正反比例应用题

合集下载

六年级正反比例易错题应用题

六年级正反比例易错题应用题

六年级正反比例易错题应用题一、正比例应用题1. 题目一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。

甲乙两地之间的公路长多少千米?解析:根据题意可知汽车行驶的速度是一定的。

因为速度 = 路程÷时间,当速度一定时,路程和时间成正比例关系。

设甲乙两地之间的公路长x千米。

先求出汽车的速度,已知汽车2小时行驶140千米,速度为140÷2 = 70(千米/小时)。

根据正比例关系可列出比例式:(140)/(2)=(x)/(5)。

然后交叉相乘得到2x = 140×5,2x=700,解得x = 350千米。

2. 题目小明买9本练习本花了4.5元,如果买同样的练习本20本需要付多少钱?解析:因为练习本的单价是一定的,单价 = 总价÷数量,当单价一定时,总价和数量成正比例关系。

设买20本练习本需要付x元。

先求出单价,4.5÷9 = 0.5(元/本)。

列出比例式:(4.5)/(9)=(x)/(20)。

交叉相乘得9x = 4.5×20,9x = 90,解得x = 10元。

二、反比例应用题1. 题目一间房子要用方砖铺地,用面积是9平方分米的方砖,需要96块,如果改用面积是4平方分米的方砖,需要多少块?解析:房间地面的总面积是一定的。

因为每块砖的面积×砖的块数 = 房间地面总面积,当房间地面总面积一定时,每块砖的面积和砖的块数成反比例关系。

设改用面积是4平方分米的方砖需要x块。

房间地面总面积为9×96 = 864平方分米。

根据反比例关系可列出方程4x = 9×96。

解得x=(9×96)/(4)=216块。

2. 题目一辆汽车从甲地开往乙地,每小时行60千米,5小时到达。

如果要4小时到达,每小时应行多少千米?解析:甲乙两地的路程是一定的。

因为速度×时间 = 路程,当路程一定时,速度和时间成反比例关系。

(完整版)正反比例应用题

(完整版)正反比例应用题

(完整版)正反⽐例应⽤题正反⽐例应⽤题解答正、反⽐例应⽤题,要注意以下⼏点:1.仔细分析,弄清楚题中有哪三种量,哪两种量在相关联变化的,哪⼀种量是固定不变的。

2.根据三种量的关系,判断相关联的两种量是⽐值(商)⼀定还是积⼀定,即判断相关联的两种量是成正⽐例还是成的⽐例。

3.然后根据正、的正⽐例的意义列出⽐例求解。

例题1 ⼀辆汽车3⼩时⾏135千⽶,照这样计算,这辆汽车6⼩时⾏多少千⽶?例题2 “六⼀”⼉童节,育才⼩学表演⼤型团体操。

原来站36⾏,正好每⾏站24⼈。

后来改站32⾏,每⾏能站多少⼈?例题3 ⼀辆汽车从甲城开往⼄城,3⼩时⾏驶180千⽶,⽤这样的速度再⾏2.4⼩时到达⼄城。

甲、⼄两城相距多少千⽶?例题4东风机械⼚有⼀批煤,原计划每天烧15吨,可烧80天。

实际每天⽐原计划节约20%,这批煤可烧多少天?例题5 ⼀根⽵竿长3⽶,直⽴在地⾯上,量得它的影长是1.25⽶,在同⼀时间,同⼀地点量得⼀棵⼤树的影长6.25⽶,这棵⼤树⾼多少⽶?例题6 ⼀间房⼦要⽤瓷砖铺地,⽤边长3分⽶的正⽅形瓷砖需3200块,⽤边长4分⽶的瓷砖需多少块?例题7 把⼀根长3⽶的圆钢锯成60厘⽶的⼀段,共需要20分钟。

如果改锯成50厘⽶的⼀段,共需要⼏分钟?例题8 甲、⼄两⼈合作完成⼀项⼯程,6天后,⼄因事离开,再由甲单独⼯作10天完成。

已知甲、⼄两⼈⼯作效率的⽐是3:4,⼄单独完成这项⼯程需⼏天?例题9 买甲、⼄两种铅笔共208⽀,甲种铅笔每⽀3⾓,⼄种铅笔每⽀5⾓,两种铅笔⽤去的钱数相同。

问;甲种铅笔买了⼏⽀?例题10 甲、⼄两⼈的钱数之⽐是7:5,如果甲给⼄1.8元,则两⼈的钱数之⽐变为4:3,甲、⼄两⼈现在各有多少元?例题11 甲、⼄、丙三⼈进⾏100⽶赛跑(假设他们各⾃的速度保持不变),甲到达终点时,⼄离终点还有20⽶,丙离终点还有25⽶。

问:⼄到达终点时,丙离终点还有⼏⽶?例题12 ⼩明和⼩丽收集废旧电池,三⽉底时,两⼈收集的节数⽐是5:6。

数学正反比例练习题大全

数学正反比例练习题大全

数学正反比例练习题大全
以下是一系列的数学正反比例练题,供学生练和巩固所学的知识。

1. 问题:一个园子总共有120棵树,如果每排10棵,共有几排?
答案:120 ÷ 10 = 12 排
2. 问题:一个长方形花坛的长为8米,宽为10米,如果每平方米能种5棵花,花坛能种多少棵花?
答案:8 × 10 × 5 = 400 棵花
3. 问题:某水果市场每个箱子里放20个苹果,如果共有3000个苹果,需要多少个箱子才能装完?
答案:3000 ÷ 20 = 150 个箱子
4. 问题:一辆车以每小时80公里的速度行驶,行驶300公里需要多少小时?
答案:300 ÷ 80 = 3.75 小时
5. 问题:一个水缸的容量为400升,每分钟排水20升,需要多少分钟才能排完?
答案:400 ÷ 20 = 20 分钟
6. 问题:小明每天花2小时做作业,如果他一共需要做8天,总共需要多少小时?
答案:2 × 8 = 16 小时
7. 问题:一辆公交车每小时能载客60人,需要载完400人,需要多少小时?
答案:400 ÷ 60 = 6.67 小时
8. 问题:某商品原价100元,打8折,现在售价多少?
答案:100 × (1 - 0.8) = 20 元
9. 问题:一桶油装满需要3分钟,如果用两个人一起装,需要多少时间?
答案:3 ÷ 2 = 1.5 分钟
10. 问题:橙子每斤售价5元,小明买了3斤橙子,一共需要支付多少元?
答案:5 × 3 = 15 元
以上是数学正反比例的练习题。

希望能帮助到你,加油!。

正反比例的练习题

正反比例的练习题

正反比例的练习题练习题一:某商店购买10个商品的总价格为20元,那么购买20个商品的总价格是多少?解答:我们可以设商品的单价为x元。

根据题意,10个商品的总价格为20元,那么可以得到等式:10x = 20解得:x = 2因此,商品的单价为2元。

再根据单价,我们可以计算购买20个商品的总价格:20 × 2 = 40所以,购买20个商品的总价格是40元。

练习题二:一辆汽车以每小时60公里的速度行驶,行驶2小时所走的路程是多少?解答:根据题意,汽车以每小时60公里的速度行驶,那么可以得到等式:60 × 2 = 路程解得:路程 = 120公里所以,一辆汽车行驶2小时所走的路程是120公里。

练习题三:甲、乙两人同时开始在同一地点往同一方向行走,甲每分钟行进20米,乙每分钟行进15米。

他们相遇需要多少时间?解答:根据题意,甲每分钟行进20米,乙每分钟行进15米。

他们相遇相当于他们行进的距离之和等于他们相遇的地点距离出发地点的距离。

假设他们相遇所需要的时间为t分钟。

那么可以得到等式:20t + 15t = 距离解得:35t = 距离由于他们同时开始,在同一地点往同一方向行走,所以距离相等,即甲、乙相遇所需要的时间为t分钟。

练习题四:小明在做练习,每分钟可以做6道数学题,如果他共用时18分钟,那么他一共做了多少道数学题?解答:根据题意,小明每分钟可以做6道数学题,共用时18分钟。

假设他一共做了x道数学题。

那么可以得到等式:6 × 18 = x解得:x = 108所以,小明一共做了108道数学题。

练习题五:某工程队10天可以修建完一条公路,现在计划增加工人的数量,问几天可以修建完?解答:根据题意,某工程队10天可以修建完一条公路。

假设增加工人的数量为x人,那么可以设修建完一条公路所需天数为t天。

那么可以得到等式:10 × x = t解得:t = 10x所以,增加工人的数量,修建完一条公路所需的天数是10x天。

正反比例练习题及答案

正反比例练习题及答案

正反比例练习题及答案一、选择题1. 某工厂生产零件,每小时生产零件数与生产时间成反比例。

如果工厂在4小时内生产了120个零件,那么在1小时内可以生产多少个零件?A. 30B. 60C. 120D. 2402. 一个水池的容积是固定的,水管注水的速度与注满水池所需的时间成什么比例?A. 正比例B. 反比例C. 不成比例D. 无法确定3. 某商品的总成本与生产数量成反比例,当生产数量为100时,总成本为5000元。

如果生产数量增加到200,总成本是多少?A. 2500元B. 5000元C. 10000元D. 无法确定4. 某学校学生人数与每个学生分得的图书数量成反比例。

如果学校有200名学生,每人分得5本书,那么当学生人数增加到400时,每人分得多少本书?A. 2.5本B. 5本C. 10本D. 无法确定5. 某工厂的总产量与工作时间成正比例。

如果工厂在8小时内生产了800个单位的产品,那么在4小时内可以生产多少个单位的产品?A. 200B. 400C. 800D. 1600答案:1. B 2. B 3. A 4. A 5. B二、填空题6. 某工厂的工作效率与所需时间成________比例,如果工作效率提高到原来的2倍,那么所需时间将减少到原来的________。

7. 某书店的图书销售量与销售价格成________比例,如果销售价格提高到原来的1.5倍,销售量将减少到原来的________。

8. 某产品的生产成本与生产数量成________比例,如果生产数量增加到原来的3倍,生产成本将增加到原来的________。

9. 某工厂的总产量与工作时间成________比例,如果工作时间减少到原来的一半,总产量将减少到原来的________。

10. 某学校的图书数量与学生人数成________比例,如果学生人数增加到原来的4倍,图书数量将增加到原来的________。

答案:6. 反,1/2 7. 反,2/3 8. 正,3 9. 正,1/2 10. 正,4三、判断题11. 某商品的单价与销售数量成反比例,这种说法是正确的。

正反比例应用题

正反比例应用题
正反比例练习
1.用一批纸装订练习本,如果每本30页,可 以装订600本。如果每本少用5页,可以装订多 少本?
2、工厂今年第一季度节约用煤960吨,照这样 计算,(1)今年一共可以节约煤多少吨? (2)如果每吨煤280元,今年节约的煤值多元
3.用同样砖铺地,如果铺15平方米要用 165块,如果铺50平方米要多用多少块砖?
7、一批粮食,计划3600人吃15天。吃 了3天后,又增加了1200人。余下的 粮食还可以吃几天?
8、甲乙两个仓库,甲仓存粮120吨,比 乙仓的存粮数少1/3,乙仓存粮多少吨?
3、两个互相咬合的齿轮,大齿轮有100 个齿,小齿轮有40个齿。如果大齿轮 每分钟转90转,小齿轮每分钟转多少 转?
Hale Waihona Puke 4、甲乙两数的比是3:5,已知甲数为 84,乙数为多少?
5、5台抽水机3小时能抽水600立方米, 照这样计算,4台抽水机4小时能抽水 多少立方米?
6、一本书原有416页,每页30行每行25 字,现在把它重排,重排后每页32行, 每行26字,重排后有多少页?
4、粮站用麻袋装粮食,每袋重60千克,要 500个袋,如果每袋多装15千克,可以节 省几个麻袋?
5、甲乙两人同时从A地前往B地,已知两人 的速度比为4:5,甲用48分钟到达,问乙 用几分钟?
1、汽车5小时行200千米,照这样计算, 3小时行多少千米?
2、一批零件,原计划每天生产120个, 8天可以完成;实际每天比计划多生产 40个,可以提前几天完成?

数学正反比例练习题大全

数学正反比例练习题大全

数学正反比例练习题大全
1. 正比例练题
- 问题1:如果三辆车可以在4小时内完成一项工作,那么六辆相同的车可以在多少小时内完成同样的工作?
- 问题2:如果5人可以在10天内完成一项任务,那么需要多少人才能在5天内完成相同的任务?
- 问题3:如果一辆汽车以每小时60公里的速度行驶,那么它在3小时内可以行驶多远?
- 问题4:如果用20升汽油行驶80公里,那么用40升汽油可以行驶多远?
- 问题5:某项工作需2小时完成,如果有12人同时进行,那么需要多长时间才能完成?
2. 反比例练题
- 问题1:如果六个工人可以在12天内完成一项任务,那么需要多少个工人才能在4天内完成相同的任务?
- 问题2:如果一项工作可以由10个工人在8小时内完成,那么需要多少个小时才能由5个工人完成?
- 问题3:如果一个有15个人的团队可以在20天内完成一个项目,那么需要多少天才能由25个人完成相同的项目?
- 问题4:如果一块土地上可以建造6个房子,那么在相同大小的土地上可以建造多少个房子?
- 问题5:如果一个工厂的产量与工人数成反比,当有20个工人时产量为1000个单位,那么有30个工人时产量为多少个单位?
这些练习题可以帮助你巩固正反比例的理解和运用。

请根据题意进行计算,并在所给的时间内完成解答。

正反比例应用题练习

正反比例应用题练习

5、用一台打字机打字,6小时打36页,照 这样计算, 如果再打4小时,一共可以打 字多少页?
6、加工一批零件,每个零件所用的时间,由 原来的8分钟减少了2分钟,过去每天生产 这种零件60个,现在每天能生产多少个?
7、幼儿园给小朋友分糖,中班原来共有24人, 每人可以分5块,最近又调进6人,现在每 人可以分多少块糖?
11、配制一种药水,药粉和水的质量比是1:500。 (1)现有水1500千克,要配制这种药水, 需要药粉多少千克?
(2)现有药粉8千克,要配制这种药水,需 要水多少千克?
(3)现在有8克这样的药粉,可以配制出多 少克这样的药水?
1、王师傅加工一批零件,4分钟能加工60 个。 照这样计算,10分钟加工多少个?
2、李师傅加工一批零件,每小时加工60个, 8小时能完成,如果每小时加工80个,可 以提前几小时完成?
3 、学校用地砖铺地。铺3平方米,需要地砖 27块。照这样计算,如ห้องสมุดไป่ตู้要铺地50平方 米,需地砖多少块?
4、学校用地砖铺地。用每块面积0.08 平方米 的地砖,要500块才能铺满 ; 如果改用每 块面积0.05平方米的地砖 ,需要多少块才 能铺满?
8、修一条长6400米的公路,修了20天后,还 剩下4800米,照这样计算,剩下的路还要 修多少天?
9、修一条长3000米的公路,5天修了全长的 75%,照这样计算,剩下的路还要修多少 天?
10、某厂装配电视机。如果每天装20台,15 天可以完成任务,实际4天就装配了100台。 照这样计算,实际几天可以完成任务?

正反比例练习题

正反比例练习题

正反比例练习题正反比例是数学中常见的一种比例关系,指两个变量之间的比例是相等的,其中一个变量增加,另一个变量相应地减少。

在解决实际问题中,正反比例关系经常用到。

本文将介绍一些正反比例练习题,帮助读者更好地理解和运用正反比例。

一、题目1小明利用正反比例关系绘制了一条直线。

当x为0时,y为8;当x 为4时,y为2。

试判断这条直线的方程式是什么?解答:设直线的方程为y=k/x (k为常数)由已知条件得:当x为0时,y为8,此时利用方程求得k=8*0=0;当x为4时,y为2,代入方程得:2=k/4,解得k=8;因此,直线的方程为y=8/x。

二、题目2某商品的价格和销量成反比关系。

当商品价格为10元时,销量为20个;当商品价格为20元时,销量为10个。

求商品的价格和销量之间的函数关系。

解答:设商品价格为x,销量为y。

由题意可知,x和y成反比关系,即xy=k(k为常数)。

根据题意,当x为10时,y为20,代入反比关系可求得k=10*20=200;当x为20时,y为10,代入反比关系可求得200=20*10;因此,商品的价格和销量之间的函数关系为xy=200。

三、题目3小王从城市A到城市B的距离为200千米,他选择骑自行车去。

第一天骑了100千米,第二天骑了80千米,第三天骑了多少千米?解答:设第三天小王骑的千米数为x。

根据题意,第一天骑了100千米,第二天骑了80千米,第三天骑了x千米,根据正反比例关系可得:100/200 = 80/(200-100-x);计算可得:(100*(200-100-x)) = 80*200;解得x=60;因此,小王第三天骑了60千米。

四、题目4在某连锁超市的促销活动中,每购买4件商品可以享受8折优惠,求购买10件该商品的折扣价格是多少?解答:设购买10件商品的折扣价格为x。

根据题意,购买4件商品享受8折优惠,根据正反比例关系可得:4/x = 8/10;解得x=5;因此,购买10件商品的折扣价格为5元。

完整版六年级正反比例练习题

完整版六年级正反比例练习题

正反比率的应用二例1、一个水池中水的深度与注水时间的关系如右以下图。

(1)水的深度与注水时间可否成比率?(2)从图中看,注水前,水池中的水深多少米?(3)每分钟向水池中注入的水深多少米?例 2、这个铁球吞没在长方体水槽中,当他把这个铁球拿出水面时,槽里的水面下降了 0.5 厘米,他又将一块棱长是 3 厘米的正方体铁块吞没在水槽中,槽里的水面上升了 0.3 厘米,算一下铁球的体积?例 3、蜡烛燃烧的长度和燃烧的时间成正比率。

一根蜡烛燃烧后的长度是 7 厘米。

蜡烛最初的长度是多少厘米?8 分钟后,蜡烛的长度是12 厘米,18 分钟例 4、甲、乙两人分别从A、B 两地同时出发,相向而行,出发时他们的速度之比是遇后,甲的速度提高了20% ,乙的速度提高了30% ,这样,当甲到达 B 地时,乙离3: 2,他们第一次相A 地还有 14 千米,那么 AB 两地的距离是多少千米?看看你会做吗?1、用不相同的杯子装水,水的高度与杯子的底面积的关系如右图。

( 1)从图中看,水的高度与杯子的底面积可否成比率?成什么比率?为什么?( 2)从图中估计,当杯子的底面积是50 平方厘米时,水深多少厘米?当水深25 厘米时,杯子的底面积是多少平方厘米?2、将一个圆柱体完好吞没在一个装满水的水槽中,拿出后水面下降了9 厘米。

尔后放入一个底面积和圆柱体相同,高是圆柱体1的圆锥,这时水面会上升多少厘米?23、蜡烛燃烧的长度和燃烧的时间成正比率。

一根蜡烛燃烧12 分钟后,蜡烛的长度是17 厘米, 18 分钟后的长度是 9 厘米。

蜡烛最初的长度是多少厘米?4、甲、乙两人分别从A、 B 两地同时出发,相向而行,出发时他们的速度之比是后,甲的速度提高了20% ,乙的速度提高了40% ,当甲到达目的地后,乙还有AB 两地的距离是多少千米?4: 3,他们第一次相遇44 千米到达目的地,那么。

六年级正反比例题100道

六年级正反比例题100道

六年级正反比例题100道正比例题:1. 如果一个苹果的价格是2元,那么5个苹果的价格是多少元。

2. 5本书的价格是20元,那么每本书的价格是多少元。

3. 一个足球的价格是50元,购买3个足球需要多少钱。

4. 如果一辆车每小时行驶60公里,行驶2小时后能行驶多少公里。

5. 4个橙子的总价是16元,1个橙子多少钱。

6. 一条绳子长6米,3条绳子总长多少米。

7. 如果每辆车能载5人,10辆车能载多少人。

8. 一盒巧克力有10块,3盒巧克力有多少块。

9. 每个学生要交100元的学费,10个学生总共交多少钱。

10. 一台电脑的价格是4000元,4台电脑的总价是多少元。

11. 如果1升油的价格是8元,5升油的价格是多少元。

12. 一辆自行车的价格是300元,7辆自行车总共需要多少钱。

13. 1本书的页数是200页,5本书的总页数是多少页。

14. 如果每个学生需要2支铅笔,20个学生需要多少支铅笔。

15. 一棵树的高度是3米,5棵树的总高度是多少米。

16. 1块蛋糕的价格是15元,3块蛋糕总共多少钱。

17. 如果每本杂志售价10元,9本杂志总共多少钱。

18. 一辆车每小时行驶80公里,4小时能行驶多少公里。

19. 如果1公斤米的价格是5元,2公斤米总共多少钱。

20. 每个孩子要喝250毫升的牛奶,8个孩子需要多少牛奶。

21. 一支笔的价格是3元,12支笔总共多少钱。

22. 如果一个篮球的价格是120元,3个篮球的价格是多少元。

23. 一根铅笔的长度是20厘米,4根铅笔的总长度是多少厘米。

24. 如果一个人的工资是3000元,5个人的总工资是多少元。

25. 每条鱼的重量是200克,10条鱼的总重量是多少克。

26. 如果1个西瓜的价格是30元,4个西瓜的价格是多少元。

27. 一辆车的油耗是每公里8升,行驶100公里需要多少升油。

28. 每个学生要用5张纸,25个学生需要多少张纸。

29. 如果一个房间的面积是50平方米,5个这样的房间总面积是多少平方米。

人教版数学六年级下册:《正反比例》作业题

人教版数学六年级下册:《正反比例》作业题

人教版数学六年级下册:《正反比例》作
业题
题目一
1. 小明用3个小时跑了18公里的路程,那么他用6个小时能跑多少公里?
题目二
2. 小王花了180元买了6个苹果,那么他花多少钱可以买到10个苹果?
题目三
3. 如果6个工人在10天内修好一台机器,那么4个工人需要多少天才能完成同样的任务?
题目四
4. 铅球比赛中,小明用3次机会扔出了150米的距离,那么他要扔多少次才能达到300米的距离?
题目五
5. 一瓶洗衣液可以洗20件衣服,那么洗60件衣服需要多少瓶洗衣液?
题目六
6. 一只牛在10天内吃掉了60千克的草,那么3只牛需要多少天才能吃掉180千克的草?
题目七
7. 小红用5秒钟跑完了50米的距离,那么她要跑多少秒才能跑完100米的距离?
题目八
8. 小明用8个小时做完了40道数学题,那么他需要多少小时才能做完80道数学题?
题目九
9. 一家工厂用30个机器生产了3000个产品,那么他需要多少个机器才能生产5000个产品?
题目十
10. 小王用200元买了5个篮球,那么他需要多少钱才能买到12个篮球?
以上就是本次《正反比例》作业题。

请同学们根据题目进行计算,并将答案填写到答题卡上。

完成后请交给老师检查。

祝大家顺利完成!。

正反比例练习题大全

正反比例练习题大全

正反比例练习题大全1、判断正方形的边长和周长是否成比例。

2、判断正方形的边长和面积是否成比例。

3、判断数a和数b是否成正比例,已知a是b的5倍。

4、已知4a=3b,判断a和b是否成反比例,成比例的比值是多少。

5、判断圆的直径和圆周率是否成正比例,已知圆的周长一定。

6、已知8A=B,判断A和B是否成反比例。

7、判断长方体的底面积和高是否成正比例,已知体积一定。

8、判断x与y是否成比例,已知3x与y成比例。

9、判断圆的面积和半径的平方是否成正比例。

10、判断圆锥的底面积和高是否成正比例,已知体积一定。

11、判断三角形的底和面积是否成正比例,已知高一定。

12、判断车轮的直径和转数是否成正比例,已知路程一定。

13、判断出勤人数和出勤率是否成正比例,已知全班总人数一定。

14、判断已走路程和未走路程是否成反比例,已知从甲地到乙地。

15、判断被减数和差是否成正比例,已知减数一定。

16、已知甲数的3/4是乙数,判断甲数和乙数是否成比例。

17、已知3x=y(x和y都不等于0),判断x和y是否成比例。

18、已知xy=1,判断x和y是否成反比例。

19、已知5A=B,判断A和B是否成反比例。

20、已知x+y=6,判断x和y是否成反比例。

21、已知x和y互为倒数,判断x和y是否成反比例。

22、已知3:x=y:16,判断x和y是否成比例。

23、已知20:x=12:y,判断x和y是否成比例。

24、已知ab=k+2(k一定),判断a和b是否成反比例。

25、已知《小学生作文》的单价一定,判断总价和订阅的数量是否成正比例。

26、判断小新跳高的高度和他的身高是否成比例。

27、已知学校全班的人数一定,判断每组的人数和级数是否成正比例。

28、判断圆柱的底面积和高是否成正比例,已知体积一定。

29、已知书的总册数一定,判断每包的册数和包数是否成正比例。

30、判断在一块菜地上种的黄瓜和西红柿的面积是否成比例。

31、已知小麦每公顷产量一定,判断小麦的公顷数和总产量是否成正比例。

小学正反比例应用题

小学正反比例应用题
1、一个晒盐场用100克海水可以晒出3克盐,如 果一次放入585000吨海水,可以晒出多少盐? 2、一块长方形钢板,长与宽比是5:3,已知长 是75厘米,宽是多少厘米? 3、一篮苹果,如果8个人分,每人正好分6个 如果12个人来分,每人可以分几个? 4、工人师傅制造一批器零件,每个零件所用的 时间由原来的8分钟减少到2.5分钟,过去每天 生产这种零件60个,现在每天能生产多少个?
5、用边长3分米的方砖铺,需要96块;如果改用边长2 分米的方砖铺地,需要多少块砖? 6、小明家到学校共1200米。今天早上上学3分钟共走 了180米,照这样的速度,还要走多少分钟才能到学校 7、袋子里有绿球7个,黄球24个。增加多少个绿球,可 使袋子里绿球与黄球的个数比是5:3? 8、有一项工作,原计划40个人工作18天正好完成任务, 如果每个人的工作效率相同,现在增加5个人,可以提前 几天完成任务?
12、修一段公路,总长12km。开工3天修了1.5km。
照这样计算,修完这段公路还要多少天? 13、儿童节那天开始,亮亮前7天看了210页书,照这 样计算,这个月亮亮一共看了多少页书?
14、A、B两地相距1200千米,甲乙两车同时从两地相 对开出,经过5小时后还相150千米,已知甲车的速度 和乙车的速度比是3:度相同,量得下面3层楼
的高度是8.4m,上面还有7层,这座楼共有多少
米?
10、火车从甲站开往乙站,4.2小时行了全程的 7/9,照这样的速度,火车行完剩下的路程还需 几小时? 11、某车间加工一批零件,如果每小时加工零 件30个,可比原计划提前10小时完成如果每小 时加工零件20个,可比原计划提前6小时完成, 这批零件有多少个?

正反比例应用题

正反比例应用题

正反比例应用题1、一种农药水是用药和水按1:100配成的,要配制这种农药水8080千克,需要药粉多少千克?2、盖一幢职工宿舍。

计划使用6米长的水管240根。

后来改用8米长的水管,共需要多少根?3、做一批零件,如果每天做200个,15天可以做完,现在要在12天完成,平均每天做多少个?4、甲地到乙地的公路长392千米。

一辆汽车3小时行了168千米。

照这样计算,行完全还需要几小时?5、金光电子厂要生产一批零件,原计划每天生产180个,12天完成。

实际的生产效率是原计划的120%,实际多少天可以完成?6、一辆汽车4小时行140千米,照这样计算,7小时行多少千米?行驶315千米需要几小时?7、甲、乙、丙三个同学体重总和是110千克,他们的体重比是6:9:7。

最重的一个同学达多少千克?8、铁路工人修铁路,用每根长9米的新铁轨替换原来每根6米的旧铁轨,共换下旧铁轨240根,换上的新铁轨有多少根?9、水泥厂5天生产水泥320吨。

照这样计算,要生产6600吨水泥,需要多少天完成?10、某工程队修一条路,12天共修780米,还剩下325米没有修。

照这样速度,修完这条公路,共需要多少天?11、甲乙两个小组要在6小时内加工1560个零件。

已知甲小组每小时加工120个零件,乙每小时加工零件多少个?12、一台碾米机5小时碾米2000千克,照这样计算,6.5小时可以碾米多少千克?要碾米3.6吨需要几小时?13、一台织布机4小时织布32米,照这样计算,15小时织布多少米?14、同学们做广播操,每行站15人,站了12行,如果每行站18人,要站多少行?15、100克海水可以晒出3克盐,照这样计算,6吨海水可以晒出多少吨盐?16、机器上有两个互相咬合的齿轮,主动轮有100个齿,每分钟转120转,从动轮有60个齿,每分钟转多少转?17、8台榨油机每天榨油56吨,现在增加了5台同样的榨油机,每天多榨油多少吨?18、在比例尺是1:12000000的地图上,量得济南到青岛的距离是4厘米。

(完整)六年级正反比例练习题集

(完整)六年级正反比例练习题集

(完整)六年级正反比例练习题集六年级正反比例练题集
以下是一些六年级正反比例练题,希望能帮助同学们提高对正
反比例的理解和运用能力。

1. 问题:小明用3个小时做完了30道题目,请问他再用多长
时间能做完90道同样的题目?
答案:小明在相同速度下,需要6个小时才能完成90道题目。

2. 问题:某电影院一天卖出60张票,那么30天能卖出多少张票?
答案:按照正比例计算,电影院在30天内能卖出1800张票。

3. 问题:某奶茶店每天卖出120杯奶茶,如果数量减少了一半,那么卖出60杯奶茶需要多长时间?
答案:奶茶店在相同时间内,需要卖出30杯奶茶才能完成60杯。

4. 问题:某汽车油箱加满油后能行驶500公里,如果行驶距离
减少了三分之一,剩下的油能行驶多长距离?
答案:剩下的油能行驶333.33公里。

5. 问题:某工人每小时生产4个零件,他工作4小时后停工了,他一共生产了多少个零件?
答案:工人在停工前一共生产16个零件。

通过以上的练题,同学们可以更好地理解和运用正反比例的概念。

在解题过程中,要注意理解题意,确定比例关系,并灵活运用
正反比例的求解方法。

祝同学们在研究中取得好成绩!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正反比例应用题
【知识回顾】
下面两种量是不是成比例?如果成比例成什么比例?
1.图上距离一定,比例尺和实际距离()
2.订阅《小学生数学报》的份数和钱数。

( )
3.路程一定,已行的路程和剩下的路程()
4.总产量一定,工作效率和工作时间()
5.总产量一定,生产每个零件所用的时间和生产的总时间()
【用比例的知识解应用题】
用比例的知识解应用题的方法:
1.审题找出一定(不变)量,判断另外两个量成什么比例。

2.若成正比例,解:设出未知数X,列出比例式:a:x=b:c
3.若成反比例,解:设出未知数X,列出方程:ax=bc
【例题解析】
例1一台抽水机5小时抽水40立方米,照这样计算,9小时可抽水多少立方米?
用以前的方法解答
40÷5×9=72(立方米)答照这样计算,9小时可抽水72立方米。

分析:用比例解答
照这样计算,是什么意思?这道题中,抽水量和时间成正比例
解:设9小时可抽水x立方米
40:5=x:9
5x =360
x =72 答照这样计算,9小时可抽水72立方米。

练小敏买3枝铅笔花了1.5元,小聪买同样的铅笔5枝,要付给营业员多少钱?
例2一艘轮船从甲港驶往乙港,每小时航行25千米,12小时到达,如果每小时航行30千米,多少小时可以到达乙港?
分析:这道题中,什么一定?什么和什么成什么比例
例3一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时.甲乙两地之间的公路长多少千米?
分析:①这道题中涉及哪三种量?
②哪种量是一定?
③行驶的路程和时间成什么比例关系?
例4 用一台打字机打字,6小时打36页,照这样计算,如果再打4小时,一共可以打字多少页?
例5王师傅加工一批零件,每个零件所用的时间,由原来的9分减少了2分,过去每天生产这种零件60个,现在每天能生产多少个?
例6 小红从甲地到乙地,3小时行了全程的75%,几小时可以行一个来回?
【巩固练习】
一、选择、填空:
1、如果3a=4b,那么a∶b=()。

A、3∶4
B、4∶3
C、3a∶4b
2、一项工程,单独做甲队要10天,乙队要8天,甲乙两队工效比是( )。

A、10:8
B、5:4
C、8:10
D、4:5
3、比例尺1:800000 表示( ).
A、图上距离是实际距离的
B、实际距离是图上距离的800000倍
C、实际距离与图上距离的比为1 :800000
4、在比例尺是1 :8的图纸上,甲、乙两个圆直径比是2:3,那么甲、乙两个圆的实际的直径比是()
A、1 :8 B 、4 :9 C、2 :3
5、下面不成比例的是( )。

A、正方形的周长和边长
B、某同学从家到学校的步行速度和所用时间
C、圆的体积和表面积
6、下列各式中(a、b均不为0),a和b成反比例的是()。

A 、a×8=b5
B 、9a=6b
C 、a×13 -1÷b= 0 D、a+710 =b
7、在比例尺是1:30000000的地图上,量得甲地到乙地的距离是5.6厘米,一辆汽车按
3:2的比例分两天行完全程,两天行的路程差是()千米。

A 、672
B 、1008
C 、336 D、1680
8、根据3A=5B可以写成()
A、3:A=5:B
B、A:B=5:3
C、A:B=3:5
9、如果图上距离3厘米表示实际距离1.5毫米,那么这幅图的比例尺是()
A、1:20
B、1:2
C、20:1
10、如果a×8=b×1/8,那么a:b=( ):( )
11、如果y=15x, x和y成( )比例;如果y=15/x, x和y成( )比例
12、甲数是乙数的20%,甲数与乙数的比是(),乙数与甲乙两数之和的比是()。

13、要配制石灰水320千克,石灰与水的比是1:7,石灰要用()千克,水要用()千克。

14、12÷15=()∶5=16/()=()%。

15、甲数的1/3等于乙数的1/4,甲乙两数的比是()
16、如果Y = 8X ,X 和Y 成()比例;
如果Y = 8/X ,X 和Y 成()比例。

17、如果3A=7X,那么X:A=()
18、某班男生人数比女生人数多1/7,
女生人数与男生人数的比是()
19、某班男生人数与女生人数的比是5:4,女生人数比男生人数少()%
20、6、甲数与乙数的比值是2/5,那么乙数比甲数多()%。

21、用3/5,2/3,4/7、0.7这四个数组成两个不同的比例式是()和()。

22、在A÷1/3=B÷4中,A和B成()比例。

23、一件工作,甲独做6小时完成,乙独做10小时完成,甲乙工作效率的比是()。

24、相遇问题,时间一定,速度和路程成()比例。

如果甲、乙两车的速度比是7:9,相遇时,甲、乙两车行过的路程比是()。

25、货车的速度是客车的40%。

货、客两车同时从甲、乙两地相向而行,经过2小时相遇。

相遇时,货车与客车行过的路程的比是():()。

二、判断。

1、方砖的边长一定,要铺地面积和用砖块数成正比例()
2、用瓷砖铺地,要用的砖数一定,要铺地的平方米数和每平方米用砖的数量成正比例()
3、甲数的3/4等于乙数的3/7,那么甲数是乙数的4/7()
4、要铺地的总面积一定,每块方砖的边长与需要的块数成正比例()
5、梯形的面积一定,高和上下底的和成反比例()
6、圆的半径一定,圆的面积和兀不成比例()
7、加工时间一定,加工零件个数和加工每个零件所需的时间成反比例()
8、南京到北京,所行驶的路程和速度不成比例()
9、出盐率一定,盐的重量和海水重量成正比例。

()
10、正方形的边长和面积成正比例。

()
三、解答
1.修一条长6400米的公路,修了20天后,还剩下4800米,照这样计算,剩下的路要修多少天?
2.工人装一批电杆,每天装12根,30天可以完成。

如果每天多装6根,几天能够完成?
3.光华电视机厂上半年生产的电视机产量占全年生产计划的八分之五,照这样计算,全年可超产1000台。

这个厂上半年生产电视机多少台?。

相关文档
最新文档