高考数学总复习课时规范练51随机事件的概率文新人教A版
(新课标)高考数学总复习-第11章 概率 第1节 随机事件的概率课件 新人教A版
求复杂互斥事件概率的两种方法:一是直接求 解法,将所求事件的概率分解为一些彼此互斥的事 件的概率的和;二是间接法,先求该事件的对立事 件的概率,再由 P(A)=1-P( A )求解.当题目涉及 “至多”“至少”型问题,多考虑间接法.
某超市为了了解顾客的购物量及结算时间等信 息,安排一名员工随机收集了在该超市购物的 100 位 顾客的相关数据,如下表所示.
(2015·陕西高考)随机抽取一个年份,对西安 市该年 4 月份的天气情况进行统计,结果如下:
[典题 3] 某商场有奖销售中,购满 100 元商品得 1 张奖券,多购多得.1 000 张奖券为一个开奖单位, 设特等奖 1 个,一等奖 10 个,二等奖 50 个.设 1 张奖券中特等奖、一等奖、二等奖的事件分别为 A、 B、C,求:
①恰有一个是偶数和恰有一个是奇数;
②至少有一个是奇数和两个都是奇数;
③至少有一个是奇数和两个都是偶数;
④至少有一个是奇数和至少有一个是偶数.
上.①③
对互斥事件要把握住不能同时发生,而对于 对立事件除不能同时发生外,其并事件应为必然 事件.这些也可类比集合进行理解,具体应用时, 可把所有试验结果写出来,看所求事件包含哪几 个试验结果,从而判定所给事件的关系.
大家好
1
第十一章 概 率
第一节 随机事件的概率
考纲要求: 1.了解随机事件发生的不确定性和频率的稳 定性,了解概率的意义以及频率与概率的区别. 2.了解两个互斥事件的概率加法公式.
1.事件的分类
2.频率和概率 (1)在相同的条件 S 下重复 n 次试验,观察某一事
2024年高考指导数学(人教A版理科第一轮复习)目录
课时规范练(A)课时规范练1集合的概念与运算课时规范练3命题及其关系、充要条件课时规范练5函数及其表示课时规范练7函数的奇偶性与周期性课时规范练9指数与指数函数课时规范练11函数的图象课时规范练13函数模型及其应用课时规范练15利用导数研究函数的单调性课时规范练17定积分与微积分基本定理课时规范练19同角三角函数基本关系式及诱导公式课时规范练21简单的三角恒等变换课时规范练23函数y=A sin(ωx+φ)的图象及三角函数的应用课时规范练25平面向量的概念及线性运算课时规范练27平面向量的数量积及其应用课时规范练29数列的概念课时规范练31等比数列课时规范练33二元一次不等式(组)与简单的线性规划问题课时规范练35合情推理与演绎推理课时规范练37数学归纳法课时规范练39空间几何体的表面积与体积课时规范练41空间直线、平面的平行关系课时规范练43空间向量及其运算课时规范练45直线的倾斜角、斜率与直线的方程课时规范练47圆的方程课时规范练49椭圆课时规范练51抛物线课时规范练53算法初步课时规范练55用样本估计总体课时规范练57分类加法计数原理与分步乘法计数原理课时规范练59二项式定理课时规范练61古典概型与几何概型课时规范练63二项分布与正态分布课时规范练65极坐标方程与参数方程课时规范练67绝对值不等式课时规范练(B)课时规范练2简单不等式的解法课时规范练4简单的逻辑联结词、全称量词与存在量词课时规范练6函数的单调性与最大(小)值课时规范练8幂函数与二次函数课时规范练10对数与对数函数课时规范练12函数与方程课时规范练14导数的概念及运算课时规范练16利用导数研究函数的极值、最大(小)值课时规范练18任意角、弧度制及任意角的三角函数课时规范练20两角和与差的正弦、余弦与正切公式及二倍角公式课时规范练22三角函数的图象与性质课时规范练24余弦定理、正弦定理及应用举例课时规范练26平面向量基本定理及向量坐标运算课时规范练28复数课时规范练30等差数列课时规范练32数列求和课时规范练34基本不等式及其应用课时规范练36直接证明与间接证明课时规范练38空间几何体的结构及其三视图、直观图课时规范练40空间点、直线、平面之间的位置关系课时规范练42空间直线、平面的垂直关系课时规范练44空间几何中的向量方法课时规范练46点与直线、两条直线的位置关系课时规范练48直线与圆、圆与圆的位置关系课时规范练50双曲线课时规范练52直线与圆锥曲线的位置关系课时规范练54随机抽样课时规范练56变量间的相关关系、统计案例课时规范练58排列与组合课时规范练60随机事件的概率课时规范练62离散型随机变量及其分布列课时规范练64离散型随机变量的均值与方差课时规范练66极坐标方程与参数方程的应用课时规范练68不等式的证明解答题专项解答题专项一函数与导数的综合问题第1课时利用导数证明不等式第2课时利用导数研究不等式恒(能)成立问题第3课时利用导数研究函数的零点解答题专项二三角函数与解三角形解答题专项三数列解答题专项四立体几何中的综合问题解答题专项五直线与圆锥曲线第1课时圆锥曲线中的最值(或范围)问题第2课时圆锥曲线中的定点(或定值)问题第3课时圆锥曲线中的存在性(或证明)问题解答题专项六概率与统计单元质检卷单元质检卷一集合与常用逻辑用语单元质检卷二函数单元质检卷三导数及其应用单元质检卷四三角函数、解三角形单元质检卷五平面向量、数系的扩充与复数的引入单元质检卷六数列单元质检卷七不等式、推理与证明单元质检卷八立体几何单元质检卷九解析几何单元质检卷十算法初步、统计与统计案例单元质检卷十一计数原理单元质检卷十二概率。
高考数学总复习 第11章 第1节 随机事件的概率 文课件 新人教A版
概率是频率的稳定值,不会随试验次数的变化而变化,
故D错. 答案:B
2.某人打靶,连续射击2次,事件“至少有1次中靶”的 对立事件是( ) B.2次都中靶 D.只有1次中靶
A.至多有1次中靶 C.2次都不中靶
解析:“至少有1次中靶”包括中1次或中2次.
答案:C
3.甲、乙两个下棋,甲获胜的概率是40%,甲不输的概 率为90%,则甲、乙二人下成和棋的概率为( A.60% C.10% B.30% D.50% )
解法二:(利用对立事件求概率) (1)由法一知, 取出 1 球为红球或黑球的对立事件为取出 1 球为白球或绿球,即 A1∪A2 的对立事件为 A3∪A4,所以取 出 1 球为红球或黑球的概率为 P(A1∪A2)=1-P(A3∪A4)=1 2 1 3 -P(A3)-P(A4)=1-12-12=4. (2)因为 A1∪A2∪A3 的对立事件为 A4,所以 1 11 P(A1∪A2∪A3)=1-P(A4)=1-12=12. 12 分 9分
答案:25
1.事件的判断需要对三种事件即不可能事件、必然事 件和随机事件的概念充分理解,特别是随机事件要看它是 否可能发生,并且是在一定条件下的,它不同于判断命题 的真假.
2.对随机事件的理解应包含下面两个方面: (1)随机事件是指一定条件下出现的某种结果,随着条件 的改变其结果也会不同,因此必须强调同一事件必须在相同 的条件下研究.
2分
5 4 1 2 1 则 P(A1)=12,P(A2)=12=3,P(A3)=12=6, 1 P(A4)= , 12 6分
根据题意知,事件 A1、A2、A3、A4 彼此互斥,由互斥事 件的概率公式,得 (1)取出 1 球为红球或黑球的概率为 5 4 3 P(A1∪A2)=P(A1)+P(A2)=12+12=4; (2)取出 1 球为红球或黑球或白球的概率为 P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3) 5 4 2 11 =12+12+12=12. 12 分 9分
高考数学一轮总复习 第9章 概率 第一节 随机事件的概率课件 文 新人教A版
[典例引领] (2015·陕西高考)随机抽取一个年份,对西安市该年 4 月份的天 气情况进行统计,结果如下:
日期 1 2 3 4 5 6 7 8 9 10 天气 晴 雨 阴 阴 阴 雨 阴 晴 晴 晴
日期 11 12 13 14 15 16 17 18 19 20 天气 阴 晴 晴 晴 晴 晴 阴 雨 阴 阴
2.互斥事件和对立事件
事件
定义
在一个随机试验中,我 互斥 们把一次试验下不能同__ 事件 时__发__生__的两个事件A与B
称作互斥事件
性质
P(A∪B)=_P_(_A_)_+__P_(B__) ,
(事件A,B是互斥事件); P(A1∪A2∪…∪An)= _P_(A__1)_+__P_(_A_2_)_+__…__+__P_(A__n_) (事件A1,A2,…,An任意 两个互斥)
在一个随机试验中,两 对立 个试验不会同___时_发生, 事件 并且一定有__一___个_发生的
事件A和 A 称为对立事件
P( A )=1-P(A)
[小题体验] 1.(教材习题改编)如果从不包括大小王的 52 张扑克牌中
随机抽取一张,那么取到红心的概率是14,取到方块的 概率是14,则取到黑色牌的概率是________. 答案:12
解析
3.在 5 张电话卡中,有 3 张移动卡和 2 张联通卡,从中任取 2
张,若事件“2 张全是移动卡”的概率是130,那么概率是170
的事件是
()
A.至多有一张移动卡
B.恰有一张移动卡
C.都不是移动卡
D.至少有一张移动卡
解析:至多有一张移动卡包含“一张移动卡,一张联通
卡”、“两张全是联通卡”两个事件,它是“2 张全是移
高中数学 3.1.1 随机事件的概率课时提能训练 新人教A版必修3
(30分钟 50分)一、选择题(每小题4分,共16分)1.下列试验能够构成事件的是()(A)掷一次硬币(B)射击一次(C)标准大气压下,水烧至100 ℃(D)摸彩票中头奖2.在1,2,3,…,10这10个数字中,任取3个数字,那么“这三个数字的和大于6”这一事件是()(A)必然事件(B)不可能事件(C)随机事件(D)以上选项均不正确3.下面事件是必然事件的有()①如果a,b∈R,那么a·b=b·a;②某人买彩票中奖;③3+5>10.(A)①(B)②(C)③(D)①②4.下列说法正确的是()(A)任何事件的概率总是在(0,1)之间(B)频率是客观存在的,与试验次数无关(C)随着试验次数的增加,频率一般会越来越接近概率(D)概率是随机的,在试验前不能确定二、填空题(每小题4分,共8分)5.下列事件是随机事件的有_________.①连续两次掷一枚硬币,两次都出现正面朝上;②异性电荷,相互吸引;③在标准大气压下,水在1 ℃时结冰.6.(易错题)某个地区从某年起几年内的新生婴儿数及其中男婴数如表(结果保留两位有效数字):(1)填写表中的男婴出生频率;(2)这一地区男婴出生的概率约是__________.三、解答题(每小题8分,共16分)7.掷一枚硬币三次,观察正反面出现的情况,可能出现的结果有几种情况?8.某水产试验厂实行某种鱼的人工孵化,10 000个鱼卵能孵出8 513尾鱼苗,根据概率的统计定义解答下列问题:(1)求这种鱼卵的孵化概率(孵化率);(2)30 000个鱼卵大约能孵化多少尾鱼苗?(3)要孵化5 000尾鱼苗,大概要准备多少鱼卵(精确到百位)?【挑战能力】(10分)已知α,β,γ是不重合的平面,a ,b 是不重合的直线,判断下列说法是否正确.(1)“若a ∥b ,a ⊥α,则b ⊥α”是随机事件;(2)“若a ∥b ,a ⊂α,则b ∥α”是必然事件;(3)“若α⊥γ,β⊥γ,则α⊥β”是必然事件;(4)“若a ⊥α,a ∩b =P ,则b ⊥α”是不可能事件.答案解析1.【解析】选D.事件必须有条件和结果,A ,B ,C 只有条件,没有结果,构不成事件,D 既有条件又有结果,可以构成事件.2.【解析】选C.若取1,2,3,则和为6,否则和大于6,所以“这三个数字的和大于6”是随机事件.3.【解析】选A.当 a ,b ∈R 时,a ·b=b ·a 一定成立,①是必然事件,②是随机事件,③是不可能事件.4.【解题指南】利用频率与概率的含义及两者的关系进行判断.【解析】选C.概率是频率的稳定值,是常数,不会随试验次数的变化而变化.5.【解析】①是随机事件,②是必然事件,③是不可能事件.答案:①6.【解析】频率A n ,n=可以利用频率来求近似概率. (1)中各频率为0.49,0.54,0.50,0.50.(2)由(1)得概率约为0.50.答案:(1)0.49 0.54 0.50 0.50 (2)0.50【误区警示】概率不是频率的平均值在求概率时,应该根据“随试验次数的增多,频率会逐渐稳定在某一常数,这一常数称为事件发生的概率”来求解,不能够把若干次试验所得的频率求平均值作为概率.7.【解析】可能出现8种情况:正、正、正;正、正、反;正、反、正;正、反、反;反、正、正;反、正、反;反、反、正;反、反、反.8.【解析】(1)这种鱼卵的孵化频率为8 51310 000=0.851 3,它近似地为孵化的概率. (2)设能孵化x 尾鱼苗,则x 8 51330 00010 000=,∴x=25 539,即30 000个鱼卵大约能孵化25 539尾鱼苗.(3)设需备y 个鱼卵,则5 0008 513y 10 000=,∴y ≈5 873,即大概要准备5 873个鱼卵. 【挑战能力】【解析】(1)错误,因为a bba⎫⇒⊥α⎬⊥α⎭,故是必然事件,不是随机事件.(2)错误,因为a bba⎫⇒α⎬⊂α⎭或b⊂α,故是随机事件,不是必然事件.(3)错误,因为当α⊥γ,β⊥γ时,α与β可能平行,也可能相交(包括垂直),故是随机事件,不是必然事件.(4)正确,因为如果两条直线垂直于同一个平面,则此两直线必平行,故此是不可能事件.。
新人教A版高中数学【必修3】 3.1.1随机事件的概率课时作业练习含答案解析
第三章 概 率 3.1.1 随机事件的概率课时目标 在具体情境中,了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.1.事件的概念及分类2.在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中______________为事件A 出现的频数,称______________________为事件A 出现的频率. 3.概率(1)含义:概率是度量随机事件发生的________的量.(2)与频率联系:对于给定的随机事件A ,事件A 发生的频率f n (A)随着试验次数的增加稳定于________,因此可以用__________来估计概率P(A).一、选择题 1.有下列事件:①连续掷一枚硬币两次,两次都出现正面朝上; ②异性电荷相互吸引;③在标准大气压下,水在1℃结冰; ④买了一注彩票就得了特等奖. 其中是随机事件的有( )A .①②B .①④C .①③④D .②④ 2.下列事件中,不可能事件是( ) A .三角形的内角和为180°B .三角形中大角对大边,小角对小边C .锐角三角形中两内角和小于90°D .三角形中任两边之和大于第三边 3.有下列现象:①掷一枚硬币,出现反面;②实数的绝对值不小于零;③若a>b ,则b<a.其中是随机现象的是( ) A .② B .① C .③ D .②③4.先后抛掷一枚均匀硬币三次,至多有一次正面向上是( ) A .必然事件 B .不可能事件 C .确定事件 D .随机事件 5.下列说法正确的是( )A .某厂一批产品的次品率为5%,则任意抽取其中20件产品一定会发现一件次品.B .气象部门预报明天下雨的概率是90%,说明明天该地区90%的地方要下雨,其余10%的地方不会下雨.C .某医院治疗一种疾病的治愈率为10%,那么前9个病人都没有治愈,第10个人就一定能治愈.D .掷一枚均匀硬币,连续出现5次正面向上,第六次出现反面向上的概率与正面向上的概率仍然都为50%.6.在进行n 次重复试验中,事件A 发生的频率为m n ,当n 很大时,事件A 发生的概率P(A)与mn 的关系是( )A .P(A)≈m nB .P(A)<mn C .P(A)>m n D .P(A)=mn7.将一根长为a 的铁丝随意截成三段,构成一个三角形,此事件是________事件. 8.在200件产品中,有192件一级品,8件二级品,则下列事件: ①“在这200件产品中任意选9件,全部是一级品”; ②“在这200件产品中任意选9件,全部都是二级品”; ③“在这200件产品中任意选9件,不全是一级品”.其中________是随机事件;________是不可能事件.(填上事件的编号)9.在一篇英文短文中,共使用了6 000个英文字母(含重复使用),其中字母“e ”共使用了900次,则字母“e ”在这篇短文中的使用的频率为________. 三、解答题10.判断下列事件是否是随机事件.①在标准大气压下水加热到100℃,沸腾;②在两个标准大气压下水加热到100℃,沸腾;③水加热到100℃,沸腾.11.某射手在同一条件下进行射击,结果如下表所示:(1)(2)这个射手射击一次击中靶心的概率约是多少?能力提升12.将一骰子抛掷1 200次,估计点数是6的次数大约是______次;估计点数大于3的次数大约是______次.13.用一台自动机床加工一批螺母,从中抽出100个逐个进行直径检验,结果如下:从这100(1)事件A(6.92<d ≤6.94)的频率; (2)事件B(6.90<d ≤6.96)的频率; (3)事件C(d>6.96)的频率; (4)事件D(d ≤6.89)的频率.1.随机试验如果一个试验满足以下条件:(1)试验可以在相同的条件下重复进行; (2)试验的所有结果是明确可知的,但不止一个;(3)每次试验总是出现这些结果中的一个,但在试验之前却不能确定会出现哪一个结果. 则这样的试验叫做随机试验. 2.频数、频率和概率之间的关系:(1)频数是指在n 次重复试验中事件A 出现的次数,频率是频数与试验总次数的比值,而概率是随机事件发生的可能性的规律体现.(2)随机事件的频率在每次试验中都可能会有不同的结果,但它具有一定的稳定性,概率是频率的稳定值,是频率的科学抽象,不会随试验次数的变化而变化.3.辩证地看待“确定事件”、“随机事件”和“概率”.一个随机事件的发生,既有随机性(对一次试验来说),又存在着统计规律性(对大量重复试验来说),这是偶然性和必然性的统一.就概率的统计定义而言,必然事件U 的概率为1,P(U)=1;不可能事件V 的概率为0,P(V)=0;而随机事件A 的概率满足0≤P(A)≤1.从这个意义上讲,必然事件和不可能事件可以看作随机事件的两个极端情况. 答案:3.1.1 随机事件的概率知识梳理1.一定不会发生 一定会发生 可能发生也可能不发生 2.事件A 出现的次数n A 事件A 出现的比例f n (A)=n An 3.(1)可能性 (2)概率P(A) 频率f n (A)作业设计1.B [①、④是随机事件,②为必然事件,③为不可能事件.] 2.C [锐角三角形中两内角和大于90°.] 3.B [①是随机现象;②③是必然现象.] 4.D 5.D 6.A 7.随机 8.①③ ②解析 因为二级品只有8件,故9件产品不可能全是二级品,所以②是不可能事件. 9.0.15解析 频率=9006 000=0.15.10.解 在①、②、③中“沸腾”是试验的结果,称为事件,但在①的条件下是必然事件,在②的条件下是不可能事件,在③的条件下则是随机事件.11.解 (1)由公式可算得表中击中靶心的频率依次为0.8,0.95,0.88,0.92,0.89,0.91.(2)由(1)可知,射手在同一条件下击中靶心的频率虽然各不相同,但都在常数0.9左右摆动,所以射手射击一次,击中靶心的概率约是0.9. 12.200 600解析 一粒骰子上的6个点数在每次掷出时出现的可能性(即概率)都是16,而掷出点数大于3包括点数为4,5,6三种.故掷出点数大于3的可能性为36=12,故N 1=16×1 200=200,N 2=12×1 200=600. 13.解 (1)事件A 的频率f(A)=17+26100=0.43. (2)事件B 的频率f(B)=10+17+17+26+15+8100=0.93. (3)事件C 的频率f(C)=2+2100=0.04. (4)事件D 的频率f(D)=1100=0.01.。
2025版高考数学大一轮复习第九章概率第51讲古典概型课时达标文含解析新人教A版
第51讲 古典概型课时达标一、选择题1.从{1,2,3,4,5}中随机选取一个数a ,从{1,2,3}中随机选取一个数b ,则a <b 的概率为( )A.45B.35C.25D.15D 解析 从1,2,3,4,5中随机选取一个数的取法有5种,从1,2,3中随机选取一个数的取法有3种,所以a ,b 的可能结果有5×3=15(种),其中a <b 的结果有(1,2),(1,3),(2,3),共3种.所以所求概率为P =315=15.故选D.2.(2024·天津卷)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色调笔的概率为( )A.45 B.35 C.25D.15C 解析 从5支彩笔中任取2支不同颜色的彩笔,有10种不同取法:(红,黄),(红,蓝),(红,绿),(红,紫),(黄,蓝),(黄,绿),(黄,紫),(蓝,绿),(蓝,紫),(绿,紫).而取出的2支彩笔中含有红色调笔的取法有(红,黄),(红,蓝),(红,绿),(红,紫),共4种,故所求概率P =410=25.3.有3个爱好小组,甲、乙两位同学各自参与其中一个小组,每位同学参与各个小组的可能性相同,则这两位同学参与同一个爱好小组的概率为( )A.13B.12C.23D.34A 解析 甲、乙两位同学参与3个小组的全部可能性有3×3=9(种),其中甲、乙两人参与同一个小组的状况有3种,故甲、乙两位同学参与同一个爱好小组的概率P =39=13.4.从1,2,3,4这四个数字中一次随机取两个,则取出的这两个数字之和为偶数的概率是( )A.16B.13C.12D.15B 解析 从1,2,3,4这四个数字中一次随机取两个,共有6种状况,其中取出的这两个数字之和为偶数的状况有(1,3),(2,4),共2种,所以P =26=13.5.把一颗骰子投掷两次,第一次出现的点数记为m ,其次次出现的点数记为n ,方程组⎩⎪⎨⎪⎧mx +ny =3,2x +3y =2只有一组解的概率是( )A.23B.34 C.15D.1718D 解析 方程组只有一组解,除了⎩⎪⎨⎪⎧m =2,n =3,⎩⎪⎨⎪⎧m =4,n =6这两种状况之外都可以,故所求概率P =6×6-26×6=1718.6.随机掷两枚质地匀称的骰子,它们向上的点数之和不超过5的概率记为p 1,点数之和大于5的概率记为p 2,点数之和为偶数的概率记为p 3,则( )A .p 1<p 2<p 3B .p 2<p 1<p 3C .p 1<p 3<p 2D .p 3<p 1<p 2C 解析 随机抛掷两枚骰子,它们向上的点数之和的结果如图,则p 1=1036,p 2=2636,p 3=1836,所以p 1<p 3<p 2.故选C.二、填空题7.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.解析 设2本数学书分别为A ,B ,语文书为C ,则全部的排放依次有ABC ,ACB ,BAC ,BCA ,CAB ,CBA ,共6种状况,其中数学书相邻的有ABC ,BAC, CAB ,CBA ,共4种状况,故2本数学书相邻的概率P =46=23.答案 238.(2024·长沙一中月考)先后抛掷两枚质地匀称的骰子,骰子落地后面朝上的点数分别为x ,y ,则log 2x y =1的概率为________.解析 依据题意,每枚骰子朝上的点数都有6种状况,则(x ,y )的状况有6×6=36(种).若log 2x y =1,则y =2x ,其状况有(1,2),(2,4),(3,6),共3种,所以log 2x y =1的概率P =336=112. 答案 1129.(2024·上海卷)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是________(结果用最简分数表示).解析 记5克、3克、1克砝码分别为5,3,1,两个2克砝码分别为2a,2b ,则从这五个砝码中随机选取三个,有以下选法:(5,3,1),(5,3,2a ),(5,3,2b ),(5,1,2a ),(5,1,2b ),(5,2a,2b ),(3,1,2a ),(3,1,2b ),(3,2a,2b ),(1,2a,2b ),共10种,其中满意三个砝码的总质量为9克的有(5,3,1),(5,2a,2b ),共2种,故所求概率P =210=15.答案 15三、解答题10.一个袋中装有四个形态大小完全相同的球,球的编号分别为1,2,3,4. (1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.解析 (1)从袋中随机取两个球,其一切可能的结果组成的基本领件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个.从袋中取出的球的编号之和不大于4的事务共有{1,2},{1,3}两个.因此所求事务的概率P =26=13.(2)先从袋中随机取一个球,登记编号为m ,放回后,再从袋中随机取一个球,登记编号为n ,其一切可能的结果(m ,n )有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.又满意条件n ≥m +2的事务为(1,3),(1,4),(2,4),共3个,所以满意条件n ≥m +2的事务的概率为P 1=316.故满意条件n <m +2的事务的概率为1-P 1=1-316=1316.11.设连续掷两次骰子得到的点数分别为m ,n ,令平面对量a =(m ,n ),b =(1,-3). (1)求使得事务“a⊥b ”发生的概率; (2)求使得事务“|a |≤|b |”发生的概率.解析 (1)由题意知m ∈{1,2,3,4,5,6},n ∈{1,2,3,4,5,6},故(m ,n )全部可能的取法共36种.若要使a⊥b ,即m -3n =0,即m =3n ,则共有2种取法,分别为(3,1),(6,2),所以事务a⊥b 的概率为236=118.(2)|a|≤|b|,即m 2+n 2≤10,此时有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)共6种取法使得|a|≤|b|,其概率为636=16.12.一个匀称的正四面体的四个面上分别涂有1,2,3,4四个数字,现随机投掷两次,正四面风光朝下的数字分别为b ,c .(1)z =(b -3)2+(c -3)2,求z =4的概率;(2)若方程x 2-bx -c =0至少有一根x ∈{1,2,3,4},就称该方程为“美丽方程”,求方程为“美丽方程”的概率.解析 (1)因为是投掷两次,因此基本领件(b ,c ):(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.当z =4时,(b ,c )的全部取值为(1,3),(3,1),所以P (z =4)=216=18.(2)①若方程一根为x =1,则1-b -c =0,即b +c =1,不成立.②若方程一根为x =2,则4-2b -c =0,即2b +c =4,所以⎩⎪⎨⎪⎧ b =1,c =2. ③若方程一根为x =3,则9-3b -c =0,即3b +c =9,所以⎩⎪⎨⎪⎧ b =2,c =3.④若方程一根为x =4,则16-4b -c =0,即4b +c =16,所以⎩⎪⎨⎪⎧b =3,c =4.由①②③④知,(b ,c )的全部可能取值为(1,2),(2,3),(3,4). 所以方程为“美丽方程”的概率为P =316.13.[选做题]若x ∈A 的同时,还有1x∈A ,则称A 是“好搭档集合”,在集合B =⎩⎨⎧⎭⎬⎫13,12,1,2,3的全部非空子集中任选一集合,则该集合是“好搭档集合”的概率为( )A.731B.732C.14D.831A 解析 由题意可得集合B 的非空子集有25-1=31(个),其中是“好搭档集合”的有{1},⎩⎨⎧⎭⎬⎫13,3,⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫13,1,3,⎩⎨⎧⎭⎬⎫12,1,2,⎩⎨⎧⎭⎬⎫13,12,2,3,⎩⎨⎧⎭⎬⎫13,12,1,2,3,共7个,所以该集合是“好搭档集合”的概率为P =731.。
2022版高考数学一轮复习 课时规范练50 随机事件与概率、事件的相互独立性新人教A版
2022版高考数学一轮复习课时规范练50 随机事件与概率、事件的相互独立性新人教A版年级:姓名:课时规范练50 随机事件与概率、事件的相互独立性基础巩固组1.甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( )A.56B.25C.16D.13 2.(多选)抛掷一枚骰子1次,记“向上的点数是4,5,6”为事件A ,“向上的点数是1,2”为事件B ,“向上的点数是1,2,3”为事件C ,“向上的点数是1,2,3,4”为事件D ,则下列关于事件A ,B ,C ,D 判断正确的有( )A.A 与B 是互斥事件但不是对立事件B.A 与C 是互斥事件也是对立事件C.A 与D 是互斥事件D.C 与D 不是对立事件也不是互斥事件3.打靶时甲每打10次,可中靶8次;乙每打10次,可中靶7次.若两人同时射击一个目标,则它们都中靶的概率是( )A.35B.34C.1225D.1425 4.若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P (A )=2-a ,P (B )=4a-5,则实数a 的取值范围是( )A.(54,2)B.(54,32)C.[54,32]D.(54,43] 5.小明需要从甲城市编号为1~14的14个工厂或乙城市编号为15~32的18个工厂中选择一个去实习,设“小明在甲城市实习”为事件A ,“小明在乙城市且编号为3的倍数的工厂实习”为事件B ,则P (A+B )= .6.(2019全国2,理13)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为 .7.(2020天津,13)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为 ;甲、乙两球至少有一个落入盒子的概率为 .8.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.(1)求该地某车主至少购买甲、乙两种保险中的一种的概率;(2)求该地某车主甲、乙两种保险都不购买的概率.9.:好评率是指一类电影中获得好评的部数与该类电影的部数的比值.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化,假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)综合提升组10.若A,B为对立事件,其概率分别为P(A)=4x,P(B)=1y,则x+y的最小值为()A.10B.9C.8D.611.(多选)(2020辽宁沈阳实验中学高三月考)在如图所示的电路中,A、B、C、D、E是5个保险盒.其中所示数值表示通电时保险丝被切断的概率,下列结论正确的是()A.AB所在线路畅通的概率为16B.ABC所在线路畅通的概率为56C.DE所在线路畅通的概率为130D.当开关合上时,整个电路畅通的概率为293612.(多选)已知事件A,B,且P(A)=0.5,P(B)=0.2,则下列结论正确的是()A.如果B⊆A,那么P(A∪B)=0.2,P(AB)=0.5B.如果A与B互斥,那么P(A∪B)=0.7,P(AB)=0.7C.如果A与B相互独立,那么P(AB)=0.6D.如果A与B相互独立,那么P(AB)=0.8。
课时规范练51随机事件的概率
课时规范练51随机事件的概率基础巩固组1.(2019福建三明模拟,4)给出下列事件:①同学甲竞选班长成功;②两队比赛,强队胜利;③一所学校共有998名学生,至少有三名学生的生日相同;④若集合A,B,C满足A⊆B,B⊆C,则A⊆C;⑤古代有一个国王想处死一位画师,背地里在2张签上都写了“死”字,再让画师抽“生死签”,画师抽到死签;⑥七月天下雪;⑦从1,3,9中任选两数相加,其和为偶数;⑧骑车通过10个十字路口,均遇红灯.其中属于随机事件的有()A.3个B.4个C.5个D.6个2.(2019河北保定模拟,6)若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2-a,P(B)=4a-5,则实数a的取值范围是()A.(54,2) B.(54,32)C.[54,32] D.(54,43]3.(2019福建宁德联考,6)2021年某省新高考将实行“3+1+2”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件A:“他选择政治和地理”,事件B:“他选择化学和地理”,则事件A与事件B()1A.是互斥事件,不是对立事件B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件D.既不是互斥事件也不是对立事件4.已知随机事件A,B发生的概率满足条件P(A∪B)=34,某人猜测事件A∩B发生,则此人猜测正确的概率为()A.1B.12C.14D.05.(2019山西太原模拟,4)在某场足球比赛前,教练预言说:“根据我掌握的情况,这场比赛我们队有80%的机会获胜.”那么下面四句话中与“有80%的机会获胜”意思最接近的是()A.他这个队肯定会赢这场比赛B.他这个队肯定会输这场比赛C.假如这场比赛可以重复进行10场,在这10场比赛中,他这个队会赢8场左右D.假如这场比赛可以重复进行10场,在这10场比赛中,他这个队恰好会赢8场6.(2019湖北宜昌联考,14)小明需要从甲城市编号为1~14的14个工厂或乙城市编号为15~32的18个工厂中选择一个去实习,设“小明在甲城市实习”为事件A,“小明在乙城市且编号为3的倍数的工厂实习”为事件B,则P(A+B)=.7.(2019江苏泰州联考,10)若一架飞机向目标投弹,击毁目标的概率为0.2,目标未受损的概率为0.4,则目标受损但未被击毁的概率为.8.(2019广东佛山一中、石门中学、顺德一中联考,19)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.(1)求该地某车主至少购买甲、乙两种保险中的1种的概率;(2)求该地某车主甲、乙两种保险都不购买的概率.23综合提升组9.甲:A 1,A 2是互斥事件;乙:A 1,A 2是对立事件,那么 ( )A.甲是乙的充要条件B.甲是乙的充分不必要条件C.甲是乙的必要不充分条件D.甲既不是乙的充分条件,也不是乙的必要条件10.若A ,B 为对立事件,其概率分别为P (A )=4x ,P (B )=1y ,则x+y 的最小值为( ) A.10B.9C.8D.611.(2019全国2,文14)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为 .12.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示,这里,两株作物“相近”是指它们之间的直线距离不超过1米.X1234(1)完成下表,并求所种作物的平均年收获量;(2)在所种作物中随机选取一株,求它的年收获量至少为48 kg的概率.413.(2019天津南开中学模拟,14)如图所示,靶子由一个中心圆面Ⅰ和两个同心圆环Ⅱ、Ⅲ构成,射手命中Ⅰ、Ⅱ、Ⅲ的概率分别为0.15,0.20,0.45,则不中靶的概率是.创新应用组14.(2019福建泉州模拟,18)下面是某市2月1日至14日的空气质量指数趋势图及空气质量指数与污染程度对应表.某人随机选择2月1日至2月13日中的某一天到该市出差,第二天返回(往返共两天).5(1)由图判断从哪天开始连续三天的空气质量指数方差最大?(只写出结论,不要求证明)(2)求此人到达当日空气质量优良的概率;(3)求此人出差期间(两天)空气质量至少有一天为中度或重度污染的概率.参考答案课时规范练51随机事件的概率61.B①②⑥⑧为随机事件.故选B.2.D由题意可知{0<P(A)<1,0<P(B)<1,P(A)+P(B)≤1⇒{0<2-a<1,0<4a-5<1,3a-3≤1⇒{1<a<2,54<a<32,a≤43⇒54<a≤43.故选D.3.A事件A与事件B不能同时发生,是互斥事件,他还可以选择化学和政治,不是对立事件,故选A.4.C因为事件A∩B与事件A∪B是对立事件,所以P(A∩B)=1-P(A∪B)=1-34=14.故选C.5.C由题意,“这场比赛我们队有80%的机会获胜”的意思是:假如这场比赛可以重复进行10场,在这10场比赛中,他这个队会赢8场左右,但是不是一定胜8场.故选C.6.5 8由题意可知A,B两事件互斥,且P(A)=1432,P(B)=632,所以P(A+B)=P(A)+P(B)=1432+6 32=58.7.0.4由于一架飞机向目标投弹,击毁目标的概率为0.2,目标未受损的概率为0.4;所以目标受损的概率为1-0.4=0.6;目标受损分为击毁和未被击毁,它们是对立事件;所以目标受损的概率=目标受损被击毁的概率+目标受损未被击毁的概率;故目标受损但未被击毁的概率=目标受损的概率-目标受损被击毁的概率,即目标受损但未被击毁的概率=0.6-0.2=0.4.8.解记A表示事件“该车主购买甲种保险”;B表示事件“该车主购买乙种保险但不购买甲种保险”;C表示事件“该车主至少购买甲、乙两种保险中的1种”;D表示事件“该车主甲、乙两种保险都不购买”.(1)由题意得,P(A)=0.5,P(B)=0.3,又C=A∪B,所以P(C)=P(A∪B)=P(A)+P(B)=0.5+0.3=0.8.(2)因为D与C是对立事件,所以P(D)=1-P(C)=1-0.8=0.2.789.C 当A 1,A 2是互斥事件时,A 1,A 2不一定是对立事件,所以甲不是乙的充分条件;当A 1,A 2是对立事件时,A 1,A 2一定是互斥事件,所以甲是乙的必要条件.所以甲是乙的必要不充分条件.故选C .10.B ∵A ,B 为对立事件,其概率分别为P (A )=4x ,P (B )=1y ,∴P (A )+P (B )=1,即4x +1y =1(x>0,y>0), ∴(x+y )4x +1y=4+x y +4yx +1≥5+2√4=9,当且仅当x=2y=6时取等号.故选B .11.0.98 由题意,得经停该高铁站的列车的正点数约为10×0.97+20×0.98+10×0.99=39.2,其中车次数为10+20+10=40,所以经停该站高铁列车所有车次的平均正点率的估计值为39.240=0.98.12.解 (1)所种作物的总株数为1+2+3+4+5=15,其中“相近”作物株数为1的作物有2株,“相近”作物株数为2的作物有4株,“相近”作物株数为3的作物有6株,“相近”作物株数为4的作物有3株,列表如下:所种作物的平均年收获量为51×2+48×4+45×6+42×315=69015=46(kg).(2)由(1)知,P (Y=51)=215,P (Y=48)=415.故在所种作物中随机选取一株,它的年收获量至少为48 kg 的概率为P(Y≥48)=P(Y=51)+P(Y=48)=215+415=25.13.0.20设射手“命中圆面Ⅰ”为事件A,“命中圆环Ⅱ”为事件B,“命中圆环Ⅲ”为事件C,“不中靶”为事件D,则A,B,C,D彼此互斥,故射手中靶概率为P(A∪B∪C)=P(A)+P(B)+P(C)=0.15+0.20+0.45=0.80.因为中靶和不中靶是对立事件,故不中靶的概率P(D)=1-P(A∪B∪C)=1-0.80=0.20.14.解(1)从2月5日开始连续三天的空气质量指数方差最大.(2)设A i表示事件“此人于2月i日到达该市”(i=1,2,…,13).根据题意,P(A i)=113,且A i∩A j=⌀(i≠j,j=1,2,…,13).设B为事件“此人到达当日空气优良”,则B=A1∪A2∪A3∪A7∪A12∪A13.所以P(B)=P(A1∪A2∪A3∪A7∪A12∪A13)=613.(3)设“此人出差期间空气质量至少有一天为中度或重度污染”为事件A,即“此人出差期间空气质量指数至少有一天大于150,小于300”,由题意可知P(A)=P(A4∪A5∪A6∪A7∪A8∪A9∪A10∪A11)=P(A4)+P(A5)+P(A6)+P(A7)+P(A8)+P(A9)+P(A10)+P(A11)=813.9。
2021高考文科数学(人教A版)一轮复习课时规范练51随机事件的概率
课时规范练51随机事件的概率基础巩固组1.(2019福建三明模拟,4)给出下列事件:①同学甲竞选班长成功;②两队比赛,强队胜利;③一所学校共有998名学生,至少有三名学生的生日相同;④若集合A,B,C满足A⊆B,B⊆C,则A⊆C;⑤古代有一个国王想处死一位画师,背地里在2张签上都写了“死”字,再让画师抽“生死签”,画师抽到死签;⑥七月天下雪;⑦从1,3,9中任选两数相加,其和为偶数;⑧骑车通过10个十字路口,均遇红灯.其中属于随机事件的有()A.3个B.4个C.5个D.6个2.(2019河北保定模拟,6)若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2-a,P(B)=4a-5,则实数a的取值范围是()A.(54,2) B.(54,32)C.[54,32] D.(54,43]3.(2019福建宁德联考,6)2021年某省新高考将实行“3+1+2”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件A:“他选择政治和地理”,事件B:“他选择化学和地理”,则事件A与事件B()A.是互斥事件,不是对立事件B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件D.既不是互斥事件也不是对立事件4.已知随机事件A,B发生的概率满足条件P(A∪B)=34,某人猜测事件A∩B发生,则此人猜测正确的概率为()A.1B.12C.14D.05.(2019山西太原模拟,4)在某场足球比赛前,教练预言说:“根据我掌握的情况,这场比赛我们队有80%的机会获胜.”那么下面四句话中与“有80%的机会获胜”意思最接近的是()A.他这个队肯定会赢这场比赛B.他这个队肯定会输这场比赛C.假如这场比赛可以重复进行10场,在这10场比赛中,他这个队会赢8场左右D.假如这场比赛可以重复进行10场,在这10场比赛中,他这个队恰好会赢8场6.(2019湖北宜昌联考,14)小明需要从甲城市编号为1~14的14个工厂或乙城市编号为15~32的18个工厂中选择一个去实习,设“小明在甲城市实习”为事件A,“小明在乙城市且编号为3的倍数的工厂实习”为事件B,则P(A+B)=.7.(2019江苏泰州联考,10)若一架飞机向目标投弹,击毁目标的概率为0.2,目标未受损的概率为0.4,则目标受损但未被击毁的概率为.8.(2019广东佛山一中、石门中学、顺德一中联考,19)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.(1)求该地某车主至少购买甲、乙两种保险中的1种的概率;(2)求该地某车主甲、乙两种保险都不购买的概率.综合提升组9.甲:A 1,A 2是互斥事件;乙:A 1,A 2是对立事件,那么 ( )A.甲是乙的充要条件B.甲是乙的充分不必要条件C.甲是乙的必要不充分条件D.甲既不是乙的充分条件,也不是乙的必要条件10.若A ,B 为对立事件,其概率分别为P (A )=4x ,P (B )=1y ,则x+y 的最小值为( ) A.10B.9C.8D.611.(2019全国2,文14)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为 .12.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示,这里,两株作物“相近”是指它们之间的直线距离不超过1米.X1 2 3 4(1)完成下表,并求所种作物的平均年收获量;(2)在所种作物中随机选取一株,求它的年收获量至少为48 kg的概率.13.(2019天津南开中学模拟,14)如图所示,靶子由一个中心圆面Ⅰ和两个同心圆环Ⅱ、Ⅲ构成,射手命中Ⅰ、Ⅱ、Ⅲ的概率分别为0.15,0.20,0.45,则不中靶的概率是.创新应用组14.(2019福建泉州模拟,18)下面是某市2月1日至14日的空气质量指数趋势图及空气质量指数与污染程度对应表.某人随机选择2月1日至2月13日中的某一天到该市出差,第二天返回(往返共两天).(1)由图判断从哪天开始连续三天的空气质量指数方差最大?(只写出结论,不要求证明)(2)求此人到达当日空气质量优良的概率;(3)求此人出差期间(两天)空气质量至少有一天为中度或重度污染的概率.参考答案课时规范练51随机事件的概率1.B①②⑥⑧为随机事件.故选B.2.D由题意可知{0<P(A)<1,0<P(B)<1,P(A)+P(B)≤1⇒{0<2-a<1,0<4a-5<1,3a-3≤1⇒{1<a<2,54<a<32,a≤43⇒54<a≤43.故选D.3.A事件A与事件B不能同时发生,是互斥事件,他还可以选择化学和政治,不是对立事件,故选A.4.C因为事件A∩B与事件A∪B是对立事件,所以P(A∩B)=1-P(A∪B)=1-3=1.故选C.5.C由题意,“这场比赛我们队有80%的机会获胜”的意思是:假如这场比赛可以重复进行10场,在这10场比赛中,他这个队会赢8场左右,但是不是一定胜8场.故选C.6.5 8由题意可知A,B两事件互斥,且P(A)=1432,P(B)=632,所以P(A+B)=P(A)+P(B)=1432+6 32=58.7.0.4由于一架飞机向目标投弹,击毁目标的概率为0.2,目标未受损的概率为0.4;所以目标受损的概率为1-0.4=0.6;目标受损分为击毁和未被击毁,它们是对立事件;所以目标受损的概率=目标受损被击毁的概率+目标受损未被击毁的概率;故目标受损但未被击毁的概率=目标受损的概率-目标受损被击毁的概率,即目标受损但未被击毁的概率=0.6-0.2=0.4.8.解记A表示事件“该车主购买甲种保险”;B表示事件“该车主购买乙种保险但不购买甲种保险”;C表示事件“该车主至少购买甲、乙两种保险中的1种”;D表示事件“该车主甲、乙两种保险都不购买”.(1)由题意得,P(A)=0.5,P(B)=0.3,又C=A∪B,所以P(C)=P(A∪B)=P(A)+P(B)=0.5+0.3=0.8.(2)因为D与C是对立事件,所以P(D)=1-P(C)=1-0.8=0.2.9.C当A1,A2是互斥事件时,A1,A2不一定是对立事件,所以甲不是乙的充分条件;当A1,A2是对立事件时,A1,A2一定是互斥事件,所以甲是乙的必要条件.所以甲是乙的必要不充分条件.故选C.10.B∵A,B为对立事件,其概率分别为P(A)=4x ,P(B)=1y,∴P(A)+P(B)=1,即4x +1y=1(x>0,y>0),∴(x+y)4x +1y=4+xy+4yx+1≥5+2√4=9,当且仅当x=2y=6时取等号.故选B.11.0.98由题意,得经停该高铁站的列车的正点数约为10×0.97+20×0.98+10×0.99=39.2,其中车次数为10+20+10=40,所以经停该站高铁列车所有车次的平均正点率的估计值为39.240=0.98.12.解(1)所种作物的总株数为1+2+3+4+5=15,其中“相近”作物株数为1的作物有2株,“相近”作物株数为2的作物有4株,“相近”作物株数为3的作物有6株,“相近”作物株数为4的作物有3株,列表如下:所种作物的平均年收获量为51×2+48×4+45×6+42×315=69015=46(kg).(2)由(1)知,P(Y=51)=215,P(Y=48)=415.故在所种作物中随机选取一株,它的年收获量至少为48kg的概率为P(Y≥48)=P(Y=51)+P(Y=48)=215+415=25.13.0.20设射手“命中圆面Ⅰ”为事件A,“命中圆环Ⅱ”为事件B,“命中圆环Ⅲ”为事件C,“不中靶”为事件D,则A,B,C,D彼此互斥,故射手中靶概率为P(A∪B∪C)=P(A)+P(B)+P(C)=0.15+0.20+0.45=0.80.因为中靶和不中靶是对立事件,故不中靶的概率P(D)=1-P(A∪B∪C)=1-0.80=0.20.14.解(1)从2月5日开始连续三天的空气质量指数方差最大.(2)设A i表示事件“此人于2月i日到达该市”(i=1,2,…,13).根据题意,P(A i)=1,且A i∩A j=⌀(i≠j,j=1,2,…,13).13设B为事件“此人到达当日空气优良”,则B=A1∪A2∪A3∪A7∪A12∪A13.所以P(B)=P(A1.∪A2∪A3∪A7∪A12∪A13)=613(3)设“此人出差期间空气质量至少有一天为中度或重度污染”为事件A,即“此人出差期间空气质量指数至少有一天大于150,小于300”,由题意可知P(A)=P(A4∪A5∪A6∪A7∪A8∪A9∪A10∪.A11)=P(A4)+P(A5)+P(A6)+P(A7)+P(A8)+P(A9)+P(A10)+P(A11)=813快乐分享,知识无界!感谢您的下载!由Ruize收集整理!。
【全程复习方略】高中数学 3.1.1 随机事件的概率课件 新人教A版必修3
加,事件A发生的频率fn(A) 稳定在某个常数上,把这个常
P(A) ,称为事件A的概率. 数记作_______ [0 ,1 ] (2)范围:_________. 可能性 的 (3)意义:概率从数量上反映了随机事件发生的_______ 大小.
1.事件的分类是确定的吗? 提示:事件的分类是相对于条件来讲的,在不同的条件下,
【解析】1.随机事件的条件为:射击运动员射击 10次,结果为 中靶8次,中靶9次,中靶10次.
答案:射击运动员射击10次
中靶8次,中靶9次,中靶10次
2.(1)一次试验是指“抛掷两枚硬币一次”,试验的可能结
(1),(3)有可能发生,也有可能不发生,即为随机事件 .
【总结】据1中③④总结数学问题中事件类型的判断方法. 数学问题中的事件是必然事件、不可能事件,还是随机事件等 价于该说法是否正确,还是需要分类讨论的问题 .若是正确的
则是必然事件,若是错误的,则是不可能事件,若需要讨论,
则是随机事件.
概率及其求法
2.(1)如下表
(2)根据频率与概率的关系,可以认为射手射击一次,击中 靶心的概率约是0.91.
【总结】利用频率求近似概率的技巧 随着试验次数的增加,频率会逐渐稳定在概率上,所以确定概 率时,重点根据试验次数多的对应频率来确定即可.
试验与重复试验的结果的分析
【技法点拨】
分析试验结果的方法 (1)首先要准确理解试验的条件、结果等有关定义,并能使 用它们判断一些事件,指出试验结果,这是后续学习求事件的 概率的前提和基础. (2)在写试验结果时,一般采用列举法写出,必须首先明确 事件发生的条件,根据日常生活的经验,按一定的次序一一列
个极端情形.
事件的分类
【技法点拨】 对事件分类的两个关键点 (1)条件:在条件S下事件发生与否是与条件相对而言的,没 有条件,无法判断事件是否发生; (2)结果发生与否:有时结果较复杂,要准确理解结果包含 的各种情况.
高考数学一轮复习12-1随机事件的概率课时作业新人教A版
1- (0.3+0.25)= 0.45. 用频率估计概率可得其为二等品的
5.甲、乙两人下棋,两人和棋的概率是
1,乙获胜的概率是 1,则乙不输的概率是
பைடு நூலகம்
2
3
()
5
2
1
1
A. 6
B.3
C.2
D.3
解析 乙不输包含两种情况:一是两人和棋,二是乙获胜,故所求概率为
12+
13=
5 6.
答案 A
二、填空题
6.在 200 件产品中,有 192 件一级品, 8 件二级品,则下列事件: ①在这 200 件产品中任意选出 9 件,全部是一级品;
②在这 200 件产品中任意选出 9 件,全部是二级品;
③在这 200 件产品中任意选出 9 件,不全是二级品.
其中 ________是必然事件; ________是不可能事件; ________是随机事件.
答案 ③ ② ①
7.抛掷一粒骰子,观察掷出的点数,设事件
A 为出现奇数点,事件 B 为出现 2 点,已知
第 1 讲 随机事件的概率
基础巩固题组
(建议用时: 40 分钟 ) 一、选择题
1. (2015 ·襄阳模拟 )有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、
南、西、北四个方向前进,每人一个方向.事件
“甲向南 ”与事件 “乙向南 ”是
()
A .互斥但非对立事件
B.对立事件
C.相互独立事件
P(A) = 1105000= 0.15, P(B) = 1102000= 0.12.
2
由于投保金额为 2 800 元,赔付金额大于投保金额对应的情形是赔付金额为
3 000 元和 4 000 元,所以其概率为 P(A) + P(B) = 0.15+ 0.12=0.27.
2022届高三数学(人教A版文)复习习题:第十一章 概率 课时规范练51 Word版含答案
课时规范练51随机大事的概率基础巩固组1.从16个同类产品(其中有14个正品,2个次品)中任意抽取3个,下列大事中概率为1的是()A.三个都是正品B.三个都是次品C.三个中至少有一个是正品D.三个中至少有一个是次品2.(2021江苏南通模拟)从1,2,…,9中任取两个数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个数都是奇数;③至少有一个奇数和两个数都是偶数;④至少有一个奇数和至少有一个偶数.在上述大事中,是对立大事的是()A.①B.②④C.③D.①③3.用随机数表法从1 000名同学(男生250人)中抽取200人进行评教,某男生被抽到的概率是()A.0.1B.0.2C.0.25D.0.84.把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四人,则大事“甲分得红牌”与“乙分得红牌”()A.是对立大事B.是不行能大事C.是互斥大事但不是对立大事D.不是互斥大事5.从一箱产品中随机地抽取一件,设大事A{抽到一等品},大事B{抽到二等品},大事C{抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则大事“抽到的产品不是一等品”的概率为()A.0.7B.0.65C.0.35D.0.5〚导学号24190800〛6.(2021浙江温州十校联考)记一个两位数的个位数字与十位数字的和为A.若A是不超过5的奇数,从这些两位数中任取一个,其个位数字为1的概率为.7.(2021云南昆明质检)中国乒乓球队中的甲、乙两名队员参与奥运会乒乓球女子单打竞赛,甲夺得冠军的概率为,乙夺得冠军的概率为,那么中国队夺得女子乒乓球单打冠军的概率为.8.某班选派5人,参与学校进行的数学竞赛,获奖的人数及其概率如下:获奖人数/人0 1 2 3 4 5概率0.1 0.16 x y0.2 z (1)若获奖人数不超过2人的概率为0.56,求x的值;(2)若获奖人数最多4人的概率为0.96,最少3人的概率为0.44,求y,z的值.〚导学号24190801〛9.一盒中装有各色球共12个,其中5个红球、4个黑球、2个白球、1个绿球.从中随机取出1个球,求:(1)取出1个球是红球或黑球的概率;(2)取出1个球是红球、黑球或白球的概率.综合提升组10.(2021江苏南京模拟)有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3,将两张卡片排在一起组成两位数,则所组成的两位数为奇数的概率是()A. B. C. D.〚导学号24190840〛11.(2021云南质检)在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为()A. B. C. D.12.(2021湖南长沙一模,文14)空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量依据AQI大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严峻污染.一环保人士从当地某年的AQI记录数据中随机抽取10个,用茎叶图记录如图.依据该统计数据,估量此地该年AQI大于100的天数为.(该年为365天)13.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.依据历年的种植阅历,一株该种作物的年收获量Y(单位:kg)与它的“相近” 作物株数X之间的关系如下表所示,这里,两株作物“相近”是指它们之间的直线距离不超过1米.X 1 2 3 4Y51 48 45 42(1)完成下表,并求所种作物的平均年收获量;Y51 48 45 42频数 4(2)在所种作物中随机选取一株,求它的年收获量至少为48 kg的概率.14.假设甲、乙两种品牌的同类产品在某地区市场上销售量相等,为了解它们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如图:甲品牌乙品牌(1)估量甲品牌产品寿命小于200小时的概率;(2)这两种品牌产品中,某个产品已使用了200小时,试估量该产品是甲品牌的概率.〚导学号24190841〛创新应用组15.(2021山西四校联考)从1,2,3,4这四个数中一次随机取两个,则取出的这两个数之和为偶数的概率是()A. B. C. D.16.某公司生产产品A,产品质量按测试指标分为:大于或等于90为一等品,大于或等于80小于90为二等品,小于80为三等品,生产一件一等品可盈利50元,生产一件二等品可盈利30元,生产一件三等品亏损10元.现随机抽查娴熟工人甲和新工人乙生产的这种产品各100件进行检测,检测结果统计如下表:依据上表统计结果得到甲、乙两人生产产品A为一等品、二等品、三等品的频率,用频率去估量他们生产产品A为一等品、二等品、三等品的概率.(1)计算甲生产一件产品A,给工厂带来盈利不小于30元的概率;(2)若甲一天能生产20件产品A,乙一天能生产15件产品A,估量甲、乙两人一天生产的35件产品A中三等品的件数.〚导学号24190842〛课时规范练51随机大事的概率1.C在16个同类产品中,只有2个次品,抽取3个产品,A是随机大事,B是不行能大事,C是必定大事,D是随机大事,又必定大事的概率为1,故C正确.2.C从9个数字中取两个数有三种状况:一奇一偶,两奇,两偶,故只有③中两大事是对立大事.3.B该男生被抽到的概率是=0.2,故选B.4.C明显两个大事不行能同时发生,但两者可能同时不发生,由于红牌可以分给乙、丙两人,综上,这两个大事为互斥但不对立大事.5.C∵“抽到的产品不是一等品”与大事A是对立大事,∴所求概率P=1-P(A)=0.35.6. 依据题意,个位数字与十位数字之和为奇数且不超过5的两位数有10,12,14,21,23,30,32,41,50,共9个,其中个位数字是1的有21,41,共2个,因此所求的概率为.7. 由于大事“中国队夺得女子乒乓球单打冠军”包括大事“甲夺得冠军”和“乙夺得冠军”,但这两个大事不行能同时发生,即彼此互斥,所以可按互斥大事概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为.8.解记大事“在竞赛中,有k人获奖”为A k(k∈N,k≤5),则大事A k彼此互斥.(1)∵获奖人数不超过2人的概率为0.56,∴P(A0)+P(A1)+P(A2)=0.1+0.16+x=0.56.解得x=0.3.(2)由获奖人数最多4人的概率为0.96,得P(A5)=1-0.96=0.04,即z=0.04.由获奖人数最少3人的概率为0.44,得P(A3)+P(A4)+P(A5)=0.44,即y+0.2+0.04=0.44,解得y=0.2.9.解记大事A1={任取1个球为红球},A2={任取1个球为黑球},A3={任取1个球为白球},A4={任取1个球为绿球},则P(A1)=,P(A2)=,P(A3)=,P(A4)=.解法一:(利用互斥大事的概率公式求概率)依据题意,知大事A1,A2,A3,A4彼此互斥,由互斥大事的概率公式,可知,(1)取出1个球为红球或黑球的概率为P(A1∪A2)=P(A1)+P(A2)=.(2)取出1个球为红球、黑球或白球的概率为P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3)=.解法二:(利用对立大事求概率的方法)(1)由解法一知,取出1个球为红球或黑球的对立大事为取出1个球为白球或绿球,即A1∪A2的对立大事为A3∪A4.所以取出1个球是红球或黑球的概率为P(A1∪A2)=1-P(A3∪A4)=1-P(A3)-P(A4)=1-.(2)A1∪A2∪A3的对立大事为A4,所以P(A1∪A2∪A3)=1-P(A4)=1-.10.C将两张卡片排在一起组成两位数,则所组成的两位数有12,13,20,21,30,31,共6个,两位数为奇数的有13,21,31,共3个,故所组成的两位数为奇数的概率为.11.C分析题意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5)4种取法,符合题意的取法有2种,故所求概率P=.12.146该样本中AQI大于100的频数是4,频率为,由此估量此地该年AQI大于100的概率为,故估量此地该年AQI大于100的天数为365×=146(天).13.解 (1)所种作物的总株数为1+2+3+4+5=15,其中“相近”作物株数为1的作物有2株,“相近”作物株数为2的作物有4株,“相近”作物株数为3的作物有6株,“相近”作物株数为4的作物有3株,列表如下:所种作物的平均年收获量为=46(kg).(2)由(1)知,P(Y=51)=,P(Y=48)=.故在所种作物中随机选取一株,它的年收获量至少为48 kg的概率为P(Y≥48)=P(Y=51)+P(Y=48)=.14.解 (1)甲品牌产品寿命小于200小时的频率为,用频率估量概率,可得甲品牌产品寿命小于200小时的概率为.(2)依据频数分布图可得寿命不低于200小时的两种品牌产品共有75+70=145(个),其中甲品牌产品有75个,所以在样本中,寿命不低于200小时的产品是甲品牌的频率是.据此估量已使用了200小时的该产品是甲品牌的概率为.15.B由题意知全部的基本大事有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个,和为偶数的基本大事有(1,3),(2,4),共2个,故所求概率为.16.解 (1)甲生产一件产品A,给工厂带来盈利不小于30元的概率P=1-.(2)估量甲一天生产的20件产品A中有20×=2(件)三等品,估量乙一天生产的15件产品A中有15×=3(件)三等品,所以估量甲、乙两人一天生产的35件产品A中共有5件三等品.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时规范练51 随机事件的概率基础巩固组1.从16个同类产品(其中有14个正品,2个次品)中任意抽取3个,下列事件中概率为1的是()A.三个都是正品B.三个都是次品C.三个中至少有一个是正品D.三个中至少有一个是次品2.(2017江苏南通模拟)从1,2,…,9中任取两个数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个数都是奇数;③至少有一个奇数和两个数都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是()A.①B.②④C.③D.①③3.用随机数表法从1 000名学生(男生250人)中抽取200人进行评教,某男生被抽到的概率是()A.0.1B.0.2C.0.25D.0.84.把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四人,则事件“甲分得红牌”与“乙分得红牌”()A.是对立事件B.是不可能事件C.是互斥事件但不是对立事件D.不是互斥事件5.从一箱产品中随机地抽取一件,设事件A{抽到一等品},事件B{抽到二等品},事件C{抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的产品不是一等品”的概率为()A.0.7B.0.65C.0.35D.0.5 〚导学号24190800〛6.(2017浙江温州十校联考)记一个两位数的个位数字与十位数字的和为A.若A是不超过5的奇数,从这些两位数中任取一个,其个位数字为1的概率为.7.(2017云南昆明质检)中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为,乙夺得冠军的概率为,那么中国队夺得女子乒乓球单打冠军的概率为.8.某班选派5人,参加学校举行的数学竞赛,获奖的人数及其概率如下:获奖人数/人0 1 2 34 5概率0.10.16x y0.2z(1)若获奖人数不超过2人的概率为0.56,求x的值;(2)若获奖人数最多4人的概率为0.96,最少3人的概率为0.44,求y,z的值.〚导学号24190801〛9.一盒中装有各色球共12个,其中5个红球、4个黑球、2个白球、1个绿球.从中随机取出1个球,求:(1)取出1个球是红球或黑球的概率;(2)取出1个球是红球、黑球或白球的概率.综合提升组10.(2017江苏南京模拟)有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3,将两张卡片排在一起组成两位数,则所组成的两位数为奇数的概率是()A. B. C. D.〚导学号24190840〛11.(2017云南质检)在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为()A. B. C. D.12.(2017湖南长沙一模,文14)空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.一环保人士从当地某年的AQI记录数据中随机抽取10个,用茎叶图记录如图.根据该统计数据,估计此地该年AQI大于100的天数为.(该年为365天)13.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近” 作物株数X之间的关系如下表所示,这里,两株作物“相近”是指它们之间的直线距离不超过1米.X1 2 3 4Y 51484542(1)完成下表,并求所种作物的平均年收获量;Y 51484542频数4(2)在所种作物中随机选取一株,求它的年收获量至少为48 kg的概率.14.假设甲、乙两种品牌的同类产品在某地区市场上销售量相等,为了解它们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如图:甲品牌乙品牌(1)估计甲品牌产品寿命小于200小时的概率;(2)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是甲品牌的概率.〚导学号24190841〛创新应用组15.(2017山西四校联考)从1,2,3,4这四个数中一次随机取两个,则取出的这两个数之和为偶数的概率是( ) A.B.C.D.16.某公司生产产品A,产品质量按测试指标分为:大于或等于90为一等品,大于或等于80小于90为二等品,小于80为三等品,生产一件一等品可盈利50元,生产一件二等品可盈利30元,生产一件三等品亏损10元.现随机抽查熟练工人甲和新工人乙生产的这种产品各100件进行检测,检测结果统计如下表:测试 指标 [70,75) [75,80) [80,85) [85,90) [90,95) [95,100) 甲 3 7 20 40 20 10 乙 5 15 35 35 7 3根据上表统计结果得到甲、乙两人生产产品A 为一等品、二等品、三等品的频率,用频率去估计他们生产产品A 为一等品、二等品、三等品的概率.(1)计算甲生产一件产品A,给工厂带来盈利不小于30元的概率;(2)若甲一天能生产20件产品A,乙一天能生产15件产品A,估计甲、乙两人一天生产的35件产品A 中三等品的件数. 答案:1.C 在16个同类产品中,只有2个次品,抽取3个产品,A 是随机事件,B 是不可能事件,C 是必然事件,D 是随机事件,又必然事件的概率为1,故C 正确.2.C 从9个数字中取两个数有三种情况:一奇一偶,两奇,两偶,故只有③中两事件是对立事件.3.B 该男生被抽到的概率是=0.2,故选B .4.C 显然两个事件不可能同时发生,但两者可能同时不发生,因为红牌可以分给乙、丙两人,综上,这两个事件为互斥但不对立事件.5.C ∵“抽到的产品不是一等品”与事件A 是对立事件,∴所求概率P=1-P(A)=0.35.6.根据题意,个位数字与十位数字之和为奇数且不超过5的两位数有10,12,14,21,23,30,32,41,50,共9个,其中个位数字是1的有21,41,共2个,因此所求的概率为.7.因为事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为.8.解记事件“在竞赛中,有k人获奖”为A k(k∈N,k≤5),则事件A k彼此互斥.(1)∵获奖人数不超过2人的概率为0.56,∴P(A0)+P(A1)+P(A2)=0.1+0.16+x=0.56.解得x=0.3.(2)由获奖人数最多4人的概率为0.96,得P(A5)=1-0.96=0.04,即z=0.04.由获奖人数最少3人的概率为0.44,得P(A3)+P(A4)+P(A5)=0.44,即y+0.2+0.04=0.44,解得y=0.2.9.解记事件A1={任取1个球为红球},A2={任取1个球为黑球},A3={任取1个球为白球},A4={任取1个球为绿球},则P(A1)=,P(A2)=,P(A3)=,P(A4)=.解法一:(利用互斥事件的概率公式求概率)根据题意,知事件A1,A2,A3,A4彼此互斥,由互斥事件的概率公式,可知,(1)取出1个球为红球或黑球的概率为P(A1∪A2)=P(A1)+P(A2)=.(2)取出1个球为红球、黑球或白球的概率为P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3)=.解法二:(利用对立事件求概率的方法)(1)由解法一知,取出1个球为红球或黑球的对立事件为取出1个球为白球或绿球,即A1∪A2的对立事件为A3∪A4.所以取出1个球是红球或黑球的概率为P(A1∪A2)=1-P(A3∪A4)=1-P(A3)-P(A4)=1-.(2)A1∪A2∪A3的对立事件为A4,所以P(A1∪A2∪A3)=1-P(A4)=1-.10.C将两张卡片排在一起组成两位数,则所组成的两位数有12,13,20,21,30,31,共6个,两位数为奇数的有13,21,31,共3个,故所组成的两位数为奇数的概率为.11.C分析题意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5)4种取法,符合题意的取法有2种,故所求概率P=.12.146该样本中AQI大于100的频数是4,频率为,由此估计此地该年AQI大于100的概率为,故估计此地该年AQI大于100的天数为365×=146(天).13.解 (1)所种作物的总株数为1+2+3+4+5=15,其中“相近”作物株数为1的作物有2株,“相近”作物株数为2的作物有4株,“相近”作物株数为3的作物有6株,“相近”作物株数为4的作物有3株,列表如下:Y 51 48 45 42频2 4 6 3数所种作物的平均年收获量为=46(kg).(2)由(1)知,P(Y=51)=,P(Y=48)=.故在所种作物中随机选取一株,它的年收获量至少为48 kg的概率为P(Y≥48)=P(Y=51)+P(Y=48)=.14.解 (1)甲品牌产品寿命小于200小时的频率为,用频率估计概率,可得甲品牌产品寿命小于200小时的概率为.(2)根据频数分布图可得寿命不低于200小时的两种品牌产品共有75+70=145(个),其中甲品牌产品有75个,所以在样本中,寿命不低于200小时的产品是甲品牌的频率是.据此估计已使用了200小时的该产品是甲品牌的概率为.15.B由题意知所有的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个,和为偶数的基本事件有(1,3),(2,4),共2个,故所求概率为.16.解 (1)甲生产一件产品A,给工厂带来盈利不小于30元的概率P=1-.(2)估计甲一天生产的20件产品A中有20×=2(件)三等品,估计乙一天生产的15件产品A中有15×=3(件)三等品, 所以估计甲、乙两人一天生产的35件产品A中共有5件三等品.。