新人教版2020年七年级上期中考试数学试卷及答案
人教版七年级第一学期期中数学试卷及答案3
人教版七年级第一学期期中数学试卷及答案一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果盈利100元记为+100元,那么﹣80元表示()A.亏损80元B.盈利80元C.亏损20元D.盈利20元2.2020年我国的北斗卫星导航系统星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为()A.0.215×108B.2.15×107C.21.5×107D.2.15×1063.把﹣3,﹣2,﹣1,0,1这五个数填入下列圆中,使行、列三个数的和相等,其中错误的是()A.B.C.D.4.下列计算正确的是()A.0÷(﹣3)=0×(﹣)=−B.(﹣2)÷(﹣2)=﹣2×2=﹣4C.1÷(﹣)=1×(﹣9)=﹣9D.(﹣36)÷(﹣9)=﹣36÷9=﹣45.下列四个数中,比﹣小的数是()A.﹣(﹣1)B.﹣C.0D.﹣0.436.下列说法正确的是()A.单项式2的次数是0B.单项式﹣3πx2y的次数是4C.单项式y的系数为0D.多项式2x2+xy2+3是二次三项式7.若单项式y n与﹣2x m y3的和仍为单项式,则m﹣n的值是()A.1B.﹣1C.5D.﹣58.下列各题去括号所得结果正确的是()A.x2﹣(x﹣y+2z)=x2﹣x+y+2zB.3x2﹣[5x﹣(x﹣1)]=3x﹣5x﹣x+1C.x﹣(﹣2x+3y﹣1)=x+2x﹣3y+1D.(x﹣1)﹣(x2﹣2)=x﹣1﹣x2﹣29.若x=,则代数式2x2﹣5x+x2+4x﹣3x2﹣2的值为()A.B.C.−D.−10.n个球队进行单循环比赛(参加比赛的每一个队都与其他所有队各赛一场),总的比赛场数是()A.B.n(n﹣1)C.D.n(n+1)11.若有理数a,b,c满足abc>0,a+b+c=0,则a,b,c中负数的个数是()A.0B.1C.2D.312.已知数a,b,c的大小关系如图所示,则下列各式:①abc>0;②a+b﹣c>0;③bc﹣a>0;④|a﹣b|﹣|c+a|+|b﹣c|=﹣2a,其中正确个数是()A.1B.2C.3D.4二、填空题:本大题共6小题,每小题3分,共18分.请将答案直接填在答题纸中对应的横线上.13.﹣的倒数是.14.(﹣2)2的结果是.15.数轴上3与它的相反数之间的整数的和为.16.若|a﹣4|+|b+3|=0,则ab=.17.如图是一所住宅的建筑平面图,这所住宅的建筑面积为米2.18.A、B、C三点在数轴上对应的数分别是2、﹣4、c,若相邻两点的距离相等,则c=.三、解答题(本大题共6小题,共46分.解答应写出文字说明、演算步骤或推理过程)19.(6分)计算把﹣2,0,1.5,﹣1,﹣22这五个数在数轴上表示出来,并用“<”把它们连接起来.20.(12分)(1)+(﹣)++(﹣)+(﹣);(2)(﹣+)×(﹣48);(3)﹣2.5÷×(﹣);(4)﹣23÷(﹣2﹣)×(﹣)2﹣+1.21.(8分)(Ⅰ)化简:(a2﹣4b)﹣(2b+4)﹣(﹣3a2+);(Ⅱ)若(Ⅰ)中的a是最小的非负整数,|b|=1,且b<0,求(Ⅰ)中代数式的值.22.(8分)已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.(Ⅰ)化简:2A﹣B;(Ⅱ)若x+y=,xy=﹣1,求2A﹣3B的值.23.(6分)在抗洪抢险中,解放军战士的冲锋舟加满油,沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+12,﹣5.(Ⅰ)填空:①B地位于A地的方向,距离A地千米;②救灾过程中,冲锋舟距离A地最远处为千米;(Ⅱ)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?24.(6分)有一台功能单一的计算器,只能完成对任意两个整数求差后再取绝对值的运算,其运算过程是:输入第一个整数x1,只显示不运算,再输入整数x2,显示|x1﹣x2|的结果.比如依次输入1,2,则显示结果1,若此后再输入一个整数,则显示与前面运算结果进行求差后再取绝对值的运算结果.(Ⅰ)若小明依次输入﹣1,0,1,则显示;(Ⅱ)若小明将2,3,4,5,打乱顺序后一个一个地输入(不重复),则所有显示结果的最小值为;所有显示结果的最大值为;(Ⅲ)若小明依次输入四个连续整数n,n+1,n+2,n+3(其中n为正整数),则显示结果为;(Ⅳ)若小明将四个连续整数n,n+1,n+2,n+3(其中n为整数),打乱顺序后一个一个地输入(不重复),则所有显示结果的最小值为;(Ⅴ)若小明将1到2022这2022个整数打乱顺序后一个一个地输入(不重复),则所有显示结果的最大值为.参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果盈利100元记为+100元,那么﹣80元表示()A.亏损80元B.盈利80元C.亏损20元D.盈利20元【分析】根据正负数表示相反意义的数来判断即可.【解答】解:∵盈利100元记为+100元,∴﹣80元表示亏损80元.故选:A.2.2020年我国的北斗卫星导航系统星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为()A.0.215×108B.2.15×107C.21.5×107D.2.15×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将21500000用科学记数法表示为2.15×107,故选:B.3.把﹣3,﹣2,﹣1,0,1这五个数填入下列圆中,使行、列三个数的和相等,其中错误的是()A.B.C.D.【分析】由图逐一验证,运用排除法即可选得.【解答】解:验证四个选项:A、行:﹣1+(﹣3)+0=﹣4,列:1﹣3﹣2=﹣4,行=列,对,不符合题意;B、行:﹣3+1+0=﹣2,列:﹣1+1﹣2=﹣2,行=列,对,不符合题意;C、行:﹣2﹣1+0=﹣3,列:1﹣1﹣3=﹣3,行=列,对,不符合题意,;D、行:1﹣2﹣3=﹣4,列:0﹣2﹣1=﹣3,行≠列,符合题意.故选:D.4.下列计算正确的是()A.0÷(﹣3)=0×(﹣)=−B.(﹣2)÷(﹣2)=﹣2×2=﹣4C.1÷(﹣)=1×(﹣9)=﹣9D.(﹣36)÷(﹣9)=﹣36÷9=﹣4【分析】根据有理数的除法法则进行判断便可.【解答】解:A.0÷(﹣3)=0,选项不符合题意;B.原式=+2÷2=1,选项不合题意;C.原式=﹣1×9=﹣9,选项符合题意.D.原式=+36÷9=4,选项不合题意;故选:C.5.下列四个数中,比﹣小的数是()A.﹣(﹣1)B.﹣C.0D.﹣0.43【分析】先比较出各数的大小,进而可得出结论.【解答】解:∵﹣(﹣1)=1,|﹣|=,|﹣|=,|﹣0.43|=0.43,0.43>,∴,∴四个数中,比﹣小的数是﹣0.43.故选:D.6.下列说法正确的是()A.单项式2的次数是0B.单项式﹣3πx2y的次数是4C.单项式y的系数为0D.多项式2x2+xy2+3是二次三项式【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;多项式中单项式的个数就是多项式的项数,多项式中次数最高的项的次数叫做多项式的次数.【解答】解:A、单项式2的次数是0,正确,故A符合题意;B、单项式﹣3πx2y的次数是3,故B不符合题意;C、单项式y的系数为1,故C不符合题意;D、多项式2x2+xy2+3是三次三项式,故D不符合题意.故选:A.7.若单项式y n与﹣2x m y3的和仍为单项式,则m﹣n的值是()A.1B.﹣1C.5D.﹣5【分析】根据同类项的概念,首先求出m与n的值,然后求出m﹣n的值.【解答】解:∵单项式y n与﹣2x m y3的和仍为单项式,∴他们是同类项,则m=2、n=3,∴m﹣n=2﹣3=﹣1,故选:B.8.下列各题去括号所得结果正确的是()A.x2﹣(x﹣y+2z)=x2﹣x+y+2zB.3x2﹣[5x﹣(x﹣1)]=3x﹣5x﹣x+1C.x﹣(﹣2x+3y﹣1)=x+2x﹣3y+1D.(x﹣1)﹣(x2﹣2)=x﹣1﹣x2﹣2【分析】直接利用去括号法则分别分析得出即可.【解答】解:A.x2﹣(x﹣y+2z)=x2﹣x+y﹣2z,故此选项错误,不符合题意;B.3x2﹣[5x﹣(x﹣1)]=3x2﹣[5x﹣(x﹣1)]=3x2﹣(5x﹣x+1)=3x﹣(5x﹣x+1)=3x﹣5x+x﹣1,故此选项错误,不符合题意;C.x﹣(﹣2x+3y﹣1)=x+2x﹣3y+1,正确,符合题意;D.(x﹣1)﹣(x2﹣2)=x﹣1﹣x2+2,故此选项错误,不符合题意.故选:C.9.若x=,则代数式2x2﹣5x+x2+4x﹣3x2﹣2的值为()A.B.C.−D.−【分析】先利用合并同类项的法则进行化简,再代入相应的值运算即可.【解答】解:2x2﹣5x+x2+4x﹣3x2﹣2=(2+1﹣3)x2+(﹣5+4)x﹣2=﹣x﹣2,当x=时,原式=﹣﹣2=.故选:D.10.n个球队进行单循环比赛(参加比赛的每一个队都与其他所有队各赛一场),总的比赛场数是()A.B.n(n﹣1)C.D.n(n+1)【分析】n支球队举行比赛,若每个球队与其他队比赛(n﹣1)场,则两队之间比赛两场,由于是单循环比赛,则共比赛.【解答】解:n支球队举行单循环比赛,比赛的总场数为.故选:A.11.若有理数a,b,c满足abc>0,a+b+c=0,则a,b,c中负数的个数是()A.0B.1C.2D.3【分析】先根据abc>0,结合有理数乘法法则,易知a、b、c中有2个负数或没有一个负数(都是正数),而都是正数,则a+b+c>0,不符合a+b+c=0的要求,于是可得a、b、c中必有2个负数.【解答】解:∵abc>0,∴a、b、c中有2个负数或没有一个负数,若没有一个负数,则a+b+c>0,不符合a+b+c=0的要求,故a、b、c中必有2个负数.故选:C.12.已知数a,b,c的大小关系如图所示,则下列各式:①abc>0;②a+b﹣c>0;③bc﹣a>0;④|a﹣b|﹣|c+a|+|b﹣c|=﹣2a,其中正确个数是()A.1B.2C.3D.4【分析】先根据各点在数轴上的位置判断出其符号,再对各小题进行分析即可.【解答】解:由图可知,a<0<b<c,c>|a|>b.①∵a<0<b<c,∴abc<0,不符合题意;②∵a<0<b<c,c>|a|>b,∴a+b﹣c<0,不符合题意;③∵a<0<b<c,∴bc﹣a>0,符合题意;④∵a<0<b<c,c>|a|>b,∴a﹣b<0,c+a>0,b﹣c<0,∴原式=b﹣a﹣(c+a)﹣(b﹣c)=b﹣a﹣c﹣a﹣b+c=﹣2a,符合题意.故选:B.二、填空题:本大题共6小题,每小题3分,共18分.请将答案直接填在答题纸中对应的横线上.13.﹣的倒数是﹣2.【分析】乘积是1的两数互为倒数.【解答】解:﹣的倒数是﹣2.故答案为:﹣2.14.(﹣2)2的结果是4.【分析】根据幂的意义计算即可.【解答】解:(﹣2)2=(﹣2)×(﹣2)=4,故答案为:4.15.数轴上3与它的相反数之间的整数的和为0.【分析】先根据相反数的定义得到3的相反数,再求出3与它的相反数之间的整数,最后求和即可.【解答】解:3的相反数的相反数是﹣3,而﹣3与3之间的整数有﹣3,﹣2,﹣1,0,1,2,3,∴3与它的相反数之间的整数的和为﹣3+(﹣2)+(﹣1)+0+1+2+3=0,故答案为:0.16.若|a﹣4|+|b+3|=0,则ab=﹣12.【分析】先根据非负数的性质求出a,b的值,再由有理数的乘法法则解答即可.【解答】解:∵|a﹣4|+|b+3|=0,∴a﹣4=0,b+3=0,解得a=4,b=﹣3,∴ab=4×(﹣3)=﹣12.故答案为:﹣12.17.如图是一所住宅的建筑平面图,这所住宅的建筑面积为(x2+2x+18)米2.【分析】由图可知,这所住宅的建筑面积=三个长方形的面积+一个正方形的面积.【解答】解:由图可知,这所住宅的建筑面积为x2+2x+12+6=x2+2x+18(米2).18.A、B、C三点在数轴上对应的数分别是2、﹣4、c,若相邻两点的距离相等,则c=﹣10或﹣1或8.【分析】先算出2与﹣4间的距离,然后讨论c在﹣4的左边,在﹣4与2之间、在2的右边不同情况.【解答】解:数轴上﹣4、2间距离是:2﹣(﹣4)=6,当c在﹣4左侧时,﹣4﹣c=6,所以c=﹣10,当c在﹣4与2中间时,c=﹣4+3=﹣1,当c在2的右边时,c=2+6=8.故答案为:﹣10或﹣1或8.三、解答题(本大题共6小题,共46分.解答应写出文字说明、演算步骤或推理过程)19.(6分)计算把﹣2,0,1.5,﹣1,﹣22这五个数在数轴上表示出来,并用“<”把它们连接起来.【分析】根据有理数的大小得出结论即可.【解答】解:在数轴上表示各数为:∴﹣22<﹣2<﹣1<0<1.5.20.(12分)(1)+(﹣)++(﹣)+(﹣);(2)(﹣+)×(﹣48);(3)﹣2.5÷×(﹣);(4)﹣23÷(﹣2﹣)×(﹣)2﹣+1.【分析】(1)化简符号,再把同分母的先相加;(2)用乘法分配律计算即可;(3)把小数化为假分数,把除化为乘,再约分即可;(4)先算括号内的和乘方运算,再算乘除,最后算加减.【解答】解:(1)原式=﹣+﹣﹣=(﹣)+(﹣﹣)+=0﹣1+=﹣;(2)原式=﹣×48+×48﹣×48=﹣6+16﹣8=2;(3)原式=﹣××(﹣)=;(4)原式=﹣8÷(﹣)×﹣+1=﹣8×(﹣)×﹣+1=﹣+1=1.21.(8分)(Ⅰ)化简:(a2﹣4b)﹣(2b+4)﹣(﹣3a2+);(Ⅱ)若(Ⅰ)中的a是最小的非负整数,|b|=1,且b<0,求(Ⅰ)中代数式的值.【分析】(Ⅰ)去括号、合并同类项即可;(Ⅱ)由题意得出a=0,b=﹣1,再代入计算即可.【解答】解:(Ⅰ)原式=a2﹣4b﹣b﹣2+3a2﹣=4a2﹣5b﹣;(Ⅱ)由题意知a=0,b=﹣1,则原式=0﹣5×(﹣1)﹣=5﹣=.22.(8分)已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.(Ⅰ)化简:2A﹣B;(Ⅱ)若x+y=,xy=﹣1,求2A﹣3B的值.【分析】(1)利用整式加减运算法则化简即可.(2)把(x+y),xy看作一个整体,代入求值可得.【解答】解:(1)2A﹣B=2(3x2﹣x+2y﹣4xy)﹣(2x2﹣3x﹣y+xy)=6x2﹣2x+4y﹣8xy﹣2x2+3x+y﹣xy=4x2+x+5y﹣9xy;(2)∵x+y=,xy=﹣1,∴2A﹣3B=7x+7y﹣11xy=7(x+y)﹣11xy=7×﹣11×(﹣1)=6+11=17.23.(6分)在抗洪抢险中,解放军战士的冲锋舟加满油,沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+12,﹣5.(Ⅰ)填空:①B地位于A地的正东方向,距离A地20千米;②救灾过程中,冲锋舟距离A地最远处为25千米;(Ⅱ)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?【分析】(Ⅰ)①把题目中所给数值相加,若结果为正数,则B地在A地的东方,若结果为负数,则B地在A地的西方;②分别计算出各点离出发点的距离,取数值较大的点即可;(Ⅱ)先求出这一天走的总路程,再计算出一共所需油量,减去油箱容量即可求出途中还需补充的油量.【解答】解:(Ⅰ)①(+14)+(﹣9)+(+8)+(﹣7)+(+13)+(﹣6)+(+12)+(﹣5)=14﹣9+8﹣7+13﹣6+12﹣5=20(千米),答:B地位于A地的正东方向,距离A地20千米;②第1次记录时冲锋舟离出发点A的距离为|+14|=14千米,第2次记录时冲锋舟离出发点A的距离为|14+(﹣9)|=5千米,第3次记录时冲锋舟离出发点A的距离为|5+(+8)|=13千米,第4次记录时冲锋舟离出发点A的距离为|13+(﹣7)|=6千米,第5次记录时冲锋舟离出发点A的距离为|6+(+13)|=19千米,第6次记录时冲锋舟离出发点A的距离为|19+(﹣6)|=13千米,第7次记录时冲锋舟离出发点A的距离为|13+(+12)|=25千米,第8次记录时冲锋舟离出发点A的距离为|25+(﹣5)|=20千米,由此可知,救灾过程中,冲锋舟离出发点A最远处为25千米;故答案为:①正东,20;②25;(Ⅱ)冲锋舟当天航行总路程为:|+14|+|﹣9|+|+8|+|﹣7|+|+13|+|﹣6|+|+12|+|﹣5|=14+9+8+7+13+6+12+5=74(千米),则74×0.5﹣28=37﹣28=9(升),答:冲锋舟当天救灾过程中至少还需补充9升油.24.(6分)有一台功能单一的计算器,只能完成对任意两个整数求差后再取绝对值的运算,其运算过程是:输入第一个整数x1,只显示不运算,再输入整数x2,显示|x1﹣x2|的结果.比如依次输入1,2,则显示结果1,若此后再输入一个整数,则显示与前面运算结果进行求差后再取绝对值的运算结果.(Ⅰ)若小明依次输入﹣1,0,1,则显示0;(Ⅱ)若小明将2,3,4,5,打乱顺序后一个一个地输入(不重复),则所有显示结果的最小值为0;所有显示结果的最大值为4;(Ⅲ)若小明依次输入四个连续整数n,n+1,n+2,n+3(其中n为正整数),则显示结果为2;(Ⅳ)若小明将四个连续整数n,n+1,n+2,n+3(其中n为整数),打乱顺序后一个一个地输入(不重复),则所有显示结果的最小值为0;(Ⅴ)若小明将1到2022这2022个整数打乱顺序后一个一个地输入(不重复),则所有显示结果的最大值为2021.【分析】(I)根据已知得出输入与输出结果的规律求出即可;(II)打乱顺序后一个一个地输入,可确定结果的最大值和最小值;(Ⅲ)按计算器的运算顺序计算可得答案;(Ⅳ)按如下次序输入:n,n+1,n+3,n+2,可得最小值为0;(Ⅴ)根据分析的奇偶性进行构造,其中k为非负整数,连续四个正整数结合分别得出最大值与最小值,可得结论.【解答】解:(I)由题意|﹣1﹣0|=1,|1﹣1|=0,所以小明依次输入﹣1,0,1,则显示的结果是0,故答案为:0;(II)对于2,3,4,5,按如下次序输入:2,3,5,4,可得:|2﹣3|=1,|1﹣5|=4,|4﹣4|=0,全部输入完毕后显示的结果的最小值是0;对于2,3,4,5,按如下次序输入:2,4,3,5,可得:|||2﹣4|﹣3|﹣5|=4,全部输入完毕后显示的结果的最大值是4;故答案为:0,4;(Ⅲ)小明依次输入四个连续整数n,n+1,n+2,n+3(其中n为正整数),可得:|||n﹣n﹣1|﹣(n+2)|﹣(n+3)|=2,故答案为:2;(IV)对于四个连续整数n,n+1,n+2,n+3(其中n为整数),打乱顺序后一个一个地输入(不重复),按如下次序输入:n,n+1,n+3,n+2,可得:|||n﹣n﹣1|﹣(n+3)|﹣(n+2)|=0,则所有显示结果的最小值为0,故答案为:0;(Ⅴ)小明输入这2022个数设次序分别是x1,x2,x2022,相当于计算:||…||x1﹣x2|﹣x3|﹣…﹣x2022|=P.因此P的值≤2022.另外从运算奇偶性分析,x1,x2为整数.|x1﹣x2|与x1+x2奇偶性相同.因此P与x1+x2+…+x2022的奇偶性相同.但x1+x2+…+x2022=1+2+…+2022=偶数.于是断定P≤2021.我们证明P可以取到2021.对1,2,3可以通过这种方式得到0:||3﹣2|﹣1|=0,对4,5,6,7,按如下次序|||4﹣5|﹣7|﹣6|=0,|||(4k+1)﹣(4k+3)|﹣(4k+4)|﹣(4k+2)|=0,对于k=0,1,2,…,均成立.∵2022=3+4×504+3,因此,1﹣2020可按上述办法依次输入最后显示最小结果为0,而后三个数2020,2021,2022,||2020﹣2021|﹣2022|=2021.所以P的最大值为2021.故答案为:2021.。
七年级数学上册期中考试卷及答案人教版
七年级数学上册期中考试卷及答案人教版人教版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1. 比小的数是 ( )A. B. C. D.2. 在式子 , , , , , 中 , 整式有 ( )A. 个B. 个C. 个D. 个3. 算式的值为 ( )A. B. C. D.4. 若和相减的结果是, 则的值是 ( ) A. B. C.D.5. 下列计算正确的是 ( )A.B.C.D.6. 若 , 互为相反数 , , 互为倒数 ,.则的值为 ( )A. B. C. 或 D.7. 若, 则 a-b 的值是 ( ) A. B. C.D. 8. 如图 , 在数轴上 , 点 , 所表示的数分别为,, 则 , 两点之间表示整数的点一共有 ( )A. 个B. 个C. 个D. 个9. 按如图所示程序流程计算 , 若开始输入的值.则最后输出的结果是 ( )A. B. C. D.10. 如图 , 把张形状大小完全相同的小长方形卡片不重叠地放在一个底面为长方形的盒子底部 , 盒子底面未被覆盖的部分用阴影部分表示则图中两块阴影部分的周长的和是 ( )A.B.C.D.二、填空题(每小题3分,共15分)11.的相反数是 ____ . 12. 多项式的次数是____. 13. 目前 , 第五代移动通信技术正在阔步前行 , 按照产业间关联关系测算 , 2020 年 ,间接拉动增长将超过亿元数据“亿”用科学记数法表示为_____. 14. 已知数 , 在数轴上的位置如图所示 , 则 , , ,的大小关系是____.15. 观察下列式子:, , 它们是按照一定规律排列的 , 依照此规律 , 则第个式子为 _______ .三.解答题(本大题共8个小题,满分75分)16. 计算:( 1 ); ( 2 ).17. 化简:( 1 ); ( 2 ). 18. 化简并求值:, 其中,.19. 小王在新藏公路某路段设置了一个加水站 , 他每天开着加水车沿东西方向给过路的汽车加水.如果约定向西为正.向东为负 , 加水车当天的行驶记录如下 ( 单位:千米 ) :+8 , -9 , +7 , -4 , -3 , +5 , -6 , -8 , +6 , +7 .( 1 ) 加水车最后到达地方在出发点的哪个方向 ? 距出发点多远 ?( 2 ) 若加水车行驶过程中每千米耗油量为升 , 求这天加水车共耗油多少升 ?20. 小刚同学做一道题:“已知两个多项式 , , 计算.”小刚同学误将看作, 求得结果.若多项式. ( 1 ) 请你帮助小刚同学求出的正确答案; ( 2 ) 若的值与的取值无关 , 求的值.21. 学校让综合实践活动课外学习小组参与学校校办工厂的足球生产活动 , 在工人师傅的指导和帮助下 , 综合实践活动课外学习小组一周计划生产 700 个足球 , 平均每天生产 100 个 , 由于各种原因实际每天生产产量与计划量相比有出入 , 下表是某周的生产情况 ( 超产为正、减产为负 ) :( 1 ) 根据记录可知前四天共生产个;( 2 ) 产量最多的一天比产量最少的一天多生产个;( 3 ) 该校办工厂实行每周计件奖励制 , 生产一个足球奖励给综合实践活动课外学习小组元.超额完成任务超额部分每个再奖元 , 那么该校的综合实践活动课外学习小组这一周得到的奖励总额是多少元 ?22. 某校准备到服装超市购一批演出服装 ( 男 , 女服装价格相同 ) 以供文艺汇演使用 , 一套服装定价元 , 领结 ( 花 ) 每条定价元 , 适逢新中国成立周年 , 服装超市开展促销活动 , 向客户提供两种优惠方案:①买一套服装送一条领结 ( 花 ) ;②服装和领结 ( 花 ) 都按定价的销售. 现该校要到该服装超市购买服装套 , 领结 ( 花 ) 条.( 1 ) 若该校按方案①购买.需付款 _______ 元 ( 用含的式子表示 ) ;若该校按方案②购买.需付款元 ( 用含的式子表示 ) ;( 2 ) 若, 通过计算说明此时按哪种方案付款比较合算; ( 3 ) 当时 , 你能给出一种更为省钱的购买方案吗 ? 试写出你的购买方案 , 并计算出需付款多少元.23. ( 1 ) 如图 , 点 M 在数轴上对应数为 -4 .点 N 在点 M 右边距 M 点 6 个单位长度 , 求点 N 对应的数;( 2 ) 在 ( 1 ) 的条件下.保持 N 点静止不动 , 点 M 沿数轴以每秒 1 个单位长度的速度匀速向右运动 , 经过多长时间 M , N 两点相距 4 个单位长度;( 3 ) 若已知点 M , N 在数轴上对应的数分别为 -6 、 2 .点 M 以每秒 3 个单位长度的速度沿数轴向右运动 , N 以每秒 2 个单位长度的速度同时沿数轴向右运动 , 当 M , N 两点相距个单位长度时 , 请直接写出点 M 所对应的数.初一数学21个必考知识点1.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。
人教版数学七年级上册期中试卷 (2)
∴ , ,
∴ .
所以答案为2.
【点睛】本题主要考查了多项式的性质,熟练掌握相关概念是解题关键.
15.30
【分析】根据a★b= ,用﹣6与5的积除以它们的和,计算即可.
【详解】解:∵a★b= ,
∴(﹣6)★5= .
故答案为:30.
【点睛的新运算是解题关键.
(1)用含a代数式分别表示该销售商今年四月份、五月份、六月份销售空调多少台?.
(2)若a=220,求六月份销售的空调总数。
23.请完成以下问题
(1)有理数a,b,c所对应的点在数轴上的位置如图所示,试比较a,﹣a,b,﹣b,c,﹣c,0的大小,并用“<”连接.
(2)有理数a、b、m、n、x满足下列条件:a与b互为倒数,m与n互为相反数,x的绝对值为最小的正整数,求2021(m+n)+2020x3﹣2019ab的值.
【详解】解:①∵π>3,−(+3)=−3
∴−π<−(+3)
②∵32=9,(−2)3=−8
9>−8
∴32>(−2)3,
③∵ ,
∴ ,
故答案为:<,>,<.
【点睛】本题考查了实数大小的比较,明确实数大小比较的法则及乘方、绝对值等相关知识点,是解题的关键.
13.-3
【分析】根据题意首先得到:|k|﹣2=1,解此绝对值方程,求出k的两个值.分别代入所给方程中,使系数不为0的方程,求解即可.
已知点A在数轴上表示的数是a,点B表示的数为b,且满足 .
(1)a=___,b=___,AB=___.(直接写出结果)
(2)如图1,点P是数轴上一点,点P到点A的距离是点P到点B的距离的3倍(即PA=3PB),求点P在数轴上表示的数;
人教版数学七年级上学期《期中考试试卷》(含答案解析)
一、选择题(本大题共10个小题,每小题3分,共30分)
1.在 中,表示正分数的有()
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
根据正分数的定义即可求解.
【详解】在 中, 整数, 是负分数,
只有: 是正分数,共2个,
故选:B.
【点睛】本题考查了有理数的分类,熟练掌握有理数的分类方法是解本题的关键.
23.近期电影《少年 你》受到广大青少年的喜爱,某校七年级1班2班的几名同学请他们的家长在网上买票,家长了解到某电影院的活动,设购买电影票的张数为
购买张数
每张票的价格
元
元
元
家长沟通后决定两个班的同学在期中考试结束后去观看。两个班共有 人,期中 班人数多于 不足 人。经过估算,如果两个班都以班为单位购买,则一共应付 元。
15.已知|a|=5,|b|=3,且|a-b|=b-a,那么a+b=________.
16.已知等式 ,无论 取何值等式都成立,则 __________.
三、解答题(共8题,共72分)
17.
18. 化简:
化简求值: ,其中
19.解方程:
20.在军运会期间,七年级1班志愿者小组准备利用午休时间把校门口的自行车摆放整齐,小组长进行分工时(小组长也参与摆放)发现:如果每人摆放 辆自行车,则还剩 辆自行车需要最后再摆;如果每人摆放 辆自行车,则有一名同学少摆放 辆自行车。请问:这个志愿者小组有几名同学,校门口有几辆自行车需要摆放?
2.下列式子是单项式的是()
A. B. C. D.
【答案】A
【解析】
【分析】
直接利用单项式的定义分析得出答案.
【详解】A、1是整式,此选项符合题意;
人教版七年级数学上学期期中试题(2020年)
(2) 3( ab 2a) (3a b) 3ab
第 3页 共 9页
2020年最新 (3) 2( x2 xy) 3(2x2 3xy) 2[ x 2 (2x2 xy y 2 )]
23.(本题有 2 个小题,第 1 题 4 分,第 2 题 8 分,共 12 分) (1)小明是个小马虎,他在计算多项式 M减去多项式 ab-2 bc+3ac 时,把减号误看成加号, 结果得到答案 -2 ab+bc+8ac,请你帮小马虎小明求出正确答案 .
A. 4x-9x+6x=- x
) B
) B
.
1
x
y
2
的次数
2
2
5 xy 2
5
D.的系数是-2来自211 . a- a=0
22
C. x 3 — x 2 =x
D
. xy— 2xy=3xy
10.已知 a,b 互为相反数,且 a b 6 ,则 b 1 的值为(
)
第 1页 共 9页
2020年最新
A. 2
B. 2 或 3
景区门票收入为 369.7 万元 , 将这一数据用科学记数法表示为
元.
15.已知点 A 和点 B 在同一数轴上, 点 A 表示数- 2,点 B 和点 A 相距 5 个单位长度, 则
点 B 表示的数是 _________ .
16.计算 6a 2 5a 3 与 5a 2 2a 1 的差,结果是 _______________.
的树比第二队种的树的一半少 6 棵,三队共种树
棵.
三、解答题(共 60 分)
21.计算(每小题 4 分,共 12 分)
3 57
2020年人教版七年级数学上册期中考试试题及答案
精选完整教案文档,希望能帮助到大家,祝心想事成,万事如意!完整教案@_@2020年人教版七年级数学上册期中考试试题及答案一、选择题(每小题3分,共33分)1、在-212 、+710 、-3、2、0、4、5、-1中,负数有 ( )A 、 1个B 、2个C 、3个D 、4个2、下列说法不正确的是 ( ) A 、到原点距离相等且在原点两旁的两个点所表示的数一定互为相反数 B 、所有的有理数都有相反数 C 、正数和负数互为相反数D 、在一个有理数前添加“-”号就得到它的相反数3、| -2 | 的相反数是 ( ) A 、-12B 、-2C 、12D 、24、如果ab<0且a>b ,那么一定有 ( ) A 、a>0,b>0B 、a>0,b<0C 、a<0,b>0D 、a<0,b<05、如果a 2=(-3)2,那么a 等于 ( ) A 、3B 、-3C 、9D 、±36、23表示 ( ) A 、2×2×2B 、2×3C 、3×3D 、2+2+27、近似数4.50所表示的真值a 的取值范围是 ( ) A 、4.495≤a <4.505 B 、4040≤a <4.60C 、4.495≤a ≤4.505D 、4.500≤a <4.50568、如果 | a + 2 | + ( b-1)2= 0,那么(a + b )2009的值是 ( )A 、- 2009B 、2009C 、- 1D 、19、下列说法正确的是 ( ) A 、- 2不是单项式 B 、- a 表示负数C 、3ab5的系数是3D 、x + ax+ 1 不是多项式10、已知一个数的平方等于它的绝对值,这样的数共有 ( ) A 、1个B 、2个C 、3个D 、4个11、下面用数学语言叙述代数式1a -b ,其中表达不正确的是 ( )A 、比a 的倒数小b 的数B 、1除以a 的商与b 的相反数的差C 、1除以a 的商与b 的相反数的和D 、b 与a 的倒数的差的相反数二、填空题(每小题3分,共30分) 12、若x<0,则x| x |= 。
人教版七年级上学期期中考试数学试卷(含答案)
人教版七年级第一学期期中数学试卷及答案一、单选题(共10题,每小题4分,合计40分)1.(4分)的相反数是()A.6B.﹣6C.D.﹣【解答】解:的相反数是﹣,故选:D.2.(4分)如果和﹣x2y n是同类项,则m+n=()A.3B.2C.1D.﹣1【解答】解:∵和﹣x2y n是同类项,∴m=2,n=1,∴m+n=2+1=3.故选:A.3.(4分)如果m=n,那么下列等式不一定成立的是()A.m﹣3=n﹣3B.2m+3=3n+2C.5+m=5+n D.【解答】解:A.∵m=n,∴m﹣3=n﹣3,故本选项不符合题意;B.∵m=n,∴2m=2n,∴2m+3=2n+3,不能推出2m+3=3n+2,故本选项符合题意;C.∵m=n,∴5+m=5+n,故本选项不符合题意;D.∵m=n,∴=,故本选项不符合题意;故选:B.4.(4分)用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3B.2a+3C.2(a﹣3)D.2(a+3)【解答】解:a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.5.(4分)已知x=2是方程3x﹣5=2x+m的解,则m的值是()A.1B.﹣1C.3D.﹣3【解答】解:∵x=2是方程3x﹣5=2x+m的解,∴把x=2代入方程可得6﹣5=4+m,解得m=﹣3,故选:D.6.(4分)解一元一次方程(x+1)=1﹣x时,去分母正确的是()A.3(x+1)=1﹣2x B.2(x+1)=1﹣3xC.2(x+1)=6﹣3x D.3(x+1)=6﹣2x【解答】解:方程两边都乘以6,得:3(x+1)=6﹣2x,故选:D.7.(4分)多项式a2+a与多项式﹣a+1的差为()A.a2+1B.a2+2a+1C.a2﹣1D.a2+2a﹣1【解答】解:(a2+a)﹣(﹣a+1)=a2+a+a﹣1=a2+2a﹣1,故选:D.8.(4分)多项式x2﹣kxy﹣5y2+xy﹣6合并同类项后不含xy项,则k的值是()A.0B.1C.2D.﹣2【解答】解:∵项式x2﹣kxy﹣5y2+xy﹣6合并同类项后不含xy项,∴﹣k+1=0,∴k=2.故选:C.9.(4分)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.1【解答】解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.10.(4分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•a n.故选:C.二.填空题(共6题,每小题4分,合计24分)11.(4分)我市2020年常住人口约9080000人,该人口数用科学记数法可表示为9.08×106人.【解答】解:9080000人用科学记数法可表示为9.08×106人.故答案为:9.08×106.12.(4分)若a﹣b=1,则代数式2a﹣(2b﹣1)的值是3.【解答】解:整理代数式得,2a﹣2b+1=2(a﹣b)+1,∵a﹣b=1,∴原式=2+1=3.13.(4分)当x=1时,代数式x+2与代数式的值相等.【解答】解:∵代数式x+2与代数式的值相等,∴x+2=,2x+4=7﹣x,2x+x=7﹣4,3x=3,x=1,故答案为:1.14.(4分)若|x|=3,|y|=4,且xy>0,则x+y的值为7或﹣7.【解答】解:∵|x|=3,|y|=4,∴x=±3,y=±4,∵xy>0,∴x=3时,y=4,x+y=7,x=﹣3时,y=﹣4,x+y=﹣3+(﹣4)=﹣7,综上所述,x+y的值是7或﹣7.故答案为:7或﹣7.15.(4分)一台整式转化器原理如图,开始时输入关于x的整式M,当M=x+1时,第一次输出3x+1,继续下去,则第2次输出的结果是7x+1.【解答】解:第一次输入M=x+1得整式:(x+1+)×2+N=3x+1,整理得3x+2+N=3x+1,故2+N=1,解得N=﹣1,故运算原理为:(M+)×2﹣1,第二次输入M=3x+1,运算得(3x+1+)×2﹣1=7x+1.故答案为:7x+1.16.(4分)有理数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|a﹣c|+|b﹣c|的结果是﹣2a.【解答】解:根据图形,c<b<0<a,且|a|<|b|<|c|,∴a+b<0,a﹣c>0,b﹣c>0,∴原式=(﹣a﹣b)﹣(a﹣c)+(b﹣c),=﹣a﹣b﹣a+c+b﹣c,=﹣2a.故答案为:﹣2a.三.解答题(共9题,合计86分)17.(8分)计算:(1);(2).【解答】解:(1)=()×(﹣60)=﹣×60+×60﹣×60+×60=﹣20+15﹣12+10=﹣7;(2)=﹣1﹣×(﹣20)+4=﹣1+8+4=11.18.(8分)先化简再求值:3a2b﹣[2a2b﹣(2ab﹣a2b)﹣4a2]﹣ab,其中a=﹣3,b=﹣2.【解答】解:3a2b﹣[2a2b﹣(2ab﹣a2b)﹣4a2]﹣ab=3a2b﹣2a2b+(2ab﹣a2b)+4a2﹣ab=3a2b﹣2a2b+2ab﹣a2b+4a2﹣ab=ab+4a2当a=﹣3,b=﹣2时,原式=(﹣3)×(﹣2)+4×(﹣3)2=6+36=42.19.(8分)解方程:(1)y﹣3(20﹣2y)=10(2)(x﹣2)=1﹣(4﹣3x)【解答】解:(1)去括号得:y﹣60+6y=10,移项得:y+6y=10+60,合并同类项得:7y=70,系数化为1得:y=10,(2)方程两边同时乘以12得:3(x﹣2)=12﹣2(4﹣3x),去括号得:3x﹣6=12﹣8+6x,移项得:3x﹣6x=12﹣8+6,合并同类项得:﹣3x=10,系数化为1得:x=﹣.20.(8分)某一食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g)﹣5﹣20136袋数143453这批样品的平均质量比标准质量多还是少?多或少几克,若标准质量为450克,则抽样检测的总质量是多少?【解答】解:与标准质量的差值的和为﹣5×1+(﹣2)×4+0×3+1×4+3×5+6×3=24,其平均数为24÷20=1.2,即这批样品的平均质量比标准质量多,多1.2克.则抽样检测的总质量是(450+1.2)×20=9024(克).21.(8分)若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.【解答】解:(1)3*(﹣4),=4×3×(﹣4),=﹣48;(2)(﹣2)*(6*3),=(﹣2)*(4×6×3),=(﹣2)*(72),=4×(﹣2)×(72),=﹣576.22.(10分)已知:M+N=4x3+16xy2+8y3,N=3x3﹣4y3+16xy2.(1)求M;(2)若|x﹣2|+(y+1)2=0,计算M的值.(2)直接利用非负数的性质得出x,y的值,进而代入计算得出答案.【解答】解:(1)∵M+N=4x3+16xy2+8y3,N=3x3﹣4y3+16xy2,∴M=4x3+16xy2+8y3﹣(3x3﹣4y3+16xy2)=4x3+16xy2+8y3﹣3x3+4y3﹣16xy2=x3+12y3;(2)∵|x﹣2|+(y+1)2=0,∴x﹣2=0,y+1=0,解得:x=2,y=﹣1,∴M=23+12×(﹣1)=8﹣12=﹣4.23.(10分)阅读下面解题过程.利用运算律有时能进行简便计算.例1:98×12=(100﹣2)×12=1200﹣24=1176;例2:﹣16×233+17×233=(﹣16+17)×233=233;请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15);(2)999×118+999×(﹣)﹣999×18.【解答】解:(1)999×(﹣15)=(1000﹣1)×(﹣15)=1000×(﹣15)﹣1×(﹣15)=﹣15000+15=﹣14985;(2)999×118+999×(﹣)﹣999×18=999×[118+(﹣)+(﹣18)]=999×100=99900.24.(12分)有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作;第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8;继续依次操作下去.问(1)第一次操作后,增加的所有新数之和是多少?(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和是多少?(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和是多少?【解答】解:(1)第一次操作后增加的新数是6,﹣1,则6+(﹣1)=5.(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和为3+3+(﹣10)+9=5.(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和为5.25.(14分)如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.【解答】解:(1)点P运动至点C时,所需时间t=10÷2+10÷1+8÷2=19(秒),(2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则10÷2+x÷1=8÷1+(10﹣x)÷2,解得x=.故相遇点M所对应的数是.(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上,则:8﹣t=10﹣2t,解得:t=2.②动点Q在CB上,动点P在OB上,则:8﹣t=(t﹣5)×1,解得:t=6.5.③动点Q在BO上,动点P在OB上,则:2(t﹣8)=(t﹣5)×1,解得:t=11.④动点Q在OA上,动点P在BC上,则:10+2(t﹣15)=t﹣13+10,解得:t=17.综上所述:t的值为2、6.5、11或17.。
人教版七年级上册数学期中试卷(含答案)
2020-2021学年七年级(上)期中数学试卷一、选择题(每小题2分,共16分)1.﹣的绝对值是()A.﹣B.C.5D.﹣52.全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进燃煤电厂脱硫改造15000000千瓦是《政府工作报告》中确定的重点任务之一.将数据15 000 000用科学记数法表示为()A.15×106B.1.5×107C.1.5×108D.0.15×1083.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.4.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()A.ab>0B.a+b>0C.|a|﹣|b|<0D.a﹣b<05.下列各式中一定为负数的是()A.﹣(﹣2)B.﹣|﹣2|C.﹣(﹣2)3D.(﹣3)26.若与是同类项,则a、b值分别为()A.a=2,b=﹣1B.a=2,b=1C.a=﹣2,b=1D.a=﹣2,b=﹣1 7.下面四个整式中,不能表示图中阴影部分面积的是()A.(x+3)(x+2)﹣2x B.x(x+3)+6C.3(x+2)+x2D.x2+5x8.在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母a,b,c...,z(不论大小写)依次对应1,2,3, (26)26个自然数(见表格).当明码对应的序号x为奇数时,密码对应的序号y=;当明码对应的序号x为偶数时,密码对应的序号y=+13.字母a b c d e f g h i j k l m 序号12345678910111213字母n o p q r s t u v w x y z 序号14151617181920212223242526按上述规定,将明码“love”译成密码是()A.gawq B.shxc C.sdri D.love二、填空题(9-14题,每小题2分,15、16题,每小题2分,共18分)9.把0.0158精确到0.001是.10.写出一个系数是2020,且只含x,y两个字母的三次单项式是.11.若多项式x2﹣2kxy+y2+6xy﹣6不含xy的项,则k=.12.若方程2x+1=﹣1的解也是关于x的方程1﹣2(x﹣a)=2的解,则a的值为.13.大于﹣3且不大于2的所有整数的和为.14.如果代数式y2+3y的值为8,那么代数式2y2+6y﹣9的值为.15.(3分)如图,这是一个运算的流程图,输入正整数x的值,按流程图进行操作并输出y 的值.例如,若输入x=10,则输出y=5.若输出y=3,则输入的x的值为.16.(3分)如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第五个图形需要黑色棋子的个数是,第n个图形需要黑色棋子的个数是(n≥1,且n为整数).三、计算题(每小题5分,共20分)17.(5分)计算:﹣6.5+4+8.18.(5分)计算:.19.(5分)(+﹣)×(﹣12)20.(5分)计算:﹣32+(﹣1)2017÷(﹣)2﹣3×(0.5﹣).四、解答题(21题4分,22-25题,每小题4分,共28分)21.(4分)﹣3a+2ab﹣4ab+2a.22.(6分)化简:4x3﹣[﹣x2﹣2(x3﹣x2+1)].23.(6分)先化简再求值:5(3a2b﹣ab2)﹣(ab2+3a2b)+2ab2.其中a、b满足|a+1|+(b ﹣2)2=0.24.(6分)解方程:4(2x﹣1)﹣3(5x+1)=14.25.(6分)解方程:=1.五、解答题(本大题共3道小题,每小题6分,共18分)26.(6分)有理数a,b在数轴上的对应点位置如图所示,(1)在图中标出﹣a,﹣b所对应的点,并用“<”连接a,b,﹣a,﹣b,0;(2)化简:|a|+|a+b|﹣2|b﹣a|.27.(6分)根据某话剧团网站公布的门票价格(如表所示),小张预订了B等级、C等级的门票共7张,他发现这7张门票的费用恰好可以预订2张A等级门票,问小张预订了B 等级、C等级门票各多少张?票的等级单张价格A400B200C8028.(6分)在数轴上,把表示数1的点称为基准点,记作点.对于两个不同的点M和N,若点M、点N到点的距离相等,则称点M与点N互为基准变换点.例如:图1中,点M表示数﹣1,点N表示数3,它们与基准点的距离都是2个单位长度,点M与点N 互为基准变换点.(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=;若a=4,则b=;②用含a的式子表示b,则b=;(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换点,则点A表示的数是;(3)点P在点Q的左边,点P与点Q之间的距离为8个单位长度.对P、Q两点做如下操作:点P沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到P3,P4为P3的基准变换点,…,依此顺序不断地重复,得到P5,P6,…,P n.Q1为Q的基准变换点,将数轴沿原点对折后Q1的落点为Q2,Q3为Q2的基准变换点,将数轴沿原点对折后Q3的落点为Q4,…,依此顺序不断地重复,得到Q5,Q6,…,Q n.若无论k为何值,P n与Q n两点间的距离都是4,则n =.参考答案与试题解析一、选择题(每小题2分,共16分)1.﹣的绝对值是()A.﹣B.C.5D.﹣5【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:|﹣|=﹣(﹣)=.故选:B.2.全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进燃煤电厂脱硫改造15000000千瓦是《政府工作报告》中确定的重点任务之一.将数据15 000 000用科学记数法表示为()A.15×106B.1.5×107C.1.5×108D.0.15×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将15 000 000用科学记数法表示为:1.5×107.故选:B.3.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.【分析】求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.【解答】解:∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴﹣0.6最接近标准,故选:C.4.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()A.ab>0B.a+b>0C.|a|﹣|b|<0D.a﹣b<0【分析】根据图示,可得a<0<b,而且|a|>|b|,据此逐项判断即可.【解答】解:根据图示,可得a<0<b,而且|a|>|b|,∵a<0<b,∴ab<0,∴选项A不正确;∵a<0<b,而且|a|>|b|,∴a+b<0,∴选项B不正确,选项D正确;∵|a|>|b|,∴|a|﹣|b|>0,∴选项C不正确;故选:D.5.下列各式中一定为负数的是()A.﹣(﹣2)B.﹣|﹣2|C.﹣(﹣2)3D.(﹣3)2【分析】先把各项化简,再根据负数的定义逐一判断.【解答】解:A、﹣(﹣2)=2,故错误;B、﹣|﹣2|=﹣2是负数,正确;C、﹣(﹣2)3=﹣(﹣8)=8,故错误;D、(﹣3)2=9,故错误;故选:B.6.若与是同类项,则a、b值分别为()A.a=2,b=﹣1B.a=2,b=1C.a=﹣2,b=1D.a=﹣2,b=﹣1【分析】根据同类项的概念求解.【解答】解:∵与是同类项,∴a﹣1=1,2b=2,解得:a=2,b=1.故选:B.7.下面四个整式中,不能表示图中阴影部分面积的是()A.(x+3)(x+2)﹣2x B.x(x+3)+6C.3(x+2)+x2D.x2+5x【分析】根据题意可把阴影部分分成两个长方形或一个长方形和一个正方形来计算面积,也可以用大长方形的面积减去空白处小长方形的面积来计算.【解答】解:A、大长方形的面积为:(x+3)(x+2),空白处小长方形的面积为:2x,所以阴影部分的面积为(x+3)(x+2)﹣2x,故正确;B、阴影部分可分为应该长为x+3,宽为x和一个长为x+2,宽为3的长方形,他们的面积分别为x(x+3)和3×2=6,所以阴影部分的面积为x(x+3)+6,故正确;C、阴影部分可分为一个长为x+2,宽为3的长方形和边长为x的正方形,则他们的面积为:3(x+2)+x2,故正确;D、x2+5x,故错误;故选:D.8.在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母a,b,c...,z(不论大小写)依次对应1,2,3, (26)26个自然数(见表格).当明码对应的序号x为奇数时,密码对应的序号y=;当明码对应的序号x为偶数时,密码对应的序号y=+13.字母a b c d e f g h i j k l m 序号12345678910111213字母n o p q r s t u v w x y z 序号14151617181920212223242526按上述规定,将明码“love”译成密码是()A.gawq B.shxc C.sdri D.love【分析】先找出“love”中各个字母对应的数,判断出奇偶数,然后依据不同的解析式进行解答即可.【解答】解:如l对应序号12为偶数,则密码对应序号为+13=19,对应s,以此类推,得“love”译成密码是shxc.故选:B.二、填空题(9-14题,每小题2分,15、16题,每小题2分,共18分)9.把0.0158精确到0.001是0.016.【分析】把万分位上的数字8进行四舍五入即可.【解答】解:0.0158精确到0.001是0.016.故答案为0.016.10.写出一个系数是2020,且只含x,y两个字母的三次单项式是2020xy2.【分析】根据数或字母的积组成的式子叫做单项式可得答案.【解答】解:由题意得:2020xy2.故答案为:2020xy2.11.若多项式x2﹣2kxy+y2+6xy﹣6不含xy的项,则k=3.【分析】将含xy的项进行合并,然后令其系数为0即可求出k的值.【解答】解:x2+(6﹣2k)xy+y2﹣6令6﹣2k=0,k=3故答案为:312.若方程2x+1=﹣1的解也是关于x的方程1﹣2(x﹣a)=2的解,则a的值为﹣.【分析】求出第一个方程的解得到x的值,代入第二个方程计算即可求出a的值.【解答】解:方程2x+1=﹣1,解得:x=﹣1,代入方程得:1+2+2a=2,解得:a=﹣,故答案为:﹣13.大于﹣3且不大于2的所有整数的和为﹣3.【分析】先找出符合条件的整数,然后把它们相加即可.【解答】解:大于﹣3且不大于2的整数是﹣3、﹣2、﹣1、0、1、2,﹣3+(﹣2)+(﹣1)+0+1+2=﹣3.故答案为:﹣3.14.如果代数式y2+3y的值为8,那么代数式2y2+6y﹣9的值为7.【分析】将所求的代数式适当变形,利用整体代入的思想解答即可.【解答】解:∵y2+3y=8,∴2y2+6y﹣9=2(y2+3y)﹣9=2×8﹣9=7.故答案为:7.15.(3分)如图,这是一个运算的流程图,输入正整数x的值,按流程图进行操作并输出y 的值.例如,若输入x=10,则输出y=5.若输出y=3,则输入的x的值为5或6.【分析】由运算流程图,根据输出y的值确定出x的值即可.【解答】解:若x为偶数,可得x=3,即x=6;若x为奇数,可得(x+1)=3,即x=5,故答案为:5或616.(3分)如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第五个图形需要黑色棋子的个数是35,第n个图形需要黑色棋子的个数是n (n+2)(n≥1,且n为整数).【分析】根据题意,分析可得第1个图形需要黑色棋子的个数为2×3﹣3,第2个图形需要黑色棋子的个数为3×4﹣4,第3个图形需要黑色棋子的个数为4×5﹣5,依此类推,可得第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2),计算可得答案.【解答】解:第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋子2×3﹣3个,第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子3×4﹣4个,第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子4×5﹣5个,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2)=n(n+2);当n=5时,5×(5+2)=35,故答案为:35,n(n+2).三、计算题(每小题5分,共20分)17.(5分)计算:﹣6.5+4+8.【分析】根据有理数的加法结合律,先把同分母的分数相加即可得出结果.【解答】解:原式==13﹣10=3.18.(5分)计算:.【分析】把小数化为分数,再根据除以一个数等于乘以这数的倒数把除法运算转化为乘法,然后约分进行计算即可得解.【解答】解:﹣2.5÷×(﹣)÷(﹣4)=﹣×××=﹣.19.(5分)(+﹣)×(﹣12)【分析】利用乘法分配律计算即可得到结果.【解答】解:(+﹣)×(﹣12),=﹣×12﹣×12+×12,=﹣5﹣8+9,=﹣4.20.(5分)计算:﹣32+(﹣1)2017÷(﹣)2﹣3×(0.5﹣).【分析】有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.据此计算即可.【解答】解:﹣32+(﹣1)2017÷(﹣)2﹣3×(0.5﹣)=﹣9+(﹣1)÷﹣3×()=﹣9﹣4+=﹣.四、解答题(21题4分,22-25题,每小题4分,共28分)21.(4分)﹣3a+2ab﹣4ab+2a.【分析】根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.【解答】解:﹣3a+2ab﹣4ab+2a=﹣3a+2a+(2ab﹣4ab)=﹣a﹣2ab.22.(6分)化简:4x3﹣[﹣x2﹣2(x3﹣x2+1)].【分析】先去括号,然后合并同类项即可得到答案.【解答】解:4x3﹣[﹣x2﹣2(x3﹣x2+1)]=4x3﹣[﹣x2﹣2x3+x2﹣2]=4x3+x2+2x3﹣x2+2=6x3+2.23.(6分)先化简再求值:5(3a2b﹣ab2)﹣(ab2+3a2b)+2ab2.其中a、b满足|a+1|+(b ﹣2)2=0.【分析】根据整式的混合运算法则对整式进行化简,再根据绝对值、偶次方的非负性求得a=﹣1,b=2,代入整式求解.【解答】解:5(3a2b﹣ab2)﹣(ab2+3a2b)+2ab2=15a2b﹣5ab2﹣ab2﹣3a2b+2ab2=12a2b﹣4ab2.∵|a+1|≥0,(b﹣2)2≥0,∴当|a+1|+(b﹣2)2=0时,a+1=0,b﹣2=0.∴a=﹣1,b=2.∴原式=12a2b﹣4ab2=12×(﹣1)2×2﹣4×(﹣1)×2=40.24.(6分)解方程:4(2x﹣1)﹣3(5x+1)=14.【分析】方程去括号、移项、合并同类项、系数化为1即可.【解答】解:4(2x﹣1)﹣3(5x+1)=14,去括号,得8x﹣4﹣15x﹣3=14,移项,得8x﹣15x=14+4+3,合并同类项,得﹣7x=21,系数化为1,得x=﹣3.25.(6分)解方程:=1.【分析】方程去分母、去括号、移项、合并同类项、系数化为1即可.【解答】解:=1,去分母,得3(1﹣3x)﹣2(3﹣5x)=6,去括号,得3﹣9x﹣6+10x=6,移项,得10x﹣9x=6+6﹣3,合并同类项,得x=9.五、解答题(本大题共3道小题,每小题6分,共18分)26.(6分)有理数a,b在数轴上的对应点位置如图所示,(1)在图中标出﹣a,﹣b所对应的点,并用“<”连接a,b,﹣a,﹣b,0;(2)化简:|a|+|a+b|﹣2|b﹣a|.【分析】(1)根据数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,比较出0,a,b,﹣1的大小关系,并用“<”连接0,a,b,﹣1即可.(2)首先根据图示,可得a<0,a+b<0,b﹣a>0,所以|a|=﹣a,|a+b|=﹣(a+b),|b ﹣a|=b﹣a;然后根据整数的加减的运算方法,求出算式的值是多少即可.【解答】解:(1)如图所示:根据图示,可得a<﹣b<0<b<﹣a;(2)∵a<0,a+b<0,b﹣a>0,∴|a|=﹣a,|a+b|=﹣(a+b),|b﹣a|=b﹣a,∴|a|+|a+b|﹣2|b﹣a|=﹣a﹣(a+b)﹣2(b﹣a)=﹣a﹣a﹣b﹣2b+2a=﹣3b.27.(6分)根据某话剧团网站公布的门票价格(如表所示),小张预订了B等级、C等级的门票共7张,他发现这7张门票的费用恰好可以预订2张A等级门票,问小张预订了B 等级、C等级门票各多少张?票的等级单张价格A400B200C80【分析】本题的等量关系可表示为:B门票+C门票=7张,购买的B门票的价格+C门票的价格=2张A门票的价格,据此可列出方程组求解.【解答】解:设小明预订了B等级门票分别为x张,则C等级门票分别为(7﹣x)张,依题意,得,200x+80(7﹣x)=800解方程得x=2,答:小明预订了B等级门票2张,C等级门票5张.28.(6分)在数轴上,把表示数1的点称为基准点,记作点.对于两个不同的点M和N,若点M、点N到点的距离相等,则称点M与点N互为基准变换点.例如:图1中,点M表示数﹣1,点N表示数3,它们与基准点的距离都是2个单位长度,点M与点N 互为基准变换点.(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=2;若a=4,则b=﹣2;②用含a的式子表示b,则b=2﹣a;(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换点,则点A表示的数是;(3)点P在点Q的左边,点P与点Q之间的距离为8个单位长度.对P、Q两点做如下操作:点P沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到P3,P4为P3的基准变换点,…,依此顺序不断地重复,得到P5,P6,…,P n.Q1为Q的基准变换点,将数轴沿原点对折后Q1的落点为Q2,Q3为Q2的基准变换点,将数轴沿原点对折后Q3的落点为Q4,…,依此顺序不断地重复,得到Q5,Q6,…,Q n.若无论k为何值,P n与Q n两点间的距离都是4,则n =4或12.【分析】(1)①根据互为基准变换点的定义可得出a+b=2,代入数据即可得出结论;②根据a+b=2,变换后即可得出结论;(2)设点A表示的数为x,根据点A的运动找出点B,结合互为基准变换点的定义即可得出关于x的一元一次方程,解之即可得出结论;(3)根据点P n与点Q n的变化找出变化规律“P4n﹣1=2﹣m,Q4n﹣1=﹣m+4n﹣8;P4n =m、Q4n=m+8﹣4n”,再根据两点间的距离公式即可得出关于n的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)①∵点A表示数a,点B表示数b,点A与点B互为基准变换点,∵a+b=2.当a=0时,b=2;当a=4时,b=﹣2.故答案为:2;﹣2.②∵a+b=2,∴b=2﹣a.故答案为:2﹣a.(2)设点A表示的数为x,根据题意得:x﹣3+x=2,解得:x=.故答案为:.(3)设点P表示的数为m,则点Q表示的数为m+8,由题意可知:P1表示的数为m+k,P2表示的数为2﹣(m+k),P3表示的数为2﹣m,P4表示的数为m,P5表示的数为m+k,…,Q1表示的数为﹣m﹣6,Q2表示的数为m+6,Q3表示的数为﹣m﹣4,Q4表示的数为m+4,Q5表示的数为﹣m﹣2,Q6表示的数为m+2,…,∴P4n﹣1=2﹣m,Q4n﹣1=﹣m+4n﹣8;P4n=m,Q4n=m+8﹣4n.①令|2﹣m﹣(﹣m+4n﹣8)|=4,即|﹣4n+10|=4,解得:4n=6或4n=14,又∵n为正整数,∴4n为4的倍数,∴6和14不符合题意,舍去;②令|m﹣(m+8﹣4n)|=4,即|8﹣4n|=4,解得:4n=4或4n=12.故答案为:4或12.。
人教版数学七年级上册期中同步测练练习试题(部分含答案)共3份
广东省惠州市博文学校2020年七年级上册期中考试试数学卷(附答案)考试范围:第1-3章时间90分钟分值:120分一.选择题(共10小题,满分30分,每小题3分)1.﹣2的绝对值是()A.4B.﹣4C.2D.﹣22.下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2C.ab2D.3ab3.下列说法中正确的是()A.最小的整数是0B.有理数分为正数和负数C.如果两个数的绝对值相等,那么这两个数相等D.互为相反数的两个数的绝对值相等4.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.5a2﹣4a2=1D.5a2b﹣5ba2=05.某种鲸鱼的体重约为1.36×105kg,关于这个近似数,下列说法正确的是()A.它精确到百位B.它精确到0.01C.它精确到千分位D.它精确到千位6.已知等式2a=3b+4,则下列等式中不成立的是()A.2a﹣3b=4B.2a+1=3b+5C.2ac=3bc+4D.a=b+27.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0B.a+b>0C.a﹣b=0D.a﹣b>08.解一元一次方程(x+1)=1﹣x时,去分母正确的是()A.3(x+1)=1﹣2x B.2(x+1)=1﹣3xC.2(x+1)=6﹣3x D.3(x+1)=6﹣2x9.互联网“微商”经营已成为大众创业新途径,某微商将一件商品按进价上调50%标价,再以标价的八折售出,仍可获利30元,则这件商品的进价为()A.80元B.100元C.150元D.180元10.a、b是有理数,下列各式中成立的是()A.若a≠b,则|a|≠|b|B.若|a|≠|b|,则a≠bC.若a>b,则|a|>|b|D.若|a|>|b|,则a>b二.填空题(共7小题,满分28分,每小题4分)11.若a、b是互为倒数,则2ab﹣5=.12.已知方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,则m=.13.已知地球上海洋面积约为316000000km2,316000000这个数用科学记数法可表示为.14.买一个篮球需要x元,买一个排球需要y元,则买3个篮球和2排球共需元.15.绝对值不大于5的所有整数的和是.16.已知x=3是方程3x﹣2a=5的解,则a=.17.定义运算“@”的运算法则为:x@y=xy﹣1,则(2@3)@4=.三.解答题(一)(共3小题,满分18分)18.(6分)计算:﹣32+(﹣12)×||﹣6÷(﹣1).19.(6分)解方程:(1)5x+4=3(x﹣4)(2)﹣1=.20.(6分)化简求值:(﹣3x2﹣4y2+2x)﹣(2x2﹣5y2)+(5x2﹣8)+6x,其中x,y满足|y ﹣5|+(x+4)2=0.四.解答题(二)(共3小题,满分24分)21.(8分)某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自O地出发到收工时所走路线(单位:千米)为:+10、﹣3、+4、+2、﹣8、+13、﹣2、﹣12、+8、+5(1)问收工时距O地多远?(2)若每千米耗油0.2升,从O地出发到收工时共耗油多少升?22.(8分)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.23.(8分)肖坝社区惠民水果店第一次用615元从水果批发市场购进甲、乙两种不同品种的苹果,其中甲种苹果的重量比乙种苹果重量的2倍多15千克,甲、乙两种苹果的进价和售价如下表:甲乙进价(元/千克)58售价(元/千克)1015(1)惠民水果店第一次购进的甲、乙两种苹果各多少千克?(2)惠民水果店第二次以第一次的进价又购进甲、乙两种苹果,其中甲种苹果的重量不变,乙种苹果的重量是第一次的3倍;甲种苹果按原价销售,乙种苹果打折销售.第二次甲、乙两种苹果都售完后获得的总利润为735元,求第二次乙种苹果按原价打几折销售?五.解答题(三)(共2小题,满分20分)24.(10分)先观察下列等式,然后用你发现的规律解答下列问题.……(1)计算=;(2)探究=;(用含有n的式子表示)(3)若的值为,求n的值.25.(10分)如图,已如数轴上点A表示数是6,且AB=10.动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数;当t=1时,点P所表示的数是;(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时追上点P?(3)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时PR相距2个单位长度?参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:|﹣2|=2,即﹣2的绝对值是2,故选:C.2.解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;C、ab2与a2b所含字母相同,但相同字母a和字母b的指数都不相同,不是同类项,本选项错误;D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.故选:A.3.解:A、因为整数包括正整数和负整数,0大于负数,所以最小的整数是0错误;B、因为0既不是正数也不是负数,但是有理数,所以有理数分为正数和负数错误;C、因为:如+1和﹣1的绝对值相等,但+1不等于﹣1,所以如果两个数的绝对值相等,那么这两个数相等错误;D、由相反数的意义和数轴,互为相反数的两个数的绝对值相等,如|+1|=|﹣1|=1,所以正确;故选:D.4.解:A、3a+2b无法计算,故此选项错误;B、2a3+3a2无法计算,故此选项错误;C、5a2﹣4a2=a2,故此选项错误;D、5a2b﹣5ba2=0,正确.故选:D.5.解:1.36×105精确到千位.故选:D.6.解:∵2a=3b+4,∴2ac=3bc+4c,故C不成立故选:C.7.解:根据图形可得:a<﹣1,0<b<1,∴|a|>|b|,A、a+b<0,故A选项正确;B、a+b>0,故B选项错误;C、a﹣b<0,故C选项错误;D、a﹣b<0,故D选项错误.故选:A.8.解:方程两边都乘以6,得:3(x+1)=6﹣2x,故选:D.9.解:设这件商品的进价为x元,依题意,得:0.8×(1+50%)x﹣x=30,解得:x=150.故选:C.10.解:A.1≠﹣1,但|1|=|﹣1|,此选项错误;B.|a|≠|b|,则a≠b,此选项正确;C.如1>﹣2,但|1|<|﹣2|,此选项错误;D.|﹣2|>|+1|,但﹣2<+1,此选项错误;故选:B.二.填空题(共7小题,满分28分,每小题4分)11.解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为:﹣3.12.解:∵方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,∴m﹣2≠0且|m|﹣1=1,解得m=﹣2.故答案为:﹣2.13.解:316000000=3.16×108.故答案为3.16×108.14.解:∵买一个篮球需要x元,买一个排球需要y元,∴买3个篮球和2排球共需:(3x+2y)元.故答案为:(3x+2y).15.解:绝对值不大于5的所有整数为﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,它们的和为0.故答案为:0.16.解:∵x=3是方程3x﹣2a=5的解,∴9﹣2a=5,解得:a=2.故答案为:2.17.解:根据题意,得:(2@3)@4=(2×3﹣1)×4﹣1=19.故答案是19.三.解答题(一)(共3小题,满分18分)18.解:﹣32+(﹣12)×||﹣6÷(﹣1)=﹣9+(﹣12)×+6=﹣9+(﹣6)+6=﹣9.19.解:(1)5x+4=3(x﹣4),去括号,得5x+4=3x﹣12,移项,得5x﹣3x=﹣12﹣4,合并同类项,得2x=﹣16,系数化成1,得x=﹣8;(2)﹣1=,去分母,得3(4x﹣3)﹣15=5(2x﹣2),去括号,得12x﹣9﹣15=10x﹣10,移项,得12x﹣10x=﹣10+9+15,合并同类项,得2x=14,系数化成1,得x=7.20.解:原式=﹣3x2﹣4y2+2x﹣2x2+5y2+5x2﹣8+6x=y2+8x﹣8,∵|y﹣5|+(x+4)2=0,∴x=﹣4,y=5,则原式=25﹣32﹣8=﹣15.四.解答题(二)(共3小题,满分24分)21.解:(1)10﹣3+4+2﹣8+13﹣2﹣12+8+5=17(千米).答:收工时距O地17千米;(2)|+10|+|﹣3|+|+4|+|+2|+|﹣8|+|+13|+|﹣2|+|﹣12|+|+8|+|+5|=67,67×0.2=13.4(升).答:从O地出发到收工时共耗油13.4升.22.解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.23.解:(1)设惠民水果店第一次购进乙种苹果x千克,则购进甲种苹果(2x+15)千克,依题意,得:5(2x+15)+8x=615,解得:x=30,∴2x+15=75.答:惠民水果店第一次购进甲种苹果75千克,乙种苹果30千克.(2)设第二次乙种苹果按原价打y折销售,依题意,得:(10﹣5)×75+(15×﹣8)×30×3=735,解得:y=8.答:第二次乙种苹果按原价打8折销售.五.解答题(三)(共2小题,满分20分)24.解:(1)原式=1﹣﹣+﹣+﹣+﹣=1﹣=;(2)原式=1﹣﹣+﹣+﹣+…+﹣=1﹣=;(3)=+…+==由=,解得n=17,经检验n=17是方程的根,∴n=17.25.解:(1)∵数轴上点A表示的数为6,B是数轴上一点,且AB=10,∴BO=4,∴数轴上点B表示的数为:﹣4,∵动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,∴当t=1时,OP=6.故答案为:﹣4,6;(2)如图1,设点R运动x秒时,在点C处追上点P,则OC=6x,BC=8x,∵BC﹣OC=OB,∴8x﹣6x=4,解得:x=2,∴点R运动2秒时,在点C处追上点P.(3)设点R运动x秒时,PR=2.分两种情况:如图2,一种情况是当点R在点P的左侧时,依题意有8x=4+6x﹣2,解得x=1;如图3,另一种情况是当点R在点P的右侧时,依题意有8x=4+6x+2,解得x=3.综上所述R运动1或3秒时PR相距2个单位.2019—2020学年第一学期期中检测七年级数学试题(无答案)一、选择题(本大题共12小题)1. 如果高出海平面30米,记作30+米,那么20-米表示( ) A. 高出海平面20米 B. 低于海平面20米 C. 不足20米D. 低于海平面30米2. 一种大米的质量标识为“(50±0.5)千克”,则下列各袋大米中质量不合格的是( ) A . 50.0千克 B. 50.3千克C. 49.7千克D. 49.1千克3. 下列说法中,正确的是( ) A 最大的负整数是﹣1B. 有理数分为正有理数和负有理数C. 如果两个数的绝对值相等,那么这两个数相等D. 零没有相反数4. 在112-,12,20-,0 ,()5--,- 1.5-中,负数的个数有( ); A. 2个B. 3 个C. 4 个D. 5 个5. 有理数a,b 在数轴上所对应的点如图所示,下列各选项中错误的是( )A .a 0b -<B. a 0b +<C. a 0b <D. >b a6. 下列各数中互为相反数的是( ) A. 7--和()7+- B. ()10+-和()10-+ C. ()43-和43-D. 54-和54-7. 下列语句:①一个数绝对值一定是正数; ②-a 一定是一个负数;③没有绝对值为-3的数;④若a =a ,则a 是一个正数;⑤离原点左边越远的数就越小;正确的有( )个.A. 0B. 3C. 2D. 48. 2015年在中国等发展中国家的带动下,全球可持续投资再创历史新高,达1550亿美元,这个数据用科学记数法可表示为( )美元.A. 101.5510⨯B. 111.5510⨯C. 121.5510⨯D.131.5510⨯9. 单项式243x y-的系数和次数分别是( )A. 4,3B.43,3 C. 43-,3 D. 43-,2 10. 下列判断正确的是( ). A. 23a b 与2ba 不是同类项B. 23m nπ不是整式C. 单项式32x y -的系数是1-D. 2235x y xy -+是二次三项式11. 在式子:35ab -,225x y ,2x y+,2a bc -,1,231x x -+中,单项式的个数为( ). A. 2个B. 3个C. 4个D. 5个12. 若关于x 、y 的多项式()222358735nx x x x y x -++---+的值与x 无关,则(n = )A. 2B. -2C. 3D. -3二、填空题13. 比较大小:710-______35(“>”,“<”连接). 14. 近似数1.31×810 精确到______位.15. 数轴上点A 所对应的数是-2,则与点A 的距离等于4的点B 所表示的数是 _____,如果点C 所表示的数是-3,则线段BC 的长度______.16. 若|x ﹣2|与(y+3)2互为相反数,则(x+y )2017=_____. 17. 若23x -=,则x 的值为______. 18. 若单项式212m x y -与313n x y -是同类项,则n m 的值是__________. 19. 在①xy ,②5x -,③75ab -,④2a b -+⑤0,⑥2415x -+,⑦2x y +-,⑧4x-,⑨2b π中,单项式有:________,多项式有:________,整式有:________ (填序号)20. 如图,用灰白两色正方形瓷砖铺设地面,第n 个图案中白色瓷砖数为______.三、解答题21. 画出数轴,把下列各数:5-、132、0、52-、2-在数轴上表示出来,并用“<”号从小到大连接.22. 请把下列各数填入相应的集合中:59-,-2,+72,-0.6,61,0,0.101,-8,-3.14,710负分数集合:{ …} 分数集合:{ …} 整数集合:{ …} 23. 计算 (1)113512682424⎛⎫⎛⎫-+-+÷- ⎪ ⎪⎝⎭⎝⎭(2)()2018211(1)13223⎡⎤⎛⎫-+-⨯+-+ ⎪⎢⎥⎝⎭⎣⎦(3)()()()()322019234221-⨯-+-÷---(4)()()112524 2.584234⎛⎫--+⨯--⨯-⨯- ⎪⎝⎭(5)()225431x y x y +---(6)()()223432241x x x x -+--++24. (1)先化简,再求值,()()22225335a b ab ab a b --+其中13a =,12b =-.(2)已知22m x y 与3n xy -是同类项,计算()()223423m m n m n nm n -+-+-的值.25. 某出租车一天下午以车站为出发地在东西方向的大街上营运,规定向东为正,向西为负,行车里程(单位:km )依先后次序记录如下:9+,3-,5-,4+,8-,6+,3-,6-,4-,+10.(1)将最后一名乘客送到目的地,出租车离车站出发点多远?在车站的什么方向? (2)出租车在行驶过程中,离车站最远的距离是多少?(3)出租车按物价部门规定,起步价(不超过3千米)为8元,超过3千米的部分每千米的价格为1.5元,司机一个下午的营业额是多少?26. 如图,将面积为2a 的小正方形和面积为2b 的大正方形放在同一水平面上(0b a >>)(1)用a 、b 表示阴影部分的面积;(2)计算当3a =,5b =时,阴影部分的面积.七年级上册期中考试综合训练(附答案)一.选择题1.下列语句:①一个数的绝对值一定是正数;②﹣a一定是一个负数;③没有绝对值为﹣3的数;④若﹣a=a,则a=0;⑤倒数等于本身的数是1.正确的有()个.A.1B.2C.3D.42.如果a与1互为相反数,那么a=()A.2B.﹣2C.1D.﹣13.有理数a,b,c在数轴上对应的点的位置如图所示,则下列式子正确的是()A.a>b B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.b+c>0 4.x﹣y的相反数是()A.x+y B.﹣x﹣y C.y﹣x D.x﹣y5.某种鞋子进价为每双a元,销售利润率为20%,则这种鞋子的销售价格为()A.20%a B.80%a C.D.120%a 6.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1 7.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.48.《算法统宗》是我国古代数学著作,其中记载了一道数学问题大意如下:若将绳子三折后测井深则多4尺;若将绳子四折去测井深则多1尺.问绳长和井深各多少尺?设井深为x尺,则可列方程为()A.3(x+4)=4(x+1)B.3x+4=4x+1C.3(x﹣4)=4(x﹣1)D.﹣4=﹣19.已知关于x的方程a﹣x=+3a的解是x=4,则代数式3a+1的值为()A.﹣5B.5C.8D.﹣810.定义一种新运算“a☆b”的含义为:当a≥b时,a☆b=a+b;当a<b时,a☆b=a﹣b.例如:3☆(﹣4)=3+(﹣4)=﹣1,(﹣6)☆=(﹣6)﹣=﹣6,则方程(3x﹣7)☆(3﹣2x)=2的值为()A.1B.C.6或D.6二.填空题11.若数轴上点A表示的数为﹣2,将点A沿数轴正方向平移4个单位,则平移后所得到的点表示的数是.12.已知代数式a﹣2b+7=13,那么代数式2a﹣4b的值为.13.“绿水青山就是金山银山”,为了进一步优化环境,某区计划对长2000米的河道进行整治,原计划每天修x米,为减少施工对居民生活的影响,须缩短施工时间,实际施工时,每天的工作效率比原计划提高25%,那么实际整治这段河道的工期比原计划缩短了天.(结果化为最简)14.已知方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,则m=.15.一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;…根据观察得到的规律,写出其中解是x=2020的方程:.三.解答题16.画出数轴,用数轴上的点表示下列各数,并用“<”将它们连接起来:3,﹣2,1.5,0,﹣0.5.17.出租车司机小王某天上午营运是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午行车里程(单位:千米)如下:+15,﹣2,+5,﹣1,+10,+3,﹣2,+12,+4,﹣5,+6.(1)将最后一名乘客送到目的地时小王距上午出发时的出发点多远?(2)若汽车耗油量为0.12升/千米,这天上午小王的汽车共耗油多少升?18.先化简,再求值:(2a2b+4ab2)﹣(3ab2+a2b),其中a=2,b=﹣1.19.“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样的时间段里,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今善行者与不善行者相距960步,两者相向而行,问,相遇时两者各行几步?(2)今不善行者先行100步,善行者追之,不善行者再行300步,请问谁在前面,两人相隔多少步?20.已知x=﹣3是关于x的方程(k+3)x+2=3x﹣2k的解.(1)求k的值;(2)在(1)的条件下,已知线段AB=6cm,点C是线段AB上一点,且BC=kAC,若点D是AC的中点,求线段CD的长.(3)在(2)的条件下,已知点A所表示的数为﹣2,有一动点P从点A开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q从点B开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD=2QD?参考答案一.选择题1.解:①一个数的绝对值可能是正数,也可能是0,故此选项错误;②a若小于0,﹣a则是正数,故此选项错误;③任何数的绝对值都是非负数,故没有绝对值为﹣3的数,故此选项正确;④若﹣a=a,则a是0,故此选项正确;⑤倒数等于本身的数是±1,故此选项错误;综上所述,正确的有③④共2个,故选:B.2.解:因为a与1互为相反数,﹣1与1互为相反数,所以a=﹣1,故选:D.3.解:由题意,可知a<b<0<c,|a|=|c|>|b|.A、∵a<b<0<c,∴a>b错误,本选项不符合题意;B、∵a<b,∴a﹣b<0,∴|a﹣b|=﹣﹣a+b,∴|a﹣b|=a﹣b错误,本选项不符合题意;C、∵a<b<0<c,|a|=|c|>|b|,∴﹣a<﹣b<c错误,本选项不符合题意;D、∵b<0<c,|c|>|b|,∴c+b<0,正确,本选项符合题意.故选:D.4.解:将x﹣y括起来,前面加一个“﹣”号,即可得到x﹣y的相反数﹣(x﹣y)=y﹣x.故选:C.5.解:根据题意得:(1+20%)a=120%a,则这种鞋子的销售价格为120%a.故选:D.6.解:当m=﹣1,n=1时,y=2m﹣n+1=2×(﹣1)﹣1+1=﹣2,不合题意;当m=1,n=0时,y=2m+n=2×1+0=2,不合题意;当m=1,n=2时,y=2m﹣n+1=2×1﹣2+1=1,符合题意;当m=2,n=1时,y=2m+n=2×2+1=5,不合题意;故选:C.7.解:∵﹣3a2b x与﹣3a y b是同类项,∴x=1,y=2,∴y x=21=2.故选:B.8.解:设井深为x尺,由题意得:3x+4=4x+1,故选:B.9.解:把x=4代入a﹣4=2+3a,移项合并得:﹣2a=6,解得:a=﹣3,则原式=﹣9+1=﹣8,故选:D.10.解:当3x﹣7≥3﹣2x,即x≥2时,由题意得:(3x﹣7)+(3﹣2x)=2,解得x=6;当3x﹣7<3﹣2x,即x<2时,由题意得:(3x﹣7)﹣(3﹣2x)=2,解得x=(舍去),∴x的值为6.故选:D.二.填空题11.解:﹣2+4=2,故答案为:2.12.解:由a﹣2b+7=13可得a﹣2b=6,∴2a﹣4b=2(a﹣2b)=2×6=12.故答案为:12.13.解:根据题意,得﹣=(天).故答案是:.14.解:∵方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,∴m﹣2≠0且|m|﹣1=1,解得m=﹣2.故答案为:﹣2.15.解:∵一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;∴一列方程如下排列:+=1的解是x=2;+=1的解是x=3;+=1的解是x=4;…∴+=1,∴方程为+=1,故答案为:+=1.三.解答题16.解:如图所示:∴﹣2<﹣0.5<0<1.5<5.17.解:(1)15﹣2+5﹣1+10+3﹣2+12+4﹣5+6=45(千米)答:将最后一名乘客送到目的地时,小王距上午出车时的出发点45千米;(2)|+15|+|﹣2|+|+5|+|﹣1|+|+10|+|+3|+|﹣2|+|+12|+|+4|+|﹣5|+|+6|=65(千米),65×0.12=7.8(升).答:这天上午小王的汽车共耗油7.8升.18.先化简,再求值:解:(2a2b+4ab2)﹣(3ab2+a2b)=a2b+2ab2﹣3ab2﹣a2b=﹣ab2当a=2,b=﹣1时,原式=﹣2×1=﹣2.19.解:(1)设两者相遇时行走的时间为t,根据题意得,100t+60t=960,解得,t=6,100t=600,60t=360,答:相遇时,善行者走了600步,不善行者走了360步;(2)不善行者一共走了100+300=400(步),善行者行走了(步)>400步,∴善行者在前面,两人相距:500﹣400=100(步),答:善行者在前面,两人相隔100步.20.解:(1)把x=﹣3代入方程(k+3)x+2=3x﹣2k得:﹣3(k+3)+2=﹣9﹣2k,解得:k=2;(2)当k=2时,BC=2AC,AB=6cm,∴AC=2cm,BC=4cm,当C在线段AB上时,如图1,∵D为AC的中点,∴CD=AC=1cm.即线段CD的长为1cm;(3)在(2)的条件下,∵点A所表示的数为﹣2,AD=CD=1,AB=6,∴D点表示的数为﹣1,B点表示的数为4.设经过x秒时,有PD=2QD,则此时P与Q在数轴上表示的数分别是﹣2﹣2x,4﹣4x.分两种情况:①当点D在PQ之间时,∵PD=2QD,∴﹣1﹣(﹣2﹣2x)=2[4﹣4x﹣(﹣1)],解得x=;②当点Q在PD之间时,∵PD=2QD,∴﹣1﹣(﹣2﹣2x)=2[﹣1﹣(4﹣4x)],解得x=.答:当时间为或秒时,有PD=2QD.。
人教版七年级上册数学期中考试试卷含答案
人教版七年级上册数学期中考试试题一、单选题1.2-的相反数是()A .2-B .2C .12D .12-2.下列运算中结果正确的是()A .-1+1=0B .133444-⨯=C .369777-+=-D .(-10)÷(-5)=-53.有理数a ,b 在数轴上的位置如图所示,则a+b 是()A .正数B .负数C .零D .都有可能4.下列说法不正确的是()A .相反数等于本身的数是0B .绝对值最小的数是0C .平方最小的数是0D .最小的整数是0.5.请将88300000用科学记数法表示为()A .0.883×109B .8.83×108C .8.83×107D .88.3×1066.下列各式与a b c --的值不等的是()A .()()a b c -++-B .()()a b c -+--C .()()a b c +-+-D .()()a b c -+-+7.若ab >0,则必有()A .a >0,b >0B .a <0,0b <C .0a >,0b <D .a 、b 同号8.下列各组数中是同类项的是()A .3x 与3yB .2xy 2与﹣x 2yC .﹣3x 2y 与4yx 2D .﹣x 2与99.下列关于单项式-235x y的说法中,正确的是()A .系数、次数都是3B .系数是35,次数是3C .系数是35-,次数是2D .系数是35-,次数是310.若a 2+2a -1=0,则2a 2+4a +2021的值是()A .2019B .2020C .2021D .2023二、填空题11.比较大小-12______-13;-(-3.2)______- 3.2-.12.已知4,5x y ==,且x y >,则x—y =______.13.用四舍五入法求5.4349精确到0.01的近数是______.14.绝对值小于3的所有整数的和是______.15.若单项式x 2ym +2与﹣3xny 的和仍然是一个单项式,则m +n 的值为______.16.如图是某年10月份的月历,用正方形圈出9个数.如果用相同的方法,在月历中用正方形圈出9个数,设最中间一个是x ,则用x 表示这9个数的和是________.17.一个多项式A 减去多项式2x2+5x ﹣3,马虎同学将2x2+5x ﹣3抄成了2x2+5x+3,计算结果是﹣x2+3x ﹣7,那么这个多项式A 是_____.18.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯…,计算:111111223344520202021+++++⨯⨯⨯⨯⨯ 的结果为___________.三、解答题19.把下列各数分类,并填在表示相应集合的大括号内:35-, 3.2-,0,12,-6.4;4%-,2001(1)-.(1)整数集合:(2)分数集合:(3)正数集合:(4)负数集合20.把下列各数表示的点画在数轴上,并用“<”把这些数连接起来.-5, 1.5-,0,-132,-(-4).21.计算(1)1(2)8(3)(8)--++--+(2)131(1)(6448-+÷-(3)﹣(3﹣5)+(﹣3)2×(1﹣3)(4)5(2x -7y )-3(4x -10y )(5)()421110.52(3)3⎡⎤---⨯⨯--⎣⎦22.若│a│=4,b 是绝对值最小的数,c 是最大的负整数,求a +b -c 的值.23.先化简、再求值22222523(42)xy x y xy xy x y ⎡⎤-+--⎣⎦,其中x =2、y =-124.为了有效控制酒后驾驶,金昌市某交警的汽车在一条东西方向的大街上巡逻,规定向东为正,向西为负,已知从出发点开始所行使的路程(单位:千米)为:+4,﹣3,+2,+1,﹣2,﹣1,+2(1)若此时遇到紧急情况要求这辆汽车回到出发点,请问司机应该怎么走?要走多远?(2)该辆汽车的时速为每小时6千米,问该车回到出发点共用了多少时间?25.对于任何有理数,规定符号a b c d 的意义是a b ad bc c d=-.例如:1214—23234=⨯⨯=-.(1)计算23-11的值.(2)当21(2)0x y ++-=时,求22231x yx y ----值.26.已知1520a b c ++-++=,且a ,b ,c 分别是点A ,B ,C 在数轴上对应的数.(1)求a ,b ,c 的值,并在数轴上标出点A ,B ,C .(2)若动点P ,Q 同时从A ,B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,Q 可以追上点P ?(3)在数轴上找一点M ,使点M 到A ,B 两点的距离之和等于10,请求出所有点M 对应的数,并说明理由.参考答案1.B【解析】【分析】根据相反数的定义可得结果.【详解】因为-2+2=0,所以-2的相反数是2,故选:B .【点睛】本题考查求相反数,熟记相反数的概念是解题的关键.2.A【解析】【分析】根据有理数的运算法则,逐条分析计算即可判断.【详解】解:A 、-1+1=0,正确;B 、1334416-⨯=-,错误;C 、363777-+=,错误;D 、(-10)÷(-5)=2,错误.故选:A .【点睛】本题考查的了绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,即:a÷b=a•1b(b≠0).两数相除,同号得正,异号得负,并把绝对值相除.3.B【解析】【分析】根据数轴得到0,0a b <>,且a b >,再有理数的加法进行分析即可得到答案.【详解】根据数轴得到0,0a b <>,且a b >,则a+b<0,故选择B.【点睛】本题考查用数轴表示有理数、绝对值和有理数的加法,解题的关键是掌握用数轴表示有理数和有理数的加法.4.D【解析】【分析】A 、根据有理数的相反数定义可得;B 、由有理数的绝对值规律可得;C 、计算正数、0与负数的平方进行比较;D 、根据整数的定义得出.【详解】解:选项A 、B 、C 的说法都正确,只有D ,因为没有最小的整数,所以D 错误.故选:D .【点睛】本题考查了相反数、绝对值、平方的有关知识,应注意既没有最大的整数,也没有最小的整数.5.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:将88300000用科学记数法表示为:8.83×107.故选:C .【点睛】本题考查用科学记数法表示绝对值大于1的数,能正确确定a 和n 是解题关键.6.B【解析】【分析】直接根据去括号法则将选项进行整理化简即可得出答案.【详解】解:A 、()()a b c a b c -++-=--,不符合题意;B 、a b c a b c -+≠--,符合题意;C 、()()a b c +-+-=a b c --,不符合题意;D 、()()a b c -+-+=a b c --,不符合题意;故选:B .【点睛】本题考查了整式的加减,熟练掌握去括号法则是解本题的关键.7.D【解析】【分析】根据有理数的乘法法则求解即可.【详解】解:∵ab>0,∴a 与b 同号,故选:D .【点睛】本题考查了有理数的乘法,比较简单,掌握ab >0,a 和b 同号,ab <0,a 和b 异号是关键.8.C【解析】【分析】根据同类项的定义进行判断即可得到答案.【详解】解:A.所含字母不同,不是同类项,故本选项不合题意;B.所含字母的指数不同,不是同类项,故本选项不合题意;C.所含字母相同,相同字母的指数相同,是同类项,故本选项符合题意;D.﹣x 2与9不是同类项,故本选项不符合题意;故选:C【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项:所含字母相同,且相同字母的指数相同.9.D【解析】【分析】根据单项式系数、次数的定义:单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数先求出单项式-23 5x y 的系数和次数,然后确定正确选项.【详解】解:根据单项式系数、次数的定义可知:单项式-23 5x y 的系数是﹣35,次数是2+1=3,只有D 正确,故选:D .x 2【点睛】本题考察了单项式的系数和次数的求法,熟记它们的概念是解题的关键10.D【解析】【分析】先把a 2+2a -1=0变形为a 2+2a =1,再代入原式化简后的式子22(2)2021a a ++得出结果.【详解】解:∵a 2+2a -1=0,∴a 2+2a =1,∴2a 2+4a +2021=22(2)2021a a ++=2×1+2021=2023,故选:D .【点睛】本题考查了代数式求值,考查了整体思想,把a 2+2a =1整体代入求值是解题的关键.11.<>【解析】【分析】根据两个负数比较,绝对值大的反而小,正数大于负数,即可判断.【详解】解:∵12-=1326=;13-=12=36,∴36>26,∴-12<-13;∵-(-3.2)=3.2, 3.2--=-3.2,∴-(-3.2)>- 3.2-,故答案为:<,>.【点睛】本题考查了有理数的大小比较,掌握“两个负数比较,绝对值大的反而小”是解题的关键.12.1或9##9或1【解析】【分析】由题意依据|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.然后分两种情况分别计算x-y的值.【详解】解:因为|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.4-(-5)=9,-4-(-5)=1,所以x-y=1或9.故答案为:1或9.【点睛】本题主要考查绝对值的定义以及有理数的减法法则,注意结合分类讨论的数学思想分析,解题时注意分类要不重不漏.13.5.43【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:5.4349精确到0.01的近数是5.43.故答案为5.43.【点睛】本题考查了近似数,经过四舍五入得到的数为近似数,近似数与精确数的接近程度,可以用精确度表示.近似数的最后一个数字实际在什么位上,即精确到了什么位,要求精确到某一位,应当对下一位的数字进行四舍五入.14.0【解析】【分析】绝对值的意义:一个数的绝对值表示数轴上对应的点到原点的距离.互为相反数的两个数的和为0.依此即可求解.【详解】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,2±.所以011220+-+-=.故答案为:0.【点睛】本题考查了绝对值的意义,解题的关键是理解绝对值的意义并运用到实际当中.15.1【解析】【分析】根据同类项的定义,单项式22m x y +与3n x y -的和仍然是一个单项式,意思是22m x y +与3n x y -是同类项,根据同类项中相同字母的指数相同得出m 、n 的值,然后代入计算即可得出答案.【详解】解: 单项式22m x y +与3n x y -的和仍然是一个单项式,∴单项式22m x y +与3n x y -是同类项,2n ∴=,21+=m ,2n ∴=,1m =-,121m n ∴+=-+=;故答案是:1.【点睛】本题主要考查了同类项定义,解题的关键是掌握同类项定义中的三个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.16.9x【解析】【分析】由题意根据最中间的为x ,进而由日历中数字的规律表示出其他8个数,求出之和即可.【详解】解:设最中间的一个是x ,这9个数的和可表示为:x-8+x-7+x-6+x-1+x+x+1+x+6+x+7+x+8=9x .故答案为:9x .【点睛】本题考查列代数式和整式的加减,注意月历中日期和日期的关系,设出一个日期后将其他日期表示出来然后求解.17.x2+8x ﹣4【解析】【分析】根据题意列出算式A=(-x 2+3x-7)+(2x 2+5x+3),再去括号,合并同类项即可得.【详解】根据题意知,A=(-x 2+3x-7)+(2x 2+5x+3)=-x 2+3x-7+2x 2+5x+3=x 2+8x-4,故答案为x 2+8x-4.【点睛】本题考查的是整式的加减,熟知整式的加减实质上是去括号,合并同类项是解答此题的关键.18.20202021【分析】根据题干的例子,可以对所求代数式化简,再依次抵消即可.【详解】解:111111223344520202021+++++⨯⨯⨯⨯⨯ =1111111111...223344*********-+-+-+-=112021-=20202021.故答案为:20202021.【点睛】本题考查探索与表达规律.解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值.19.(1)0,12,2001(1)-;(2)35-, 3.2-,-6.4;4%-;(3) 3.2-,12;(4)35-,-6.4;4%-,2001(1)-.【解析】【分析】根据有理数的分类解答即可.【详解】(1)整数集合:0,12,2001(1)-;(2)分数集合:35-, 3.2-,-6.4;4%-;(3)正数集合: 3.2-,12;(4)负数集合:35-,-6.4;4%-,2001(1)-.【点睛】本题考查有理数的分类,掌握有理数的两种分类方法是解决问题的关键.20.作图见解析,-5<-132<0< 1.5-<-(-4)【解析】根据绝对值、相反数和有理数大小比较的性质排序,结合数轴的性质作图,即可得到答案.【详解】1.5 1.5-=,()44--=数轴如下图:∴-5<-132<0<1.5-<-(-4).【点睛】本题考查了有理数的知识;解题的关键是熟练掌握绝对值、相反数、有理数大小比较、数轴的性质,从而完成求解.21.(1)0;(2)-76;(3)-16;(4)-2x-5y;(5)1 6【解析】【分析】(1)原式利用减法法则变形,计算即可求出值;(2)先把除法转化成乘法,再用括号中的每一项与(-48)进行相乘即可求出答案;(3)原式先算乘方,再算乘除法、最后算加减法;(4)先去括号,然后合并同类项即可解答本题;(5)原式先算括号里边的乘方、乘法及减法,再算括号外边的乘方、乘除即可得到结果.【详解】(1)1(2)8(3)(8)--++--+=1+2+8-3-8=0;(2)(1-16+34)÷(-148)=(1-16+34)×(-48)=1×(-48)-16×(-48)+34×(-48)=-76;(3)﹣(3﹣5)+(﹣3)2×(1﹣3)=﹣(﹣2)+9×(﹣2)=2+(﹣18)=﹣16;(4)解:5(2x -7y )-3(4x -10y )=10x -35y -12x+30y=-2x -5y ;(5)解:原式=[]1112923--⨯⨯-=[]111723--⨯⨯-=716-+=16【点睛】本题考查了有理数的混合运算,以及整式的加减,熟练掌握运算法则是解题的关键.22.-3或5【解析】【分析】根据|a|=4、b 是绝对值最小的数、c 是最大的负整数,即可求出a 、b 、c 的值,将其代入a+b-c 中即可求出结论.【详解】解:∵│a│=4,∴a=4或a=-4,∵b 是绝对值最小的数,∴b=0,又∵c 是最大的负整数,∴c=-1∴a+b-c=4+0-(-1)=4+1=5,或a+b-c=-4+0-(-1)=-4+1=-3,∴a+b -c=-3或5.【点睛】本题考查了代数式求值、绝对值以及正、负数,根据给定条件求出a 、b 、c 的值是解题的关键.23.24xy ,8.【解析】【分析】去括号后,再合并同类项,最后把x 、y 的值代入计算即可.【详解】原式2222252342xy x y xy xy x y =-+-+,24xy =,当2x =,1y =-时,原式242(1)8=⨯⨯-=.【点睛】本题主要考查了整式的加减运算,关键是掌握去括号法则:整式中如果有多重括号应按照先去小括号,再去中括号,最后去大括号的顺序进行.24.(1)向西走3千米;(2)2.5小时【解析】【分析】(1)把+4,﹣3,+2,+1,﹣2,﹣1,+2加起来,即可求解;(2)先求出该汽车行驶的总路程,再用总路程除以速度,即可求解.【详解】解:(1)4+(﹣3)+2+1+(﹣2)+(﹣1)+2=3,答:司机应该向西走3千米;(2)|4|+|﹣3|+|+2|+|+1|+|﹣2|+|﹣1|+|+2|=4+3+2+1+2+1+2=15(千米);15÷6=2.5(小时).答:该车回到出发点共用了2.5小时.【点睛】本题主要考查了有理数的应用,明确题意,理解正负数实际意义是解题的关键.25.(1)5;(2)-3【解析】【分析】(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义化简,再利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】解:(1)根据题中的新定义得:原式=213(1)235⨯-⨯-=+=;(2)原式=22222(2)(1)+3()2+332x y x y x y x y x y -⋅--=-+-=-,由于()2120x y ++-=,∴10,20x y +=-=,∴1,2x y =-=,∴原式=2(1)22143--⨯=-=-.26.(1)1a =-,b=5,c=-2,数轴作图见解析;(2)6秒;(3)-3或7,理由见解析【分析】(1)结合题意,根据绝对值的性质计算,即可得到a ,b ,c 的值;结合数轴的性质作图,即可得到答案;(2)结合题意,设时间为t 秒,通过列方程并求解,即可得到答案;(3)结合题意列方程,再根据绝对值、一元一次方程的性质求解,即可得到答案.【详解】(1)根据题意得:105020a b c ⎧+=⎪-=⎨⎪+=⎩∴105020a b c +=⎧⎪-=⎨⎪+=⎩∴1a =-,b=5,c=-2数轴如图所示:(2)设时间为t 秒()516AB =--=∵动点P 、Q 同时从A 、B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度∴26t t =-∴t=6秒∴运动6秒后,点Q 可以追上点P ;(3)点M 到A ,B 两点的距离之和等于10,设点M 在数轴上对应的点为x ∴1510x x --+-=当M 在A 点左侧,即1x <-,则1050x x -->⎧⎨->⎩()()1510x x --+-=∴3x =-,即M 对应的数是-3当M 在A 点和B 点之间,即15x -≤≤,则1050x x --≤⎧⎨-≥⎩∴()()1510x x ---+-=,此时等式不成立,故舍去当M 在B 点右侧,即5x >,则1050x x --<⎧⎨-<⎩∴()()1510x x ---+--=⎡⎤⎣⎦∴1510x x ++-=∴7x =,即M 对应的数是7∴所有点M 对应的数是-3或7.。
人教版七年级上册数学 期中考试试卷
人教版七年级上册数学期中考试试卷一、选择题〔共10小题,每小题3分,共30分)1. 在下列给出的四个多项式中,为三次二项式的多项式是( )A .14-x B .322-+xy x C .y x -32 D .132+-y x2. 2020年6月23日,北斗三号最后一颗全球组网卫星从西昌发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道。
将36000用科学记数法表示应为( ) A .51036.0⨯ B .5106.3⨯ C .4106.3⨯ D .41036⨯ 3. -7的相反数是( )A .7B .-7C .71D .71-4. 质检员抽查4袋方便面,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从质量的角度看,最接近标准的产品是( )A. -3.5B. +0.7C. -2.5D. -0.6 6. 若单项式22+m yx 与y x n3-的和仍然是一个单项式,则n m +的值( )A .B .C .D .7. 当x=1时,多项式135-++cx bx ax 的值是5,则当x=-1时,它的值为( )A .-7B .-3C .-5D .78. 若“ω”是新规定的某种运算符号,设b a b a 23-=ω,则)()(y x y x -+ω的值为( ) A .y x + B .y x 2+ C .y x 22+ D .y x 5+9. 找出以下图形变化的规律,则第101个图形中黑色正方形的数量是( )A .149B .150C .151D .15210. 在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图所示.:则第5个方框中最下面一行的数可能是( ) A .1296 B .2809 C .4225 D .3136 二、填空题(共6小题,每小题3分,共18分)11. 用四舍五入法求5.4349精确到0.01的近似值是___________12. 若0)42(22=++-n m ,则=+n m ______________13. 若x 、y 互为倒数,则xy3=____________ 14. 若关于x 、y 的多项式y y x y y nx my +-++23232中不含三次项,则mn=___________ 15. 同学们喜欢玩的换房游戏,老师创新改成了“幻圆”游戏,现在将-1,2,-3,4,-5,6,-7,8分别填入如图所示的圆圈内,使横、纵以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则b a +的值是______________746b 8aba小长方形大长方形第15题图 第16题图 16. 有四个完全相同的小长方形和两个完全相同的大长方形按如图位置摆放,按照图中所示尺寸,a=20,b=12,则小长方形的长与宽的差是____________ 三、解答题(共72分) 17. (本题共8分)计算:(1)]2)53()4[()10(23⨯---+- (2))5.1(2)51(6----+18. (本题共8分)先化简,再求值: (1))3123()31(22122y x y x x +-+--,其中32,2=-=y x(2)x x x x x 6525345222+----+,其中3-=x19. (本题共8分)“十一”黄金周期间,某市外出旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前日期 1日 2日 3日 4日 5日 6日 7日 人数变化 单位:万人+1.6+0.8+0.4—0.4—0.8+0.2—1.2(1)请判断外出旅游人数最多的是10月_______日,最少是10月__________日.(2)若黄金周期间平均每人每天消费500元,且出游人数最多的一天有3万人,求城市10月6日这天外出旅游消费总额是多少万元?20. (本题共8分)下列三行数: —3, 9,-27, 81,…… 6,-18, 54,-162,…… 一1, 11,—25, 83,……(1)直接写出第一行的第n 个数是___________(用含n 的式子表示)(2)在第二行中,存在三个连续数其和为-126,这三个数分别是_______,________,________ (3)设x 、y 、z 分别为每一行的第2020个数,求x+y+z 的值21. (本题共8分)如图1,将一个边长为a 的正方形纸片剪去两个一模一样的小长方形。
2024-2025学年初中七年级上学期数学期中考及答案(人教版)
2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−2.在2−、1−、0、1这四个数中,最小的数是( )A.1B.0C.-1D.-23.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C° B.1C° C.17C−° D.1C−°4.水结成冰体积增大111,现有体积为a 水结成冰后体积为( )A 111a B.1211a C.1011a D.1112a 5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×6.李伯家有山羊m 2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1B.1− C.5D.5−8.已知表示有理数a ,b 的点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.29.如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或910.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()的.A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4C.20D.20−12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C.2021D.20202021二、填空题(每题4分,共计24分)13.计算:23−=____________. 14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.15.若()22430||a b ++−-=,则b =___________;a =___________.16.若220230x y −−=,则代数式202424x y −+的值是__________.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____.18.计算:111123344520132014++++=×××× ()三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004−非正数集合:{ …}; 非负数集合:{ …}; 非正整数集合:{ …}; 非负整数集合:{ …}.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 中点D 表示的数.22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c ,d 值:(2)试求代数式()()328b ac d −+−的值.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.24.先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=;的的的(2)若1x a x −++的最小值为4,求a 的值.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− . 请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−【答案】A 【解析】【分析】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.【详解】解:“正”和“负”相对,所以,如果水位上升5米记作5+米,那么水位下降8米记作8−米. 故选:A .2.在2−、1−、0、1这四个数中,最小的数是( )A 1 B.0C.-1D.-2【答案】D 【解析】【分析】本题考查有理数大小比较法则,熟练掌握此法则是解答此题的关键.由有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,即可判断.【详解】解:由有理数的大小比较法则,可得:2101−<−<<,∴在2−,1−,0,1这四个数中,最小的数是2−.故选:D .3.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C ° B.1C° C.17C−° D.1C−°【答案】A 【解析】【分析】本题主要考查的是有理数的减法.用最高气温减去最低气温进行计算即可.【详解】解:()()8917C −−=°..故选:A .4.水结成冰体积增大111,现有体积为a 的水结成冰后体积为( )A.111a B.1211a C.1011a D.1112a 【答案】B 【解析】【分析】本题是基础题型,弄清冰的体积=(1+增长率)×水的体积是解题的关键.体积为a 的水结成冰后体积,冰的体积为1111a +.【详解】解:依题意有水结成冰后体积为11211111a a += .故选:B .5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×【答案】B 【解析】【分析】本题考查用科学记数法表示较大的数,一般形式为10n a ×,其中110a ≤<,n 可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:175000000用科学记数法表示为81.7510×. 故选:B .6.李伯家有山羊m 只,绵羊的数量比山羊的2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +【答案】D 【解析】【分析】本题考查列代数式,根据题意可知:绵羊的只数=山羊只数的2倍+18,根据此解答即可.【详解】∵李伯家有山羊m 只,∴绵羊的数量比山羊的2倍多18只,绵羊的数量为()218m +只,故选:D .7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1 B.1− C.5D.5−【答案】B 【解析】【分析】此题考查了有理数的混合运算,新定义运算的含义,熟练掌握运算法则是解本题的关键.根据新定义运算的运算法则先列式,再计算即可.【详解】解:∵2a b a b =− , ∴13213231=×−=−=− , 故选:B .8.已知表示有理数a ,b 点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.2【答案】C 【解析】【分析】本题考查了数轴和去绝对值,根据数轴分别判断0a <,0b >,然后去掉绝对值即可,解题的关键是结合数轴判断绝对值符号里面代数式的正负.【详解】由数轴可得,0a <,0b >,∴a b a b+a b a b=+−,110=−+=,故选:C .9. 如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或9【答案】D 【解析】的【分析】本题考查了绝对值的意义,有理数的除法,有理数的减法.先根据绝对值的意义得出2x =或4x =−,5y =±,再根据有理数的除法法则得出x 和y 异号,最后进行分类讨论即可.【详解】解:∵13x +=, ∴13x +=±,解得:2x =或4x =−, ∵5y =, ∴5y =±, ∵0yx−>,∴0yx<,即x 和y 异号, ∴当2x =时5y =−,当4x =−时,5y =, ①当2x =,5y =−时,527y x −=−−=−,②当4x =−,5y =时,()549y x −=−−=,∴y x −的值是7−或9,故选:D .10.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −【答案】C 【解析】【分析】本题考查了列代数式,要注意长方形窗框的横条有3条,观察图形求出长方形窗框的竖条长度是解答本题的关键.根据长方形窗框的横条长度求出长方形窗框的竖条长度,再根据长方形的面积公式计算即可求解.【详解】解:∵长方形窗框的横条长度为m x , ∴长方形窗框的竖条长度为8334m 22x x −=−,∴长方形窗框的面积为:234m 2x x −,故选∶C .11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4 C.20 D.20−【答案】A 【解析】【分析】本题考查有理数的乘方,有理数的混合运算,求代数式的值,分别求出a 、b 、c 并代入a bc +计算即可.掌握相应的运算法则是解题的关键.【详解】解:∵()328a =−−=,()3327b =−=−, ∴()827481249a bc ×=−+=+=−, ∴a bc +的值为4−. 故选:A .12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C. 2021D.20202021【答案】D 【解析】【分析】本题考查了有理数的混合运算,利用拆项法解答即可求解,掌握拆项法是解题的关键.【详解】解:∵111111111111122232334344545=−=−=−=−×××× ,,,,, ∴111111223344520202021+++++×××××1111111111223344520202021=−+−+−+−++− ,112021=−,20202021=,故选:D .二、填空题(每题4分,共计24分)13.计算:23−=____________. 【答案】23【解析】【分析】本题考查求一个数的绝对值,根据负数的绝对值等于它的相反数,即可得出结果.【详解】解:23−=23;故答案为:23.14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.【答案】12 【解析】根据新定义得到()(2)5225−∗=−−−×,再计算即可.【详解】解:由题意得,()(2)522512−∗=−−−×=,故答案为:12.15.若()22430||a b ++−-=,则b =___________;a =___________.【答案】①.3 ②. 2【解析】【分析】根据有理数的非负性解答即可.本题考查了有理数的非负性,熟练掌握性质是解题的关键.【详解】解:∵()22430||a b ++−-=, ∴20,30a b +=−=-,解得:3,2b a ==.故答案为:3,2.16.若220230x y −−=,则代数式202424x y −+的值是__________.【答案】2022−【解析】【分析】本题考查了代数式求值,整体代入是解题的关键.将202424x y −+变形为()202422x y −−,然后将22023x y −=代入求解即可. 【详解】解:∵220230x y −−=, ∴22023x y −=, 则()2024242024222024202322022x y x y −+=−−=−×=−,故答案为:2022−.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____. 【答案】a ab +##a b a+【解析】【分析】本题考查了列代数式,第一个图形中下底面积为未知数,利用第一个图可得墨水的体积,利用第二个图可得空余部分的体积,进而可得玻璃瓶的容积,让求得的墨水的体积除以玻璃瓶容积即可,掌握知识点的应用是解题的关键.【详解】解:设第一个图形中下底面积为S .倒立放置时,空余部分的体积为bS ,正立放置时,有墨水部分的体积是aS ,因此墨水体积约占玻璃瓶容积的as a as bs a b=++,故答案为:a a b+.的18.计算:111123344520132014++++=×××× ()【答案】5031007【解析】【分析】本题主要考查了有理数的混合运算,解答此题关键是找出解题的规律.根据裂项相消的方法把原式化为1111111123344520132014−+−+−++− ,再计算即可.【详解】解:111123344520132014++++×××× 1111111123344520132014=−+−+−++− 1122014=−1007120142014−10062014=5031007=;故答案为5031007.三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+ .【答案】(1)10 (2)5【解析】【分析】本题主要考查有理数的加减混合运算;(1)先去括号,再把分数通分成分母相同的分数,最后根据有理数的加减混合运算法则即可求解;(2)先去括号,再运用加法结合律把分母相同的分数结合,最后根据有理数的加减混合运算法则即可求解.【小问1详解】 解:112712623−−++−112712623=++−71547666=++−71547666 =++−73=+10=;【小问2详解】 解:273132515858++−−−−+273132515858=−+−237135215588 =+−+94=−5=.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004− 非正数集合:{ …};非负数集合:{ …};非正整数集合:{ …};非负整数集合:{ …}.【答案】0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0【解析】【分析】本题考查有理数的分类(正数和分数统称为有理数;有理数的分类:按整数、分数的关系分类;按正数、负数与零的关系分类),根据非正数(负数和零)、非负数(正数和零)、非正整数(负整数和零)和非负整数(正整数和零)的意义进行选取即可.准确理解相关概念的意义是解题的关键.【详解】解:非正数集合:{0.20−,789−,0,23.13−,2004−,…};非负数集合:{1,135,325,0,0.618,…};非正整数集合:{789−,0,2004−,…};非负整数集合:{1,325,0,…}.故答案为:0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示的数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 的中点D 表示的数.【答案】(1)58m −(2)2−【解析】【分析】本题考查了数轴的知识,代数式,正确认识数轴并理解数轴,能够表示数轴上两点的距离是解题的关键.(1)根据数轴上的两点间的距离公式求解即可;(2)首先由5AB =建立方程求解m ,再求解、B 、C 对应的数即可得到答案.【小问1详解】解: 点A 、C 表示数分别是1m +,94m −,∴()19458AC m m m =+−−=−;【小问2详解】()125AB m m =+−−=,∴()125m m +−−=,解得:3m =,∴2231m −=−=−,949123m −=−=−,∴当5AB =时,B 点表示的数是1−,C 点表示的数是3−,∴BC 的中点D 表示的数是()1322−+−=−. 22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c,d 的值:的(2)试求代数式()()328b a c d −+−的值.【答案】(1)11,2a b ==−,0,1c d ==− (2)8−【解析】【分析】本题考查了非负数的性质和求代数式的值,解题关键是根据题意求出字母的值.(1)根据非负数的性质及有理数相关概念求出a 、b 、c 、d 的值即可;(2)将求出的a 、b 、c 、d 的值代入代数式求值即可.【小问1详解】解:()21102a b -++= , 110,02a b ∴-=+=, 11,2a b ∴==-, c 是最小的自然数,d 是最大负整数,0,1c d ∴==-;【小问2详解】 解:11,2a b ==- ,0,1c d ==− ()()328b a c d ∴-+-()32181012⎛⎫⎡⎤ ⎪=⎦⎡⎤⎢⎥⎢⎥⨯--+-- ⎪⎣⎝⎭⎣⎦18118⎛⎫ ⎪=⎪⎡⎤⎢⨯--+ ⎢⎝⎥⎥⎣⎦⎭ 9818⎛⎫ ⎪=⨯-+ ⎪⎝⎭()91=-+8=−.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.【答案】(1)()24ab x −平方米 (2)196平方米【解析】【分析】(1)根据图形中的数据,可以用含a 、b 、x 的代数式表示出阴影部分的面积; (2)将20a =,10b =,1x =代入(1)中的代数式,即可求得阴影部分的面积.本题考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式,求出相应的代数式的值.小问1详解】解:∵某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米. ∴由图可得,阴影部分的面积是2(4)ab x −平方米;【小问2详解】解:当20a =,10b =,1x =时,24ab x −2201041×−×2004−196=(平方米), 即阴影部分的面积是196平方米.24. 先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=; (2)若1x a x −++的最小值为4,求a 的值.【答案】(1)2x =或43x =−; (2)3a =或5a =−.【【解析】【分析】本题考查了绝对值方程的解法,数轴上两点间的距离,熟练掌握绝对值的定义是解答本题的关键,对值等于一个正数的数有2个,它们是互为相反数的关系.(1)根据题中所给解法求解即可;(2)根据1x a x −++的最小值为4,得出表示a 的点与表示1−的点的距离为4,求解即可.【小问1详解】 解:3150x −−=, 移项,得315x −=, 当310x −≥,即13x ≥时,原方程可化为:315x −=,解得:2x =, 当310x −<,即13x <时,原方程可化为:315x −=−,解得43x =−. ∴原方程的解是:2x =或43x =−. 【小问2详解】 解:1x a x −++ 的最小值为4,∴表示a 的点与表示1−的点的距离为4,143−+= ,145−−=−,3a ∴=或5a =−.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?【答案】(1)29 (2)达到了(3)3585元【解析】【分析】此题考查了正数与负数,有理数混合运算的应用,熟练掌握运算法则是解本题的关键.(1)根据最大正数和最小负数的差值得出结论即可;(2)根据所有差值的和的正负来判断即可;(3)根据售价﹣运费得出收入即可.【小问1详解】()21829−−=(斤),故答案为:29;【小问2详解】43514821617+−−+−+−=(斤),∴本周实际销售总量达到了计划数量;【小问3详解】()()100717833585×+×−=(元),答:小明本周一共收入3585元.26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− .请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).【答案】(1)123410112222221++++++=− ;(2)()23411133333312n n +++++++=− . 【解析】【分析】本题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.(1)设23410122222S =++++++ ,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;(2)设234133333n S =++++++ ,两边乘以3后得到关系式,与已知等式相减,变形即可求出所求式子的值.【小问1详解】设23410122222S =++++++ ,将等式两边同时乘2,得23410112222222S =++++++ ,将下式减上式,得 11221S S −−,即 1121S =−则123410112222221++++++=−【小问2详解】设 234133333,n S =++++++将等式两边同时乘3,得 23413333333,n n S +=++++++下式减上式,得1331n S S +−=−,即 ()11312n S +−,即 )234113333331n n +++++++=− .。
2020-2021学年人教版七年级上册数学期中试卷 含答案
2020-2021学年人教版七年级上册数学期中试卷含答案七年级上册数学期中试卷一、选择题1.-1的相反数是()。
A。
1.B。
-1.C。
0.D。
-22.在体育课的立定跳远测试中,以2.00m为标准,若XXX跳出了2.32m,可记作+0.32m,则XXX跳出了1.85m,应记作()。
A。
+0.15m。
B。
-0.15m。
C。
+0.22m。
D。
-0.22m3.我国的领水面积约为 km²,用科学记数法表示这个数为()。
A。
37×10⁴。
B。
3.7×10⁵。
C。
0.37×10⁶。
D。
3.7×10⁶4.下列说法正确的是()。
A。
有理数不是正数就是负数B。
-a是负数C。
分数都是有理数D。
绝对值等于本身的数是正数5.单项式-3πxy²z³的系数和次数分别是()。
A。
-π,5.B。
-1,6.C。
-3π,6.D。
-3,76.用四舍五入法,将3.精确到千分位的近似数是()。
A。
3.1403.B。
3.140.C。
3.14.D。
3.1417.若-3amb7与5a3b2m+n可以合并成一项,则mn的值是()。
A。
3.B。
1.C。
-3.D。
98.如图,阴影部分的面积是()。
A。
B。
C。
6xy。
D。
3xy9.下列各式中,不相等的是()。
A。
(-3)²和-3²。
B。
(-3)²和3²。
C。
(-2)³和-2³。
D。
|-2|³和|(-2)³|10.如图,a、b、c在数轴上的位置如图所示,则下列结论正确的是()。
A。
abc。
0.B。
(c-a)b。
0.C。
c(a-b)。
0二、填空题11.-3的绝对值等于()。
答:312.比较大小:-2/3,-1/2.答:-1/2 < -2/313.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是()。
答:-114.已知|a-2|+(b+3)²=5,则ba的值等于()。
人教版七年级上册期中考试数学试卷及详细答案解析(共5套)
人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。
人教版七年级数学上学期期中试题word版(2020年)
19.—个乒乓球的质量比标准质量重 0. 02 克,记作 +0. 02 克,那么- 0.03 克表
示
.
20.观察下列算式:
21 2, 22 4, 23 8, 24 16, 25 32, 26 64, 27 128, 28 256, 根据上述
算式中的规律,你认为 22007 的末位数字是
.
2020年最新
2020年最新 24. ( 本题满分 6 分 ) 多项式 (a-2) ㎡ +(2b+1)mn-m+n-7 是关于 m,n 的多项式, 若该多项式不 含二次项,求 3a+2b
27.找规律(本题共 8 分). 一张长方形桌子可坐 6 人,按下图方式讲桌子拼在一起。
25. (本题满 6 分 ) 已知 a 、 b 互为相反数, c 、 d 互为倒数 , x 的绝对值为
D. B 点和 C 点
3.下面各组数中,相等的一组是 ( )
A. 22 与
22
B . 23
与
3
2
C.
3
3
2与
2 D.
3
3
与
33
4.某班共有学生 x 人,其中男生人数占 35%,那么女生人数是 ( ) A、 35%x B 、(1 - 35%)x C 、 x/35% D 、 x/1 - 35%
5.下列各项中,是同类项的是(
)
A. 如果两个数的绝对值相等,那么这两个数相等
B. 有理数分为正数和负数
C. 互为相反数的两个数的绝对值相等
D.
最小的整数是 0
11. 2008 年 5 月 26 日下午,奥运圣火扬州站的传递在一路“中国加油”中进行着,全程
11.8 千米,用科学计数法,保留两个有效数字,结果为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期中综合测试卷
一、选择题。
(每小领4 分,共40分)
1. 下列说法中不正确的是( )
A.0既不是正教,也不是负数
B.1是绝对值最小的数
C.一个有理数不是整数就是分数
D.0的绝对值是0
2. 已知2(1)|2|0m n -++=,则m n +的值为( )
A. – 1
B. – 3
C.3
D. 不确定
3. 若7-2x 和5 -x 的值互为相反数,则x 的值为( )
A.4
B.2 92C ⋅ 72D ⋅
4. 数 a 、b 在数轴上位置如图所示,那么下列四个数的大小关系是( )
A.a > b > -b > -a
B. – a < b < - b < a
C. – b > a > b > - a
D. – a < - b < a < b
5. 若,x y 为任意有理数,化简||||x y y x ---结果等于( )
A.2x
B.2y
C.0
D.2x – 2y
6.1光年是光一年内在真空中走过的路程,大约是9 460 500 000 000千米,用科学记数法来表示应该是( )
A. 129.460510⨯千米
B. 139.460510⨯千米
C.119.460510⨯千米
D.109.460510⨯千米
7. 若a>0,b<0. 且lal < lbl ,则a+b 等于( )
A. - (l b l – l a l )
B. - (l a l – l b l )
C. - (l a l + l b l )
D. l a l + l b l
8. 下面四个等式中,总能成立的是( )
A.22m m -=
B.33()m m -= B.66()m m -= B.23m m =
9. 已知 l x l =0.19,l y l =0.99,且0x y
<,则x – y 的值是( )
– 1.18 B. 0.8或 – 1.18 – 0.8 D. 1.18或 – 0.8
10. 某商场九月份售出某品牌衬衣 b 件,每件c 元,营业额a 元;十月份采取促销活动后,售出该品牌衬衣3b 件,每件打8折,则 5月份该品牌衬衣的营业额比4月份增加了( )
二、填空题(每小题4分,共24分)
11. – 0.5的相反数是 .倒数是 .绝对值是 .
12. 某三角形第一条边长为 ( 2 a - b ) 厘米,第二条边比第一条边长( a + b )厘米,第三条边比第一条边的2倍少 b 厘米,那么这个三角形的周长 米.
13. 如果a>0,b>0,c<0,d<0,则(1)a ·b ·c ·d 0(2) ab + cd 0(3)ac + bd 0(填写“>”或“<”)
14. 某件商品把进价提高后标价为220元,为了吸引顾客,再接九折出售,这件商品仍能获利10,则这件商品进价为 .
15.一跳蚤在一直线上从0点开始,第 1次向右跳 1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位·····依此规律跳下去,当它跳第100次落下时,落点处离O 点的距离是 个单位.
16. 你喜欢吃拉面吗?拉面倌的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸反复几次,就把这根很粗的面条拉成了许多细的面条,如图所示:这样接合到第 次后可拉出 128根细的面条.
17. 计 :(10分)
(1)111111|5|()1232
34
--⨯-÷÷ (2)223(83)52(32)xy x xy xy x ---- 18. 先化简,再求值:222(29)3(54)a b a b +--,其中11,2a b =-=.(10分) 19. 已知2|2|(582)0x y x y -+--=,求22223[2(2)4]x y x y xy x xy x ---++.(10分)
20. 已知光的速度为 300 000 000米/秒,太阳光到达地球的时间大约是500秒,试计算太阳与地球的距离大约是多少千米?(结果用科学记数法表示)(10分)
21. 把一个长 3a + b ,宽2a - b 的长方形围栏,改建成一面靠墙的正方形围栏,则正方形围栏的边长为多少?(10分)
22. 已知 a 、b 、c 三数在数轴上的位量如图所示,其中l a l=l c l ,化简:
||||||||.||
a b c c a a b c +++-(12分) 23. 十月二十日夏庄中学七年级师生准备到姚戈庄农业培训基地接受培训.已知租一辆60 座的大客车的租金为 150元,租一辆45座的小客车的租金为126元,经数学兴趣小组李鑫同学的计算,需租用x 辆60 座的大客车,再租用比大客车少1辆的小客车,即可让全部师生都有座位,且各车刚好坐满,通过以上信息,你能表示出夏庄中学七年级师生共有多少人吗?需付多少元的租车费用?(12分)
24. 已知2|2|(1)0ab b -+-=(10分)
(1)求,a b 的值;
(2)求20042005()b b +-的值;
(3)求1111(1)(1)(2)(2)(2005)(2005)
ab a b a b a b ++++++++++的值.
期中综合测试卷
一、选择题1.B 2. A 3.A 4. B 5.C 6.A 7.A 8.C 9.A 10.A
二、填空题11.0.5 -2 0.5 12. 9a-4b 13. (1) > (2) > (3) <
14.180元 15.50 16.7
三、解答题
17. (1) 15
(2)原式=222249564513xy x xy xy x x xy ---+=-+ 18. 化简后为211a 30b -+;值为4
19. 解:先由题意求出,x y 的值,再将要求的代数式化简,最后将,x y 值代人进行计算.
解:由题意可知由20,5820x y x y -=⎧⎨--=⎩
①,② ①②两式解得21.x y =⎧⎨
=⎩ 又22223[2(2)4]x y x y xy x xy x ---++
把2,1x y ==代人上式得
20. 解:光的速度可表示为8
310⨯米/秒,大阳与地球的距离大约是88310500=1.5101000⨯⨯⨯ (千米).
21. 设正方形圈栏边长为x ,由题意可列方程得 解得103
x a = 答:正方形围栏边长为
10.3a 22. – 1
23. 解:由题意得6045(1)(10545)x x x +-=-人
150126(1)276126x x x +-=-(元)
24. (1) b = 1,a = 2 (2)0 (3)20062007。