竞赛讲座02 数的整除性
初中数学竞赛讲座——数论部分2(整数的整除性)
第二讲 整数的整除性一、基础知识:1.整除的基本概念与性质所谓整除,就是一个整数被另一个整数除尽,其数学定义如下.定义: 设a ,b 是整数,b ≠0.如果有一个整数q ,使得a=bq ,那么称a 能被b 整除,或称b 整除a ,并记作b |a .也称b 是a 的约数,a 是b 的倍数。
如果不存在这样的整数q ,使得a=bq ,则称a 不能被b 整除,或称b 不整除a ,记作b |a .关于整数的整除,有如下一些基本性质:性质1若c b b a |,|,则c a |证明:∵c b b a |,|,∴bq c ap b ==,(q p ,是整数),∴a pq q ap c )()(==,∴c a |性质2 若a |b ,b |a ,则 |a |=|b |.性质3 若c |a ,c |b ,则c |(a ±b ),且对任意整数m ,n ,有c |(m a ±n b ).证明:∵c a b a |,|,∴aq c ap b ==,q b ,(是整数),∴)(q p a aq ap c b ±=±=±,∴|()a b c ±性质4 若b |a ,d |c ,则bd |ac .特别地,对于任意的非零整数m ,有b m |a m性质5 若a =b +c ,且m |a ,m |b ,则m |c .性质6 若b |a ,c |a ,则[b ,c ]|a .特别地,当(b ,c )=1时,bc |a【此处[b ,c ]为b ,c 的最小公倍数;(b ,c )为b ,c 的最大公约数】.性质7 若c |ab ,且(c ,a )=1,则c |b .特别地,若p 是质数,且p |ab ,则p |a 或p |b .性质8 n 个连续整数中,必有一个能被n 整除.【特别地:两个连续整数必有一偶数;三个连续整数必有一个被3整除,如11,12,13中有3 | 12;41,42,43,44中有4 |44;77,78,79,80,81中5 | 80.】二.证明整除的基本方法证明整除常用下列几种方法:(1)利用基本性质法;(2)分解因式法;(3)按模分类法;(4)反证法等.下面举例说明.例1若a |n ,b |n ,且存在整数x ,y ,使得ax +b y=1,证明:ab |n .证明:由条件,可设n=au,n=b v,u,v为整数,于是n=n(ax+b y)= nax+nb y=abvx+abu y= ab(vx+u y)所以n|ab例2证明:三个连续奇数的平方和加1,能被12整除,但不能被24整除.分析要证明一个数能被12整除但不能被24整除,只需证明此数等于12乘上一个奇数即可.证明:设三个连续的奇数分别为2n-1,2n+1,2n+3(其中n是整数),于是(2n-1)2+(2n+1)2+(2n+3)2+1=12(n2+n+1).所以12|[(2n-1)2+(2n+1)2+(2n+3)2].又n2+n+1=n(n+1)+1,而n,n+1是相邻的两个整数,必定一奇一偶,所以n(n+1)是偶数,从而n2+n+1是奇数,故24 |[(2n-1)2+(2n+1)2+(2n+3)2].例3若整数a不被2和3整除,求证:24|(a2-1).分析因为a既不能被2整除,也不能被3整除,所以,按模2分类与按模3分类都是不合适的.较好的想法是按模6分类,把整数分成6k,6k+1,6k+2,6k+3,6k+4,6k+5这六类.由于6k,6k+2,6k +4是2的倍数,6k+3是3的倍数,所以a只能具有6k+1或6k+5的形式,有时候为了方便起见,也常把6k+5写成6k-1(它们除以6余数均为5).证明因为a不被2和3整除,故a具有6k±1的形式,其中k是自然数,所以a2-1=(6k±1)2-1=36k2±12k=12k(3k±1).由于k与3k±1为一奇一偶(若k为奇数,则3k±1为偶数,若k为偶数,则3k±1为奇数),所以2|k(3k±1),于是便有24|(a2-1).例4若x,y为整数,且2x+3y,9x+5y之一能被17整除,那么另一个也能被17整除.证明:设u=2x+3y,v=9x+5y.若17|u,从上面两式中消去y,得3v-5u=17x.①所以17|3v.因为(17,3)=1,所以17|v,即17|9x+5y.若17|v,同样从①式可知17|5u.因为(17,5)=1,所以17|u,即17|2x+3y.例5已知a,b是自然数,13a+8b能被7整除,求证:9a+5b都能被7整除.分析:考虑13a+8b的若干倍与9a+5b的若干倍的和能被7整除,证明13a+8b+4(9a+5b)=7(7a+4b)是7的倍数,又已知13a+8b是7的倍数,所以4(9a+5b)是7的倍数,因为4与7互质,由性质7|(9a+5b)例6已知a,b是整数,a2+b2能被3整除,求证:a和b都能被3整除.证明 用反证法.如果a ,b 不都能被3整除,那么有如下两种情况:(1) a ,b 两数中恰有一个能被3整除,不妨设3|a ,3b .令a =3m ,b =3n±1(m ,n 都是整数),于是a 2+b 2=9m 2+9n 2±6n+1=3(3m 2+3n 2±2n)+1,不是3的倍数,矛盾.(2) a ,b 两数都不能被3整除.令a =3m±1,b =3n±1,则a 2+b 2=(3m±1)2+(3n±1)2=9m 2±6m+1+9n 2±6n +1=3(3m2+3n2±2m±2n)+2,不能被3整除,矛盾.由此可知,a ,b 都是3的倍数.例7 已知a ,b 是正整数,并且a 2+b 2能被ab 整除,求证:a =b .先考虑a ,b 互质的情况,再考虑一般情况。
专题02 数的整除性(含答案)
解题思想:举例验证,或按剩余类深入讨论证明.
【例3】已知整数 能被198整除,求 , 的值.
(江苏省竞赛试题)
解题思想:198=2×9×11,整数 能被9,11整除,运用整除的相关特性建立 , 的等式,求出 , 的值.
【例4】已知 , , 都是整数,当代数式7 +2 +3 的值能被13整除时,那么代数式5 +7 -22 的值是否一定能被13整除,为什么?
⑵若 =13, =2 012,从 经过1 999步到 .不妨设向右跳了 步,向左跳了 步,则 ,解得 可见,它一直向右跳,没有向左跳.
⑶设 同时满足两个条件:① =0;② + + +…+ =0.由于 =0,故从原点出发,经过( -1)步到达 ,假定这( -1)步中,向右跳了 步,向左跳了 步,于是 = - , + = -1,则 + + +…+ =0+( )+( )+…( )=2( + +…+ )-[( )+( )+…+( )]=2( + +…+ )- .由于 + + +…+ =0,所以 ( -1)=4( + +…+ ).即4| ( -1).
且a+b+c>14.设+86=222n考虑到是三位数,依次取n=1,2,3,4.分别得出的可能值为136,358,580,802,又因为a+b+c>14.故=358.
8.设N为所求的三位“拷贝数”,它的各位数字分别为a,b,c(a,b,c不全相等).将其数码重新排列后,设其中最大数为,则最小数为.故N=-=(1a-c).
①若 | , | ,则 | ;
②若 | , | ,则 |( ± );
③若 | , | ,则[ , ]| ;
④若 | , | ,且 与 互质,则 | ;
⑤若 | ,且 与 互质,则 | .特别地,若质数 | ,则必有 | 或 | .
数学奥赛辅导第二讲整除
数学奥赛辅导第二讲整除数学奥赛辅导第二讲整除知识、方法、技能整除是整数的一个重要内容,这里仅介绍其中的几个方面:整数的整除性、最大公约数、最小公倍数、方幂问题.Ⅰ. 整数的整除性初等数论的基本研究对象是自然数集合及整数集合. 我们知道,整数集合中可以作加、减、乘法运算,并且这些运算满足一些规律(即加法和乘法的结合律和交换律,加法与乘法的分配律),但一般不能做除法,即,如b a ,是整除,0≠b ,则ba不一定是整数. 由此引出初等数论中第一个基本概念:整数的整除性.定义一:(带余除法)对于任一整数a 和任一整数b ,必有惟一的一对整数q ,r 使得r bq a +=,b r <≤0,并且整数q 和r 由上述条件惟一确定,则q 称为b 除a 的不完全商,r 称为b 除a 的余数.若0=r ,则称b 整除a ,或a 被b 整除,或称b a 是的倍数,或称a b 是的约数(又叫因子),记为a b |.否则,b | a .任何a 的非1,±±a 的约数,叫做a 的真约数. 0是任何整数的倍数,1是任何整数的约数.任一非零的整数是其本身的约数,也是其本身的倍数. 由整除的定义,不难得出整除的如下性质:(1)若.|,|,|c a c b b a 则(2)若.,,2,1,,|,|1n i Z cb c a b a ini i i i =∈∑=其中则(3)若c a |,则.|cb ab 反之,亦成立.(4)若||||,|b a b a ≤则.因此,若b a a b b a ±=则又,|,|. (5)a 、b 互质,若.|,|,|c ab c b c a 则(6)p 为质数,若,|21n a a a p 则p 必能整除n a a a ,,,21 中的某一个. 特别地,若p 为质数,.|,|a p a p n 则(7)如在等式∑∑===mk kn i i ba 11中除开某一项外,其余各项都是c 的倍数,则这一项也是c的倍数.(8)n 个连续整数中有且只有一个是n 的倍数. (9)任何n 个连续整数之积一定是n 的倍数.本讲开始在整除的定义同时给出了约数的概念,又由上一讲的算术基本定理,我们就可以讨论整数的约数的个数了.定理一:设大于1的整数a 的标准分解式为n n p p p p p p a n <<αα为质数,i α均为非负整数),则a 的约数的个数为∏=+=ni i a d 1)1)(α(.所有的约数和为:∏=+--=ni i i p p a i 1111)(ασ.事实上,由算术基本定理的推论知∏=+=ni ia d 1)1()(α,而各约数的和就是∏=+++ni i ii pa p1)1( 展开后的各项之和,所以∏∏==--=+++=ni ni i i i p p p p a i i11111)1()(αασ 例如,25200=24·32·52·7,所以90)11)(12)(12)(14()25200(=++++=d ,999441717151513131212)25200(2335=--?--?--?--=σ.Ⅱ. 最大公约数和最小公倍数定义二:设a 、b 是两个不全为0的整数.若整数c 满足:b c a c |,|,则称b a c ,为的公约数,b a 与的所有公约数中的最大者称为b a 与的最大公约数,记为),(b a .如果),(b a =1,则称b a 与互质或互素.定义三:如果a d 是、b 的倍数,则称a d 是、b 的公倍数. b a 与的公倍数中最小的正数称为b a 与的最小公倍数,记为],[b a .最大公约数和最小公倍数的概念可以推广到有限多个整数的情形,并用),,,(21n a a a 表示n a a a ,,,21 的最大公约数,],,,[21n a a a 表示n a a a ,,,21 的最小公倍数.若1),,,(21=n a a a ,则称n a a a a ,,,,321 互质,若n a a a ,,,21 中任何两个都互质,则称它们是两两互质的.注意,n 个整数互质与n 个整数两两互质是不同的概念,前者成立时后者不一定成立(例如,3,15,8互质,但不两两互质);显然后者成立时,前者必成立.因为任何正数都不是0的倍数,所以在讨论最小公倍数时,一般都假定这些整数不为0.同时,由于|||,|,b a b a 与有相同的公约数,且|)||,(|),(b a b a =(有限多个亦成立),因此,我们总限于在自然数集合内来讨论数的最大公约数和最小公倍数.显然,若b a ,的标准分解式为i ni i ni ip p b pa i i(,11∏∏====βα为质数,i i a β,为非负整数),则∏==ni i i i p b a 1),min(),(βα ①∏==ni man i i i p b a 1),(],[βα ②例如3960=23·32·5·11,756=22·33·7,则(3960,756)=22·32=36,[3960,756]=23·33·5·7·11=83160.求最大公约数也可以用辗转相除法,其理论依据是:定理二:设a 、b 、c 是三个不全为0的整数,且有整数t 使得c bt a +=,则a 、b 与b 、c 有相同的公约数,因而),(),(c b b a =,即).,(),(bt a b b a -=因为,若a d 是、b 的任一公约数,则由b d c d c bt a b d a d 是即知和,||,|+=、c 的公约数;反之,若b d 是、c 的任一公约数,a d 也是、b 的公约数.辗转相除法:设a 、b a N b >∈*且,,由带余除法有=+=<<+=<<+=<<+=+++----.0,,0,,0,,0,111111212221111n n n n n n n n n n n r r q r r r r r q r r r r r q r b b r r bq a ③ 因为每进行一次带余除法,余数至少减1,即11+>>>>n n r r r b ,而b 为有限数,因此,必有一个最多不超过b 的正整数n 存在,使得0≠n r ,而01=+n r ,故由定理二得:).,(),,(),(),(11211b a b r r r r r r r r n n n n n ======-+()例如,(3960,756)=(756,180)=(180,36)=36. 具体算式如下:5(q 1) 3960(a ) 756(b ) 4(q 2) 3780 720180(r 1) 36(r 2) 5(q 3) 1800(r 3)由定义和上述求法不难得出最大公约数和最小公倍数的如下性质:(1)),(),(,b a m bm am N m =∈则. (2)设b a c ,为的公约数,则.),(),(c b a c b c a =特别地,若1),(),,(==cbc a b a c 则. (3)设n a a a ,,,21 是任意n 个正整数,如果n nn c a c c a c c a a ===-),(,,),(,),(1332221 ,则n n c a a a =),,,(21 .因21121111|,|,|,|,|,|--------n n n n n n n n n n n n c c a c c c a c c c a c 故而,如此类推得出n c 能整除n n n c a a a 于是,,,,11 -是它们的一个公约数.又设n a a a c ,,,21 为的任一公约数,则21|,|a c a c ,因而2|c c ,同理可推出3|c c ,如此类推最后可得n c c |. 于是n c c c ≤≤||,故n c 是最大公约数.(4)若c b a =),(,则一定有整数y x 和,使得c by ax =+. 特别地,?=1),(b a 存在1,=+by ax y x 使得. 这可由辗转相除法的③式逆推而得by ax r c n +==. (5)若),(),(,1),(b c b ac b a ==则. (6)*∈N b a , ①)(],[],[*∈=N k b a k bk ak ;②b a m ,为的任一公倍数,则m b a |],[;③ab b a b a =],)[,(,特别地,若ab b a b a ==],[,1),(则.①可由③直接得到,②可由最小公倍数定义得,③根据①、②式知,=],)[,(b a b a∏∏==+==ni ni i i i iab p pi i 11),min(βαβα.(7)设n a a a ,,,21 是任意n 个正整数.若===-],[,,],[,],[1332221n n a m m a m m a a m n ,则n n m a a a =],,,[21 .这是一个求多个整数的最小公倍数的方法.它可用证明③类似的方法来证明.Ⅲ.方幂问题一个正整数n 能否表成m 个整数的k 次方和的问题称为方幂和问题.特别地,当1=m 时称为k 次方问题,当2=k 时,称为平方和问题. 能表为某整数的平方的数称为完全平方数.简称平方数,关于平方数,明显有如下一些简单的性质和结论:(1)平方数的个位数字只可能是0,1,4,5,6,9. (2)偶数的平方数是4的倍数,奇数的平方数被8除余1,即任何平方数被4除的余数只能是0或1. (3)奇数平方的十位数字是偶数. (4)十位数字是奇数的平方数的个位数一定是6. (5)不能被3整除的数的平方被3除余1,能被3整除的数的平方能被3整除.因而,平方数被9除的余数为0,1,4,7,且此平方数的各位数字的和被9除的余数也只能为0,1,4,7. (6)平方数的约数的个数为奇数. (7)任何四个连续整数的乘积加1,必定是一个平方数. 进一步研究可得到有关平方和的几个结论: 定理三:奇素数p 能表示成两个正整数的平方和的充要条件是.14+=m p定理四:设正整数p m n 2=,其中p 不再含平方因数,n 能表示成两个整数的平方的充要条件是p 没有形如34+q 的质因数.定理五:每个正整数都能表示成四个整数的平方和. 这几个定理的证明略.这里重点是介绍有关k 方幂的解法技巧.k 方幂中许多问题实质上是不定方程的整数解问题,比如著名的勾股数问题.赛题精讲例1:证明:对于任何自然数n 和k ,数1042),(3++=k kn nk n f 都不能分解成若干个连续的正整数之积.(1981年全国高中联赛试题)【证明】由性质9知,只需证明数),(k n f 不能被一个很小的自然数n 整除.因,1)1)(1()3(31033),(333++--++=++-+=k k k k k k k k k n n n n n n n n n k n f),1)(1(|3),3(3|33+-++k k k k k n n n n n 3 1,故3 ),(k n f ,因而),(k n f 不能分解成三个或三个以上的连续自然数的积. 再证),(k n f 不能分解成两个连续正整数的积.由上知,)(13),(N q q k n f ∈+=,因而只需证方程:)1(13+=+x x q 无正整数解.而这一点可分别具体验算234,134,3++=r x 时,)1(+x x 均不是13+q 形的数来说明. 故),(k n f 对任何正整数n 、k 都不能分解成若干个连续正整数之积.例2:设p 和q 均为自然数,使得.131911318131211+--+-= q p 证明:p 可被1979整除. (第21届IMO 试题)【证明】)131814121(2)1319131211(+++-+++= q p =)6591211()1319131211(+++-++++=)99019891()131816611()131916601(++++++ =1979×)99098911318661113196601(++?+? 两端同乘以1319!得1319!*).(1979N m m qp∈?=?此式说明1979|1319!×.p 由于1979为质数,且1979 1319!,故1979|.p 【评述】把1979换成形如23+k 的质数,1319换成*)(12N k k ∈+,命题仍成立.牛顿二项式定理和n b a b a b a b a nnnn(|)(,|)(-+--为偶数), n b a b a nn(|)(-+为奇数)在整除问题中经常用到.例3 :对于整数n 与k ,定义,),(1 12∑=-=nr k rk n F 求证:)1,(n F 可整除).,(k n F (1996加拿大数学竞赛试题)【证明】当m n 2=时,,)12()1,2(21 ∑=+==mr m m r m F∑∑+=-=-+=mm r k mr k rrk m F 2112112),2(],)12([)12(12112112112-=-=-=--++=-++=∑∑∑k mr k mr k mr k r m r r m r由于[…]能被12)12(+=-++m r m r 整除,所以),2(k m F 能被12+m 整除,另一方面,=),2(k m F ,)2(])2([1212121112----=-++-+∑k k k m r k m m r m r上式中[…]能被m r m r 2)2(=-+整除,所以),2(k m F 也能被m 整除.因m 与2m +1互质,所以),2(k m F 能被m (2m +1)(即)1,(m F )整除.类似可证当12+=m n 时,F (2m +1,k )能被F (2m +1,1)整除. 故),(k n F 能被)1,(n F 整除.例4 :求一对整数b a ,,满足:(1))(b a ab +不能被7整除;(2)777)(b a b a --+能被77整除. (第25届IMO 试题)【解】777)(b a b a --+=)](5)(3)[(7223355b a b a b a ab b a ab +++++=.))((7222ab b a b a ab +++ 根据题设要求(1)(2)知,|,)(|72226ab b a ++即.|7223ab b a ++令,7322=++ab b a 即,343)(2=-+ab b a 即19=+b a ,则.343192-=ab 故可令1,18==b a 即合要求.(第15届美国普特南数学竞赛试题)【评述】数学归纳法在整除问题中也有广泛应用. 例5:是否存在1000000个连续整数,使得每一个都含有重复的素因子,即都能被某个素数的平方所整除?【解】存在.用数学归纳法证明它的加强命题:对任何正整数,m 存在m 个连续的整数,使得每一个都含有重复的素因子. 当m =1时,显然成立.这只需取一个素数的平方.假设当m =k 时命题成立,即有k 个连续整数k n n n +++,,2,1 ,它们分别含有重复的素因子k p p p ,,,21 ,任取一个与k p p p ,,,21 都不同的素数1+k p (显然存在),当21,2,1+=k p t 时,)1(22221+++k n p p tp k 这21+k p 个数中任两个数的差是形如)11(2122221-≤≤+k k p a p p ap 的数,不能被21+k p 整除,故这21+k p 个数除以21+k p 后,余数两两不同.但除以21+k p 后的余数只有0,1,…,21+k p -1这21+k p 个,从而恰有一个数)1(2100+≤≤k p t t ,使)1(222210+++k n p p p t k 能被21+k p 整除.这时,()1+k 个连续整数:,1222210++n p p p t k ++n p p p t k 222210 2,…,++n p p p t k 222210 k ,++n p p p t k 222210 (k +1)分别能被2122221,,+k k p p p p 整除,即1+=k m 时命题成立.故题对一切正整数m 均成立.例6:求证:.),)(,)(,(),,(],][,][,[],,[22a c c b b a c b a a c c b b a c b a =(第1届美国数学奥林匹克竞赛试题)【证明】设,,,111∏∏∏======ni i n i i n i i i p c i p b i p a γβα其中i p 为质数,i i i γβα,,为非负整数,则∏==ni ii i i pc b a 1),,max(,],,[γβα∏==ni i i i p b a 1),max(,],[ βα∏=∏=ni ii i i pc b a 1),,m i n (,),,(γβα∏==ni ii i pb a 1),min(,),( βα因此只需证明2max(),max(),max(),max(),,i i i i i i i i i αγγββαγβα---=2min(),min(),min(),min(),,i i i i i i i i i αγγββαγβα---上式关于i i i γβα,,对称,则不妨设i i i γβα≥≥,于是上式变为:.22i i i i i i i i γγβγαβαα---=---此式显然成立,故得证.例7:设a 和b 是两个正整数,p b a ,1),(=为大于或等于3的质数,ba b a b a c pp +++=,(),试证:(1)1),(=a c ;(2)1=c 或.p c =(1985新加坡数学竞赛试题)【证明】由已知得),(,N s t cs ba b a ct b a pp ∈=++=+,两式相乘得,)(1112ct pa t pac t c a ct a b a st c p p p p p p p p p ---++-=-+=+= 于是,12211-----++-=p p p p p pa t pac t c cs 故.|1-p pa c(1)现用反证法来证明1),(=a c .若,1),(>=k a c 令q 是k 的一个质因子,则有.|,|a q c q 因b a c +|,则b a q +|,从而.|b q 于是q 是a 、b 的一个公约数,这与),(b a =1矛盾,故1),(=a c .(2)因为,1),(,|1=-a c pa c p 所以.|p c 而p 为质数且3≥p ,故1=c 或.p c = 例8:设∑=+=nk n k kS 175)(,求最大公约数).,(3n n S S d =(第26届IMO 预选题)【解】能过具体计算可猜想.)2)1((2)21(244+=+++=n n n S n 此式不难用数学归纳法获证. 为求),(3n n S Sd =,对n 分奇偶来讨论. (1)当k n 2=时,).)16(812,)12(2()]2)16(6[2,]2)12(2[2(444444+?+=++=k k k k k k k k d 由于12+k和16+k 互质,所以).81,)12((244+=k k d 而当13+=t k 时13,)12(81)12(44+≠+=+t k t k 时,4)12(+k 与81互质.故此时有≥++==+==??=?=.)0(4666,812;26,8812812812444444t t t n n k t n n n k d 时或当时当(2)当当12+=k n 时).)23)(12(3[2,)]1)(12[(2(44++++=k k k k d1,1223+++k k k 与因与质,所以).3,)1(()12(2444++=k k k 而当23+=t k 时,23),1(31+≠+=+k k t k 时,1+k 与34互质.故此时有++==++==?=?+=.)36162)12(2;56,162323)12(2444444时或当时当t t n n k t n n n k d例9:m 盒子中各若干个球,每一次在其中)(m n n <个盒中加一球.求证:不论开始的分布情况如何,总可按上述方法进行有限次加球后使各盒中球数相等的充要条件是.1),(=n m (第26届IMO 预选题)【证明】设1),(=n m ,则有Z v u ∈,使得)1()1(1++-=+=v m v vm un ,此式说明:对盒子连续加球u 次,可使1-m 个盒子各增加了v 个,一个增加)1(+v 个.这样可将多增加了一个球的盒子选择为原来球数最少的那个,于是经过u 次加球之后,原来球数最多的盒子中的球与球数最少的盒子中的球数之差减少1,因此,经过有限次加球后,各盒球数差为0,达到各盒中的球数相等.用反证法证明必要性.若1),(>=d n m ,则只要在m 个盒中放1+m 个球,则不管加球多少次,例如,加球k 次,则这时m 个盒中共有球kn m ++1(个),因为,1,|,|>d n d m d 所以kn m ++1不可能是d 的倍数,更不是m 的倍数,各盒中的球决不能一样多,因此,必须1),(=n m .例10:求所有这样的自然数n ,使得n222118++是一个自然数的平方.(1980年第6届全俄数学竞赛试题)【证明】(1)当8≤n 时,)122(222118118++?++=--nn n N ,因(…)为奇数,所以要使N 为平方数,n 必为偶数.逐一验证8,6,4,2=n 知,N 都不是平方数. (2)当9=n 时,11222289118?=++=N 不是平方数.(3)当10≥n 时,)29(288-+=n N ,要N 为平方数,829-+n 应为奇数的平方,不妨假设829-+n =2)12(+k ,则).2()1(210+?-=-k k n 由于1-k 和2+k 是一奇一偶,左边为2的幂,因而只能1-k =1,于是得2=k ,由21022=-n 知12=n 为所求.。
竞赛讲座02-整数的整除性
竞赛讲座02-整数的整除性1.整数的整除性的有关概念、性质(1)整除的定义:对于两个整数a、d(d≠0),若存在一个整数p,使得成立,则称d整除a,或a被d整除,记作d|a。
若d不能整除a,则记作d a,如2|6,4 6。
(2)性质1)若b|a,则b|(-a),且对任意的非零整数m有bm|am2)若a|b,b|a,则|a|=|b|;3)若b|a,c|b,则c|a4)若b|ac,而(a,b)=1((a,b)=1表示a、b互质,则b|c;5)若b|ac,而b为质数,则b|a,或b|c;6)若c|a,c|b,则c|(ma+nb),其中m、n为任意整数(这一性质还可以推广到更多项的和)例1 (1987年北京初二数学竞赛题)x,y,z均为整数,若11|(7x+2y-5z),求证:11|(3x-7y+12z)。
证明∵4(3x-7y+12z)+3(7x+2y-5z)=11(3x-2y+3z)而 11|11(3x-2y+3z),且 11|(7x+2y-5z),∴ 11|4(3x-7y+12z)又 (11,4)=1∴ 11|(3x-7y+12z).2.整除性问题的证明方法(1) 利用数的整除性特征(见第二讲)例2(1980年加拿大竞赛题)设72|的值。
解72=8×9,且(8,9)=1,所以只需讨论8、9都整除的值。
若8|,则8|,由除法可得b=2。
若9|,则9|(a+6+7+9+2),得a=3。
(2)利用连续整数之积的性质①任意两个连续整数之积必定是一个奇数与一个偶数之一积,因此一定可被2整除。
②任意三个连续整数之中至少有一个偶数且至少有一个是3的倍数,所以它们之积一定可以被2整除,也可被3整除,所以也可以被2×3=6整除。
这个性质可以推广到任意个整数连续之积。
例3(1956年北京竞赛题)证明:对任何整数n都为整数,且用3除时余2。
证明∵为连续二整数的积,必可被2整除.∴对任何整数n均为整数,∵为整数,即原式为整数.又∵,2n、2n+1、2n+2为三个连续整数,其积必是3的倍数,而2与3互质,∴是能被3整除的整数.故被3除时余2.例4 一整数a若不能被2和3整除,则a2+23必能被24整除.证明∵a2+23=(a2-1)+24,只需证a2-1可以被24整除即可.∵2 .∴a为奇数.设a=2k+1(k为整数),则a2-1=(2k+1)2-1=4k2+4k=4k(k+1).∵k、k+1为二个连续整数,故k(k+1)必能被2整除,∴8|4k(k+1),即8|(a2-1).又∵(a-1),a,(a+1)为三个连续整数,其积必被3整除,即3|a(a-1)(a+1)=a(a2-1),∵3 a,∴3|(a2-1).3与8互质, ∴24|(a2-1),即a2+23能被24整除.(3)利用整数的奇偶性下面我们应用第三讲介绍的整数奇偶性的有关知识来解几个整数问题.例5 求证:不存在这样的整数a、b、c、d使:a·b·c·d-a=①a·b·c·d-b=②a·b·c·d-c=③a·b·c·d-d=④证明由①,a(bcd-1)=.∵右端是奇数,∴左端a为奇数,bcd-1为奇数.同理,由②、③、④知b、c、d必为奇数,那么bcd为奇数,bcd-1必为偶数,则a (bcd-1)必为偶数,与①式右端为奇数矛盾.所以命题得证.例6 (1985年合肥初中数学竞赛题)设有n个实数x1,x2,…,x n,其中每一个不是+1就是-1,且试证n是4的倍数.证明设(i=1,2,…,n-1),则y i不是+1就是-1,但y1+y2+…+y n=0,故其中+1与-1的个数相同,设为k,于是n=2k.又y1y2y3…y n=1,即(-1)k=1,故k为偶数,∴n是4的倍数.其他方法:整数a整除整数b,即b含有因子a.这样,要证明a整除b,采用各种公式和变形手段从b中分解出因子a就成了一条极自然的思路.例7 (美国第4届数学邀请赛题)使n3+100能被n+10整除的正整数n的最大值是多少?解n3+100=(n+10)(n2-10n+100)-900.若n+100能被n+10整除,则900也能被n+10整除.而且,当n+10的值为最大时,相应地n的值为最大.因为900的最大因子是900.所以,n+10=900,n=890.例8 (上海1989年高二数学竞赛)设a、b、c为满足不等式1<a<b<c的整数,且(ab-1)(bc-1)(ca-1)能被abc整除,求所有可能数组(a,b,c).解∵(ab-1)(bc-1)(ca-1)=a2b2c2-abc(a+b+c)+ab+ac+bc-1,①∵abc|(ab-1)(bc-1)(ca-1).∴存在正整数k,使ab+ac+bc-1=kabc, ②k=<<<<∴k=1.若a≥3,此时1=-<矛盾.已知a>1. ∴只有a=2.当a=2时,代入②中得2b+2c-1=bc,即 1=<∴0<b<4,知b=3,从而易得c=5.说明:在此例中通过对因数k的范围讨论,从而逐步确定a、b、c是一项重要解题技巧.例9 (1987年全国初中联赛题)已知存在整数n,能使数被1987整除.求证数,都能被1987整除.证明∵×××(103n+),且能被1987整除,∴p能被1987整除.同样,q=()且∴故、102(n+1)、被除,余数分别为1000,100,10,于是q表示式中括号内的数被除,余数为1987,它可被1987整除,所以括号内的数能被1987整除,即q能被1987整除.练习二1.选择题(1)(1987年上海初中数学竞赛题)若数n=20·30·40·50·60·70·80·90·100·110·120·130,则不是n的因数的最小质数是().(A)19 (B)17 (C)13 (D)非上述答案(2)在整数0、1、2…、8、9中质数有x个,偶数有y个,完全平方数有z个,则x+y+z等于().(A)14 (B)13 (C)12 (D)11 (E)10(3)可除尽311+518的最小整数是().(A)2 (B)3 (C)5 (D)311+518(E)以上都不是2.填空题(1)(1973年加拿大数学竞赛题)把100000表示为两个整数的乘积,使其中没有一个是10的整倍数的表达式为__________.(2) 一个自然数与3的和是5的倍数,与3的差是6的倍数,这样的自然数中最小的是_________.(3) (1989年全国初中联赛题)在十进制中,各位数码是0或1,并且能被225整除的最小自然数是________.3.求使为整数的最小自然数a的值.4.(1971年加拿大数学竞赛题)证明:对一切整数n,n2+2n+12不是121的倍数.5.(1984年韶关初二数学竞赛题)设是一个四位正整数,已知三位正整数与246的和是一位正整数d的111倍,又是18的倍数.求出这个四位数,并写出推理运算过程.6.(1954年苏联数学竞赛题)能否有正整数m、n满足方程m2+1954=n2.7.证明:(1)133|(11n+2+12n+1),其中n为非负整数.(2)若将(1)中的11改为任意一个正整数a,则(1)中的12,133将作何改动?证明改动后的结论.8.(1986年全国初中数学竞赛题)设a、b、c是三个互不相等的正整数.求证:在a3b-ab3,b3c-bc3,c3a-ca3三个数中,至少有一个能被10整除.9.(1986年上海初中数学竞赛题)100个正整数之和为101101,则它们的最大公约数的最大可能值是多少?证明你的结论.练习参考答案1.B.B.A2.(1)25·55.(2)27.3.由2000a为一整数平方可推出a=5.4.反证法.若是121的倍数,设n2+2n+12=121k(n+1)2=11(11k-1).∵11是素数且除尽(+1)2,∴11除尽n+1112除尽(n+1)2或11|11k-1,不可能.5.由是d的111倍,可能是198,309,420,531,642,753;又是18的倍数,∴只能是198.而198+246=444,∴d=4,是1984.7.(1)11n+2+122n+1=121×11n+12×144n=121×11n+12×11n-12×11n+12×144n=…=133×11n+12×(144n-11n).第一项可被133整除.又144-11|144n-11n,∴133|11n+2+122n+1.(2)11改为a.12改为a+1,133改为a(a+1)+1.改动后命题为a(a+1)+1|an+2+(a+1)2n+1,可仿上证明.8.∵a3b-ab3=ab(a2-b2);同理有b(b2-c2);ca(c2-a2).若a、b、c中有偶数或均为奇数,以上三数总能被2整除.又∵在a、b、c中若有一个是5的倍数,则题中结论必成立.若均不能被5整除,则a2,b2,c2个位数只能是1,4,6,9,从而a2-b2,b2-c2,c2-a2的个位数是从1,4,6,9中,任取三个两两之差,其中必有0或±5,故题中三式表示的数至少有一个被5整除,又2、5互质.9.设100个正整数为a1,a2,…,a100,最大公约数为d,并令则a1+a2+…+a100=d(a1′+a2′+…+a′100)=101101=101×1001,故知a1′,a2′,a′100不可能都是1,从而a′1+a′2+…+a′100≥1×99+2=101,d≤1001;若取a1=a2=a99=1001,a100=2002,则满足a1+a2+…+a100=1001×101=101101,且d=1001,故d的最大可能值为1001。
数的整除性质
数的整除性质数的整除性质是数学中一个非常基础且重要的概念。
整除是指一个数能够被另一个数整除,即能够整除的数叫做除数,能够被整除的数叫做被除数。
在数的整除性质中,有一些基本的定理和规律,我们一起来探讨。
一、整除的定义在数学中,如果存在整数a和b,使得b乘以a得到的结果等于一个整数c,那么我们就说b能够整除c。
这个定义可以用符号表示为:b|c,读作“b整除c”。
例如,4能够整除12,我们可以表示为4|12。
二、整除的性质1. 传递性:如果a能够整除b,b能够整除c,那么a一定能够整除c。
例如,如果2能够整除4,4能够整除8,那么2一定能够整除8。
2. 自身整除:任何一个数都能够整除自身。
例如,5能够整除5。
3. 1整除任何数:1能够整除任何一个数。
例如,1能够整除8。
4. 零的整除性:任何一个数都能够整除0。
例如,任何数都能够整除0。
5. 任何一个数都能够整除1:任何一个数都能够被1整除。
例如,任何数都能够被1整除。
6. 如果a能够整除b,那么a能够整除b的倍数。
例如,如果3能够整除6,那么3一定能够整除6的倍数12。
7. 如果a能够整除b,那么b能够整除a的因数。
例如,如果2能够整除4,那么4一定能够整除2的因数。
三、整除和最大公因数最大公因数是指两个或多个整数中最大的能够整除这些整数的数。
最大公因数可以通过求解数的因数来得到。
例如,求解12和15的最大公因数,我们可以找到12的因数:1、2、3、4、6、12,15的因数:1、3、5、15,他们的公因数有1和3,其中最大的公因数是3。
最大公因数有以下的性质:1. 最大公因数是两个数的公因数中最大的一个。
2. 如果最大公因数为1,那么这两个数互质。
3. 如果最大公因数为a,那么这两个数的倍数中最大的一个为a。
四、整除与质数质数是指大于1的正整数,除了1和本身,没有其他的因数。
质数和整除有着密切的关系。
1. 质数只能被1和自身整除。
2. 任何一个数都可以被质数整除。
数字的整除性
数字的整除性数字的整除性是数学中一个非常基础而重要的概念。
整除性是指一个数能够被另一个数整除,即没有余数。
在这篇文章中,我们将探讨数字的整除性及其相关性质。
了解整除性的概念和性质对于数学学习和解决实际问题都具有重要意义。
1. 整除性的定义整除性是数学中的基本概念之一。
对于两个整数a和b,如果存在一个整数c使得a = b * c,我们就称a能够被b整除,也可以表达为b是a的因数,而a是b的倍数。
例如,4能够被2整除,因为4 = 2 * 2。
2. 整除性的性质整除性具有一些重要的性质,这些性质为我们解决实际问题提供了方便。
2.1 传递性:如果a能够被b整除,而b能够被c整除,则a能够被c整除。
例如,如果4能够被2整除,2能够被1整除,那么4也能够被1整除。
2.2 唯一性:如果a能够被b整除,而a也能够被c整除,且b和c互质(最大公约数为1),则b能够被c整除。
例如,如果4能够被2整除,4也能够被3整除,而2和3互质,那么2能够被3整除。
2.3 整除与因数的关系:如果a能够被b整除,则b一定是a的因数。
例如,如果6能够被2整除,那么2是6的因数。
3. 整除的运用整除性在数学中广泛运用,并可以帮助我们解决实际问题。
3.1 判断整除性:通过判断一个数是否能够被另一个数整除,我们可以得出一些结论。
例如,如果一个数字的个位数为0、2、4、6、8中的任意一个,那么这个数一定能够被2整除。
3.2 最大公约数:整除性可以用来求解两个或多个数的最大公约数。
最大公约数是指两个或多个数中同时整除这些数的最大正整数。
例如,求解12和18的最大公约数,可以通过12能够被6整除,18能够被6整除,所以6是它们的最大公约数。
3.3 最小公倍数:整除性也可以用来求解两个或多个数的最小公倍数。
最小公倍数是指能够同时整除这些数的最小正整数。
例如,求解4和6的最小公倍数,可以通过4能够被2整除,6能够被2整除,所以2是它们的最小公倍数。
【精品】五年级下册数学试题-竞赛专题:第2讲-整除性(含答案)人教版
知识概述1.整除的概念:两个整数相除,余数为零(没有余数)我们就说被除数能被除数整除,即整数a 除以整数b(0b≠),除得的商正好是整数,我们就说a能被b整除(也可以说b能整除a),记为|b a,如15能被3整除,即为3|15。
2.整除的性质:(1)如果数a数b都能被数c整除,那么他们的和或差也能被c整除,即如果|c a,|c b,那么|()c a b±;(2)如果数a能被数b与数c的积整除,那么a也能被b或者c整除,即如果|bc a,那么|b a,|c a;(3)如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除,即如果|b a,|c a,且(,)1b c=,那么|bc a。
(4)如果c能整除b,b能整除a,那么c能整除a。
即:如果|c b,|b a,那么|c a。
3.整除的特征:特征1:能被2整除的数为个位数字是0、2、4、6、8的整数。
“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除,另一方面,能被2整除的数,其个位数字只能是偶数(包括0)。
(下同)特征2:能被5整除的数的个位是0或5。
特征3:能被3(或9)整除的数,各个数位数字之和能被3(或9)整除。
特征4:能被4(或25)整除的数其末两位数能被4(或25)整除。
特征5:能被8(或125)整除的数其末三位数能被8(或125)整除。
特征6:一个数奇数位上的数字和与偶数位上的数字和的差(大减小)能被11整除,这个数也能被11整除。
整除性请用数字9、7、2、5、1写出一个能被2整除的最大三位数。
【解析】这些数字组成的最大三位数是975,但是它不能被2整除,能被2整除的数末位数一定是“0、2、4、6、8”。
所以能被2整除的最大三位数为972。
在下面的数中,哪些能被2整除?哪些能被3整除?哪些能被5整除?234、79、775、885、378、864、63、75、26、40【解析】能被2整除的数有234、378、864、26、40;能被3整除的数有234、885、378、864、63、75;能被5整除的数有775、885、40。
奥数第二讲数的整除.doc
奥数第二讲数的整除如果整数a除以不为零数b,所得的商为整数而余数为0,我们就说a能被b整除,或叫b能整除如果a能被b整除,那么,b叫做a的因数,a叫做b的倍数。
数的整除的特征:(1)能被2整除的数的特征:如果一个整数的个位数字是2、4、6、8、0, 那么这个整数一定能被2整除。
(2)能被3 (或9)整除的数的特征:如果一个整数的各个数字之和能被3 (或9)整除,那么这个整数一定能被3 (或9)整除。
(3)能被 4 (或25)整除的数的特征:如果一个整数的末两位数能被 4 (或25)整除,那么这个数就一定能被4 (或25)整除。
(4)能被5整除的数的特征:如果一个整数的个位数字是0或5,那么这个整数一定能被5整除。
(5)能被6整除的数的特征:如果一个整数能被2整除,又能被3整除, 那么这个数就一定能被6整除。
(6)能被7 (或11或13)整除的数的特征:一个整数分成两个数,末三位为一个数,其余各位为另一个数,如果这两个数之差是。
或是7 (或11或13)的倍数,这个数就能被7 (或11或13)整除。
(7)能被8 (或125)整除的数的特征:如果一个整数的末三位数能被8 (或125)整除,那么这个数就一定能被8 (或125)整除。
(8)能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除。
一、例题与方法指导例1、下列各数哪些能被7整除?哪些能被13整除?(数的整除特征)88205, 167128, 250894, 396500,675696, 796842, 805532, 75778885。
例2、一个六位数23Q56口是88的倍数,这个数除以88所得的商是或思路导航:一个数如果是88的倍数,这个数必然既是8的倍数,又是11的倍数.根据8 的倍数,它的末三位数肯定也是8的倍数,从而可知这个六位数个位上的数是0 或8.而11的倍数奇偶位上数字和的差应是。
第二讲 数的整除性
第二讲数的整除性整除的数特征1.一个数的个位数字如果是0,2,4,6,8中的一个,那么这个数就能被2整除。
2.一个数的个位数字如果是0或5,那么这个数就能被5整除。
3.一个数各个数位上的数字之和如果能被3整除,那么这个数就能被3整除。
4.一个数的末两位数如果能被4(或25)整除,那么这个数就能被4(或25)整除。
5.一个数的末三位数如果能被8(或125)整除,那么这个数就能被8(或125)整除。
6.一个数各个数位上的数字之和如果能被9整除,那么这个数就能被9整除。
7.一个数的奇数位上的数字之和与偶数位上的数字之和的差(大数减小数)如果能被11整除, 那么这个数就能被11整除.一个数除以4,8,9的余数:一个数除以4的余数,与它的末两位除以4的余数相同。
一个数除以8的余数,与它的末三位除以8的余数相同。
一个数除以9的余数,与它的各位数字之和除以9的余数相同。
一个数除以11的余数,与它的奇数位上的数字之和减去偶数位的数字之和所得的差除以11的余数相同.数的整除具有如下性质:1.如果甲数能被乙数整除,乙数能被丙数整除,那么甲数一定能被丙数整除.2.如果两个数都能被一个自然数整除,那么这两个数的和与差也一定能被这个自然数整除.3.如果一个数能分别被两个互质的自然数整除了,那么这个数一定能被这两个互质自然数的乘积整除.例1:在下面的数中,哪些能被4整除?哪些能被8整除?哪些能被9整除?234,789,7756,8865,3728,8064.解:能被4整除的数有能被8整除的数有能被9整除的数有例2:在四位56□2中,被套盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除?解:十位数是时,这个四位数能被9整除.十位数是时,这个四位数能被8整除.十位数是时,这个四位数能被4整除.例3:从0,2,5,7四个数字中任选三个,组成能同时被2,3,5整除的数,并将这些数从小到大排列. 例4:五位数A329B能被72整除.A与B各代表什么数字?例5:六位数3ABABA是6的倍数,这样的六位共有多少个?例6:要使六位数15ABC6能被36整除,而且所得的商最小,A,B,C各代表什么数字?例7:判断七位数1839673能否被11整除.例8:求下列各数除以11的余数.(1)41873 (20296738185例9:求1919…191除以11的余数.100个19例10:用3,3,7,7四个数码能排出哪些能被11整除的四位数?例11:用1~9九个数码组成能被11整除的没有重复数字的最大九位数.例12:六位数A2875B能被99整除,求A和B.练习1.6539724能被4,8,9,24,36,72,中的哪几个数整除?2.个位数是5,且能被9整除的三位数共有多少个?3.一些四位数,百位上的数字都是3,十位上的数字都是6,并且它们既能被2整除又能被3整除,在这样的四数中,最大的和最小的各是多少?4.五位数4A97A能被12整除,求这个五位数.5.有一个能被24整除的四位数□23□,这个四位数最大是几?最小是几?6.从0,2,3,6,7这五个数码中选出四个,可组成多少个可以被8整除的没有重复数字的四位数?7.在123的左右各添一个数码,使得到的五位数能被72整除.8.学校买了72只小足球,发票上的总价有两个数字已经辨认不清,只看到是□67.9□无,你知道每只小足球多少钱吗?9.为使五位数6□295能被11整除,□内应当填几?10.用1,2,3,4四个数码能排出哪些能被11整除的没有重复数字的四位数.11.求能被11整除的最大的没有重复数字的五位数.12.求下列各数除以11的余数.(1)2485 (2)63582 (3)98765432113.求3838…38除以11的余数.40个3814.六位数5A634B能被33整除,求A+B15.七位数3A8629B是88的倍数,求A+B。
五年级下册数学试题-竞赛专题:第2讲-整除性(含答案)人教版
知识概述1.整除的概念:两个整数相除,余数为零(没有余数)我们就说被除数能被除数整除,即整数a 除以整数b(0b≠),除得的商正好是整数,我们就说a能被b整除(也可以说b能整除a),记为|b a,如15能被3整除,即为3|15。
2.整除的性质:(1)如果数a数b都能被数c整除,那么他们的和或差也能被c整除,即如果|c a,|c b,那么|()c a b±;(2)如果数a能被数b与数c的积整除,那么a也能被b或者c整除,即如果|bc a,那么|b a,|c a;(3)如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除,即如果|b a,|c a,且(,)1b c=,那么|bc a。
(4)如果c能整除b,b能整除a,那么c能整除a。
即:如果|c b,|b a,那么|c a。
3.整除的特征:特征1:能被2整除的数为个位数字是0、2、4、6、8的整数。
“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除,另一方面,能被2整除的数,其个位数字只能是偶数(包括0)。
(下同)特征2:能被5整除的数的个位是0或5。
特征3:能被3(或9)整除的数,各个数位数字之和能被3(或9)整除。
特征4:能被4(或25)整除的数其末两位数能被4(或25)整除。
特征5:能被8(或125)整除的数其末三位数能被8(或125)整除。
特征6:一个数奇数位上的数字和与偶数位上的数字和的差(大减小)能被11整除,这个数也能被11整除。
整除性请用数字9、7、2、5、1写出一个能被2整除的最大三位数。
【解析】这些数字组成的最大三位数是975,但是它不能被2整除,能被2整除的数末位数一定是“0、2、4、6、8”。
所以能被2整除的最大三位数为972。
在下面的数中,哪些能被2整除?哪些能被3整除?哪些能被5整除?234、79、775、885、378、864、63、75、26、40【解析】能被2整除的数有234、378、864、26、40;能被3整除的数有234、885、378、864、63、75;能被5整除的数有775、885、40。
第2讲整除性与位值原理
第2讲整除性与位值原理重点摘要1、位值原理位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。
也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。
例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。
位值原理的表达形式:以六位数为例,abcdef=a×100000+b×10000+c×1000+d×100+e×10+f。
2、数的整除我们学习过的常见整除判定方法有:(1)能被2、4、8整除的数,根据这个数的末一位、两位、三位判断;(2)能被5、25、125整除的数,根据这个数的末一位、两位、三位判断;(3)能被3、9整除的数,根据这个数各个数位上的数字和判断;(4)能被7、11、13整除的数,将这个数三位分段相减求差后判断。
精讲精练例题1、一个四位数能被9整除,去掉末位数字后所得到的三位数恰是4的倍数,这样的四位数中最大一个的末位数字是几?练习1、有一种四位数,这种四位数能被7整除,把它前后分成两部分,前两位数可以被3整除,后两位可以被5整除。
这种四位数最小的是几?例题2、证明:当a c>时,abc cba-必能被9整除?练习2、证明:一个三位数减去它的各个数位的数字之和后,必能被9整除。
例题3、三位数abc比三位数cba小99,若a、b、c互不相同,则abc最大是几?练习3、一个两位数,其十位与个位上的数字交换以后,所得的两位数比原来小27,则满足条件的两位数共有多少个?例题4、在一个两位数的两个数字中间加一个0,那么所得的三位数是原数的9倍,求这个两位数。
练习4、在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数,有些两位数中间插入某个数码后变成的三位数,恰好是原来两位数的9倍。
这样的三位数有多少个?例题5、用2,8,7三张数字卡片可以组成若干个不同的三位数,所有这些三位数的平均值是多少?练习5、a,b,c是1~9中的三个不同数码,用它们组成的六个没有重复数字的三位数之和是(a+b+c)的多少倍?例题6、已知一个四位数加上它的各位数字之和后等于2008,则所有这样的四位数之和为多少。
小学奥林匹克数学 竞赛数学 五年级 第二讲:整除
第2讲整除整理书妈妈让萱萱整理桌子上的书本,萱萱发现桌子上有132本书,每本书高度一样,想整理一边高,那么可以分成几份?132末尾能被2整除,所以可以分成3份132各个数位相加为6,能被3整除,所以可分成3份132 奇偶位求差为0,能被11整除;所以可分成11份既能被3整除有能被2整除可以被6整除……【例1】导引拓展篇第1题1.判断下面11个数的整除性:6765,5880,,23487,356875388875,,,407.,86493625,1989546512,(1)这些数中,有哪些数能被4整除?哪些数能被8整除?(2)哪些数能被25整除?哪些数能被125除?(3)哪些数能被3整除?哪些数能被9整除?(4)哪些数能被11整除?能被3整除:23487、6765、 5880、198954、864;正被9整除:198954、864能被11整除的数,奇数位上的和与偶数位上和的差能被11整除能被11整除:6765、6512、407能被3、9整除的数,各个数位的和能被3、9整除能被4,25整除的数末两位能被4,25整除能被8,125整除的数末三位能被8,125整除能被4、8整除:3568、5880、6512、864;能被25、125整除:8875、93625判断整除:一、末尾判断方:2、5, 4、25, 8、125二、各位求和法:3、9三、奇偶位求差:11【例2】导引拓展篇第2题四位数.方框内先后填入3个数得到3个四位数,依次能被9、11、8整除,填入的3个数字之和是多少? □173能被9整除:能被11整除:能被8整除:7= ;□ □+11= □+3+7+18= ;□4+ =□3+1)7+ □)-((6= □ ; □1=720- □73依次能被9、11、8整除的数为1737、1738、173678621=++【例3】导引拓展篇第3题计算: 多位数能被11整除,满足条件的n 最小是多少?323232321n 个奇位数字和:偶位数字和:31n +2n奇数位与偶数位的差:12)13(+=-+n n n 1+n 为11的倍数,所以n 最小为10.【例4】导引拓展篇第4题五位数能同时被11和25整除,这个五位数是多少? □07 □3能被25整除,那么个位数字只能是5奇数位与偶数位的差为5037=1++--- 111-=的整数倍,所以□只能为1.所以:这个五位数为 30175【例5】导引拓展篇第5题牛叔叔给45名工人发完工资后,但是记账的那张纸被香烟烧了两个洞,只剩下“ ”,每名工人的工资一样,则总工资有可能是多少元? e□8 □67所以总数能被5和9整除,那么个位数字就只能是0或5当个位为5时 ,此时678526=+++1= 当个位为0时, ,所以678021=+++6= 总工资可能为67680元或者67185元【例6】导引拓展篇第5题六位数能同时被9和11整除.这个六位数是多少? □8200 □设六位数为2008a b既能被11整除又能被9整除的数字一定能被99整除能被99整除的数两位截断相加的和能被99整除7,1;9982998002===+=++b a b a b a ;即所以这六位数为 120087被99整除的数:两位截断相加,和能被99整除【例7】导引拓展篇第7题请从1、2、3、4、5、6、7这7个数字中选出5个组成一个五位数,使它是99的倍数.这个五位数最大是多少?设五位数为abcde99++bcdea=a=6,c+e=3,b+d=9a=6,b=5,c=2,d=4,e=1这个五位数最大是65241【例8】导引拓展篇第8题卡莉娅写了一个两位数59,冬冬写了一个两位数89,他们让小高写一个一位数放在59与89之间拼成一个五位数,能被7整除,请问:小高写的数是多少?59□89要想能被7整除,那么三位截断,895930=也就是是7的倍数,那么6=30小高写得数字为6【例9】导引拓展篇第9题已知51位数 能被13整除,中间方格内的数字是多少?925525999 □555个个能被13整除,三位截断,奇位和与偶位和的差能被13整除45559455595555555999999955555599999959个4个个4个99=⎛⎫⎛⎫++++++-+++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 也就是 为13的倍数,那么59 =5被7,11,13整除的数:三位截断求差,差能被7,11,13整除【例10】导引拓展篇第10题(1)一个数字互不相同的多位数能被数字11整除,并且含有0,这个多位数最小是多少?209(2)一个各位数字和为13,能被数字11整除多位数最小是多少?(1)三位数,0不能在百位要使数字尽量小,那么0应该在十位百位和个位数字和最小只能为11(2)数字和为13,奇数位与偶数位的差最小只能为11所以分为12+1,3+9=12,所以三位数字为319【例11】导引拓展篇第11题用数字6、7、8各两个,组成能同时被6、7、8整除的六位数.能被6整除:个位数字一定是偶数被7整除:可以被7整除。
数学奥赛辅导 第二讲 整除
数学奥赛辅导 第二讲整除知识、方法、技能整除是整数的一个重要内容,这里仅介绍其中的几个方面:整数的整除性、最大公约数、最小公倍数、方幂问题.Ⅰ. 整数的整除性初等数论的基本研究对象是自然数集合及整数集合. 我们知道,整数集合中可以作加、减、乘法运算,并且这些运算满足一些规律(即加法和乘法的结合律和交换律,加法与乘法的分配律),但一般不能做除法,即,如b a ,是整除,0≠b ,则ba不一定是整数. 由此引出初等数论中第一个基本概念:整数的整除性.定义一:(带余除法)对于任一整数a 和任一整数b ,必有惟一的一对整数q ,r 使得r bq a +=,b r <≤0,并且整数q 和r 由上述条件惟一确定,则q 称为b 除a 的不完全商,r 称为b 除a 的余数.若0=r ,则称b 整除a ,或a 被b 整除,或称b a 是的倍数,或称a b 是的约数(又叫因子),记为a b |.否则,b | a .任何a 的非1,±±a 的约数,叫做a 的真约数. 0是任何整数的倍数,1是任何整数的约数.任一非零的整数是其本身的约数,也是其本身的倍数.由整除的定义,不难得出整除的如下性质: (1)若.|,|,|c a c b b a 则(2)若.,,2,1,,|,|1n i Z c b c a b a i ni i i i =∈∑=其中则(3)若c a |,则.|cb ab 反之,亦成立.(4)若||||,|b a b a ≤则.因此,若b a a b b a ±=则又,|,|. (5)a 、b 互质,若.|,|,|c ab c b c a 则(6)p 为质数,若,|21n a a a p ⋅⋅⋅ 则p 必能整除n a a a ,,,21 中的某一个.特别地,若p 为质数,.|,|a p a p n 则(7)如在等式∑∑===mk k ni i b a 11中除开某一项外,其余各项都是c 的倍数,则这一项也是c 的倍数.(8)n 个连续整数中有且只有一个是n 的倍数. (9)任何n 个连续整数之积一定是n 的倍数.本讲开始在整除的定义同时给出了约数的概念,又由上一讲的算术基本定理,我们就可以讨论整数的约数的个数了.定理一:设大于1的整数a 的标准分解式为n n p p p p p p a n <<<⋅= 211(21ααα为质数,i α均为非负整数),则a 的约数的个数为∏=+=ni i a d 1)1)(α(.所有的约数和为:∏=+--=ni ii p p a i 1111)(ασ. 事实上,由算术基本定理的推论知∏=+=ni i a d 1)1()(α,而各约数的和就是∏=+++ni i i ipa p 1)1( 展开后的各项之和,所以∏∏==--=+++=ni ni i i i p p p p a ii11111)1()(αασ 例如,25200=24·32·52·7,所以90)11)(12)(12)(14()25200(=++++=d , 999441717151513131212)25200(2335=--⨯--⨯--⨯--=σ.Ⅱ. 最大公约数和最小公倍数定义二:设a 、b 是两个不全为0的整数.若整数c 满足:b c a c |,|,则称b a c ,为的公约数,b a 与的所有公约数中的最大者称为b a 与的最大公约数,记为),(b a .如果),(b a =1,则称b a 与互质或互素.定义三:如果a d 是、b 的倍数,则称a d 是、b 的公倍数. b a 与的公倍数中最小的正数称为b a 与的最小公倍数,记为],[b a .最大公约数和最小公倍数的概念可以推广到有限多个整数的情形,并用),,,(21n a a a 表示n a a a ,,,21 的最大公约数,],,,[21n a a a 表示n a a a ,,,21 的最小公倍数.若1),,,(21=n a a a ,则称n a a a a ,,,,321 互质,若n a a a ,,,21 中任何两个都互质,则称它们是两两互质的.注意,n 个整数互质与n 个整数两两互质是不同的概念,前者成立时后者不一定成立(例如,3,15,8互质,但不两两互质);显然后者成立时,前者必成立.因为任何正数都不是0的倍数,所以在讨论最小公倍数时,一般都假定这些整数不为0.同时,由于|||,|,b a b a 与有相同的公约数,且|)||,(|),(b a b a =(有限多个亦成立),因此,我们总限于在自然数集合内来讨论数的最大公约数和最小公倍数.显然,若b a ,的标准分解式为i ni i n i i p p b p a ii(,11∏∏====βα为质数,i i a β,为非负整数),则∏==ni i i i p b a 1),min(),(βα ①∏==n i man i i i p b a 1),(],[βα ②例如 3960=23·32·5·11, 756=22·33·7,则 (3960,756)=22·32=36,[3960,756]=23·33·5·7·11=83160. 求最大公约数也可以用辗转相除法,其理论依据是:定理二:设a 、b 、c 是三个不全为0的整数,且有整数t 使得c bt a +=,则a 、b 与b 、c 有相同的公约数,因而),(),(c b b a =,即).,(),(bt a b b a -=因为,若a d 是、b 的任一公约数,则由b d c d c bt a b d a d 是即知和,||,|+=、c 的公约数;反之,若b d 是、c 的任一公约数,a d 也是、b 的公约数.辗转相除法:设a 、b a N b >∈*且,, 由带余除法有⎪⎪⎪⎭⎪⎪⎪⎬⎫=+=<<+=<<+=<<+=+++----.0,,0,,0,,0,111111212221111n n n n n n n n n n n r r q r r r r r q r r r r r q r b b r r bq a ③ 因为每进行一次带余除法,余数至少减1,即11+>>>>n n r r r b ,而b 为有限数,因此,必有一个最多不超过b 的正整数n 存在,使得0≠n r ,而01=+n r ,故由定理二得:).,(),,(),(),(11211b a b r r r r r r r r n n n n n ======-+()例如,(3960,756)=(756,180)=(180,36)=36. 具体算式如下:5(q 1) 3960(a ) 756(b ) 4(q 2) 3780 720 180(r 1) 36(r 2) 5(q 3) 1800(r 3)由定义和上述求法不难得出最大公约数和最小公倍数的如下性质:(1)),(),(,b a m bm am N m =∈则.(2)设b a c ,为的公约数,则.),(),(cb a cb c a =特别地,若1),(),,(==cbc a b a c 则.(3)设n a a a ,,,21 是任意n 个正整数,如果n n n c a c c a c c a a ===-),(,,),(,),(1332221 ,则n n c a a a =),,,(21 .因21121111|,|,|,|,|,|--------n n n n n n n n n n n n c c a c c c a c c c a c 故而,如此类推得出n c 能整除n n n c a a a 于是,,,,11 -是它们的一个公约数.又设n a a a c ,,,21 为的任一公约数,则21|,|a c a c ,因而2|c c ,同理可推出3|c c ,如此类推最后可得n c c |. 于是n c c c ≤≤||,故n c 是最大公约数.(4)若c b a =),(,则一定有整数y x 和,使得c by ax =+. 特别地,⇔=1),(b a 存在1,=+by ax y x 使得. 这可由辗转相除法的③式逆推而得by ax r c n +==. (5)若),(),(,1),(b c b ac b a ==则. (6)*∈N b a , ①)(],[],[*∈=N k b a k bk ak ;②b a m ,为的任一公倍数,则m b a |],[;③ab b a b a =],)[,(,特别地,若ab b a b a ==],[,1),(则.①可由③直接得到,②可由最小公倍数定义得,③根据①、②式知,=],)[,(b a b a∏∏==+==ni ni i i i iab p pi i 11),min(βαβα.(7)设na a a ,,,21 是任意n 个正整数.若===-],[,,],[,],[1332221n n a m m a m m a a m n ,则n n m a a a =],,,[21 .这是一个求多个整数的最小公倍数的方法.它可用证明③类似的方法来证明. Ⅲ.方幂问题一个正整数n 能否表成m 个整数的k 次方和的问题称为方幂和问题.特别地,当1=m 时称为k 次方问题,当2=k 时,称为平方和问题.能表为某整数的平方的数称为完全平方数.简称平方数,关于平方数,明显有如下一些简单的性质和结论: (1)平方数的个位数字只可能是0,1,4,5,6,9.(2)偶数的平方数是4的倍数,奇数的平方数被8除余1,即任何平方数被4除的余数只能是0或1.(3)奇数平方的十位数字是偶数.(4)十位数字是奇数的平方数的个位数一定是6.(5)不能被3整除的数的平方被3除余1,能被3整除的数的平方能被3整除.因而,平方数被9除的余数为0,1,4,7,且此平方数的各位数字的和被9除的余数也只能为0,1,4,7. (6)平方数的约数的个数为奇数.(7)任何四个连续整数的乘积加1,必定是一个平方数. 进一步研究可得到有关平方和的几个结论:定理三:奇素数p 能表示成两个正整数的平方和的充要条件是.14+=m p定理四:设正整数p m n 2=,其中p 不再含平方因数,n 能表示成两个整数的平方的充要条件是p 没有形如34+q 的质因数. 定理五:每个正整数都能表示成四个整数的平方和.这几个定理的证明略.这里重点是介绍有关k 方幂的解法技巧.k 方幂中许多问题实质上是不定方程的整数解问题,比如著名的勾股数问题.赛题精讲例1:证明:对于任何自然数n 和k ,数1042),(3++=k k n n k n f 都不能分解成若干个连续的正整数之积.(1981年全国高中联赛试题)【证明】由性质9知,只需证明数),(k n f 不能被一个很小的自然数n 整除.因,1)1)(1()3(31033),(333++--++=++-+=k k k k k k k k k n n n n n n n n n k n f),1)(1(|3),3(3|33+-++k k k k k n n n n n 3 1,故3 ),(k n f ,因而),(k n f 不能分解成三个或三个以上的连续自然数的积. 再证),(k n f 不能分解成两个连续正整数的积.由上知,)(13),(N q q k n f ∈+=,因而只需证方程:)1(13+=+x x q 无正整数解.而这一点可分别具体验算234,134,3++=r x 时,)1(+x x 均不是13+q 形的数来说明.故),(k n f 对任何正整数n 、k 都不能分解成若干个连续正整数之积. 例2: 设p 和q 均为自然数,使得.131911318131211+--+-= q p证明:p 可被1979整除. (第21届IMO 试题)【证明】)131814121(2)1319131211(+++-+++= q p =)6591211()1319131211(+++-++++=)99019891()131816611()131916601(++++++ =1979×)99098911318661113196601(⨯++⨯+⨯两端同乘以1319!得1319!*).(1979N m m qp∈⨯=⨯此式说明1979|1319!×.p 由于1979为质数,且1979 1319!,故1979|.p【评述】把1979换成形如23+k 的质数,1319换成*)(12N k k ∈+,命题仍成立.牛顿二项式定理和n b a b a b a b a n n n n (|)(,|)(-+--为偶数),n b a b a n n (|)(-+为奇数)在整除问题中经常用到.例3 :对于整数n 与k ,定义,),(112∑=-=nr k r k n F 求证:)1,(n F 可整除).,(k n F(1996加拿大数学竞赛试题)【证明】当m n 2=时,,)12()1,2(21∑=+==mr m m r m F∑∑+=-=-+=mm r k mr k rrk m F 2112112),2(],)12([)12(12112112112-=-=-=--++=-++=∑∑∑k mr k mr k mr k r m r r m r由于[…]能被12)12(+=-++m r m r 整除,所以),2(k m F 能被12+m 整除,另一方面, =),2(k m F ,)2(])2([1212121112----=-++-+∑k k k m r k m m r m r上式中[…]能被m r m r 2)2(=-+整除,所以),2(k m F 也能被m 整除.因m 与2m +1互质,所以),2(k m F 能被m (2m +1)(即)1,(m F )整除.类似可证当12+=m n 时,F (2m +1,k )能被F (2m +1,1)整除. 故),(k n F 能被)1,(n F 整除.例4 :求一对整数b a ,,满足:(1))(b a ab +不能被7整除;(2)777)(b a b a --+能被77整除.(第25届IMO 试题)【解】777)(b a b a --+=)](5)(3)[(7223355b a b a b a ab b a ab +++++=.))((7222ab b a b a ab +++ 根据题设要求(1)(2)知,|,)(|72226ab b a ++即.|7223ab b a ++令,7322=++ab b a 即,343)(2=-+ab b a 即19=+b a ,则.343192-=ab 故可令1,18==b a 即合要求.(第15届美国普特南数学竞赛试题)【评述】数学归纳法在整除问题中也有广泛应用.例5:是否存在1000000个连续整数,使得每一个都含有重复的素因子,即都能被某个素数的平方所整除?【解】存在.用数学归纳法证明它的加强命题:对任何正整数,m 存在m 个连续的整数,使得每一个都含有重复的素因子. 当m =1时,显然成立.这只需取一个素数的平方.假设当m =k 时命题成立,即有k 个连续整数k n n n +++,,2,1 ,它们分别含有重复的素因子k p p p ,,,21 ,任取一个与k p p p ,,,21 都不同的素数1+k p (显然存在),当21,2,1+=k p t 时,)1(22221+++k n p p tp k 这21+k p 个数中任两个数的差是形如)11(2122221-≤≤+k k p a p p ap 的数,不能被21+k p 整除,故这21+k p 个数除以21+k p 后,余数两两不同.但除以21+k p 后的余数只有0,1,…,21+k p -1这21+k p 个,从而恰有一个数)1(2100+≤≤k p t t ,使)1(222210+++k n p p p t k 能被21+k p 整除.这时,()1+k 个连续整数:,1222210++n p p p t k ++n p p p t k 222210 2,…,++n p p p t k 222210 k ,++n p p p t k 222210 (k +1)分别能被2122221,,+k k p p p p 整除,即1+=k m 时命题成立.故题对一切正整数m 均成立.例6:求证:.),)(,)(,(),,(],][,][,[],,[22a c c b b a c b a a c c b b a c b a = (第1届美国数学奥林匹克竞赛试题)【证明】设,,,111∏∏∏======ni ini ini ii p c i p b i p a γβα其中i p 为质数,i i i γβα,,为非负整数,则 ∏==ni i iiip c b a 1),,max(,],,[γβα∏==ni i i i p b a 1),max(,],[ βα∏=∏=ni i iiip c b a 1),,min(,),,(γβα∏==ni i iip b a 1),min(,),( βα因此只需证明2max(),m ax (),m ax (),m ax (),,i i i i i i i i i αγγββαγβα---=2min(),m in(),m in(),m in(),,i i i i i i i i i αγγββαγβα---上式关于i i i γβα,,对称,则不妨设i i i γβα≥≥,于是上式变为:.22i i i i i i i i γγβγαβαα---=---此式显然成立,故得证.例7:设a 和b 是两个正整数,p b a ,1),(=为大于或等于3的质数,ba b a b a c pp +++=,(),试证:(1)1),(=a c ;(2)1=c 或.p c =(1985新加坡数学竞赛试题)【证明】由已知得),(,N s t cs ba b a ct b a pp ∈=++=+,两式相乘得,)(1112ct pa t pac t c a ct a b a st c p p p p p p p p p ---++-=-+=+= 于是,12211-----++-=p p p p p pa t pac t c cs 故.|1-p pa c(1)现用反证法来证明1),(=a c .若,1),(>=k a c 令q 是k 的一个质因子,则有.|,|a q c q 因b a c +|,则b a q +|,从而.|b q 于是q 是a 、b 的一个公约数,这与),(b a =1矛盾,故1),(=a c .(2)因为,1),(,|1=-a c pa c p 所以.|p c 而p 为质数且3≥p ,故1=c 或.p c =例8:设∑=+=nk n k k S 175)(,求最大公约数).,(3n n S S d =(第26届IMO预选题)【解】能过具体计算可猜想.)2)1((2)21(244+=+++=n n n S n 此式不难用数学归纳法获证. 为求),(3n n S S d =,对n 分奇偶来讨论.(1)当k n 2=时,).)16(812,)12(2()]2)16(6[2,]2)12(2[2(444444+⨯+=++=k k k k k k k k d 由于12+k 和16+k 互质,所以).81,)12((244+=k k d 而当13+=t k 时13,)12(81)12(44+≠+=+t k t k 时,4)12(+k 与81互质.故此时有⎪⎪⎩⎪⎪⎨⎧≥++==+==⨯⨯=⨯=.)0(4666,812;26,8812812812444444t t t n n k t n n n k d 时或当时当 (2)当当12+=k n 时).)23)(12(3[2,)]1)(12[(2(44++++=k k k k d1,1223+++k k k 与因与质,所以).3,)1(()12(2444++=k k k 而当23+=t k 时,23),1(31+≠+=+k k t k 时,1+k 与34互质.故此时有⎪⎩⎪⎨⎧++==++==⨯=⨯+=.)36162)12(2;56,162323)12(2444444时或当时当t t n n k t n n n k d 例9:m 盒子中各若干个球,每一次在其中)(m n n <个盒中加一球.求证:不论开始的分布情况如何,总可按上述方法进行有限次加球后使各盒中球数相等的充要条件是.1),(=n m (第26届IMO 预选题)【证明】设1),(=n m ,则有Z v u ∈,使得)1()1(1++-=+=v m v vm un ,此式说明:对盒子连续加球u 次,可使1-m 个盒子各增加了v 个,一个增加)1(+v 个.这样可将多增加了一个球的盒子选择为原来球数最少的那个,于是经过u 次加球之后,原来球数最多的盒子中的球与球数最少的盒子中的球数之差减少1,因此,经过有限次加球后,各盒球数差为0,达到各盒中的球数相等.用反证法证明必要性.若1),(>=d n m ,则只要在m 个盒中放1+m 个球,则不管加球多少次,例如,加球k 次,则这时m 个盒中共有球kn m ++1(个),因为,1,|,|>d n d m d 所以kn m ++1不可能是d 的倍数,更不是m 的倍数,各盒中的球决不能一样多,因此,必须1),(=n m .例10:求所有这样的自然数n ,使得n 222118++是一个自然数的平方.(1980年第6届全俄数学竞赛试题)【证明】(1)当8≤n 时,)122(222118118++⋅++=--n n n N ,因(…)为奇数,所以要使N 为平方数,n 必为偶数.逐一验证8,6,4,2=n 知,N 都不是平方数. (2)当9=n 时,11222289118⨯=++=N 不是平方数.(3)当10≥n 时,)29(288-+=n N ,要N 为平方数,829-+n 应为奇数的平方,不妨假设829-+n =2)12(+k ,则).2()1(210+⨯-=-k k n 由于1-k 和2+k 是一奇一偶,左边为2的幂,因而只能1-k =1,于是得2=k ,由21022=-n 知12=n 为所求.。
数的整除性及性质
数的整除性及性质数的整除性是指一个整数能够被另一个整数整除,即没有余数的除法运算。
整除性是数学中的一个重要概念,它有一些基本的性质。
性质1:如果一个整数能够被另一个整数整除,那么它也能够被这个整数的因子整除。
性质2:如果一个整数能够被两个整数整除,那么它也能够被这两个整数的公倍数整除。
性质3:如果一个整数能够被另一个整数整除,那么它的倍数也能够被这个整数整除。
性质4:如果一个整数能够被另一个整数整除,那么它的相反数也能够被这个整数整除。
性质5:如果一个整数能够被另一个整数整除,那么它的任意正整数倍也能够被这个整数整除。
性质6:如果一个整数能够被另一个整数整除,那么它的任意正整数加减这个整数也能够被这个整数整除。
性质7:如果一个整数能够被另一个整数整除,那么它的任意正整数乘以这个整数也能够被这个整数整除。
性质8:如果一个整数能够被另一个整数整除,那么它的任意正整数除以这个整数也能够被这个整数整除。
性质9:如果一个整数能够被另一个整数整除,那么它的任意正整数次方也能够被这个整数整除。
性质10:如果一个整数能够被另一个整数整除,那么它的倒数也能够被这个整数整除。
性质11:如果一个整数能够被另一个整数整除,那么它的相反数的倒数也能够被这个整数整除。
性质12:如果一个整数能够被另一个整数整除,那么它的任意正整数倍数的倒数也能够被这个整数整除。
性质13:如果一个整数能够被另一个整数整除,那么它的任意正整数加减这个整数的倒数也能够被这个整数整除。
性质14:如果一个整数能够被另一个整数整除,那么它的任意正整数乘以这个整数的倒数也能够被这个整数整除。
性质15:如果一个整数能够被另一个整数整除,那么它的任意正整数除以这个整数的倒数也能够被这个整数整除。
性质16:如果一个整数能够被另一个整数整除,那么它的任意正整数次方的倒数也能够被这个整数整除。
性质17:如果一个整数能够被另一个整数整除,那么它的相反数的次方也能够被这个整数整除。
奥数数的整除讲义
数的整除性质、特征【知识要点】:整除性质:(1)如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c整除。
(2)如果数a能被自然数b整除,自然数b能被自然数c整除,则数a必能被数c整除。
(3)若干个数相乘,如其中有一个因数能被某一个数整除,那么,它们的积也能被这个数整除。
(4)如果一个数能被两个互质数中的每一个数整除,那么,这个数能被这两个互质数的积整除。
反之,若一个数能被两个互质数的积整除,那么这个数能分别被这两个互质数整除。
整除特征:(1)若一个数的末两位数能被4(或25)整除,则这个数能被4(或25)整除。
(2)若一个数的末三位数能被8(或125)整除,则这个数能被8(或125)整除。
(3)若一个数的各位数字之和能被3(或9)整除,则这个数能被3(或9)整除。
(4)若一个数的奇数位数字和与偶数数字和之差(以大减小)能被11整除,则这个数能被11整除。
(5)若一个数的末三位数字所表示的数与末三位以前的数字所表示的数之差(大数减小数)能被7(或13)整除,则这个数能被7(或13)整除。
【典型例题】例1:一个三位数能被3整除,去掉它的末尾数后,所得的两位数是17的倍数,这样的三位数中,最大是几?例2:1~200这200个自然数中,能被6或8整除的数共有多少个?例3、要使84×300×365×( )的积最后五位数字都是0,求括号内最小应填何数?例4、证明:若训练题.8,8abcdef def 则1、判断306371能否被7整除?能否被13整除?2、abcabc能否被7、11和13整除?3、六位数7E36F5 是1375的倍数,求这个六位数。
4、已知10□8971能被13整除,求□中的数。
5、在568后面补上三个数字,组成一个六位数,使它能被2,3,5整除,且使它的数值尽可能小,求这个六位数。
6、有一个四位数3AA1,它能被9整除,那么数A 代表多少?7、已知10□8971能被13整除,求□中的数。
初中数学竞赛2:整除性
所以abc最大值为1008,
故答案为:1008.
【点睛】
本题考查数的整除性的知识,难度一般,注意根据题意得出c(a+b)=2×79以及验证得出c的值是本题的关键.
7.314159
【详解】
3141,31415,3141592,31415926,31415927依次能被3,5,2,2,31整除.所以314159是质数.
分析10个数都有 的形式,因此只要研究 这个数.
解10个数都可以写成 .
而 ,
其中n为1983到1992的自然数,
又 是三个连续自然数的和,因此,它一定能被2和3整除,即被6整除.
另一方面,当 时, 不能被12整除.
故选C.
4.C
【详解】
解设三个连续整数为 ,n, (n为整数),则 能被3整除.
虽 能被6整除,但 不能被6整除.
且 ,
这等价于 且 .
证明首先证 .
当 时, ;
当 时, ;
当 时, .
因此,对任何整数x,都有 .
于是, ,
即 .
其次证 .
当 时, ;
当 时, ;
当 时, ;
当 时, ;
当 时, .
因此,对任何整数x,都有 .
从而, ,
即 .
因为 ,所以, .
故对每个整数 的值都是整数.
注:为证明 ,可假定 ,然后对 进行讨论.
A.2B.3C.6D.12
4.能整除任意三个连续整数之和的最大整数是().
A.1B.2C.3D.6
5.若 ,其中M为自然数,n为使得等式成立的最大的自然数,则M()
A.能被2整除,但不能被3整除B.能被3整除,但不能被2整除
竟赛数学整数整除性讲解
01
利用数的整除性特征
预备知识
☺ 任意两个连续整数之积必定是一个奇数与一个偶数之积,因此一定可被2整除。 ☺ 任意三个连续整数之中至少有一个偶数且至少有一个是3的倍数,所以它们之积一定可以被2整
除,也可被3整除,所以也可以被2×3=6整除。 ☺ 这个性质可以推广到任意个连续整数之积。
例题讲解
n -n ☺ 例4:设n是正整数,求证 可被30整除 5
32n - 32n2 24n -1
证明:设f(n) 32n - 32n 2 24n -1,用归纳法证明
f(1) 0
512 | f(1)成立
假设512 | f(n)成立,下证512 | f(n 1)
f(n 1)- f(n) 32n 2 - 32n - 3( 2 2n 1) 24 8·32n - 64n - 8
☺
证明:由于2 ×5 = 10,( 2,5) = 1, 所以只需证以只需证明个数同时被2和5整除即可
a3b - ab3 = ab(a 2 - b2) ab(a + b)(a - b) b3c - bc3 = bc(b2 - c2) bc(b + c)(b - c) c3a - ca3 = ac(c2 - a 2) ac(c + a)(c - a) 由上式知a3b - ab3, b3c - bc3, c3a - ca3都是偶数,都能被 2整除 若a、 b、 c中有一个能被5整除, 则除,则结 若a、 b、 c都不能被5整除, 则a 2、 b2、 c2的尾数为1,4,6,9, 从中任取两个其两两之差为0或者 ±5,必能被 5整除 故a3b - ab3, b3c - bc3, c3a - ca3中至少有一个能被5整除 从而a3b - ab3, b3c - bc3, c3a - ca3三个数中至少有一个能被10整除
五年级奥数竞赛之数的整除性
五年级奥数竞赛之数的整除性数的整除性整除的基本性质:性质1 如果a、b都能被m整除,那么它们的和a,b与差a,b都能被m整除。
它可记为:若m/a,m/b,则m/(a?b)。
m能同时整除a、b,即m既是a的约数,又是b的约数,则称m是a、b的公约数。
如果两个数只有唯一的公约数1,则称这两个数互质。
例如1与12,4与5,5与9,3与25等。
性质2 如果a/m,b/m,且a和b互质,那么a和b的乘积也能整除m,即(a×b)/m。
例如:3/72,4/72,且3和4互质,那么3与4的乘积12/72。
性质2中,“两数互质”这一条件是必不可少的。
6/72,8/72,但6与8的乘积48不能整除72,这就是因为6与8不互质。
根据性质2,我们常常可有如下解题思路:要使m被a×b整除,而a与b互质,就可以分别考虑m被a整除与m被b整除。
性质3 (传递性)如果c/b,且b/a,那么c/a。
特别是若b/a,m为整数,则有b/(a×m)。
1、形如1993 1993…1993 520,且能被11整除的最小数是。
n个19932、所有数字都是2且能被66…6整除的最小自然数是多少,3、500名士兵排成一列横队,第一次从左到右1,2,3,4,5(1至5)名报数;第二次反过来从右到左1,2,3,4,5,6(1至6)报数,既报1又报6的士兵有多少名,4、一个六位数的各位数字都不相同。
最左边一个数字是3,且此六位数能被11整除。
这样的六位数中的最小的数是。
5、已知一个两位数恰好是它的两个数字之和的六倍,求这个两位数是 ,6、已知a、b、c、d是各不相同的数字,a,b,c,18,b,c,d,23,四位数badc被5除余3,求四位数abcd是。
7、用1,6六个数字组成一个六位数abcdef其中不同字母代表1,6中的数字,要求ab是2的倍数,abc是3的倍数,abcd能被5整除,zbcdef是6的倍数,求这样的六位数有个,各是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
竞赛讲座02-整数的整除性1.整数的整除性的有关概念、性质(1)整除的定义:对于两个整数a、d(d≠0),若存在一个整数p,使得成立,则称d整除a,或a被d整除,记作d|a。
若d不能整除a,则记作d a,如2|6,4 6。
(2)性质1)若b|a,则b|(-a),且对任意的非零整数m有bm|am2)若a|b,b|a,则|a|=|b|;3)若b|a,c|b,则c|a4)若b|ac,而(a,b)=1((a,b)=1表示a、b互质,则b|c;5)若b|ac,而b为质数,则b|a,或b|c;6)若c|a,c|b,则c|(ma+nb),其中m、n为任意整数(这一性质还可以推广到更多项的和)例1 (1987年北京初二数学竞赛题)x,y,z均为整数,若11|(7x+2y-5z),求证:11|(3x-7y+12z)。
证明∵4(3x-7y+12z)+3(7x+2y-5z)=11(3x-2y+3z)而 11|11(3x-2y+3z),且 11|(7x+2y-5z),∴ 11|4(3x-7y+12z)又 (11,4)=1∴ 11|(3x-7y+12z).2.整除性问题的证明方法(1) 利用数的整除性特征(见第二讲)例2(1980年加拿大竞赛题)设72|的值。
解72=8×9,且(8,9)=1,所以只需讨论8、9都整除的值。
若8|,则8|,由除法可得b=2。
若9|,则9|(a+6+7+9+2),得a=3。
(2)利用连续整数之积的性质①任意两个连续整数之积必定是一个奇数与一个偶数之一积,因此一定可被2整除。
②任意三个连续整数之中至少有一个偶数且至少有一个是3的倍数,所以它们之积一定可以被2整除,也可被3整除,所以也可以被2×3=6整除。
这个性质可以推广到任意个整数连续之积。
例3(1956年北京竞赛题)证明:对任何整数n都为整数,且用3除时余2。
证明∵为连续二整数的积,必可被2整除.∴对任何整数n均为整数,∵为整数,即原式为整数.又∵,2n、2n+1、2n+2为三个连续整数,其积必是3的倍数,而2与3互质,∴是能被3整除的整数.故被3除时余2.例4 一整数a若不能被2和3整除,则a2+23必能被24整除.证明∵a2+23=(a2-1)+24,只需证a2-1可以被24整除即可.∵2 .∴a为奇数.设a=2k+1(k为整数),则a2-1=(2k+1)2-1=4k2+4k=4k(k+1).∵k、k+1为二个连续整数,故k(k+1)必能被2整除,∴8|4k(k+1),即8|(a2-1).又∵(a-1),a,(a+1)为三个连续整数,其积必被3整除,即3|a(a-1)(a+1)=a(a2-1),∵3 a,∴3|(a2-1).3与8互质, ∴24|(a2-1),即a2+23能被24整除.(3)利用整数的奇偶性下面我们应用第三讲介绍的整数奇偶性的有关知识来解几个整数问题.例5 求证:不存在这样的整数a、b、c、d使:a·b·c·d-a=①a·b·c·d-b=②a·b·c·d-c=③a·b·c·d-d=④证明由①,a(bcd-1)=.∵右端是奇数,∴左端a为奇数,bcd-1为奇数.同理,由②、③、④知b、c、d必为奇数,那么bcd为奇数,bcd-1必为偶数,则a (bcd-1)必为偶数,与①式右端为奇数矛盾.所以命题得证.例6 (1985年合肥初中数学竞赛题)设有n个实数x1,x2,…,x n,其中每一个不是+1就是-1,且试证n是4的倍数.证明设(i=1,2,…,n-1),则y i不是+1就是-1,但y1+y2+…+y n=0,故其中+1与-1的个数相同,设为k,于是n=2k.又y1y2y3…y n=1,即(-1)k=1,故k为偶数,∴n是4的倍数.其他方法:整数a整除整数b,即b含有因子a.这样,要证明a整除b,采用各种公式和变形手段从b中分解出因子a就成了一条极自然的思路.例7 (美国第4届数学邀请赛题)使n3+100能被n+10整除的正整数n的最大值是多少?解n3+100=(n+10)(n2-10n+100)-900.若n+100能被n+10整除,则900也能被n+10整除.而且,当n+10的值为最大时,相应地n的值为最大.因为900的最大因子是900.所以,n+10=900,n=890.例8 (上海1989年高二数学竞赛)设a、b、c为满足不等式1<a <b<c的整数,且(ab-1)(bc-1)(ca-1)能被abc整除,求所有可能数组(a,b,c).解∵(ab-1)(bc-1)(ca-1)=a2b2c2-abc(a+b+c)+ab+ac+bc-1,①∵abc|(ab-1)(bc-1)(ca-1).∴存在正整数k,使ab+ac+bc-1=kabc, ②k=<<<<∴k=1.若a≥3,此时1=-<矛盾.已知a>1. ∴只有a=2.当a=2时,代入②中得2b+2c-1=bc,即 1=<∴0<b<4,知b=3,从而易得c=5.说明:在此例中通过对因数k的范围讨论,从而逐步确定a、b、c是一项重要解题技巧.例9 (1987年全国初中联赛题)已知存在整数n,能使数被1987整除.求证数,都能被1987整除.证明∵×××(103n+),且能被1987整除,∴p能被1987整除.同样,q=()且∴故、102(n+1)、被除,余数分别为1000,100,10,于是q表示式中括号内的数被除,余数为1987,它可被1987整除,所以括号内的数能被1987整除,即q能被1987整除.练习二1.选择题(1)(1987年上海初中数学竞赛题)若数n=20·30·40·50·60·70·80·90·100·110·120·130,则不是n的因数的最小质数是().(A)19 (B)17 (C)13 (D)非上述答案(2)在整数0、1、2…、8、9中质数有x个,偶数有y个,完全平方数有z个,则x+y+z等于().(A)14 (B)13 (C)12 (D)11 (E)10(3)可除尽311+518的最小整数是().(A)2 (B)3 (C)5 (D)311+518(E)以上都不是2.填空题(1)(1973年加拿大数学竞赛题)把100000表示为两个整数的乘积,使其中没有一个是10的整倍数的表达式为__________.(2) 一个自然数与3的和是5的倍数,与3的差是6的倍数,这样的自然数中最小的是_________.(3) (1989年全国初中联赛题)在十进制中,各位数码是0或1,并且能被225整除的最小自然数是________.3.求使为整数的最小自然数a的值.4.(1971年加拿大数学竞赛题)证明:对一切整数n,n2+2n+12不是121的倍数.5.(1984年韶关初二数学竞赛题)设是一个四位正整数,已知三位正整数与246的和是一位正整数d的111倍,又是18的倍数.求出这个四位数,并写出推理运算过程.6.(1954年苏联数学竞赛题)能否有正整数m、n满足方程m2+1954=n2.7.证明:(1)133|(11n+2+12n+1),其中n为非负整数.(2)若将(1)中的11改为任意一个正整数a,则(1)中的12,133将作何改动?证明改动后的结论.8.(1986年全国初中数学竞赛题)设a、b、c是三个互不相等的正整数.求证:在a3b-ab3,b3c-bc3,c3a-ca3三个数中,至少有一个能被10整除.9.(1986年上海初中数学竞赛题)100个正整数之和为101101,则它们的最大公约数的最大可能值是多少?证明你的结论.练习参考答案1.B.B.A2.(1)25·55.(2)27.3.由2000a为一整数平方可推出a=5.4.反证法.若是121的倍数,设n2+2n+12=121k(n+1)2=11(11k-1).∵11是素数且除尽(+1)2,∴11除尽n+1112除尽(n+1)2或11|11k-1,不可能.5.由是d的111倍,可能是198,309,420,531,642,753;又是18的倍数,∴只能是198.而198+246=444,∴d=4,是1984.7.(1)11n+2+122n+1=121×11n+12×144n=121×11n+12×11n-12×11n+12×144n=…=133×11n+12×(144n-11n).第一项可被133整除.又144-11|144n-11n,∴133|11n+2+122n+1.(2)11改为a.12改为a+1,133改为a(a+1)+1.改动后命题为a(a+1)+1|an+2+(a+1)2n+1,可仿上证明.8.∵a3b-ab3=ab(a2-b2);同理有b(b2-c2);ca(c2-a2).若a、b、c中有偶数或均为奇数,以上三数总能被2整除.又∵在a、b、c中若有一个是5的倍数,则题中结论必成立.若均不能被5整除,则a2,b2,c2个位数只能是1,4,6,9,从而a2-b2,b2-c2,c2-a2的个位数是从1,4,6,9中,任取三个两两之差,其中必有0或±5,故题中三式表示的数至少有一个被5整除,又2、5互质.9.设100个正整数为a1,a2,…,a100,最大公约数为d,并令则a1+a2+…+a100=d(a1′+a2′+…+a′100)=101101=101×1001,故知a1′,a2′,a′100不可能都是1,从而a′1+a′2+…+a′100≥1×99+2=101,d≤1001;若取a1=a2=a99=1001,a100=2002,则满足a1+a2+…+a100=1001×101=101101,且d=1001,故d的最大可能值为1001。