长方体和正方体基础知识习题

合集下载

长方体和正方体全套练习题

长方体和正方体全套练习题

第二单元长方体(一)全套练习练习一长文体正方体的认识一、填空1、长方体有()个面,它们一般都是()形,也可能有()个面是正方形.2、长方体的上面和下面、前面和后面、左面和右面都叫做(),它们的面积().3、长方体的12条棱,每相对的()条棱算作一组,12条棱可以分成()组.4、正方体有()个面,每个面都是()形,面积都().5、一个正方体的棱长是6厘米,它的棱长总和是().6、一个长方体的长是1.5分米,宽是1.2分米,高是1分米,它的棱长和是()分米.7、一个长方体的棱长总和是80厘米,其中长是10厘米,宽是7厘米,高是()厘米.8、把两个棱长1厘米的正方体拼成一个长方体,这个长方体的棱长总和是()厘米.二、判断题1、长方体和正方体都有6个面,12条棱,8个顶点.()2、长方体的6个面不可能有正方形.()3、长方体的12条棱中,长、宽、高各有4条.()4、正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等.()5、长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等.()6、一个长方体长12厘米,宽8厘米,高7厘米,把它切成一个尽可能大的正方体,这个正方体的棱长是8厘米.()三、选择题1、下列物体中,形状不是长方体的是()①火柴盒②红砖③茶杯④木箱2、长方体的12条棱中,高有()条.①4 ②6 ③8 ④123、下列三个图形中,能拼成正方体的是()4、把一个棱长3分米的正方体切成两个相等的长方体,增加的两个面的总面积是()平方分米.①18 ②9 ③36 ④以上答案都不对练习二长文体正方体的棱长和、表面积1、有一根长52厘米的铁丝,恰好可以焊接成一个长6厘米,宽4厘米,高多少厘米的长方体?2、一个长方体的水池,长20厘米,宽10厘米,深2米,占地多少平方米?3、用96厘米长的铁丝焊接成一个正方体的框架,然后用纸给它的表面包裹起来,至少需要多少平方厘米的纸?4、一个长方体,长12厘米,宽和高都是8厘米,这个长方体的表面积是多少平方厘米?5、用两个棱长为5厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?6、一个长方体和一个正方体的棱长之和相等,已知长方体的长为5厘米,宽为3厘米,高为4厘米,求正方体的棱长。

长方体正方体专项练习题

长方体正方体专项练习题

长方体正方体专项练习题长方体正方体单元练题(应用题)1.一个长方体的长是10厘米,宽是8厘米,高是2厘米,这个长方体的棱长之和是多少厘米表面积是多少体积是多少2.一根长96厘米的铁丝围成一个正方体,这个正方体的棱长是多少厘米表面积体积4、用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米6.一个长4分米、宽3分米、高2分米的长方体,它占地面积最大是多少平方分米最小是多少表面积是多少平方米7.用72分米长的铁丝做一个正方体的框架,然后在外面贴上一层纸,至少需要多少平方分米的纸8、一个长17厘米,高20厘米,宽15厘米的长方体饼干盒,如果在它的侧面贴上一圈商标纸,这张商标纸至少需要多少平方厘米9.一个长方体通风管,长4米,宽和高都是20厘米(横截面是边长20厘米的正方形)。

做100根这样的通风管,至少需要铁皮多少平方米10、要做一种管口是正方形,周长40厘米的通气管子10根,管子长2米,至少需要铁皮多少平方米11.一个无盖的铁桶,底面是周长16分米的正方形,高是5分米,做20个这样的铁桶至少需铁皮几何平方分米12、一个长方体泅水池,长20米,宽15米,深2米,现要将它的每一个面先抹上水泥,再贴上边长4分米瓷砖,需求这样的瓷砖几何块13.一种长方体铁皮烟囱,底面是边长3分米的正方形,高4米,制这样一节烟囱至少要用铁皮多少平方米14、一个正方体木块,若把它切成3个完全相等的长方体后,表面积增加了80平方厘米,这个正方本木块原来的表面积是多少平方厘米15、三个同样大的正方体拼成一个长方体后,表面积减少了144平方厘米,这个长方体的表面积是多少16、一间长米,宽3米,高米的房间。

它的四面墙的下部刷了米高的浅绿色油漆(开门处1m²不刷),如果1m²浅绿色油漆造价10元,一共要用多少钱17、一个长方体的宽和高相等,都是8分米,如果将长去掉2分米,这个长方体就变成了正方体。

小学数学五年级《长方体和正方体》练习题

小学数学五年级《长方体和正方体》练习题

长方体和正方体的认识练习(一)一、判断:1、正方体是由6个正方形围成的立体图形。

()2、一个长方体中,可能有4个面是正方形。

()二、填空:1、因为正方体是长、宽、高都()的长方体,所以正方体是()的长方体。

2、一个正方体的棱长为a,棱长之和是(),当a =6厘米时,这个正方体的棱长总和是()厘米。

3、一个长方体长、宽、高分别是a、b、h,那么这个长方体的棱长总和是()。

三、应用:1、一个正方体的棱长是5厘米,这个正方体的棱长总和是多少厘米?(请画出这个正方体立体草图2、用72厘米长的铁丝焊接成一个正方体的框架,这个正方体的棱长是多少厘米?3、用铁丝焊接成一个长12厘米,宽10厘米,高5厘米的长方体的框架,至少需要铁丝多少厘米?4、有一根长52厘米的铁丝,恰好可以焊接成一个长6厘米,宽4厘米,高多少厘米的长方体?5、一个长方体和一个正方体的棱长之和相等,已知长方体的长为5厘米,宽为3厘米,高为4厘米,求正方体的棱长。

6、用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米?7、一个面的面积是36平方米的正方体,它所有的棱长的和是多少厘米?8、一个长方体的水池,长20米,宽10米,深2米,占地多少平方米?9、一个长方体的长是25厘米,宽是20厘米,高是18厘米,最大的面的长是()厘米,宽是()厘米,面积是()平方厘米;最小的面长是()厘米,宽是()厘米,面积是()平方厘米。

(画出这个长方体立体草图)10、一个长方体,长12厘米,宽和高都是8厘米,这个长方体前面的面积是多少平方厘米?后面呢?下面呢?(请画出长方体立体草图,标出相应数据后再计算)长方体和正方体的表面积练习一、填空(每空1分)1、长方体有()个顶点,有()条棱,有()个面,一般情况下()面的面积相等。

2、一个长方体的长是15厘米,宽是12厘米,高是8厘米,这个长方体的表面积是()平方厘米。

人教版五下长方体、正方体表面积、体积练习题

人教版五下长方体、正方体表面积、体积练习题

长方体、正方体练习题班级姓名一、填空:1、长方体或者正方体()叫做它的表面积。

2、一个正方体的棱长是10厘米,它的表面积是()平方厘米。

3、一个长方体长4分米,宽3分米,高2分米,它的表面积是()平方分米。

4、正方体的棱长之和是60分米,它的表面积是()平方分米。

5、用两个长5厘米,宽3厘米,高2厘米的长方体拼成一个表面积尽可能小的正方体,这个拼成的长方体的表面积是()平方厘米。

6、一个正方体的底面积是25平方分米,它的表面积是()平方分米,它的体积是()立方分米。

7、一个长方体,长是5厘米,宽3厘米,高1厘米,这个长方体的棱长总和是,表面积是,体积是。

8、一个正方体的棱长总和是24分米,它的表面积是,体积是。

9、3个棱长是1厘米的正方体小方块排成一行,形成的长方体的表面积是,体积是。

10、用同样的小正方体拼成一个大正方体,至少用个这样的小正方体。

11、一个正方体的表面积是36平方厘米,把它放在桌子上占的面积是()平方厘米。

12、一个长方体长5厘米,宽5厘米,高4厘米,这个长方体有2个面是()形,有()个面的面积相等,长方体的表面积是()。

13、把一根长80厘米、宽5厘米、高5厘米的长方体木材,锯成长度都是40厘米的两段,表面积比原来增加了。

14、把两个同样大小的长方体拼成一个正方体,这个正方体的棱长是10厘米,原来长方体的表面积平方厘米,体积是立方厘米。

15、用3个棱长4分米的正方体粘合成一个长方体,长方体的表面积比3个正方体的表面积少( )平方分米。

16、焊接一个长7cm、宽2cm、高1cm的长方体框架,至少要用()cm的铁丝。

二、判断:1、物体所占空间的大小叫做物体的体积。

()2、正方体的棱长扩大2倍,它的体积就扩大8倍。

()3、容积和体积的计算方法相同,但意义不同。

()4、正方体的棱长是6厘米,它的表面积和体积相等。

()5、相邻的面积单位之间的进率是100。

()6、表面积相等的物体,它们的体积也一定相等。

长方体、正方体必考题型练习题

长方体、正方体必考题型练习题

A.正方体大 B.球大 C.长方体大 D.一样大
一个正方体的铁块的棱长是4分米,把它熔铸成 一个最大的圆柱,圆柱的体积( )立方分米。
用一只棱长6厘米的正方体容器盛满水后,倒入
一只长12厘米,宽6厘米,高5厘米的长方体水箱
里,水面高
厘米
几个物体锻造成一个物体,体积不变 把8块边长是1分米的正方体铁块熔成一个大
C、长方体的长宽各扩大3倍,高缩小3倍
D、长方体的长不变,宽和高各扩大3倍。
长方体的长缩小3倍,宽扩大3倍,要使体积扩大3
倍,那么高应该

长方体的体积=长×宽×高
如果长方体的长、宽、高分别扩大到原来的2 倍,3倍,4倍,则体积扩大 到 原来 的 倍
一根长方体的木料的体积是20立方分米,横截 面积是4平方分米,木料长是( )
6.一个长方体的礼品盒,长20厘米、宽15厘米、 高10厘米,现在要用红绸带进行十字形捆扎 (最大的面朝上),打结处20厘米,一共需要
绸带
厘米。
正方体的棱长总和=棱长×12
1.一个正方体的棱长是6厘米,它的棱长总和
是 厘米,表面积是

2.正方体的棱长之和是36分米,它的棱长是 分米,体积是 立方分米 。
边长是6dm的正方体,它的表面积和体积比较


容积与容积单位
3.06m3=
dm3 3.8L=
m3
250ml=
L
4.05dm3=
L
ml
7.5L=
ml
56cm2=
dm2
785ml=
cm3=
dm3
(★★★★★):一个长方体的水槽,横截 面是一个长5分米,宽3分米的长方形,如果

小学教学:长方体与正方体专项练习(五年级下册数学)

小学教学:长方体与正方体专项练习(五年级下册数学)

认识长方体和正方体1.一个长、宽、高分别为40cm、30cm、20cm的小纸箱,在所有的棱上粘上一圈胶带,至少需要多长的胶带?2.小红为妈妈准备了一件生日礼物,下图是这件礼物的包装盒,长、宽、高分别是15cm、15cm、8cm。

现在用彩带把这个包装盒捆上,接头处长18cm。

一共需要多少厘米彩带?3.母亲节快到了,小红打算送妈妈一件礼物。

礼品盒长40cm,宽20cm,高15cm,如下图。

小红用彩带来包装礼品盒(结头部分总长30cm),一共要用彩带多少厘米?4.如图,把一个长是20cm、宽是15cm、高是18cm的礼品盒用彩带包扎起来,至少需要彩带多少厘米?(打结处每处长8cm)5.一种盒装纸巾的长、宽、高如图1所示。

用胶带将3盒这样的纸巾捆扎起来(如图2),至少需要多少厘米的胶带?(接头处忽略不计)。

6.某快递公司员工先把一个正方体形状的物体用纸箱包装好,再用胶带按如图所示的方法把它粘上3圈,每圈接头处多用4厘米胶带。

一共需要多少厘米的胶带?7.为迎接“五一”国际劳,工人叔叔要在工人俱乐部的四周装上彩灯(地面的四边不装)。

已知工人俱乐长90米,宽55米,高22米,工人叔叔至少需要多长的彩灯线?长方体和正方体的表面积(缺面问题)1.一个长方体的饼干盒,长10厘米,宽6厘米,高12厘米,如果围着它贴一圈商标纸(上、下面不贴),这张商标纸的面积至少有多少平方厘米?2.一张长为30dm,宽为20dm的长方形铁皮,从四个角上各剪去边长为5dm的正方形,并焊成一个无盖的铁盒。

在铁盒外面的底面和侧面涂上油漆,涂油漆的面积是多少平方分米?3.一个新建的游泳池长50m,长是宽的2倍,深2.5m。

现在要在游泳池的四周和底面贴上瓷砖,一共需要贴多少平方米的瓷砖?4.学校要粉刷新教室。

已知教室的长是8m,宽是6m,高是3.5m,已知门窗的面积是21.5㎡。

如果要粉刷教室的墙壁和天花板,那么要粉刷的面积是多少平方米?5.做一个长120cm、宽和高都是10cm的通风管,至少需要多少平方米的铁皮?6.制作一个横截面为周长是1.5m的正方形、长3m的长方形通风管,至少需要多少平方米的铁皮?7.制作一根长方体铁皮烟囱,烟囱长1.5m,横截面是边长为0.2m的张方形。

长方体和正方体练习题

长方体和正方体练习题

第一章 长方体和正方体的认识【概念】1.由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。

在一个长方体中,相对面完全相同,相对的棱长度相等。

一个长方体至少可以有两个面是正方形,但不会存在 3 个、4 个、5个面是正方形!2.两个面相交的边叫做棱。

三条棱相交的点叫做顶点。

相交于一个顶点的三条棱的长度分别叫做长方体的长(a )、宽(b )、高(h )。

3.由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体有12 条棱,它们的长度都相等,所有的面都完全相同。

4.正方体是长、宽、高都相等的长方体,它是一种特殊的长方体 。

形体相同点 不同点 联系 面棱 顶点 面的形状 面的面积 棱长 正方体是一种特殊的长方体 长方体 6个 12条 8个 6个面都是长方形,有时相对的两个面是正方形相对的两个面的面积相等 相对的棱的长度相等 正方体 6个面都是正方形 6个面面积都相等 12条棱都相等【注意点和常见算法】①两个棱长和相等的长方体或一个长方体和一个正方体,表面积不一定相等!②表面积相等的两个长方体或一个长方体和一个正方体,棱长和也不一定相等!③长方体的棱长总和=(长+宽+高)×4长=棱长总和÷4-宽-高宽=棱长总和÷4-长-高高=棱长总和÷4-长-宽④正方体的棱长总和=棱长×12 棱长=棱长总和÷12【小试牛刀】一、判断并改正。

1.长方体的六个面一定是长方形。

()2.正方体的六个面面积一定相等。

()3.一个长方体 ( 非正方体 ) 最多有四个面面积相等。

()4.相交于一个顶点的三条棱相等的长方体一定是正方体。

()5.长方体的三条棱分别叫做长、宽、高。

()6.有两个面是正方形的长方体一定是正方体。

()7.有三个面是正方形的长方体一定是正方体。

()8.有两个相对的面是正方形的长方体,另外四个面的面积是相等的。

()9.正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等。

长方体正方体经典习题

长方体正方体经典习题

长方体和正方体练习题1、为迎接五一劳动节,工人叔叔要在工人俱乐部的四周装上彩灯(地面四周不装)。

俱乐部的长90米,宽55米,高20米,至少需要多长的彩灯线?2、一个玻璃鱼缸的形状是正方体(无盖)棱长3dm,制作两个这个鱼缸需要多少平方米玻璃?3、用棱长1cm的小正方体摆成一个大正方体,至少需要几个小正方体?表面积是多少?体积是多少?4、亮亮家要给一个长0.75m,宽0.5m,高1.6m的简易衣柜换布罩(没有底面)至少需要用多少布?1、小卖部要做一个长2.2m,宽40cm,高80cm的玻璃柜台,现要在柜台各边装上角铁,这个柜台需要多少米角铁?2、一个饼干盒长10cm,宽6cm,高12cm,围着四周贴商标纸(上下不贴)商标纸的面积至少要多少平方厘米?3、加工一批洗衣机机套(没底)长59.5m,宽42.5m,高80m,做1000个需要多少平方米布?4、一个游泳池长50m,是宽的2倍,深2.5m。

要在四周和底面贴瓷砖,需要多少平方米瓷砖?1、公园修长15m,厚24cm,高3m的围墙。

每立方米用砖525块,这道围墙要用几块砖?2、妈妈送给奶奶的生日蛋糕长2dm、宽2dm、高0.6dm,奶奶把它平均分成4块长方体形状的小蛋糕,想一想她是怎样分,每个人分到多大的一块蛋糕?3、家具厂订购500根方木,每根方木的横截面的面积是24平方分米,长是3米。

这些木料一共是多少方?4、一个包装盒,如果从里面量长28cm、宽20cm、体积为11、76立方分米。

爸爸想用它包装一件长25cm,宽16cm,高18cm的玻璃器皿,是否可以装下?1、六一儿童节前,全市小学生代表用棱长3cm的正方体塑料品插积木在广场中央搭起了一面长6m,高2.7m,厚6cm的奥运心愿墙,算一算这面墙共用了多少块积木?2、一个长方体和一个正方体的棱长总和相等,已知长方体的长、宽、高分别是6dm、5dm、4dm,那么正方体的棱长是多少分米?它们的体积相等吗?3、一个长方体容器,长20厘米,宽10厘米,高8厘米,里面水深5厘米。

长方体正方体 练习题含答案

长方体正方体 练习题含答案

长方体正方体练习题1、长、宽、高分别为30cm、30cm、20cm的小纸箱,在所有的棱上粘上一圈胶带,至少需要多长的胶带?(30+30+20)×4=320(cm)答:至少需要320厘米的胶带。

2、五一劳动节,工人叔叔要在工人俱乐部的四周装上彩灯(地面的四边不装),已知工人俱乐部长90m,宽55m,高22m,工人叔叔至少需要多长的彩灯线?(90+55)×2+20×4=370(m)3、要做一个长2.2m、宽40cm、高80cm的玻璃柜台,现在要在柜台各边都安上角铁,至少需要多少米的角铁?40厘米=0.4米,80厘米=0.8米,(2.2+0.4+0.8)×4=13.6(米)答:至少需要13.6米的角铁。

4、一个长方体的饼干盒,长10cm,宽6cm,高12cm,如果围着它贴一圈商标纸(上、下面不贴),这张商标纸的面积至少有多少平方厘米?(10×12+6×12)×2=384(平方厘米)答:这张商标纸的面积至少有384平方厘米。

5、把一个棱长46cm的正方体纸箱的各面都贴上红纸,将它作为给希望小学捐款的“爱心箱”。

(1)他们至少需要多少平方厘米的红纸?(2)如果只在棱上粘贴胶带纸,一卷长4.5m的胶带纸够用吗?(1)46×46×6=12696(平方厘米)答:他们至少需要12696平方厘米的红纸。

(2)46cm=0.46m0.46×12=5.52(m)5.52>4.5答:一卷长4.5m的胶带纸不够用。

6、玻璃鱼缸的形状是正方体,棱长3dm,制作这个鱼缸时至少需要玻璃多少平方分米?(上面没有盖)3×3×5=45(平方分米)答:制作这个鱼缸时至少需要玻璃45平方分米。

7、一个长方体礼品盒,棱长1.5dm,如果包装这个礼品盒的用纸是其表面积的1.5倍,至少需要多少平方分米的包装纸?6×1.22×1.5=12.96(平方分米)答:至少要用12.96平方分米的包装纸。

(完整版)“长方体和正方体”练习题及答案

(完整版)“长方体和正方体”练习题及答案

六年级第一学期“长方体和正方体”练习题姓名成绩一、填空题。

(每空1分,共24分)1、在括号里填上合适的单位名称。

⑴一小瓶红墨水是60()⑵一台电冰箱的体积约是240()⑶一种油箱的容积是0.6()⑷一只火柴盒的体积约是9.6()⑸一种水箱可容水约24()2、一个长方体长5厘米,宽5厘米,高4厘米,这个长方体有2个面是()形,还有()个面的面积相等,长方体的表面积是()。

3、一个长方体的体积是162立方厘米,它的底面积是32.4平方厘米,底面长8.1厘米,这个长方体的高是( )厘米,宽是( )厘米。

4、一个长方体的体积是240立方厘米,长是8厘米,宽是6厘米,高是()厘米。

5、 6.4立方米=( )立方分米 4500毫升=( )升80立方厘米=()立方分米 3.8升 = ( )毫升7.05立方分米=( )升 50平方厘米=()平方分米6、右图是由棱长1厘米的小正方体拼成的,它的体积是()立方厘米,至少再加上()个小正方体,就能成为一个较大的正方体。

7、一个长方体,长、宽、高分别为a米、b米、c米,如果高增加4米,新的长方体比原来长方体增加了()立方米。

8、一个长方体的表面积是90平方分米,把它平均分开正好成两个相等的正方体,每个正方体的表面积是()平方分米。

9、用3个棱长4厘米的正方体粘合成一个长方体,长方体的表面积比3个正方体的表面积少()平方厘米。

10、一个长方体相邻三个面的面积分别为10平方厘米、15平方厘米和6平方厘米,这个长方体的体积为()。

11、一个长方体的宽和高都是5厘米,把它从长的中点截成两个相同的长方体后,得到其中一个长方体的表面积比原来大长方体的表面积减少120平方厘米。

原来长方体的体积是()立方厘米。

二、判断题。

(每题2分,共12分)1、正方体棱长扩大到原来的2倍,体积扩大到原来的8倍。

……………()2、a3=3a。

……………………………………………………………………()3、一个长方体茶叶罐,体积和容积相等。

苏教版六年级数学上册知识点及习题

苏教版六年级数学上册知识点及习题

苏教版六年级数学上册知识点及习题第一单元:长方体和正方体长方体的表面积公式为S=2(长×宽+宽×高+高×长),正方体的表面积公式为S=6a²。

长方体的体积公式为V=长×宽×高,正方体的体积公式为V=a³。

填空题:1.一个正方体的棱长为A,棱长之和是4A,当A=6厘米时,这个正方体的棱长总和是24厘米。

2.一个长方体最多可以有2个面是正方形,则其余4个面是完全相等的长方形。

3.用铁丝焊接成一个长12厘米,宽10厘米,高5厘米的长方体的框架,至少需要铁丝62厘米。

4.一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,不小心前面的玻璃被打坏了,修理时配上的玻璃的面积是30平方分米。

5.一个正方体的棱长总和是72厘米,它的棱长是18厘米,它的表面积是972平方厘米。

应用题:1.天天游泳池,长25米,宽10米,深1.6米,在游泳池的四周和池底砌瓷砖,那么至少需要砌瓷砖多少平方米?答案:(25×2+10×2)×1.6+25×10=220平方米。

2.一个通风管的横截面是边长是0.5米的正方形,长2.5米。

如果用铁皮做这样的通风管50只,需要多少平方米的铁皮?答案:50×2.5×0.5²=31.25平方米。

3.一种牛奶盒长6厘米,宽5厘米,高10厘米。

这种牛奶盒的容积是多少毫升?答案:6×5×10=300立方厘米=300毫升。

4.一块棱长8厘米的正方体铁块,如果用这根铁块熔成一个长10厘米、宽8厘米的长方体框架,它的高应该是多少厘米?答案:8×8×h=8×10,h=10厘米。

第二单元:分数乘法分数乘法的公式为a/b×c/d=(a×c)/(b×d)。

填空题:1.米的是10⁶米;公顷的是10⁴公顷。

长方体和正方体知识点+例题+习题

长方体和正方体知识点+例题+习题

长⽅体和正⽅体知识点+例题+习题第1节长⽅体和正⽅体的认识典型例题例1.⼀个长⽅体长8厘⽶,宽6厘⽶,⾼4厘⽶,它的棱长总和是多少厘⽶?分析:根据长⽅体的特征,它相对的棱(3组,每组4条)的长度相等,那么长⽅体的棱长和等于长、宽、⾼的4倍.解:(8+6+4)×4=18×4=72(厘⽶)答:它的棱长总和是72厘⽶.例2.⽤⼀根48厘⽶的铁丝焊接成⼀个最⼤的正⽅体框架,这个框架的每条边应该是多少厘⽶?分析:根据正⽅体的特征,它的12条棱长都相等,把48厘⽶平均分成12份,每份就是⼀条棱的长度.解:48÷12=4(厘⽶)答:这个框架的每条边应该是4厘⽶.例3.⽤棱长1厘⽶的⼩正⽅体摆成稍⼤⼀些的正⽅体,⾄少需要多少个⼩正⽅体?分析:题⽬要求⾄少要多少个棱长为1厘⽶的⼩正⽅体,那么拼成的棱长应尽量⼩,所以应该考虑棱长为2的⽴⽅体,体积是8⽴⽅厘⽶,所以要8个.解:2×2×2=8(个)答:⾄少需要8个⼩正⽅体.例4.将下⾯的硬纸板按照虚线折成⼀个⽴⽅体,哪个⾯与哪个⾯相对?分析:通过实验可以看到带有标号的⾯7与10,⾯8与11,⾯9与12是相对的⾯.例5.⼀个正⽅体的六个⾯上,分别写着“1”“2”“3”“4”“5”“6”.根据下⾯摆放的三种情况,判断出每个对⾯上的数字是⼏?分析:正⽅体有6个⾯,每⼀个⾯有⼀个相对的⾯,⽽与其余四个⾯相邻.解题时我们如果抓住这⼀特征,确定某⼀个⾯与哪四个⾯相邻,于是就不难判断出这⼀⾯相对的⾯上的数字是⼏了.即排除包括⾃⼰在内的五个数字,剩下的就是与某⼀⾯相对的⾯上数字了.先以“3”为例:从上⾯左图可以看出,“3”⾯与“2”⾯、“1”⾯相邻;从中图可以看出.“3”⾯⼜与“4”⾯、“5”⾯相邻.这就是说,“3”⾯与“1”⾯、“2”⾯、“4”⾯和“5”⾯这四个⾯相邻.那么,就可以很快知道,“3”⾯与“6”⾯相对.再来看“1”⾯:从上⾯左图可看出,“1”⾯与“2”⾯“3”⾯相邻;从右图可看出,“1”⾯⼜与“6”⾯“4”⾯相邻,这就是说,与“1”相邻的四个⾯,是“2”⾯、“3”⾯、“4”⾯和“6”⾯,那么,与“1”⾯相对的⾯就只能是“5”⾯了.最后看“4”⾯:从上⾯中图可以看出,“4”⾯与“3”⾯、“5”⾯相邻;从右图可以看出,“4”⾯⼜与“1”⾯“6”⾯相邻.这就是说,与“4”⾯相邻的四个⾯,是“1”⾯、“3”⾯、“5”⾯和“6”⾯,于是可知,与“4”⾯相对是⾯是“2”⾯.所以题⽬的结论是:这个正⽅体上相对的⾯,分别是“1”⾯和“5”⾯、“2”⾯和“4”⾯、“3”⾯和“6”⾯.解:这个正⽅体上相对的⾯,分别是“1”⾯和“5”⾯、“2”⾯和“4”⾯、“3”⾯和“6”⾯.习题精选⼀、填空.1.长⽅体有()个⾯,它们⼀般都是()形,也可能有()个⾯是正⽅形.2.长⽅体的上⾯和下⾯、前⾯和后⾯、左⾯和右⾯都叫做(),它们的⾯积().3.长⽅体的12条棱,每相对的()条棱算作⼀组,12条棱可以分成()组.4.正⽅体有()个⾯,每个⾯都是()形,⾯积都().5.⼀个正⽅体的棱长是6厘⽶,它的棱长总和是().6.⼀个长⽅体的长是1.5分⽶,宽是1.2分⽶,⾼是1分⽶,它的棱长和是()分⽶.7.⼀个长⽅体的棱长总和是80厘⽶,其中长是10厘⽶,宽是7厘⽶,⾼是()厘⽶.8.把两个棱长1厘⽶的正⽅体拼成⼀个长⽅体,这个长⽅体的棱长总和是()厘⽶.⼆、判断题.1.长⽅体和正⽅体都有6个⾯,12条棱,8个顶点.()2.长⽅体的6个⾯不可能有正⽅形.()3.长⽅体的12条棱中,长、宽、⾼各有4条.()4.正⽅体不仅相对的⾯的⾯积相等,⽽且所有相邻的⾯的⾯积也都相等.()5.长⽅体(不包括正⽅体)除了相对的⾯相等,也可能有两个相邻的⾯相等.()6.⼀个长⽅体长12厘⽶,宽8厘⽶,⾼7厘⽶,把它切成⼀个尽可能⼤的正⽅体,这个正⽅体的棱长是8厘⽶.()三、选择题.1.下列物体中,形状不是长⽅体的是()①⽕柴盒②红砖③茶杯④⽊箱2.长⽅体的12条棱中,⾼有()条.①4②6③8④123.下列三个图形中,能拼成正⽅体的是()4.把⼀个棱长3分⽶的正⽅体切成两个相等的长⽅体,增加的两个⾯的总⾯积是()平⽅分⽶.①18②9③36④以上答案都不对参考答案⼀、填空.1.6 长⽅形 22.相对⾯相等3.4 34.6 正⽅形相等5.72厘⽶6.14.87.38.16⼆、判断题.1.√ 2.× 3.√4.√ 5.√ 6.×三、选择题.1.③2.①3.①和③4.①第2节长⽅体和正⽅体的表⾯积例1.⼀种有盖的长⽅体铁⽪盒,长8厘⽶,宽5厘⽶,⾼3厘⽶.做25个这样的盒⼦⾄少需要多少平⽅⽶铁⽪?(不计接⼝⾯积)分析:根据长⽅体表⾯积的计算⽅法,先求出⼀个盒⼦需要的铁⽪数量,然后就可以求出25个这样的盒⼦需要的铁⽪数量.解:(8×5+8×3+5×3)×2×25=158×25=3950(平⽅厘⽶)=0.395(平⽅⽶)答:⾄少需要0.395平⽅⽶的铁⽪.例2.⼀个长⽅体,表⾯积是456平⽅厘⽶,它的底⾯是⼀个边长为4厘⽶的正⽅形,它的⾼是多少厘⽶?分析:题⽬中给出这个长⽅体底⾯是⼀个边长为4厘⽶的正⽅形,说明这个长⽅体是有两个相对的⾯是正⽅形的,其余4个⾯是⾯积相等的长⽅形,只要我们求出⼀个长⽅形⾯的⾯积,再⽤⾯积除以底⾯的边长,就算出了长⽅体的⾼了.这也是利⽤长⽅体的特征,逆解题⽬.解:456-4×4×2=424(平⽅厘⽶)424÷4=106(平⽅厘⽶)106÷4=26.5(厘⽶)答:它的⾼是26.5厘⽶.例3.⼀个教室长8⽶,宽6⽶,⾼3.5⽶,要粉刷教室的墙壁和天花板.门窗和⿊板的⾯积是22平⽅⽶,平均每平⽅⽶⽤涂料0.25千克,粉刷这个教室共需要涂料多少千克?分析:求需要涂料多少千克,必须先求出实际粉刷的⾯积.长⽅体的表⾯积去掉门窗、⿊板和地⾯的⾯积就是实际粉刷的⾯积.解:(1)粉刷的⾯积为:(8×6+8×3.5+6×3.5)×2-8×6-22=(48+28+21)×2-48-22=97×2-48-22=194-48-22=124(平⽅⽶)(2)需要涂料的重量为:0.25×124=31(千克)答:粉刷这个教室共需要涂料31千克.例4.将⼀个长12厘⽶,宽9厘⽶,⾼5厘⽶的长⽅体,切成两个长⽅体,两个长⽅体表⾯积的总和最多是多少平⽅厘⽶?最少是多少平⽅厘⽶?分析:切割长⽅体⼀次,原来的表⾯积增加两个⾯的⾯积,要使切开后的两个长⽅体表⾯积的总和最多(少),必须使横截⾯的⾯积最⼤(⼩).解:(12×9+12×5+9×5)×2+12×9×2=(108+60+45)×2+216=213×2+216=642(平⽅厘⽶)(12×9+12×5+9×5)×2+9×5×2=(108+60+45)×2+90=213×2+90=516(平⽅厘⽶)答:两个长⽅体表⾯积的总和最多是642平⽅厘⽶,最少是516平⽅厘⽶.例5.⼀个正⽅体,棱长的总和是96厘⽶.这个正⽅体的表⾯积是多少?分析:因为正⽅体的12根棱长都相等,所以可知,这个正⽅体的棱长是96÷12=8(厘⽶).⼜由于正⽅体有相等的6个⾯,每个都是正⽅形.解:8×8×6=384(平⽅厘⽶)答:这个正⽅体的表⾯积是384平⽅厘⽶.例6.做两个同样的正⽅体纸盒,⼀个有盖⼀个⽆盖,有盖纸盒⽤的纸板是⽆盖纸盒的多少倍?分析:有盖纸盒的表⾯积是它的⼀个⾯⾯积的6倍,⽆盖纸盒的表⾯积是它的⼀个⾯⾯积的5倍,⽽两个同样的正⽅体纸盒的⾯的⾯积是相等的,所以有盖纸盒⽤的纸板是⽆盖纸盒的6÷5=1.2倍.解:6÷5=1.2答:有盖纸盒⽤的纸板是⽆盖纸盒的1.2倍.习题精选⼀、填空题1.(1)下图上、下每个⾯的长()厘⽶,宽()厘⽶,⾯积是();(2)前、后每个⾯的长是()厘⽶,宽是()厘⽶,⾯积是();(3)左、右每个⾯的长是()厘⽶,宽是()厘⽶,⾯积是().(4)它的表⾯积是().2.(1)下图中上⾯的⾯积是(),前⾯的⾯积是(),右⾯的⾯积是();(2)计算它的表⾯积的算式是().⼆、计算题求下⾯各长⽅体的表⾯积:1.长6⽶,宽3⽶,⾼2⽶.2.长8分⽶,宽4.5分⽶,⾼2分⽶.3.长和宽都是6厘⽶,⾼3.4厘⽶.三、应⽤题1.做⼀个长⽅体的纸箱,长0.8⽶,宽0.6⽶,⾼0.4⽶.做这个纸箱⾄少需要纸板多少平⽅⽶?2.⼀个正⽅体的⽊箱,棱长5分⽶,在它的表⾯涂漆,涂漆的⾯积是多少?如果每平⽅分⽶⽤漆8克,涂这个⽊箱要⽤漆多少克?合多少千克?3.⼀个长⽅体的铁⽪盒,长25厘⽶,宽20厘⽶,⾼8厘⽶.做这个铁⽪盒⾄少要⽤多少平⽅厘⽶铁⽪?参考答案⼀、1.(1)下图上、下每个⾯的长( 9 )厘⽶,宽( 3 )厘⽶,⾯积是(27平⽅厘⽶);(2)前、后每个⾯的长是( 9 )厘⽶,宽是( 4 )厘⽶,⾯积是(36平⽅厘⽶);(3)左、右每个⾯的长是( 4 )厘⽶,宽是( 3 )厘⽶,⾯积是(12平⽅厘⽶).(4)它的表⾯积是:9×3+9×4+4×3)×2=150(平⽅厘⽶).2.(1)下图中上⾯的⾯积是(36平⽅分⽶),前⾯的⾯积是(48平⽅分⽶),右⾯的⾯积是(48平⽅分⽶);(2)计算它的表⾯积的算式是:6×6×2+6×8×4=264(平⽅分⽶).⼆、1.(6×3+6×2+3×2)×2=72(平⽅⽶)2.(8×4.5+8×2+4.5×2)×2=122(平⽅分⽶)3.6×6×2+6×3.4×4=153.6(平⽅厘⽶)三、1.(0.8×0.6+0.8×0.4+0.6×0.4)×2=2.08(平⽅⽶)答:⾄少需要纸板2.08平⽅⽶.2.5×5×6=150(平⽅分⽶)答:涂漆的⾯积是150平⽅分⽶.8×150=1200(克)=1.2(千克)答:要⽤漆1200克,合1.2千克.3.(25×20+25×8+20×8)×2=1720(平⽅厘⽶)答:⾄少要⽤1720平⽅厘⽶铁⽪.第3节长⽅体和正⽅体的体积(⼀)典型例题例1.把⼀个棱长6分⽶的正⽅体钢坯,锻造成⼀个宽3分⽶,⾼2分⽶的长⽅体钢件,这个钢件长多少分⽶?分析:把正⽅体钢坯锻造成长⽅体钢件,形状改变了,但是体积没有改变,即正⽅体的体积和长⽅体的体积相等.已知长⽅体的宽和⾼,⽤体积除以宽,要再除以⾼,就可以求出长.解:6×6×6÷3÷2=216÷3÷2=36(分⽶)答:这个钢件的长是36分⽶.例2.⼀个正⽅体的铁⽪油箱,从⾥⾯量得棱长为6分⽶,⾥⾯装满汽油.如果把这箱汽油全部倒⼊⼀个长10分⽶、宽8分⽶、⾼5分⽶的长⽅体铁⽪油箱中,那么,油⾯离箱⼝还有多少分⽶?分析:根据题意,可先求得正⽅体铁⽪油箱的汽油体积为:6×6×6=216(⽴⽅分⽶)⽽长⽅体油箱底⾯积是10×8=80(平⽅分⽶),所以,汽油在长⽅体铁⽪油箱⾥的⾼度是216÷80=2.7(分⽶).因此,油⾯离油箱⼝的⾼度就是:5-2.7=2.3(分⽶)答:油⾯离油箱⼝还有2.3分⽶.例3.⼀段⽅钢长3⽶,横截⾯是⼀个边长为0.4分⽶的正⽅形.如果1⽴⽅分⽶的钢重7.8千克,那么这段⽅钢有多重?分析:题⽬中的长度单位不统⼀,为计算的⽅便,可都化成以分⽶为单位来进⾏计算.解:3⽶=30分⽶0.4×0.4×30=4.8(⽴⽅分⽶)7.8×4.8=37.44(千克)答:这段⽅钢的重量是37.44千克.例4.有沙⼟12⽴⽅⽶,要铺在长5⽶,宽4⽶的房间⾥,可以铺多厚?分析:此题要把12⽴⽅⽶的沙⼟铺在房间⾥,也就是铺成⼀个长5⽶、宽4⽶、厚⽶的长⽅体,我们就可以⽤⽅程法求出所求问题了.这题是⼀道利⽤体积计算公式逆解的题.遇到此类题⽤⽅程法解即可.解:设可铺⽶厚.4×5×=12=0.6答:可以铺0.6⽶厚.例5.⼀个长⽅体的底⾯长6厘⽶,长是宽的1.2倍,宽⽐⾼少0.5厘⽶,这个长⽅体的体积是多少⽴⽅厘⽶?分析:这道题要求的是长⽅体的体积,求体积就必须知道长⽅形的长、宽、⾼.此题只直接给出了长,宽和⾼是间接给出的,因此应先⽤求⼀倍量的⽅法求出宽,再根据“求⽐⼀个数多⼏的数是多少”的题型算出⾼,最后⽤公式V=abh算出体积就可以了.解:6÷1.2=5(厘⽶)5+0.5=5.5(厘⽶)6×5×5.5=165(平⽅厘⽶)答:这个长⽅体的体积是165平⽅厘⽶.例6.在长为12厘⽶、宽为10厘⽶、8厘⽶深的玻璃缸中放⼊⼀⽯块并没⼊⽔中,这时⽔⾯上升2厘⽶.⽯块的体积是多少?分析:把⽯块浸没在装⽔的长⽅体玻璃缸中,⽯块占有⼀定的空间,从⽽使⽔的体积增⼤,它的具体表现就是⽔⾯上升,不管⽯块的形状如何,只要求出增加的体积就可以了(即⽯块的体积).解:12×10×2=240(⽴⽅厘⽶)答:⽯块的体积是240⽴⽅厘⽶.例7.把棱长6厘⽶的正⽅体铁块锻造成宽和⾼都是4厘⽶的长⽅体铁条,能锻造出多长?分析:我们不难看出,棱长6厘⽶的正⽅体和要锻造的长⽅体的体积相等,只不过形状不⼀样,这类题叫等积变形题.只要求出正⽅体的体积就是长⽅体的体积了.解:6×6×6÷4÷4=13.5(厘⽶)答:能锻造13.5厘⽶长.习题精选⼀、填空题1.物体所占空间的⼤⼩叫做物体的().2.计量体积要⽤()单位,常⽤的体积单位有()()和().3.棱长1厘⽶的正⽅体体积是(),棱长1分⽶的正⽅体体积是(),棱长1⽶的正⽅体体积是().4.长⽅体的体积=(),正⽅体的体积=().5.在括号⾥填上合适的计量单位.(1)⼀本数学解题题典封⾯的周长是80(),⾯积是375(),体积是1125().(2)⼀块橡⽪的体积是6(),⼀只卫⽣保健箱的体积是30(),⼀堆钢材的体积是4().⼆、判断题1.⼀块长⽅体⽊料,长6分⽶,宽4分⽶,厚3分⽶.容积是72升.()2.⼀个游泳池的容积是1000毫升.()3.⼀个正⽅体的棱长扩⼤2倍,体积就扩⼤8倍.()4.⼀个长⽅体的⽊箱,它的体积和容积⼀样⼤.()5.⼀只杯⼦能装⽔1升,杯⼦的容积就是1⽴⽅分⽶.()三、计算题看图计算下⾯长⽅体和正⽅体的体积.1.2.3.四、应⽤题1.⼀个长⽅体⽊箱,长7分⽶,宽4分⽶,⾼3.5分⽶.这个⽊箱的体积是多少?2.⼀块⽅砖的厚是5厘⽶,长和宽都是30厘⽶.求这块⽅砖的体积.3.⼀块正⽅体⽯料,棱长是0.8⽶.这块⽯料的体积是多少⽴⽅分⽶?五、提⾼题1.下图是由棱长为1厘⽶的⼩正⽅体拼摆⽽成的.这个拼摆⽽成的形体的表⾯积是多少平⽅厘⽶?体积是多少⽴⽅厘⽶?⾄少再摆上⼏个⼩正⽅体后就可以拼摆成⼀个正⽅体?2.⼀个长⽅体玻璃容器,长5分⽶,宽4分⽶,⾼6分⽶,向容器中倒⼊30升⽔,再把⼀块⽯头放⼊⽔中,这时量得容器内的⽔深20厘⽶,⽯头的体积是多少⽴⽅分⽶?参考答案⼀、1.物体所占空间的⼤⼩叫做物体的(体积).2.计量体积要⽤(体积)单位,常⽤的体积单位有(⽴⽅厘⽶)(⽴⽅分⽶)和(⽴⽅⽶).3.棱长1厘⽶的正⽅体体积是(1⽴⽅厘⽶),棱长1分⽶的正⽅体体积是(1⽴⽅分⽶),棱长1⽶的正⽅体体积是(1⽴⽅⽶).4.长⽅体的体积=(长×宽×⾼),正⽅体的体积=(棱长×棱长×棱长).5.在括号⾥填上合适的计量单位.(1)⼀本数学解题题典封⾯的周长是80(厘⽶),⾯积是375(平⽅厘⽶),体积是1125(⽴⽅厘⽶).(2)⼀块橡⽪的体积是6(⽴⽅厘⽶),⼀只卫⽣保健箱的体积是30(⽴⽅分⽶),⼀堆钢材的体积是4(⽴⽅⽶).⼆、1.⼀块长⽅体⽊料,长6分⽶,宽4分⽶,厚3分⽶.容积是72升.(× )2.⼀个游泳池的容积是1000毫升.(× )3.⼀个正⽅体的棱长扩⼤2倍,体积就扩⼤8倍.(√ )4.⼀个长⽅体的⽊箱,它的体积和容积⼀样⼤.(× )5.⼀只杯⼦能装⽔1升,杯⼦的容积就是1⽴⽅分⽶.(√ )三、1.48×5=240(⽴⽅厘⽶)2.0.36×0.6=0.216(⽴⽅⽶)3.9×8=72(⽴⽅分⽶)四、1.7×4×3.8=98(⽴⽅分⽶)答:这个⽊箱的体积是98⽴⽅分⽶.2.30×30×5=4500(⽴⽅厘⽶)答:这块⽅砖的体积是4500⽴⽅厘⽶.3.0.8×0.8×0.8=0.512(⽴⽅⽶)答:这块⽯料的体积是512⽴⽅分⽶.五、1.(1×1)×48=48(平⽅厘⽶)(1×1×1)×18=18(⽴⽅厘⽶)答:表⾯积是48平⽅厘⽶,体积是18⽴⽅厘⽶,⾄少再摆上9个⼩正⽅体就可以拼成⼀个正⽅体.2.5×4×[2-30÷(5×4)] =10(⽴⽅分⽶)或5×4×2-30=10(⽴⽅分⽶)答:⽯头的体积是10⽴⽅分⽶.2-3长⽅体和正⽅体的体积(⼆)典型例题例1.⼀个长⽅体沙坑的长是8⽶,宽是4.2⽶,深是0.6⽶,每⽴⽅⽶沙⼟重1.75吨,填平这个沙坑共要⽤沙⼟多少吨?分析:已知每⽴⽅⽶沙⼟重1.75吨,求共要⽤沙⼟多少吨,必须先求出共要沙⼟多少⽴⽅⽶,即先求出沙坑的容积.解: 1.75×(8×4.2×0.6)=1.75×20.16=35.28(吨)答:共要沙⼟35.28吨.例2.长⽅体货仓1个,长50⽶,宽30⽶,⾼5⽶,这个货仓可以容纳8⽴⽅⽶的正⽅体货箱多少个?分析:已知正⽅体货箱的体积是8⽴⽅⽶,可以知道正⽅体货箱的棱长为2⽶.货仓的长是50⽶,所以⼀排可以摆放50÷2=25个,宽是30⽶,可以摆放30÷2=15排,⾼是5⽶,可以摆放5÷2=2层 (1)⽶,所以⼀共可以摆放25×15×2=750个.(如图)解:50÷2=25(个)30÷2=15(排)5÷2=2层……1⽶25×15×2=750(个)答:可以容纳8⽴⽅⽶的正⽅体货箱750个.说明:如果此题先计算长⽅体货仓的体积(50×30×5=7500⽴⽅⽶),然后再除以⽴⽅体的体积8⽴⽅⽶(7500÷8=937.5个)是不对的.因为货仓的⾼是5⽶,⽴⽅体的棱长2⽶,只能摆放2层,上⾯的1⽶实际上是空的,没有摆放货箱.例3.⼀只底⾯是正⽅形的长⽅体铁箱,如果把它的侧⾯展开,正好得到⼀个边长是60厘⽶的正⽅形.(1)这只铁箱的容积是多少升?(2)如果铁箱内装半箱⽔,求与⽔接触的⾯的⾯积.分析:(1)根据侧⾯展开后是⼀个边长为60厘⽶的正⽅形,可以得出长⽅形的底⾯(正⽅形)的周长是60厘⽶,⾼也是60厘⽶.由底⾯(正⽅形)的周长可以求出底⾯的⾯积.从⽽求出容积.(2)与⽔接触的⾯的⾯积是原长⽅体的侧⾯积的⼀半加上⼀个底⾯积.⽽侧⾯积是边长60厘⽶的正⽅形的⾯积,底⾯积上⾯已经求出.解:(1)×60=225×60=13500(⽴⽅厘⽶)(2)60×60÷2+=1800+225=2025(平⽅厘⽶)答:这只铁箱的容积是13.5升,如果装半箱⽔,与⽔接触的⾯积是2.25平⽅厘⽶.例4.有⼀个空的长⽅体容器和⼀个⽔深24厘⽶的长⽅体容器,将容器的⽔倒⼀部分到,使两容器⽔的⾼度相同,这时两容器相同的⽔深为⼏厘⽶?分析1:容器的底⾯积是40×30,容器的底⾯积是30×20,40×30÷(30×20)=2,即的底⾯积是的底⾯积的2倍,中的⽔倒⼀部分到使、两容器⽔的⾼度相同,所以这个⽔深为24÷(2+1)=8厘⽶.解法1:24÷[40×30÷(30×20)+1 ]=24÷3=8(厘⽶)分析2:设这个相同的⽔深为厘⽶,则中倒出的⽔深为(24-)厘⽶,倒出的⽔为30×20×(24-)⽴⽅厘⽶,这些⽔就全部在中,中的⽔有40×30×⽴⽅厘⽶,故可得⽅程.解法2:设这个相同的⽔深为厘⽶.40×30×=30×20×(24-)24-=40×30×÷(30×20)24-=23=24=8答:这个相同的⽔深是8厘⽶.例5.⼀个正⽅体⽊头,棱长是6厘⽶,在6个⾯的中央各挖⼀个长、宽、⾼都是2厘⽶的洞孔,这时它的表⾯积、体积各是多少?分析:表⾯积等于正⽅体表⾯积加上6个洞孔的4个⾯的⾯积;体积等于正⽅体的体积减去6个洞孔的体积.解:表⾯积为:6×6×6+2×2×4×6=216+96=312(平⽅厘⽶)体积为:6×6×6-2×2×2×6=216-48=168(⽴⽅厘⽶)答:表⾯积为312平⽅厘⽶,体积为168⽴⽅厘⽶.例6.有⼀块宽为22厘⽶的长⽅形铁⽪,在四⾓上剪去边长为5厘⽶的正⽅形后(如图⼀),将它焊成⼀个⽆盖的长⽅体盒⼦(如图⼆),已知这个盒⼦的体积是2160⽴⽅厘⽶,求原来这块铁⽪的⾯积是多少平⽅厘⽶?分析:已知盒⼦的体积是2160⽴⽅厘⽶,⾼为5厘⽶,这个盒⼦的底⾯积就可以求出,⽽这个盒⼦的底⾯长⽅形的宽为22-5×2=12(厘⽶),所以这底⾯长⽅形的长也可以求出.解:长⽅体盒⼦的长为:2160÷5÷(22-5×2)=432÷12=36(厘⽶)铁⽪的⾯积为:(36+5×2)×22=46×22=1012(平⽅厘⽶)答:原来这块铁⽪的⾯积是1012平⽅厘⽶.习题精选⼀⼀、填空.1、40⽴⽅⽶=()⽴⽅分⽶4⽴⽅分⽶5⽴⽅厘⽶=()⽴⽅分⽶30⽴⽅分⽶=()⽴⽅⽶0.85升=()毫升2100毫升=()⽴⽅厘⽶=()⽴⽅分⽶0.3升=()毫升=()⽴⽅厘⽶2、⼀个正⽅体的棱长和是12分⽶,它的体积是()⽴⽅分⽶.3、⼀个长⽅体的体积是30⽴⽅厘⽶,长是5厘⽶,⾼是3厘⽶,宽是()厘⽶.4、⼀个长⽅体的底⾯积是0.2平⽅⽶,⾼是8分⽶,它的体积是()⽴⽅分⽶.5、表⾯积是54平⽅厘⽶的正⽅体,它的体积是()⽴⽅厘⽶.6、正⽅体的棱长缩⼩3倍,它的体积就缩⼩()倍.7、⼀个长⽅体框架长8厘⽶,宽6厘⽶,⾼4厘⽶,做这个框架共要()厘⽶铁丝,是求长⽅体(),在表⾯贴上塑料板,共要()塑料板是求(),在⾥⾯能盛()升⽔是求(),这个盒⼦有()⽴⽅⽶是求().8、长⽅体的长是6厘⽶,宽是4厘⽶,⾼是2厘⽶,它的棱长总和是()厘⽶,六个⾯种最⼤的⾯积是()平⽅厘⽶,表⾯积是()平⽅厘⽶,体积是()⽴⽅厘⽶.⼆、判断.1、体积单位⽐⾯积单位⼤,⾯积单位⽐长度单位⼤.()2、正⽅体和长⽅体的体积都可以⽤底⾯积乘⾼来进⾏计算.()3、表⾯积相等的两个长⽅体,它们的体积⼀定相等.()4、长⽅体的体积就是长⽅体的容积.()5、如果⼀个长⽅体能锯成四个完全⼀样的正⽅体,那么长⽅体前⾯的⾯积是底⾯积的4倍.()三、选择.1、正⽅体的棱长扩⼤2倍,则体积扩⼤()倍.①2 ②4 ③6 ④82、⼀根长⽅体⽊料,长1.5⽶,宽和厚都是2分⽶,把它锯成4段,表⾯积最少增加()平⽅分⽶.①8 ②16 ③24 ④323、⼀个长⽅体的长、宽、⾼都扩⼤2倍,它的体积扩⼤()倍.①2 ②4 ③6 ④84、表⾯积相等的长⽅体和正⽅体的体积相⽐,().①正⽅体体积⼤②长⽅体体积⼤③相等5、将⼀个正⽅体钢坯锻造成长⽅体,正⽅体和长⽅体().①体积相等,表⾯积不相等②体积和表⾯积都不相等.③表⾯积相等,体积不相等.6、⼀个菜窖能容纳6⽴⽅⽶⽩菜,这个菜窖的()是6⽴⽅⽶.①体积②容积③表⾯积参考答案⼀、填空.1、40000; 4.005; 850; 2100、2.1; 300、3002、13、24、16005、276、277、72、棱长和、208、表⾯积、0.192、容积、0.192、体积8、48、24、88、48⼆、判断.1、×2、√3、×4、×5、×三、选择.1、④2、③3、④4、①5、①6、②⼆⼀、填表.⼆、计算下图的体积(单位:分⽶).三、应⽤题.1、⼀块⽔泥砖长8厘⽶,宽6厘⽶,厚4厘⽶,它的体积是多少⽴⽅厘⽶?2、⼀个正⽅体⽊块,棱长6分⽶,已知每⽴⽅分⽶⽊重0.4千克,这个⽊块重多少千克?3、把⼀块棱长是20厘⽶的正⽅体钢坯,锻造成底⾯积是16平⽅厘⽶的长⽅体钢材,长⽅体钢材长多少厘⽶?参考答案⼀、填表.⼆、计算下图的体积.(单位:分⽶)1、8×4×5=160(⽴⽅分⽶)2、3×3×7=63(⽴⽅分⽶)3、2.5×2.5×2.5=15.625(⽴⽅分⽶)三、应⽤题.1、8×6×4=192(⽴⽅厘⽶)答:它的体积是192⽴⽅厘⽶.2、6×6×6=216(⽴⽅分⽶)0.4×216=86.4(千克)答:这个⽊块重86.4千克.3、20×20×20÷16=8000÷16=500(厘⽶)答:钢材长500厘⽶.。

长方体和正方体练习

长方体和正方体练习

长方体和正方体的认识·练习题一.填空1、长方体有( )个面,每个面都是( )形,也可能有两个相对的面是( )形,( )的面积相等。

有( )条棱,( )的棱的长度相等。

2、正方体有( )个面,每个面都是( )形,( )的面积都相等,有( )条棱,它们的长度( )3、因为正方体是长、宽、高都()的长方体,所以正方体是()的长方体。

4、一个正方体的棱长为a,棱长之和是(),当a =6cm时,这个正方体的棱长总和是()cm。

5、一个长方体长、宽、高分别是a、b、h,那么这个长方体的棱长总和是()。

6、用一根长()dm铁丝正好可以做一个长6cm、宽5cm、高4cm的长方体框架。

7、做一个长方体抽屉,需要()块长方形木板。

8、一个长方体水池,长20m,宽10m,深2m,这个水池占地()m2。

9、下面的图形中,能按虚线折成正方体的是()。

二、判断:1、正方体是由6个正方形围成的立体图形。

()2、一个长方体中,可能有4个面是正方形。

()3、4个正方体能拼成一个大正方体。

()4、由6个面围成的图形都是长方体。

()三.看图并填空(单位:cm)1、(1)这个长方体长( )cm,宽( )cm,高( )cm。

(2)由一个顶点引出的三条棱的长度和是( )cm。

(3)棱长总和是( )cm。

(4)上下两个面是( )形。

2、(1)这是一个( )体 (2)正方体的棱长是( )cm。

(3)棱长之和是( )cm (4)每个面的面积是( )平方cm。

三、应用题1、一个正方体的棱长是15cm,这个正方体的棱长总和是多少dm?2、用6dm长的铁丝焊接成一个正方体的框架,这个正方体的棱长是多少cm?3、用多少dm的铁丝可以焊接成一个长12cm,宽10cm,高5cm的长方体的框架?4、有一根52cm的铁丝,恰好可以焊接成一个长6cm,宽4cm,高多少cm的长方体?5、一个长方体和一个正方体的棱长之和相等,已知长方体的长为5cm,宽为3cm,高为4cm,求正方体的棱长。

长方体正方体经典题型汇总

长方体正方体经典题型汇总

长方体和正方体典型习题棱长和问题:1.一个长方体长是10分米,宽是8分米,高是6分米,这个长方体的棱长总和是多少分米?2.用一根长80分米的铁丝焊接成一个长10分米,宽6分米的长方体框架,高是多少分米? 3.商店营业员用一根塑料带为顾客捆扎两个食品盒,每个食品盒的长、宽、是15厘米、11厘米、4厘米,如右图那样捆扎一道并留下18厘米长为手提环,这样一共需要多少厘米长的塑料带?4.一个长方体的长宽高分别是5厘米,4厘米,3厘米,一个正方体的棱长总和与这个长方体的棱长总和相等,这个正方体的棱长是多少厘米?5.一个长方体中相交于一个顶点的三条棱的长度和是15分米,这个长方体的棱长总和是多少分米?6.用一根长60厘米的铁丝围成一个长8CM,宽5CM的长方体框架,这个长方体框架的高是多少厘米?7.把一根长84米的铁丝围成一个正方体框架,棱长是多少分米?8.一个长方体相交于同一顶点的三条棱长度分别是10厘米,5分米,6厘米,这个长方体的棱长总和是多少分米?9.有一个长方体木块正好可以切成两个完全相同的正方体方块,已知长方体木块的棱长总和是80厘米,求切成的每个正方体木块的棱长总和。

表面积问题:1.一个长方体的无盖铁皮水桶,长和宽都是3分米,深5分米。

做一对这样的水桶,至少需要多少平方分米铁皮?2.一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,如果商标纸的接头处是4厘米,这张商标纸的面积是多少平方厘米?3.有一块正方形铁皮,从四个顶点分别剪下一个边长5厘米的正方形后,所剩部分正好焊接成一个无盖的正方体铁皮盒。

原来正方形铁皮的面积是多少平方厘米?4.一个长方体的棱长和是72厘米,它的长是9厘米,宽6厘米,它的表面积是多少平方厘米?5.一个房间的长6米,宽3.5米,高3米,门窗面积是8平方米。

现在要把这个房间的四壁和顶面粉刷水泥,粉刷水泥的面积是多少平方米?如果每平方米需要水泥4千克,一共要水泥多少千克?6.做一节长12分米,宽和高都是10厘米的通风管,至少需要铁皮多少平方厘米?做12节这样的通风管呢?7.一个长方体的侧面展开是一个边长为20厘米的正方形,做这样20个这样的长方体需要多少平方厘米的硬纸?8. 一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上高6厘米的商标纸,这张商标纸的面积是多少平方厘米?侧面积问题:一个长方体侧面积是360平方厘米,高是9厘米,长是宽的3倍,求它的表面积。

正方体 长方体练习题

正方体 长方体练习题

正方体长方体练习题正方体和长方体是我们在几何学中常见的两种形状。

它们都是立体图形,但在几何性质和应用方面有所不同。

在本文中,我们将通过一些练习题来深入了解正方体和长方体。

练习题一:正方体的性质1. 正方体有多少个面?有多少个顶点和边?2. 如果正方体的一个面积为25平方厘米,那么它的体积是多少?3. 如果正方体的一个对角线长为10厘米,那么它的边长是多少?练习题二:长方体的性质1. 长方体有多少个面?有多少个顶点和边?2. 如果长方体的长、宽、高分别为2厘米、3厘米和4厘米,那么它的表面积和体积分别是多少?3. 如果长方体的体积为60立方厘米,它的长、宽、高分别是多少?练习题三:正方体和长方体的应用1. 在建筑设计中,我们常常使用长方体来表示房屋的形状。

请描述一下长方体在建筑设计中的应用。

2. 正方体在骰子中被广泛使用。

请思考一下,如果我们将一个正方体的一个面涂成红色,那么它有多少种不同的涂色方式?3. 正方体和长方体在日常生活中还有哪些应用?请列举一些例子。

练习题四:解决问题1. 如果一个长方体的长、宽、高分别为3厘米、4厘米和5厘米,那么它的体积是多少?2. 如果一个正方体的体积为125立方厘米,那么它的边长是多少?3. 如果一个长方体的表面积为96平方厘米,它的长、宽、高分别是多少?通过解答以上练习题,我们可以更好地理解正方体和长方体的性质和应用。

正方体是一个六面体,每个面都是正方形,有八个顶点和12条边。

而长方体是一个六面体,每个面都是矩形,有八个顶点和12条边。

正方体的体积等于边长的立方,而长方体的体积等于长、宽、高的乘积。

在建筑设计中,长方体常用于表示房屋的形状。

通过确定长、宽、高的数值,我们可以计算出房屋的表面积和体积,从而进行合理的设计和规划。

而正方体在骰子中的应用更为广泛,我们可以通过涂色的方式来制作不同的骰子,增加游戏的趣味性。

除了建筑设计和骰子,正方体和长方体还有许多其他的应用。

长方体正方体 练习题含答案

长方体正方体 练习题含答案

长方体正方体练习题含答案1.需要计算的是长方体的周长,公式是(长+宽+高)×2×2,计算结果为320厘米。

2.需要计算的是长方体的周长,公式是(长+宽)×2+高×4,计算结果为370米。

3.需要在长方体的每个面上都安装角铁,计算公式是(长+宽+高)×4,计算结果为13.6米。

4.需要计算的是长方体的表面积,公式是(长×高+宽×高)×2,计算结果为384平方厘米。

5.(1)需要计算正方体的表面积,公式是边长的平方×6,计算结果为平方厘米。

(2)需要计算正方体的周长,公式是边长×4,计算结果为184厘米,换算成米为1.84米,因此一卷长4.5米的胶带纸不够用。

6.需要计算正方体的表面积,公式是边长的平方×6,计算结果为45平方分米。

7.需要计算长方体的表面积,公式是(长×宽+长×高+宽×高)×2,计算结果为12.96平方分米。

8.需要计算长方体的表面积,减去门窗的面积,公式是(长×宽+长×高+宽×高)×2-门窗面积,计算结果为120.6平方米,乘以每平方米的涂料费用4元,计算结果为482.4元。

长方形木料的长为5m,横截面的面积为0.08平方米。

计算木料的体积,可以使用公式“体积=底面积×高”,即0.08×5=0.4立方米。

因此,这根木料的体积是0.4立方米。

有500根方木,每根方木横截面的面积是2.6平方分米,长为3m。

求这些木料的总体积。

首先将横截面的面积转换为平方米,即2.6平方分米=0.024平方米。

然后使用公式“体积=底面积×高×数量”,即0.024×3×500=36方。

因此,这些木料的总体积是36方。

要砌一道长15m、厚24cm、高3m的砖墙,每立方米需要用520块砖。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空
1、长方体有()个面,()条棱,()个顶点。

在一个长方体中,相对的面(),相对的棱()。

2、正方体是由6个完全相同的()围成的立体图形。

它有()条棱,它们的长度都(),有()个顶点。

3、相交于一个顶点的三条棱的长度分别叫做长方体的()、()、(),正方体可以说是长、宽、高都()的长方体,所以正方体是()的长方体。

4、叫做物体的体积。

5、常用的体积单位有、、。

6、1立方分米= 立方厘米= 立方米。

7、长方体的体积= ××用字母表示:
8、正方体的体积= ××用字母表示:
9、长方体(正方体)体积= ×用字母表示:
10、63=103= 52= 0.13=
11、720立方分米=()立方米32立方厘米=()立方分米
5立方米=( )立方分米2.8立方分米=( )立方厘米
二、填表
三.希望小学建一个长方体游泳池,长50米,宽5米,深2米。

(1)游泳池的占地面积是多少平方米?
(2)在游泳池底面和内壁抹一层水泥,抹水泥部分的面积是多少平方米?
(3)沿游泳池的内壁1.5米高处用白漆画一条水位线,水位线全长多少米?(4)按水位线进水,游泳池内共存水多少立方米?
四、一个房间的长6米,宽3.5米,高3米,门窗面积是8平方米。

现在要把这个房间的四壁和顶面粉刷水泥,粉刷水泥的面积是多少平方米?如果每平方米需要水泥4千克,一共要水泥多少千克?。

相关文档
最新文档