2018中考数学专题复习 第2讲 因式分解(pdf)

合集下载

2018年中考数学总复习课件:整式及因式分解(共26张PPT)

2018年中考数学总复习课件:整式及因式分解(共26张PPT)

★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考பைடு நூலகம்4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2 ★考点2
★知识点1 ★考点1
★知识点2 ★考点2
★知识点3 ★考点3
★知识点4 ★考点4
★知识要点导航 ★热点分类解析
★知识点1 ★考点1

2018年中考数学知识分类汇编《因式分解、分式及二次根式》

2018年中考数学知识分类汇编《因式分解、分式及二次根式》

因式分解、分式及二次根式一、单选题1.估计的值应在()A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】B2.若分式的值为0,则的值是()A. 2或-2B. 2C. -2D. 0【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】A【解析】【分析】分式值为零的条件是:分子为零,分母不为零.【解答】根据分式有意义的条件得:解得:故选A.【点评】考查分式值为零的条件,分式值为零的条件是:分子为零,分母不为零. 3.计算的结果为A. B. C. D.【来源】江西省2018年中等学校招生考试数学试题【答案】A4.若分式的值为零,则x的值是()A. 3B. -3C. ±3D. 0【来源】浙江省金华市2018年中考数学试题【答案】A【解析】试题分析:分式的值为零的条件:分子为0且分母不为0时,分式的值为零. 由题意得,,故选A.考点:分式的值为零的条件点评:本题属于基础应用题,只需学生熟练掌握分式的值为零的条件,即可完成.5.计算的结果为()A. 1B. 3C.D.【来源】天津市2018年中考数学试题【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.6.若分式的值为0,则x的值是()A. 2B. 0C. -2D. -5【来源】浙江省温州市2018年中考数学试卷【答案】A【解析】分析: 根据分式的值为0的条件:分子为0且分母不为0,得出混合组,求解得出x的值.详解: 根据题意得:x-2=0,且x+5≠0,解得x=2.故答案为:A.点睛: 本题考查了分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.7.已知,,则式子的值是()A. 48B.C. 16D. 12【来源】湖北省孝感市2018年中考数学试题【答案】D8.化简的结果为()A. B. a﹣1 C. a D. 1【来源】山东省淄博市2018年中考数学试题【答案】B【解析】分析:根据同分母分式加减法的运算法则进行计算即可求出答案.详解:原式=,=,=a﹣1故选:B.点睛:本题考查同分母分式加减法的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.9.下列分解因式正确的是()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】C二、填空题10.分解因式:16﹣x2=__________.【来源】江苏省连云港市2018年中考数学试题【答案】(4+x)(4﹣x)【解析】分析:16和x2都可写成平方形式,且它们符号相反,符合平方差公式特点,利用平方差公式进行因式分解即可.详解:16-x2=(4+x)(4-x).点睛:本题考查利用平方差公式分解因式,熟记公式结构是解题的关键.11.分解因式:2x3﹣6x2+4x=__________.【来源】山东省淄博市2018年中考数学试题【答案】2x(x﹣1)(x﹣2).【解析】分析:首先提取公因式2x,再利用十字相乘法分解因式得出答案.详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2).故答案为:2x(x﹣1)(x﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.12.分解因式:a2-5a =________.【来源】浙江省温州市2018年中考数学试卷【答案】a(a-5)13.已知,,则代数式的值为__________.【来源】四川省成都市2018年中考数学试题【答案】0.36【解析】分析:原式分解因式后,将已知等式代入计算即可求出值.详解:∵x+y=0.2,x+3y=1,∴2x+4y=1.2,即x+2y=0.6,则原式=(x+2y)2=0.36.故答案为:0.36点睛:此题考查了因式分解-运用公式法,熟练掌握因式分解的方法是解本题的关键.14.因式分解:____________.【来源】山东省潍坊市2018年中考数学试题【答案】【解析】分析:通过提取公因式(x+2)进行因式分解.详解:原式=(x+2)(x-1).故答案是:(x+2)(x-1).点睛:考查了因式分解-提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.15.分解因式:2a3b﹣4a2b2+2ab3=_____.【来源】四川省宜宾市2018年中考数学试题【答案】2ab(a﹣b)2.16.因式分解:__________.【来源】江苏省扬州市2018年中考数学试题【答案】【解析】分析:原式提取2,再利用平方差公式分解即可.详解:原式=2(9-x2)=2(x+3)(3-x),故答案为:2(x+3)(3-x)点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17.分解因式:________.【来源】2018年浙江省舟山市中考数学试题【答案】【解析】【分析】用提取公因式法即可得到结果.【解答】原式=.故答案为:【点评】考查提取公因式法因式分解,解题的关键是找到公因式.18.因式分解:__________.【来源】2018年浙江省绍兴市中考数学试卷解析【答案】【解析】【分析】根据平方差公式直接进行因式分解即可.【解答】原式故答案为:【点评】考查因式分解,常用的方法有:提取公因式法,公式法,十字相乘法. 19.若分式的值为0,则x的值为______.【来源】山东省滨州市2018年中考数学试题【答案】-320.若分式有意义,则的取值范围是_______________ .【来源】江西省2018年中等学校招生考试数学试题【答案】【解析】【分析】根据分式有意义的条件进行求解即可得.【详解】由题意得:x-1≠0,解得:x≠1,故答案为:x≠1.【点睛】本题考查了分式有意义的条件,熟知分母不为0时分式有意义是解题的关键. 21.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】3【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-3=3,故答案为:3.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.学科@网三、解答题22.先化简,再求值:,其中.【来源】江苏省盐城市2018年中考数学试题【答案】原式=x-1=23.先化简,再求值:,其中.【来源】广东省深圳市2018年中考数学试题【答案】,.【解析】【分析】括号内先通分进行分式的加减法运算,然后再进行分式的乘除法运算,最后把数值代入化简后的结果进行计算即可.【详解】,,,当时,原式.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的法则是解题的关键. 24.计算:.【来源】广东省深圳市2018年中考数学试题【答案】325.(1).(2)化简.【来源】四川省成都市2018年中考数学试题【答案】(1);(2)x-1.【解析】分析:(1)利用有理数的乘方、立方根、锐角三角函数和绝对值的意义进行化简后再进行加减运算即可求出结果;(2)先将括号内的进行通分,再把除法转化为乘法,约分化简即可得解.详解:(1)原式=;(2)解:原式.点睛:本题考查实数运算与分式运算,运算过程不算复杂,属于基础题型.26.先化简,再求值:,其中.【来源】贵州省安顺市2018年中考数学试题【答案】,.【解析】分析:先化简括号内的式子,再根据分式的除法进行计算即可化简原式,然后将x=-2代入化简后的式子即可解答本题.详解:原式=.∵,∴,舍去,当时,原式.点睛:本题考查分式的化简求值,解题的关键是明确分式化简求值的方法.27.先化简,再求值:(xy2+x2y)×,其中x=π0﹣()﹣1,y=2sin45°﹣.【来源】山东省滨州市2018年中考数学试题【答案】28.计算.【来源】江苏省南京市2018年中考数学试卷【答案】【解析】分析:先计算,再做除法,结果化为整式或最简分式.详解:.点睛:本题考查了分式的混合运算.解题过程中注意运算顺序.解决本题亦可先把除法转化成乘法,利用乘法对加法的分配律后再求和.29.计算:.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】原式30.先化简,再求值: ,其中.【来源】湖南省娄底市2018年中考数学试题【答案】原式==3+2【解析】【分析】括号内先通分进行加减运算,然后再进行分式的乘除法运算,最后把数值代入化简后的式子进行计算即可.【详解】原式===,当x=时,原式==3+2.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的法则是解题的关键.31.先化简,再求值:,其中是不等式组的整数解.【来源】山东省德州市2018年中考数学试题【答案】.32.(1)计算:;(2)化简并求值:,其中,.【来源】2018年浙江省舟山市中考数学试题【答案】(1)原式;(2)原式=-1【解析】【分析】(1)根据实数的运算法则进行运算即可.(2)根据分式混合运算的法则进行化简,再把字母的值代入运算即可.【解答】(1)原式(2)原式.当,时,原式.【点评】考查实数的混合运算以及分式的化简求值,掌握运算法则是解题的关键.33.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)34.先化简,再求值:,其中.【来源】山东省泰安市2018年中考数学试题【答案】.。

2018年全国各地中考数学真题汇编:因式分解

2018年全国各地中考数学真题汇编:因式分解

2018年中考数学真题汇编:因式分解1.(2018安徽)下列分解因式正确的是()A. B.C. D.【答案】C2.(2018四川绵阳)因式分解:________。

【答案】y(x++2y)(x-2y)3.(2018浙江舟山)分解因式m2-3m=________。

【答案】m(m-3)4.(2018浙江绍兴)因式分解:4x2-y2=________。

【答案】(2x+y)(2x-y)5.因式分解: ________.【答案】6.分解因式:________.【答案】a(a+1)(a-1)7.分解因式:________.【答案】ab(a+b)(a-b)8.分解因式:=________.【答案】(4+x)(4-x)9.因式分解:________.【答案】10.分解因式:x3-9x=________ .【答案】x(x+3)(x-3)11.分解因式:________.【答案】12.因式分解:________.【答案】13.分解因式:________.【答案】14.分解因式:________.【答案】a(a-5)15.因式分解:________【答案】16.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)= .求满足D(m)是完全平方数的所有m.【答案】(1)解:如:1188,2475,9900(答案不唯一,符合题意即可);猜想任意一个“极数”是99的倍数,理由如下:设任意一个“极数”为(其中1≤x≤9,0≤y≤9,且x、y为整数),=1000x+100y+10(9-x)+(9-y)=1000x+100y+90-10x+9-y=990x+99y+99=99(10x+y+1),∵x、y为整数,则10x+y+1为整数,∴任意一个“极数”是99点倍数(2)解:设m= (其中1≤x≤9,0≤y≤9,且x、y为整数),由题意则有D(m)= =3(10x+y+1),∵1≤x≤9,0≤y≤9,∴33≤3(10x+y+1)≤300,又∵D(m)为完全平方数且为3的倍数,∴D(m)可取36、81、144、225,①D(m)=36时,3(10x+y+1)=36,10x+y+1=12,∴x=1,y=1,m=1188;②D(m)=81时,3(10x+y+1)=81,10x+y+1=27,∴x=2,y=6,m=2673;③D(m)=144时,3(10x+y+1)=144,10x+y+1=48,∴x=4,y=7,m=4752;④D(m)=225时,3(10x+y+1)=225,10x+y+1=75,∴x=7,y=4,m=7425;综上所述,满足D(m)为完全平方数的m的值为1188,2673,4752,7425.。

2018中考整式与因式分解(可编辑修改word版)

2018中考整式与因式分解(可编辑修改word版)

整式与因式分解一、基础知识梳理(课前完成)(一)整式的乘除1.幂的运算性质(1). a.m.a n=(m ,n 都是正整数)。

例:a 2.a3=。

(2). (ab)n=(n为正整数)。

例:(ab)3 =。

(3). (a m)n =(m,n都是正整数)。

例:(a 2)3 =。

(4). a.m÷a n=(a ≠ 0 ,m ,n 都是正整数,并且m >n )。

例:a3÷a 2=。

(5). a 0=(a ≠ 0 )(6). a -n=(a ≠ 0 ,n 是正整数)2.整式的乘法:(1)单项式乘以单项式:6x 2.3xy =。

(2)单项式乘以多项式:(x 2-2 y)(xy 2)=。

(3)多项式乘以多项式:(2x -3y)(x + 4 y)=。

3.整式的除法:(1)单项式除法:6x3÷ 2x =。

(2)多项式除以单项式:(8x 2- 4xy)÷(- 4x)=。

(二)因式分解1.分解因式的概念(1).分解因式:把一个多项式化成几个的形式。

(2).分解因式与整式乘法的关系:2.分解因式的基本方法:(1). 提公因式法:ma +mb +mc =。

(2).运用公式法:(1)平方差公式:a 2-b 2=;(2)完全平方公式:a 2± 2ab +b 2=。

一、选择题(36)1. (2014•安徽省,第2 题4 分)x2•x3=()A.x5 B.x6 C.x8 D.x92. (2014•安徽省,第4 题4 分)下列四个多项式中,能因式分解的是()A.a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y3. (2014•安徽省,第7 题4 分)已知x2﹣2x﹣3=0,则2x2﹣4x 的值为()A.﹣6 B.6 C.﹣2 或6 D.﹣2 或304.(2014•福建泉州,第2 题3 分)下列运算正确的是()A.a3+a3=a6B.2(a+1)=2a+1 C.(ab)2=a2b2 D.a6÷a3=a25.(2014•福建泉州,第6 题3 分)分解因式x2y﹣y3 结果正确的是()A.y(x+y)2B.y(x﹣y)2C.y(x2﹣y2)D.y(x+y)(x﹣y)6.(2014•广东,第4 题3 分)把x3﹣9x 分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)7.(2014•珠海,第3 题3 分)下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6 C.a6+a2=a3D.﹣3a+2a=﹣a 8.(2014•新疆,第3 题5 分)下列各式计算正确的是()A.a2+2a3=3a5B.(a2)3=a5 C.a6÷a2=a3D.a•a2=a39.(2014•毕节地区,第13 题3 分)若﹣2a m b4 与5a n+2b2m+n 可以合并成一项,则m n 的值是()A 2B 0C ﹣1D 110.(2014•四川自贡,第2 题4 分)(x4)2等于()A.x6B.x8C.x16D.2x411.(2014•浙江湖州,第2 题3 分)计算2x(3x2+1),正确的结果是()A.5x3+2x B.6x3+1 C.6x3+2x D.6x2+2x12. (2014 年江苏南京,第2 题,2 分)计算(﹣a2)3的结果是()A.a5 B.﹣a5 C.a6 D.﹣a6二、填空题(36)8.分解因式:(1)x 2-16 =;(2)x 2+ 6x + 9 =:(3)(x+3)2 -(x+3)=(4)a3﹣4a= .(5)x2y﹣y= (6)m2n﹣2mn+n= 。

中考数学《因式分解》专题复习试卷(含答案)

中考数学《因式分解》专题复习试卷(含答案)

2018-2019学年初三数学专题复习因式分解一、单选题1.多项式﹣6x3y2﹣3x2y+12x2y2分解因式时,应先提的公因式是()A. 3xyB. ﹣3x2yC. 3xy2D. ﹣3x2y22.下列多项式中能用平方差公式分解因式的是()A. a2+(-b)2B. 5m2-20mnC. -x2-y2D. -x2+93.多项式6x3y2﹣3x2y2+12x2y3的公因式为()A. 3xyB. ﹣3x2yC. 3xy2D. 3x2y24.下列四个多项式,哪一个是2X2+5X-3的因式?()A. 2x-1B. 2x-3C. x-1D. x-35.下列各式从左到右的变形,是因式分解的是()A. x2-9+6x=(x+3)(x-3)+6xB. (x+5)(x-2)=x2+3x-10C. x2-8x+16=(x-4)2D. 6ab=2a.3b6.观察下面算962×95+962×5的解题过程,其中最简单的方法是( )A. 962×95+962×5=962×(95+5)=962×100=96200B. 962×95+962×5=962×5×(19+1)=962×(5×20) =96200C. 962×95+962×5=5×(962×19+962)=5×(18278+962)=96200D. 962×95+962×5=91390+4810=962007.把代数式xy2﹣9x分解因式,结果正确的是()A. x(y2﹣9)B. x(y+3)2C. x(y+3)(y﹣3)D. x(y+9)(y﹣9)8.计算(﹣2)2002+(﹣2)2001所得的正确结果是()A. 22001B. ﹣22001C. 1D. 29.下列分解因式错误的是()A. 15a2+5a=5a(3a+1)B. ﹣x2+y2=(y+x)(y﹣x)C. ax+x+ay+y=(a+1)(x+y)D. ﹣a2﹣4ax+4x2=﹣a(a+4x)+4x210.下列多项式中,能用提取公因式法分解因式的是()A. x2﹣yB. x2+2xC. x2+y2D. x2﹣xy+y211.下列由左边到右边的变形,属于分解因式的变形是()A. ab+ac+d=a(b+c)+dB. a2﹣1=(a+1)(a﹣1)C. 12ab2c=3ab•4bcD. (a+1)(a﹣1)=a2﹣112.分解因式(a2+1)2﹣4a2,结果正确的是()A. (a2+1+2a)(a2+1﹣2a)B. (a2﹣2a+1)2C. (a﹣1)4D. (a+1)2(a﹣1)213.把x2﹣xy2分解因式,结果正确的是()A. (x+xy)(x﹣xy)B. x(x2﹣y2)C. x(x﹣y2)D. x(x﹣y)(x+y)14.下列各式中,从左到右的变形是分解因式的是()A. x2﹣2=(x+1)(x﹣1)﹣1B. (x﹣3)(x+2)=x2﹣x+6C. a2﹣4=(a+2)(a﹣2)D. ma+mb+mc=m(a+b)+mc15.下列多项式中能用提公因式法分解的是()A. x2+y2B. x2-y2C. x2+2x+1D. x2+2x16.若a ,b ,c是三角形的三边之长,则代数式a-2ac+c-b的值()A. 小于0B. 大于0C. 等于0D. 以上三种情况均有可能二、填空题17.分解因式:a2+ab=________.18.分解因式:a2﹣9=________.19.将多项式x2y-2xy2+y3分解因式的结果是________.20.因式分解:2x2﹣18=________.21.已知m2+m﹣1=0,则m3+2m2+2017=________.三、计算题22.因式分解:(1);(2)23.先将代数式因式分解,再求值:2x(a﹣2)﹣y(2﹣a),其中a=0.5,x=1.5,y=﹣2.24.因式分解:3ab2+6ab+3a.25.把下列各式分解因式(1)3ax2+6axy+3ay2(2)a2(x﹣y)﹣b2(x﹣y)26.把下列各式分解因式:(1);(2).四、解答题27.仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.28.﹣x2+7x﹣10.五、综合题29.把下列各式因式分解(1)﹣36aby+12abx﹣6ab(2)9x2﹣12x+4;(3)4x2﹣9y2(4)3x3﹣12x2y+12xy2.30.因式分解:(1)5mx2﹣10mxy+5my2(2)x2(a﹣1)+y2(1﹣a)答案解析部分一、单选题1.【答案】B【解析】【解答】解:﹣6x3y2﹣3x2y+12x2y2=﹣3x2y(2xy+1﹣4y)故选:B.【分析】根据公因式的确定方法:①系数取最大公约数,②字母取公共的字母③指数取最小的,可得到答案;2.【答案】D【解析】【分析】能用平方差公式分解因式的式子特点是:两项平方项,符号相反.【解答】A、a2+(-b)2符号相同,不能用平方差公式分解因式,故错误;B、5m2-20mn两项不都是平方项,不能用平方差公式分解因式,故错误;C、-x2-y2符号相同,不能用平方差公式分解因式,故错误;D、-x2+9能用平方差公式分解因式,故正确.故选D.【点评】本题考查用平方差公式分解因式的式子特点,两平方项的符号相反.3.【答案】D【解析】【解答】解:6x3y2﹣3x2y2+12x2y3的公因式为3x2y2.故选:D.【分析】分别找出系数的最大公约数,相同字母的最低指数次幂,然后即可找出公因式.4.【答案】A【解析】【分析】利用十字相乘法将2x2+5x-3分解为(2x-1)(x+3),即可得出符合要求的答案.【解答】∵2x2+5x-3=(2x-1)(x+3),2x-1与x+3是多项式的因式,故选:A.【点评】此题主要考查了因式分解的应用,正确的将多项式因式分解是解决问题的关键.5.【答案】C【解析】【解答】解:A. 的右边不是积的形式,不是因式分解;故选项错误;B. 是多项式乘法,不是因式分解;故选项错误;C. 运用平方差公式因式分解,故选项正确;D. 不是把多项式化成整式积的形式,故选项错误.故选C.6.【答案】A【解析】【解答】解:计算962×95+962×5的值,最简单的方法先提取公因式962,即962×95+962×5=962×(95+5)=962×100=96200,故答案为:A.【分析】通过观察式子,两个加数项中分别存在一个962,所以采取的简便方法为提取公因式法,将962提出公因式,进行接下来的计算即可。

2018中考数学专题复习第二讲整式因式分解共68张

2018中考数学专题复习第二讲整式因式分解共68张
( √)
考点一 代数式求值
【示范题 1】(1)(2017·重庆中考 A卷)若x=- 1 ,y=4,
3
则代数式 3x+y-3的值为 ( )
A.-6
B.0
C.2
D.6
(2)(2017·十堰中考 )若a-b=1,则代数式 2a-2b-1 的值 为________. (3)(2017·白银中考 )如果m是最大的负整数 ,n是绝对 值最小的有理数 ,c是倒数等于它本身的自然数 ,那么 代数式m2015+2016n+c 2017的值为________.
(2)把已知式子变形后再整体代入求值 :如果题目中所 求的代数式与已知代数式成倍数关系 ,各字母的项的 系数对应成比例 ,就可以把这一部分看作一个整体 ,再 把要求值的代数式变形后整体代入计算求值 .
(3)把所求式子和已知式子都变形 ,再整体代入求值 : 将已知条件和所求的代数式同时变形 ,使它们含有相 同的式子 ,再将变形后的已知条件代入变形后的要求 的代数式,计算得出结果 .
第二讲 整式、因式分解
一、整式的有关概念
积 数字因数
字母指数
2.同类项:所含字母 _相__同__,且相同字母指数也 _相__同__ 的单项式 .
二、整式的有关运算
运算
幂的运算 (m,n为正
整数, 且m>n)
同底数幂相乘 同底数幂相除
幂的乘方 积的乘方
性质或法则 am·an=_a_m_+_n am÷an=_a_m_-_n(a≠0)
(am)n=_a_m_n (ab)n=_a_n_b_n
运算
性质或法则

单项式乘 单项式
_系__数__、__相__同__字__母__的__幂__ 分别相乘,只 在一个单项式中出现的字母 ,连同它 的_指__数__ 一起作为积的一个因式

中考数学复习 课时2 整式与因式分解

中考数学复习 课时2 整式与因式分解

返回目录
第1部分 第一单元 数与式
同底数幂相 乘
幂的 幂的乘方 运算 积的乘方
同底数幂相 除
am·an=④__a_m_+_n_(m,n都是正整 数)
(am)n=⑤_a_m_n_(m,n都是正整数)
(ab)n=⑥_a_n_b_n _(n是正整数) am÷an=⑦_a_m_-_n__(a≠0,m,n 都是正整数,并且m>n)
返回目录
第1部分 第一单元 数与式
16.(2018 长沙)先化简,再求值:(a+b)2+b(a-b) -4ab,其中 a=2,b=-12.
解:原式=a2+2ab+b2+ab-b2-4ab =a2-ab.
当 a=2,b=-12时,原式=4+1=5.
返回目录
第1部分 第一单元 数与式
广东中考
1.(2015广东)(-4x)2=( D )
返回目录
第1部分 第一单元 数与式
四、因式分解
定义:把一个多项式化成几个整式的积的形式叫做这
个多项式的因式分解
提公因式法:ma+mb+mc=⑬_m__(_a_+__b_+__c_)
因式分解
方法
公式法
平方差公式:a2-b2=a+ba-b 完全平方公式:a2+2ab+b2=a+b2,
a2-2ab+b2=a-b2
返回目录
第1部分 第一单元 数与式
中考新考法 52x-3y=( D )
A.34 C.23
9.(2018 威海)已知 5x=3,5y=2,则
B.1 D.98
返回目录
第1部分 第一单元 数与式
知识点
因式分解(6年5考)
考情分析 2018年第12题考查完全平方公式、2017 年第11题考查提公因式法,2016年第12题、2013年第11 题均考查平方差公式,2014年第4题考查提公因式法和平 方差公式.

中考数学一轮教材梳理复习课件:第2课整式(含因式分解)

中考数学一轮教材梳理复习课件:第2课整式(含因式分解)
a3,…,第 n 个数记为 an,则 a4+a200=__2_0___1_1_0__.
首页
下一页
11.(2019·广东)如图 1 所示的图形是一个轴对称 图形,且每个角都是直角,长度如图所示,小 明按图 2 所示方法玩拼图游戏,两两相扣,相 互间不留空隙,那么小明用 9 个这样的图形(图 1)拼出来的图形的总长度是__a_+__8_b__(结果用含 a,b 代数式表示).
首页
下一页
9.(1)(2020·金华)下列多项式中,能运用平方差公式分解因
式的是( C )
A.a2+b2
B.2a-b2
C.a2-b2
D.-a2-b2
(2)(2020·自贡)分解因式:3a2-6ab+3b2=__3_(_a_-__b_)_2_;
(3)(2020·贵州)把多项式 xy2-4x 分解因式,结果是
首页
下一页
三、解答题
14.(2020·随州)先化简,再求值:a(a+2b)- 2b(a+b),其中 a= 5 ,b= 3 .
解:原式=a2+2ab-2ab-2b2=a2-2b2. 当 a= 5 ,b= 3 时, 原式=( 5 )2-2×( 3 )2=5-6=-1.
首页
下一页
15.(2020·深圳)先化简,再求值:a2-a+2a1+1
首页
下一页
12.(2020·海口)已知 x-2y=-1,则代数式 1-2x +4y 的值为__3__.
首页
下一页
13.(2019·甘肃)如图,每一幅图中有若干个大小不 同的菱形,第 1 幅图中有 1 个菱形,第 2 幅图中 有 3 个菱形,第 3 幅图中有 5 个菱形,如果第 n 幅图中有 2 019 个菱形,则 n=___1_0_1_0___.

中考数学总复习 第2讲 整式及因式分解二次函数(基础讲

中考数学总复习 第2讲 整式及因式分解二次函数(基础讲

第2讲整式及因式分解考标要求考查角度1.明确字母表示数的真实内涵及其规范的书写格式,能用代数式探索有关的规律.2.会用语言文字叙述代数式的意义,同时掌握求代数式的值的方法.3.理解同类项的概念,掌握合并同类项的法则和去括号的法则以及乘法公式,能准确地进行整式的加、减、乘、除、乘方等混合运算.4.能对多项式进行因式分解.整式作为初中数学的基础内容之一,在中考试题中多以填空题和选择题的形式命题,重点考查其基本概念及运算法则,同时也会设计一些新颖的探索与数、式有关的规律性问题.知识梳理一、整式的有关概念1.整式整式是单项式与__________的统称.2.单项式单项式是指由数字或字母的乘积组成的式子;单项式中的________因数叫做单项式的系数;单项式中所有字母指数的____叫做单项式的次数.3.多项式几个单项式的______叫做多项式;多项式中,每一个________叫做多项式的项,其中不含字母的项叫做常数项;多项式中__________项的次数就是这个多项式的次数.二、整数指数幂的运算正整数指数幂的运算法则:a m·a n=______,(a m)n=______,(ab)n=a n b n,a ma n=a m-n(m,n是正整数).三、同类项与合并同类项1.同类项所含字母相同,并且相同字母的______也分别相同的项叫做同类项.2.合并同类项把多项式中的同类项合并成一项叫做____________,合并的法则是系数相加,所得的结果作为合并后的______,字母和字母的指数不变.四、求代数式的值1.代数式的值一般地,用数值代替代数式里的字母,按照代数式指明的运算关系计算出的结果就叫做代数式的值.2.求代数式的值的基本步骤(1)代入:一般情况下,先对代数式进行化简,再将数值代入;(2)计算:按代数式指明的运算关系计算出结果.五、整式的运算1.整式的加减(1)整式的加减实质就是合并同类项;(2)整式加减的步骤:有括号,先去括号;有同类项,再合并同类项.注意去括号时,如果括号前面是负号,括号里各项的符号要______.2.整式的乘除(1)整式的乘法.①单项式与单项式相乘:把______、__________分别相乘,作为积的因式,只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.②单项式与多项式相乘:m (a +b +c )=ma +mb +mc .③多项式与多项式相乘:(m +n )(a +b )=ma +mb +na +nB . (2)整式的除法.①单项式除以单项式:把系数、同底数幂相除,作为商的因式,对于只在被除式里含有的字母,则连同它的______作为商的一个因式.②多项式除以单项式:(a +b )÷m =a ÷m +b ÷m . 3.乘法公式(1)平方差公式:(a +b )(a -b )=a 2-b 2;(2)完全平方公式:(a ±b )2=a 2±2ab +b 2. 六、因式分解1.因式分解的概念把一个多项式化成几个整式的____的形式,叫做多项式的因式分解. 2.因式分解的方法 (1)提公因式法.公因式的确定:第一,确定系数(取各项整数系数的最大公约数);第二,确定字母或因式底数(取各项的相同字母);第三,确定字母或因式的指数(取各相同字母的最低次幂).(2)运用公式法.①运用平方差公式:a 2-b 2=__________.②运用完全平方公式:a 2±2ab +b 2=________. 3.因式分解的一般步骤一提(提取公因式法);二套(套公式法).一直分解到不能分解为止. 自主测试1.(2012福建福州)下列计算正确的是( )A .a +a =2aB .b 3·b 3=2b 3C .a 3÷a =a 3D .(a 5)2=a 72.下列各式中,与x 2y 是同类项的是( )A .xy 2B .2xyC .-x 2yD .3x 2y 23.(2012四川绵阳)图(1)是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空白部分的面积是( )A .2mnB .(m +n )2C .(m -n )2D .m 2-n 24.(2012四川宜宾)分解因式:3m 2-6mn +3n 2=__________.5.单项式-3π5m 2n 的系数是______,次数是______.考点一、整数指数幂的运算【例1】 (2012湖南郴州)下列计算正确的是( )A .a 2·a 3=a 6B .a +a =a 2C .(a 2)3=a 6D .a 8÷a 2=a 4解析:A 项是同底数幂的乘法,a 2·a 3=a 2+3=a 5,故A 项错误;B 项是整式的加减运算,a +a =2a ,故B 项错误;C 项是幂的乘方,(a 2)3=a 2×3=a 6,故C 项正确;D 项是同底数幂的除法,a 8÷a 2=a 8-2=a 6,故D 项错误.答案:C方法总结 幂的运算问题除了注意底数不变外,还要弄清幂与幂之间的运算是乘、除还是乘方,以便确定结果的指数是相加、相减还是相乘.触类旁通1下列运算中,正确的是( )A .x 3·x 2=x 5B .x +x 2=x3C .2x 3÷x 2=xD .⎝ ⎛⎭⎪⎫x 23=x 32考点二、同类项与合并同类项【例2】 单项式-13x a +b y a -1与3x 2y 是同类项,则a -b 的值为( )A .2B .0C .-2D .1解析:本题主要考查了同类项的概念及方程组的解法,由-13x a +b y a -1与3x 2y 是同类项,得⎩⎪⎨⎪⎧a +b =2,a -1=1,解得⎩⎪⎨⎪⎧a =2,b =0.所以a -b =2-0=2. 答案:A方法总结 1.同类项必须具备以下两个条件:(1)所含字母相同;(2)相同字母的指数分别相同.二者必须同时具备,缺一不可;2.同类项与项的系数无关,与项中字母的排列顺序无关,如xy 2与-y 2x 也是同类项. 3.根据同类项概念,相同字母的指数相同,列方程(组)是解此类题的一般方法.触类旁通2如果3x 2n -1y m 与-5x m y 3是同类项,则m 和n 的取值是( ) A .3和-2 B .-3和2 C .3和2 D .-3和-2 考点三、整式的运算【例3】 先化简,再求值:(a +b )(a -b )+(a +b )2-2a 2,其中a =3,b =-13.解:(a +b )(a -b )+(a +b )2-2a 2=a 2-b 2+a 2+2ab +b 2-2a 2=2ab ,当a =3,b =-13时,2ab =2×3×⎝ ⎛⎭⎪⎫-13=-2. 方法总结 整式的乘法法则和除法法则是整式运算的依据,必须在理解的基础上加强记忆,并在运算时灵活运用法则进行计算.使用乘法公式时,要认清公式中a ,b 所表示的两个数及公式的结构特征,注意套用公式.触类旁通3 已知2x -1=3,求代数式(x -3)2+2x (3+x )-7的值. 考点四、因式分解【例4】 (2012湖南常德)分解因式:m 2-n 2=__________. 答案:(m +n )(m -n )方法总结 (1)因式分解时有公因式的要先提取公因式,再考虑是否应用公式法或其他方法继续分解.(2)提取公因式时,若括号内合并的项有公因式,应再次提取;注意符号的变换y -x =-(x -y ),(y -x )2=(x -y )2.(3)应用公式法因式分解时,要牢记平方差公式和完全平方公式及其特点. (4)因式分解要分解到每一个多项式不能分解为止.1.(2012湖南常德)下列运算中,结果正确的是( )A .a 3·a 4=a 12B .a 10÷a 2=a 5C .a 2+a 3=a 5D .4a -a =3a 2.(2012湖南益阳)下列计算正确的是( )A .2a +3b =5abB .(x +2)2=x 2+4C .(ab 3)2=ab 6D .(-1)0=13.(2012湖南湘潭)因式分解:m 2-mn =__________.4.(2012湖南益阳)写出一个在实数范围内能用平方差公式分解因式的多项式:__________.5.(2012湖南怀化)当x =1,y =15时,3x (2x +y )-2x (x -y )=__________.6.(2012湖南株洲)一组数据为:x ,-2x 2,4x 3,-8x 4,…观察其规律,推断第n 个数据应为__________.1.将代数式x 2+4x -1化成(x +p )2+q 的形式为( )A .(x -2)2+3B .(x +2)2-4C .(x +2)2-5D .(x +2)2+42.如图所示,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a ±b )2=a 2±2ab +b 23.多项式__________与m 2+m -2的和是m 2-2m .4.若3x m +5y 2与x 3y n 的和是单项式,则n m=__________.5.若m -n =2,m +n =5,则m 2-n 2的值为__________.6.若2x =3,4y =5,则2x -2y的值为__________.7.给出3个整式:x 2,2x +1,x 2-2x .(1)从上面3个整式中,选择你喜欢的两个整式进行加法运算,若结果能因式分解,请将其因式分解;(2)从上面3个整式中,任意选择两个整式进行加法运算,其结果能因式分解的概率是多少?参考答案 【知识梳理】一、1.多项式 2.数字 和 3.和 单项式 次数最高二、a m +n a mn三、1.指数 2.合并同类项 系数 五、1.(2)变号2.(1)①系数 同底数幂 (2)①指数 六、1.积2.(2)①(a +b )(a -b ) ②(a ±b )2导学必备知识 自主测试1.A a +a =2a ,A 项正确;b 3·b 3=b 6,B 项错误;a 3÷a =a 2,C 项错误;(a 5)2=a 10,D 项错误.2.C 只有C 选项中相同字母的指数与x 2y 分别相同.3.C 因为长方形的长为2m ,宽为2n (m >n ),则小长方形的长为m ,宽为n ,小正方形的边长为(m -n ),所以面积是(m -n )2.4.3(m -n )2 原式=3(m 2-2mn +n 2)=3(m -n )2.5.-3π53探究考点方法触类旁通1.A A 项是同底数幂相乘,x 3·x 2=x3+2=x 5,B 项中的两项不是同类项,不能合并,C 项是单项式相除,2x 3÷x 2=(2÷1)x 3-2=2x ,D 项⎝ ⎛⎭⎪⎫x 23=x 323=x38.触类旁通 2.C 此题考查同类项概念和二元一次方程组的解法,由题意得⎩⎪⎨⎪⎧ 2n -1=m ,m =3,解得⎩⎪⎨⎪⎧m =3,n =2. 触类旁通3.分析:本题需先把2x -1=3进行整理,得出x 的值,把代数式进行化简,再把x 的值代入即可求出结果.解:由2x -1=3得x =2,又(x -3)2+2x (3+x )-7=x 2-6x +9+6x +2x 2-7=3x 2+2,∴当x =2时,原式=14.品鉴经典考题1.D a 3·a 4=a 7,所以A 项不正确;a 10÷a 2=a 8,所以B 项不正确;a 2与a 3不是同类项,不能合并,所以C 项不正确;4a -a =3a ,D 项正确.2.D 2a 与3b 不能合并,A 项不正确;(x +2)2=x 2+4x +4,B 项不正确;(ab 3)2=a 2b 6,C 项不正确;由任何一个不等于零的数的零次幂等于1,知D 项正确.3.m (m -n ) m 2-mn =m (m -n ).4.答案不唯一,如x 2-1.5.5 3x (2x +y )-2x (x -y )=6x 2+3xy -2x 2+2xy =4x 2+5xy .当x =1,y =15时,原式=4×12+5×1×15=4+1=5.6.(-2)n -1x n x 的系数为1=(-2)1-1,次数为1;-2x 2的系数为-2=(-2)2-1,次数为2;4x 3的系数为4=(-2)3-1,次数为3;-8x 4的系数为-8=(-2)4-1,次数为4;….所以第n 个数据的系数为(-2)n -1,次数为n ,即(-2)n -1x n.研习预测试题1.C x 2+4x -1=(x 2+4x +4)-4-1=(x +2)2-5.2.C 因为第一个图是一个大的正方形挖去了一个小的正方形,其面积表达式为a 2-b 2.第二个图是一个梯形,下底为2a ,上底为2b ,高为(a -b ),其面积为12(2a +2b )(a -b )=(a+b )(a -b ),所以两个图验证了公式:a 2-b 2=(a +b )(a -b ).3.2-3m 由题意得此多项式为(m 2-2m )-(m 2+m -2)=m 2-2m -m 2-m +2=2-3m . 4.14 由题意得m +5=3,n =2,所以m =-2,所以n m =2-2=122=14. 5.10 m 2-n 2=(m +n )(m -n )=5×2=10. 6.35 2x -2y =2x ÷22y =2x ÷4y =3÷5=35. 7.解:(1)x 2+(2x +1)=x 2+2x +1=(x +1)2或x 2+(x 2-2x )=2x 2-2x =2x (x -1)或(2x+1)+(x 2-2x )=2x +1+x 2-2x =x 2+1.(2)由(1)可知,概率为23.。

【初三政治试题精选】2018年全国中考真题因式分解专题知识点分类解析汇编

【初三政治试题精选】2018年全国中考真题因式分解专题知识点分类解析汇编
【解析】
=a(a+1).故答案为a(a+1).
【考点】因式分解﹣提因式法.学科网
31.(2018江苏盐城)分解因式的结果为.
【答案】a(ab﹣1).
【解析】
=a(ab﹣1),故答案为a(ab﹣1).
【考点】提因式法与式法的综合运用.
32.(2018浙江丽水)分解因式=.
【答案】(+2).
【解析】原式=(+2).故答案为(+2).
= =(x+2)(x﹣2).故答案为(x+2)(x﹣2).
【考点】提因式法与式法的综合运用.
26.(2018四川眉)分解因式=.
【答案】2a(x+2)(x﹣2).
【解析】首先提因式2a,再利用平方差进行二次分解即可.
原式=2a(x2﹣4)=2a(x+2)(x﹣2).
故答案为2a(x+2)(x﹣2).
2.(2018重庆B卷)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为”相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.
(1)如果一个正整数是另外一个正整数n的平方,我们称正整数是完全平方数.
求证对任意一个完全平方数,总有F()=1;
(2)如果一个两位正整数t,t=10x+(1≤x≤≤9,x,为自然数),交换其个位上的数与十位上的数得到的新数减去原的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;

全国各地2018年中考数学真题汇编 因式分解【精品】

全国各地2018年中考数学真题汇编 因式分解【精品】

2018年中考数学真题汇编:因式分解1.(2018安徽)下列分解因式正确的是()A.B.C. D.【答案】C2.(2018四川绵阳)因式分解:________。

【答案】y(x++2y)(x-2y)3.(2018浙江舟山)分解因式m2-3m=________。

【答案】m(m-3)4.(2018浙江绍兴)因式分解:4x2-y2=________。

【答案】(2x+y)(2x-y)5.因式分解: ________.【答案】6.分解因式:________.【答案】a(a+1)(a-1)7.分解因式:________.【答案】ab(a+b)(a-b)8.分解因式:=________.【答案】(4+x)(4-x)9.因式分解:________.【答案】10.分解因式:x3-9x=________ .【答案】x(x+3)(x-3)11.分解因式:________.【答案】12.因式分解:________.【答案】13.分解因式:________.【答案】14.分解因式:________.【答案】a(a-5)15.因式分解:________【答案】16.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)= .求满足D(m)是完全平方数的所有m.【答案】(1)解:如:1188,2475,9900(答案不唯一,符合题意即可);猜想任意一个“极数”是99的倍数,理由如下:设任意一个“极数”为(其中1≤x≤9,0≤y≤9,且x、y为整数),=1000x+100y+10(9-x)+(9-y)=1000x+100y+90-10x+9-y=990x+99y+99=99(10x+y+1),∵x、y为整数,则10x+y+1为整数,∴任意一个“极数”是99点倍数(2)解:设m= (其中1≤x≤9,0≤y≤9,且x、y为整数),由题意则有D(m)= =3(10x+y+1),∵1≤x≤9,0≤y≤9,∴33≤3(10x+y+1)≤300,又∵D(m)为完全平方数且为3的倍数,∴D(m)可取36、81、144、225,①D(m)=36时,3(10x+y+1)=36,10x+y+1=12,∴x=1,y=1,m=1188;②D(m)=81时,3(10x+y+1)=81,10x+y+1=27,∴x=2,y=6,m=2673;③D(m)=144时,3(10x+y+1)=144,10x+y+1=48,∴x=4,y=7,m=4752;④D(m)=225时,3(10x+y+1)=225,10x+y+1=75,∴x=7,y=4,m=7425;综上所述,满足D(m)为完全平方数的m的值为1188,2673,4752,7425.。

2018年中考数学试题分类汇编 知识点05 因式分解

2018年中考数学试题分类汇编 知识点05 因式分解

知识点05 因式分解一、选择题1. (2018安徽省,5,4分)下列分解因式正确的是( )A. 24(4)x x x x -+=-+B. 2()x xy x x x y ++=+C. 2()()()x x y y y x x y -+-=-D. 244(2)(x 2)x x x -+=+- 【答案】C【解析】用提公因式法分解因式和完全平方公式分解因式进行分解即可得到答案. 解:A 、24(4)x x x x -+=--,故此选项错误;B 、2(1)x xy x x x y ++=++,故此选项错误;C 、2()()()x x y y y x x y -+-=-,故此选项正确;D 、2244(x 2)x x -+=-,故此选项错误; 故选:D .【知识点】公式法和提公因式法分解因式2. (2018山东省济宁市,5,3)多项式4a-a 3分解因式的结果是( )A.a(4-a 2) B.a(2-a)(2+a) C.a(a-2)(a +2)D.a(2-a)2【答案】B【解析】本题考查了多项式的因式分解,应用因式分解的方法解题是关键.根据多项式分解因式的方法,先提取公因式m ,再用平方差公式.即:4a-a 3=a(4-a 2)=a(2-a)(2+a) ,因此,本题应该选B. 【知识点】多项式的因式分解1. (2018四川凉山州,6,4分)多项式236x y y -在实数范围内分解因式正确的是( )A.(3y x xB.()232y x-C.()236y x - D.(3y x x -+【答案】A【解析】把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式).此题要求在实数范围内分解因式.故选择A.【知识点】因式分解的步骤,在实数范围内因式分解. 二、填空题1. (2018四川泸州,题,3分)分解因式:233a -= . 【答案】3(a+1)(a-1)【解析】原式=3(a 2-1)=3(a+1)(a-1)【知识点】因式分解(提公因式法,公式法)2. (2018四川内江,13,5)分解因式:a 3b - ab 3= . 【答案】ab (a +b )(a -b )【解析】解:a 3b - ab 3=ab (a 2-b 2)=ab (a +b )(a -b ) . 【知识点】提公因式法;平方差公式3 (2018四川绵阳,13,3分) 因式分解:x 2y -4y 3=【答案】y (x -2y )(x +2y ).【解析】解:原式=y (x 2-4y 2)=y(x -2y )(x +2y ). 故答案为y(x -2y )(x +2y ).【知识点】提公因式法和公式法的综合应用4. (2018浙江衢州,第11题,4分)分解因式:29x -=________· 【答案】(x+3)(x-3)【解析】本题考查了平方差公式,正确掌握平方差公式是解题的关键.原式=(x+3)(x-3) 【知识点】平方差公式5. (2018湖南岳阳,9,4分) 因式分解:24x -= . 【答案】(x -2)(x +2).【解析】解:原式=x 2-22=(x -2)(x +2). 故答案为(x -2)(x +2).【知识点】应用公式法进行因式分解6 (2018浙江绍兴,11,3分)因式分解:224x y -= .【答案】(2)(2)x y x y +-【解析】利用平方差公式22()()a b a b a b -=+-进行分解:224y x -()222y x -=()()y x y x -+=22【知识点】因式分解-公式法7. (2018江苏连云港,第10题,3分)分解因式: 16-x2=__________.【答案】(4+x)(4-x)【解析】解:16-x2=(4+x)(4-x),故答案为:(4+x)(4-x).【知识点】用公式法分解因式8.(2018山东潍坊,13,3分)因式分解:(x+2)x-x-2= .【答案】(x+2)(x-1)【解析】(x+2)x-x-2=(x+2)x-(x+2)=(x+2)(x-1).【知识点】提公因式法分解因式9.(2018四川省达州市,15,3分)已知:m2-2m-1=0,n2+2n-1=0且mn≠1,___________.【答案】3.【解析】∵mn≠1,∴m≠1n.由已知得m2-2m=n2+2n,∴(m+n)(m-n-2)=0.∴m=-n或m-n-2=0.∵n2+2n-1=0,∴n+2-1n=0.∴1mn nn++=m+1+1n=1-n+1n=1+2=3.【知识点】代数式的值;平方差公式;因式分解;10. (2018江苏泰州,10,3分)分解因式:3a a -= .【答案】(1)(1)a a a +- 【解析】3aa -=2(1)a a -=(1)(1)a a a +-.【知识点】因式分解11. (2018江苏省盐城市,11,3分)分解因式:x 2-2x +1= ___________. 【答案】(x -1)2【解析】x 2-2x +1=(x -1)2. 【知识点】分解因式;完全平方公式12. (2018山东威海,13,3分)分解因式:-21a 2+2a -2=________________. 【答案】-12(a -2)2【解析】在因式分解时,如有公因式则先提公因式,然后利用公式法.原式=-12(a 2-4a +4)=-12(a -2)2. 【知识点】因式分解、提公因式法、公式法13. (2018山东省淄博市,14,4分) 分解因式:2x 3-6x 2+4x =____________________. 【答案】2x (x-2)(x-1)【解析】先提公因式2x ,再利用十字相乘分解. 【知识点】因式分解14. (2018四川省德阳市,题号13,分值:3)分解因式:2xy 2+4xy+2x=____. 【答案】2x(y+1)2.【解析】2xy 2+4xy+2x=2x(y 2+2y+1)=2x(y+1)2.【知识点】因式分解15. (2018四川省宜宾市,9,3分)分解因式:2a 3b –4a 2b 2+2ab 3= . 【答案】2ab(a-b)2【解析】原式=2ab(a 2-2ab+b 2)=2ab(a-b)2. 【知识点】因式分解16.(2018浙江杭州,13,4分)因式分解:2()()______.a b b a ---=【答案】(b)(1)a a b --+【解析】22()()()()(b)(1)a b b a a b a b a a b ---=-+-=--+ 【知识点】因式分解17. (2018宁波市,15题,4分) 已知x,y 满足方程组,则的值为_________.【答案】-15 【解析】解:【知识点】解二元一次方程或者因式分解18. (2018浙江温州,11,5) . 分解因式: a 2- 5a= . 【答案】a(a-5)【解析】本题考查了提公因式法,利用提公因式法提取a 得到a(a-5)【知识点】提公因式法1. (2018湖北鄂州,11,3分) 因式分解:231212a a -+= . 【答案】()232a -.【解析】()()2223121234432a a a a a -+=-+=-. 【知识点】因式分解;提公因式;完全平方公式2. (2018湖北黄冈,8题,3分)因式分解:x 3-9x=________ 【答案】x(x+3)(x-3)【解析】原式=x(x 2-9)=x(x+3)(x-3) 【知识点】因式分解3. (2018湖南郴州,10,3)因式分解:3222a a b ab -+= . 【答案】()2a ab -【思路分析】先找到多项式各项的公因式,提取公因式,再利用完全平方公式分解因式得出答案. 【解析】解:3222a a b ab -+=()()2222a a ab ba ab -+=-.【知识点】因式分解;提公因式法;完全平方公式4. (2018湖南益阳,12,4分)因式分解:x 3y 2-x 3= . 【答案】x 3(y +1)(y -1)【解析】x 3y 2-x 3=x 3(y 2-1)= x 3(y +1)(y -1) 【知识点】因式分解5. (2018内蒙古呼和浩特,11,3分)分解因式29a b b -=_________【答案】 (3)(3)b a a +-【解析】解:229(9)(3)(3)ab b b a b a a -=-=+-【知识点】因式分解6.(2018山东菏泽,10,3分)若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为 . 【答案】-12【解析】解:∵32232a b a b ab ++=ab(a 2+2ab+b 2)=ab(a+b)2=-3×22=-12.【知识点】因式分解;求代数式的值;7. (2018四川遂宁,11,5分) 因式分解:233b a -【答案】3(a-b)(a+b)【解析】解:2233b a -=3(a 2-b 2)=3(a-b)(a+b)故答案为3(a-b)(a+b)【知识点】提公因式法,公式法8. (2018湖南省湘潭市,9,3分)因式分解:a 2-2ab+b 2=________. 【答案】(a-b )2【解析】a 2-2ab+b 2=(a-b)2. 【知识点】公式法分解因式9.(2018广东省深圳市,13,3分)分解因式:29a -= .【答案】()()33a a +-.【解析】()()2229333a a a a -=-=+-. 【知识点】因式分解;平方差公式10. (2018湖南省永州市,12,4)因式分解:x 2-1= . 【答案】(x-1)( x+1)【解析】这类因式分解问题,首先考虑提取公因式法,然后考虑公式法,即平方差公式或完全平方公式.因此,本题填:(x-1)( x+1).【知识点】因式分解 平方差公式11. (2018四川攀枝花,11,4) 分解因式:=+-xy y x y x 232 . 【答案】()21-x xy【解析】()()22231122-=+-=+-x xy x x xy xy y x y x【知识点】因式分解12. (2018四川自贡,13,4分)分解因式:22ax 2axy ay ++= . 【答案】2)(y x a +【解析】22222)()2(2y x a y xy x a ay axy ax +=++=++ 【知识点】提公因式法因式分解、公式法因式分解13. (2018 湖南张家界,9,3分)因式分解:=++122a a .【答案】()21+a【解析】=++122a a ()21+a .【知识点】运用完全平方公式进行因式分解14. (2018江苏省宿迁市,11,3)分解因式:x 2y -y = . 【答案】y (x +1)(x -1)【解析】x 2y -y =y (x 2-1)=y (x +1)(x -1). 【知识点】分解因式。

2018中考数学知识点:因式分解速记口诀2

2018中考数学知识点:因式分解速记口诀2

2018中考数学知识点:因式分解速记口诀2
新一轮中考复习备考周期正式开始,中考网为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!下面是《2018中考数学知识点:因式分解速记口诀2》,仅供参考!
因式分解速记口诀2
一提二套三分组,十字相乘也上数。

四种方法都不行,拆项添项去重组。

重组无望试求根,换元或者算余数。

多种方法灵活选,连乘结果是基础。

同式相乘若出现,乘方表示要记住。

【注】一提(提公因式)二套(套公式)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档