎛⎫⎛⎫=++=+==+ ⎪ ⎪⎝⎭⎝⎭,所以()πππ212121662g x x x x ⎡⎤⎛⎫⎛⎫=+++=++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.对于A :2ππ2T ==,故A 正确;对于B :由ππ,62⎡⎤⎢⎥⎣⎦知,π2,π3x ⎡⎤∈⎢⎥⎣⎦,所以sin 2[0,1]x ∈,所以()g x 在区间ππ,62⎡⎤⎢⎥⎣⎦上的最小值为1B 错误;对于C :令ππππ2,,,2244x x ⎡⎤⎡⎤∈-∈-⎢⎥⎢⎥⎣⎦⎣⎦,因为ππππ,,4644⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦,所以()g x 在区间ππ,46⎡⎤-⎢⎥⎣⎦上单调递减,故C 正确;对于D :令2π,Z x k k =∈,π,Z 2k x k =∈,所以()g x 的图象对称中心为π,12k ⎛⎫⎪⎝⎭,故D 正确.故选:B 11.C【分析】设()(),,0M m n m n >,根据矩形对角线长相等和矩形面积可构造方程组,化简得到关于,a c 的齐次方程,解方程可求得离心率.【详解】由双曲线方程知其渐近线方程为:by x a=±,不妨设,M N 在by x a =上,设()(),,0M m n m n >,则(),N m n --,b n m a∴=, 四边形12F MF N 为矩形,122MN F F c ∴==,222m n c ∴+=,矩形12F MF N的面积221442MOF S S ==⨯= ,∴由22222b n m a m n c cn ⎧=⎪⎪+=⎨⎪=⎪⎩得:422460c a c a --=,即4260e e --=,解得:23e =,e ∴=故选:C.12.B【分析】由已知可得12a =,12b <,12c >,进而利用零点存在性定理可得结论.【详解】解:因为π1sin62a ==,331311sin cos sin sin 4422222πb ==<=,又3πcos cos 044>>,所以1113ln e 222c =>=,即c a b >>,又()()()()()()()()()0f a a a a b a b a c a c a a a b a c =--+--+--=--<,()()()()()()()()()0f b b a b b b b b c b c b a b c b a =--+--+--=-->,()()()()()()()()()0f c c a c b c b c c c c c a c a c b =--+--+--=-->,则()()0f a f b <,()()0f a f c <,又()()()()()()()f x x a x b x b x c x c x a =--+--+--为定义域R 上的连续函数,所以函数()f x 必有两个不相同的零点,∴存在1(,)x b a ∈,使得1()0f x =,且11()()0x a x b --<,存在2(,)x a c ∈,使得2()0f x =,22()()0x a x c --<,22()()0x a x b -->,∴函数()f x 有两个零点1x ,212()x x x <,且11()()0x a x b --<,22()()0x a x b -->.故选:B .13.1【分析】以A 为坐标原点建立平面直角坐标系,利用数量积的坐标运算可求得结果.【详解】0AD AB ⋅=,AD AB ∴⊥,则以A 为坐标原点,,AB AD正方向为,x y 轴,可建立如图所示平面直角坐标系,则()2,0B ,()1,1C ,()0,1D ,()1,1BC ∴=- ,()1,0CD =-,()()11101BC CD ∴⋅=-⨯-+⨯=.故答案为:1.14【分析】易证得//OC BD ,由异面直线所成角定义可知所求角为SCO ∠,由长度关系可求得结果.【详解】设圆锥底面圆心为O ,连接,,OC OD OS ,,C D 为弧AB 的两个三等分点,π3COD BOD ∴∠=∠=,又OB OD =,OBD ∴△为等边三角形,π3ODB COD ∴∠=∠=,//OC BD ∴,SCO ∴∠即为异面直线SC 与BD 所成角,SO ⊥ 平面ABCD ,OC ⊂平面ABCD ,SO OC ∴⊥,2SO == ,122a OC AB ==,2tan 2a SO SCO a OC ∴∠===即SC 与BD15【分析】根据三角形性质确定三边边长,利用余弦定理和正弦定理计算出对应三角形外接圆的直径.【详解】4根细木棒围成一个三角形的三边长可以为5,8,9,设边长为9的边所对的角为θ,由余弦定理可知:2564811cos 25810θ+-==⨯⨯,因为()0,πθ∈,所以sin θ=由正弦定理知,92sin 11R θ==,所以其中某个三角形外接圆的直径可以是11..16.②【分析】根据“ξ函数”,依次判断各选项中的()()f x T f x +是否为常数即可.【详解】对于①,令()21f x x =+,则()()221212121f x T x T Tf x x x +++==+++,不是常数,21y x ∴=+不是“ξ函数”;对于②,令()3212x f x -⎛⎫= ⎪⎝⎭,则()()332332112212x T T x f x T f x +--⎛⎫⎪+⎛⎫⎝⎭== ⎪⎝⎭⎛⎫ ⎪⎝⎭为常数,3212x y -⎛⎫∴= ⎪⎝⎭是“ξ函数”;对于③,令()3f x x =,则()()()3322322333333331f x T x T x T x T x T T x T x T f x x x x +++⋅++⋅++===+,不是常数,3y x ∴=不是“ξ函数”;对于④,令()()ln 1f x x =-,则()()()()ln 1ln 1f x T x T f x x ++-=-,不是常数,()ln 1y x ∴=-不是“ξ函数”.故答案为:②.【点睛】关键点点睛:本题考查函数中的新定义问题的求解,解题关键是能够充分理解“ξ函数”的定义,即()()f x T f x +为常数的函数,从而根据运算法则来求解即可.17.(1)n a n =(2)21n n S n =+【分析】(1)取1i =,即可证得数列{}n a 为等差数列,由等差数列通项公式可求得n a ;(2)利用累乘法可求得n b ,采用裂项相消法可求得n S .【详解】(1) 对任意的i *∈N ,都有n i n a a i +-=,∴当1i =时,11n n a a +-=,又11a =,∴数列{}n a 是以1为首项,1为公差的等差数列,n a n ∴=.(2)由(1)得:12n n b nb n +=+,∴当2n ≥时,()1232112321123212111431n n n n n n n b b b b b n n n b b b b b b b n n n n n --------=⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⨯⋅⋅⋅⨯⨯⨯=+-+,又11b =满足()21n b n n =+,()211211nb n n n n ⎛⎫∴==- ++⎝⎭,111111111122121223341111n n S n n n n n n ⎛⎫⎛⎫∴=-+++⋅⋅⋅+-+-=-=⎪ ⎪-+++⎝⎭⎝⎭.18.(1)条件选择见解析,证明见解析【分析】(1)选条件①②,利用勾股定理逆定理证得SM AM ⊥,由等腰三角形的几何性质可得出SM BC ⊥,利用线面和面面垂直的判定定理可证得结论成立;选条件①③,利用正弦定理推导出SM AM ⊥,,由等腰三角形的几何性质可得出SM BC ⊥,利用线面和面面垂直的判定定理可证得结论成立;选条件②③,利用余弦定理求出SA 的长,利用勾股定理逆定理证得SM AM ⊥,由等腰三角形的几何性质可得出SM BC ⊥,利用线面和面面垂直的判定定理可证得结论成立;(2)计算出三棱锥S ADM -的体积,计算出ASD 的面积,利用等体积法可求得点M 到平面SAD 的距离.【详解】(1)证明:方案一:选条件①②.因为在四棱锥S ABCD -中,SB SC =,点M 为BC 的中点,则SM BC ⊥,因为2SM =,在Rt SBM 中,cos BMSBM SB∠==,1BM ∴=,又因为四边形ABCD 为矩形,2BC AB =,则1BM AB ==,AM ===因为SA =AM =2SM =,所以,222SA AM SM =+,则SM AM ⊥,因为AM BC M = ,AM 、BC ⊂平面ABCD ,所以,SM ⊥平面ABCD ,因为SM ⊂平面SBC ,所以,侧面SBC ⊥平面ABCD ;方案二:选条件①③.因为在四棱锥S ABCD -中,SB SC =,点M 为BC 的中点,则SM BC ⊥,在SAM △中,SA =sin 3SAM ∠=,2SM =,由正弦定理可得sin sin SA SM SMA SAM=∠∠=,所以,sin 1SMA ∠=,所以,π2SMA ∠=,即SM AM ⊥,因为AM BC M = ,AM 、BC ⊂平面ABCD ,所以,SM ⊥平面ABCD ,因为SM ⊂平面SBC ,所以,侧面SBC ⊥平面ABCD ;方案三:选条件②③.因为在四棱锥S ABCD -中,SB SC =,点M 为BC 的中点,则SM BC ⊥,且2SM =,在Rt SBM 中,cos BMSBM SB∠==,1BM ∴=,又因为四边形ABCD 为矩形,2BC AB =,则1BM AB ==,所以,AM ===在SAM △中,sin 3SAM ∠=,则cos 3SAM ∠===,设SA x =,由余弦定理可得2222cos SM SA AM SA AM SAM =+-⋅∠,整理可得2360x --=,解得x =x =,所以,SA =,因为SA =AM =2SM =,所以,222SA AM SM =+,则SM AM ⊥,因为AM BC M = ,AM 、BC ⊂平面ABCD ,所以,SM ⊥平面ABCD ,因为SM ⊂平面SBC ,所以,侧面SBC ⊥平面ABCD .(2)解:在(1)的条件下,SM ⊥平面ABCD ,因为M 为BC 的中点,2SM =,1BM AB ==,在ADM △中,AM DM ==2AD =,则222AM DM AD +=,所以,AM DM ⊥,则211122ADM S AM DM =⋅=⨯=△,11212333S ADM ADM V S SM -=⋅=⨯⨯=△,在SAD 中,SA SD ==,2AD =,则2226642cos 2123SA SD AD ASD SA SD +-+-∠==⋅,所以,sin 3ASD ∠,所以,11sin 622ASD S SA SD ASD =⋅∠=⨯⨯△,设点M 到平面SAD 的距离为h ,由S ADM M ASD V V --=可得1233SAD S h ⋅=△,所以,2SADhS=△因此,点M到平面SAD19.(1)见解析(2)25【分析】(1)根据题意完成列联表,利用列联表求出2K,即可求解;(2)利用平均分组的方法求所有比赛的方法数,再由排列问题的应用求出欧洲球队不碰面的比赛方法数,再由古典概型概率公式.【详解】(1)解:根据上述表格完成列联表:16强非16强合计欧洲地区442266其他地区365894合计8080160所以22160(44582236)12.482 3.84180806694K⨯⨯-⨯==>⨯⨯⨯,所以有95%的把握认为球队进入世界杯16强与来自欧洲地区有关;(2)由题意,3支欧洲球队,2支美洲球队,1支亚洲球队这6支球队中两两对决进行3场比赛,一场比赛对应着将6个球队平均分成3组,每组2支球队的一种分组方法,共有22264233C C C15A=(种)比赛方法;若欧洲球队不碰面,可将3支欧洲球队看成三个空格,将2支美洲球队,1支亚洲球队在3个空格进行排列,一种排列方法对应着一种满足条件的比赛方法,共有336A=(种)排列,所以欧洲球队不碰面的比赛方法共有6种.故欧洲球队不碰面的概率为62.155P==20.(1)2214x y+=(2)证明见解析【分析】(1)根据菱形1122F B F B 的周长和面积可构造方程组求得,b c ,进而得到椭圆方程;(2)设:AB y kx t =+,与椭圆E 方程联立可得韦达定理的结论,结合中点坐标公式可求得P 点坐标;将AB 与椭圆1E 联立,可得1∆,由P 在椭圆1E 上可得等量关系,化简1∆可得10∆=,由此可得结论.【详解】(1) 菱形1122F B F B 的周长为8,面积为122248b c a ⎧⋅⋅=⎪∴⎨⎪=⎩222a b c =+,1b c ⎧=⎪∴⎨=⎪⎩或1b c =⎧⎪⎨=⎪⎩E 的焦距大于短轴长,即22c b >,1b c =⎧⎪∴⎨=⎪⎩24a ∴=,则椭圆E 的方程为:2214x y +=.(2)由题意知:直线AB 的斜率必然存在,可设其方程为:y kx t =+,由2214x y y kx t ⎧+=⎪⎨⎪=+⎩得:()222148440k x ktx t +++-=,设()()1122,,,A x y B x y ,则()2216140k t ∆=+->,即2214<+t k ,122814kt x x k ∴+=-+,21224414t x x k -=+,21212228221414k t ty y kx t kx t t k k ∴+=+++=-+=++,224,1414kt t P k k ⎛⎫∴- ⎪++⎝⎭;椭圆1Ee ∴=224=m n ,2221:44E x y n ∴+=,由22244x y n y kx t ⎧+=⎨=+⎩得:()2222148440k x ktx t n +++-=,()()()22222222216441444164k t k tn k n n t ∴∆=-+-=+-,P 在椭圆1E 上,()()2222222216441414k t t n k k ∴+=++,整理可得:()22241t n k =+,()222222116440k n n k n n ∴∆=+--=,∴直线AB 与1E 相切.【点睛】关键点点睛:本题考查直线与椭圆位置关系的证明问题,解题关键是能够利用点在椭圆上得到变量之间所满足的等量关系,将等量关系代入判别式中进行化简整理即可得到直线与椭圆的位置关系.21.(1)递减区间是(0,1),递增区间是(1,)+∞;(2)证明见解析.【分析】(1)把1n =代入,利用导数求出函数的单调区间作答.(2)求出点Q 的坐标及切线()y g x =,再构造函数,利用导数探讨最小值作答.【详解】(1)当1n =时,函数()ln ln f x x x x =-的定义域为(0,)+∞,求导得1()ln 1f x x x=+-',显然()f x '在(0,)+∞上单调递增,而()01f '=,则当01x <<时()0f x '<,当1x >时,()0f x '>,所以函数()f x 的递减区间是(0,1),递增区间是(1,)+∞.(2),N 1n n *>∈,()0ln ln 0n f x x x n x =⇔-=,解得1x =或1n x n =,则1(,0)n Q n ,11()ln n n n f x nx x x x--'=+-,111111()ln ln n n n nnn nnnn f n n nn nnn n---'=⋅+-=,函数()y f x =的图象在点Q 处的切线11(ln )()n nny nn x n -=-,于是1()(ln )ln n ng x nn x n n -=-,当1x >时,令()()()h x f x g x =-,求导得111()()(n )l ln n n n nn nxx xn n h x f x g x x---'''=+--=-,当11nx n <<时,1110ln ,1n n n x n x n n--<<<<,则11ln ln n n n nx x n n --<,即11ln ln 0n n n nx x n n ---<,显然n x n <,即1n n x x -<,10n n x x --<,因此()0h x '<,函数()h x 在1(1,)n n 上单调递减,当1nx n >时,111ln ln ,n n n x n x n n-->>,则11ln ln n n n nx x n n -->,即11ln ln 0n n n nx x n n --->,显然n x n >,即1n n x x ->,10n n x x-->,因此()0h x '>,函数()h x 在1(,)n n +∞上单调递增,于是当1x >时,111()()()()0n n n h x h n f n g n ≥=-=,所以当1x >时,()()f x g x ≥.【点睛】思路点睛:函数不等式证明问题,将所证不等式等价转化,构造新函数,再借助函数的单调性、极(最)值问题处理.22.(2)3a =或5a =【分析】(1)求出曲线1C 和曲线2C 的直角坐标方程,根据几何关系和点到直线距离公式计算即可;(2)将参数方程代入曲线2C 的直角坐标方程中,根据韦达定理和直线参数t 的几何含义求解.【详解】(1)曲线1C 的直角坐标方程为:()2211x y +-=,圆心为()0,1,半径为1,当0a =时,曲线2C 的极坐标方程为22cos ρρθ=,转换为直角坐标方程为222x y x +=,相交弦所在的直线方程为:0x y -=,圆心()0,1到直线0x y -==,曲线1C 与曲线2C 交于M 、N 两点,线段MN的长度为:2(2)把直线l:3,212x t y t ⎧=+⎪⎪⎨⎪=-+⎪⎩(t 为参数)代入曲线2C :222x y x a +=+,得到:240t a +-=,所以124t t a =-,1PA PB ⋅=即41a -=,解得3a =或5a =.23.(1)[)4,0,3⎛⎤-∞-+∞ ⎥⎝⎦ (2)5,2⎛⎫-+∞ ⎪⎝⎭【分析】(1)分别在1x ≤-、12x -<<和2x ≥的情况下,去除绝对值符号解不等式即可;(2)将问题转化为()()1f x a g x x->=恒成立问题,通过分类讨论可得()max g x ,进而得到a的取值范围.【详解】(1)当1x ≤-时,()()21234f x x x x =-++-=-≥,解得:43x ≤-;当12x -<<时,()()21244f x x x x =++-=+≥,解得:02x ≤<;当2x ≥时,()()21234f x x x x =++-=≥,解得:2x ≥;()4f x ∴≥的解集为[)4,0,3⎛⎤-∞-+∞ ⎥⎝⎦ .(2)由0x >时,()10f x ax +->得:()1f x a x->,令()()1f x g x x -=,则()31,0213,2x xg x x x ⎧--<≤⎪⎪=⎨⎪-+>⎪⎩,当02x <≤时,()g x 单调递增,()()352122g x g ∴≤=--=-;当2x >时,()g x 单调递减,()()152322g x g ∴<=-+=-;()max 52g x ∴=-,52a ∴>-,即实数a 的取值范围为5,2⎛⎫-+∞ ⎪⎝⎭.。

2019届高三文科数学复习单元检测试题28

2019届高三文科数学复习单元检测试题28

新人教A 版数学高三单元测试28【合情推理与演绎推理】本卷共100分,考试时间90分钟一、选择题 (每小题4分,共40分)1. 按照下列三种化合物的结构式及分子式的规律,写出后一种化合物的分子式...是(A )94H C (B )114H C (C )104H C (D )124H C2. 四个小动物换座位,开始是猴、兔、猫、鼠分别坐在1、2、3、4号位置上(如图),第一次前后排动物互换位置,第二次左右列互换座位,……,这样交替进行下去,那么第2018次互换座位后,小兔的位置对应的是( )开始 第一次 第二次 第三次A.编号1B.编号2C.编号3D.编号44. 记集合3124234{0,1,2,3,4,5,6,7,8,9},{,1,2,3,4}10101010i a a a aT M a T i ==+++∈=,将M 中的元素按从大到小排列,则第2018个数是( )2345573.10101010A +++ 2345572.10101010B +++ 2347989.10101010C +++ 2347991.10101010D +++5. 黑白两种颜色的正六边形地面砖如图的规律拼成若干个图案,则第2018个图案中,白色地面砖的块数是 ( )A .8046B .8042C .4024D .60336. 如图.五角星魅力无穷,移动点由A 处按图中数字由小到大的顺序依次运动,当第一次结束回到A 处时,数字为6,按此规律无限运动,则数字2018应在A. B 处B. C 处C. D 处D. E 处 7. 下面几种推理过程是演绎推理的是 ( )A.某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人;B.由三角形的性质,推测空间四面体的性质;C.平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分;D.在数列}{n a 中,)1(21,1111--+==n n n a a a a ,由此归纳出}{n a 的通项公式.8. 已知0x >,由不等式221442,3,,22x x x x x x x +≥=+=++≥=可以推出结论:*1(),n ax n n N a x+≥+∈则=( )A .2nB .3nC .n2D .n n9. 为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息,设定原信息为}{),2,1,0(1,0,210=∈i a a a a i 传输信息为,12100h a a a h 其中201100,a h h a a h ⊕=⊕=,⊕运算规则为.011,101,110,000=⊕=⊕=⊕=⊕例如原信息为111,则传输信息为01111,传输信息在传输过程中受到干扰可能导致接受信息出错,则下列接受信息一定有误的是.A 11010.B 01100.C 10111.D 0001110. 下列推理过程是演绎推理的是( )A.两条直线平行,同旁内角互补,由此若,A B 行是两条平行直线被第三条直线所截得的同旁内角,则180AB ???B.某校高二(1)班有55人,高二(2)班有54人,高二(3)班有52人,由此得出高二所有班人数超过50人C.由平面三角形的性质,推测出空间四面体的性质D.在数列{}n a 中,1111,12()(2)1n n n a a a n a -==+?-,由此归纳出{}n a 的通项式 二、填空题 (共4小题,每小题4分)11. 观察下列的图形中小正方形的个数,则第6个图中有_______个小正方形,第n 个图中有 ________________个小正方形.12. 已知00a ≠,设方程010a x a +=的一个根是1x ,则110a x a =-,方程20120a x a x a ++=的两个根是12,x x ,则1120a x x a +=-,由此类推方程3201230a x a x a x a +++=的三个根是123,,x x x ,则123x x x ++= .13. 已知0>n a (n N *∈),①如果121=+a a ,那么2111a a +=)(21a a +)11(21a a +≥4;②如果1321=++a a a ,那么321111a a a ++=)(321a a a ++)111(321a a a ++≥9,类比①、②,如果14321=+++a a a a ,那么43211111a a a a +++≥ .14. 已知不等式222xy ax y ≤+对于[][]1,2,2,3x y ∈∈恒成立,则a 的取值范是 .三、解答题 (共4小题,共44分,写出必要的解题步骤) 15. (本小题满分10分)(1)求证:2567-<-; (2)已知函数f (x )= x e +12+-x x ,用反证法证明方程0)(=x f 没有负数根. 16. (本小题满分10分) 用数学归纳法证明:(31)(1)(2)()()2n n n n n n n *+++++++=∈N17. (本小题满分12分)若不等式111123124an n n +++>+++对一切正整数n 都成立,求正整数a 的最大值,并证明结论.18. (本小题满分12分) 已知c b a ,,均为实数,且62,32,22222πππ+-=+-=+-=x z c z y b y x a ,求证:c b a ,,中至少有一个大于0。

高三文科数学高考复习试题(附答案)

高三文科数学高考复习试题(附答案)

高三文科数学高考复习试题(附答案)考试是检测学生学习效果的重要手段和方法,考前需要做好各方面的知识储备。

下面是店铺为大家整理的高三文科数学高考复习试题,请认真复习!高三文科数学高考复习试题一、选择题:每小题只有一项是符合题目要求的,将答案填在题后括号内.1.函数y=log2x-2的定义域是( )A.(3,+∞)B.[3,+∞)C.(4,+∞)D.[4,+∞)2.设集合A={(x,y) | },B={(x,y)|y=2x},则A∩B的子集的个数是( )A.1B.2C.3D.43.已知全集I=R,若函数f(x)=x2-3x+2,集合M={x|f(x)≤0},N={x| <0},则M∩∁IN=( )A.[32,2]B.[32,2)C.(32,2]D.(32,2)4.设f(x)是R上的奇函数,当x>0时,f(x)=2x+x,则当x<0时,f(x)=( )A.-(-12)x-xB.-(12)x+xC.-2x-xD.-2x+x5.下列命题①∀x∈R,x2≥x;②∃x∈R,x2≥x;③4≥3;④“x2≠1”的充要条件是“x≠1或x≠-1”.其中正确命题的个数是( )A.0B.1C.2D.36. 已知下图(1)中的图像对应的函数为,则下图(2)中的图像对应的函数在下列给出的四个式子中,只可能是( )7.在用二分法求方程x3-2x-1=0的一个近似解时,现在已经将一根锁定在区间(1,2)内,则下一步可断定该根所在的区间为( )A.(1.4,2)B.(1,1.4)C.(1,32)D.(32,2)8.点M(a,b)在函数y=1x的图象上,点N与点M关于y轴对称且在直线x-y+3=0上,则函数f(x)=abx2+(a+b)x-1在区间[-2,2)上( )A.既没有最大值也没有最小值B.最小值为-3,无最大值C.最小值为-3,最大值为9D.最小值为-134,无最大值9.已知函数有零点,则的取值范围是( )A. B. C. D.二、填空题:将正确答案填在题后横线上.10.若全集U=R,A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则如图中阴影部分表示的集合为_______ _.11.若lga+lgb=0(a≠1),则函数f(x)=ax与g(x)=-bx的图象关于________对称.12.设 ,一元二次方程有正数根的充要条件是 = .13.若函数f(x)在定义域R内可导,f(2+x)=f(2-x),且当x∈(-∞,2)时,(x-2) >0.设a=f(1),,c=f(4),则a,b,c的大小为.14、已知。

高三下学期数学(文科)模拟考试卷(带参考答案与解析)

高三下学期数学(文科)模拟考试卷(带参考答案与解析)

高三下学期数学(文科)模拟考试卷(带参考答案与解析)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.答选择题时,则选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,则将答案写在答题卡上。

写在本试卷上无效。

3.本试卷共22题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中只有一项是符合题目要求的。

1.已知向量(2,1)a =和(3,2)b =,则()a a b ⋅-=( ) A .-5 B .-3C .3D .52.不等式312x >+的解集为( ) A .{1,2}x x x <≠- B .{1}x x >C .{21}x x -<<D .{21}x x x <->或3.直线x +ay -3=0与直线(a +1)x +2y -6=0平行,则a =( )A .-2B .1C .-2或1D .-1或24.古希腊科学家阿基米德发明了享誉世界的汲水器,称为阿基米德螺旋泵,两千多年后的今天,左图所示的螺旋泵,仍在现代工农业生产中使用,其依据是“阿基米德螺线”.在右图所示的平面直角坐标系xOy 中点A 匀速离开坐标系原点O ,同时又以固定的角速度绕坐标系原点O 逆时针转动,产生的轨迹就是“阿基米德螺线”,该阿基米德螺线与坐标轴交点依次为A 1(-1,0),A 2(0,-2),A 3(3,0),A 4(0,4),A 5(-5,0),…按此规律继续,若四边形123n n n n A A A A +++的面积为220,则n =( )A .7B .8C .9D .105.△ABC 中AC =,BC =和60A =︒,则cos B =( )A .2±B .12±C .12D .26.设函数()f x 满足(1)()0f x f x ++=,当0≤x <1时,则1()2xf x -=,则()0.5log 8f =( ) A .-2B .12-C .12D .27.若cos 0,2(sin 2)1cos2αααα≠+=+,则tan2α=( ) A .43-B .34-C .34D .438.设函数()y f x =由关系式||||1x x y y +=确定,函数(),0,()(),0.f x xg x f x x -≥⎧=⎨-<⎩,则( )A .g (x )为增函数B .g (x )为奇函数C .g (x )值域为[1,)-+∞D .函数()()y f x g x =--没有正零点二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分。

文科数学测试试题解析版(3月28日)

文科数学测试试题解析版(3月28日)

2 ,可得 BC CD ,
所以
BD
为三棱锥
A
BCD
外接球的直径,所以三棱锥
A
BCD
外接球的体积 V1
4π 3
23
32π 3
,当三
棱锥 A BCD 的体积最大时,平面 ABD 平面 BCD ,此时三棱锥 A BCD 的高为点 A 到 BD 的距离,
即 22 3 4
3
,所以三棱锥
A
BCD
的体积的最大值 V2
S△OCD
1 (1 2) 2 2
2 1 OD 2 1 OA1 3 2
2
2
2

即 1 (1 2) 2 2
2
1 2
2 1
2
2
1 2
2 1
2
1
3
2 2
,解得 1 .
所以当 OD 1时,三棱锥 B POC 的体积为 OA
3 .(12 分)
20.(本小题满分 12 分)
【解析】(1)易知直线 l 的斜率存在且不为零,设直线 l 的方程为 y k (x 4)(k 0) ,
6.C 【解析】由题图得, AB 3, BG 4 ,根据题意得, DI 32 42 5 .
五边形
AGFID
的面积为
S五边形AGFID
25
1 2
3 4
1 2
3 4
37

正方形 ABCD 的面积为 9.
因此,所求概率为 P 9 .故选 C. 37
7.C 【解析】圆 x2 y2 4x 2y 1 0 关于双曲线 C 的一条渐近线对称,则圆心 (2, 1) 在渐近线 y b x a
3
a b c 15 ,故选 C.

2021年高三数学(文科)高考总复习阶段测试卷(第28周) 含答案

2021年高三数学(文科)高考总复习阶段测试卷(第28周) 含答案

2021年高三数学(文科)高考总复习阶段测试卷(第28周)含答案说明:本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.总分150分,考试时间120分钟.注意事项:1.答第Ⅰ卷前,考生务必将自己姓名、考号、考试科目用2B铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案.3.将第Ⅰ卷选择题的答案涂在答题卡上,第Ⅱ卷每题的答案写在答题纸的指定位置.4.考试结束,将答题纸和答题卡一并交回,答案写在试卷上视为无效答案.参考公式:圆锥表面积公式:(是圆锥底面半径,是母线)圆锥体积公式:(是圆锥底面半径,是高)球体积公式:(R是球的半径)第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.已知集合,,则()A.B.C.D.2.命题“存在R,0”的否定是()A.不存在R,>0 B.存在R,0C.对任意的R,0 D.对任意的R,>03.已知:,则的大小关系为()A.B.C.D.4.有一个几何体的三视图及其尺寸如下(单位:cm),则该几何体的体积为:()C.cm3 D.cm3()D.“”的()B.必要不充分条件D.既不充分也不必要条件()A.B.C.D.8.已知点在曲线上,为曲线在点处的切线的倾斜角,则的取值范围是()A.B.C.D.9.已知数列是正项等比数列,是等差数列,且,则()A.B.C.D.10.已知向量,,那么= ()A.B.C.D.111.定义两种运算:,,则函数()A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数12.已知定义在上的函数满足,且,,有穷数列()的前项和等于, 则n等于()A.4 B.5 C.6 D.7第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在答题纸相应位置上.)13.函数的定义域为____________________.14.已知m>0,n>0,向量,且,则的最小值是 .15.对于函数,在使成立的所有常数中,我们把的最大值-1叫做的下确界,则函数的下确界为 .16.已知中,所对的边长分别为,则下列条件中能推出为锐角三角形的条件是_________. (把正确答案的序号都写在横线上)①. ②.③,. ④.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分10分)设函数,(Ⅰ)不等式的解集为,求的值;(Ⅱ)在(Ⅰ)的条件下,试求不等式的解集.18.(本题满分12分)已知函数.(I)求函数的最小正周期;(II)若不等式在上恒成立,求实数的取值范围.19.(本题满分12分)设数列的前项和为,对,都有成立,(Ⅰ) 求数列的通项公式;(Ⅱ)设数列,试求数列的前项和.20.(本题满分12分)如图,在平面直角坐标系中,点在轴的正半轴上,直线的倾斜角为,,设,.(Ⅰ)用表示;(Ⅱ)若,求的值.21.(本题满分12分)已知数列的各项都为正数,,前项和满足().(Ⅰ)求数列的通项公式;(Ⅱ)令(),数列的前项和为,若对任意正整数都成立,求实数的取值范围.22. (本题满分12分)已知函数().(Ⅰ)若,求在上的最大值;(Ⅱ)若,求的单调区间.参考答案:1.【答案】D【分析】根据集合的含义,把集合具体求出来,再根据集合的运算法则进行计算。

(北师大)2019届高考数学文科一轮复习单元评估检测全套试卷有答案(9套)

(北师大)2019届高考数学文科一轮复习单元评估检测全套试卷有答案(9套)

单元评估检测(一) 集合与常用逻辑用语(120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合U ={1,2,3,4,5,6},M ={1,3,5},则∁U M =( ) A .{2,4,6} B .{1,3,5} C .{1,2,4} D .UA2.(2017·武汉模拟)已知集合A ={y |y =x 2+1},B ={x ∈Z |x 2<9},则A ∩B =( ) A .{2} B .(-3,3) C .(1,3) D .{1,2}D3.命题“存在x 0∈∁R Q ,x 20∈Q ”的否定是( )【导学号:00090384】A .存在x 0∉∁R Q ,x 20∈Q B .存在x 0∈∁R Q ,x 20∉Q C .任意x ∉∁R Q ,x 2∈Q D .任意x ∈∁R Q ,x 2∉QD4.设A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <5,x ∈Z,B ={x |x ≥a }.若A ⊆B ,则实数a 的取值范围是( ) A .a <12B .a ≤12C .a ≤1D .a <1C5.使x 2>4成立的充分不必要条件是( ) A .2<x <4 B .-2<x <2 C .x <0 D .x >2或x <-2A6.(2017·郑州模拟)已知集合A ={x |ax =1},B ={x |x 2-x =0},若A ⊆B ,则由a 的取值构成的集合为( ) A .{1} B .{0} C .{0,1} D .∅C7.已知原命题:已知ab >0,若a >b ,则1a <1b,则其逆命题、否命题、逆否命题和原命题这四个命题中真命题的个数为( ) A .0 B .2 C .3 D .4D8.(2017·广州模拟)设等差数列{a n }的公差为d ,则a 1d >0是数列(3a 1a n )为递增数列的( ) A .充要条件 B .充分而不必要条件 C .必要而不充分条件 D .既不充分也不必要条件A9.已知命题p :存在x 0∈R ,x 0<x 20+1,命题q :任意x ∈R ,sin 4x -cos 4x ≤1,则p 或q ,p 且q ,(綈p )或q ,p 且(綈q )中真命题的个数是( )A .1B .2C .3D .4C10.已知函数f (x )=x 2+bx +c ,则“c <0”是“存在x 0∈R ,使f (x 0)<0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件A11.(2017·阜阳模拟)对于集合M ,N ,定义M -N ={x |x ∈M ,且x ∉N },M ⊕N =(M -N )∪(N -M ).设A ={y |y =x 2-3x ,x ∈R },B ={y |y =-2x,x ∈R },则A ⊕B 等于( )A.⎝ ⎛⎦⎥⎤-94,0B.⎣⎢⎡⎭⎪⎫-94,0 C.⎝ ⎛⎭⎪⎫-∞,-94∪[0,+∞) D.⎝ ⎛⎦⎥⎤-∞,-94∪(0,+∞) C12.原命题为“若a n +a n +12<a n ,n ∈N +,则{a n }为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )【导学号:00090385】A .真,真,真B .假,假,真C .真,真,假D .假,假,假A二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知集合Q ={m ∈Z |mx 2+mx -2<0对任意实数x 恒成立},则Q 用列举法表示为________. {-7,-6,-5,-4,-3,-2,-1,0}14.已知集合A ={1,2,3,4},B ={2,4,6,8},定义集合A ×B ={(x ,y )|x ∈A ,y ∈B },集合A ×B 中属于集合{(x ,y )|log x y ∈N }的元素的个数是________. 415.下列3个命题:①“函数f (x )=tan(x +φ)为奇函数”的充要条件是“φ=k π(k ∈Z )”; ②“如果x 2+x -6≥0,则x >2”的否命题;③在△ABC 中,“A >30°”是“sin A >12”的充分不必要条件.其中真命题的序号是________. ②16.设集合A ={x |x 2+2x -3>0},集合B ={x |x 2-2ax -1≤0,a >0}.若A ∩B 中恰含有一个整数,则实数a 的取值范围是________.⎣⎢⎡⎭⎪⎫34,43 三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)已知集合A ={x |x 2-1<0},B ={x |x +a >0}. (1)若a =-12,求A ∩B .(2)若A ∩B =A ,求实数a 的取值范围. [解] A ={x |-1<x <1}.(1)当a =-12时,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -12>0=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >12,所以A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <1. (2)若A ∩B =A ,则A ⊆B ,因为B ={x |x >-a },所以-a ≤-1,即a ≥1.18.(12分)设集合A ={x |x 2+ax -12=0},B ={x |x 2+bx +c =0},且A ≠B ,A ∪B ={-3,4},A ∩B ={-3},求a ,b ,c 的值.[解] 因为A ∩B ={-3},所以-3∈A ,且-3∈B , 所以(-3)2-3a -12=0,解得a =-1,A ={x |x 2-x -12=0}={-3,4}.因为A ∪B ={-3,4},且A ≠B , 所以B ={-3},即方程x 2+bx +c =0有两个等根为-3,所以⎩⎪⎨⎪⎧-3+-=-b ,-3-=c ,即b =6,c =9.综上,a ,b ,c 的值分别为-1,6,9.19.(12分)已知c >0,且c ≠1,设p :函数y =c x 在R 上单调递减;q :函数f (x )=x 2-2cx +1在⎝ ⎛⎭⎪⎫12,+∞上为增函数,若“p 且q ”为假,“p 或q ”为真,求实数c 的取值范围. [解] 命题p 为真时,因为函数y =c x在R 上单调递减,所以0<c <1. 即p 真时,0<c <1.因为c >0且c ≠1,所以p 假时,c >1.命题q 为真时,因为f (x )=x 2-2cx +1在⎝ ⎛⎭⎪⎫12,+∞上为增函数,所以c ≤12.即q 真时,0<c ≤12,因为c >0且c ≠1,所以q 假时,c >12,且c ≠1.又因为“p 或q ”为真,“p 且q ”为假, 所以p 真q 假或p 假q 真. (1)当p 真,q 假时,{c |0<c <1}∩⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c ⎪⎪⎪c >12且c ≠1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c ⎪⎪⎪12<c <1. (2)当p 假,q 真时,{c |c >1}∩⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c ⎪⎪⎪0<c ≤12=∅. 综上所述,实数c 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c ⎪⎪⎪12<c <1. 20.(12分)(2017·保定模拟)已知p :x 2≤5x -4,q :x 2-(a +2)x +2a ≤0. (1)若p 是真命题,求对应x 的取值范围. (2)若p 是q 的必要不充分条件,求a 的取值范围. [解] (1)因为x 2≤5x -4, 所以x 2-5x +4≤0,即(x -1)(x -4)≤0,所以1≤x ≤4, 即对应x 的取值范围为1≤x ≤4. (2)设p 对应的集合为A ={x |1≤x ≤4}. 由x 2-(a +2)x +2a ≤0, 得(x -2)(x -a )≤0.当a =2时,不等式的解为x =2,对应的解集为B ={2};当a >2时,不等式的解为2≤x ≤a ,对应的解集为B ={x |2≤x ≤a }; 当a <2时,不等式的解为a ≤x ≤2,对应的解集为B ={x |a ≤x ≤2}.若p 是q 的必要不充分条件,则B A , 当a =2时,满足条件;当a >2时,因为A ={x |1≤x ≤4},B ={x |2≤x ≤a },要使B A ,则满足2<a ≤4;当a <2时,因为A ={x |1≤x ≤4},B ={x |a ≤x ≤2},要使B A ,则满足1≤a <2. 综上,a 的取值范围为1≤a ≤4.21.(12分)已知集合A ={y |y 2-(a 2+a +1)y +a (a 2+1)>0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y =12x 2-x +52,0≤x ≤3. (1)若A ∩B =∅,求a 的取值范围.(2)当a 取使不等式x 2+1≥ax 恒成立的a 的最小值时,求(∁R A )∩B .【导学号:00090386】[解] A ={y |y <a 或y >a 2+1},B ={y |2≤y ≤4}.(1)当A ∩B =∅时,⎩⎪⎨⎪⎧a 2+1≥4,a ≤2,解得3≤a ≤2或a ≤- 3. 即a ∈(-∞,-3]∪[3,2]. (2)由x 2+1≥ax ,得x 2-ax +1≥0, 依题意Δ=a 2-4≤0,即-2≤a ≤2. 所以a 的最小值为-2.当a =-2时,A ={y |y <-2或y >5}. 所以∁R A ={y |-2≤y ≤5}, 故(∁R A )∩B ={y |2≤y ≤4}.22.(12分)求证:方程ax 2+2x +1=0有且只有一个负数根的充要条件为a ≤0或a =1. 【证明】 充分性:当a =0时,方程为2x +1=0,其根为x =-12,方程只有一负根.当a =1时,方程为x 2+2x +1=0,其根为x =-1,方程只有一负根. 当a <0时,Δ=4(1-a )>0,方程有两个不相等的根, 且1a<0,方程有一正一负两个根.所以充分性得证.必要性:若方程ax 2+2x +1=0有且只有一负根. 当a =0时,符合条件.当a ≠0时,方程ax 2+2x +1=0有实根, 则Δ=4-4a ≥0,所以a ≤1,当a =1时,方程有一负根x =-1. 当a <1时,若方程有且只有一负根,则⎩⎪⎨⎪⎧a <1,1a<0,所以a <0.所以必要性得证.综上,方程ax 2+2x +1=0有且只有一个负数根的充要条件为a ≤0或a =1.单元评估检测(二) 函数、导数及其应用(120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017·长沙模拟)设函数f (x )=1-3x+1log12x +,则函数的定义域为( )【导学号:00090387】A .⎝ ⎛⎭⎪⎫-12,0B .⎝ ⎛⎭⎪⎫-12,+∞C .⎝ ⎛⎭⎪⎫-12,0∪(0,+∞) D .⎝ ⎛⎭⎪⎫-12,2 A2.已知函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,3x ,x ≤0,则f (f (4))的值为( )A .-19B .-9C .19D .9C3.(2017·太原模拟)设a =log 37,b =21.1,c =0.83.1,则( ) A .b <a <c B .a <c <b C .c <b <a D .c <a <bD4.下列函数中,在(-1,1)内有零点且单调递增的是( ) A .y =log 2x B .y =2x-1 C .y =x 2-2 D .y =-x 3B5.(2017·洛阳模拟)函数y =a -a x(a >0,a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485=( )A .1B .2C .3D .4C6.(2017·珠海模拟)设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2x +,x ≥0,g x,x <0,则g (f (-7))=( ) A .3 B .-3 C .2 D .-2D7.某商场销售A 型商品,已知该商品的进价是每件3元,且销售单价与日均销售量的关系如表所示:( ) A .4 B .5.5 C .8.5 D .10C8.函数y =1ln|e x -e -x |的部分图象大致为( )D9.过点(-1,0)作抛物线y =x 2+x +1的切线,则其中一条切线为( ) A .2x +y +2=0 B .3x -y +3=0 C .x +y +1=0 D .x -y +1=0D10.(2017·厦门模拟)已知a 是常数,函数f (x )=13x 3+12(1-a )x 2-ax +2的导函数y =f ′(x )的图象如图1所示,则函数g (x )=|a x -2|的图象可能是( )图1D11.若函数f (x )=1+2x +12x +1+sin x 在区间[-k ,k ](k >0)上的值域为[m ,n ],则m +n =( )A .0B .1C .2D .4D12.(2017·商丘模拟)设定义在R 上的函数f (x )是最小正周期为2π的偶函数,f ′(x )是f (x )的导函数.当x ∈[0,π]时,0<f (x )<1;当x ∈(0,π)且x ≠π2时,⎝ ⎛⎭⎪⎫x -π2f ′(x )>0,则函数y =f (x )-sin x 在[-3π,3π]上的零点个数为( ) A .4 B .5 C .6 D .8C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 13.已知幂函数f (x )=(m 2-3m +3)·x m +1为奇函数,则不等式f (2x -3)+f (x )>0的解集为________.(1,+∞)14.已知函数f (x )=|x 2+3x |,x ∈R ,若方程f (x )-a =0恰有4个互异的实数根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________. -615.已知函数f (x )=a x(a >0且a ≠1)在区间[-1,2]上的最大值为8,最小值为m ,若函数g (x )=(3-10m )x 是单调增函数,则a =________.【导学号:00090388】1816.(2017·岳阳模拟)某同学在研究函数f (x )=x 2+1+x 2-6x +10的性质时,受到两点间距离公式的启发,将f (x )变形为f (x )=x -2+-2+x -2++2,则f (x )表示|PA |+|PB |(如图2),下列关于函数f (x )的描述正确的是________(填上所有正确结论的序号)图2①f (x )的图象是中心对称图形; ②f (x )的图象是轴对称图形; ③函数f (x )的值域为[13,+∞); ④方程f (f (x ))=1+10有两个解. ②③三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知二次函数f (x )=ax 2+bx +1(a >0),F (x )=⎩⎪⎨⎪⎧f x,x >0,-f x ,x <0.若f (-1)=0,且对任意实数x 均有f (x )≥0恒成立. (1)求F (x )的表达式.(2)当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求k 的取值范围.(1)F (x )=⎩⎪⎨⎪⎧x 2+2x +1,x >0,-x 2-2x -1,x <0.(2)(-∞,-2]∪[6,+∞) 18.(12分)已知实数x 满足32x -4-103·3x -1+9≤0且f (x )=log 2x 2·log 2x2. (1)求实数x 的取值范围.(2)求f (x )的最大值和最小值,并求此时x 的值. [解] (1)由32x -4-103·3x -1+9≤0, 得32x -4-10·3x -2+9≤0,即(3x -2-1)(3x -2-9)≤0,所以1≤3x -2≤9,2≤x ≤4.(2)因为f (x )=log 2x 2·log 2x 2=(log 2x -1)(log 2x -2)=(log 2x )2-3log 2x +2=⎝ ⎛⎭⎪⎫log 2x -322-14,当log 2x =32,即x =22时,f (x )min =-14.当log 2x =1或log 2x =2,即x =2或x =4时,f (x )max =0.19.(12分)(2017·咸宁模拟)设函数f (x )=(ax +b )e x,g (x )=-x 2+cx +d ,若函数f (x )和g (x )的图象都过点P (0,1),且在点P 处有相同的切线y =2x +1. (1)求a ,b ,c ,d 的值.(2)当x ∈[0,+∞)时,判断函数h (x )=f (x )-g (x )的单调性. [解] (1)f ′(x )=(ax +a +b )e x, 所以⎩⎪⎨⎪⎧f =b =1,f=a +b =2,所以a =b =1,g ′(x )=-2x +c ,所以⎩⎪⎨⎪⎧g =d =1,g=c =2,所以c =2,d =1.(2)由(1)可知h (x )=f (x )-g (x )=(x +1)e x -(-x 2+2x +1)=(x +1)e x +x 2-2x -1,所以h ′(x )=(x +2)e x +2x -2=(x +2)e x +2x +4-6=(x +2)(e x+2)-6≥2×3-6=0,所以h (x )在[0,+∞)上为增函数.20.(12分)设函数f (x )=a x -(k -1)a -x(a >0且a ≠1)是定义域为R 的奇函数. (1)求k 的值.(2)若f (1)<0,试判断函数的单调性,并求使不等式f (x 2+tx )+f (4-x )<0恒成立的t 的取值范围. (3)若f (1)=32,且g (x )=a 2x +a -2x-2mf (x )在[1,+∞)上的最小值为-2,求m 的值.[解] (1)因为f (x )是定义域为R 的奇函数,所以f (0)=a 0-(k -1)a 0=1-(k -1)=0,所以k =2. (2)由(1)知f (x )=a x-a -x(a >0且a ≠1). 因为f (1)<0,所以a -1a<0,又a >0且a ≠1,所以0<a <1,所以y =a x 在R 上单调递减,y =a -x在R 上单调递增, 故f (x )=a x -a -x在R 上单调递减.不等式f (x 2+tx )+f (4-x )<0可化为f (x 2+tx )<f (x -4),所以x 2+tx >x -4, 所以x 2+(t -1)x +4>0恒成立,所以Δ=(t -1)2-16<0,解得-3<t <5. (3)因为f (1)=32,所以a -1a =32,即2a 2-3a -2=0,所以a =2或a =-12(舍去).所以g (x )=22x+2-2x-2m (2x -2-x )=(2x -2-x )2-2m (2x -2-x)+2.令n =f (x )=2x -2-x,因为f (x )=2x-2-x为增函数,x ≥1, 所以n ≥k (1)=32.令h (n )=n 2-2mn +2=(n -m )2+2-m 2⎝ ⎛⎭⎪⎫n ≥32. 若m ≥32时,则当n =m 时,h (n )min =2-m 2=-2,所以m =2.若m <32,则当n =32时,h (n )min =174-3m =-2,所以m =2512>32(舍去).综上可知,m =2.21.(12分)(2017·大同模拟)已知函数f (x )=x -(a +1)ln x -a x (a ∈R ),g (x )=12x 2+e x -x e x.(1)当x ∈[1,e]时,求f (x )的最小值.(2)当a <1时,若存在x 1∈[e ,e 2],使得对任意的x 2∈[-2,0],f (x 1)<g (x 2)恒成立,求a 的取值范围. [解] (1)f (x )的定义域为(0,+∞),f ′(x )=x -x -ax2.①当a ≤1时,x ∈[1,e]时,f ′(x )≥0,f (x )为增函数,f (x )min =f (1)=1-A .②当1<a <e 时,x ∈[1,a ]时,f ′(x )≤0,f (x )为减函数; x ∈(a ,e]时,f ′(x )>0,f (x )为增函数.所以x ∈[1,e]时,f (x )min =f (a )=a -(a +1)·ln a -1. ③当a ≥e 时,x ∈[1,e]时,f ′(x )≤0,f (x )在[1,e]上为减函数. f (x )min =f (e)=e -(a +1)-ae.综上,在x ∈[1,e]上,当a ≤1时,f (x )min =1-a ; 当1<a <e 时,f (x )min =a -(a +1)ln a -1; 当a ≥e 时,f (x )min =e -(a +1)-ae.(2)由题意知,当a <1时,f (x )(x ∈[e ,e 2])的最小值小于g (x )(x ∈[-2,0])的最小值.由(1)可知,当a <1时,f (x )在[e ,e 2]上单调递增, 则f (x )min =f (e)=e -(a +1)-ae ,又g ′(x )=(1-e x)x ,当x ∈[-2,0]时,g ′(x )≤0,g (x )为减函数,g (x )min =g (0)=1, 所以e -(a +1)-ae <1,即a >e 2-2ee +1,所以a 的取值范围为⎝ ⎛⎭⎪⎫e 2-2e e +1,1.22.(12分)(2017·石家庄模拟)设函数f (x )=x 2+a ln(x +1)(a 为常数). (1)若函数y =f (x )在区间[1,+∞)上是单调递增函数,求实数a 的取值范围. (2)若函数y =f (x )有两个极值点x 1,x 2,且x 1<x 2,求证:0<f x 2x 1<-12+ln 2. 【导学号:00090389】[解] (1)根据题意知:f ′(x )=2x 2+2x +ax +1≥0在[1,+∞)上恒成立.即a ≥-2x 2-2x 在区间[1,+∞)上恒成立.令g (x )=-2x 2-2x , 因为g (x )=-2x 2-2x 在区间[1,+∞)上的最大值为-4,所以a ≥-4. 经检验:当a =-4时,f ′(x )=2x 2+2x -4x +1=x +x -x +1≥0,x ∈[1,+∞).所以a 的取值范围是[-4,+∞).(2)f ′(x )=2x 2+2x +ax +1=0在区间(-1,+∞)上有两个不相等的实数根,即方程2x 2+2x +a =0在区间(-1,+∞)上有两个不相等的实数根. 记g (x )=2x 2+2x +a ,则有⎩⎪⎨⎪⎧-12>-1,g ⎝ ⎛⎭⎪⎫-12<0,g ->0,解得0<a <12.所以x 1+x 2=-1,2x 22+2x 2+a =0,x 2=-12+1-2a 2,-12<x 2<0. 所以f x 2x 1=x 22-x 22+2x 2x 2+-1-x 2.令k (x )=x 2-x 2+2xx +-1-x,x ∈⎝ ⎛⎭⎪⎫-12,0.k ′(x )=x 2+x+2ln(x +1), 记p (x )=x 2+x2+2ln(x +1).所以p ′(x )=2x 2+6x +2+x3,p ′⎝ ⎛⎭⎪⎫-12=-4,p ′(0)=2.所以存在x 0∈⎝ ⎛⎭⎪⎫-12,0使得p ′(x 0)=0. 当x ∈⎝ ⎛⎭⎪⎫-12,x 0时,p ′(x )<0; 当x ∈(x 0,0)时,p ′(x )>0.所以k ′(x )在⎝ ⎛⎭⎪⎫-12,x 0上单调递减,在(x 0,0)上单调递增,因为k ′⎝ ⎛⎭⎪⎫-12=1-2ln 2<0,k ′(0)=0. 所以当x ∈⎝ ⎛⎭⎪⎫-12,0时,k ′(x )<0, 所以k (x )在⎝ ⎛⎭⎪⎫-12,0上单调递减, 即0<f x 2x 1<-12+ln 2. 单元评估检测(三) 三角函数、解三角形(120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.记cos(-80°)=k ,那么tan 100°等于( ) A .1-k2k B .-1-k2k C .k1-k2D .-k1-k2B2.(2017·九江模拟)已知命题p :函数f (x )=|cos x |的最小正周期为2π;命题q :函数y =x 3+sin x 的图象关于原点中心对称,则下列命题是真命题的是( ) A .p 且q B .p 或q C .(綈p )且(綈q )D .p 或(綈q )B3.(2017·衡水模拟)已知sin α-3sin ⎝ ⎛⎭⎪⎫π2+α-α+cos α=2,则tan α=( )A .15 B .-23C .12 D .-5D4.(2017·太原模拟)将函数y =cos ⎝⎛⎭⎪⎫3x +π3的图象向左平移π18个单位后,得到的图象可能为( ) 【导学号:00090390】D5.已知角α的顶点与原点O 重合,始边与x 轴的正半轴重合,若它的终边经过点P (2,3),则tan ⎝ ⎛⎭⎪⎫2α+π4=( ) A .-125B .512C .177D .-717D6.已知sin α+cos α=23,α∈(0,π),则sin ⎝⎛⎭⎪⎫α+π12的值为( ) A .3+226B .3-226 C .1+266D .1-266A7.(2017·淄博模拟)使函数f (x )=sin(2x +θ)+3cos(2x +θ)是奇函数,且在⎣⎢⎡⎦⎥⎤0,π4上是减函数的θ 的一个值是( ) A .π3B .2π3C .4π3D .5π3B8.(2017·太原模拟)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图1所示,且f (α)=1,α∈⎝ ⎛⎭⎪⎫0,π3,则cos ⎝⎛⎭⎪⎫2α+5π6=( )图1A .±223B .223C .-223D .13C9.(2017·襄阳模拟)在△ABC 中,6sin A +4cos B =1,且4sin B +6cos A =53,则cos C =( ) A .12 B .±32 C .32D .-32 C10.(2017·济宁模拟)已知函数f (x )=3sin 2x -2cos 2x ,下面结论中错误的是( ) A .函数f (x )的最小正周期为π B .函数f (x )的图象关于x =π3对称 C .函数f (x )的图象可由g (x )=2sin 2x -1的图象向右平移π6个单位长度得到D .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π4上是增函数C11.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=12(弦×矢+矢2),弧田(如图2)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为2π3,半径等于4米的弧田,按照上述经验公式计算所得弧田面积约是( )图2A .6平方米B .9平方米C .12平方米D .15平方米B12.(2017·上饶模拟)已知定义在⎣⎢⎡⎦⎥⎤-π2,π2的函数f (x )=sin x (cos x +1)-ax ,若该函数仅有一个零点,则实数a 的取值范围是( )A .⎝ ⎛⎦⎥⎤2π,2 B .⎝ ⎛⎭⎪⎫-∞,2π∪[2,+∞) C .⎣⎢⎡⎭⎪⎫0,2π D .(-∞,0)∪⎣⎢⎡⎭⎪⎫2π,+∞B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 13.已知α为第二象限角,则cos α1+tan 2α+sin α·1+1tan 2α=________. 014.如图3,某人在山脚P 处测得甲山山顶A 的仰角为30°,乙山山顶B 的仰角为45°,∠APB 的大小为45°,山脚P 到山顶A 的直线距离为2 km ,在A 处测得山顶B 的仰角为30°,则乙山的高度为________km. 2图3 图415.如图4在△ABC 中,点D 在边AB 上,CD ⊥BC ,AC =53,CD =5,BD =2AD ,则AD 的长为________. 516.(2017·太原模拟)若关于x 的函数f (x )=2tx 2+2t sin ⎝⎛⎭⎪⎫x +π4+x2x 2+cos x(t ≠0)的最大值为a ,最小值为b ,且a +b =2,则实数t 的值为________.1三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)如图5,两同心圆(圆心在原点)分别与OA ,OB 交于A ,B 两点,其中A (2,1),|OB |=6,阴影部分为两同心圆构成的扇环,已知扇环的面积为π2.图5(1)设角θ的始边为x 轴的正半轴,终边为OA ,求-θ⎝ ⎛⎭⎪⎫θ+3π2θ-的值.(2)求点B 的坐标. (1)34 (2)B ⎝ ⎛⎭⎪⎫2-62,2+232 18.(12分)(2016·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a sin 2B =3b sinA .(1)求B .(2)若cos A =13,求sin C 的值.(1)B =π6 (2)26+1619.(12分)设函数f (x )=cos(ωx +φ)ω>0,-π2<φ<0的最小正周期为π,且f ⎝ ⎛⎭⎪⎫π4=32. 【导学号:00090391】图6(1)求ω和φ的值.(2)在给定坐标系中作出函数f (x )在[0,π]上的图象. (3)求使f (x )<32成立的x 的取值集合. (1)ω=2,φ=-π3(2)描点画出图象(如图).(3)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪k π+π4<x <k π+13π12,k ∈Z 20.(12分)已知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+a +1,(1)若x ∈R ,求f (x )的单调递增区间.(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )的最大值为4,求a 的值.(3)在(2)的条件下,求满足f (x )=1且x ∈[-π,π]的x 集合. (1)⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ) (2)1(3)⎩⎨⎧⎭⎬⎫-π2,-π6,π2,5π621.(12分)已知如图7,△ABC 中,AD 是BC 边的中线,∠BAC =120°,且AB →·AC →=-152.图7(1)求△ABC 的面积. (2)若AB =5,求AD 的长. (1)1534 (2)19222.(12分)(2017·石家庄模拟)在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域.点E 正北55海里处有一个雷达观测站A .某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45°且与点A 相距402海里的位置B ,经过40分钟又测得该船已行驶到点A 北偏东45°+θ⎝ ⎛⎭⎪⎫其中sin θ=2626,0°<θ<90°且与点A 相距1013海里的位置C .图8(1)求该船的行驶速度(单位:海里/小时).(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由. [解] (1)如图,AB =402,AC =1013,∠BAC =θ,sin θ=2626,由于0°<θ<90°, 所以cos θ=1-⎝⎛⎭⎪⎫26262=52626. 由余弦定理得BC =AB 2+AC 2-2AB ·AC ·cos θ=10 5.所以船的行驶速度为10523=155(海里/小时).(2)设直线AE 与BC 的延长线相交于点Q . 在△ABC 中,由余弦定理得,cos ∠ABC =AB 2+BC 2-AC 22AB ·BC=402×2+102×5-102×132×402×105=31010.从而sin ∠ABC =1-cos 2∠ABC =1-910=1010.在△ABQ 中,由正弦定理得,AQ =AB sin ∠ABC-∠ABC =402×101022×21010=40.由于AE =55>40=AQ ,所以点Q 位于点A 和点E 之间,且QE =AE -AQ =15. 过点E 作EP ⊥BC 于点P ,则EP 为点E 到直线BC 的距离.在Rt △QPE 中,PE =QE ·sin∠PQE =QE ·sin∠AQC =QE ·sin(45°-∠ABC )=15×55=35<7.所以船会进入警戒水域.单元评估检测(四) 平面向量、数系的扩充与复数的引入(120分钟 150分) (对应学生用书第224页)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z =1+2i2-i (i 为虚数单位),则z 的虚部为( )A .-1B .0C .1D .iC2.(2016·全国卷Ⅲ)若z =4+3i ,则z|z |=( ) A .1 B .-1 C .45+35i D .45-35i D3.(2017·珠海模拟)若复数z 满足(1+i)z =2,则z 的虚部为( ) A .-1 B .-i C .i D .1A4.复数z =-3+i2+i 的共轭复数是( )A .2+iB .2-iC .-1+iD .-1-iD5.已知向量a =(1,2),b =(3,1),则b -a =( ) A .(-2,1) B .(2,-1) C .(2,0) D .(4,3)B6.复数z 1=3+i ,z 2=1-i ,则z =z 1·z 2在复平面内的对应点位于( )A .第一象限B .第二象限C .第三象限D .第四象限D7.设向量a ,b 满足|a +b |=10,|a -b |=6,则a·b =( ) A .1 B .2 C .3 D .5A8.在复平面内,把复数3-3i 对应的向量按顺时针方向旋转π3,所得向量对应的复数是( )A .2 3B .-23iC .3-3iD .3+3i B9.与向量a =(3,4)同方向的单位向量为b ,又向量c =(-5,5),则b·c =( ) A .(-3,4) B .(3,-4) C .1 D .-1 C10.如图1,在平行四边形ABCD 中,O 是对角线AC 与BD 的交点,N 是线段OD 的中点,AN 的延长线与CD 交于点E ,则下列说法错误的是( )图1A .AC →=AB →+AD → B .BD →=AD →-AB →C .AO →=12AB →+12AD →D .AE →=53AB →+AD →D11.复数z 1,z 2在复平面内对应的点关于直线y =x 对称,且z 1=3+2i ,则z 2=( ) A .3-2i B .2-3i C .-3-2i D .2+3iD12.(2016·全国卷Ⅱ)已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =( )【导学号:00090392】A .-8B .-6C .6D .8D二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 13.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 214.平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =________. 215.已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b ,若b·c =0,则t =________. 216.对于复数z 1,z 2,若(z 1-i)z 2=1,则称z 1是z 2的“错位共轭”复数,则复数32-12i 的“错位共轭”复数为________. 32+32i 三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)已知A(-1,0),B(0,2),C(-3,1),AB →·AD →=5,|AD →|=10. (1)求D 点坐标.(2)若D 点在第二象限,用AB →,AD →表示AC →.(3)AE →=(m,2),若3AB →+AC →与AE →垂直,求AE →的坐标. (1)D(2,1)或D(-2,3) (2)AC →=-AB →+AD → (3)AE →=(-14,2)18.(12分)如图2,在△ABC 中,D 是BC 的中点,E ,F 是AD 上两个三等分点,BA →·CA →=4,BF →·CF →=-1,求BE →·CE →的值. 【导学号:00090393】图27819.(12分)已知复数z =1+i ,ω=z 2-3z +6z +1.(1)求复数ω.(2)设复数ω在复平面内对应的向量为OA →,把向量(0,1)按照逆时针方向旋转θ到向量OA →的位置,求θ的最小值. (1)1-i (2)54π20.(12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,C .已知向量m =⎝⎛⎭⎪⎫2cos A2,sin A 2,n =⎝ ⎛⎭⎪⎫cos A 2,-2sin A 2,m·n =-1.(1)求cos A 的值.(2)若a =23,b =2,求c 的值. (1)-12(2)221.(12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知向量m =(cos A ,cos B ),n =(a,2c -b ),且m∥n . (1)求角A 的大小.(2)若a =4,求△ABC 面积的最大值. [解] (1)因为m∥n ,所以a cos B -(2c -b )cos A =0, 由正弦定理得sin A cos B -(2sin C -sin B )cos A =0, 所以sin A cos B +sin B cos A =2sin C cos A , 所以sin(A +B )=2sin C cos A , 因为A +B +C =π, 所以sin C =2sin C cos A , 因为0<C <π,所以sin C >0, 所以cos A =12,因为0<A <π,所以A =π3.(2)由余弦定理得a 2=b 2+c 2-2bc cos A , 所以16=b 2+c 2-bc ≥2bc -bc =bc , 因此bc ≤16,当且仅当b =c =4时,等号成立; 因此△ABC 的面积S =12bc sin A ≤43,因此△ABC 面积的最大值为4 3.22.(12分)已知平面上的两个向量OA →,OB →满足|OA →|=a ,|OB →|=b ,且OA →⊥OB →,a 2+b 2=4.向量OP →=xOA →+yOB →(x ,y ∈R ),且a 2⎝⎛⎭⎪⎫x -122+b 2⎝⎛⎭⎪⎫y -122=1.(1)如果点M 为线段AB 的中点,求证:MP →=⎝ ⎛⎭⎪⎫x -12OA →+⎝ ⎛⎭⎪⎫y -12OB →.(2)求|OP →|的最大值,并求出此时四边形OAPB 面积的最大值. [解] (1)证明:因为点M 为线段AB 的中点, 所以OM →=12(OA →+OB →).所以MP →=OP →-OM →=(xOA →+yOB →)-12(OA →+OB →)=⎝ ⎛⎭⎪⎫x -12OA →+⎝ ⎛⎭⎪⎫y -12OB →.(2)设点M 为线段AB 的中点,则由OA →⊥OB →,知|M A →|=|MB →|=|MO →|=12|AB →|=1.又由(1)及a 2⎝ ⎛⎭⎪⎫x -122+b 2⎝ ⎛⎭⎪⎫y -122=1, 得|MP →|2=|OP →-OM →|2=⎝ ⎛⎭⎪⎫x -122OA →2+⎝ ⎛⎭⎪⎫y -122OB →2 =a 2⎝ ⎛⎭⎪⎫x -122+b 2⎝ ⎛⎭⎪⎫y -122=1. 所以|MP →|=|MA →|=|MB →|=|MO →|=12|AB →|=1,所以P ,O ,A ,B 四点都在以M 为圆心,1为半径的圆上.所以当且仅当OP 是直径时,|OP →|max =2,这时四边形OAPB 为矩形,则S 四边形OAPB =|OA →|·|OB →|=ab ≤a 2+b 22=2,当且仅当a =b =2时,四边形OAPB 的面积最大,最大值为2.单元评估检测(五) 数 列(120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017·唐山模拟)已知等差数列{a n }的前n 项和为S n ,若S 3=9,S 5=25,则S 7=( ) A .41 B .48 C .49 D .56C2.(2017·青岛模拟)已知等比数列{a n }的前n 项和为S n ,且S n =3n+a (n ∈N *),则实数a 的值是( ) A .-3 B .3 C .-1D .13.已知数列{a n }的前n 项和为S n ,且15S n =a n -1,则a 2等于( )A .-54B .54C .516D .2516D4.(2017·太原模拟)在等比数列{a n }中,a 2=2,a 4=8,a n >0,则数列{log 2a n }的前n 项和为( )【导学号:00090394】A .n n -2 B .n -22C .n n +2D .n +22A5.已知在数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=( ) A .1-4nB .4n-1 C .1-4n 3D .4n-13B6.若{a n }是由正数组成的等比数列,其前n 项和为S n ,已知a 1a 5=1且S 3=7,则S 7=( ) A .1516 B .78 C .12716D .638C7.数列{a n }的通项公式为a n =(-1)n·(2n -1)cos n π2+1,其前n 项和为S n ,则S 60=( )A .-30B .-60C .90D .120D8.如果数列{a n }满足a 1=2,a 2=1,且a n -1-a n a n -1=a n -a n +1a n +1(n ≥2),则这个数列的第10项等于( ) A .1210 B .129 C .110D .159.在△ABC 中,tan A 是以-4为第3项,-1为第7项的等差数列的公差,tan B 是以12为第3项,4为第6项的等比数列的公比,则该三角形的形状是( ) A .钝角三角形 B .锐角三角形 C .等腰直角三角形D .以上均错B 10.(2017·厦门模拟)在各项都为正数的等比数列{a n }中,a 2a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n+2>19的最大正整数n 的值为( ) A .3 B .4 C .5 D .6B11.若数列{a n }满足1a n +1-p a n =0,n ∈N *,p 为非零常数,则称数列{a n }为“梦想数列”.已知正项数列⎩⎨⎧⎭⎬⎫1b n 为“梦想数列”,且b 1b 2b 3…b 99=299,则b 8+b 92的最小值是( ) A .2 B .4 C .6 D .8B12.(2017·淄博模拟)数列{a n }的前n 项和为S n =2n +1-2,数列{b n }满足b n =3n -1,则数列⎩⎨⎧⎭⎬⎫b n a n 的前n项和为( ) A .5-0 B .5-3n +52nC .5-3n -52nD .5-3n +52n -1B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2017·唐山模拟)已知正项数列{a n }满足a 2n +1-6a 2n =a n +1a n .若a 1=2,则数列{a n }的前n 项和为________. 3n-114.设关于x 的不等式x 2-x <2nx (n ∈N *)的解集中整数的个数为a n ,数列{a n }的前n 项和为S n ,则S 100的值为________. 【导学号:00090395】 10 10015.《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加________尺.162916.(2017·保定模拟)如图1所示是毕达哥拉斯的生长程序:正方形上连接着等腰直角三角形,等腰直角三角形边上再连接正方形,…,如此继续,若共得到1 023个正方形,设初始正方形的边长为22,则最小正方形的边长为________.图1132三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)(2017·承德模拟)已知正项数列{a n }的前n 项和为S n ,且a 1=1,S n =16(a 2n +3a n +2),n ∈N *.(1)求数列{a n }的通项公式.(2)若ak n ∈{a 1,a 2,…,a n ,…},且ak 1,ak 2,…,ak n ,…成等比数列,当k 1=1,k 2=4时,求k n . (1)a n =3n -2,n ∈N *(2)k n =10n -1+23,n ∈N *18.(12分)设数列{b n }的前n 项和为S n ,且b n =2-2S n ;数列{a n }为等差数列,且a 5=14,a 7=20. (1)求数列{b n }的通项公式.(2)若c n =a n ·b n (n ∈N *),求数列{c n }的前n 项和T n . (1)b n =23n (2)T n =72-12·3n -2-3n -13n19.(12分)(2015·山东高考)设数列{a n }的前n 项和为S n ,已知2S n =3n+3. (1)求数列{a n }的通项公式.(2)若数列{b n }满足a n b n =log 3a n ,求数列{b n }的前n 项和T n .(1)a n =⎩⎪⎨⎪⎧3,n =1,3n -1,n ≥2.(2)T n =1312-⎝ ⎛⎭⎪⎫2n +14×⎝ ⎛⎭⎪⎫13n -120.(12分)(2015·全国卷Ⅰ)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式.(2)设b n =1a n a n +1,求数列{b n }的前n 项和.(1)a n =2n +1 (2){b n }的前n 项和T n =n n +21.(12分)已知等差数列{a n }的前3项和为6,前8项和为-4. (1)求数列{a n }的通项公式. (2)设b n =(4-a n )qn -1(q ≠0,n ∈N *),求数列{b n }的前n 项和S n .【导学号:00090396】(1)a n =4-n(2)S n=⎩⎪⎨⎪⎧n n +2,q =1,nq n +1-n +q n +1q -2,q ≠1.22.(12分)(2017·石家庄模拟)在数列{a n }中,a 1=12,其前n 项和为S n ,并且S n =a n +1-12(n ∈N *).(1)求a n ,S n .(2)设b n =log 2(2S n +1)-2,数列{c n }满足c n ·b n +3·b n +4=1+(n +1)(n +2)·2b n ,数列{c n }的前n 项和为T n ,求使4T n >2n +1-1504成立的最小正整数n 的值. [解] (1)由S n =a n +1-12,得S n -1=a n -12(n ≥2),两式作差得:a n =a n +1-a n ,即2a n =a n +1(n ≥2),所以a n +1a n =2(n ≥2),因为a 1=S 1=a 2-12,所以a 2=1,所以a 2a 1=2,所以数列{a n }是首项为12,公比为2的等比数列,则a n =12·2n -1=2n -2,n ∈N *,S n =a n +1-12=2n -1-12,n ∈N *. (2)b n =log 2(2S n +1)-2=log 22n-2=n -2, 所以c n ·b n +3·b n +4=1+(n +1)(n +2)·2b n , 即c n (n +1)(n +2)=1+(n +1)(n +2)·2n -2,c n =1n +n ++2n -2=1n +1-1n +2+2n -2, T n =⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2+(2-1+20+…+2n -2)=12-1n +2+12-2n1-2=12-1n +2-12+2n -1=2n -1-1n +2. 由4T n >2n +1-1504,得 4⎝⎛⎭⎪⎫2n -1-1n +2>2n +1-1504, 即4n +2<1504,n >2 014. 所以使4T n >2n +1-1504成立的最小正整数n 的值为2 015. 单元评估检测(六) 不等式、推理与证明(120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a >0,b >0,且a +b =4,则下列不等式恒成立的是( ) A .1ab ≥12 B .1a +1b≤1C .ab ≥2D .1a 2+b 2≤18D2.(2017·新乡模拟)若集合A ={x |x 2-7x +10<0},集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,则A ∩B =( ) 【导学号:00090397】A .(-1,3)B .(-1,5)C .(2,5)D .(2,3)D3.已知a ,b ,x ,y 都是正实数,且1a +1b=1,x 2+y 2=8,则ab 与xy 的大小关系为( )A .ab >xyB .ab ≥xyC .ab <xyD .ab ≤xyB4.(2017·唐山模拟)不等式ax 2+bx +2>0的解集是⎝ ⎛⎭⎪⎫-12,13,则a +b 的值是( )A .10B .-10C .14D .-14D5.(2017·济宁模拟)在坐标平面内,不等式组⎩⎪⎨⎪⎧y ≥2|x |-1,y ≤x +1所表示的平面区域的面积为( )A .2 2B .83C .223D .2B6.若-1<a <0,则关于x 的不等式(x -a )·⎝⎛⎭⎪⎫x -1a >0的解集是( )A .{x |x >a }B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1a C .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >a 或x <1a D .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1a 或x <aC7.已知数列{a n }为等差数列,若a m =a ,a n =b (n -m ≥1,m ,n ∈N *),则a m +n =nb -man -m.类比等差数列{a n }的上述结论,对于等比数列{b n }(b n >0,n ∈N *),若b m =c ,b n =d (n -m ≥2,m ,n ∈N *),则可以得到b m +n =( )A .(n -m )(nd -mc )B .(nd -mc )n -mC .n -m d n c mD .n -md n ·c mC8.已知函数f (x )=16x 2-28x +114x -5⎝ ⎛⎭⎪⎫x <54,则函数f (x )的最大值为( )A .114B .54C .1D .14C9.(2017·临汾模拟)若实数x ,y 满足不等式组⎩⎪⎨⎪⎧y ≥0,x -y ≥0,2x -y -2≥0,则ω=y -1x +1的取值范围是( )A .⎣⎢⎡⎦⎥⎤-1,13B .⎣⎢⎡⎦⎥⎤-12,13C .⎣⎢⎡⎭⎪⎫-12,+∞ D .⎣⎢⎡⎭⎪⎫-12,1D10.当x >0时,x 2+1≥2x ,在用分析法证明该不等式时执果索因,最后索的因是( ) A .x >0 B .x 2≥0 C .(x -1)2≥0 D .(x +1)2≥0C11.已知实数x ,y 满足x >y >0且x +y =14,则2x +3y +1x -y 的最小值为( )A .1B .2C .6+4 2D .8+4 2C12.(2017·南昌模拟)在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若C =120°,c =2a ,则( ) A .a >b B .a <b C .a =bD .a 与b 的大小关系不能确定 A二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 13.已知a >b >0,则a ,b ,ab ,a +b2四个数中最大的一个是________.a14.已知a >0,b >0,ab =8,则当a 的值为________时,log 2a ·log 2(2b )取得最大值. 415.(2017·福州模拟)设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (4)=________;当n >4时,f (n )=________(用n 表示).12(n +1)(n -2) 16.已知A (-1,0),B (0,-1),C (a ,b )三点共线,若a >-1,b >-1,则1a +1+1b +1的最小值为________. 4三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)已知数列{a n }的前n 项和S n =2n 2-n .(1)证明{a n }是等差数列. (2)若b n =1a n a n +1,数列{b n }的前n 项和为T n ,试证明T n <14. 【导学号:00090398】 【证明】 (1)因为S n =2n 2-n . 所以a 1=S 1=1.当n ≥2时,a n =S n -S n -1=2n 2-n -2(n -1)2+(n -1)=4n -3. 对n =1也成立.所以a n =4n -3.a n +1-a n =4(n +1)-3-4n +3=4,是常数.所以数列{a n }是以1为首项,4为公差的等差数列. (2)由(1)得b n =1n -n +=14⎝ ⎛⎭⎪⎫14n -3-14n +1所以T n =14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-15+⎝ ⎛⎭⎪⎫15-19+⎝ ⎛⎭⎪⎫19-113+…+⎝ ⎛⎭⎪⎫14n -3-14n +1=14⎝ ⎛⎭⎪⎫1-14n +1<14. 18.(12分)如图1,在四棱锥P ­ABCD 中,平面PAB ⊥平面ABCD ,AB =AD ,∠BAD =60°,E ,F 分别是AP ,AB 的中点.图1求证:(1)直线EF ∥平面PBC . (2)平面DEF ⊥平面PAB . 略19.(12分)已知f (x )=x 2+ax +B . (1)求f (1)+f (3)-2f (2).(2)求证:|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.[解] (1)因为f (1)=a +b +1,f (2)=2a +b +4,f (3)=3a +b +9,所以f (1)+f (3)-2f (2)=2. (2)假设|f (1)|,|f (2)|,|f (3)|都小于12,则-12<f (1)<12,-12<f (2)<12,-12<f (3)<12.所以-1<-2f (2)<1,-1<f (1)+f (3)<1,。

2019年安徽省芜湖市第二十八中学高三数学文月考试题含解析

2019年安徽省芜湖市第二十八中学高三数学文月考试题含解析

2019年安徽省芜湖市第二十八中学高三数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知二面角的平面角为,PA,PB,A,B为垂足,且PA=4,PB=5,设A、B到二面角的棱的距离为别为,当变化时,点的轨迹是下列图形中的A B C D参考答案:解析: D易错原因:只注意寻找的关系式,而未考虑实际问题中的范围。

2. 如图的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b,i的值分别为6,8,0,则输出a和i的值分别为()A.2,4 B.2,5 C.0,4 D.0,5参考答案:A【考点】程序框图.【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b,i的值,即可得到结论.【解答】解:模拟执行程序框图,可得:a=6,b=8,i=0,i=1,不满足a>b,不满足a=b,b=8﹣6=2,i=2满足a>b,a=6﹣2=4,i=3满足a>b,a=4﹣2=2,i=4不满足a>b,满足a=b,输出a的值为2,i的值为4.故选:A.【点评】本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.3. 有下列四种说法:①命题“”的否定是“” ;②“命题为真”是“命题为真”的必要不充分条件;③“若”的逆命题为真;④若实数,则满足: 的概率为.其中错误的个数是A.B.1 C.2 D.3参考答案:B略4. 如图为一个半圆柱, 是等腰直角三角形, F是线段CD的中点, ,该半圆柱的体积为18π,则异面直线AB与EF所成角的正弦值为()A.B. C. D.参考答案:B本题考查异面直线所成的角的知识,考查空间想象能力和运算求解能力.设上底半圆的半径为,由,得.因为,所以.又异面直线与所成的角为所以.5. 在平面直角坐标系中,由轴的正半轴、轴的正半轴、曲线以及该曲线在处的切线所围成图形的面积是A.B.C.D.参考答案:D略6. 集合A={x|2<x<7},B={x|3≤x<10},A∩B=( )A.(2,10) B.[3,7)C.(2,3] D.(7,10)参考答案:B考点:交集及其运算.专题:集合.分析:由A与B,找出两集合的交集即可.解答:解:∵A=(2,7),B=[3,10),∴A∩B=[3,7),故选:B.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.7. 已知曲线在点(1,a e)处的切线方程为y=2x+b,则A.a=e,b=-1 B.a=e,b=1 C.D.,参考答案:D令,则,,得.,可得.故选D.8. 设,且,则下列结论中正确的是()A.B.C.D.参考答案:C9. 已知全集,集合,则A. B. C. D.参考答案:A集合,所以,,选A.10. 如图,有一直角墙角,两边的长度足够长,在P处有一棵树与两墙的距离分别是a m(0<a<12)、4m,不考虑树的粗细. 现在想用16m长的篱笆,借助墙角围成一个矩形的花圃ABCD. 设此矩形花圃的最大面积为S,若将这棵树围在花圃内,则函数(单位m2)的图象大致是()A B. C. D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 若a>l,设函数f(x)=a x+x -4的零点为m,函数g(x)= log a x+x-4的零点为n,则的最小值为。

上海市2020〖人教版〗高三数学复习试卷文科28

上海市2020〖人教版〗高三数学复习试卷文科28

上海市2020年〖人教版〗高三数学复习试卷文科一、选择题1、已知全集R U =,集合{}22>-<=x x x A 或,则=A U [( )A 、(-2,2)B 、(-∞,-2) (2,+∞)C 、[-2,2]D 、(-∞,-2] [2,+∞)2、若复数))(1(i a i +-在复平面内对应的点在第二象限,则实数a 的取值范围是( )A 、(-∞,1)B 、(-∞,-1)C 、(1,+∞)D 、(-1,+∞)3、执行如图所示的程序框图,输出的S 值为( )A 、2B 、23C 、35D 、58 第3题图 第6题图4、若x 、y 满足⎪⎩⎪⎨⎧≤≥+≤x y y x x 23,则y x 2+的最大值为( )A 、1B 、3C 、5D 、95、已知函数x x x f )31(3)(-=,则)(x f ( )A 、是偶函数,且在R 上是增函数B 、是奇函数,且在R 上是增函数C 、是偶函数,且在R 上是减函数D 、是奇函数,且在R 上是减函数6、某三棱锥的三视图如图所示,则该三棱锥的体积为( )A 、60B 、30C 、20D 、107、设m 、n 为非零向量,则“存在负数λ,使得n m λ=”是“0<⋅n m ”的( )A 、充分而不必要条件B 、必要而不充分条件C 、充分必要条件D 、既不充分也不必要条件8、根据有关资料,围棋状态空间复杂度的上限M 约为3613,而可观测宇宙中普通物质的原子总数N 约为8010,则下列各数中与N M 最接近的是(参考数据:48.03lg =)( )A 、3310B 、5310C 、7310D 、9310二、填空题9、在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称,若31sin =α,则=βsin10、若双曲线122=-m y x 的离心率为3,则实数=m 11、已知0≥x ,0≥y ,且1=+y x ,则22y x +的取值范围是12、已知点P 在圆122=+y x 上,点A 的坐标为(-2,0),O 为原点,则⋅的最大值为13、能够说明“设a 、b 、c 是任意实数,若c b a >>,则c b a >+”是假命题的一组整数a 、b 、c 的值依次为14、某学习小组由学生和教师组成,人员构成同时满足以下三个条件: (I )男学生人数多于女学生人数;(II )女学生人数多于教师人数; (III )教师人数的两倍多于男学生人数。

高考复习试卷习题资料之高考数学试卷文科高考模拟卷 28

高考复习试卷习题资料之高考数学试卷文科高考模拟卷 28

高考复习试卷习题资料之高考数学试卷(文科)高考模拟卷 (2)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0}B.{﹣1,0}C.{0,1}D.{﹣1,0,1}2.(5分)设a,b,c∈R,且a>b,则()A.ac>bcB.C.a2>b2D.a3>b33.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A. B.y=e﹣x C.y=lg|x| D.y=﹣x2+14.(5分)在复平面内,复数i(2﹣i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限5.(5分)在△ABC中,a=3,b=5,sinA=,则sinB=()A. B. C. D.16.(5分)执行如图所示的程序框图,输出的S值为()A.1B.C.D.7.(5分)双曲线的离心率大于的充分必要条件是()A. B.m≥1 C.m>1 D.m>28.(5分)如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有()A.3个B.4个C.5个D.6个二、填空题共6小题,每小题5分,共30分.9.(5分)若抛物线y2=2px的焦点坐标为(1,0),则p=;准线方程为.10.(5分)某四棱锥的三视图如图所示,该四棱锥的体积为.11.(5分)若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q=;前n项和Sn=.12.(5分)设D为不等式组表示的平面区域,区域D上的点与点(1,0)之间的距离的最小值为.13.(5分)函数f(x)=的值域为.14.(5分)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数f(x)=(2cos2x﹣1)sin 2x+cos 4x.(1)求f(x)的最小正周期及最大值;(2)若α∈(,π),且f(α)=,求α的值.16.(13分)如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)17.(13分)如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.18.(13分)已知函数f(x)=x2+xsinx+cosx.(Ⅰ)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(Ⅱ)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.19.(14分)直线y=kx+m(m≠0)与椭圆相交于A,C两点,O是坐标原点. (Ⅰ)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(Ⅱ)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.20.(14分)给定数列a1,a2,…,an.对i=1,2,…,n﹣1,该数列前i项的最大值记为Ai,后n﹣i项ai+1,ai+2,…,an的最小值记为Bi,di=Ai﹣Bi.(Ⅰ)设数列{an}为3,4,7,1,写出d1,d2,d3的值;(Ⅱ)设a1,a2,…,an﹣1(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…,dn﹣1是等比数列;(Ⅲ)设d1,d2,…,dn﹣1是公差大于0的等差数列,且d1>0.证明:a1,a2,…,an﹣1是等差数列.高考复习试卷习题资料之高考数学试卷(文科)高考模拟卷 (2)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0}B.{﹣1,0}C.{0,1}D.{﹣1,0,1}【分析】找出A与B的公共元素,即可确定出两集合的交集.【解答】解:∵A={﹣1,0,1},B={x|﹣1≤x<1},∴A∩B={﹣1,0}.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)设a,b,c∈R,且a>b,则()A.ac>bcB.C.a2>b2D.a3>b3【分析】对于A、B、C可举出反例,对于D利用不等式的基本性质即可判断出.【解答】解:A、3>2,但是3×(﹣1)<2×(﹣1),故A不正确;B、1>﹣2,但是,故B不正确;C、﹣1>﹣2,但是(﹣1)2<(﹣2)2,故C不正确;D、∵a>b,∴a3>b3,成立,故D正确.故选:D.【点评】熟练掌握不等式的基本性质以及反例的应用是解题的关键.3.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A. B.y=e﹣x C.y=lg|x| D.y=﹣x2+1【分析】利用基本函数的奇偶性、单调性逐项判断即可.【解答】解:A中,y=为奇函数,故排除A;B中,y=e﹣x为非奇非偶函数,故排除B;C中,y=lg|x|为偶函数,在x∈(0,1)时,单调递减,在x∈(1,+∞)时,单调递增,所以y=lg|x|在(0,+∞)上不单调,故排除C;D中,y=﹣x2+1的图象关于y轴对称,故为偶函数,且在(0,+∞)上单调递减,故选:D.【点评】本题考查函数的奇偶i性、单调性的判断证明,属基础题,定义是解决该类题目的基本方法,熟记基本函数的有关性质可简化问题的解决.4.(5分)在复平面内,复数i(2﹣i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】首先进行复数的乘法运算,得到复数的代数形式的标准形式,根据复数的实部和虚部写出对应的点的坐标,看出所在的象限.【解答】解:∵复数z=i(2﹣i)=﹣i2+2i=1+2i∴复数对应的点的坐标是(1,2)这个点在第一象限,故选:A.【点评】本题考查复数的代数表示法及其几何意义,本题解题的关键是写成标准形式,才能看出实部和虚部的值.5.(5分)在△ABC中,a=3,b=5,sinA=,则sinB=()A. B. C. D.1【分析】由正弦定理列出关系式,将a,b及sinA的值代入即可求出sinB的值.【解答】解:∵a=3,b=5,sinA=,∴由正弦定理得:sinB===.故选:B.【点评】此题考查了正弦定理,熟练掌握正弦定理是解本题的关键.6.(5分)执行如图所示的程序框图,输出的S值为()A.1B.C.D.【分析】从框图赋值入手,先执行一次运算,然后判断运算后的i的值与2的大小,满足判断框中的条件,则跳出循环,否则继续执行循环,直到条件满足为止.【解答】解:框图首先给变量i和S赋值0和1.执行,i=0+1=1;判断1≥2不成立,执行,i=1+1=2;判断2≥2成立,算法结束,跳出循环,输出S的值为.故选:C.【点评】本题考查了程序框图,考查了直到型结构,直到型循环是先执行后判断,不满足条件执行循环,直到条件满足结束循环,是基础题.7.(5分)双曲线的离心率大于的充分必要条件是()A. B.m≥1 C.m>1 D.m>2【分析】根据双曲线的标准形式,可以求出a=1,b=,c=.利用离心率e大于建立不等式,解之可得 m>1,最后利用充要条件的定义即可得出正确答案.【解答】解:双曲线,说明m>0,∴a=1,b=,可得c=,∵离心率e>等价于⇔m>1,∴双曲线的离心率大于的充分必要条件是m>1.故选:C.【点评】本题虽然小巧,用到的知识却是丰富的,具有综合性特点,涉及了双曲线的标准方程、几何性质等几个方面的知识,是这些内容的有机融合,是一个极具考查力的小题.8.(5分)如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有()A.3个B.4个C.5个D.6个【分析】建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB|=3,即可得到各顶点的坐标,利用两点间的距离公式即可得出.【解答】解:建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB|=3,则A(3,0,0),B(3,3,0),C(0,3,0),D(0,0,0),A1(3,0,3),B1(3,3,3),C1(0,3,3),D1(0,0,3),∴=(﹣3,﹣3,3),设P(x,y,z),∵=(﹣1,﹣1,1),∴=(2,2,1).∴|PA|=|PC|=|PB1|==,|PD|=|PA1|=|PC1|=,|PB|=,|PD1|==.故P到各顶点的距离的不同取值有,3,,共4个.故选:B.【点评】熟练掌握通过建立空间直角坐标系及两点间的距离公式是解题的关键.二、填空题共6小题,每小题5分,共30分.9.(5分)若抛物线y2=2px的焦点坐标为(1,0),则p=2;准线方程为x=﹣1. 【分析】由抛物线的性质可知,知=1,可知抛物线的标准方程和准线方程.【解答】解:∵抛物线y2=2px的焦点坐标为(1,0),∴=1,p=2,抛物线的方程为y2=4x,∴其标准方程为:x=﹣1,故答案为:2,x=﹣1.【点评】本题考查抛物线的简单性质,属于基础题.10.(5分)某四棱锥的三视图如图所示,该四棱锥的体积为3.【分析】利用三视图判断几何体的形状,然后通过三视图的数据求解几何体的体积.【解答】解:几何体为底面边长为3的正方形,高为1的四棱锥,所以体积.故答案为:3.【点评】本题考查几何体与三视图的对应关系,几何体体积的求法,考查空间想象能力与计算能力.11.(5分)若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q=2;前n项和Sn= 2n+1﹣2.【分析】利用等比数列的通项公式和已知即可得出,解出即可得到a1及q,再利用等比数列的前n项和公式即可得出.【解答】解:设等比数列{an}的公比为q,∵a2+a4=a2(1+q2)=20①a3+a5=a3(1+q2)=40②∴①②两个式子相除,可得到==2即等比数列的公比q=2,将q=2带入①中可求出a2=4则a1===2∴数列{an}时首项为2,公比为2的等比数列.∴数列{an}的前n项和为:Sn===2n+1﹣2.故答案为:2,2n+1﹣2.【点评】熟练掌握等比数列的通项公式和等比数列的前n项和公式是解题的关键.12.(5分)设D为不等式组表示的平面区域,区域D上的点与点(1,0)之间的距离的最小值为.【分析】首先根据题意作出可行域,欲求区域D上的点与点(1,0)之间的距离的最小值,由其几何意义为点A(1,0)到直线2x﹣y=0距离为所求,代入点到直线的距离公式计算可得答案.【解答】解:如图可行域为阴影部分,由其几何意义为点A(1,0)到直线2x﹣y=0距离,即为所求,由点到直线的距离公式得:d==,则区域D上的点与点(1,0)之间的距离的最小值等于.故答案为:.【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.13.(5分)函数f(x)=的值域为(﹣∞,2).【分析】通过求解对数不等式和指数不等式分别求出分段函数的值域,然后取并集得到原函数的值域.【解答】解:当x≥1时,f(x)=;当x<1时,0<f(x)=2x<21=2.所以函数的值域为(﹣∞,2).故答案为(﹣∞,2).【点评】本题考查了函数值域的求法,分段函数的值域要分段求,最后取并集.是基础题.14.(5分)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为3.【分析】设P的坐标为(x,y),根据,结合向量的坐标运算解出,再由1≤λ≤2、0≤μ≤1得到关于x、y的不等式组,从而得到如图的平行四边形CDEF及其内部,最后根据坐标系内两点间的距离公式即可算出平面区域D的面积. 【解答】解:设P的坐标为(x,y),则=(2,1),=(1,2),=(x﹣1,y+1),∵,∴,解之得∵1≤λ≤2,0≤μ≤1,∴点P坐标满足不等式组作出不等式组对应的平面区域,得到如图的平行四边形CDEF及其内部其中C(4,2),D(6,3),E(5,1),F(3,0)∵|CF|==,点E(5,1)到直线CF:2x﹣y﹣6=0的距离为d==∴平行四边形CDEF的面积为S=|CF|×d=×=3,即动点P构成的平面区域D的面积为3故答案为:3【点评】本题在平面坐标系内给出向量等式,求满足条件的点P构成的平面区域D的面积.着重考查了平面向量的坐标运算、二元一次不等式组表示的平面区域和点到直线的距离公式等知识,属于中档题.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数f(x)=(2cos2x﹣1)sin 2x+cos 4x.(1)求f(x)的最小正周期及最大值;(2)若α∈(,π),且f(α)=,求α的值.【分析】(Ⅰ)利用二倍角的正弦函数以及两角和的正弦函数化简函数为一个角的一个三角函数的形式,通过周期公式求f(x)的最小正周期,利用三角函数的最值求出函数的最大值;(Ⅱ)通过,且,求出α的正弦值,然后求出角即可.【解答】解:(Ⅰ)因为==∴T==,函数的最大值为:.(Ⅱ)∵f(x)=,,所以,∴,k∈Z,∴,又∵,∴.【点评】本题考查二倍角的余弦函数正弦函数的应用,两角和的正弦函数,三角函数的周期与最值的求法,以及角的求法,考查计算能力.16.(13分)如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【分析】(Ⅰ)由图查出13天内空气质量指数小于100的天数,直接利用古典概型概率计算公式得到答案;(Ⅱ)用列举法写出此人在该市停留两天的空气质量指数的所有情况,查出仅有一天是重度污染的情况,然后直接利用古典概型概率计算公式得到答案;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳定,由图直接看出答案.【解答】解:(Ⅰ)由图看出,1日至13日13天的时间内,空气质量优良的是1日、2日、3日、7日、12日、13日共6天.由古典概型概率计算公式得,此人到达当日空气质量优良的概率P=;(Ⅱ)此人在该市停留期间两天的空气质量指数(86,25)、(25,57)、(57,143)、(143,220)、(220,160)(160,40)、(40,217)、(217,160)、(160,121)、(121,158)、(158,86)、(86,79)、(79,37)共13种情况.其中只有1天空气重度污染的是(143,220)、(220,160)、(40,217)、(217,160)共4种情况,所以,此人在该市停留期间只有1天空气重度污染的概率P=;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳定,由图看出从5日开始连续5、6、7三天的空气质量指数方差最大.【点评】本题考查了古典概型及其概率计算公式,考查了一组数据的方差和标准差,训练了学生的读图能力,是基础题.19.(14分)直线y=kx+m(m≠0)与椭圆相交于A,C两点,O是坐标原点. (Ⅰ)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(Ⅱ)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.【分析】(I)先根据条件得出线段OB的垂直平分线方程为y=,从而A、C的坐标为(,),根据两点间的距离公式即可得出AC的长;(II)欲证明四边形OABC不可能为菱形,只须证明若OA=OC,则A、C两点的横坐标相等或互为相反数.设OA=OC=r,则A、C为圆x2+y2=r2与椭圆的交点,从而解得,则A、C两点的横坐标相等或互为相反数.于是结论得证.【解答】解:(I)∵点B的坐标为(0,1),当四边形OABC为菱形时,AC⊥OB,而B (0,1),O(0,0),∴线段OB的垂直平分线为y=,将y=代入椭圆方程得x=±,因此A、C的坐标为(,),如图,于是AC=2.(II)欲证明四边形OABC不可能为菱形,利用反证法,假设四边形OABC为菱形,则有OA=OC,设OA=OC=r,则A、C为圆x2+y2=r2与椭圆的交点,故,x2=(r2﹣1),则A、C两点的横坐标相等或互为相反数.从而得到点B是W的顶点.这与题设矛盾.于是结论得证.【点评】本题主要考查了椭圆的简单性质,直线与椭圆的位置关系,考查等价转化思想,属于基础题.20.(14分)给定数列a1,a2,…,an.对i=1,2,…,n﹣1,该数列前i项的最大值记为Ai,后n﹣i项ai+1,ai+2,…,an的最小值记为Bi,di=Ai﹣Bi.(Ⅰ)设数列{an}为3,4,7,1,写出d1,d2,d3的值;(Ⅱ)设a1,a2,…,an﹣1(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…,dn﹣1是等比数列;(Ⅲ)设d1,d2,…,dn﹣1是公差大于0的等差数列,且d1>0.证明:a1,a2,…,an﹣1是等差数列.【分析】(Ⅰ)当i=1时,A1=3,B1=1,从而可求得d1,同理可求得d2,d3的值;(Ⅱ)依题意,可知an=a1qn﹣1(a1>0,q>1),由dk=ak﹣ak+1⇒dk﹣1=ak﹣1﹣ak (k≥2),从而可证(k≥2)为定值.(Ⅲ)依题意,0<d1<d2<…<dn﹣1,可用反证法证明a1,a2,…,an﹣1是单调递增数列;再证明am为数列{an}中的最小项,从而可求得是ak=dk+am,问题得证.【解答】解:(Ⅰ)当i=1时,A1=3,B1=1,故d1=A1﹣B1=2,同理可求d2=3,d3=6;(Ⅱ)由a1,a2,…,an﹣1(n≥4)是公比q大于1的等比数列,且a1>0,则{an}的通项为:an=a1qn﹣1,且为单调递增的数列.于是当k=1,2,…n﹣1时,dk=Ak﹣Bk=ak﹣ak+1,进而当k=2,3,…n﹣1时,===q为定值.∴d1,d2,…,dn﹣1是等比数列;(Ⅲ)设d为d1,d2,…,dn﹣1的公差,对1≤i≤n﹣2,因为Bi≤Bi+1,d>0,所以Ai+1=Bi+1+di+1≥Bi+di+d>Bi+di=Ai,又因为Ai+1=max{Ai,ai+1},所以ai+1=Ai+1>Ai≥ai.从而a1,a2,…,an﹣1为递增数列.因为Ai=ai(i=1,2,…n﹣1),又因为B1=A1﹣d1=a1﹣d1<a1,所以B1<a1<a2<…<an﹣1,因此an=B1.所以B1=B2=…=Bn﹣1=an.所以ai=Ai=Bi+di=an+di,因此对i=1,2,…,n﹣2都有ai+1﹣ai=di+1﹣di=d,即a1,a2,…,an﹣1是等差数列.【点评】本题考查等差数列与等比数列的综合,突出考查考查推理论证与抽象思维的能力,考查反证法的应用,属于难题.17.(13分)如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.【分析】(Ⅰ)根据条件,利用平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)根据已知条件判断ABED为平行四边形,故有BE∥AD,再利用直线和平面平行的判定定理证得BE∥平面PAD.(Ⅲ)先证明ABED为矩形,可得BE⊥CD ①.现证CD⊥平面PAD,可得CD⊥PD,再由三角形中位线的性质可得EF∥PD,从而证得CD⊥EF ②.结合①②利用直线和平面垂直的判定定理证得CD⊥平面BEF,再由平面和平面垂直的判定定理证得平面BEF⊥平面PCD.【解答】解:(Ⅰ)∵PA⊥AD,平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,由平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)∵AB∥CD,AB⊥AD,CD=2AB,E和F分别是CD和PC的中点,故四边形ABED为平行四边形,故有BE∥AD.又AD⊂平面PAD,BE不在平面PAD内,故有BE∥平面PAD.(Ⅲ)平行四边形ABED中,由AB⊥AD可得,ABED为矩形,故有BE⊥CD ①.由PA⊥平面ABCD,可得PA⊥AB,再由AB⊥AD可得AB⊥平面PAD,∴CD⊥平面PAD,故有CD⊥PD.再由E、F分别为CD和PC的中点,可得EF∥PD,∴CD⊥EF ②.而EF和BE是平面BEF内的两条相交直线,故有CD⊥平面BEF.由于CD⊂平面PCD,∴平面BEF⊥平面PCD.【点评】本题主要考查直线和平面垂直的判定定理,直线和平面平行的判定定理,平面和平面垂直的判定定理、性质定理的应用,属于中档题.18.(13分)已知函数f(x)=x2+xsinx+cosx.(Ⅰ)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(Ⅱ)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.【分析】(I)由题意可得f′(a)=0,f(a)=b,联立解出即可;(II)利用导数得出其单调性与极值即最值,得到值域即可.【解答】解:(I)f′(x)=2x+xcosx=x(2+cosx),∵曲线y=f(x)在点(a,f(a))处与直线y=b相切,∴f′(a)=a(2+cosa)=0,f(a)=b,联立,解得,故a=0,b=1.(II)∵f′(x)=x(2+cosx).令f′(x)=0,得x=0,x,f(x),f′(x)的变化情况如表:x (﹣∞,0) 0 (0,+∞)f(x)﹣ 0 +f′(x) 1所以函数f(x)在区间(﹣∞,0)上单调递减,在区间(0,+∞)上单调递增,f(0)=1是f(x)的最小值.当b≤1时,曲线y=f(x)与直线x=b最多只有一个交点;当b>1时,f(﹣2b)=f(2b)≥4b2﹣2b﹣1>4b﹣2b﹣1>b,f(0)=1<b,所以存在x1∈(﹣2b,0),x2∈(0,2b),使得f(x1)=f(x2)=b.由于函数f(x)在区间(﹣∞,0)和(0,+∞)上均单调,所以当b>1时曲线y=f(x)与直线y=b有且只有两个不同的交点.综上可知,如果曲线y=f(x)与直线y=b有且只有两个不同的交点,那么b的取值范围是(1,+∞).【点评】熟练掌握利用导数研究函数的单调性、极值与最值及其几何意义是解题的关键.高考模拟复习试卷试题模拟卷【考情解读】1.充分理解逻辑联结词的含义,注意和日常用语的区别;2.对量词的练习要在“含一个量词”框架内进行,不要随意加深;3.注意逻辑与其他知识的交汇.【重点知识梳理】1.充分条件、必要条件与充要条件(1)“若p,则q”形式的命题为真时,记作p⇒q,称p是q的充分条件,q是p的充要条件.(2)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的充要条件,q也是p的充要条件.p是q的充要条件又常说成q当且仅当p,或p与q等价.2.命题的四种形式及真假关系互为逆否的两个命题等价(同真或同假);互逆或互否的两个命题不等价.【特别提醒】等价命题和等价转化(1)逆命题与否命题互为逆否命题;(2)互为逆否命题的两个命题同真假;(3)当判断原命题的真假比较困难时,可以转化为判断它的逆否命题的真假.【高频考点突破】考点一命题的四种形式及其关系例1、已知命题“若函数f(x)=ex-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是 () A.否命题“若函数f(x)=ex-mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=ex-mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=ex-mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=ex-mx在(0,+∞)上不是增函数”是真命题【拓展提高】(1)熟悉概念是正确书写或判断命题的四种形式真假的关键;(2)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假;(3)认真仔细读题,必要时举特例.【变式探究】命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( )A .若x +y 是偶数,则x 与y 不都是偶数B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数考点二 充要条件的判断例2、已知下列各组命题,其中p 是q 的充分必要条件的是( )A .p :m≤-2或m≥6;q :y =x2+mx +m +3有两个不同的零点B .p :f -x f x =1;q :y =f(x)是偶函数C .p :cos α=cos β;q :tan α=tan βD .p :A∩B =A ;q :A ⊆U ,B ⊆U ,∁UB ⊆∁UA【拓展提高】判断p 是q 的什么条件,需要从两方面分析:一是由条件p 能否推得条件q ;二是由条件q 能否推得条件p.对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.【变式探究】给出下列命题:①“数列{an}为等比数列”是“数列{anan +1}为等比数列”的充分不必要条件;②“a =2”是“函数f(x)=|x -a|在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件;④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =3,则“A =30°”是“B =60°”的必要不充分条件.其中真命题的序号是________.考点三 充要条件的应用例3、已知集合M ={x|x<-3或x>5},P ={x|(x -a)·(x -8)≤0}.(1)求实数a 的取值范围,使它成为M∩P ={x|5<x≤8}的充要条件;(2)求实数a 的一个值,使它成为M∩P ={x|5<x≤8}的一个充分但不必要条件.【拓展提高】利用充要条件求参数的值或范围,关键是合理转化条件,准确地将每个条件对应的参数的范围求出来,然后转化为集合的运算,一定要注意区间端点值的检验.【变式探究】 已知p :x2-4x -5≤0,q :|x -3|<a (a>0).若p 是q 的充分不必要条件,求a 的取 值范围.【真题感悟】1.【高考浙江,文3】设a ,b 是实数,则“0a b +>”是“0ab >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.【高考重庆,文2】“x 1”是“2x 210x ”的()(A) 充要条件 (B) 充分不必要条件(C)必要不充分条件 (D)既不充分也不必要条件x 13.【高考天津,文4】设x R ,则“12x ”是“|2|1x ”的()(A) 充分而不必要条件 (B)必要而不充分条件(C)充要条件 (D)既不充分也不必要条件4.【高考四川,文4】设a ,b 为正实数,则“a >b >1”是“log2a >l og2b >0”的( )(A)充要条件 (B)充分不必要条件(C)必要不充分条件 (D)既不充分也不必要条件5.【高考湖南,文3】设x ∈R ,则“x >1”是“2x >1”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件x x x 6.【高考安徽,文3】设p :x<3,q :1<x<3,则p 是q 成立的( )(A )充分必要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件1.(·北京卷)设a ,b 是实数,则“a >b”是“a2>b2”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.(·广东卷)在△ABC中,角A,B,C所对应的边分别为a,b,c,则“a≤b”是“sin A≤sin B”的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件3.(·江西卷)下列叙述中正确的是()A.若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0”B.若a,b,c∈R,则“ab2>cb2”的充要条件是“a>c”C.命题“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”D.l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β4.(·辽宁卷)设a,b,c是非零向量,已知命题p:若a·b=0,b·c=0,则=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中真命题是()A.p∨q B.p∧qC.(綈p)∧(綈q) D.p∨(綈q)5.(·新课标全国卷Ⅱ)函数f(x)在x=x0处导数存在.若p:f′(x0)=0,q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件6.(·山东卷)用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是()A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根7.(·陕西卷)原命题为“若an+an+12<an,n∈N+,则{an}为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是() A.真,真,真 B.假,假,真C.真,真,假 D.假,假,假8.(·浙江卷)设四边形ABCD 的两条对角线为AC ,BD ,则“四边形ABCD 为菱形”是“AC ⊥BD”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件9.(·重庆卷)已知命题p :对任意x ∈R ,总有|x|≥0,q :x =1是方程x +2=0的根.则下列命题为真命题的是()A .p ∧綈qB .綈p ∧qC .綈p ∧綈qD .p ∧q10.(·安徽卷) “(2x -1)x =0”是“x =0”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件11.(·山东卷)给定两个命题p ,q ,若⌝p 是q 的必要而不充分条件,则p 是⌝q 的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 12.(·湖南卷) “1<x<2”是“x<2”成立的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件13.(·湖北卷)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A .(⌝p)∨(⌝q)B .p ∨(⌝q)C .(⌝p)∧(⌝q)D .p ∨q14.(·福建卷)设点P(x ,y),则“x =2且y =-1”是“点P 在直线l :x +y -1=0上”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件15.(·北京卷)双曲线x2-y2m =1的离心率大于2的充分必要条件是()A .m>12B .m≥1C .m>1D .m>216.(·天津卷)设a ,b ∈R ,则“(a -b)·a2<0”是“a<b”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件17.(·四川卷)设x ∈,集合A 是奇数集,集合B 是偶数集.若命题p :x ∈A ,2x ∈B ,则() (A ):,2p x A x B ⌝∃∈∈(B ):,2p x A x B ⌝∃∉∈(C ):,2p x A x B ⌝∃∈∉(D ):,2p x A x B ⌝∀∉∉18.(·陕西卷)设z 是复数,则下列命题中的假命题是()A .若z2≥0,则z 是实数B .若z2<0,则z 是虚数C .若z 是虚数,则z2≥0D .若z 是纯虚数,则z2<019.(·浙江卷)若α∈R ,则“α=0”是“sin α<cos α”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【押题专练】1.“|a|>0”是“a>0”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.设a ,b ∈R ,i 是虚数单位,则“ab =0”是“复数a +b i 为纯虚数”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A .(綈p)∨(綈q)B .p ∨(綈q)C .(綈p)∧(綈q)D .p ∨q4.命题“若x2<1,则-1<x<1”的逆否命题是()。

高三数学 自主考练28文 试题

高三数学 自主考练28文 试题

卜人入州八九几市潮王学校汉学2021届高三数学〔文〕自主考练〔28〕一、选择题.1.设复数11z i=-,那么z 的一共轭复数是〔〕A.11i +B.1i +C.11i- D.1i - 2.己知集合{}{}=|1,,|2A y y x x R B x x =-∈=≥,那么以下结论正确的选项是〔〕 A.3A -∈ B.3B ∉ C.A B B = D.A B B =3.设双曲线)0,0(12222>>=-b a by ax的渐近线方程为yx =, 那么该双曲线的离心率为〔〕A .223B .2C .332D .24.右图是用计算机随机模拟的方法估计概率P 的程序框 图,P 表示估计结果,那么输出P 的近似值为()A41B 21C 43D 87 实数,a b ,那么0>⋅b a 是0a >且0b >的必要不充分条件,q :在曲线cos y x =上存在斜率为的切线,那么以下判断正确的选项是()A.p B .qC .()p q ∧⌝是真D .()p q ⌝∧6.设yx ,满足约束条件⎪⎩⎪⎨⎧≥≥+-≤--,0,,02,063y x y x y x 假设目的函数y b ax z +=)0,(>b a 的最大值是12,那么22a b +的最小值是〔〕A .613B .365C .65D .36137.多面体的三视图如下列图,那么该多面体的体积为〔〕A.3216 B.332C.216D.32 8.将函数)32sin(π-=x y 的图象向左平移6π个单位,再将所得图象上所有点的横坐标伸长到原来的2倍〔纵坐标不变〕, 那么所得函数图象对应的解析式为() 〔A 〕)32sin(π-=x y 〔B 〕)3sin(π-=x y 〔C 〕x y 4sin =〔D 〕x y sin = 9.()sin 3cos 6f x a x x π=-已知函数的一条对称轴为x=-,且()()124,f x f x ⋅=-那么12x x +的最小值为〔〕A .3πB .2πC .23πD .43π 10.曲线24y x =-与x 轴的交点为,A B ,分别由,A B 两点向直线y x =作垂线,垂足为,C D ,沿直线y x =将平面ACD 折起,使ACD BCD ⊥平面平面,那么四面体ABCD 的外接球的外表积为〔〕A .16πB .12πC .8πD .6π11.定义12nnp +p ++p …为n 个正数n p p p ,,,21 的“均倒数〞.假设数列{}n a 的前n 项的“均倒数〞为121n +,又14n n a b +=,那么1223910111+b b b b b b ++…=()A .111B .910C .1011D .111212.椭圆22122:1(0)x y C a b a b+=>>与圆2222:C x y b +=,假设在椭圆1C 上存在点P ,过P 作圆的切线PA,PB,切点为A,.B 使得3π=∠BPA ,那么椭圆1C 的离心率的取值范围是〔〕A .B .C .D .1[,1)2二、填空题.13.某校对全校男女学生一共1600名进展安康调查,选用分层抽样法抽取一个容量为200的样本.女生比男生少抽10人,那么该校的女生人数应是_______人. 14.在ABC ∆中,角A 、B 、C 所对的边分别是a 、b 、c ,假设B c A b sin 3sin =,3=a ,且32cos =B,那么b 的值是. 15.在ABC ∆中,||3,||4,||5AB AC BC ===,O 为ABC ∆的内心,且,AO AB BC λμ=+那么λμ+=.16.数列}{na 满足211,*,n n n n aa a a n N +++-=-∈并且52a π=,假设函数2()sin 22sin 2xf x x =-,记()n n y f a =那么数列}{n y 的前9项和为.。

天津市2020〖人教版〗高三数学复习试卷高考数学试卷文科28

天津市2020〖人教版〗高三数学复习试卷高考数学试卷文科28

天津市2020年〖人教版〗高三数学复习试卷高考数学试卷文科创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校一.选择题:本大题共12小题,每小题5分,共60分1.(5分)复数(3+2i)i等于()A.﹣2﹣3i B.﹣2+3i C.2﹣3i D.2+3i2.(5分)若集合P={x|2≤x<4},Q={x|x≥3},则P∩Q等于()A.{x|3≤x<4}B.{x|3<x<4}C.{x|2≤x<3}D.{x|2≤x≤3} 3.(5分)以边长为1的正方形的一边所在所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于()A.2πB.πC.2 D.14.(5分)阅读如图所示的程序框图,运行相应的程序,输出的n的值为()A.1 B.2 C.3 D.45.(5分)命题“∀x∈[0,+∞),x3+x≥0”的否定是()A.∀x∈(﹣∞,0),x3+x<0 B.∀x∈(﹣∞,0),x3+x≥0C.∃x0∈[0,+∞),x03+x0<0 D.∃x0∈[0,+∞),x03+x0≥06.(5分)已知直线l过圆x2+(y﹣3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程是()A.x+y﹣2=0 B.x﹣y+2=0 C.x+y﹣3=0 D.x﹣y+3=07.(5分)将函数y=sinx的图象向左平移个单位,得到函数y=f(x)的函数图象,则下列说法正确的是()A.y=f(x)是奇函数B.y=f(x)的周期为πC.y=f(x)的图象关于直线x=对称D.y=f(x)的图象关于点(﹣,0)对称8.(5分)若函数y=log a x(a>0,且a≠1)的图象如图所示,则下列函数正确的是()A. B.C.D.9.(5分)要制作一个容积为4m3,高为1m的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是()A.80元B.120元C.160元D.240元10.(5分)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD 所在平面内任意一点,则等于()A. B.2C.3D.411.(5分)已知圆C:(x﹣a)2+(y﹣b)2=1,设平面区域Ω=,若圆心C∈Ω,且圆C与x轴相切,则a2+b2的最大值为()A.49 B.37 C.29 D.512.(5分)在平面直角坐标系中,两点P1(x1,y1),P2(x2,y2)间的“L﹣距离”定义为|P1P2|=|x1﹣x2|+|y1﹣y2|.则平面内与x轴上两个不同的定点F1,F2的“L﹣距离”之和等于定值(大于|F1F2|)的点的轨迹可以是()A.B.C.D.二、填空题:本大题共4小题,每小题4分,共16分13.(4分)如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为.14.(4分)在△ABC中,A=60°,AC=2,BC=,则AB等于.15.(4分)函数f(x)=的零点个数是.16.(4分)已知集合{a,b,c}={0,1,2},且下列三个关系:①•a≠2;②‚b=2;③ƒc≠0有且只有一个正确,则100a+10b+c等于.三.解答题:本大题共6小题,共74分.17.(12分)在等比数列{a n}中,a2=3,a5=81.(Ⅰ)求a n;(Ⅱ)设b n=log3a n,求数列{b n}的前n项和S n.18.(12分)已知函数f(x)=2cosx(sinx+cosx).(Ⅰ)求f()的值;(Ⅱ)求函数f(x)的最小正周期及单调递增区间.19.(12分)如图,三棱锥A﹣BCD中,AB⊥平面BCD,CD⊥BD.(Ⅰ)求证:CD⊥平面ABD;(Ⅱ)若AB=BD=CD=1,M为AD中点,求三棱锥A﹣MBC的体积.20.(12分)根据世行新标准,人均GDP低于1035美元为低收入国家;人均GDP为1035﹣4085美元为中等偏下收入国家;人均GDP为4085﹣12616美元为中等偏上收入国家;人均GDP不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:行政区区人口占城市人口比例区人均GDP(单位:美元)A25%8000B30%4000C15%6000D10%3000E20%10000(Ⅰ)判断该城市人均GDP是否达到中等偏上收入国家标准;(Ⅱ)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP 都达到中等偏上收入国家标准的概率.21.(12分)已知曲线Γ上的点到点F(0,1)的距离比它到直线y=﹣3的距离小2.(Ⅰ)求曲线Γ的方程;(Ⅱ)曲线Γ在点P处的切线l与x轴交于点A.直线y=3分别与直线l及y轴交于点M,N,以MN为直径作圆C,过点A作圆C的切线,切点为B,试探究:当点P在曲线Γ上运动(点P与原点不重合)时,线段AB的长度是否发生变化?证明你的结论.22.(14分)已知函数f(x)=e x﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x<ce x.参考答案与试题解析一.选择题:本大题共12小题,每小题5分,共60分1.(5分)复数(3+2i)i等于()A.﹣2﹣3i B.﹣2+3i C.2﹣3i D.2+3i【分析】直接由复数代数形式的乘法运算化简求值.【解答】解:(3+2i)i=3i+2i2=﹣2+3i.故选:B.【点评】本题考查了复数代数形式的乘法运算,是基础的计算题.2.(5分)若集合P={x|2≤x<4},Q={x|x≥3},则P∩Q等于()A.{x|3≤x<4}B.{x|3<x<4}C.{x|2≤x<3}D.{x|2≤x≤3}【分析】由于两集合已是最简,直接求它们的交集即可选出正确答案【解答】解:∵P={x|2≤x<4},Q={x|x≥3},∴P∩Q={x|3≤x<4}.故选:A.【点评】本题考查交集的运算,理解好交集的定义是解题的关键3.(5分)以边长为1的正方形的一边所在所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于()A.2πB.πC.2 D.1【分析】边长为1的正方形,绕其一边所在直线旋转一周,得到的几何体为圆柱,从而可求圆柱的侧面积.【解答】解:边长为1的正方形,绕其一边所在直线旋转一周,得到的几何体为圆柱,则所得几何体的侧面积为:1×2π×1=2π,故选:A.【点评】本题是基础题,考查旋转体的侧面积的求法,考查计算能力.4.(5分)阅读如图所示的程序框图,运行相应的程序,输出的n的值为()A.1 B.2 C.3 D.4【分析】根据框图的流程模拟运行程序,直到不满足条件2n>n2,跳出循环,确定输出的n值.【解答】解:由程序框图知:第一次循环n=1,21>1;第二次循环n=2,22=4.不满足条件2n>n2,跳出循环,输出n=2.故选:B.【点评】本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.5.(5分)命题“∀x∈[0,+∞),x3+x≥0”的否定是()A.∀x∈(﹣∞,0),x3+x<0 B.∀x∈(﹣∞,0),x3+x≥0C.∃x0∈[0,+∞),x03+x0<0 D.∃x0∈[0,+∞),x03+x0≥0【分析】全称命题的否定是一个特称命题,按此规则写出其否定即可得出正确选项.【解答】解:∵命题“∀x∈[0,+∞),x3+x≥0”是一个全称命题.∴其否定命题为:∃x0∈[0,+∞),x03+x0<0故选:C.【点评】本题考查全称命题的否定,掌握此类命题的否定的规则是解答的关键.6.(5分)已知直线l过圆x2+(y﹣3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程是()A.x+y﹣2=0 B.x﹣y+2=0 C.x+y﹣3=0 D.x﹣y+3=0【分析】由题意可得所求直线l经过点(0,3),斜率为1,再利用点斜式求直线l的方程.【解答】解:由题意可得所求直线l经过点(0,3),斜率为1,故l的方程是 y﹣3=x﹣0,即x﹣y+3=0,故选:D.【点评】本题主要考查用点斜式求直线的方程,两条直线垂直的性质,属于基础题.7.(5分)将函数y=sinx的图象向左平移个单位,得到函数y=f(x)的函数图象,则下列说法正确的是()A.y=f(x)是奇函数B.y=f(x)的周期为πC.y=f(x)的图象关于直线x=对称D.y=f(x)的图象关于点(﹣,0)对称【分析】利用函数图象的平移法则得到函数y=f(x)的图象对应的解析式为f (x)=cosx,则可排除选项A,B,再由cos=cos(﹣)=0即可得到正确选项.【解答】解:将函数y=sinx的图象向左平移个单位,得y=sin(x+)=cosx.即f(x)=cosx.∴f(x)是周期为2π的偶函数,选项A,B错误;∵cos=cos(﹣)=0,∴y=f(x)的图象关于点(﹣,0)、(,0)成中心对称.故选:D.【点评】本题考查函数图象的平移,考查了余弦函数的性质,属基础题.8.(5分)若函数y=log a x(a>0,且a≠1)的图象如图所示,则下列函数正确的是()A. B.C.D.【分析】根据对数函数的图象所过的特殊点求出a的值,再研究四个选项中函数与图象是否对应即可得出正确选项.【解答】解:由对数函数的图象知,此函数图象过点(3,1),故有y=log a3=1,解得a=3,对于A,由于y=a﹣x是一个减函数故图象与函数不对应,A错;对于B,由于幂函数y=x a是一个增函数,且是一个奇函数,图象过原点,且关于原点对称,图象与函数的性质对应,故B正确;对于C,由于a=3,所以y=(﹣x)a是一个减函数,图象与函数的性质不对应,C错;对于D,由于y=log a(﹣x)与y=log a x的图象关于y轴对称,所给的图象不满足这一特征,故D错.故选:B.【点评】本题考查函数的性质与函数图象的对应,熟练掌握各类函数的性质是快速准确解答此类题的关键.9.(5分)要制作一个容积为4m3,高为1m的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是()A.80元B.120元C.160元D.240元【分析】设池底长和宽分别为a,b,成本为y,建立函数关系式,然后利用基本不等式求出最值即可求出所求.【解答】解:设池底长和宽分别为a,b,成本为y,则∵长方形容器的容器为4m3,高为1m,∴底面面积S=ab=4,y=20S+10[2(a+b)]=20(a+b)+80,∵a+b≥2=4,∴当a=b=2时,y取最小值160,即该容器的最低总造价是160元,故选:C.【点评】本题以棱柱的体积为载体,考查了基本不等式,难度不大,属于基础题,由实际问题向数学问题转化是关键.10.(5分)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD 所在平面内任意一点,则等于()A. B.2C.3D.4【分析】虑用特殊值法去做,因为O为任意一点,不妨把O看成是特殊点,再代入计算,结果满足哪一个选项,就选哪一个.【解答】解:∵O为任意一点,不妨把A点看成O点,则=,∵M是平行四边形ABCD的对角线的交点,∴=2=4故选:D.【点评】本题考查了平面向量的加法,做题时应掌握规律,认真解答.11.(5分)已知圆C:(x﹣a)2+(y﹣b)2=1,设平面区域Ω=,若圆心C∈Ω,且圆C与x轴相切,则a2+b2的最大值为()A.49 B.37 C.29 D.5【分析】作出不等式组对应的平面区域,利用圆C与x轴相切,得到b=1为定值,此时利用数形结合确定a的取值即可得到结论.【解答】解:作出不等式组对应的平面区域如图:圆心为(a,b),半径为1∵圆心C∈Ω,且圆C与x轴相切,∴b=1,则a2+b2=a2+1,∴要使a2+b2的取得最大值,则只需a最大即可,由图象可知当圆心C位于B点时,a取值最大,由,解得,即B(6,1),∴当a=6,b=1时,a2+b2=36+1=37,即最大值为37,故选:B.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.12.(5分)在平面直角坐标系中,两点P1(x1,y1),P2(x2,y2)间的“L﹣距离”定义为|P1P2|=|x1﹣x2|+|y1﹣y2|.则平面内与x轴上两个不同的定点F1,F2的“L﹣距离”之和等于定值(大于|F1F2|)的点的轨迹可以是()A.B.C.D.【分析】设出F1,F2的坐标,在设出动点M的坐标,由新定义列式后分类讨论去绝对值,然后结合选项得答案.【解答】解:设F1(﹣c,0),F2(c,0),再设动点M(x,y),动点到定点F1,F2的“L﹣距离”之和等于m(m>2c>0),由题意可得:|x+c|+|y|+|x﹣c|+|y|=m,即|x+c|+|x﹣c|+2|y|=m.当x<﹣c,y≥0时,方程化为2x﹣2y+m=0;当x<﹣c,y<0时,方程化为2x+2y+m=0;当﹣c≤x<c,y≥0时,方程化为y=;当﹣c≤x<c,y<0时,方程化为y=c﹣;当x≥c,y≥0时,方程化为2x+2y﹣m=0;当x≥c,y<0时,方程化为2x﹣2y﹣m=0.结合题目中给出的四个选项可知,选项A中的图象符合要求.故选:A.【点评】本题考查轨迹方程的求法,考查了分类讨论的数学思想方法,解答的关键是正确分类,是中档题.二、填空题:本大题共4小题,每小题4分,共16分13.(4分)如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为 0.18 .【分析】根据几何槪型的概率意义,即可得到结论.【解答】解:正方形的面积S=1,设阴影部分的面积为S,∵随机撒1000粒豆子,有180粒落到阴影部分,∴几何槪型的概率公式进行估计得,即S=0.18,故答案为:0.18.【点评】本题主要考查几何槪型的概率的计算,利用豆子之间的关系建立比例关系是解决本题的关键,比较基础.14.(4分)在△ABC中,A=60°,AC=2,BC=,则AB等于 1 .【分析】利用余弦定理列出关系式,将AC,BC,以及cosA的值代入即可求出AB的长.【解答】解:∵在△ABC中,A=60°,AC=b=2,BC=a=,∴由余弦定理得:a2=b2+c2﹣2bccosA,即3=4+c2﹣2c,解得:c=1,则AB=c=1,故答案为:1【点评】此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.15.(4分)函数f(x)=的零点个数是 2 .【分析】根据函数零点的定义,直接解方程即可得到结论.【解答】解:当x≤0时,由f(x)=0得x2﹣2=0,解得x=或x=(舍去),当x>0时,由f(x)=0得2x﹣6+lnx=0,即lnx=6﹣2x,作出函数y=lnx和y=6﹣2x在同一坐标系图象,由图象可知此时两个函数只有1个交点,故x>0时,函数有1个零点.故函数f(x)的零点个数为2,故答案为:2【点评】本题主要考查函数零点个数的判断,对于比较好求的函数,直接解方程f(x)=0即可,对于比较复杂的函数,由利用数形结合进行求解.16.(4分)已知集合{a,b,c}={0,1,2},且下列三个关系:①•a≠2;②‚b=2;③ƒc≠0有且只有一个正确,则100a+10b+c等于 201 .【分析】根据集合相等的条件,列出a、b、c所有的取值情况,再判断是否符合条件,求出a、b、c的值后代入式子求值.【解答】解:由{a,b,c}={0,1,2}得,a、b、c的取值有以下情况:当a=0时,b=1、c=2或b=2、c=1,此时不满足题意;当a=1时,b=0、c=2或b=2、c=0,此时不满足题意;当a=2时,b=1、c=0,此时不满足题意;当a=2时,b=0、c=1,此时满足题意;综上得,a=2、b=0、c=1,代入100a+10b+c=201,故答案为:201.【点评】本题考查了集合相等的条件的应用,以及分类讨论思想,注意列举时按一定的顺序列举,做到不重不漏.三.解答题:本大题共6小题,共74分.17.(12分)在等比数列{a n}中,a2=3,a5=81.(Ⅰ)求a n;(Ⅱ)设b n=log3a n,求数列{b n}的前n项和S n.【分析】(Ⅰ)设出等比数列的首项和公比,由已知列式求解首项和公比,则其通项公式可求;(Ⅱ)把(Ⅰ)中求得的a n代入b n=log3a n,得到数列{b n}的通项公式,由此得到数列{b n}是以0为首项,以1为公差的等差数列,由等差数列的前n项和公式得答案.【解答】解:(Ⅰ)设等比数列{a n}的公比为q,由a2=3,a5=81,得,解得.∴;(Ⅱ)∵,b n=log3a n,∴.则数列{b n}的首项为b1=0,由b n﹣b n﹣1=n﹣1﹣(n﹣2)=1(n≥2),可知数列{b n}是以1为公差的等差数列.∴.【点评】本题考查等比数列的通项公式,考查了等差数列的前n项和公式,是基础的计算题.18.(12分)已知函数f(x)=2cosx(sinx+cosx).(Ⅰ)求f()的值;(Ⅱ)求函数f(x)的最小正周期及单调递增区间.【分析】(Ⅰ)利用三角恒等变换化简函数的解析式为f(x)=sin (2x+)+1,从而求得f()的值.(Ⅱ)根据函数f(x)=sin(2x+)+1,求得它的最小正周期.令2kπ﹣≤2x+≤2kπ+,k∈Z,求得x的范围,可得函数的单调递增区间.【解答】解:(Ⅰ)∵函数f(x)=2cosx(sinx+cosx)=sin2x+1+cos2x=sin (2x+)+1,∴f()=sin(+)+1=sin+1=+1=2.(Ⅱ)∵函数f(x)=sin(2x+)+1,故它的最小正周期为=π.令2kπ﹣≤2x+≤2kπ+,k∈Z,求得kπ﹣≤x≤kπ+,故函数的单调递增区间为[kπ﹣,kπ+],k∈Z.【点评】本题主要考查三角函数的恒等变换,三角函数的周期性和单调性,属于中档题.19.(12分)如图,三棱锥A﹣BCD中,AB⊥平面BCD,CD⊥BD.(Ⅰ)求证:CD⊥平面ABD;(Ⅱ)若AB=BD=CD=1,M为AD中点,求三棱锥A﹣MBC的体积.【分析】(Ⅰ)证明:CD⊥平面ABD,只需证明AB⊥CD;(Ⅱ)利用转换底面,V A=V C﹣ABM=S△ABM•CD,即可求出三棱锥A﹣MBC的﹣MBC体积.【解答】(Ⅰ)证明:∵AB⊥平面BCD,CD⊂平面BCD,∴AB⊥CD,∵CD⊥BD,AB∩BD=B,∴CD⊥平面ABD;(Ⅱ)解:∵AB⊥平面BCD,BD⊂平面BCD,∴AB⊥BD.∵AB=BD=1,∴S △ABD =,∵M 为AD 中点,∴S △ABM =S △ABD =,∵CD ⊥平面ABD ,∴V A ﹣MBC =V C ﹣ABM =S △ABM •CD=.【点评】本题考查线面垂直,考查三棱锥A ﹣MBC 的体积,正确运用线面垂直的判定定理是关键.20.(12分)根据世行新标准,人均GDP 低于1035美元为低收入国家;人均GDP 为1035﹣4085美元为中等偏下收入国家;人均GDP 为4085﹣12616美元为中等偏上收入国家;人均GDP 不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP 如下表:行政区 区人口占城市人口比例 区人均GDP (单位:美元)A25% 8000 B30% 4000 C15% 6000 D10% 3000 E 20% 10000(Ⅰ)判断该城市人均GDP 是否达到中等偏上收入国家标准;(Ⅱ)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP 都达到中等偏上收入国家标准的概率.【分析】(Ⅰ)利用所给数据,计算该城市人均GDP ,即可得出结论; (Ⅱ)利用古典概型概率公式,即可得出结论.【解答】解:(Ⅰ)设该城市人口总数为a ,则该城市人均GDP 为=6400∴该城市人均GDP 达到中等偏上收入国家标准;(Ⅱ)从该城市5个行政区中随机抽取2个,共有=10种情况,GDP 都达到中等偏上收入国家标准的区域有A ,C ,E ,抽到的2个行政区人均GDP 都达到中等偏上收入国家标准,共有=3种情况,∴抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.【点评】本题考查概率与统计等基础知识,考查数据处理能力、运算求解能力、应用意识,考查必然、或然思想.22.(14分)已知函数f(x)=e x﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x<ce x.【分析】(1)利用导数的几何意义求得a,再利用导数法求得函数的极值;(2)构造函数g(x)=e x﹣x2,利用导数求得函数的最小值,即可得出结论;(3)利用(2)的结论,令x0=,则e x>x2>x,即x<ce x.即得结论成立.【解答】解:(1)由f(x)=e x﹣ax得f′(x)=e x﹣a.又f′(0)=1﹣a=﹣1,∴a=2,∴f(x)=e x﹣2x,f′(x)=e x﹣2.由f′(x)=0得x=ln2,当x<ln2时,f′(x)<0,f(x)单调递减;当x>ln2时,f′(x)>0,f(x)单调递增;∴当x=ln2时,f(x)有极小值为f(ln2)=e ln2﹣2ln2=2﹣ln4.f(x)无极大值.(2)令g(x)=e x﹣x2,则g′(x)=e x﹣2x,由(1)得,g′(x)=f(x)≥f(ln2)=e ln2﹣2ln2=2﹣ln4>0,即g′(x)>0,∴当x>0时,g(x)>g(0)>0,即x2<e x;(3)对任意给定的正数c,总存在x0=>0.当x∈(x0,+∞)时,由(2)得e x>x2>x,即x<ce x.∴对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x<ce x.【点评】本题主要考查基本初等函数的导数、导数的运算及导数的应用、全称量词、存在量词等基础知识,考查运算求解能力、推理论证能力、抽象概括能力,考查函数与方程思想、有限与无限思想、划归与转化思想、分类与整合思想、特殊与一般思想.属难题.21.(12分)已知曲线Γ上的点到点F(0,1)的距离比它到直线y=﹣3的距离小2.(Ⅰ)求曲线Γ的方程;(Ⅱ)曲线Γ在点P处的切线l与x轴交于点A.直线y=3分别与直线l及y轴交于点M,N,以MN为直径作圆C,过点A作圆C的切线,切点为B,试探究:当点P在曲线Γ上运动(点P与原点不重合)时,线段AB的长度是否发生变化?证明你的结论.【分析】(Ⅰ)设S(x,y)曲线Γ上的任意一点,利用抛物线的定义,判断S 满足配额我想的定义,即可求曲线Γ的方程;(Ⅱ)通过抛物线方程利用函数的导数求出切线方程,求出A、M的坐标,N 的坐标,以MN为直径作圆C,求出圆心坐标,半径是常数,即可证明当点P 在曲线Γ上运动(点P与原点不重合)时,线段AB的长度不变.【解答】解:(Ⅰ)设S(x,y)曲线Γ上的任意一点,由题意可得:点S到F(0,1)的距离与它到直线y=﹣1的距离相等,曲线Γ是以F为焦点直线y=﹣1为准线的抛物线,∴曲线Γ的方程为:x2=4y.(Ⅱ)当点P在曲线Γ上运动(点P与原点不重合)时,线段AB的长度不变,证明如下:由(Ⅰ)可知抛物线的方程为y=,设P(x0,y0)(x0≠0)则y0=,由y得切线l的斜率k==∴切线l的方程为:,即.由得,由得,又N(0,3),所以圆心C(),半径r==∴点P在曲线Γ上运动(点P与原点不重合)时,线段AB的长度不变.【点评】本题考查轨迹方程的求法,直线与抛物线的位置关系的应用,圆的方程函数的导数等指数的应用,难度较大.创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校。

山东省临沂市第二十八中学2019-2020学年高三数学文月考试题含解析

山东省临沂市第二十八中学2019-2020学年高三数学文月考试题含解析

山东省临沂市第二十八中学2019-2020学年高三数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知数列满足,设是数列的前项和. 若,则的值为()A. B. C.-6 D. -2参考答案:D由递推关系可知,,,,所以,可得2. 集合,,A. B. C. D.参考答案:【知识点】交集的运算A1B 解析:根据交集的定义易知,故选B.【思路点拨】直接利用交集的定义即可。

3. 已知椭圆(a>b>0)的左顶点和上顶点分别为A,B,左、右焦点分别是F1,F2,在线段AB上有且仅有一个点P满足PF1⊥PF2,则椭圆的离心率为()A.B.C.D.参考答案:D【考点】K4:椭圆的简单性质.【分析】由题意可求得AB的方程,设出P点坐标,代入AB得方程,由PF1⊥PF2,得?=0,结合椭圆的离心率的性质即可求得答案.【解答】解:依题意,作图如下:A(﹣a,0),B(0,b),F1(﹣c,0),F2(c,0),∴直线AB的方程为:,整理得:bx﹣ay+ab=0,设直线AB上的点P(x,y)则bx=ay﹣ab,∴x=y﹣a,∵PF1⊥PF2,∴?=(﹣c﹣x,﹣y)?(c﹣x,﹣y)=x2+y2﹣c2=()2+y2﹣c2,令f(y)=()2+y2﹣c2,则f′(y)=2(y﹣a)×+2y,∴由f′(y)=0得:y=,于是x=﹣,∴?=(﹣)2+()2﹣c2=0,整理得: =c2,又b2=a2﹣c2,e2=,∴e4﹣3e2+1=0,∴e2=,又椭圆的离心率e∈(0,1),∴e=.椭圆的离心率,故选:D.4.抛物线的焦点作直线l交抛物线于A、B两点,若线段AB中点的横坐标为3,则等于()A.10B.8 C.6D.4参考答案:答案:B5. (09 年聊城一模理)给定下列结论:①已知命题p:;命题q:则命题“”是假命题;②“命题为真”是“命题为真”的必要不充分条件;③命题“所有的正方形都是矩形”的否定是“所有的正方形都不是矩形”;④函数与函数互为反函数.正确的个数是()A.1 B.2 C.3 D.4参考答案:答案:C6. 已知函数,则它们的图象可能是()参考答案:【知识点】函数与导数的关系B11B解析:因为二次函数g(x)的对称轴为x=-1,所以排除A,D,又因为函数g(x)为函数f(x)的导数,由函数单调性与其导数的关系可排除C,所以选B.【思路点拨】发现函数g(x)与f(x)的导数关系是本题解题的关键.7. 已知函数在处取最大值,以下各式正确的序号为①②③④⑤A.①④B.②④C.②⑤D.③⑤参考答案:B8. 函数()(A)(B)(C)(D)参考答案:略9. (5分)函数y=log2(x2﹣3x+2)的递减区间是()A.(﹣∞,1)B.(2,+∞)C.(﹣∞,)D.(,+∞)参考答案:A考点:复合函数的单调性.专题:函数的性质及应用.分析:设t=x2﹣3x+2,根据复合函数单调性之间的关系进行求解即可.解答:解:由x2﹣3x+2>0,得x<1或x>2,设t=x2﹣3x+2,则y═log2t为增函数,则根据复合函数单调性之间的关系知要求函数y=log2(x2﹣3x+2)的递减区间,即求函数t=x2﹣3x+2的递减区间,∵t=x2﹣3x+2的递减区间为(﹣∞,1),∴函数y=log2(x2﹣3x+2)的递减区间是(﹣∞,1),故选:A.点评:本题主要考查函数单调性的求解,根据复合函数单调性之间的关系是解决本题的关键.10. 设,,,则A.c<b<a B.a<b<c C.c<a<b D.a<c<b参考答案:略二、填空题:本大题共7小题,每小题4分,共28分11. 已知满足,,,则.(用表示)参考答案:12. 满足等式=0的复数z为.参考答案:﹣1【考点】复数代数形式的乘除运算.【分析】利用行列式的性质、复数的运算法则即可得出.【解答】解:∵等式=0,∴z(1+i)+i(1﹣i)=0,∴z(1+i)(1﹣i)+i(1﹣i)(1﹣i)=0,∴2z+2=0,解得z=﹣1.故答案为:﹣1.【点评】本题考查了行列式的性质、复数的运算法则,考查了推理能力与计算能力,属于基础题.13. 已知数列的前n项和为,且,则=______________.参考答案:-128略14. 今要在一个圆周上标出一些数,第一次先把圆周二等分,在这两个分点处分别标上1,如图(1)所示;第二次把两段半圆弧二等分,在这两个分点处分别标上2,如图(2)所示;第三次把4段圆弧二等分,并在这4个分点处分别标上3,如图(3)所示.如此继续下去,当第n次标完数以后,这圆周上所有已标出的数的总和是.参考答案:15. 已知函数是偶函数,定义域为,则 --____参考答案:16. 定义在R上的偶函数满足:①对任意都有成立;②;③当且时,都有.则:(Ⅰ);(Ⅱ)若方程在区间上恰有3个不同实根,则实数的取值范围是____.参考答案:17. 取正方体的六个表面的中心,这六个点所构成的几何体的体积记为V1,该正方体的体积为V2,则V1∶V2=________.参考答案:三、解答题:本大题共5小题,共72分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教A 版数学高三单元测试28【合情推理与演绎推理】
本卷共100分,考试时间90分钟
一、选择题 (每小题4分,共40分)
1. 按照下列三种化合物的结构式及分子式的规律,写出后一种化合物的分子式...

(A )94H C (B )114H C (C )104H C (D )124H C
2. 四个小动物换座位,开始是猴、兔、猫、鼠分别坐在1、2、3、4号位置上(如图),第一次前后排动物互换位置,第二次左右列互换座位,……,这样交替进行下去,那么第2010次互换座位后,小兔的位置对应的是( )
开始 第一次 第二次 第三次
A.编号1
B.编号2
C.编号3
D.编号4
4. 记集合3124234{0,1,2,3,4,5,6,7,8,9},{
,1,2,3,4}10101010
i a a a a
T M a T i ==+++∈=,将M 中的元素按从大到小排列,则第2011个数是( )
2345573.
10101010A +++ 2345572.10101010B +++ 2347989.10101010C +++ 2347991.10101010
D +++
5. 黑白两种颜色的正六边形地面砖如图的规律拼成若干个图案,则第2011个图案中,白色地面砖的块数是 ( )
A .8046
B .8042
C .4024
D .6033
6. 如图.五角星魅力无穷,移动点由A 处按图中数字由小到大的顺序依次运动,当第一次结
束回到A 处时,数字为6,按此规律无限运动,则数字2010应在
A. B 处
B. C 处
C. D 处
D. E 处 7. 下面几种推理过程是演绎推理的是 ( )
A.某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50
人;
B.由三角形的性质,推测空间四面体的性质;
C.平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分;
D.在数列}{n a 中,)1(21,11
11--+=
=n n n a a a a ,由此归纳出}{n a 的通项公式.
8. 已知0x >,由不等式221442,3,,
22x x x x x x x +≥=+=++≥=可以推出结论:*1(),n a
x n n N a x
+≥+∈则=( )
A .2n
B .3n
C .n
2
D .n n
9. 为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息,设定原信息为}{),2,1,0(1,0,210=∈i a a a a i 传输信息为,12100h a a a h 其中
201100,a h h a a h ⊕=⊕=,⊕运算规则为.011,101,110,000=⊕=⊕=⊕=⊕例如原信
息为111,则传输信息为01111,传输信息在传输过程中受到干扰可能导致接受信息出错,则下列接受信息一定有误的是.A 11010
.B 01100
.C 10111
.D 0001110. 下列推理过程是演绎推理的是( )
A.两条直线平行,同旁内角互补,由此若,A B 行是两条平行直线被第三条直线所截得的同旁内角,则180A
B ???
B.某校高二(1)班有55人,高二(2)班有54人,高二(3)班有52人,由此得出高二所有班人数超过50人
C.由平面三角形的性质,推测出空间四面体的性质
D.在数列{}n a 中,111
1,12()(2)1
n n n a a a n a -==+?-,由此归纳出{}n a 的通项式 二、填空题 (共4小题,每小题4分)
11. 观察下列的图形中小正方形的个数,则第6个图中有_______个小正方形,第n 个图中
有 ________________个小正方形
.
12. 已知00a ≠,设方程010a x a +=的一个根是1x ,则1
10
a x a =-
,方程20120a x a x a ++=的两个根是12,x x ,则1
120
a x x a +=-
,由此类推方程3201230a x a x a x a +++=的三个根是123,,x x x ,则123x x x ++= .
13. 已知0>n a (n N *∈),①如果121=+a a ,那么2111a a +=)(21a a +)
11(21a a +≥4;
②如果1321
=++a a a ,那么321111a a a ++=)(321a a a ++)
1
11(321a a a ++≥9,
类比①、②,如果14321
=+++a a a a ,那么43211111a a a a +
++≥ .
14. 已知不等式2
2
2xy ax y ≤+对于[][]1,2,2,3x y ∈∈恒成立,则a 的取值范是 .
三、解答题 (共4小题,共44分,写出必要的解题步骤) 15. (本小题满分10分)(1)求证:2567-<-; (2)已知函数f (x )= x e +
1
2
+-x x ,用反证法证明方程0)(=x f 没有负数根. 16. (本小题满分10分) 用数学归纳法证明:
(31)
(1)(2)()()2n n n n n n n *+++++++=
∈N
17. (本小题满分12分)若不等式11
112
3124
a
n n n +++
>
+++对一切正整数n 都成立,求正整数a 的最大值,并证明结论.
18. (本小题满分12分) 已知c b a ,,均为实数,且
6
2,3
2,2
2222π
π
π
+
-=+
-=+
-=x z c z y b y x a ,
求证:c b a ,,中至少有一个大于0。

答案
一、选择题 1. C 略 2. C 略 3. D 略 4. C 略 5. A 略 6. D 略 7. C 略 8. D 略 9. C 略 10. A 略 二、填空题 11. 28 , 2
)
2)(1(++n n
12. 1
a a -
13. 16 14. [-1,+∞) 三、解答题
15. (1)证明:要证2567-<- 只需证(
)
2
2
25)67(-<
-
只需证54942213-<- 即证42522<+
只需证425824<+ 只需证954< 即证8180< 上式显然成立,命题得证。

…… 6分 (2)证明:设存在x 0<0(x 0≠-1),使f (x 0)=0,则e 0x = —1
2
00+-x x 由于0<e 0x <1得0<—
1200+-x x <1,解得2
1
<x 0<2,与已知x 0<0矛盾,因此方程f (x )=0没有负数根。

………………………12分 16. 略
17. 解析:当1n =时,11111123124a ++>+++,即262424
a
>
, 所以26a <.
而a 是正整数,所以取25a =,下面用数学归纳法证明:11
125
12
3124
n n n +++
>
+++. (1)当1n =时,已证;
(2)假设当n k =时,不等式成立,即11125
12
3124
k k k +++
>
+++. 则当1n k =+时, 有
11
1
(1)1(1)2
3(1)1
k k k ++
+
++++++
1111111
12
313233341
k k k k k k k =
+++
+++-
+++++++ 251122432343(1)k k k ⎡⎤>
++-⎢⎥+++⎣⎦
. 因为2116(1)2
323491883(1)k k k k k k ++=>+++++, 所以2116(1)2
323491883(1)k k k k k k ++=>+++++, 所以
112
032343(1)
k k k +->+++. 所以当1n k =+时不等式也成立.
由(1)(2)知,对一切正整数n ,都有11
125
12
3124
n n n +++
>
+++, 所以a 的最大值等于25.
18. 证明:假设c b a ,,都不大于0,即0,0,0a b c ≤≤≤,得0a b c ++≤, 而222(1)(1)(1)330a b c x y z ππ++=-+-+-+-≥->, 即0a b c ++>,与0a b c ++≤矛盾, ,,a b c ∴中至少有一个大于0。

相关文档
最新文档