长方体和正方体认识练习题

合集下载

长方体和正方体全套练习题

长方体和正方体全套练习题

第二单元长方体(一)全套练习练习一长文体正方体的认识一、填空1、长方体有()个面,它们一般都是()形,也可能有()个面是正方形.2、长方体的上面和下面、前面和后面、左面和右面都叫做(),它们的面积().3、长方体的12条棱,每相对的()条棱算作一组,12条棱可以分成()组.4、正方体有()个面,每个面都是()形,面积都().5、一个正方体的棱长是6厘米,它的棱长总和是().6、一个长方体的长是1.5分米,宽是1.2分米,高是1分米,它的棱长和是()分米.7、一个长方体的棱长总和是80厘米,其中长是10厘米,宽是7厘米,高是()厘米.8、把两个棱长1厘米的正方体拼成一个长方体,这个长方体的棱长总和是()厘米.二、判断题1、长方体和正方体都有6个面,12条棱,8个顶点.()2、长方体的6个面不可能有正方形.()3、长方体的12条棱中,长、宽、高各有4条.()4、正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等.()5、长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等.()6、一个长方体长12厘米,宽8厘米,高7厘米,把它切成一个尽可能大的正方体,这个正方体的棱长是8厘米.()三、选择题1、下列物体中,形状不是长方体的是()①火柴盒②红砖③茶杯④木箱2、长方体的12条棱中,高有()条.①4 ②6 ③8 ④123、下列三个图形中,能拼成正方体的是()4、把一个棱长3分米的正方体切成两个相等的长方体,增加的两个面的总面积是()平方分米.①18 ②9 ③36 ④以上答案都不对练习二长文体正方体的棱长和、表面积1、有一根长52厘米的铁丝,恰好可以焊接成一个长6厘米,宽4厘米,高多少厘米的长方体?2、一个长方体的水池,长20厘米,宽10厘米,深2米,占地多少平方米?3、用96厘米长的铁丝焊接成一个正方体的框架,然后用纸给它的表面包裹起来,至少需要多少平方厘米的纸?4、一个长方体,长12厘米,宽和高都是8厘米,这个长方体的表面积是多少平方厘米?5、用两个棱长为5厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?6、一个长方体和一个正方体的棱长之和相等,已知长方体的长为5厘米,宽为3厘米,高为4厘米,求正方体的棱长。

人教版小学数学五年级下册第3单元 长方体和正方体的认识同步练习(含解析)

人教版小学数学五年级下册第3单元 长方体和正方体的认识同步练习(含解析)

人教版小学数学五年级下册第3单元 3.1长方体和正方体的认识同步练习一、单选题1.要焊接一个长11cm、宽7cm、高6cm的长方体框架,需要长11cm、宽7cm、高6cm的铁丝各()根。

A.3B.4C.122.下图中,能正确表示出它们关系的是()。

A.B.C.D.3.如果一个长方体的棱长之和是72cm,那么相交于一个顶点的棱长之和是()cm。

A.18B.24C.124.长方体(不包括正方体)最多有()条棱相等。

A.4B.6C.8D.105.用一根长()的铁丝正好围成一个长6cm,宽5cm,高2cm的长方体框架。

A.26cm B.52cm C.60cm D.117cm6.把一个表面涂色的正方体每条棱平均分成4份,再切成同样大的小正方体,两面涂色的小正方体有()个。

A.8B.12C.24D.36二、判断题7.至少要用8个小正方体才能拼成一个大正方体。

()8.长方体的6个面一定都是长方形,正方体的6个面一定是正方形。

()9.用4个同样的小正方体摆出一个长方体,可以摆出不同的图形。

()10.长方体和正方体都有12条棱、6个面。

()11.如果一个正方体和一个长方体的棱长之和相等,那么它们的体积也一定相等。

()三、填空题12.这个长方体的上面、面、左面和面是完全相同的长方形,每个面的面积都是.13.当长方体的长、宽和高相等时,长方体就成为一个图形,所以说是特殊的长方体14.用一根铁丝围成一个长、宽、高分别为20厘米、18厘米、22厘米的长方体如改围成正方体,这个正方体的体积是立方厘米.15.下图中一共有小正方体,至少再添个同样大的小正方体可以补成一个大正方体。

16.下图是一个长方体框架,其中宽是长和高的和的,做这样一个长方体框架至少需要铁丝cm。

17.一个正方体钢块的棱长和是60厘米,如果每立方厘米的钢重7.8克,这个钢块重千克。

18.一个长方体的长是8cm,宽和高都是4cm,这个长方体有个面是正方形,其余各面都是形。

小学教学:长方体与正方体专项练习(五年级下册数学)

小学教学:长方体与正方体专项练习(五年级下册数学)

认识长方体和正方体1.一个长、宽、高分别为40cm、30cm、20cm的小纸箱,在所有的棱上粘上一圈胶带,至少需要多长的胶带?2.小红为妈妈准备了一件生日礼物,下图是这件礼物的包装盒,长、宽、高分别是15cm、15cm、8cm。

现在用彩带把这个包装盒捆上,接头处长18cm。

一共需要多少厘米彩带?3.母亲节快到了,小红打算送妈妈一件礼物。

礼品盒长40cm,宽20cm,高15cm,如下图。

小红用彩带来包装礼品盒(结头部分总长30cm),一共要用彩带多少厘米?4.如图,把一个长是20cm、宽是15cm、高是18cm的礼品盒用彩带包扎起来,至少需要彩带多少厘米?(打结处每处长8cm)5.一种盒装纸巾的长、宽、高如图1所示。

用胶带将3盒这样的纸巾捆扎起来(如图2),至少需要多少厘米的胶带?(接头处忽略不计)。

6.某快递公司员工先把一个正方体形状的物体用纸箱包装好,再用胶带按如图所示的方法把它粘上3圈,每圈接头处多用4厘米胶带。

一共需要多少厘米的胶带?7.为迎接“五一”国际劳,工人叔叔要在工人俱乐部的四周装上彩灯(地面的四边不装)。

已知工人俱乐长90米,宽55米,高22米,工人叔叔至少需要多长的彩灯线?长方体和正方体的表面积(缺面问题)1.一个长方体的饼干盒,长10厘米,宽6厘米,高12厘米,如果围着它贴一圈商标纸(上、下面不贴),这张商标纸的面积至少有多少平方厘米?2.一张长为30dm,宽为20dm的长方形铁皮,从四个角上各剪去边长为5dm的正方形,并焊成一个无盖的铁盒。

在铁盒外面的底面和侧面涂上油漆,涂油漆的面积是多少平方分米?3.一个新建的游泳池长50m,长是宽的2倍,深2.5m。

现在要在游泳池的四周和底面贴上瓷砖,一共需要贴多少平方米的瓷砖?4.学校要粉刷新教室。

已知教室的长是8m,宽是6m,高是3.5m,已知门窗的面积是21.5㎡。

如果要粉刷教室的墙壁和天花板,那么要粉刷的面积是多少平方米?5.做一个长120cm、宽和高都是10cm的通风管,至少需要多少平方米的铁皮?6.制作一个横截面为周长是1.5m的正方形、长3m的长方形通风管,至少需要多少平方米的铁皮?7.制作一根长方体铁皮烟囱,烟囱长1.5m,横截面是边长为0.2m的张方形。

长方体与正方体练习一

长方体与正方体练习一

长方体与正方体练习一一、填空1.长方体或者正方体()叫做它的表面积。

2.一个正方体的棱长是10厘米,它的表面积是()平方厘米。

3.一个长方体长4分米,宽3分米,高2分米,它的表面积是()平方分米。

4.正方体的棱长之和是60分米,它的表面积是()平方分米。

5.用两个长6厘米,宽3厘米,高1厘米的长方体拼成一个表面积尽可能小的正方体,这个拼成的长方体的表面积是()平方厘米。

二、选择题。

1.用两个棱长是1分米的正方体小木块拼成一个长方体,拼成的长方体的表面积是()。

A.增加了B.减少了C.没有变2.如果把一个棱长是10厘米的正方体切成两个完全相同的长方体,这两个长方体的表面积之和比原来的正方体表面积()。

A.增加了B.减少了C.没有变化3.正方体的棱长扩大2倍,它的表面积就()。

A.扩大2倍B.扩大4倍C.扩大6倍4.大正方体的表面积是小正方体的4倍,那么大正方体的棱长之和是小正方体的()A.2倍B.4倍C.6倍D.8倍5.把一个正方体切成大小相等的8个小正方体,8个小正方体的表面积之和()。

A.等于大正方体的表面积B.等于大正方体表面积的2倍C.等于大正方体表面积的3倍三、一个房间长5米,宽3米,高2.8米,现需油漆四壁和天花板,扣除门窗的面积4.5平方米,求油漆的总面积有多大?四、要做一种管口周长40厘米的通气管子10根,管子长2米,至少需要铁皮多少平方米?五、一个正方体的表面积是54平方分米,这个正方体所有棱长之和是多少?六、有一个长方体木箱,长0.7米,宽0.5米,高0.3米。

怎样放,这个木箱占地面积最小?最小是多少平方米?长方体与正方体练习二1.填空(l)长方体或正方体()个面的总面积,叫做它们的表面积。

(2)计算正方体的表面积可以用()×()×()的方法计算。

这是因为正方体有()个面,每个面都是()形,而且()都相等。

(3)一个正方体的表面积是36平方厘米,把它放在桌子上占的面积是()平方厘米。

六年级上册《长方体与正方体》专项练习试题(10套)

六年级上册《长方体与正方体》专项练习试题(10套)

苏教版小学数学六年级上册《长方体与正方体》专项练习试题(10套)(1)(长方体和正方体的认识)一、填空:(38%)1、长方体和正方体都有( ) 个面,( ) 条棱,( ) 个顶点。

2、长方体的每个面都是( )形或有一组对面是( )。

它有( )条棱,平行的( )条棱都相等。

3、相交于长方体一个顶点的三条棱的长度分别叫做它的()、()和()。

4、长方体有()个面,从不同的角度观察一个长方体,最多能看到()个面。

5、一个长方体的长是5分米,宽是4分米,高是3分米,6个面中最小的一个面的面积是(),最大的一个面的面积是()。

6、一个长方体,长4米,宽3米,高2米,它的占地面积最大是()平方米。

7、一个长方体模型,从前面看是从上面看是长方体右面的面积是()平方厘米。

8、长方体的右侧面面积是12平方厘米,前面面积是8平方厘米,上面面积是6平方厘米,这个长方体的长、宽、高分别是()、()、()。

二、选择(8%):1、一个长方体水池,长20米,宽10米,深2米,这个水池占地()平方米。

A、200B、400C、5202、下面的图形中,能按虚线折成正方体的是()。

3、从一个体积是30立方厘米的长方体木块中,挖掉一小块后(如下图) ,它的表面积( ) 。

A.和原来同样大 B.比原来小 C.比原来大 D.无法判断4、用一根52厘米长的铅丝,正好可以焊成长6厘米,宽4厘米,高()厘米的长方体教具。

A、2B、3C、4D、5三、计算下面每个形体的棱长和(6%)。

四、下面各题,列式计算,不写答。

(40%)1、一个长方体,长5分米,宽3分米,高4分米,求它的所有棱长的和。

2、用钢筋做一个长和宽都是3.5分米,高是10厘米的长方体,需多少分米的钢筋?3、棱长是4分米的正方体,棱长总和是多少分米?4、一个长方体的棱长和是36厘米,从一个顶点出发的三条棱的长度总和是多少厘米?5、同一根长96厘米的铁丝折成一个最大的正方体框架,求正方体框架的棱长。

长方体和正方体练习题

长方体和正方体练习题

第一章 长方体和正方体的认识【概念】1.由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。

在一个长方体中,相对面完全相同,相对的棱长度相等。

一个长方体至少可以有两个面是正方形,但不会存在 3 个、4 个、5个面是正方形!2.两个面相交的边叫做棱。

三条棱相交的点叫做顶点。

相交于一个顶点的三条棱的长度分别叫做长方体的长(a )、宽(b )、高(h )。

3.由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体有12 条棱,它们的长度都相等,所有的面都完全相同。

4.正方体是长、宽、高都相等的长方体,它是一种特殊的长方体 。

形体相同点 不同点 联系 面棱 顶点 面的形状 面的面积 棱长 正方体是一种特殊的长方体 长方体 6个 12条 8个 6个面都是长方形,有时相对的两个面是正方形相对的两个面的面积相等 相对的棱的长度相等 正方体 6个面都是正方形 6个面面积都相等 12条棱都相等【注意点和常见算法】①两个棱长和相等的长方体或一个长方体和一个正方体,表面积不一定相等!②表面积相等的两个长方体或一个长方体和一个正方体,棱长和也不一定相等!③长方体的棱长总和=(长+宽+高)×4长=棱长总和÷4-宽-高宽=棱长总和÷4-长-高高=棱长总和÷4-长-宽④正方体的棱长总和=棱长×12 棱长=棱长总和÷12【小试牛刀】一、判断并改正。

1.长方体的六个面一定是长方形。

()2.正方体的六个面面积一定相等。

()3.一个长方体 ( 非正方体 ) 最多有四个面面积相等。

()4.相交于一个顶点的三条棱相等的长方体一定是正方体。

()5.长方体的三条棱分别叫做长、宽、高。

()6.有两个面是正方形的长方体一定是正方体。

()7.有三个面是正方形的长方体一定是正方体。

()8.有两个相对的面是正方形的长方体,另外四个面的面积是相等的。

()9.正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等。

长方体和正方体练习题

长方体和正方体练习题

班别姓名成绩1、一块长方体石块,长2米,宽1米,高0.5米,如果每立方米石块重2.5吨,这块石块重多少千克?2、将一个棱长是24厘米的正方体铁块熔铸成一个长48厘米,宽24厘米的长方体铁块,这个铁块高多少厘米?3、修一段马路,路长1200米,宽50米,路面铺上12厘米厚的石子,共需石子多少方?4、王大伯一共买了150袋鱼饲料,每袋鱼饲料可以看成一个长5dm,宽3.5dm,高1.2dm的近似长方体,这些鱼饲料的体积是多少立方分米?5、一种钢材长4米,横截面是边长10厘米的正方形,把它锻造成4根一样长的钢段,每根钢段的体积是多少?班别姓名成绩6、把3个棱长5厘米的正方体拼成一个长方体,这个长方体的表面积和体积分别是多少?7、在一块长45米,宽28米的长方形苗圃地上铺一层4厘米厚的沙土。

(1)需要多少沙土?(2)一辆农用车每次能运送1.3米3的沙土,至少需要运几次?8、一条长20米,宽2米的走廊,要铺上一层10厘米厚三合土,一共需要多少立方米的三合土?9、一根长方体钢材横截面的面积是25平方厘米,长是9米,它的体积是多少?10、一块正方体的石料,棱长是9分米,这块石料的体积是多少?如果1立方分米的石料重2.9千克,这块石料有多重?班别姓名成绩11、80跟长方体木料垛成一个长4米,宽8米,高5米的长方体,平均每根长方体木料的体积是多少立方米?合多少立方分米?12、一块长方体钢板,长1.2米,宽0.8米,厚0.01米。

(1)它的体积是多少立方分米?(2)已知1立方分米钢重7.8千克,这块钢板的重量是多少千克?13、把四个棱长是4厘米的正方体粘成一个长方体,这个长方体的体积是多少立方厘米?14、园丁小区要砌一道长30米,宽24米,高2米的砖墙,如果每立方米用砖525块,一共要用砖多少块?15、园艺工人要把240立方米的土垫在长60米,宽40米的草坪上,可以垫多厚?班别姓名成绩16、挖一个长方体的水池,计划蓄水1800立方米,池面长30米,宽20米,应该挖多深?水池建成后如果要蓄水1.2米深,每分钟蓄水18立方米,需蓄水多少分钟?17、采石厂制作了150块长方体石料,每块石料的长是2.7米,宽和高都是0.4米,这些石料一共是多少立方米?18、把一个棱长6分米的正方体钢材铸造成长9分米,宽3分米的长方体钢材,可铸造多长?19、把180个同样的纸盒拼成一个长30厘米,宽15厘米,高20厘米的长方体,平均每个纸盒的体积多少?20、把一个长8厘米,宽6厘米,高7厘米的长方体木块削成一个最大的正方体,这个正方体木块的体积是多少?。

第三单元《长方体和正方体》(同步练习)五年级下册数学人教版

第三单元《长方体和正方体》(同步练习)五年级下册数学人教版

第三单元长方体和正方体第1节长方体和正方体的认识1:长方体的认识长方体的概念:长方体一般由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。

长方体的特征:相对的面完全相同,相对的棱长度相等;有6个面、8个顶点、12条棱。

棱:面和面相交的线段顶点:棱和棱的交点。

长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

2:正方体的认识正方体的概念:正方体是由6个完全相同的正方形围成的立体图形。

正方体的特征:6个面完全相同,12条棱长度相等;6个面、8个顶点、12条棱。

练习:判断:(1)长方体中,可能会有8条棱的长度相等。

()(2)一个长方体,从一个顶点出发的三条棱的总长是12cm,这个长方体的棱长总和为36cm。

()选择:(1)用一根长()铁丝正好可以做一个棱长为3cm的正方体框架。

A、12cmB、18cmC、27cmD、36cm(2)下列图示能正确表示出长方体和正方体的关系的是()。

(3)有三种不同的小棒及根数(如表),一共可以搭出( )种形状不同的长方体或正方体。

A 、4B 、5C 、6D 、7填空:(1)用铁丝焊接一个长方体框架,同一顶点上的三根铁丝长分别为20cm 、15cm 和12cm ,则一共用了( )cm 铁丝。

(2)下面是老师为同学们准备的小棒(有多余),用这些小棒搭成一个长方体,应选用①号小棒( )根,②号小棒( )根,③号小棒( )根。

(3)长方体和正方体都有( )个面、( )个顶点、( )条棱。

(4)一个正方体的棱长为a ,那么它的棱长之和是( );一个长方体长、宽、高的和是4.5cm ,棱长总和是( )cm 。

解决问题:(1)如图,用彩带给一个棱长4.5分米的正方体礼品盒包扎,打结处长1.8分米,那么至少需要多长的彩带?(2) 长度 4cm 5cm 8cm 根数 4根 8根 12根小棒长度 根数 ①9cm3 ②7cm 8 ③4cm 5第2节长方体和正方体的表面积1:表面积的含义长方体或正方体6个面的总面积,叫做它的表面积。

长方体和正方体的认识习题 (5)

长方体和正方体的认识习题 (5)

长方体和正方体的认识习题(六)判断题(一)1. 物体的大小叫做物体的体积。

()2. 3x=x·x·x()3. 把一块正方体橡皮泥捏成一个长方体后,虽然它的形状变了,但是它所占有的空间大小不变。

()4. 在一个长方体中,从一个顶点出发的三条棱的和是7.5分米,这个长方体的棱长总和是30分米。

()5. 一个正方体的棱长是原来的2倍,它的体积是原来的4倍。

()判断题(二)1. 木箱的体积就是木箱的容积。

()2. 正方体的棱长扩大3倍,它的表面积就扩大27倍。

()3. 长方体的12条棱中,平行的4条棱都相等。

()。

4. 将一个长方体切成两个相等的正方体,每个正方体的表面积是长方体表面积的一半。

()判断(三)1.长方体中的三条棱分别叫做长、宽、高。

()2.求一个容器的容积,就是求这个容器的体积。

() 3.一个正方体的棱长之和是12厘米.体积是1立方厘米。

() 4.正方体的棱长扩大5倍,它的体积就扩大15倍。

() 5.把2块棱长都为2厘米的正方体拼成一个长方体,表面积增加了8平方厘米。

() 判断(四)1. 一个长方体长am,宽bm,高hm,如果高增加1m后,新的长方体体积比原来增加abm3。

()2.用同样大小的小正方体4个可以拼成一个大正方体。

()3.一个长方体,长3.2cm,宽3cm,高2cm,它的棱长之和是(3.2+3+2)×3=24.6(cm3)。

()填空题(一)1. 一种水箱最多可装水120升,我们说这个水箱的( )是120升。

2. 300厘米=( )分米45000立方分米=( )立方米3. 9升=( )立方分米=( )立方厘米4. 一个长方体的横截面是边长为3厘米的正方形,它的长是5厘米,这个长方体的表面积是( )平方厘米,体积是( )立方厘米。

5. 一个正方体的棱长总和是12厘米,它的表面积是( )平方厘米,体积是( )立方厘米。

6. 一个正方体的棱长是3厘米,用两个这样的正方体拼成一个长方体,这个长方体的表面积是( )平方厘米,体积是( )立方厘米。

五年级数学下学期长方体、正方体的认识及求棱长总和练习题

五年级数学下学期长方体、正方体的认识及求棱长总和练习题

练习题1一、填空题1.正方体是由()个完全相同的()围成的立体图形.也有()条棱,它们的长度都()。

正方体有()个顶点。

由于正方体的棱长都相等,所以它的长、宽、高都叫做()。

2.长方体有()个面。

每个面都是(),也可能有2个相对的面是(),相对的面(),长方体有()条棱,相对的棱长度(),长方体有()个顶点。

3.一个正方体的棱长总和是24厘米,它的棱长是()厘米。

4.在长、宽、高不全相等的长方体中,最多可以有()个面是正方形,在这样的长方体中,有()个长方形的面相同。

5.如下图,这个长方体的长是()cm.宽是()cm.高是()cm。

12条棱长的和是()厘米。

.6.这个魔方的形状是(),它的棱长是(),有()个面的形状完全相同。

12条棱长的和是()厘米。

7.下图是()体,每个面的面积是()平方厘米;每条棱是()厘米;它的棱长总和是()厘米。

二、判断题:(1)长方体的六个面一定是长方形。

()(2)一个长方体,它有两个面是正方形,那么它有四个面面积相等。

()(3)长方体有6个面,每个面有4条棱,共四六二十四条棱。

()(4)长方体有6个面,12条棱,8个顶点。

()(5)正方体的六个面面积一定相等。

()(6)相交于一个顶点的三条棱相等的长方体一定是正方体。

()(7)长方体的长、宽、高一定都不相等。

()(8)长方体最多有4条棱长相等。

()三、解决问题:1.一个长、宽、高分别为20 cm、30 cm、40 cm的小纸箱,在所有的棱上粘上一圈胶带,至少需要多长的胶带?2.一个长方体棱长之和是36厘米,长是4厘米,宽是3厘米,高是多少厘米?3.小卖部要做一个长2.2m、宽40cm、高80 cm的玻璃柜台。

现在要在柜台各边都安角铁,这个柜台至少需要多少米的角铁?4.为迎接五一国际劳动节,工人叔叔要在人俱乐部的四周装上彩灯(地面的四边不装)。

已知工人俱乐部长90m、宽55m、高22m,工人叔叔至少需要多长的彩灯线?5.一根铁丝可以扎成一个长12cm, 宽7cm,高5cm的长方体,如果用它扎成个正方体,扎成的正方体的棱长是多少厘米?6.下图是一个长方体灯笼框架,长30厘米、宽20厘米、高20厘米,制作这样的框架至少需要多少厘米长的木条?。

(完整版)“长方体和正方体”练习题及答案

(完整版)“长方体和正方体”练习题及答案

六年级第一学期“长方体和正方体”练习题姓名成绩一、填空题。

(每空1分,共24分)1、在括号里填上合适的单位名称。

⑴一小瓶红墨水是60()⑵一台电冰箱的体积约是240()⑶一种油箱的容积是0.6()⑷一只火柴盒的体积约是9.6()⑸一种水箱可容水约24()2、一个长方体长5厘米,宽5厘米,高4厘米,这个长方体有2个面是()形,还有()个面的面积相等,长方体的表面积是()。

3、一个长方体的体积是162立方厘米,它的底面积是32.4平方厘米,底面长8.1厘米,这个长方体的高是( )厘米,宽是( )厘米。

4、一个长方体的体积是240立方厘米,长是8厘米,宽是6厘米,高是()厘米。

5、 6.4立方米=( )立方分米 4500毫升=( )升80立方厘米=()立方分米 3.8升 = ( )毫升7.05立方分米=( )升 50平方厘米=()平方分米6、右图是由棱长1厘米的小正方体拼成的,它的体积是()立方厘米,至少再加上()个小正方体,就能成为一个较大的正方体。

7、一个长方体,长、宽、高分别为a米、b米、c米,如果高增加4米,新的长方体比原来长方体增加了()立方米。

8、一个长方体的表面积是90平方分米,把它平均分开正好成两个相等的正方体,每个正方体的表面积是()平方分米。

9、用3个棱长4厘米的正方体粘合成一个长方体,长方体的表面积比3个正方体的表面积少()平方厘米。

10、一个长方体相邻三个面的面积分别为10平方厘米、15平方厘米和6平方厘米,这个长方体的体积为()。

11、一个长方体的宽和高都是5厘米,把它从长的中点截成两个相同的长方体后,得到其中一个长方体的表面积比原来大长方体的表面积减少120平方厘米。

原来长方体的体积是()立方厘米。

二、判断题。

(每题2分,共12分)1、正方体棱长扩大到原来的2倍,体积扩大到原来的8倍。

……………()2、a3=3a。

……………………………………………………………………()3、一个长方体茶叶罐,体积和容积相等。

长方体和正方体练习

长方体和正方体练习

长方体和正方体的认识·练习题一.填空1、长方体有( )个面,每个面都是( )形,也可能有两个相对的面是( )形,( )的面积相等。

有( )条棱,( )的棱的长度相等。

2、正方体有( )个面,每个面都是( )形,( )的面积都相等,有( )条棱,它们的长度( )3、因为正方体是长、宽、高都()的长方体,所以正方体是()的长方体。

4、一个正方体的棱长为a,棱长之和是(),当a =6cm时,这个正方体的棱长总和是()cm。

5、一个长方体长、宽、高分别是a、b、h,那么这个长方体的棱长总和是()。

6、用一根长()dm铁丝正好可以做一个长6cm、宽5cm、高4cm的长方体框架。

7、做一个长方体抽屉,需要()块长方形木板。

8、一个长方体水池,长20m,宽10m,深2m,这个水池占地()m2。

9、下面的图形中,能按虚线折成正方体的是()。

二、判断:1、正方体是由6个正方形围成的立体图形。

()2、一个长方体中,可能有4个面是正方形。

()3、4个正方体能拼成一个大正方体。

()4、由6个面围成的图形都是长方体。

()三.看图并填空(单位:cm)1、(1)这个长方体长( )cm,宽( )cm,高( )cm。

(2)由一个顶点引出的三条棱的长度和是( )cm。

(3)棱长总和是( )cm。

(4)上下两个面是( )形。

2、(1)这是一个( )体 (2)正方体的棱长是( )cm。

(3)棱长之和是( )cm (4)每个面的面积是( )平方cm。

三、应用题1、一个正方体的棱长是15cm,这个正方体的棱长总和是多少dm?2、用6dm长的铁丝焊接成一个正方体的框架,这个正方体的棱长是多少cm?3、用多少dm的铁丝可以焊接成一个长12cm,宽10cm,高5cm的长方体的框架?4、有一根52cm的铁丝,恰好可以焊接成一个长6cm,宽4cm,高多少cm的长方体?5、一个长方体和一个正方体的棱长之和相等,已知长方体的长为5cm,宽为3cm,高为4cm,求正方体的棱长。

小学数学五年级《长方体和正方体》练习题

小学数学五年级《长方体和正方体》练习题

长方体和正方体的认识练习(一)一、判断:1、正方体是由6个正方形围成的立体图形。

()2、一个长方体中,可能有4个面是正方形。

()二、填空:1、因为正方体是长、宽、高都()的长方体,所以正方体是()的长方体。

2、一个正方体的棱长为a,棱长之和是(),当a =6厘米时,这个正方体的棱长总和是()厘米。

3、一个长方体长、宽、高分别是a、b、h,那么这个长方体的棱长总和是()。

三、应用:1、一个正方体的棱长是5厘米,这个正方体的棱长总和是多少厘米?(请画出这个正方体立体草图2、用72厘米长的铁丝焊接成一个正方体的框架,这个正方体的棱长是多少厘米?3、用铁丝焊接成一个长12厘米,宽10厘米,高5厘米的长方体的框架,至少需要铁丝多少厘米?4、有一根长52厘米的铁丝,恰好可以焊接成一个长6厘米,宽4厘米,高多少厘米的长方体?5、一个长方体和一个正方体的棱长之和相等,已知长方体的长为5厘米,宽为3厘米,高为4厘米,求正方体的棱长。

6、用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米?7、一个面的面积是36平方米的正方体,它所有的棱长的和是多少厘米?8、一个长方体的水池,长20米,宽10米,深2米,占地多少平方米?9、一个长方体的长是25厘米,宽是20厘米,高是18厘米,最大的面的长是()厘米,宽是()厘米,面积是()平方厘米;最小的面长是()厘米,宽是()厘米,面积是()平方厘米。

(画出这个长方体立体草图)10、一个长方体,长12厘米,宽和高都是8厘米,这个长方体前面的面积是多少平方厘米?后面呢?下面呢?(请画出长方体立体草图,标出相应数据后再计算)长方体和正方体的表面积练习一、填空(每空1分)1、长方体有()个顶点,有()条棱,有()个面,一般情况下()面的面积相等。

2、一个长方体的长是15厘米,宽是12厘米,高是8厘米,这个长方体的表面积是()平方厘米。

六年级长方体正方体练习(含解析)

六年级长方体正方体练习(含解析)

六年级长方体正方体练习(含解析)work Information Technology Company.2020YEAR六年级长方体正方体练习一.选择题(共7小题)1.一个冰箱从里面量长5分米,宽5分米,高4分米,装满水后水箱的()是100升.A.容积B.体积C.重量2.如图:将如图纸片折起来可以做成一个正方体.这个正方体的3号面的对面是()号面.A.2 B.3 C.4 D.13.下列图形都是由相同的小正方形组成,哪一个图形不能折成正方体()A.B.C.4.如图,有一个无盖的正方体纸盒,下底标有字母“M”,将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.5.把一个长3cm、宽4cm、高5cm的长方体截成两个长方体,表面积最多增加()cm2.A.24 B.30 C.406.一个汽油箱长60厘米,宽20厘米,高20厘米,这个油箱可盛汽油()升.A.240000 B.240 C.24 D.0.247.如图,用丝带捆扎一种礼品盒,结头处长25cm,要捆扎这种礼品盒,准备()分米的丝带比较合理.A.10 B.15 C.20 D.22.5二.填空题(共10小题)8.棱长总和是72cm的正方体,表面积是,体积是.9.如果正方体的棱长扩大到原来的3倍,那么它的表面积就扩大到原来的倍.10.用铁丝焊接一个棱长是 5 厘米的正方体框架,至少需要铁丝厘米.如果用白纸贴满正方体的各个面,至少要用白纸平方厘米;这个正方体的体积是立方厘米.11.长方形的右侧面积是12平方厘米,前面面积是8平方厘米,上面面积是6平方厘米,这个长方体的表面积是平方厘米.12.一个长方体,如果宽增加2厘米,就变成一个正方体,这时表面积比原来增加32平方厘米.原来长方体的表面积是平方厘米,体积是立方厘米.13.一个正方体木块,把它割成2个长方体后.表面积增加了18m2,这个木块原来的表面积是,体积是.14.一个棱长4dm的正方体钢坯的体积是dm3,如果把它锻造成一个底面积是20dm2的长方体,这个长方体的高是dm.15.一根长2米的长方体钢材,沿横截面截成两段后,表面积增加了0.8平方米,这段长方体钢材的体积是立方分米.16.用一根24分米长的铁丝围成一个最大的正方体形状的框架,这个正方体的体积是立方米.17.一根60厘米长的铁丝,如果做一个长8厘米、宽5厘米的长方体模型,这个长方体的高是厘米,这个长方体的表面积是平方厘米,体积是立方厘米.三.判断题(共5小题)18.正方体的棱长扩大到原来的2倍,它的表面积也就扩大到原来的2倍..(判断对错)19.棱长为6cm的正方体的体积与表面积相等..(判断对错)20.底面周长是8分米的正方体,它的表面积是24平方分米..(判断对错)21.如果长方体的长、宽、高都扩大3倍,则它的体积扩大3倍.(判断对错)22.把一个长方体锻造成一个正方体铁块,形状变了,但体积不变.(判断对错)四.解答题(共10小题)23.如图,如果把这个长方体完全沉没于盛满水的水槽中,会有多少水溢出来如果要包装这个盒子,至少需要多少平方厘米的包装纸(单位:厘米)24.求出如图中长方体的体积和表面积.(单位:米)25.看图计算,如图是长方体纸箱的展开图,请你根据有关数据,求出纸箱的体积.(单位:分米)26.一间平顶教室,长是8.5米,宽6米,高4.2米.教室的门窗和黑板的面积一共有35.8平方米.要粉刷教室的顶面和四面墙壁,粉刷的面积有多少平方米?27.一个长方形的游泳池,从里面量长50米,宽20米,高2米,平均水深1.5米.粉刷它的四壁和地面,粉刷面积是多少平方米?28.一块长32厘米、宽25厘米的铁皮,从四个角各切掉一个边长为3厘米的正方形,然后做成盒子.这个盒子用了多少铁皮它的容积有多少立方厘米(如图)29.有一个长方体,从上面截下一个高是2厘米的长方体后正好得到一个正方体,如图,正方体的表面积比原长体的表面积减少了48平方厘米,求原来长方体的体积.30.一个长方体水箱,从里面量长是40cm,宽是35cm,水箱中浸没一个钢球(水末溢出),水深15cm,取出钢球后,水深12cm.如果每立方分米钢重7.8千克,这个钢球重多少千克?31.把棱长为4dm的正方形钢坯熔铸成横截面是边长8cm的正方形的长方体钢条,这个钢条的长是多少分米?32.李老师用一根长56cm的铁丝,做成一个长6cm,宽5cm的长方体框架教具,这个教具的高是多少厘米?六年级长方体正方体练习(2)参考答案与试题解析一.选择题(共7小题)1.(2016春•卧龙区校级期中)一个冰箱从里面量长5分米,宽5分米,高4分米,装满水后水箱的()是100升.A.容积B.体积C.重量【考点】AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据容积的意义,某容器所能容纳别的物体的体积叫做这个容器的容积.据此解答即可.【解答】解:根据容积的意义可知:一个木箱装满水后水箱的容积是100升故选:A.【点评】此题考查的目的是理解掌握容积的意义及应用.2.(2016秋•如皋市月考)如图:将如图纸片折起来可以做成一个正方体.这个正方体的3号面的对面是()号面.A.2 B.3 C.4 D.1【考点】8M:正方体的展开图.【专题】462:立体图形的认识与计算.【分析】根据正方体展开图的11种特征,属于“1﹣3﹣2”型,折叠成正方体后,1号面与5号面相对,2号面与3号面相对,4号面与6号面相对.【解答】解:如图,折叠成正方体后,1号面与5号面相对,2号面与3号面相对,4号面与6号面相对.故选:A.【点评】此题是考查正方体展开图的特征,正方体展开图有11种情况,折叠成正方体后哪些面相对是有规律的,最好是掌握规律,能快速解答此类题.3.(2016春•乐亭县校级月考)下列图形都是由相同的小正方形组成,哪一个图形不能折成正方体()A.B.C.【考点】8M:正方体的展开图.【专题】462:立体图形的认识与计算.【分析】根据正方体展开图的11种特征,选项B不属于正方体展开图,不能折成正方体;选项A和选项C都属于正方体展开图的“1﹣4﹣1”型,都能折成正方体.【解答】解:根据正方体展开图的特征,选项B不能折成正方体;选项B和选项C都能折成正方体.故选:B.【点评】本题主要是考查正方体展开图的特征,正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.4.(2015•绵阳)如图,有一个无盖的正方体纸盒,下底标有字母“M”,将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.【考点】8M:正方体的展开图.【专题】462:立体图形的认识与计算.【分析】我们可以对四个选项用排除法,根据正方体展开图的特征,选项D不能折成无盖的正方体纸盒;选项A、B、C都能折成无盖的正方体纸盒,选项B、C中字母“M”都在侧面,只有选项A折成无盖的正方体纸盒,下底标有字母“M”.【解答】解:如图,根据正方体展开图的特征,将其剪开展成平面图形是:故选:A.【点评】此题是考查正方体展开图的特征,四个选项中除D外,其余几个都能折成无盖的正方体盒,关键是看哪个字母“M”在底上.5.(2015•德江县模拟)把一个长3cm、宽4cm、高5cm的长方体截成两个长方体,表面积最多增加()cm2.A.24 B.30 C.40【考点】AB:长方体和正方体的表面积.【专题】12 :应用题;33 :假设法;462:立体图形的认识与计算.【分析】抓住长方体的切割特点可得,要使增加的表面积最多,则平行于最大面5×4面切割,则表面积就是增加2个5×4面,据此即可解答.【解答】解:5×4×2=20×2=40(平方厘米)答:表面积最多能增加40平方厘米.故选:C.【点评】根据长方体切割小长方体的方法,明确表面积增加的2个面是解决本题的关键.6.(2015•徐州模拟)一个汽油箱长60厘米,宽20厘米,高20厘米,这个油箱可盛汽油()升.A.240000 B.240 C.24 D.0.24【考点】AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据长方体的容积(体积)公式:v=abh,把数据代入公式解答.【解答】解:60×20×20=24000(立方厘米),24000立方厘米=24(升),答:这个油桶可以盛汽油24升.故选:C.【点评】此题主要考查长方体的容积(体积)公式的灵活运用,关键是熟记公式,注意:体积单位与容积单位之间的换算.7.(2015秋•射阳县校级期末)如图,用丝带捆扎一种礼品盒,结头处长25cm,要捆扎这种礼品盒,准备()分米的丝带比较合理.A.10 B.15 C.20 D.22.5【考点】8G:长方体的特征.【专题】12 :应用题;3B :代数方法;462:立体图形的认识与计算.【分析】由图形可知:丝带的长度等于长方体的两条长+两条宽+4条高,然后再加上打结用的25厘米就是所需要的长度,列式解答即可.【解答】解:30×2+20×2+25×4+25=60+40+100+25=225(厘米)=22.5(分米答:准备22.5分米的丝带比较合理.故选:D.【点评】此题考查的目的是理解掌握长方体的特征,相对棱的长度相等,关键是弄清如何捆扎的,进而确定是求哪几条棱的长度和.二.填空题(共10小题)8.(2016春•玉林期末)棱长总和是72cm的正方体,表面积是216平方厘米,体积是216立方厘米.【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】正方体的12条棱的长度都相等,用棱长总和除以12求出棱长,再根据正方体的表面积公式:s=6a2,体积公式:v=a3,把数据分别代入公式解答.【解答】解:72÷12=6(厘米),6×6×6=216(平方厘米),6×6×6=216(立方厘米),答:这个正方体的表面积是216平方厘米,体积是216立方厘米.故答案为:216平方厘米,216立方厘米.【点评】此题主要考查正方体的表面积公式、体积公式的灵活运用.9.(2016春•克州校级期中)如果正方体的棱长扩大到原来的3倍,那么它的表面积就扩大到原来的9倍.【考点】AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】根据正方体的表面积公式s=6a2,再根据积的变化规律,积扩大的倍数等于因数扩大倍数的乘积,由此解答.【解答】解:根据正方体的表面积公式s=6a2,一个正方体的棱长扩大到原来的3倍,表面积扩大到原来的3×3=9倍.答:它的表面积扩大到原来的9倍.故答案为:9.【点评】此题主要根据正方体表面积计算方法和积的变化规律解决问题.10.(2016秋•玄武区期末)用铁丝焊接一个棱长是 5 厘米的正方体框架,至少需要铁丝60厘米.如果用白纸贴满正方体的各个面,至少要用白纸150平方厘米;这个正方体的体积是125立方厘米.【考点】AB:长方体和正方体的表面积;8G:长方体的特征;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据正方体的棱长总和=棱长×12,正方体的表面积公式:S=6a2,体积公式:v=a3,把数据分别代入公式解答.【解答】解:5×12=60(厘米);5×5×6=25×6=150(平方厘米);5×5×5=125(立方厘米);答:至少需要铁丝60厘米,至少要用白纸150平方厘米,它的体积是125立方厘米.故答案为:60、150、125.【点评】此题主要考查正方体的棱长总和公式、表面积公式、体积公式的灵活运用,关键是熟记公式.11.(2016春•扬州校级期末)长方形的右侧面积是12平方厘米,前面面积是8平方厘米,上面面积是6平方厘米,这个长方体的表面积是52平方厘米.【考点】AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】根据长方体的特征.相对面的面积相等,已知长方体相邻三个面的面积,求这个长方体的表面积,也就是用相邻三个面的面积和乘2即可,据此解答.【解答】解:(6+8+12)×2=26×2=52(平方厘米)答:这个长方体的表面积是52平方厘米.故答案为:52.【点评】此题考查的目的是理解掌握长方体的特征,以及长方体的表面积公式的灵活运用.12.(2016秋•无锡期末)一个长方体,如果宽增加2厘米,就变成一个正方体,这时表面积比原来增加32平方厘米.原来长方体的表面积是64平方厘米,体积是32立方厘米.【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】12 :应用题;17 :综合填空题;462:立体图形的认识与计算.【分析】根据题意可知,一个长方体如果宽增加2厘米,就变成了一个正方体;说明长和高相等且比宽大2厘米,因此增加的32平方厘米是4个同样的长方形的面积和;由此可以求长方体的长=(32÷4)÷2=4厘米,由于长比宽多2厘米,那么宽=4﹣2=2厘米,由此再利用长方体的体积公式和表面积计算公式计算即可解答.【解答】解:32÷4÷2=4(厘米)4﹣2=2(厘米)(1)4×4×2+4×2×4=32+32=64(平方厘米)答:原来长方体的表面积是64平方厘米.(2)4×4×2=16×2=32(立方厘米)答:原来长方体的体积是32立方厘米.故答案为:64,32.【点评】本题主要考查长方体正方体表面积的实际应用,解答本题的关键是根据宽增加2cm,就变成一个正方体,可知增加的部分是长为2厘米的4个面,从而可以分别求出长方体的长、宽、高,进而利用长方体的表面积和体积的计算方法即可求解.13.(2016春•未央区期末)一个正方体木块,把它割成2个长方体后.表面积增加了18m2,这个木块原来的表面积是54平方米,体积是27立方米.【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】17 :综合填空题;462:立体图形的认识与计算.【分析】把一个正方体切成两个完全相同的长方体后,则表面积增加了两个边长和原来正方体棱长相同的两个横截面的面积,表面积增加了18平方米,则每个横截面的面积为18÷2=9平方米,即可求出正方体的边长为3米,再利用正方体的表面积公式S=6a2,体积公式V=a3,即可解答.【解答】解:18÷2=9(平方米)因为3×3=9,所以原来正方体的棱长是3米,表面积:3×3×6=9×6=54(平方米)体积:3×3×3=9×3=27(立方米)答:这个木块原来的表面积是54平方米,体积是27立方米.故答案为:54平方米、27立方米.【点评】此题主要考查正方体表面积公式和体积的计算,关键是求出正方体的棱长,再把数据代入表面积和体积公式解答即可.14.(2016春•仁怀市校级期末)一个棱长4dm的正方体钢坯的体积是64 dm3,如果把它锻造成一个底面积是20dm2的长方体,这个长方体的高是 3.2 dm.【考点】AC:长方体和正方体的体积.【分析】(1)根据正方体的体积=棱长×棱长×棱长即可解答;(2)锻造前后的体积不变,根据长方体的体积公式,用上面求出的正方体的体积,除以这个长方体的底面积,即可得出长方体的高.【解答】解:(1)正方体钢坯的体积是:4×4×4=64(立方分米);(2)64÷20=3.2(分米),答:一个棱长4dm的正方体钢坯的体积是64dm3,如果把它锻造成一个底面积是20dm2的长方体,这个长方体的高是3.2分米.故答案为:64;3.2.【点评】此题考查了正方体和长方体的体积公式的灵活应用,抓住锻造前后的体积不变,是解决此类问题的关键.15.(2016春•日照期末)一根长2米的长方体钢材,沿横截面截成两段后,表面积增加了0.8平方米,这段长方体钢材的体积是800立方分米.【考点】AC:长方体和正方体的体积.【分析】根据长方体的面的特征,它的6个面都是长方形(特殊情况有两个相对的面是正方形),相对的面的面积相等;由题意可知,一根长2米的长方体钢材,沿横截面截成两段后,表面积增加了0.8平方米,增加了两个截面的面积,0.8÷2=0.4平方米,长方体的体积=底面积×高;由此解答.【解答】解:1立方米=1000立方分米;0.8÷2×2=0.4×2=0.8(立方米);0.8立方米=800立方分米;答:这段长方体钢材的体积是800立方分米.故答案为:800.【点评】此题主要考查长方体的体积计算,关键是理解沿横截面截成两段后,表面积增加了0.8平方米,增加的是两个截面的面积即底面积,然后根据体积公式解答.16.(2016春•抚州校级期末)用一根24分米长的铁丝围成一个最大的正方体形状的框架,这个正方体的体积是8立方米.【考点】AC:长方体和正方体的体积;8G:长方体的特征.【专题】462:立体图形的认识与计算.【分析】用一根24分米长的铁丝围成一个最大的正方体形状的框架,也就是这个正方体的棱长总和是24分米,首先用棱长总和除以12求出棱长,再根据正方体的体积公式:v=a3,把数据代入公式解答即可.【解答】解:24÷12=2(分米),2×2×2=8(立方分米),答:这个正方体的体积是8立方分米.故答案为:8.【点评】此题主要考查正方体的棱长总和公式、体积公式的灵活运用,关键是熟记公式.17.(2016秋•泰兴市校级期中)一根60厘米长的铁丝,如果做一个长8厘米、宽5厘米的长方体模型,这个长方体的高是2厘米,这个长方体的表面积是124平方厘米,体积是80立方厘米.【考点】8G:长方体的特征;AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】17 :综合填空题;462:立体图形的认识与计算.【分析】用长60厘米的铁丝围一个长方体框架,也就是这个长方体的棱长总和是60厘米,用棱长总和除以4求出长、宽、高的和,已知长方体的长是8厘米,宽是5厘米,用长、宽、高的和减去长、宽,即可求出高,再根据长方体的表面积公式:s=(ab+ah+bh)×2,体积公式:v=abh,把数据分别代入公式解答.【解答】解:60÷4﹣8﹣5=15﹣8﹣5=2(厘米)表面积:(8×5+5×2+8×2)×2=(40+10+16)×2=62×2=124(平方厘米)体积:8×5×2=40×2=80(立方厘米)答:这个长方体的高是2厘米,这个长方体的表面积是124平方厘米,体积是80立方厘米.故答案为:2、124、80.【点评】此题主要考查长方体的棱长占公式、表面积公式、体积公式的灵活运用,关键是求出长方体的高.三.判断题(共5小题)18.(2017春•渭源县校级期末)正方体的棱长扩大到原来的2倍,它的表面积也就扩大到原来的2倍.×.(判断对错)【考点】AB:长方体和正方体的表面积.【专题】18 :综合判断题;39 :找“定”法;462:立体图形的认识与计算.【分析】依据正方体的表面积公式S=a×a×6进行解答即可.【解答】解:原来的表面积:S=a×a×6=6a2,现在的表面积:S=2a×2a×6=24a2,表面积扩大:24a2÷6a2=4倍.所以题干的说法是错误的.故答案为:×.【点评】此题主要考查正方体的表面积公式的灵活应用.19.(2016•玉溪模拟)棱长为6cm的正方体的体积与表面积相等.×.(判断对错)【考点】AC:长方体和正方体的体积;AB:长方体和正方体的表面积.【专题】18 :综合判断题;462:立体图形的认识与计算.【分析】根据正方体的表面积公式:s=6a2,正方体的体积公式:v=a3,因为表面积和体积不是同类量,无法进行比较.由此解答.【解答】解:表面积:6×6×6=216(平方厘米)体积:6×6×6=216(立方厘米)因为表面积和体积不是同类量,无法进行比较.故答案为:×.【点评】此题解答关键是明确:只有同类量才能进行比较大小,不是同类量无法进行比较.20.(2016春•正定县校级期末)底面周长是8分米的正方体,它的表面积是24平方分米.√.(判断对错)【考点】AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】根据正方体的特征,正方体的6个面是完全相同的正方形,已知它的底面周长是8分米,首先用底面周长除以4求出底面边长,再根据正方体的表面积公式:s=6a2,把数据代入公式求出它的表面积,然后与24平方分米进行比较即可.【解答】解:8÷4=2(分米),2×2×6=4×6=24(平方分米),答:它的表面积是24平方分米.故答案为:√.【点评】此题主要考查正方形的周长公式、正方体的表面积公式的灵活运用,关键是熟记公式.21.(2016春•仁怀市校级期末)如果长方体的长、宽、高都扩大3倍,则它的体积扩大3倍.×(判断对错)【考点】AC:长方体和正方体的体积.【专题】18 :综合判断题;462:立体图形的认识与计算.【分析】根据长方体的体积计算方法和积的变化规律,长方体的体积=长×宽×高,积扩大的倍数等于因数扩大倍数的乘积.由此解答.【解答】解:长方体的体积=长×宽×高,长、宽、高都扩大3倍,它的体积就扩大:3×3×3=27倍;所以“如果长方体的长、宽、高都扩大3倍,则它的体积扩大3倍”的说法是错误的.故答案为:×.【点评】此题主要根据长方体的体积计算方法和积的变化规律解决问题.22.(2016春•黎平县校级期末)把一个长方体锻造成一个正方体铁块,形状变了,但体积不变.√(判断对错)【考点】AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.将一个长方体铁块锻造成正方体,只是形状变了,但体积不变.据此解答.【解答】解:把一块长方体的铁块锻造成正方体的铁块,形状改变了,但体积不变,所以本题说法正确;故答案为:√.【点评】此题主要考查了学生对正方体表面积及体积公式的掌握应用情况.四.解答题(共10小题)23.(2017春•渭源县校级期末)如图,如果把这个长方体完全沉没于盛满水的水槽中,会有多少水溢出来如果要包装这个盒子,至少需要多少平方厘米的包装纸(单位:厘米)【考点】AC:长方体和正方体的体积;AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】(1)溢出的水的体积就等于长方体的体积,利用长方体的体积公式即可得解;(2)求包装纸的面积实际上是求长方体的面积,利用长方体的表面积公式即可求解.【解答】解:(1)13×2×8=208(立方厘米);答:会有208立方厘米水溢出来.(2)(13×2+13×8+2×8)×2,=(26+104+16)×2,=146×2,=292(平方厘米);答:至少需要292平方厘米的包装纸.【点评】此题主要考查长方体的表面积和体积的计算方法的灵活应用.24.(2016•安溪县模拟)求出如图中长方体的体积和表面积.(单位:米)【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】长方体的表面积=(长×宽+长×高+宽×高)×2,长方体的体积=长×宽×高,已知长是5厘米,宽是3厘米,高是4厘米.把数据分别代入公式解答.【解答】解:(3×4+3×5+4×5)×2=(12+15+20)×2=47×2=94(平方米)3×4×5=60(立方米)答:这个长方体的表面积是94平方米,体积是60立方米.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式.25.(2016秋•玄武区期末)看图计算,如图是长方体纸箱的展开图,请你根据有关数据,求出纸箱的体积.(单位:分米)【考点】8L:长方体的展开图;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】我们通过观察得到这个长方体的长是6分米,宽是9﹣6=3分米,高是11﹣3=8厘米,由此运用长方体的体积公式进行解答即可.【解答】解:长方体的体积:6×(9﹣6)×(11﹣3),=6×3×8,=144(立方厘米);答;这个纸盒的表面积是136平方厘米,体积是80立方厘米.【点评】本题考查了学生对长方体的体积公式的运用掌握情况.重点考查了空间想象能力.26.(2016秋•毕节市期中)一间平顶教室,长是8.5米,宽6米,高4.2米.教室的门窗和黑板的面积一共有35.8平方米.要粉刷教室的顶面和四面墙壁,粉刷的面积有多少平方米?【考点】AB:长方体和正方体的表面积.【分析】由题意知,粉刷的面积=教室的顶面面积+四面墙壁的面积﹣门窗和黑板的面积,据此列式解答即可.【解答】解:2×(8.5×4.2+6×4.2)+8.5×6﹣35.8=2×60.9+51﹣35.8=121.8+51﹣35.8=137(平方米).答:粉刷的面积有137平方米.【点评】本题主要考查长方体的表面积的知识点,长方体的表面积=2(长×宽+长×高+宽×高).本题需要注意减去地面的面积和教室的门窗和黑板的面积.27.(2016春•扬州校级期末)一个长方形的游泳池,从里面量长50米,宽20米,高2米,平均水深1.5米.粉刷它的四壁和地面,粉刷面积是多少平方米?【考点】AB:长方体和正方体的表面积.【专题】12 :应用题;462:立体图形的认识与计算.【分析】要在四壁和池底粉刷,只求它的5个面的总面积,根据长方体的表面积公式:S=2ab+2ah+2bh进行解答.【解答】解:(50×20+50×2+20×2)×2﹣50×20=(1000+100+40)×2﹣1000=1140×2﹣1000=2280﹣1000=1280(平方米)。

长方体和正方体练习题

长方体和正方体练习题

长方体和正方体外表积知识巩固一、填空题。

1、一个正方体的棱长之得84厘米,它的棱长是〔〕,一个面的面积是〔〕,外表积是〔〕,体积是〔〕。

2、一个长方体的长、宽、高都扩大2倍,它的外表积就〔〕。

3、两个棱长2厘米的正方体木块,拼成一个长方体,这个长方体的外表积是〔〕。

4、把一个长12厘米,宽和高都是3厘米的长方体分割成4个大小一样的正方体,外表积增加了〔〕,每个正方体的外表积是〔〕。

5、用棱长1厘米的小正方体木块拼成一个较大的的正方体,至少要〔〕块这样的小木块,拼成的正方体的棱长是〔〕,外表积是〔〕。

6、把一个棱长2分米的正方体切成两个体积相等的长方体,其中一个长方体的外表积是〔〕平方分米。

7、一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,不小心前面的玻璃被打坏了,修理时配上的玻璃的面积是〔〕。

8、一个正方体的棱长总和是72厘米,它的一个面是边长〔〕厘米的正方形,它的外表积是〔〕平方厘米。

二、解决问题。

9、一个无盖的长方休鱼缸,长1.2米,宽0.6米,1米,这个鱼缸至少要用玻璃多少平方米?10、大爷准备给小猫做一个温暖舒服的新家。

他准备了两根长120厘米的木条,要做成一个尽可能大的正方体框架,然后在其外表包上一层铝塑板。

请你帮大爷算一算:至少要用多少铝塑板?〔含门的面积〕11、学校饭堂使用的一种长方体形状的铁皮烟囱,烟囱高6米,底部是一个边长80厘米的正方形。

制作3个这样的烟囱至少需要铁皮多少平方米?12、一个浴室长3米,宽2米,高2。

5米,在浴室的四壁和地面贴上规格是200平方厘米的瓷砖,至少需要瓷砖多少块?13、制造一个长5厘米,宽4厘米,高2。

5厘米的火柴盒外盒,至少需要多少平方厘米的硬纸皮?15、一个房间的长6米,宽3.5米,高3米,门窗面积是8平方米。

现在要把这个房间的四壁和顶面粉刷水泥,粉刷水泥的面积是多少平方米?如果每平方米需要水泥4千克,一共要水泥多少千克?16、把一个正方体切成两个完全一样的长方体,外表积增加了20平方厘米。

长方体正方体 练习题含答案

长方体正方体 练习题含答案

长方体正方体练习题含答案1.需要计算的是长方体的周长,公式是(长+宽+高)×2×2,计算结果为320厘米。

2.需要计算的是长方体的周长,公式是(长+宽)×2+高×4,计算结果为370米。

3.需要在长方体的每个面上都安装角铁,计算公式是(长+宽+高)×4,计算结果为13.6米。

4.需要计算的是长方体的表面积,公式是(长×高+宽×高)×2,计算结果为384平方厘米。

5.(1)需要计算正方体的表面积,公式是边长的平方×6,计算结果为平方厘米。

(2)需要计算正方体的周长,公式是边长×4,计算结果为184厘米,换算成米为1.84米,因此一卷长4.5米的胶带纸不够用。

6.需要计算正方体的表面积,公式是边长的平方×6,计算结果为45平方分米。

7.需要计算长方体的表面积,公式是(长×宽+长×高+宽×高)×2,计算结果为12.96平方分米。

8.需要计算长方体的表面积,减去门窗的面积,公式是(长×宽+长×高+宽×高)×2-门窗面积,计算结果为120.6平方米,乘以每平方米的涂料费用4元,计算结果为482.4元。

长方形木料的长为5m,横截面的面积为0.08平方米。

计算木料的体积,可以使用公式“体积=底面积×高”,即0.08×5=0.4立方米。

因此,这根木料的体积是0.4立方米。

有500根方木,每根方木横截面的面积是2.6平方分米,长为3m。

求这些木料的总体积。

首先将横截面的面积转换为平方米,即2.6平方分米=0.024平方米。

然后使用公式“体积=底面积×高×数量”,即0.024×3×500=36方。

因此,这些木料的总体积是36方。

要砌一道长15m、厚24cm、高3m的砖墙,每立方米需要用520块砖。

苏教版小学数学六年级上册《长方体与正方体》专项练习试题

苏教版小学数学六年级上册《长方体与正方体》专项练习试题

苏教版数学六年级上册《长方体与正方体》)练习题(1)(长方体和正方体的认识)一、填空:1、长方体和正方体都有( ) 个面,( ) 条棱,( ) 个顶点。

2、长方体的每个面都是( )形或有一组对面是( )。

它有( )条棱,平行的( )条棱都相等。

3、相交于长方体一个顶点的三条棱的长度分别叫做它的()、()和()。

4、长方体有()个面,从不同的角度观察一个长方体,最多能看到()个面。

5、一个长方体的长是5分米,宽是4分米,高是3分米,6个面中最小的一个面的面积是(),最大的一个面的面积是()。

6、一个长方体,长4米,宽3米,高2米,它的占地面积最大是()平方米。

7,长方体的右侧面面积是12平方厘米,前面面积是8平方厘米,上面面积是6平方厘米,这个长方体的长、宽、高分别是()、()、()。

二、选择:1、一个长方体水池,长20米,宽10米,深2米,这个水池占地()平方米。

A、200B、400C、5202、下面的图形中,能按虚线折成正方体的是()。

3、从一个体积是30立方厘米的长方体木块中,挖掉一小块后(如下图) ,它的表面积( ) 。

A.和原来同样大 B.比原来小 C.比原来大 D.无法判断4、用一根52厘米长的铅丝,正好可以焊成长6厘米,宽4厘米,高()厘米的长方体教具。

A、2B、3C、4D、5三、计算下面每个图形的棱长和。

1、一个长方体,长5分米,宽3分米,高4分米,求它的所有棱长的和。

2、用钢筋做一个长和宽都是3.5分米,高是10厘米的长方体,需多少分米的钢筋?3、棱长是4分米的正方体,棱长和是多少分米?4、一个长方体的棱长和是36厘米,从一个顶点出发的三条棱的和是多少厘米?5、同一根长96厘米的铁丝折成一个最大的正方体框架,求正方体框架的棱长。

6、一个长方体的长是15厘米,宽是12厘米,棱长总和是148厘米,求它的高。

7、两根同样长的铁丝焊一个长方体和正方体,长方体长7厘米,宽5厘米,高3厘米,求正方体的棱长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,
长方体和正方体认识练习题(二)
一、填空
1、一个长方体(不包括正方体)里最多有( )个正方形,最多有( )个面完全相同,最多有( )条棱的长度相等。

2、因为正方体的长、宽、高都( ),所以正方体是( )的长方体。

3、一个正方体的棱长是a 厘米,它的棱长之和是( )厘米。

一个火柴盒的外匣和內匣一共有( )个面。

4、一个长方体的长、宽、高分别是a 、b 、h ,那么这个长方体的棱长总和是( )。

5、一个长方体的长是厘米,宽是2厘米,高是厘米,这个长方体的最大的面的面积是( )平方厘米,最小的面的面积是( )平方厘米。

6、如右图(单位:厘米)
这个长方体的长是( )厘米,宽( )厘米,
高是( )厘米,由一个顶点引出的三条棱的和是
( )厘米,棱长总和是( )厘米,它的占地面积是( )平方厘米。

7、如右图(单位:厘米)
` 这是个( )体,它的棱长是( )厘米,棱长和是( )
厘米,每个面的面积是( )平方厘米。

二、判断
1、正方体是由6个正方形围成的立体图形。

( )
2、在长方体的12条棱中,长度相等的最少有4条 。

( )
3、一个长方体中,可能有4个面是正方形。

( )
4、如果一个长方体有两个相对的面是正方形,则其它的四个面的面积一定相等。

( )
5、正方体是特殊的长方体。

( )
#
5
6、长方体的长、宽、高一定都不相等。

( )
三、解决问题
1、如图(单位:厘米)
(1)这个鞋盒的上面是什么形状长和宽各是
多少和它相同的面是哪个面
&
(2)它的左面是什么形状长和宽各是多少和它相同的面是哪个面
(3)哪个面的长是36厘米,宽是10厘米
2、用72厘米的铁丝焊接成一个正方体框架,这个框架的棱长是多少厘米
"
3、用丝带捆扎一个长25cm 、宽20cm 、8cm 的长方体
礼品盒(如有图)。

接头处的丝带长40cm ,捆扎这个盒子
至少需要多长的丝带
4、有一根长52厘米的铁丝,恰好可以焊接成一个长6厘米,宽4厘米的长方体框架,这个框架的高是多少厘米

36 28 10
5、用一根铁丝恰好可以焊接成一个长5厘米,宽3厘米,高4厘米的长方体框架,若这根铁丝也恰好能焊接成一个正方体框架,则这个正方体框架的棱长是多少厘米
6、一个面的面积是36平方厘米的正方体,它的棱长和是多少厘米

7、用一根铁丝刚好焊成一个棱长是8厘米的正方体框架,若这根铁丝也恰好能焊成一个长10厘米,宽7厘米的长方体框架,这个长方体框架的高是多少厘米
8、超市要做一个长米,宽45厘米,高80厘米
的玻璃柜台,现要在柜台各边都安上角铁(如右图)。

这个柜台至少需要多少米角铁
@
9、李叔叔在一个长米,宽35厘米,高60厘米的玻璃鱼缸上安上了角铁(如右图)。

这个玻璃鱼缸至少需要多长的角铁
10、为迎接“六一”儿童节,工人叔叔在少年宫的四周装上彩灯,(如图:地面的四边不装)。

已知少年宫的长是100米,
宽48米,高15米,工人叔叔至少需要多长的
彩灯。

相关文档
最新文档