北师大版数学第八册第六单元测试
北师大版八年级数学上册第六章单元测试卷含答案
北师大版八年级数学上册第六章单元测试卷含答案第六章单元测试卷一、选择题(本大题共10小题,每小题3分,共30分)1.已知n个数据的和为108,平均数为12,则n为(C)。
A.7B.8C.9D.102.在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如表所示.则这8名同学捐款的平均金额为(A)。
金额/元人数5 26 37 28 1A.6.25B.6.5C.3.5D.73.已知一组数据1,2,4,3,x的众数是2,则这组数据的中位数是(A)。
A.2B.2.5C.3D.44.XXX是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是(B)。
A.16,10.5B.8,9C.16,8.5D.8,8.55.下列说法错误的是(B)。
A.一组数据的平均数、中位数可能相同B.一组数据的中位数可能不唯一确定C.一组数据的平均数、众数、中位数是从不同角度描述了一组数据的集中趋势D.一组数据中众数可能有多个6.为了解某公司员工的年工资情况,XXX随机调查了10名员工,其年工资(单位:万元)如下:3,3,3,4,5,5,6,6,8,20.下列统计量中,能合理反映该公司员工年工资中等水平的是(C)。
A.方差B.众数C.中位数D.平均数7.甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是8环,甲的方差是1.2,乙的方差是1.8.下列说法中不一定正确的是(A)。
A.甲、乙的众数相同B.甲的成绩稳定C.乙的成绩波动较大D.甲、乙射中的总环数相同8.若一组数据2,4,6,8,x的方差比另一组数据5,7,9,11,13的方差大,则x的值可以为(A)。
A.12B.10C.2D.无法确定9.某校一年级学生的平均年龄为7岁,方差为3,5年后该校六年级学生的年龄中(B)。
A.平均年龄为7岁,方差改变B.平均年龄为12岁,方差不变C.平均年龄为12岁,方差改变D.平均年龄不变,方差也不变10.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参赛人数中位数方差平均数甲 55 149 191 135乙 55 110 100 90则下列说法正确的是(D)。
北师大版八年级上册数学第六章数据的分析综合素质评价试题(含答案)
八年级上册数学第六章综合素质评价一、选择题:本大题共12小题,每小题3分,共36分.在每小题列出的四个选项中,只有一个选项是符合题目要求的.1.小铭某周每天的睡眠时间(单位:小时)为8,9,9,7,7,8,8.则小铭该周每天的平均睡眠时间是()A.7小时B.7.5小时C.8小时D.9小时2.一次演讲比赛中,评委从演讲内容、演讲能力、演讲效果三个方面为选手打分,已知某位选手三项得分依次为88,72,50,若将演讲内容、演讲能力、演讲效果三项得分按1:4:3的比例确定各人的最终成绩,则这位选手的最终成绩为()A.68.24 B.64.56 C.65.75 D.67.32 3.某校举办“体育艺术节”比赛,有16名学生参加,规定前8名的学生进入决赛,某选手知道自己的成绩,他想知道自己能否进入决赛,只需要知道这16名学生成绩的()A.中位数B.方差C.平均数D.众数4.在对一组数据进行分析时,小华列出了方差的计算公式:s2=15[(5-͞x)2+(4-͞x)2+(4-͞x)2+(3-͞x)2+(3-͞x)2],对于这组数据,下列说法错误的是()A.方差是0.56 B.中位数是4C.平均数是3.8 D.众数是45.已知甲样本的平均数͞x甲=50,方差s2甲=0.06,乙样本的平均数͞x乙=50,方差s2乙=0.1,那么()A.甲、乙两个样本的波动一样大B.甲样本的波动比乙样本大C.乙样本的波动比甲样本大D.无法比较甲、乙两个样本波动的大小6.某校八年级的8个班级向“希望工程”捐献图书的本数如下表:班级一班二班三班四班五班六班七班八班本数50 96 100 90 90 120 500 90这组数据的中位数和众数分别是()A.93,90 B.93,500 C.90,90 D.90,500 7.某年广州5月8日~14日的气温折线统计图如图所示,这一周中温差最大的是()A.5月9日B.5月11日C.5月12日D.5月14日(第7题)(第12题)(第13题)8.某篮球队5名场上队员的身高(单位:cm)为183,185,188,190,194.现用一名身高为190 cm的队员换下场上身高为185 cm的队员,与换人前相比,场上队员身高的()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大9.某制鞋厂准备生产一批成人男鞋,随机调查了120名成年男子,得到所需鞋号和人数如下表:鞋号/ cm 24 24.5 25 25.5 26 26.5 27人数8 15 20 25 30 20 2,下列说法正确的是()A.因为所需鞋号为27 cm的人数太少,所以27 cm的鞋可以不生产B.因为平均数约是25.5 cm,所以这批男鞋可以一律按25.5 cm的鞋号生产C.因为中位数是25.5 cm,所以25.5 cm的鞋的生产量应占首位D.因为众数是26 cm,所以26 cm的鞋的生产量应占首位10.小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中三天的个数被墨汁覆盖了,但小强已经分析出这组数据的唯一众数是13,平均数是12,那么这组数据的方差是()A.107B.97C.87D.111.在一次歌咏比赛中,五位评委给参赛的A班打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.z>y>x B.x>z>y C.y>x>z D.y>z>x 12.10个人围成一圈做游戏,游戏的规则如下:每个人心里都想一个数,并把自己想的数告诉相邻的两个人,然后每个人将与自己相邻的两个人告诉自己的数的平均数报出来,若报出来的数如图所示,则报出来的数是3的人心里想的数是()A.2 B.-2 C.4 D.-4二、填空题:本大题共6小题,每小题4分,共24分.13.某广场便民服务站统计了某月1至6日每天的用水量,并绘制了如图所示的统计图,那么这6天用水量的中位数是__________.14.某校运动会入场式的得分是由各班入场时,评委从服装、动作和口号三个方面分别给分,三项得分按3:3:4的比例计算得到的.若8(1)班服装、动作、口号三项得分分别是90分,92分,86分,则该班的入场式的得分是________分.15.甲、乙、丙三个旅游团的游客的年龄的方差分别是s2甲=1.4,s2乙=18.8,s2丙=2.5,导游小爽最喜欢带游客年龄相近的旅游团,若在这三个旅游团中选择一个,则他会选________旅游团.16.某校组织了一分钟跳绳比赛活动,体育老师随机抽取了10名参赛学生的成绩,将这组数据整理后制成如下统计表:一分钟跳绳个数(个) 172 175 178 182学生人数(名) 2 5 2 1则这10名参赛学生的成绩的众数是________.17.对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数.现抽取8个排球,通过检测所得数据如下(单位:g):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是__________.18.已知一组数据x1,x2,x3,x4,x5的平均数是3,方差是4,那么另一组数据3x1-4,3x2-4,3x3-4,3x4-4,3x5-4的平均数和方差的和为________.三、解答题(一):本大题共2小题,每小题8分,共16分.19.某区教育局为了了解初三男生引体向上的成绩情况,随机抽测了该区部分学校的初三男生,并将测试成绩绘制成了如下两幅不完整的统计图.请你根据图中的信息,解答下列问题:(1)扇形统计图中a=________,并补全条形统计图.(2)在这次抽测中,测试成绩的众数和中位数分别是多少?20.2021年9月17日,神舟十二号载人飞船返回舱在东风着陆场成功着陆,中国空间站阶段首次载人飞行任务取得圆满成功.某校组织了“中国梦·航天情”系列活动.下面是八年级创新、实验两个班各项目的成绩(单位:分):知识竞赛演讲比赛版面创作创新班85 91 88实验班90 84 87(1)如果将各个班三个项目成绩的平均数作为其最后成绩,那么哪个班将获胜?(2)如果将知识竞赛、演讲比赛、版面创作三个项目的成绩按532的比例确定各个班的最后成绩,那么哪个班将获胜?四、解答题(二):本大题共2小题,每小题10分,共20分.21.甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10次,两人的射击成绩如图所示.(1)甲的射击成绩的平均数是________环,乙的射击成绩的中位数是__________环;(2)请分别计算甲、乙两名射击运动员射击成绩的方差,并根据计算结果判断谁的射击成绩更稳定.22.某数学小组对当地甲、乙两家网约车公司司机的月收入进行了抽样调查.从甲、乙两家公司各随机抽取10名司机,他们的月收入情况如图所示.根据以上信息,整理分析数据如下表:平均数/千元中位数/千元众数/千元方差甲公司a7 c d乙公司7 b 5 7.6(1)(2)某人打算从甲、乙两家公司中选择一家做网约车司机,你建议他选哪家公司?说明理由.五、解答题(三):本大题共2小题,每小题12分,共24分.23.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩如图所示.(1)请根据图中信息填写下表.平均数/环中位数/环命中9环及以上的次数甲____ 7 ____乙7 ____ ____(2)②从平均数和命中9环及以上的次数看,谁的成绩好一些?③从折线图上两人成绩的走势看,谁更有潜力?24.某企业对每个员工在当月生产某种产品的件数统计如图,设产品件数为x,该企业规定:当x<15时为不称职;当15≤x<20时为基本称职;当20≤x<25时为称职;当x≥25时为优秀.根据统计图解答下列问题:(1)试求出优秀员工人数所占百分比;(2)求优秀和称职的员工的月产品件数的中位数和众数;(3)为了调动员工的工作积极性,该企业决定制定月产品件数奖励标准,凡达到或超过这个标准的员工将得到奖励.要使优秀和称职的员工中至少有一半得到奖励,你认为月产品件数奖励标准应定为多少?请简述理由.答案一、1.C2.C3.A4.D5.C6.A7.D8.C 9.D10.C11.D12.B二、13.31.5 L14.8915.甲16.175个17.2.5点拨:这组数据的平均数=1-2+1+0+2-3+0+18=0(g),则方差=18[(1-0)2+(-2-0)2+(1-0)2+…+(1-0)2]=2.5.18.41点拨:因为数据x1,x2,x3,x4,x5的平均数是3,方差是4,所以数据3x1-4,3x2-4,3x3-4,3x4-4,3x5-4的平均数是3×3-4=5,方差是4×32=36.所以数据3x1-4,3x2-4,3x3-4,3x4-4,3x5-4的平均数和方差的和为5+36=41.三、19.解:(1)25补全条形统计图如图:(2)测试成绩的众数是5个,中位数是5个.20.解:(1)创新班的最后成绩是13×(85+91+88)=88(分),实验班的最后成绩是13×(90+84+87)=87(分),因为87<88,所以创新班将获胜.(2)创新班的最后成绩是85×5+91×3+88×25+3+2=87.4(分),实验班的最后成绩是90×5+84×3+87×25+3+2=87.6(分),因为87.6>87.4,所以实验班将获胜.四、21.解:(1)8;7.5(2)s2甲=110×[(6-8)2+3×(7-8)2+3×(8-8)2+(9-8)2+2×(10-8)2]=1.6.x乙=110×(7×5+3×9+8+10)=8(环),s2乙=110×[5×(7-8)2+(8-8)2+3×(9-8)2+(10-8)2]=1.2,因为s2甲>s2乙,所以乙的射击成绩更稳定.22.解:(1)7.3;5.5;7;1.41(2)选甲公司.理由如下:因为甲公司司机的月收入的平均数、中位数、众数均大于乙公司,且甲公司司机的月收入的方差小于乙公司,更稳定.(理由合理即可)五、23.解:(1)(从上到下,从左到右)7;1;7.5;3(2)①从平均数和中位数看,乙的成绩好一些,因为甲、乙两人成绩的平均数相同,乙的成绩的中位数比甲大.②从平均数和命中9环及以上的次数看,乙的成绩好一些,因为甲、乙两人成绩的平均数相同,乙命中9环及以上的次数比甲多.③由折线图可知,乙的成绩呈上升趋势,而甲的成绩在平均数的上下波动,所以乙更有潜力.24.解:(1)根据条形统计图可知,优秀员工人数为3,总人数为30,则优秀员工人数所占百分比为330×100%=10%.(2)优秀和称职的员工的月产品件数的中位数为22,众数为20.(3)月产品件数奖励标准应定为22.由(2)知,优秀和称职的员工的月产品件数的中位数为22,即优秀和称职的员工中至少有一半的月产品件数大于或等于22,所以月产品件数奖励标准应定为22.。
2020年北师大版数学八年级上册第六章数据的分析单元测试卷(含答案)
第六章数据的分析[时间:120分钟分值:150分]A卷(共100分)一、选择题(共9个小题,每小题4分,共36分)1.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是() A.众数是108 B.中位数是105C.平均数是101 D.方差是932.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的()A.平均数B.中位数C.众数D.方差3.下列说法正确的是()A.中位数就是一组数据中最中间的一个数B.8,9,9,10,10,11这组数据的众数是9C.如果x1,x2,x3,…,x n的平均数是x-,那么(x1-x-)+(x2-x-)+…+(x n-x-)=0D.一组数据的方差是这组数据的极差的平方4.如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况,则下列关于车速描述错误的是()A.平均数是23 B.中位数是25C.众数是30 D.方差是1295.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如下表:投中次数35678人数1322 2则这些队员投中次数的众数、中位数和平均数分别为()A.5,6,6 B.2,6,6C.5,5,6 D.5,6,56.某企业1~6月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是()A.1~6月份利润的众数是130万元B.1~6月份利润的中位数是130万元C.1~6月份利润的平均数是130万元D.1~6月份利润的最大值与最小值的差是40万元7.学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如下表:下列说法正确的是()A.该班级所售图书的总收入是226元B.在该班级所售图书售价组成的一组数据中,中位数是4C.在该班级所售图书售价组成的一组数据中,众数是15D.在该班级所售图书售价组成的一组数据中,方差是28.一组数据2,3,5,x,7,4,6,9的众数是4,则这组数据的中位数是()A.4 B.92C.5 D.11 29.在一次“我的青春,我的梦”演讲比赛中,五名选手的成绩及部分统计信息如下表,其中被遮住的两个数据依次是()A.88, 2 B.88,2C.90, 2 D.90,2二、填空题(共4个小题,每小题5分,共20分)10.某校规定学生的数学学期综合成绩是由平时、期中和期末三项成绩按3∶3∶4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他的数学学期综合成绩是____分.11.东营市某中学为积极响应“书香东营,全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,学生阅读时间的中位数是____小时.12.下表是甲、乙两名同学近五次数学测试(满分为100分)的成绩统计表:根据上表数据,成绩较好且比较稳定的同学是____.13.某单位举办了英语培训,100名职工在一个月内参加英语培训的次数如图所示.这个月职工参加英语培训次数的众数为____次,中位数是____次.三、解答题(共3个小题,共44分)14.(14分)某单位欲从内部公开选拔一名管理人员,对甲、乙、丙三名候选人进行了笔试、面试两项测试,三人的测试成绩如下表所示:笔试758090面试937068根据录用程序,组织400名职工对三人采用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.民主评议得票率(1)请算出三人的民主评议得分;(2)根据实际需要,单位将笔试、面试、民主评议三项测试得分按5∶3∶2的比例确定个人成绩(精确到0.1分),那么谁将被录用?15.(15分)[2019·天津]某校为了解初中学生每天在校体育活动时间(单位:h),随机调查了该校的部分初中学生,根据调查结果绘制出如下的统计图1和图2,请根据相关信息解答下列问题:(1)本次接受调查的初中学生人数为___,图1中的m的值为____;(2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(3)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1 h的学生人数.16.(15分)洋洋八年级上学期的数学成绩如下表所示:(1)计算洋洋该学期的数学平时平均成绩;(2)如果学期的总评成绩是根据如图所示的权重计算,请计算出洋洋该学期的数学总评成绩.B卷(共50分)四、填空题(共4个小题,每小题5分,共20分)17.一组数据:2.2,3.3,4.4,11.1,a.其中整数a是这组数据中的中位数,则这组数据的平均数是____.18.某地区前两周从星期一到星期五各天的最低气温依次是(单位:℃)x1,x2,x3,x4,x5和x1+1,x2+2,x3+3,x4+4,x5+5.若第一周这五天的平均最低气温为7 ℃,则第二周这五天的平均最低气温为_________.19.某公司员工的月工资统计如下:则该公司员工月工资的平均数为________________元,中位数为__________元,众数为__________元.20.一组数据4,5,6,x的众数与中位数相等,则这组数据的方差是____.五、解答题(共2个小题,共30分)21.(15分)为了调查甲、乙两台包装机分装标准质量为400 g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395乙:403,404,396,399,402,402,405,397,402,398整理数据:表一分析数据:表二得出结论:包装机分装情况比较好的是____(填“甲”或“乙”),请说明理由.解:整理数据:表一分析数据:将甲组数据重新排列为:393,394,395,400,400,400,406,408,409,410,∴甲组数据的中位数为400;乙组数据中402出现次数最多,有3次,∴乙组数据的众数为402.表二得出结论:由表二知,乙包装机分装的奶粉质量的方差小,分装质量比较稳定,所以包装机分装情况比较好的是乙.22.(15分)在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查,其中A,B两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值),图中,从左往右第四组的成绩如下:A小区50名居民成绩的频数直方图【信息二】A,B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):AB根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数;(2)请估计A小区500名居民成绩能超过平均数的人数;(3)请尽量从多个角度,选择合适的统计量分析A,B两小区参加测试的居民掌握垃圾分类知识的情况.参考答案1. D【解析】 把六名学生的数学成绩从小到大排列为82,96,102,108,108,110,∴众数是108,中位数为102+1082=105,平均数为 82+96+102+108+108+1106=101, 方差为16[(82-101)2+(96-101)2+(102-101)2+(108-101)2+(108-101)2+(110-101)2]≈94.3≠93.2. B【解析】 由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.11个不同的成绩按从小到大排序后,成绩的中位数为第6个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故本题选B.3. C4. D5. A【解析】 因为投中5次的人数最多,故众数为5;把10名队员投中的次数按由小到大的顺序排列为3,5,5,5,6,6,7,7,8,8,中间的两个数的平均数为6,故中位数为6;3×1+5×3+6×2+7×2+8×210=6,故平均数为6. 6. D【解析】 1~6月份利润的众数是120万元,故A 错误;1~6月份利润的中位数是125万元,故B 错误;1~6月份利润的平均数约是128万元,故C 错误;1~6月份利润的极差是40万元,故D 正确.故选D.7. A【解析】 该班级所售图书的总收入为3×14+4×11+5×10+6×15=226(元),所以A 选项正确;将售价按由小到大的顺序排列,第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B 选项错误;这组数据的众数为6,所以C 选项错误;这组数据的平均数为x =22650=4.52,所以这组数据的方差s 2=150[14×(3-4.52)2+11×(4-4.52)2+10×(5-4.52)2+15×(6-4.52)2]≈1.4,所以D 选项错误.8. B【解析】 本题考查了众数、中位数的概念与中位数的求法,由众数是4,知x =4,把数据重排为2,3,4,4,5,6,7,9,中间两个数的平均数为92,就是这组数据的中位数,因此本题选B.9. B【解析】 根据题意得:90×5-(91+89+92+90)=88(分),则丙的得分是88分,方差=15[(91-90)2+(89-90)2+(88-90)2+(92-90)2+(90-90)2]=2.10. 8811.1【解析】∵学生有52人,把52人的阅读时间从小到大排列后,处于最中间的两个时间数是1和1,∴学生阅读时间的中位数是1小时.12.乙【解析】x-甲=15×(90+88+92+94+91)=91,x-乙=15×(90+91+93+94+92)=92,s2甲=15×[(90-91)2+(88-91)2+(92-91)2+(94-91)2+(91-91)2]=4,s2乙=15×[(90-92)2+(91-92)2+(93-92)2+(94-92)2+(92-92)2]=2,因为x-乙>x-甲,s乙<s甲.所以乙的成绩较好且比较稳定.13.6 614.解:(1)甲得分:400×25%=100(分).乙得分:400×40%=160(分).丙得分:400×35%=140(分).(2)将笔试、面试、民主评议三项测试得分按5∶3∶2的比例确定个人成绩,则甲得分:(5×75+3×93+2×100)÷(5+3+2)=85.4(分).乙得分:(5×80+3×70+2×160)÷(5+3+2)=93(分).丙得分:(5×90+3×68+2×140)÷(5+3+2)=93.4(分).则丙将被录用.15.40 25解:(2)平均数为1.5 h ,众数为1.5 h ,中位数为1.5 h .(3)∵在统计的这组每天在校体育活动时间的样本数据中,每天在校体育活动时间大于1 h 的学生人数占90%,∴估计该校800名初中学生中,每天在校体育活动时间大于1 h 的人数为800×90%=720(人).16.解:(1)洋洋该学期的数学平时平均成绩为(106+102+115+109)÷4=108(分).(2)洋洋该学期的数学总评成绩为108×10%+112×30%+110×60%=110.4(分).17. 5【解析】 ∵整数a 是这组数据中的中位数,∴a =4,∴这组数据的平均数=15(2.2+3.3+4.4+4+11.1)=5.18. 10 ℃【解析】 由题意得x 1+x 2+x 3+x 4+x 55=7(℃), 则x 1+1+x 2+2+x 3+3+x 4+4+x 5+55=7+3=10(℃). 19. 2 000 1 000 1 00020.12【解析】 若众数为4,则数据为4,4,5,6,此时中位数为4.5,不符合题意;若众数为5,则这组数据为4,5,5,6,中位数为5,符合题意,此时平均数为4+5+5+64=5,方差为14[(4-5)2+(5-5)2+(5-5)2+(6-5)2]=12; 若众数为6,则这组数据为4,5,6,6,中位数为5.5,不符合题意.21.乙22. 75解:(1)75分.(2)2450×500=240(人).(3)从平均数、中位数、众数、方差等方面,选择合适的统计量进行分析,例如:①从平均数看,两个小区居民对于垃圾分类知识掌握情况的平均水平相同;②从方差看,B 小区居民对垃圾分类知识的掌握情况比A 小区稳定;③从中位数看,B 小区至少有一半的居民成绩高于平均数.1、读书破万卷,下笔如有神。
2020年北师大版八年级数学上册第六章数据的分析单元测试题(含答案)
第六章数据的分析[时间:120分钟分值:150分]A卷(共100分)一、选择题(共9个小题,每小题4分,共36分)1.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是() A.众数是108 B.中位数是105C.平均数是101 D.方差是932.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的()A.平均数B.中位数C.众数D.方差3.下列说法正确的是()A.中位数就是一组数据中最中间的一个数B.8,9,9,10,10,11这组数据的众数是9C.如果x1,x2,x3,…,x n的平均数是x-,那么(x1-x-)+(x2-x-)+…+(x n-x-)=0D.一组数据的方差是这组数据的极差的平方4.如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况,则下列关于车速描述错误的是()A.平均数是23 B.中位数是25C.众数是30 D.方差是1295.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如下表:投中次数35678人数1322 2则这些队员投中次数的众数、中位数和平均数分别为()A.5,6,6 B.2,6,6C.5,5,6 D.5,6,56.某企业1~6月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是()A.1~6月份利润的众数是130万元B.1~6月份利润的中位数是130万元C.1~6月份利润的平均数是130万元D.1~6月份利润的最大值与最小值的差是40万元7.学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如下表:下列说法正确的是()A.该班级所售图书的总收入是226元B.在该班级所售图书售价组成的一组数据中,中位数是4C.在该班级所售图书售价组成的一组数据中,众数是15D.在该班级所售图书售价组成的一组数据中,方差是28.一组数据2,3,5,x,7,4,6,9的众数是4,则这组数据的中位数是()A.4 B.92C.5 D.11 29.在一次“我的青春,我的梦”演讲比赛中,五名选手的成绩及部分统计信息如下表,其中被遮住的两个数据依次是()A.88, 2 B.88,2C.90, 2 D.90,2二、填空题(共4个小题,每小题5分,共20分)10.某校规定学生的数学学期综合成绩是由平时、期中和期末三项成绩按3∶3∶4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他的数学学期综合成绩是____分.11.东营市某中学为积极响应“书香东营,全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,学生阅读时间的中位数是____小时.12.下表是甲、乙两名同学近五次数学测试(满分为100分)的成绩统计表:根据上表数据,成绩较好且比较稳定的同学是____.13.某单位举办了英语培训,100名职工在一个月内参加英语培训的次数如图所示.这个月职工参加英语培训次数的众数为____次,中位数是____次.三、解答题(共3个小题,共44分)14.(14分)某单位欲从内部公开选拔一名管理人员,对甲、乙、丙三名候选人进行了笔试、面试两项测试,三人的测试成绩如下表所示:笔试758090面试937068根据录用程序,组织400名职工对三人采用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.民主评议得票率(1)请算出三人的民主评议得分;(2)根据实际需要,单位将笔试、面试、民主评议三项测试得分按5∶3∶2的比例确定个人成绩(精确到0.1分),那么谁将被录用?15.(15分)[2019·天津]某校为了解初中学生每天在校体育活动时间(单位:h),随机调查了该校的部分初中学生,根据调查结果绘制出如下的统计图1和图2,请根据相关信息解答下列问题:(1)本次接受调查的初中学生人数为___,图1中的m的值为____;(2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(3)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1 h的学生人数.16.(15分)洋洋八年级上学期的数学成绩如下表所示:(1)计算洋洋该学期的数学平时平均成绩;(2)如果学期的总评成绩是根据如图所示的权重计算,请计算出洋洋该学期的数学总评成绩.B卷(共50分)四、填空题(共4个小题,每小题5分,共20分)17.一组数据:2.2,3.3,4.4,11.1,a.其中整数a是这组数据中的中位数,则这组数据的平均数是____.18.某地区前两周从星期一到星期五各天的最低气温依次是(单位:℃)x1,x2,x3,x4,x5和x1+1,x2+2,x3+3,x4+4,x5+5.若第一周这五天的平均最低气温为7 ℃,则第二周这五天的平均最低气温为_________.19.某公司员工的月工资统计如下:则该公司员工月工资的平均数为________________元,中位数为__________元,众数为__________元.20.一组数据4,5,6,x的众数与中位数相等,则这组数据的方差是____.五、解答题(共2个小题,共30分)21.(15分)为了调查甲、乙两台包装机分装标准质量为400 g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395乙:403,404,396,399,402,402,405,397,402,398整理数据:表一分析数据:表二得出结论:包装机分装情况比较好的是____(填“甲”或“乙”),请说明理由.解:整理数据:表一分析数据:将甲组数据重新排列为:393,394,395,400,400,400,406,408,409,410,∴甲组数据的中位数为400;乙组数据中402出现次数最多,有3次,∴乙组数据的众数为402.表二得出结论:由表二知,乙包装机分装的奶粉质量的方差小,分装质量比较稳定,所以包装机分装情况比较好的是乙.22.(15分)在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查,其中A,B两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值),图中,从左往右第四组的成绩如下:A小区50名居民成绩的频数直方图【信息二】A,B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):AB根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数;(2)请估计A小区500名居民成绩能超过平均数的人数;(3)请尽量从多个角度,选择合适的统计量分析A,B两小区参加测试的居民掌握垃圾分类知识的情况.参考答案1. D【解析】 把六名学生的数学成绩从小到大排列为82,96,102,108,108,110,∴众数是108,中位数为102+1082=105,平均数为 82+96+102+108+108+1106=101, 方差为16[(82-101)2+(96-101)2+(102-101)2+(108-101)2+(108-101)2+(110-101)2]≈94.3≠93.2. B【解析】 由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.11个不同的成绩按从小到大排序后,成绩的中位数为第6个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故本题选B.3. C 4. D 5. A【解析】 因为投中5次的人数最多,故众数为5;把10名队员投中的次数按由小到大的顺序排列为3,5,5,5,6,6,7,7,8,8,中间的两个数的平均数为6,故中位数为6;3×1+5×3+6×2+7×2+8×210=6,故平均数为6. 6. D【解析】 1~6月份利润的众数是120万元,故A 错误;1~6月份利润的中位数是125万元,故B错误;1~6月份利润的平均数约是128万元,故C错误;1~6月份利润的极差是40万元,故D正确.故选D.7. A【解析】 该班级所售图书的总收入为3×14+4×11+5×10+6×15=226(元),所以A 选项正确;将售价按由小到大的顺序排列,第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B 选项错误;这组数据的众数为6,所以C 选项错误;这组数据的平均数为x =22650=4.52,所以这组数据的方差s 2=150[14×(3-4.52)2+11×(4-4.52)2+10×(5-4.52)2+15×(6-4.52)2]≈1.4,所以D 选项错误.8. B【解析】 本题考查了众数、中位数的概念与中位数的求法,由众数是4,知x =4,把数据重排为2,3,4,4,5,6,7,9,中间两个数的平均数为92,就是这组数据的中位数,因此本题选B.9. B【解析】 根据题意得:90×5-(91+89+92+90)=88(分),则丙的得分是88分,方差=15[(91-90)2+(89-90)2+(88-90)2+(92-90)2+(90-90)2]=2.10. 8811.1【解析】∵学生有52人,把52人的阅读时间从小到大排列后,处于最中间的两个时间数是1和1,∴学生阅读时间的中位数是1小时.12.乙【解析】x-甲=15×(90+88+92+94+91)=91,x-乙=15×(90+91+93+94+92)=92,s2甲=15×[(90-91)2+(88-91)2+(92-91)2+(94-91)2+(91-91)2]=4,s2乙=15×[(90-92)2+(91-92)2+(93-92)2+(94-92)2+(92-92)2]=2,因为x-乙>x-甲,s乙<s甲.所以乙的成绩较好且比较稳定.13.6 614.解:(1)甲得分:400×25%=100(分).乙得分:400×40%=160(分).丙得分:400×35%=140(分).(2)将笔试、面试、民主评议三项测试得分按5∶3∶2的比例确定个人成绩,则甲得分:(5×75+3×93+2×100)÷(5+3+2)=85.4(分).乙得分:(5×80+3×70+2×160)÷(5+3+2)=93(分).丙得分:(5×90+3×68+2×140)÷(5+3+2)=93.4(分).则丙将被录用.15.40 25解:(2)平均数为1.5 h ,众数为1.5 h ,中位数为1.5 h . (3)∵在统计的这组每天在校体育活动时间的样本数据中,每天在校体育活动时间大于1 h 的学生人数占90%,∴估计该校800名初中学生中,每天在校体育活动时间大于1 h 的人数为800×90%=720(人).16.解:(1)洋洋该学期的数学平时平均成绩为 (106+102+115+109)÷4=108(分). (2)洋洋该学期的数学总评成绩为108×10%+112×30%+110×60%=110.4(分). 17. 5【解析】 ∵整数a 是这组数据中的中位数,∴a =4, ∴这组数据的平均数=15(2.2+3.3+4.4+4+11.1)=5. 18. 10 ℃【解析】 由题意得x 1+x 2+x 3+x 4+x 55=7(℃), 则x 1+1+x 2+2+x 3+3+x 4+4+x 5+55=7+3=10(℃). 19. 2 000 1 000 1 000 20.12【解析】 若众数为4,则数据为4,4,5,6,此时中位数为4.5,不符合题意;若众数为5,则这组数据为4,5,5,6,中位数为5,符合题意,此时平均数为4+5+5+64=5,方差为14[(4-5)2+(5-5)2+(5-5)2+(6-5)2]=12;若众数为6,则这组数据为4,5,6,6,中位数为5.5,不符合题意.21.乙 22. 75 解:(1)75分. (2)2450×500=240(人).(3)从平均数、中位数、众数、方差等方面,选择合适的统计量进行分析,例如:①从平均数看,两个小区居民对于垃圾分类知识掌握情况的平均水平相同;②从方差看,B 小区居民对垃圾分类知识的掌握情况比A 小区稳定;③从中位数看,B 小区至少有一半的居民成绩高于平均数.1、天下兴亡,匹夫有责。
(常考题)北师大版初中数学八年级数学上册第六单元《数据的分析》检测(包含答案解析)(1)
一、选择题1.小明随机抽查了九年级(2)班9位同学一周写数学作业的时间,分别为6,4,6,5,6,7,6,6,8(单位:h ).则估计本班大多数同学一周写数学作业的时间约为( ) A .4hB .5hC .6hD .7h2.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9环,方差分别是S 甲2=0.61,S 乙2=0.52,S 丙2=0.53,S 丁2=0.42,则射击成绩比较稳定的是( ) A .甲B .乙C .丙D .丁3.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个得分.若去掉一个最低分,平均分为x ;去掉一个最高分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则( ) A .y z x >>B .x z y >>C .y x z >>D .z y x >>4.抽样调查了某年级30名女生所穿鞋子的尺码,数据如下(单位:码)A .34,35B .34.5,35C .35,35D .35,375.某班七个兴趣小组人数分别为 4,4,5,5,x ,6,7.已知这组数据的平均数是 5?,则这组数据的众数和中位数分别是( ) A .4,4 B .4,5 C .5,4D .5,56.在一次中小学田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是( ) A .1.70,1.65B .1.70,1.70C .1.65,1.70D .3,47.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:则关于这些同学的每天锻炼时间,下列说法错误的是( ) A .众数是60B .平均数是21C .抽查了10个同学D .中位数是508.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是()A.30和 20 B.30和25 C.30和22.5 D.30和17.59.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表:投中次数35678人数13222则这些队员投中次数的众数、中位数和平均数分别为()A.5,6,6 B.2,6,6 C.5,5,6 D.5,6,510.某青年排球队12名队员的年龄情况如下表所示,则这12名队员的平均年龄是()年龄1819202122人数14322A.18岁B.19岁C.20岁D.21岁11.在只有15人参加的演讲比赛中,参赛选手的成绩各不相同,若选手要想知道自己是否进入前8名,只需要了解自己的成绩以及全部成绩的( )A.平均数B.中位数C.众数D.以上都不对12.某校5个环保小队参加植树活动,平均每组植树10棵,已知第一、二、三、五组分别植树9棵、12棵、9棵、8棵,则第四小组植树()A.7棵B.9棵C.10棵D.12棵二、填空题13.某校八年级(1)班共有人数分别为4、5、5、5、5、4六个学习小组,某次数学测试,六个学习小组的平均成绩依次是70分、72分、70分、75分、70分、72分、那么以此计算此班这次数学测试的全班平均成绩的计算式子是__________________.cm名女生的平均身14.某学校八年级3班有50名同学,30名男生的平均身高为170,20高160cm,则全班学生的平均身高是__________cm.15.马拉松赛选手分甲、乙两组运动员进行了艰苦的训练,他们在相同条件下各10次比赛,成绩的平均数相同,方差分别为0.25,0.21,则成绩较为稳定的是_________(选填“甲”或“乙)16.若一组数据6,x,2,3,4的平均数是4,则这组数据的方差为______.17.我市某中学举行“校园好声音”歌手大赛,甲、乙两班根据初赛成绩各选出5名选手组成甲班代表队和乙班代表队参加学校决赛,两个队各选出的5名选手的决赛成绩(满分100)如图所示:根据图示信息,整理分析数据如表:平均数(分)中位数(分)众数(分)方差甲班a85c70乙班85b100160号选手的预赛成绩是分,乙班号选手的预赛成绩是分,班的预赛成绩更平衡,更稳定;(2)求出表格中a=,b=,c=;(3)学校决定在甲、乙两班中选取预赛成绩较好的5人参加该活动的区级比赛,这5人预赛成绩的平均分数为.18.甲、乙两地9月份连续五天的日平均气温统计如下表(单位:C︒)甲地气温2224282523乙地气温2425252424则甲、乙两地这5天日平均气温的方差大小关系为:s甲_____________s乙.(填“>”“<”或“=”)19.已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是1,则数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是______.20.某班6名同学参加体能测试的成绩(单位:分)分别为:75,95,75,75,80,80,则这组数据的众数是_______.三、解答题21.某校为了培养学生的劳动观念和能力,鼓励学生积极承担家务劳动.政教处想了解七年级学生周末参与家务劳动的情况,在七年级随机抽取了18名男生和18名女生,对他们周末参与家务劳动的时间进行调查,并收集到以下数据(单位:分钟)男生:28,30,32,46,68,39,80,70,66,57,70,95,100,58,69,88,99,105女生:36,48,78,99,56,62,35,109,29,88,88,69,73,55,90,98,69,72整理数据,得到如下统计表:时间x 0x 30 3060x < 6090x < 90x <男生 2 a b 4 女生1593分析数据:根据以上数据,得到以下各种统计量.平均数 中位数 众数方差 男生 66.7 c 70617.3女生 69.770.569和88 547.2a =,b =________,c =_________; (2)根据以上信息,政教处老师认为:从时长来看,七年级女生周末参与家务劳动的情况比男生好.你是否同意老师的判断?请结合两种统计量分析并说明理由.22.某地教育局为了解该地八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图:请根据图中提供的信息,回答下列问题:(1)a =_______,并写出该扇形所对圆心角的度数为______,请补全条形统计图. (2)在这次抽样调查中,众数为________,中位数为_________.(3)如果该县共有八年级学生2500人,请你估计“活动时间不少于7天”的学生人数大约有多少人?23.小强帮助母亲预算家庭一年煤气开支,他连续7个月估计了每个月的煤气使用数据,并记录如表:日期 6月1日 7月1日 8月1日 9月1日 10月1日 11月1日 12月1日 使用量(方)9.5110.129.479.6310.1210.1211.03(2)若煤气每方3元,估计小强家一年的煤气费为多少元.24.某校七年级举行一分钟投篮比赛,要求每班选出10名学生参赛,在规定时间每人进球数不低于8个为优秀,冠、亚军在甲、乙两班中产生.图1、图2分别是甲、乙两个班的10名学生比赛的数据统计图(单位:个)根据以上信息,解答下列问题:(1)将下面的《1分钟投篮测试成绩统计表》补充完整;平均数中位数方差优秀率甲班 6.5 3.4530%乙班6 4.6525.为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)补全条形统计图;(2)学生参加户外活动时间的众数和中位数各是多少?(3)本次调查中学生参加户外活动的平均时间是否符合要求?为什么?26.某学校开展了“远离新冠珍爱生命”的防“新冠”安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100).下面给出了部分信息:七年级10名学生的竞赛成绩是:80,86,99,96,90,99,100,82,89,99;抽取的八年级10名学生的竞赛成绩没有低于80分的,且在C组中的数据是:94,94,90.根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)计算d的值,并判断七、八年级中哪个年级学生的竞赛成绩更稳定?请说明理由;(3)该中学七、八年级共2160人参加了此次竞赛活动,估计参加此次竞赛活动获得成绩优秀(x≥95)的学生人数是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求平均数即可.【详解】解:这9位同学一周写数学作业的时间平均数为64656766869++++++++=(小时);故选:C.【点睛】本题考查了平均数的计算,解题关键是理解样本可以估计总体,会熟练的运用平均数公式计算.2.D解析:D【分析】直接利用方差的意义求解即可.【详解】解:∵S甲2=0.61,S乙2=0.52,S丙2=0.53,S丁2=0.42,∴S丁2<S乙2<S丙2<S甲2,∴射击成绩比较稳定的是丁,故选:D.【点睛】本题考查方差的意义,理解和掌握方差是描述数据波动情况的量,方差越小,波动越小是解题关键.3.B解析:B【分析】根据题意,可以判断x、y、z的大小关系,从而可以解答本题.【详解】解:由题意可得,去掉一个最低分,平均分为x,此时x的值最大;若去掉一个最高分,平均分为y,则此时的y一定小于同时去掉一个最高分和一个最低分后的平均分为z,>>,故x z y故选:B.【点睛】本题考查算术平均数,解答本题的关键是明确算术平均数的含义.4.A解析:A【分析】根据众数与中位数的意义分别进行解答即可.【详解】解:∵共有30双女生所穿的鞋子的尺码,∴中位数是第15、16个数的平均数,这组数据的第15、16个数都是34,∴这组数据的中位数是34;35出现了12次,出现的次数最多,则这组数据的众数是35;故选:A.【点睛】此题考查了众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.5.B解析:B【分析】根据众数、算术平均数、中位数的概念,结合题意进行求解.【详解】解:∵这组数据的平均数是5,∴4455677x++++++=5,解得:x=4,这组数据按照从小到大的顺序排列为:4,4,4,5,5,6,7,则众数为:4,中位数为:5.故选:B.【点睛】本题考查了众数、算术平均数、中位数的知识:一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.A解析:A【分析】根据一组数据中出现次数最多的数据叫做众数,及中位数的定义,结合所给数据即可得出答案.【详解】将数据从小到大排列为:1.50,1.60,1.60,1.65,1.65,1.65,1.65.1.70,1.70,1.70,1.75,1.75,1.75,1.80,1.80,众数为:1.65;中位数为:1.70.故选:A.【点睛】本题考查了众数及中位数的知识,解答本题的关键是掌握众数及中位数的定义,在求中位数的时候一定要将数据重新排列.7.B解析:B【分析】根据众数、中位数和平均数的定义分别对每一项进行分析即可.【详解】解:A、60出现了4次,出现的次数最多,则众数是60,故A选项说法正确;B、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B选项说法错误;C、调查的户数是2+3+4+1=10,故C选项说法正确;D、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D选项说法正确;故选B.【点睛】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.8.C解析:C【分析】将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得.【详解】将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30,所以该组数据的众数为30、中位数为20252+=22.5,故选C.【点睛】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.9.A解析:A【分析】根据众数、中位数、平均数的概念以及求解方法逐一进行求解即可.【详解】在这一组数据中5是出现次数最多的,故众数是5;处于中间位置的两个数的平均数是(66)26+÷=,那么由中位数的定义可知,这组数据的中位数是6;平均数是:(353627282)106+⨯+⨯+⨯+⨯÷=,所以答案为:5、6、6,故选A.【点睛】本题考查了加权平均数、中位数和众数,熟练掌握相关定义以及求解方法是解题的关键.①给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.②给定一组数据,出现次数最多的那个数,称为这组数据的众数.10.C解析:C【分析】加权平均数:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则(x1w1+x2w2+…+x n w n)÷(w1+w2+…+w n)叫做这n个数的加权平均数.依此解答即可求解.【详解】(18+4×19+3×20+2×21+2×22)÷12=(18+76+60+42+44)÷12=240÷12=20(岁).故这12名队员的平均年龄是20岁.故选:C.【点睛】考查了加权平均数,正确理解加权平均数的概念是解题的关键.11.B解析:B【分析】此题是中位数在生活中的运用,知道自己的成绩以及全部成绩的中位数就可知道自己是否进入前8名.【详解】15名参赛选手的成绩各不相同,第8名的成绩就是这组数据的中位数,所以选手知道自己的成绩和中位数就可知道自己是否进入前8名.故选B.【点睛】理解平均数,中位数,众数的意义.12.D解析:D【分析】根据平均数乘以5得到总数,减去其他四组的数量即可得到答案.【详解】5109129812⨯----=(棵)故选:D.【点睛】此题考查利用平均数求总数,理解平均数的意义,正确计算是解题的关键.二、填空题13.【分析】根据加权平均数的计算公式进行计算即可【详解】解:由题意知此班这次数学测试的全班平均成绩的计算式子是故答案为:【点睛】本题考查了加权平均数的计算方法关键是熟练把握加权平均数的定义解析:704725705755705724455554⨯+⨯+⨯+⨯+⨯+⨯+++++【分析】根据加权平均数的计算公式进行计算即可.【详解】 解:由题意知,此班这次数学测试的全班平均成绩的计算式子是704725705755705724455554⨯+⨯+⨯+⨯+⨯+⨯+++++, 故答案为:704725705755705724455554⨯+⨯+⨯+⨯+⨯+⨯+++++. 【点睛】本题考查了加权平均数的计算方法.关键是熟练把握加权平均数的定义. 14.【分析】只要运用求平均数公式:即可求得全班学生的平均身高【详解】全班学生的平均身高是:故答案为:166【点睛】本题考查的是样本平均数的求法熟记公式是解决本题的关键解析:166【分析】 只要运用求平均数公式:12n x n x x x ++⋯+=即可求得全班学生的平均身高. 【详解】 全班学生的平均身高是:()301702016016650x cm ⨯+⨯==. 故答案为:166.【点睛】本题考查的是样本平均数的求法.熟记公式是解决本题的关键. 15.乙【分析】根据方差的意义判断即可方差是用来衡量一组数据波动大小的量方差越小表明这组数据分布比较集中各数据偏离平均数越小即波动越小数据越稳定【详解】∵甲乙的方差分别为025021∴成绩比较稳定的是乙故 解析:乙【分析】根据方差的意义判断即可.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵甲乙的方差分别为0.25,0.21∴成绩比较稳定的是乙故答案为:乙【点睛】运用了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.16.2【分析】先由平均数的公式计算出x 的值再根据方差的公式计算即可【详解】解:∵数据6x234的平均数是4∴(6+x+2+3+4)÷5=4解得:x=5∴这组数据的方差是(6-4)2+(5-4)2+(2-解析:2【分析】先由平均数的公式计算出x 的值,再根据方差的公式计算即可.【详解】解:∵数据6,x ,2,3,4的平均数是4,∴(6+x+2+3+4)÷5=4,解得:x=5,∴这组数据的方差是15[(6-4)2+(5-4)2+(2-4)2+(3-4)2+(4-4))2]=2; 故答案为:2.【点睛】本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数和方差,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数. 17.(1)80;100;甲;(2)858085;(3)94分;【分析】(1)根据树状图和表格分析即可;(2)根据中位数众数平均数的计算公式计算即可;(3)先判断出好的5人的成绩在进行计算即可;【详解】(解析:(1)80;100;甲;(2)85,80,85;(3)94分;【分析】(1)根据树状图和表格分析即可;(2)根据中位数、众数、平均数的计算公式计算即可;(3)先判断出好的5人的成绩,在进行计算即可;【详解】(1)根据树状图可知甲班2号选手的成绩为80分,乙班3号选手的成绩为100分; ∵甲班方差小于乙班方差,∴甲班成绩更稳定;故答案是:80;100;甲;(2)甲的平均分为()75808585100585÷++++=分,乙的数据从小到大排列:70,75,80,100,100,∴乙的中位数是80;由数据可知甲的众数是85分;∴85a ,80b =,85c =;(3)这5人的分数为:100,100,100,85,85,∴()1003852594⨯+⨯÷=分;故答案是94分;【点睛】本题主要考查了数据分析的考查,结合中位数、众数、平均数的计算是解题的关键. 18.【分析】先求出甲乙地的平均气温再根据方差公式求出甲和乙的方差然后进行比较即可得出答案【详解】解:甲地的平均气温:;乙地的平均气温:;∵甲地的方差是:;乙地的方差是:;∴S 甲2>S 乙2;故答案为:>【 解析:>【分析】先求出甲、乙地的平均气温,再根据方差公式求出甲和乙的方差,然后进行比较,即可得出答案.【详解】 解:甲地的平均气温:1(2224282523)24.45C ︒++++=; 乙地的平均气温:1(2425252424)24.45C ︒++++=;∵甲地的方差是:222221(2224.4)(2424.4)(2824.4)(2524.4)(2324.4) 4.245⎡⎤-+-+-+-+-=⎣⎦; 乙地的方差是:222221(2424.4)(2524.4)(2524.4)(2424.4)(2424.4)0.245⎡⎤-+-+-+-+-=⎣⎦; ∴S 甲2>S 乙2;故答案为:>.【点睛】本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差2222121()()()n S x x x x x x n⎡⎤=-+-+⋯+-⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 19.9【分析】先求出数据的平均数再根据平均数公式与方差公式即可求解【详解】解:∵数据x1x2x3x4x5的平均数是2∴x1+x2+x3+x4+x5=2×5=10∴∵数据x1x2x3x4x5的方差是1∴(解析:9【分析】先求出数据的平均数,再根据平均数公式与方差公式即可求解.【详解】解:∵数据x 1,x 2,x 3,x 4,x 5的平均数是2,∴x 1+x 2+x 3+x 4+x 5=2×5=10, ∴12345323232323231010455x x x x x -+-+-+-+-⨯-==, ∵数据x 1,x 2,x 3,x 4,x 5的方差是1, ∴15[(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2+(x 5-2)2]=1,∴15[(3x1-2-4)2+(3x2-2-4)2+(3x3-2-4)2+(3x4-2-4)2+(3x5-2-4)2]=15[9(x1-2)2+9(x2-2)2+9(x3-2)2+9(x4-2)2+9(x5-2)2]=9×1=9,故答案为:9.【点睛】本题考查了平均数的计算公式和方差的定义,熟练运用公式是本题的关键.20.75分【分析】利用众数的定义求解找出数据中出现次数最多的数即可【详解】解:数据75出现了三次次数最多故75分为众数故答案为:75分【点睛】考查了众数的定义一组数据中出现次数最多的数据叫做众数它反映了解析:75分【分析】利用众数的定义求解.找出数据中出现次数最多的数即可.【详解】解:数据75出现了三次,次数最多,故75分为众数.故答案为:75分.【点睛】考查了众数的定义,一组数据中出现次数最多的数据叫做众数.它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.三、解答题21.(1)5,7,68.5;(2)同意老师的判断,理由见解析.【分析】(1)利用唱票的方法得到a、b的值,然后把18个数据按从小到大排列,利用中位数的定义确定c的值;(2)可以通过比较平均数和方差的大小判断女生周末参与家务劳动的情况比男生好.【详解】解:(1)男生在30<x≤60范围内的时间有:32,39,46,57,58,所以a=5;男生在60<x≤90范围内的时间有:66,68,69,70,70,80,88,所以b=7;按从小到大排列为28,30,32,39,46,57,58,66,68,69,70,70,80,88,95,99,100,105,最中间的两个数为68,69,所以c=68692+=68.5;故答案为:5,7,68.5;(2)同意老师的判断.理由如下:比较统计量可知,女生的平均数较大,女生的中位数较大,女生的方差较小.以上分析说明,女生周末参与家务劳动的时间更多,且数据的稳定性更好.所以从时长来看,七年级女生周末参与家务劳动的情况比男生好.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.22.(1)10%,36°;(2)5;6;(3)1000人【分析】(1)根据各部分所占的百分比的和等于1列式计算即可求出a,再用360°乘以所占的百分比求出所对圆心角的度数,然后用被抽查的学生人数乘以8天所占百分比求出8天的人数,补全条形统计图即可;(2)用众数和中位数的定义解答;(3)用总人数乘以“活动时间不少于7天”的百分比,计算即可得解.【详解】解:(1)a=1-(40%+20%+25%+5%)=1-90%=10%,所对的圆心角度数=360°×10%=36°,被抽查的学生人数:240÷40%=600人,8天的人数:600×10%=60人,补全统计图如图所示:故答案为:10%,36°;(2)参加社会实践活动5天的人数最多,所以,众数是5天,600人中,按照参加社会实践活动的天数从少到多排列,第300人和301人都是6天,所以,中位数是6天;故答案为:5;6;(3)2500×(25%+10%+5%)=2500×40%=1000(人).故“活动时间不少于7天”的学生人数大约有1000人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,本题也考查了中位数、众数的定义以及用样本估计总体的思想.23.(1)这7个月每月煤气使用量的众数为10.12方,中位数为10.12方,平均数为10方;(2)估计小强家一年的煤气费为360元.【分析】(1)将数据重新排列,再根据众数、中位数和平均数的定义求解即可;(2)用每方的费用乘以12个月,再乘以平均每月的使用量,据此可得答案.【详解】解:(1)将这7个数据重新排列为:9.47,9.51,9.63,10.12,10.12,10.12,11.03, 则这7个月每月煤气使用量的众数为10.12方,中位数为10.12方,平均数为9.479.519.6310.1210.1210.1211.037++++++=10(方); (2)估计小强家一年的煤气费为3×12×10=360(元).【点睛】本题考查了众数、中位数、平均数、用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的.24.(1)见解析;(2)甲班,理由见解析【分析】(1)根据表格中的数据,可以分别求得甲班的中位数和乙班的平均数、优秀率;(2)先说明把冠军奖发给哪个班,再根据表格中的数据说明理由即可,本题是一道开放性题目,说的只要合理即可.【详解】解:(1)由图可得,甲班的中位数是(6+7)÷2=6.5,乙班的平均数是:(3+4+5+6+6+6+7+9+9+10)÷10=6.5,优秀率是:310×100%=30%, 填表如下: 平均数 中位数 方差 优秀率甲班 6.56.5 3.45 30% 乙班6.5 6 4.65 30% 理由:由表格可知,甲乙两班的平均数一样,优秀率一样,从方差看,甲班方差小,波动小,学生发挥稳定,故选甲班为冠军.【点睛】本题考查条形统计图、算术平均数、中位数、方差,解答本题的关键是明确题意,利用数形结合的思想解答.25.(1)答案见解析;(2)众数是1小时,中位数为1小时;(3)符合要求,理由见解析.【分析】(1)根据锻炼时间为1小时的人数及其百分比求得总人数,再乘以0.5小时的百分比可得其人数,即可补全图形;(2)根据众数和中位数的定义解答可得;(3)求出本次调查中学生参加户外活动的平均时间即可判断.【详解】(1)被调查的学生总数为32÷40%=80(人),∴0.5小时的人数为80×20%=16(人),补全图形如下:(2)户外活动时间的众数是1小时,达到32人,中位数为第40、41个数据的平均数,即1112+=(小时); (3)本次调查中学生参加户外活动的平均时间是0.516132 1.520212 1.17580⨯+⨯+⨯+⨯=(小时), ∴符合要求.【点睛】 本题考查频数分布直方图、扇形统计图、众数和中位数的知识,解答本题的关键在于掌握众数和中位数的概念,以及从频数分布直方图和扇形统计图中获取相关信息并加以运用. 26.(1)a =40,b =94,c =99;(2)52,八年级的成绩较稳定,见解析;(3)估计参加此次竞赛活动获得成绩优秀的学生有972人【分析】(1)根据扇形统计图的制作方法可求出“D 组”所占的百分比,即可求出a 的值,根据中位数、众数的意义可求出b 、c 的值;(2)先求出七年级的方差,再根据方差进行分析得出答案;(3)求出样本中的优秀率,进而得到总体的优秀率,再求出总体中的优秀人数.【详解】解:(1)∵八年级成绩在“C 组”的有3人,占3÷10=30%,∴“D 组”所占的百分比为1﹣10%﹣20%﹣30%=40%,∴a =40,∵八年级10名同学成绩从小到大排列后,处在中间位置的两个数都是94,∴中位数是94,即b =94,∵七年级10名学生成绩出现次数最多的是99,∴众数是99,即c =99 ,∴a =40,b =94,c =99;(2)()()()2222180-9286-92399-9210S ⎡⎤=⨯+++⨯⎣⎦七 =52 ,即:d=52, ∵50.4<52,∴八年级的成绩较稳定;(3)抽取的10名八年级学生中,成绩优秀的有 10×40%=4(人),抽取的10名七年级学生中,成绩优秀的有5人,∴抽取的20名学生中,成绩优秀的共有9人∴2160×920=972(人) 答:估计参加此次竞赛活动获得成绩优秀的学生有972人.【点睛】本题考查扇形统计图、中位数、众数、平均数、方差以及样本估计总体,掌握平均数、中位数、众数、方差的意义和计算方法是正确解答的关键.。
2020年北师大版八年级数学下册第6章平行四边形单元综合评价试卷含解析
2020年北师大版八年级数学下册第6章平行四边形单元综合评价试卷含解析姓名座号题号一二三总分得分考后反思(我思我进步):一.选择题(共10小题)1.在平行四边形ABCD中,下列结论一定成立的是()A.AC⊥BD B.∠A+∠B=180°C.AB=AD D.∠B=∠C2.等腰梯形两底之差为8,高为4,则等腰梯形的钝角度数是()A.120°B.135°C.145°D.150°3.用两个全等的直角三角形,拼下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形.其中不一定能拼成的图形是()A.①②③B.②③C.③④⑤D.③④⑥4.在▱ABCD中,对角线AC、BD相交于点O.若AC=16,BD=10,则AD的长度的取值范围()A.AD>3B.3<AD<13C.AD<3D.AD>135.在四边形ABCD中,对角线AC和BD相交于点O,AB=CD,添加下列条件后能判定这个四边形是平行四边形的是()A.AD∥BC B.AO=CO C.∠ABC=∠ADC D.∠BAC=∠DCA6.如图,已知四边形ABCD的面积为8cm2,AB∥CD,AB=CD,E是AB的中点,那么△AEC的面积是()A.4cm2B.3cm2C.2cm2D.1cm27.如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=18°,则∠PFE的度数是()A.9°B.18°C.27°D.36°8.过一个多边形的一个顶点的所有对角线把多边形分成4个三角形,则这个多边形的边数为()A.3B.4C.5D.69.已知多边形的每个内角都是108°,则这个多边形是()A.五边形B.七边形C.九边形D.不能确定10.若n边形的内角和等于外角和的4倍,则边数n为()A.10B.8C.7D.5二.填空题(共8小题)11.一个多边形,除了一个内角外,其余各角的和为2750°,则内角和是.12.小明计算一个多边形的内角和时误把一个外角加进去了,得其和为2260°.则这个多边形的边数为.13.如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长.14.在△ABC中,BC=a.作BC边的三等分点C1,使得CC1:BC1=1:2,过点C1作AC的平行线交AB于点A1,过点A1作BC的平行线交AC于点D1,作BC1边的三等分点C2,使得C1C2:BC2=1:2,过点C2作AC的平行线交AB于点A2,过点A2作BC的平行线交A1C1于点D2;如此进行下去,则线段A n D n的长度为.15.如图,在平面直角坐标系中,有一Rt△ABC,∠C=90°且A(﹣1,3)、B(﹣3,﹣1)、C (﹣3,3),已知△A1AC1是由△ABC旋转得到的.若点Q在x轴上,点P在直线AB上,要使以Q、P、A1、C1为顶点的四边形是平行四边形,满足条件的点Q的坐标为.16.以A、B、C三点为平行四边形的三个顶点作形状不同的平行四边形,一共可以作.17.如图,在等腰梯形ABCD中,AD∥BC,AD=6cm,BC=8cm,∠B=60°,则AB=cm.18.如图,在▱ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=1.5,则四边形BCEF的周长为.三.解答题(共8小题)19.在△ABC中三边上的中线分别为AD,BE,CF,求证:BE+CF>AD.20.如图,在等腰梯形ABCD中,AD∥BC,M是AD的中点,求证:BM=MC.21.在▱ABCD中,E、F是DB上的两点,且AE∥CF,若∠AEB=115°,∠ADB=35°,求∠BCF 的度数.22.已知BE、CF分别为△ABC中∠B、∠C的平分线,AM⊥BE于M,AN⊥CF于N.求证:MN ∥BC.23.如图,在四边形ABCD中,∠A+∠ABC=180°,BD⊥CD于点D,EF⊥CD于点F,则∠1=∠2吗?请说明理由?24.在平行四边形ABCD中,若BE平分∠ABC,CF平分∠BCD,交AD于点E,F,BC=9cm,EF =1cm,求AB的长.(请画出图形并求解)25.如图所示.在▱ABCD中分别以BC、AB为边画等边三角形BCF、ABE,连接DE、DF.求证:△DEF是等边三角形.26.如图,已知四边形ABCD,点E在AD上,连接CE并延长与BA的延长线交于点F,且∠F=∠DCF.(1)若∠BCD=4∠B,求∠B的度数.(2)若∠B=∠D,判断AD与BC的位置关系,并说明理由.参考答案与试题解析一.选择题(共10小题)1.解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠A=∠C,∠B=∠D,AB∥CD,AD∥BC,AC与BD互相平分,∴∠A+∠B=180°,故选:B.2.解:则AE∥DF,∠AEF=90°,∵AD∥BC,∴四边形AEFD是矩形,∴AE=DF=4,AD=EF,∵AE⊥BC,DF⊥BC,∴∠AEB=∠DFC=90°,在Rt△AEB和Rt△DFC中,,∴Rt△AEB≌Rt△DFC(HL),∴BE=CF=(BC﹣EF)=(BC﹣AD)=×8=4,∴BE=AE=4,∵∠AEB=90°,∴∠B=∠BAE=45°,∵AD∥BC,∴∠DAB=180°﹣45°=135°,同理∠ADC=135°.故选:B.3.解:由于菱形和正方形中有都四边相等的特点,而直角三角形中不一定有两边相等,故两个全等的直角三角形不一定能拼成菱形和正方形;由于等边三角形三边相等,故两个全等的直角三角形不一定能拼成菱形和正方形;平行四边形,矩形,等腰三角形可以拼成.如图所示:故选:D .4.解:∵在▱ABCD 中,对角线AC 、BD 相交于点O ,AC =16,BD =10,∴AO =8,DO =5,∴AD 的长度的取值范围是:3<AD <13.故选:B .5.解:A 、不能判断四边形是平行四边形,四边形可能是等腰梯形,故本选项不符合题意; B 、无法判定四边形是平行四边形,故本选项不符合题意;C 、无法判定四边形是平行四边形,故本选项不符合题意;D 、由∠BAC =∠DCA 推出AB ∥CD ,结合AB =CD ,可以推出四边形是平行四边形; 故选:D .6.解:∵AB ∥CD ,AB =CD ,∴四边形ABCD 是平行四边形,∴S △ADC =S △ABC =×8=4,∵E 是AB 的中点,∴S △AEC =S △ABC =×4=2cm 2,故选:C .7.解:∵在四边形ABCD 中,P 是对角线BD 的中点,E ,F 分别是AB ,CD 的中点, ∴FP ,PE 分别是△CDB 与△DAB 的中位线,∴PF =BC ,PE =AD ,∵AD =BC ,∴PF =PE ,故△EPF 是等腰三角形.∵∠PEF =18°,∴∠PEF=∠PFE=18°.故选:B.8.解:这个多边形的边数是4+2=6.故选:D.9.解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选:A.10.解:设这个多边形的边数为n,则依题意可得:(n﹣2)×180°=360°×4,解得n=10.故选:A.二.填空题(共8小题)11.解:设2750<(x﹣2)•180<2750+180,解得17<x<18,因而多边形的边数是18,则内角和为:(18﹣2)×180°=2880°.故答案为:2880°.12.解:设多边形的边数为n,多加的外角度数为α,则(n﹣2)•180°=2260°﹣α,∵2260°=12×180°+100°,内角和应是180°的倍数,∴同学多加的一个外角为100°,∴这是12+2=14边形的内角和.故答案为:14.13.解:∵△ABC的周长是26,BC=10,∴AB+AC=26﹣10=16,∵∠ABC的平分线垂直于AE,∴在△ABQ和△EBQ中,,∴△ABQ≌△EBQ,∴AQ=EQ,AB=BE,同理,AP=DP,AC=CD,∴DE=BE+CD﹣BC=AB+AC﹣BC=16﹣10=6,∵AQ=DP,AP=DP,∴PQ是△ADE的中位线,∴PQ=DE=3.故答案是:3.14.解:∵A1C1∥AC,A1D1∥BC,∴四边形A1C1CD1为平行四边形,∴A1D1=C1C=a=a,同理,四边形A2C2C1D2为平行四边形,∴A2D2=C1C2=a=a,……∴线段A n D n=,故答案为:.15.解:∵点Q在x轴上,点P在直线AB上,以Q、P、A1、C1为顶点的四边形是平行四边形,当A1C1为平行四边形的边时,∴PQ=A1C1=2,∵P点在直线y=2x+5上,∴令y=2时,2x+5=2,解得x=﹣1.5,令y=﹣2时,2x+5=﹣2,解得x=﹣3.5,∴点Q的坐标为(﹣1.5,0),(﹣3.5,0),当A1C1为平行四边形的对角线时,∵A1C1的中点坐标为(3,2),∴P的纵坐标为4,代入y=2x+5得,4=2x+5,解得x=﹣0.5,∴P(﹣0.5,4),∵A1C1的中点坐标为:(3,2),∴直线PQ的解析式为:y=﹣x+,当y=0时,即0=﹣x+,解得:x=6.5,故Q为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).故答案为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).16.解:①当A、B、C三点共线时,以A、B、C三点为平行四边形的三个顶点,不能作形状不同的平行四边形;②已知三点为A、B、C,连接AB、BC、CA,分别以AB、BC、CA为平行四边形的对角线,另外两边为边,可构成的平行四边形有三个:▱ACBD,▱ACEB,▱ABCF.综上所述,可以作0个或3个平行四边形.故答案为:0个或3个.17.解:等腰梯形ABCD中,AD∥BC,作AE∥DC,则四边形AECD是平行四边形,因而AB=AE,CE=AD,再由∠B=60°得到△ABE是等边三角形,AE=2cm,AB=2cm.18.解:根据平行四边形的中心对称性得:OF=OE=1.5,∵▱ABCD的周长=(4+3)×2=14,∴四边形BCEF的周长=×▱ABCD的周长+3=10.故答案为:10.三.解答题(共8小题)19.证明:如图,以BF,CF为边作平行四边形BFCG,连接GF,EG,∵四边形BFCG是平行四边形,且D是BC中点,∴FC=BG,BD=CD,FD=DG,∵点F是AB中点,点D是BC中点,点E是AC中点,∴DF∥AC,DF=AC=AE∴DG=AE,DG∥AE,∴四边形ADGE是平行四边形∴AD=EG,在△BEG中,BE+BG>EG∴BE+FC>AD20.证明:∵四边形ABCD是等腰梯形,∴AB=DC,∠A=∠D.∵M是AD的中点,∴AM=DM.在△ABM和△DCM中,,∴△ABM≌△DCM(SAS).∴MB=MC.21.解:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,∴AD∥BC,∴∠CBF=∠ADE,∵AE∥CF,∴∠CFB=∠AED,∴△BCF≌△DAE,∴∠BCF=∠DAE,∵∠AEB=115°,∠ADB=35°,∴∠AEB=∠DAE+∠ADB,∴∠BCF=∠DAE=∠AEB﹣∠ADB=115°﹣35°=80°,故答案为:80°.22.证明:延长AM、AN分别交BC于点D、G.∵BE为∠ABC的角平分线,BE⊥AG,∴∠BAG=∠BGA,∴△ABG为等腰三角形,∴BM也为等腰三角形的中线,即AM=GM.同理AN=DN,∴MN为△ADG的中位线,∴MN∥BC.23.解:∠1=∠2,理由如下:∵∠A+∠ABC=180°,∴AD∥BC,∴∠1=∠DBC,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠DBC=∠2,∴∠1=∠2.24.解:如上图,∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,AD=BC=9cm,∵BE平分∠ABC交AD于E,CF平分∠BCD交AD于F,∴∠ABF=∠CBE=∠AEB,∠BCF=∠DCF=∠CFD,∴AB=AE,DC=DF,∵EF=1cm,∴2AB﹣EF=AD,∴2AB=9+1,∴AB=5.如下图,∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,AD=BC=9∵BE平分∠ABC交AD于E,CF平分∠BCD交AD于F,∴∠ABF=∠CBE=∠AEB,∠BCF=∠DCF=∠CFD,∴AB=AE,DC=DF,∵EF=1,∴2AB+EF=AD,∴AB=4综上所述:AB的长为4或5.25.证明:∵△ABE和△BCF都是等边三角形,∴AE=AB=CD,CF=BC=AD,∴∠BAE=∠BCF=60°,即∠DAE+∠BAD=∠DCF+∠BCD,在平行四边形ABCD中,则∠BAD=∠BCD,∴∠DAE=∠DCF,在△DAE与△FCD中,,∴△DAE≌△FCD(SAS),∴DF=DE,∠EAD=∠DCF,设∠ABC=β,则∠BAD=180°﹣β,∴∠EBF=360°﹣2×60°﹣β=240°﹣β,∠EAD=60°+(180°﹣β)=240°﹣β,∴∠EBF=∠EAD∵EA=EB,AD=BC=BF,在△BEF与△AED中,,∴△BEF≌△AED(SAS),∴DE=EF,∴DE=DF=EF,即△DEF是等边三角形.26.(1)解:∵∠F=∠DCF,∴AB∥CD,∴∠BCD+∠B=180°,∵∠BCD=4∠B,∴5∠B=180°,∴∠B=36°,(2)AD∥BC,证明:∵∠F=∠DCF,∴AB∥CD,∴∠BCD+∠B=180°,∵∠B=∠D,∴∠BCD+∠D=180°,∴AD∥BC。
北师大版八年级数学上册第六章 数据的分析综合测评(Word版 含答案)
第六章 数据的分析综合测评(时间: 分钟 满分:100分)(班级: 姓名: 得分: )一、选择题(每小题4分,共32分)1. 数据-1,0,1,2,3的平均数是( ) A .-1 B .0 C .1 D .52. 在一次体操比赛中,六位评委对某位选手的打分分别为(单位:分):9.2,9.4,9.1,9.3,9.2,9.6,这组数据的众数为( )A .9.3B .9.2C .9.1D .9.63. 在《学习方法报》社举办的一次3D 打印“青少年创新大赛”中,有13名同学成绩优异,现取前6名进入决赛.小尚同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( )A .方差B .众数C .平均数D .中位数4. 在一次训练中,甲、乙、丙三人各射击10次的成绩如图1所示,在这三人中,此次射击成绩最稳定的是( )A .甲B .乙C .丙D .无法判断图1 图25. 若x 个数的平均数为a ,y 个数的平均数为b ,则这(x+y )个数的平均数是( ) A .2a b + B .a y x b ++ C .xa yb x y ++ D .xa yba b++6. 甲、乙两地去年12月前5天的日平均气温如图2所示,下列描述错误的是( )A .甲地气温的中位数是6 ℃B .两地气温的平均数相同C .乙地气温的众数是8 ℃D .乙地气温相对比较稳定7. 甲、乙两班举行电脑汉字输入比赛,每班参赛学生成绩(每分钟输入汉字的个数)统计后结果如下表所示:参加人数 中位数 平均数 方 差甲 班 45 148 135 190 乙 班45151135110某同学根据表中数据分析得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀人数多于甲班优秀人数(规定每分钟输入汉字大于或等于150个为优秀);③乙班成绩比较稳定.其中结论正确的有( )A .0个B .1个C .2个D .3个 8. 某射击运动员练习射击,5次成绩分别为(单位:环):8,9,7,8,x .下列说法中正确的是( ) A .若这5次成绩的中位数为8,则x=8 B .若这5次成绩的众数是8,则x=8 C .若这5次成绩的方差为8,则x=8D .若这5次成绩的平均成绩是8,则x=8 二、填空题(每小题5分,共30分)9. 某生产小组6名工人某天加工零件的个数分别是10,10,11,12,8,10,则这组数据的中位数是 .10. 若甲.乙两个街舞团的人数相同,平均身高相同,通过计算身高的方差发现身高更整齐的街舞团是甲,那么s甲2s乙2(填“>”或“<”).11.(2019年盘锦)在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数239853这些男生跳远成绩的众数、中位数分别是.12. 学完方差的知识后,小明了解了他最要好的四个朋友的身高分别是(单位:cm):176,174,177,173,那么小明四个好朋友身高的方差是.13. 某校招聘一名数学老师,对应聘者分别进行了教学能力、科研能力和组织能力三项测试,其中甲、乙两名应聘者的成绩如下表所示(单位:分):教学能力科研能力组织能力甲81 85 86乙92 80 74如果根据实际需要,学校将教学、科研和组织能力三项测试得分按5:3:2的比例计算两人的总成绩,得分高者被录用,那么将被录用.14. 若10个数的平均数是3,方差是4,现将这10个数都扩大2倍,则这组新数据的方差是.三、解答题(共38分)15. (12分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名) 1 3 2 3 16 24 1每人月工资(元)21 000 8400 2025 2200 1800 1600 950 请你根据上述内容,解答下列问题:(1)所有员工月工资的中位数为元,众数为元;(2)所有员工的月平均工资为2500元,这样的工资能否反映该公司员工的月工资实际水平?若不合理,则选择哪个数据更合理?16. (12分)某校为了分析九年级学生艺术考试的成绩,随机抽查了两个班各5名学生的成绩,它们分别为:九(1)班:96,92,94,97,96;九(2)班:90,98,97,98,92.通过数据分析,列表如下:(1)补全表格;(2)计算两个班所抽取的学生艺术成绩的方差,判断哪个班的艺术成绩比较稳定.17. (14分)某校拟派一名跳高运动员参加校际比赛,对甲、乙两名同学进行了8次跳高选拔比赛,他们的原始成绩(单位:cm)如下表:第1次第2次第3次第4次第5次第6次第7次第8次甲169 165 168 169 172 173 169 167乙161 174 172 162 163 172 172 176两名同学的8次跳高成绩数据分析如下表:平均数中位数众数方差甲 a b c 5.75乙169 172 172 31.25根据图表信息回答下列问题:(1)a=,b=,c=;(2)这两名同学中,的成绩更为稳定(填甲或乙);(3)若跳高165 cm就可能获得冠军,该校为了获取跳高比赛冠军,你认为应该选择同学参赛,理由是:;(4)若跳高170 cm方可夺得冠军,该校为了获取跳高比赛冠军,你认为应该选择同学参赛,班由是:.第六章数据的分析综合测评一、1. C 2. B 3. D 4. B 5. C 6. C 7. D 8. D二、9. 10 10. < 11. 2.05,2.10 12. 5213. 乙14. 16三、15. 解:(1)1700 1600(2)不能.因为将近一半的员工工资为1600元,所以平均工资不能反映该公司员工月工资的平均水平.选择中位数或众数更为合理.16. 解:(1)表格数据从上到下从左到右依次为96,95,98;(2)九(1)班的方差为15×[(96-95)2+(92-95)2+(94-95)2+(97-95)2+(96-95)2]=3.2,九(2)班的方差为15×[(90-95)2+(98-95)2+(97-95)2+(98-95)2+(92-95)2]=11.2,因为两班平均成绩相等,且3.2<11.2,所以九(1)班学生的艺术成绩比较稳定.17. 解:(1)a=18(169+165+168+169+172+173+169+167)=169;b=1691692=169;因为169出现了3次,出现次数最多,所以c的值为169.(2)因为甲、乙两名同学成绩的平均数相同,但甲的方差小于乙的方差,所以甲的成绩更稳定. (3)若跳高1.65米就获得冠军,那么成绩在1.65或1.65米以上的次数甲多,所以选择甲. (4)若跳高1.70米就获得冠军,那么成绩在1.70或1.70米以上的次数乙多,所以选择乙.。
新北师大版八年级数学上册单元测试卷附答案第六章 数据的分析
依据以上统计信息,解答下列问题:
(1)求得 , ;
(2)这次测试成绩的中位数落在组;
(3)求本次全部测试成绩的平均数.
答案
第一部分
1. A【解析】“良”和“优”的人数所占的百分比: ,
在 人中成绩为“良”和“优”的总人数估计为 (人).
2. B
3. C
4. A【解析】通过观察条形统计图可得:套餐一一共出现了 人,出现的人数最多,因此通过利用样本估计总体可以得出学生最喜欢的套餐种类是套餐一;
那么,圆周率的小数点后 位数字的众数为.
20.某学生在一次期末考试中,六门功课的总分为 分,其中语文、数学两门功课的总分为 分,物理、化学、政治三门功课的平均分为 分,则该同学外语考了分.
21.将一个圆分割成三个扇形,它们的圆心角之比为 ,则这三个扇形的圆心角的度数分别为.
22.为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个): , , , , , ,如果该班有 名学生,那么根据提供的数据估计该周全班同学各家总共丢弃塑料袋的数量约为个.
把这些数从小到大排列为: , , , , , , ,
处于中间位置的数是: ,
所以中位数是 .
(2)
【解析】根据图(乙)可知 ,
.
(3)设12月份全市共成交商品房 套,根据题意得:
(套),
则估计12月份在全市所有的 套可售商品房中已成交的并且每平方米价格低于 万元的商品房的成交套数为 套.
25.(1) ;
D组的百分比为 ,
补全图形如下:
(2)C
【解析】由于共有 个数据,其中位数是第 , 个数据的平均数,则其中位数位于C区间内.
北师版数学八年级上册第六章达标测试卷及答案
第六章达标测试卷一、选择题(每题3分,共30分)1.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A.6 B.7 C.8 D.92.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩.小明说:“我们组成绩是86分的同学最多.”小英说:“我们组7位同学的成绩排在最中间的恰好也是86分.”上面两位同学的话能反映的统计量分别是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数3.一组数据为-1,0,4,x,6,16,这组数据的中位数为5,则这组数据众数可能是()A.5 B.6 C.-1 D.5.54.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为() A.3 B.4 C.5 D.65.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.众数B.方差C.平均数D.中位数6.甲、乙、丙、丁四人进行射箭测试,每人10次,射箭成绩的平均数都是8.9环,方差分别是s甲2=0.65,s乙2=0.55,s丙2=0.50,s丁2=0.45,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁7.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()A.2 400元,2 400元B.2 400元,2 300元C.2 200元,2 200元D.2 200元,2 300元(第8题)8.某赛季甲、乙两名篮球运动员12场比赛得分情况如图所示,对这两名运动员的成绩进行比较,下面四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员得分的平均数大于乙运动员得分的平均数D.甲运动员的成绩比乙运动员的成绩稳定9.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是()A.平均数B.标准差C.中位数D.众数10.已知5个正数a1,a2,a3,a4,a5的平均数是a,且a1>a2>a3>a4>a5,则数据a1,a2,a3,0,a4,a5的平均数和中位数是()A.a,a3B.a,a2+a2+a3 2C.56a,a2+a32 D.56a,a3+a42二、填空题(每题3分,共24分)11.已知一组数据为25,25,27,27,26,则其平均数为________.12.某项目六名礼仪小姐的身高(单位:cm)如下:168,166,168,167,169,168,则她们身高的众数是________,极差是________.13.如图是某商场一天的运动鞋销售量情况统计图,这些运动鞋的尺寸的众数和中位数分别为____________ .(第13题)(第16题)14.某学生数学学科课堂表现为90分,平时作业为92分,期末考试为85分,若这三项成绩分别按30%,30%,40%的比例计入总评成绩,则该学生数学学科总评成绩是________分.15.已知样本数据x1,x2,x3,x4的方差为2,则4x1,4x2,4x3,4x4的方差是________.16.甲、乙两名射击运动员进行10次射击,甲的成绩(单位:环)是7,7,8,9,8,9,10,9,9,9,乙的成绩如图所示,则甲、乙两人射击成绩的方差之间的关系是s甲2________s乙2(填“>”“<”或“=”).17.某班40名学生的某次数学测验成绩统计表如下:若这个班的数学平均成绩是74分,则x=________,y=________. 18.某商店3月份、4月份出售同一品牌各种规格的空调台数如下表:根据表中的数据回答下列问题:(1)该商店这两个月平均每月销售空调________台;(2)请你帮助该商店经理考虑下,6月份进货时,商店对________型号的空调要多进,对________型号的空调要少进.三、解答题(19~21题每题10分,其余每题12分,共66分)19.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件,对其使用寿命跟踪调查.结果如下(单位:年):甲:345688910乙:4666891213丙:33479101112三个厂家在广告中都称该产品的使用寿命是8年,请根据结果来判断厂家在广告中分别运用了平均数、众数、中位数的哪一种集中趋势的特征数.20.小亮和小莹自制了一个标靶进行投标比赛,两人各投了10次,下图是他们投标成绩的统计图.(第20题)(1)根据图中信息填写上表;(2)分别用平均数和中位数解释谁的成绩比较好.21.某饮料店为了了解本店一种果汁饮料上半年的销售情况,随机调查了8天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,25,24,31,35.(1)这8天的平均日销售量是多少听?(2)根据上面的计算结果,估计上半年(按181天计算)该店能销售这种饮料多少听?22.张林、李明、王浩、刘平、陈亮五人学习小组在两次数学测试中,成绩如表所示.(1)为了比较学习小组数学测验成绩某种意义上的稳定性,可采取绝对差作为评价标准.若绝对差的计算公式是:绝对差=1n(|x1-x|+|x2-x|+…+|x n-x|)(其中x表示n个数据x1,x2,…,x n的平均数),并规定绝对差小的稳定性好.请问这两次数学测验成绩,哪一次测验成绩更稳定?(2)请你设计一种能评价张林两次数学测验成绩好与差的方案?并通过计算说明.23.某次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图(如图).(1)参加这次夏令营活动的初中生共有多少人?(2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款.结果小学生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大学生每人捐款20元.问平均每人捐款多少元?(3)在(2)的条件下,把每个学生的捐款数额(单位:元)一一记录下来,则在这组数据中,众数是多少?(第23题)24.某市甲、乙两个汽车销售公司1至10月每月销售同种品牌汽车的情况如图所示.(1)请你根据统计图填写下表:(2)请你从以下两个不同的方面对甲、乙两个汽车销售公司1至10月的销售情况进行分析(分析哪个汽车销售公司较有潜力):①从平均数和方差结合看;②从折线图上甲、乙两个汽车销售公司销售量的趋势看.(第24题)答案一、1.C 2.D 3.B 4.B 5.D 6.D 7.A 8.D 9.B 10.D 二、11.26 12.168 cm ;3 cm 13.25 cm 和24.5 cm 14.88.6 15.3216.< 17.10;8 18.(1)52 (2)B ;D三、19.解:甲厂用了众数,乙厂用了平均数,丙厂用了中位数. 20.解:(1)7;7;7.5(2)平均数相等说明两人整体水平相当,成绩一样好;小莹的中位数大说明小莹的成绩比小亮好.21.解:(1)这8天的平均日销售量是18(33+32+28+32+25+24+31+35)=30(听).(2)30×181=5 430(听).所以估计上半年该店能销售这种饮料5 430听.22.解:(1)设两次数学测验成绩的绝对差分别是P 1,P 2,则P 1=15(|81-80|+|82-80|+|79-80|+|78-80|+|80-80|)=1.2,P 2=15(|82-82|+|79-82|+|89-82|+|85-82|+|75-82|)=4.因为P 1<P 2,所以第1次数学测验成绩更稳定.(2)答案不唯一,以下提供一种设计方案参考:第1次测验成绩81分排序是第2名,第2次测验成绩82分排序是第3名,所以从排名序号来看,张林第1次测验成绩比第2次更好些.23.解:(1)200×(1-10%-20%-30%)=80(人).(2)[(20%×5+30%×15+10%×20)×200+80×10]÷200=11.5(元). (3)众数是10元.24.解:(1)甲乙车销售公司的销售情况稳定.②因为甲汽车销售公司每月销售量在平均数上下波动,而乙汽车销售公司每月销售量总体上呈上升趋势,并且从6月起每月都比甲汽车销售公司销售量多,所以乙汽车销售公司较有潜力.。
北师大版八年级数学(上)第六单元测试卷
第六章 单元测试一、选择题(每小题2分,共20分)1.已知油箱中有油25升,每小时耗油5升,则剩油量P (升)与耗油时间t (小时)之间的函数关系式为( )A .P =25+5tB .P =25-5tC .P =t525D .P =5t -252.函数y =xx 3-的自变量的取值范围是( ) A .x ≥3 B .x >3 C .x ≠0且x ≠3 D .x ≠03.函数y =3x +1的图象一定通过( )A .(3,5)B .(-2,3)C .(2,7)D .(4,10) 4.下列函数中,图象经过原点的有( ) ①y =2x -2 ②y =5x 2-4x ③y =-x 2 ④y =x6 A .1个 B .2个 C .3个 D .4个 5.某市自来水公司年度利润表如图,观察该图表可知,下列四个说法中错误的是()A .1996年的利润比1995年的利润增长-2173.33万元B .1997年的利润比1996年的利润增长5679.03万元C .1998年的利润比1997年的利润增长315.51万元D .1999年的利润比1998年的利润增长-7706.77万元 6.下列函数中是一次函数的是( ) A .y =2x 2-1B .y =-x 1 C .y =31+x D .y =3x +2x 2-17.已知函数y =(m 2+2m )x 12-+m m+(2m -3)是x 的一次函数,则常数m 的值为( )A .-2B .1C .-2或-1D .2或-1 8.如图所示的图象是直线ax +by +c =0的图象,则下列条件中正确的为()A .a =b ,c =0B .a =-b ,c =0C .a =b ,c =1D .a =-b ,c =19.若函数y =2x +3与y =3x -2b 的图象交x 轴于同一点,则b 的值为( )A .-3B .-23 C .9 D .-49 10.函数y =2x +1与y =-21x +6的图象的交点坐标是( )A .(-1,-1)B .(2,5)C .(1,6)D .(-2,5)二、填空题(每小题3分,共24分)11.已知函数y =3x -6,当x =0时,y =______;当y =0时,x =______. 12.在函数y =11+x 中,自变量x 的取值范围是______. 13.长沙向北京打长途电话,设通话时间x (分),需付电话费y (元),通话3分以内话费为3.6元.请你根据如图所示的y随x的变化的图象,找出通话5分钟需付电话费______元.14.已知直线经过原点和P(-3,2),那么它的解析式为______.15.已知一次函数y=-(k-1)x+5随着x的增大,y的值也随着增大,那么k的取值范围是______.16.一次函数y=1-5x经过点(0,______)与点(______,0),y随x的增大而______.17.一次函数y=(m2-4)x+(1-m)和y=(m-1)x+m2-3的图象与y轴分别交于点P和点Q,若点P与点Q关于x轴对称,则m=______.18.假定甲乙两人在一次赛跑中,路程S与时间t的关系如图所示,那么可以知道:这是一次______米赛跑;甲、乙两人中先到达终点的是______;乙在这次赛跑中的速度为______米/秒.三、解答题(每小题7分,共56分)19.北京到天津的低速公路约240千米,骑自行车以每小时20千米匀速从北京出发,t小时后离天津S千米.(1)写出S与t之间的函数关系式;(2)画出这个函数的图象;(3)回答:①8小时后距天津多远?②出发后几小时,到两地距离相等?20.已知正比例函数的图象上有一点P,它的纵坐标与横坐标的比值是-65.(1)求这个函数的解析式;(2)点P1(10,-12)、P2(-3,36)在这个函数图象上吗?为什么?21.作出函数y=34x-4的图象,并回答下面的问题:(1)求它的图象与x轴、y轴所围成图形的面积;(2)求原点到此图象的距离.22.如图一次函数y=kx+b的图象经过点A和点B.(1)写出点A和点B的坐标并求出k、b的值;(2)求出当x=23时的函数值.23.一次函数y=(2a+4)x-(3-b),当a、b为何值时(1)y随x的增大而增大;(2)图象与y轴交在x轴上方;(3)图象过原点.24.判断三点A(1,3)、B(-2,0)、C(2,4)是否在同一条直线上,为什么?25.为发展电信事业,方便用户,电信公司对移动电话采用不同的收费方式,所使用的便民卡和如意卡在×市范围内每月(30天)的通话时间x(分钟)与通话费y(元)的关系如图所示:分别求出通话费y1、y2与通话时间x之间的函数关系式.26.为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立方米收费1.0元并加收0.2元的城市污水处理费;超过7立方米的部分每立方米收费1.5元并加收0.4元的城市污水处理费.设某户每月用水量为x(立方米),应交水费为y(元).(1)分别写出未超过7立方米和多于7立方米时,y与x的函数关系式;(2)如果某单位共有50户,某月共交水费541.6元,且每户的用水量均未超过10立方米,求这个月用水未超过7立方米的用户最多可能有多少户?参考答案一、1.B2.A3.C4.B5.D6.C7.B8.A9.D10.B二、11.-6,212.x≠-113. 614.y=-32x15.k<116.1,51,减小17.-1或218.100,甲,8三、19.(1)S=240-20t(2)略(3)①80千米②t=620.(1)y=-65x(2)都不在点的坐标代入函数式不成立21.图略(1)6(2)51222.(1) A(-1.3) B(2,-3),k=-2,b=1(2)-223.(1)a>-2,b为任意数(2)a≠-2且b>3(3)a≠-2且b=324.在略25.y1=51x+29y2=21x26.(1)y=1.2x(0≤x≤7)y=1.9(x-7)+8.4(x>7)(2)28。
北师大版八年级数学上册第六章学情评估试卷附答案
北师大版八年级数学上册第六章学情评估一、选择题(每题3分,共30分)1.一组数据:-1,2,5,0,3的中位数是( )A.5 B.2 C.0 D.-12.某4S店今年1~5月新能源汽车的销量(辆数)分别如下:25,33,36,31,40,这组数据的平均数是( )A.34 B.33 C.32.5 D.313.某鞋店需购进一批鞋子进行售卖,则该鞋店进货主要参考以往鞋子售卖尺码的( )A.最大值 B.中位数 C.众数 D.方差4.甲、乙两名男同学练习投掷实心球,每人投了10次,平均成绩均为7.5米,方差分别为s2甲=0.8,s2乙=3,则成绩比较稳定的是( )A.甲 B.乙 C.甲、乙一样 D.无法确定5.某中学规定学生的学期体育成绩满分为100分,其中平时体育成绩占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的这三项成绩(百分制)分别为95分,90分,88分,则小彤这学期的体育成绩为( )A.89分 B.90分 C.92分 D.93分6.一组数据:1,2,2,3,5,将这组数据中的每一个数都加上a(a≠0),得到一组新数据:1+a,2+a,2+a,3+a,5+a,这两组数据的以下统计量相等的是( )A.平均数 B.众数 C.中位数 D.方差7.一次数学测试,某小组5名组员的成绩统计如下表(有两个数据被遮盖):则被遮盖的两个数据依次是( )A.81,80 B.80,82 C.81,82 D.80,808.为了解某小区居民用水情况,在该小区随机抽查了10户家庭的月用水量,结果如图所示.下列说法错误的是( )A.众数是6吨B.中位数是6吨C.平均数是6吨D.方差是49.某企业1~6月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是( )(第9题)A.1~6月份利润的众数是130万元B.1~6月份利润的中位数是130万元C.1~6月份利润的平均数是130万元D.1~6月份利润的极差是40万元10.为了减轻学生课外作业负担,数学老师准备按照学生每天课外作业完成量(完成题目个数)实行分档布置作业.作业量分档递增,计划使第一档、第二档和第三档的作业量分别覆盖全校学生的70%,20%和10%,为合理确定各档之间的界限,随机抽查了该校500名学生过去一个阶段完成作业量的平均数(单位:个),绘制了统计图,如图所示,下面四个推断合理的是( )A.每天课外作业完成量不超过15个的该校学生按第二档布置作业B.每天课外作业完成量超过21个的该校学生按第三档布置作业C.该校学生每天课外作业完成量的平均数不超过18个D.该校学生每天课外作业完成量的中位数在15~18个之间(第10题) (第15题)二、填空题(每题3分,共15分)11.数据:-3,-6,0,3,6,9的极差是________.12.如果x1与x2的平均数是5,那么x1-1与x2+5的平均数是________.13.某校九年级“经典咏流传”朗诵比赛中,有15名学生参加,他们比赛的成绩各不相同,其中一名学生想知道自己能否进入前8名,他不仅要了解自己的成绩,还要了解这15名学生成绩的统计量中的________.14.已知一组数据:10,10,x,8的唯一众数与它的平均数相等,则这组数据的中位数是________.15.某电脑公司销售部为了制订下个月的销售计划,对20位销售人员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是________________________.三、解答题(第16题10分,第18题7分,第22、23题每题13分,其他每题8分,共75分)16.某市规定学生的学期体育成绩满分是100分,其中大课间活动和下午体育锻炼占10%,期中考试占35%,期末考试占55%,张晨的三项成绩(百分制)分别是90分、90分、86分,求张晨这学期的体育成绩.17.某公司员工的月工资如下:员工经理副经理职员A 职员B 职员C 职员D 职员E 月工资/元8 000 5 500 3 500 3 500 3 500 3 100 3 000(1)该公司员工月工资的中位数是________,众数是________;(2)该公司员工月工资的平均数为多少?(3)用平均数还是用中位数或众数描述该公司员工月工资的一般水平比较恰当?18.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为________,图①中m的值为________;(2)这组跳水运动员年龄的众数为________,中位数为________;(3)求这组数据的平均数.19.某校将学生体质健康测试成绩分为A,B,C,D四个等级,依次记为4分,3分,2分,1分.为了解学生整体体质健康状况,拟抽样进行统计分析.(1)以下是两名同学关于抽样方案的对话:小红:“我想随机抽取七年级男、女生各60人的成绩.”小明:“我想随机抽取七、八、九年级男生各40人的成绩.”根据图①中信息,请你简要评价小红、小明的抽样方案.如果你来抽取120名学生的测试成绩,请给出抽样方案.(2)现将随机抽取的测试成绩进行整理,并绘制成如图②所示的统计图,请求出这组数据的平均数、中位数和众数.20.机械表是日常生活中常见的一类钟表,与电子表不同,机械表受环境、机芯等因素的影响常会产生走时误差.现为了比较市场上甲、乙两款机械表的精准度,从两款表中,各随机抽取一块进行每日走时误差的检测,连续检测10天,两款表每日走时误差的统计数据如图(单位:秒):(1)甲、乙两款机械表的平均走时误差分别是多少?(2)小明现计划购买一块机械表,如果仅从走时的准确度考虑,你会推荐他购买甲、乙哪一款,请说明理由.21.某校招聘一名数学老师,对应聘者分别进行了教学能力、科研能力和组织能力三项测试,其中甲、乙两名应聘者的成绩如表所示:(单位:分)(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?(2)根据实际需要,学校将教学、科研和组织能力三项测试得分按 5∶3∶2 的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?22.某校举行了党史知识竞赛.为了解竞赛成绩,抽样调查了七、八年级部分学生的分数,过程如下:a.收集数据.从该校七、八年级学生中各随机抽取20名学生的分数,其中八年级的分数如下:81 83 84 85 86 87 87 88 89 90 92 9293 95 95 95 99 99 100 100b.整理、描述数据.按下表分段整理描述样本数据:c.分析数据.两组样本数据的平均数、中位数、众数、方差如表所示:根据以上提供的信息,解答下列问题:(1)填空:a=______,b=______,c=______;(2)样本数据中,七年级甲同学和八年级乙同学的分数都为90,______(填“甲”或“乙”)同学的分数在本年级抽取的分数中从高到低排序更靠前;(3)从样本数据分析来看,分数较整齐的是 ______(填“七”或“八”)年级;(4)如果七年级共有400人参赛,求该年级分数不低于95的人数.23.某中学举行诗歌朗诵比赛,由参赛的10个班各推荐1名学生担任评委,对每个班的朗诵打分,最后得分取所有评委打分的平均分.下面是各评委对某班诗歌朗诵打出的分数:(1)你对5号和9号评委打分有什么看法?(2)该班得分是多少?此得分能否反映出该班诗歌朗诵的实际水平?(3)若去掉一个最高分和一个最低分后再计算,则该班得分应是多少?这个得分能否反映该班诗歌朗诵的实际水平?(4)还可以通过哪个统计量大致反映该班诗歌朗诵的实际水平?答案一、1.B 2.B 3.C 4.A 5.B 6.D 7.D 8.D 9.D10.C二、11.15 12.7 13.中位数14.1015.14.4台,12台,10台三、16.解:90×10%+90×35%+86×55%=9+31.5+47.3=87.8(分).即张晨这学期的体育成绩为87.8分.17.解:(1)3 500元;3 500元(2)该公司员工月工资的平均数为(8 000+5 500+3 500+3 500+3 500+3100+3 000)÷7=4 300(元).(3)用中位数或众数描述该公司员工月工资的一般水平比较恰当.18.解:(1)40;30 (2)16岁;15岁(3)x=13×4+14×10+15×11+16×12+17×340=15,所以这组数据的平均数为15.19.解:(1)两人选择的样本不能代表真实情况,小红的方案考虑到了性别的差异,但没有考虑到年级的差异,小明的方案考虑到了年级的差异,但没有考虑到性别的差异,他们的抽样方案不具有广泛性和代表性.如果让我来抽取120名学生的测试成绩,应该随机抽取七、八、九年级男、女生各20名的成绩.(2)平均数为4×30+3×45+2×30+1×1530+45+30+15=2.75(分),众数是3分.将这120人的成绩从小到大排列,处在中间位置的两个成绩都是3分,因此中位数是3分.20.解:(1)甲机械表的平均走时误差为110×(1-3-4+4+2-2+2-1-1+2)=0,乙机械表的平均走时误差为110×(4-3-1+2-2+1-2+2-2+1)=0.(2)推荐小明购买乙机械表.理由如下:分别计算甲、乙两款机械表的方差:s2甲=110×[(1-0)2+(-3-0)2+(-4-0)2+…+(2-0)2]=110×60=6,s2乙=110×[(4-0)2+(-3-0)2+(-1-0)2+…+(1-0)2]=110×48=4.8,因为s2甲>s2乙,所以乙机械表走时误差的方差较小,即走时准确度较高,所以推荐小明购买乙机械表.21.解:(1)甲的平均成绩为81+85+863=84(分);乙的平均成绩为92+80+743=82(分),因为84>82,所以甲将被录用.(2)甲的成绩为81×5+85×3+86×25+3+2=83.2(分),乙的成绩为92×5+80×3+74×25+3+2=84.8(分),因为83.2<84.8,所以乙将被录用.22.解:(1)6;91;95 (2)甲(3)八(4)该年级分数不低于95的人数为400×820=160.23.解:(1)5号评委给分过高,9号评委给分过低,反映了一种极端现象.(2)x=110×(7.20+7.00+7.25+7.10+10.00+7.30+7.20+7.10+6.20+7.15)=7.35(分).由于受极端值影响,所以此得分不能反映出该班诗歌朗诵的实际水平.(3)x′=18×(7.20+7.00+7.25+7.10+7.30+7.20+7.10+7.15)=7.1625(分).由于去掉了极端值,所以这个得分能反映该班诗歌朗诵的实际水平.(4)还可以通过中位数大致反映该班诗歌朗诵的实际水平.。
2022-2023学年北师大版数学八年级上册第六章 数据的分析 单元测试卷含答案
单元测试(6)——数据的分析(满分120分)一、选择题(共30分,每小题3分) 1.数据-2,-1,0,1,2的平均数是( ) A.-2B.-1C.0D.62.某市七天的空气质量指数分别是28,45,28,45,28,30,53,这组数据的众数是( )A.28B.30C.45D.533.广州市某周连续7天的最高气温(单位℃)是26,30,27,29,31,32,34,则这组数据的中位数是( )A.29B.30C.31D.344.已知样本甲的平均数60x =甲,方差20.05s =甲,样本乙的平均数60x =乙,方差20.1s =乙,那么这两组数据的波动情况为( )A.甲、乙两样本波动一样大B.甲样本的波动比乙样本大C.乙样本的波动比甲样本大D.无法比较两样本波动的大小5.对于一组数据-1,-1,4,2,下列结论不正确的是( ) A.平均数是1 B.众数是-1 C.中位数是0.5 D.方差是3.56.某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90分、88分、83分,那么小王的最后得分是( )A.87B.87.5C.87.6D.887.在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是( )A.90,96B.92,96C.92,98D.91,928.如图是某年参加国际教育评估的15个国家学生的数学平均成绩(x )的扇形统计图,由图可知,学生的数学平均成绩在60≤x <70之间的国家占( )A.6.7%B.13.3%C.26.7%D.53.3%9.某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道35名同学分数的( )A.众数B.中位数C.平均数D.方差10.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动,为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数 0 1 2 3 4 人数41216171关于这组数据,下列说法正确的是( )A.中位数是2B.众数是17C.平均数是2D.方差是2二、填空题(共28分,每小题4分)11.已知一组数据12、10、8、15.6、8的众数是中位数12.近年来,义乌市民用汽车拥有量持续增长,2007年至2011年我市民用汽车拥有量依次约为(单位:万辆):11,13,15,19,x ,这五个数的平均数为16.2,则x 的值为13.已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为22s s 甲乙、,则2s 甲2s 乙(填“>”“=”或“<").14.如图,描述了一家鞋店在一段时间里销售女鞋的情况,则这组数据的众数为15.已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是16.某校规定学生的体育成绩由三部分组成,早晨锻炼及体育课外活动表现占成绩的15%,体育理论测试占35%,体育技能测试占50%,小明的上述三项成绩依次是94分,90分,96分,则小明这学期的体育成绩是分17.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输人汉字的个数统计结果如下表:班级参赛人数中位数方差平均字数甲55 149 191 135乙55 151 110 135 某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是(把你认为正确结论的序号都填上).三、解答题(一)(共18分,每小题6分)18.某公司欲招聘一名工人,对甲、乙两位应聘者进行面试和笔试,他们的成绩如下表所示:应聘者面试笔试甲87 90乙91 82若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?19.下表是某校八年级(1)班抽查20位学生某次数学测验的成绩统计表:成绩/分60 70 80 90 100人数/人 1 5 x y 2 (1)若这20名学生成绩的平均分是82分,求x、y的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数是a,中位数是b,求a、b的值.20.为了了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班50名学生进行了调查,有关数据如下表,根据表中的数据,回答下列问题:每周做家务的时间/小时0 1 1.5 2 2.5 3 3.5 4 人数/人 2 2 6 8 12 13 4 3 (1)该班学生每周做家务劳动的平均时间是多少小时?(2)这组数据的中位数、众数分别是多少?(3)请你根据(1)、(2)的结果,用一句话谈谈自己的感受.四、解答题(二)(共24分,每小题8分)21.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.(1)这组数据的中位数是,众数是;(2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.22.某中学在一次爱心捐款活动中,全体同学踊跃捐款.现抽查了九年级(1)班全班同学捐款情况,并绘制出如下的统计表和统计图:捐款/元20 50 100 150 200人数/人 4 12 9 3 2求:(1)m= ,n=(2)求学生捐款数目的众数、中位数和平均数;(3)若该校有学生2500人,估计该校学生共捐款多少元?23.为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数;(2)补全条形统计图;(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.五、解答题(三)(共20分,每小题10分)24.下表是随机抽取的某公司部分员工的月收入资料.月收入/元45000 18000 10000 5500 5000 3400 3000 2000 人数 1 1 1 3 6 1 11 2 (1)请计算以上样本的平均数和中位数;(2)甲乙两人分别用样本平均数和中位数来推断公司全体员工月收人水平,请你写出甲乙两人的推断结论;(3)指出谁的推断比较科学合理,能真实地反映公司全体员工月收人水平,并说出另一个人的推断依据不能真实反映公司全体员工月收入水平的原因.25.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩如图所示(1)请填写下表:平均数方差中位数命中9环以上(含9环)的次数甲7 1.2 1乙 5.4(2)请从以下四个不同的角度对这次测试结果进行分析.①从平均数和方差相结合来看;②从平均数和中位数相结合来看;③从平均数和命中9环以上(含9环)的次数相结合来看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).单元测试(6)——数据的分析1.C2.A3.B4.C5.D6.C7.B8.C9.B 10.A11.8和9 12.23 13.>14.21cm和30cm 15.2 16.93.6 17.①②③18.解,甲的平均成绩为,(87×6+90×4)÷10=88.2(分),乙的平均成绩为,(91×6+82×4)÷10=87.4(分),因为甲的平均分数较高,所以甲将被录取.19.解,(1)依题意得,1+5+x+y+2=20,即x+y=12=0①60×1+70×5+80x+90y+100×2=82×20,即8x+9y=103②联立①②1289103x yx y+=⎧⎨+=⎩解得57xy=⎧⎨=⎩(2)由(1)知a=90分,b=80分.20.解,(1)该班学生每周做家务劳动的平均时间为150×(0×2+1×2+1.5×6+2×8+2.5×12+3×13+3.5×4+4×3)=2.44(小时).答,该班学生每周做家务劳动的平均时间为2.44小时.(2)这组数据的中位数是2.5(小时),众数是3(小时).(3)评分说明,只要叙述内容与上述数据有关或与做家务劳动有关,并且态度积极即可。
《练习》北师大版小学数学第 8册第6单元
新课程提出的“四基”:基础知识、基本技能、基本思想、基本活动经验。
新课程提出的“四能”:发现问题、提出问题、分析问题、解决问题。
设计者
组长
第13周2课时
教学内容
《练习》北师大版小学数学第8册第6单元P83--P84
教材分析:
能系统整理本段时间的学习内容,应用所学知识解决问题。
4、把0.5060化简,是(),把7.8改写成三位小数是(),把7.0800改写成三位小数是()。
5、一个平行四边形的面积是86平方米,和它等底等高的三角形的面积是()。
6、一块长方形操场,长250米,宽400米,这个操场占地()公顷。
7、4960000000改写成用"万"作单位的数是(),如改写成用"亿"作单位的数是()。
4.一辆长途客车3小时行了174千米,照这样的速度,它12小时可以行多少千米?
教学过程
三、自主检测,评价完善(约8分)
1、在数位顺序表中,小数点左边第三位是(),计数单位是(),小数点右边第二位是(),计数单位()。
2、由3个百,5个一,2个千分之一组成的数是()。读作()。
3、86.5是()位小数,把它缩小1000倍是(),是()位小数,把86.5的小数点去掉,这个数就()倍。
8、甲乙两港相距200千米,一艘轮船以每小时32千米的速度从甲港开往乙港,行了一段时间后,距乙港还有72千米,这艘船行了多少小时?
9、一块麦田长900米,宽500米,平均每公顷收小麦6000千克,一共收小麦多少千克?
四、回顾总结,评价反思(约2分钟)
本节课你有哪些收获?
还有那些不懂的问题?
北师大八年级数学上册:第六章数据的分析单元测试题(含答案)
第六章数据的分析综合测评一、选择题(每小题3分,共30分)1.一组数据6,7,8,9,10,这组数据的平均数是()A.6 B.7 C.8 D.92.已知一组数据75,80,80,85,90,那么这组数据的众数和中位数分别为()A.75,80 B.80,85 C.80,90 D.80,803.九年级某班12名同学练习定点投篮,每人各投10次,进球数统计如下:进球数(1 2 3 4 5 7个)人数(人) 1 1 4 2 3 1这12名同学进球数的众数是()A.3.75B.3C.3.5D.74. 教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在相同条件下各射出5发子弹,命中环数如下:甲:9,8,7,7,9;乙:10,8,9,7,6.应该选择参加比赛的是()A.甲B.乙C.甲、乙都可以D.无法确定5. (2021年临沂)某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成图1所示的条形统计图,则这10名学生周末学习的平均时间是()A.1小时B.2小时C.3小时D.4小时图1 图26. 某电脑公司销售部为了定制下个月的销售计划,对20位销售人员本月的销售量(单位:台)进行了统计,绘制成图2所示的统计图,则这20位销售人员本月销售量的中位数、众数分别是()A.20台,14台B.19台,20台C.20台,20台D.25台,20台7. 若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为()A.1 B.6 C.1或6 D.5或68.九年级体育素质测试,某小组5名同学成绩如下表所示,其中有两个数据被遮盖:那么被遮盖的两个数据依次是()A.35,2B.36,4C.35,3D.36,39. 某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A.中位数B.最高分C.方差D.平均数10. 下表是某校合唱团成员的年龄分布情况:年龄/岁13 14 15 16频数 5 15 x 10﹣x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.中位数、方差C.平均数、方差D.众数、中位数二、填空题(每小题4分,共32分)11. 某学习小组有8人,在一次数学测验中的成绩分别是102,115,100,105,92,105,85,104,则他们成绩的平均数是_____________.12. 某超市决定招聘广告策划人员一名,一位应聘者三项素质测试的成绩如下表:测试项目创新能力综合知识语言表达测试成绩(分)70 80 92将创新能力、综合知识和语言表达三项测试成绩按5∶3∶2的比例计入总成绩,则该应聘者的总成绩是_____________分.13某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___________岁.14.已知一组数据3,3,4,7,8,则这组数据的方差为____________.15.若干名同学制作卡通图片,他们制作的卡通图片张数的条形统计图如图3所示,设他们制作的卡通图片张数的平均数为a,中位数为b,众数为c,则a,b,c的大小关系为________.图316. 一组数据2,x,4,6,7,已知这组数据的众数是6,那么这组数据的方差是________.17.两组数据3,a,2b,5与a,6,b的平均数都是8,若将这两组数据合并为一组数据,则这组新数据的众数为________,中位数为________.18. 下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择____________.三、解答题(共58分)19.(8分)在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分)得到如下样本数据:140146143175125164134155152168162148(1)计算该样本数据的中位数和平均数;(2)如果一名选手的成绩是147分,请你依据样本数据的中位数,推断他的成绩如何?20.(2021年盐城)(8分)甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分):(1)分别计算甲、乙成绩的中位数;(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3︰3︰2︰2计算,那么甲、乙的数学综合素质成绩分别为多少分?21. (8分)从甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83;乙:88,79,90,81,72.请回答下列问题:(1)甲成绩的平均数是,乙成绩的平均数是;(2)经计算知2s甲=6,2s乙=42,你认为选谁参加比赛更合适,说明理由.22.(10分)八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲7 8 9 7 10 10 9 10 10 10 乙10 8 7 9 8 10 10 9 10 9 (1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是队.23.(12分)某校九年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100个)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):1号2号3号4号5号总成绩甲班100 98 110 89 103 500乙班89 100 95 119 97 500经统计发现两班总成绩相等,只好将数据中的其他信息作为参考.根据要求回答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)求两班比赛数据的方差;(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述理由.24.(12分)为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动.七、八、九三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:决赛成绩(单位:分)七年级80 86 88 80 88 99 80 74 91 89八年级85 85 87 97 85 76 88 77 87 88九年级82 80 78 78 81 96 97 88 89 86(1)请你填写下表:平均数众数中位数七年级85.5 87八年级85.5 85九年级84(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个年级成绩好些);②从平均数和中位数相结合看(分析哪个年级成绩好些).(3)如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个年级的实力更强一些?并说明理由.附加题(15分,不计入总分)25. 小红的奶奶开了一个金键牛奶销售店,主要经营“金键学生奶”、“金键酸牛奶”、“金键原味奶”,由于经营不善,经常导致牛奶滞销(没卖完)或脱销(量不够),为此细心的小红结合所学知识帮奶奶统计了一个星期牛奶的销售情况,并绘制成下表:(1)计算各品种牛奶的日平均销售量,并说明哪种牛奶销量最高;(2)计算各品种牛奶的方差(保留两位小数),并比较哪种牛奶销量最稳定;(3)假如你是小红,会给奶奶哪些建议?第六章数据的分析综合测评参考答案一、1. C 2. D 3. B 4. A 5. C 6. C 7. C 8. B 9. A 10. D二、11. 101 12. 77.413. 15 14. 4.415. c<a<b16. 3.2 17.12 6 18.甲三、19. 解:(1)将样本数据按从小到大的顺序排列,得到最中间两个数据是148,152,所以中位数为150分,平均数为112(140+146+143+…+148)=151(分).(2)由(1)知样本数据的中位数为150分,可以估计这次马拉松比赛有一半选手的成绩快于150分,这名选手的成绩为147分,快于中位数150分,可以推断他的成绩比一半以上选手的成绩好.20. 解:(1)将甲的成绩按从小到大的顺序排列为89,90,90,93,中位数为90;将乙的成绩按从小到大的顺序排列为86,92,94,94,中位数为(92+94)÷2=93.(2)甲的数学综合素质成绩为90×310+93×310+89×210+90×210=27+27.9+17.8+18=90.7(分);乙的数学综合素质成绩为94×310+92×310+94×210+86×210=28.2+27.6+18.8+17.2=91.8(分).21. 解:(1)83 82(2)选甲参加比赛更合适.理由如下:∵甲成绩的平均数>乙成绩的平均数,且2s甲<2s乙,∴甲的平均成绩高于乙,且甲的成绩更稳定,故选拔甲参加比赛更合适.22. 解:(1)9.5 10(2)乙队的平均成绩是110(10×4+8×2+7+9×3)=9,则方差是110[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1.(3)乙23.解:(1)甲班踢100个以上(含100个)的人数是3,则优秀率是60%;乙班踢100个以上(含100个)的人数是2,则优秀率是40%.(2)甲班比赛数据的中位数是100,乙班比赛数据的中位数是97.(3)因为两班的总分均为500,所以平均数都为100.2 s 甲=15[(100﹣100)2+(98﹣100)2+(110﹣100)2+(89﹣100)2+(103﹣100)2]=46.8;2 s 乙=15[(89﹣100)2+(100﹣100)2+(95﹣100)2+(119﹣100)2+(97﹣100)2]=103.2.(4)应把冠军奖状给甲班.理由:甲班的优秀率、中位数都高于乙班,甲班的方差小于乙班,说明甲班成绩更稳定.24.解:(1)表从上到下、从左到右依次填80,86,85.5,78(2)①八年级的成绩更好一些.②七年级的成绩好一些.(3)九年级的实力较强.理由:如果从三个年级中分别选出3人参加总决赛,可以看到九年级的高分较多,成绩更好一些.25.解:(1)金键学生奶的平均数是3,金键酸牛奶的平均数是80,金键原味奶的平均数是40,金键酸牛奶的销量最高.(2)学生奶的方差=17[(2﹣3)2+2×(1﹣3)2+2×(0﹣3)2+(9﹣3)2+(8﹣3)2]≈12.57;酸牛奶的方差=17[2×(70﹣80)2+(80﹣80)2+(75﹣80)2+(84﹣80)2+(81﹣80)2+(100﹣80)2]≈91.71;原味奶的方差=17[(40﹣40)2+2×(30﹣40)2+(35﹣40)2+(38﹣40)2+(47﹣40)2+(60﹣40)2]≈96.86.金键学生奶销量最稳定.(3)答案不唯一,合理即可.如建议学生奶平常尽量少进或不进,周末可以进几瓶.。
北师版八年级数学上册第六章综合测试卷含答案
北师版八年级数学上册第六章综合测试卷一、选择题(每题3分,共30分)1.【2021·桂林】某班5名同学参加学校“感党恩,跟党走”主题演讲比赛,他们的成绩(单位:分)分别是8,6,8,7,9,这组数据的中位数是()A.6 B.7 C.8 D.9 2.【2021·安顺】今年是三年禁毒“大扫除”攻坚克难之年.为了让学生认识毒品的危害,某校举办了禁毒知识比赛,小红所在班级学生的平均成绩是80分,小星所在班级学生的平均成绩是85分,在不知道小红和小星成绩的情况下,下列说法比较合理的是()A.小红的分数比小星的分数低B.小红的分数比小星的分数高C.小红的分数与小星的分数相同D.小红的分数可能比小星的分数高3.【2021·大连】某校健美操队共有10名队员,统计队员的年龄情况,结果如下:13岁3人,14岁5人,15岁2人,该健美操队队员的平均年龄为() A.14.2岁B.14.1岁C.13.9岁D.13.7岁4.【教材P138随堂练习T1变式】【2021·岳阳】在学校举行的“庆祝百周年,赞歌献给党”合唱比赛中,七位评委给某班的评分去掉一个最高分、一个最低分后得到五个有效评分,分别为:9.0,9.2,9.0,8.8,9.0(单位:分).这五个有效评分的平均数和众数分别是()A.9.0分,8.9分 B.8.9分,8.9分C.9.0分,9.0分 D.8.9分,9.0分5.【2021·柳州】某校九年级进行了3次数学模拟考试,甲、乙、丙三名同学的平均分x及方差s2如表所示,那么这三名同学数学成绩最稳定的是()A.甲B.乙C.丙D.无法确定6.【2021·泰安】为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图(如图),则所调查学生睡眠时间的众数、中位数分别为()A.7 h,7 hB.8 h,7.5 hC.7 h,7.5 hD.8 h,8 h7.【2021·玉林】甲、乙两人进行飞镖比赛,每人各投6次,他们的成绩如下表(单位:环):甲6,7,8,8,9,9乙5,6,x,9,9,10如果两人的比赛成绩的中位数相同,那么乙第三次的成绩是()A.6环B.7环C.8环D.9环8.【2020·凉山州】已知一组数据:1,0,3,-1,x,2,3的平均数是1,则这组数据的众数是()A.-1 B.3 C.-1和3 D.1和3 9.【2020·赤峰】学校朗诵比赛,共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉一个最高分、一个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数据特征是() A.平均数B.中位数C.众数D.方差10.【2021·鄂尔多斯】小明收集了鄂尔多斯市某酒店2021年3月1日~3月6日每天的用水量(单位:吨),整理并绘制成如图所示的折线统计图,下列结论正确的是()A .平均数是234吨 B .众数是10吨 C .中位数是8.5吨 D .方差是253二、填空题(每题3分,共24分)11.数据-3,-6,0,3,6,9的极差是________.12.【教材P 158复习题T 4变式】【2020·怀化】某校招聘教师,其中一名教师的笔试成绩是80分,面试成绩是60分, 综合成绩笔试占60%,面试占40%,则该教师的综合成绩为________分.13.【教材P 153随堂练习变式】【2021·永州】某初级中学坚持开展阳光体育活动,七年级至九年级每学期均进行体育技能测试,其中A 班甲、乙两名同学6个学期的投篮技能测试成绩(投篮命中个数)折线图如图所示,为参加学校举行的毕业篮球友谊赛,A 班需从甲、乙两名同学中选1人进入班球队,从两人成绩的稳定性考虑,请你决策A 班应该选择的同学是________.(第13题) (第14题)14.如图是某商场一天的运动鞋销售量情况统计图,这些运动鞋尺寸的中位数为__________ .15.如果样本方差s 2=14[(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2],那么这个样本的平均数为________,数据个数为________.16.已知一组数据x 1,x 2,x 3,x 4的方差为2,则4x 1,4x 2,4x 3,4x 4的方差是________. 17.5个整数从小到大排列,中位数是4.如果这个样本的唯一众数是6,那么这5个整数的和最大可能是________.18.某班40名学生的某次数学测验成绩统计如下:若这个班的数学平均成绩是74分,则x=________,y=________.三、解答题(19,20题每题15分,其余每题18分,共66分)19.【教材P158复习题T10变式】【中考·南京】某公司共有25名员工,下表是他们月收入的资料.(1)该公司员工月收入的中位数是________元,众数是________元.(2)根据上表,可以算得该公司员工月收入的平均数为6 276元.你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?请说明理由.20.【2021·湘潭】为隆重纪念中国共产党成立100周年,进一步激发师生的爱党爱国热情,某校开展了四项庆祝活动:A.感党恩·我们诵;B.听党话·我们唱;C.跟党走·我们画;D.学党史·我们写,其中C项活动全体同学参与,预计成绩为95<x≤100可获一等奖,成绩为90<x≤95可获二等奖,随机抽取50名同学的作品进行打分并对成绩进行整理、分析,得到频数分布直方图如图:组别平均数中位数众数获奖组94.5 95 95收集其中90<x≤100这一组成绩如下:n939298959596919496整理该组数据得上表.根据以上信息,回答下列问题:(1)频数分布直方图中m=________;(2)90<x≤100这一组中n=________;(3)已知该校有1 200名同学,估计本次活动获一等奖的同学有多少人?21.【2020·陕西】王大伯承包了一个鱼塘,投放了2 000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼,为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示.(1)这20条鱼质量的中位数是________,众数是________.(2)求这20条鱼质量的平均数.(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数,估计王大伯近期售完鱼塘里的这种鱼可收入多少元.22.【教材P155习题T2拓展】【2021·襄阳】为庆祝中国共产党成立100周年,某校举行了“红色华诞,党旗飘扬”党史知识竞赛,为了解竞赛成绩,抽样调查了七、八年级学生的分数,过程如下:(1)收集数据.从该校七、八年级学生中各随机抽取20名学生的分数,其中八年级的分数如下:818384858687878889909293929595959999100100(2)整理、描述数据.按下表分段整理描述样本数据:(3)分析数据.两组样本数据的平均数、中位数、众数、方差如表所示.年级平均数中位数众数方差七年级91 89 97 40.9八年级91 b c33.2根据以上提供的信息,解答下列问题:①填空:a=________,b=________,c=________;②样本数据中,七年级甲学生和八年级乙学生的分数都为90,________学生的分数在本年级抽取的分数中从高到低排序更靠前(填“甲”或“乙”);③从样本数据分析来看,分数较整齐的是________年级(填“七”或“八”);④如果七年级共有400人参赛,则该年级约有________人的分数不低于95分.答案一、1.C 2.D 3.C 4.C 5.A 6.C7.B8.C9.B点要点:去掉一个最高分和一个最低分,不影响最中间的分数(按高低顺序排列),因此中位数不变.10.D二、11.1512.7213.甲14.24.5 cm15.2;416.3217.2118.10;8三、19.解:(1)3 400;3 000(2)答案不唯一,如:用中位数反映该公司全体员工月收入水平较为合适.理由:在这组数据中有差异较大的数据,这会导致平均数较大.该公司员工月收入的中位数是3 400元,这说明除去月收入为3 400元的员工之外,一半员工月收入高于3 400元,另一半员工月收入低于3 400元.因此,利用中位数可以更好地反映这组数据的集中趋势.20.解:(1)12(2)95(3)50名同学的作品成绩为95<x≤100的有3人,所以1 200×350=72(人).答:估计本次活动获一等奖的同学有72人.21.解:(1)1.45 kg;1.5 kg(2)x=1.2×1+1.3×4+1.4×5+1.5×6+1.6×2+1.7×220=1.45(kg).答:这20条鱼质量的平均数为1.45 kg.(3)2 000×90%×1.45×18=46 980(元).答:估计王大伯近期售完鱼塘里的这种鱼可收入46 980元.22. 点思路:②甲学生的分数在本年级抽取的分数中从高到低排序更靠前.理由如下:因为八年级样本数据的中位数是91,七年级样本数据的中位数是89,所以90大于七年级样本数据的中位数,而小于八年级样本数据的中位数.所以七年级甲学生的分数在本年级抽取的分数中从高到低排序更靠前.解:(3)①6;91;95②甲③八④160。
2021-2022学年最新北师大版八年级数学下册第六章平行四边形综合测评试卷(含答案详解)
北师大版八年级数学下册第六章平行四边形综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、多边形每一个内角都等于150°,则从该多边形一个顶点出发,可引出对角线的条数为()A.9条B.8条C.7条D.6条2、ABCD的周长为32cm,AB:BC=3:5,则AB、BC的长分别为()A.20cm,12cm B.10cm,6cm C.6cm,10cm D.12cm,20cm3、一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.14或15或16 B.15或16或17 C.15或16 D.16或174、下列∠A:∠B:∠C:∠D的值中,能判定四边形ABCD是平行四边形的是()A.1:2:3:4 B.1:4:2:3C.1:2:2:1 D.3:2:3:25、如图,在Rt ABC中,∠ACB=90°,∠BAC=30°,BC=2,线段BC绕点B旋转到BD,连AD,E 为AD的中点,连CE,则CE的长不可能是()A .1.2B .2.05C .2.7D .3.16、如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,连接EF ,EF 与AD 相交于点G ,则下列关系正确的是( )A .AG DG =B .AD EF ⊥且EG FG =C .DE DF ⊥D .DE AC ∥7、四边形的内角和与外角和的数量关系,正确的是( ) A .内角和比外角和大180° B .外角和比内角和大180° C .内角和比外角和大360°D .内角和与外角和相等8、下列图形中,三角形ABC 和平行四边形ABDE 面积相等的是( )A .②③B .③④C .②③④D .①②③④9、如图,在四边形ABCD 中,AB ∥CD ,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是( )A .AB BC = B .AD BC = C .A C ∠=∠ D .180B C ∠+=︒10、四边形四条边长分别是a ,b ,c ,d ,其中a ,b 为对边,且满足222222a b c d ab cd ++=++,则这个四边形是( ) A .任意四边形B .平行四边形C .对角线相等的四边形D .对角线垂直的四边形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC 中,已知117A B =,114B C =,116A C =,依次连接111A B C △三边中点,得222A B C △,再依次连接222A B C △的三边中点,得333A B C △,…则333A B C △的周长=________.n n n A B C 的周长=_________.2、如图,是第四套人民币1角硬币,该硬币边缘镌刻的正多边形的外角的度数为_____°.3、七边形内角和的度数是__________.4、一个四边形,剪掉一个角后得到的新多边形的外角和为__________.5、如图,A B C D E F ∠+∠+∠+∠+∠+∠的度数为_______.三、解答题(5小题,每小题10分,共计50分)1、如图,∠ACB=90°,CD⊥AB于点D,AF平分∠CAB交CD于点E,交BC于点F,作EG∥AB交CB 于点G.(1)求证:△CEF是等腰三角形;(2)求证:CF=BG;(3)若F是CG的中点,EF=1,求AB的长.FC AD为ABC高,连接2、如图1,ABC与AEF都是等边三角形,边长分别为4,CE,N为CE的中点.(1)求证:ACF ABE ≌;(2)将AEF 绕点A 旋转,当点E 在AD 上时,如图2,EF 与AC 交于点G ,连接NG ,求线段NG 的长;(3)连接BN ,在AEF 绕点A 旋转过程中,求BN 的最大值.3、一个多边形的内角和比它的外角和的4倍多180°,求这个多边形的边数和它的内角和.4、(1)四边形ABCD 中,∠A =140°,∠D =80°. ①如图1,若∠B =∠C ,则∠C =__________°;②如图2,若∠ABC 的平分线BE 交DC 于点E ,且BE AD ∥,则C ∠=_________°; ③如图3,若∠ABC 和∠BCD 的平分线相交于点E ,则∠BEC =_________°;(2)如图3,当A α∠=,D β∠=时,若∠ABC 和∠BCD 的平分线交于点E ,∠BEC 与α,β之间的数量关系为_________;(3)如图4,在五边形ABCDE 中,∠A +∠B +∠E =300°,CP ,DP 分别平分∠BCD 和∠EDC ,求∠P 的度数.5、探究与发现:(1)如图(1),在△ADC 中,DP 、CP 分别平分∠ADC 和∠ACD . ①若70A ∠=︒,则P ∠= .②若A α∠=,用含有α的式子表示P ∠为 .(2)如图(2),在四边形ABCD 中,DP 、CP 分别平分∠ADC 和∠BCD ,试探究∠P 与∠A +∠B 的数量关系,并说明理由.(3)如图(3),在六边形ABCDEF 中,DP 、CP 分别平分∠EDC 和∠BCD ,请直接写出∠P 与∠A +∠B +∠E +∠F 的数量关系: .-参考答案-一、单选题 1、A 【分析】多边形从一个顶点出发的对角线共有(n-3)条.多边形的每一个内角都等于150°,多边形的内角与外角互为邻补角,则每个外角是30度,而任何多边形的外角是360°,则求得多边形的边数;再根据不相邻的两个顶点之间的连线就是对角线,则此多边形从一个顶点出发的对角线共有(n-3)条,即可求得对角线的条数. 【详解】解:∵多边形的每一个内角都等于150°, ∴每个外角是30°,∴多边形边数是360°÷30°=12,则此多边形从一个顶点出发的对角线共有12-3=9条. 故选A . 【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容. 2、C 【分析】根据平行四边形的性质,可得AB =CD ,BC =AD ,然后设3cm,5cm AB x BC x == ,可得到()23532x x += ,即可求解.【详解】解:∵四边形ABCD 是平行四边形, ∴AB =CD ,BC =AD , ∵AB :BC =3:5,∴可设3cm,5cm AB x BC x == , ∵ABCD 的周长为32cm ,∴()232AB BC += ,即()23532x x += , 解得:2x = ,∴6cm,10cm AB BC == . 故选:C 【点睛】本题主要考查了平行四边形的性质,熟练掌握平行四边形的对边相等是解题的关键. 3、A 【分析】由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可. 【详解】解:设新多边形的边数为n , 则(n -2)•180°=2340°, 解得:n =15,①若截去一个角后边数增加1,则原多边形边数为14, ②若截去一个角后边数不变,则原多边形边数为15,③若截去一个角后边数减少1,则原多边形边数为16,所以多边形的边数可以为14,15或16.故选:A.【点睛】本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)•180°(n为边数)是解题的关键.4、D【分析】两组对角分别相等的四边形是平行四边形,所以∠A和∠C是对角,∠B和∠D是对角,对角的份数应相等.【详解】解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件.故选:D.【点睛】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.5、D【分析】取AB的中点F,得到△BCF是等边三角形,利用三角形中位线定理推出EF=12BD=1,再分类讨论求得13CE≤≤,即可求解.【详解】解:取AB的中点F,连接EF、CF,∵∠BAC=30°,BC=2,∴AB=2BC=4,BF=FA=BC=CF=2,∠ABC=60°,∴△BCF 是等边三角形, ∵E 、F 分别是AD 、AB 的中点, ∴EF =12BD =1, 如图:当C 、E 、F 共线时CE 有最大值,最大值为CF +EF =3; 如图,当C 、E 、F 共线时CE 有最小值,最小值为CF -EF =1; ∴13CE ≤≤,观察各选项,只有选项D 符合题意, 故选:D . 【点睛】本题考查了等边三角形的判定和性质,三角形中位线定理,分类讨论求得CE 的取值范围是解题的关键. 6、B【分析】证明△ADE ≌△ADF (HL ),利用全等三角形的性质以及线段的垂直平分线的判定一一判断即可. 【详解】解:∵AD 平分∠BAC , ∴∠BAD =∠CAD , ∵DE ⊥AB ,DF ⊥AC , ∴DE = DF ,在△ADE 和△ADF 中,AD ADDE DF =⎧⎨=⎩, ∴△ADE ≌△ADF (HL ), ∴AE = AF ,∴AD 是线段EF 的垂直平分线, ∴AD ⊥EF 且EG =FG ,故选项B 正确; ∵DE ⊥AB ,DF ⊥AC , ∴∠AED =∠AFD =90°,∴∠BAC +∠EDF =360°-∠AED -∠AFD =180°, ∵∠BAC 不一定等于90°,∴∠EDF 也不一定等于90°,故选项C 错误; ∵∠EDF ≠90°,而∠AFD =90°, ∴∠EDF +∠AFD ≠180°,∴DE 与AC 不一定平行,故选项D 错误;∵∠AED=90°,DE与AE不一定相等,∴AG与DG也不一定相等,故选项A错误;故选:B.【点睛】本题考查了全等三角形的判定和性质,线段垂直平分线的判定和性质,四边形内角和定理,熟记各图形的性质并准确识图是解题的关键.7、D【分析】直接利用多边形内角和定理分别分析得出答案.【详解】解:A.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;B.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;C.六四边形的内角和与外角和相等,都等于360°,故本选项表述错误;D.四边形的内角和与外角和相等,都等于360°,故本选项表述正确.故选:D.【点睛】本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是360°.8、C【分析】根据三角形的面积公式和平行四边形的面积公式解答即可.【详解】解:①三角形ABC的面积=12442⨯⨯=,平行四边形ABDE的面积=4×2=8,不相等;②三角形ABC 的面积=14482⨯⨯=,平行四边形ABDE 的面积=4×2=8,相等; ③三角形ABC 的面积=14482⨯⨯=,平行四边形ABDE 的面积=4×2=8,相等; ④三角形ABC 的面积=14482⨯⨯=,平行四边形ABDE 的面积=4×2=8,相等; 故选:C .【点睛】此题考查平行四边形的性质,关键是根据三角形的面积公式和平行四边形的面积公式解答.9、C【分析】由平行线的性质得180A D +=︒∠∠,再由A C ∠=∠,得180C D ∠+∠=︒,证出//AD BC ,即可得出结论.【详解】解:一定能判定四边形ABCD 是平行四边形的是A C ∠=∠,理由如下://AB CD ,180A D ∴∠+∠=︒,A C ∠=∠,180C D ∴∠+∠=︒,//AD BC ∴,又//AB CD ,∴四边形ABCD 是平行四边形,故选:C .【点睛】本题考查了平行四边形的判定,解题的关键是熟练掌握平行四边形的判定,证明出//AD BC.10、B【分析】根据完全平方公式分解因式得到a=b,c=d,利用边的位置关系得到该四边形的形状.【详解】解:222222a b c d ab cd++=++,2222022a ab bc cd d-++-+=,22()0)c da b+--=(,0,0c da b--==,∴a=b,c=d,∵四边形四条边长分别是a,b,c,d,其中a,b为对边,∴c、d是对边,∴该四边形是平行四边形,故选:B.【点睛】此题考查了完全平方公式分解因式,平行四边形的判定方法,熟练掌握完全平方公式分解因式是解题的关键.二、填空题1、1741172n-【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得中点三角形的周长等于原三角形的周长的一半,然后写出前三个三角形的周长,再根据指数的变化规律写出n n nA B C的周长即可.解:∵117A B =,114B C =,116A C =,∴111A B C △的周长=7+4+6=17,∵依次连接111A B C △三边中点,得222A B C △,∴222A B C △的周长=12×17,∵再依次连接222A B C △的三边中点,得333A B C △,∴333A B C △的周长=11(22⨯×17)=21171724⎛⎫⨯ ⎪⎝⎭=, ∴n n n A B C 的周长=111171722n n --⎛⎫⨯ ⎪⎝⎭=. 故答案为:174,1172n -. 【点睛】 本题考查了三角形的中位线定理和图形的变化类,能根据求出的结果得出规律是解此题的关键. 2、40°【分析】先判断是正多边形的边数,再根据正多边形的性质外角都相等,利用外角和÷边数求解即可.【详解】解:硬币边缘镌刻的正多边形是正九边形,∵外角和360°,∴该硬币边缘镌刻的正多边形的外角的度数为360°÷9=40°,故答案为:40.【点睛】本题考查正多边形的外角,掌握正多边形的识别,多边形外角和,正多边形外角性质是解题关键. 3、900°900度根据多边形内角和公式计算即可.【详解】解:七边形内角和的度数是(72)180900-⨯︒=︒,故答案为:900°.【点睛】本题考查了多边形内角和公式,解题关键是熟记n 边形内角和公式:2180()n -⨯︒.4、360°360度【分析】根据多边形外角和始终为360°可直接进行求解.【详解】解:一个四边形剪掉一个角得到的新多边形可能是三角形,可能是四边形,可能是五边形,然后根据多边形的外角和始终是360°可知剪掉后的新多边形的外角和为360°;故答案为360°.【点睛】本题主要考查多边形的外角和,熟练掌握多边形的外角和是解题的关键.5、360︒【分析】根据三角形外角的性质和四边形内角和等于360°可得∠A +∠B +∠C +∠D +∠E +∠F 的度数.【详解】解:如图,∵∠1=∠D+∠F,∠2=∠A+∠E,∠1+∠2+∠B+∠C=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360︒.【点睛】本题考查了四边形的内角和,三角形的外角的性质,掌握三角形外角的性质是解题的关键.三、解答题1、(1)见解析;(2)见解析;(3)AB=【分析】(1)由余角的性质可得∠3=∠7=∠4,可得CE=CF,可得△CEF为等腰三角形;(2)过E作EM∥BC交AB于M,得出平行四边形EMBG,推出BG=EM,由“AAS”可证△CAE≌△MAE,推出CE=EM,由三角形的面积关系可求GB的长;(3)证明△CEF是等边三角形,求出BC,可得结论.【详解】(1)证明:过E作EM∥BC交AB于M,∵EG∥AB,∴四边形EMBG是平行四边形,∴BG=EM,∠B=∠EMD,∵CD⊥AB,∴∠ADC=∠ACB=90°,∴∠1+∠7=90°,∠2+∠3=90°,∵AE 平分∠CAB ,∴∠1=∠2,∵∠3=∠4,∴∠4=∠7,∴CE =CF ,∴△CEF 是等腰三角形;(2)证明:过E 作EM ∥BC 交AB 于M ,则四边形EMBG 是平行四边形,∴BG =EM ,∵∠ADC =∠ACB =90°,∴∠CAD +∠B =90°,∠CAD +∠ACD =90°,∴∠ACD =∠B =∠EMD ,∵在△CAE 和△MAE 中12ACE AME AE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CAE ≌△MAE (AAS ),∴CE =EM ,∵CE =CF ,EM =BG ,∴CF =BG .(3)∵CD ⊥AB ,EG ∥AB ,∴EG ⊥CD ,∴∠CEG =90°,∵CF =FG ,∴EF =CF =FG ,∵CE =CF ,∴CE =CF =EF =1,∴△CEF 是等边三角形,∴∠ECF =60°,∴BC =3,∠B =30°, ∴12AC AB = ∴Rt △ABC 中222AC BC AB += ∴2221()32AB AB += 解得AB =【点睛】本题考查了平行四边形的性质和判定,三角形的内角和定理,全等三角形的性质和判定,等腰三角形的性质和判定等知识点,主要考查学生综合运用定理进行推理的能力,有一定的难度.2、(1)见解析;(2)NG (3)BN【分析】(1)根据△ABC与△AEF是等边三角形,得出∠BAE=∠CAF.即可证出ACF ABE≌(SAS);(2)根据AD为等边△ABC的高,利用AD=根据AE得出DE=根据勾股定理 EC=求出∠CGE=180°-90°=90°. 利用直角三角形斜边中线可得NG=12EC(3)取AC的中点H,连接BH,NH,根据BH为等边△ABC的中线,根据勾股定理BH==N为CE的中点,利用中位线性质NH=12AE利用两点之间线段最短在旋转过程中, BN≤BH+HN=可得BN而且当点H在线段 BN上时BN可以取到最大值.【详解】(1)证明:∵ △ABC与△AEF是等边三角形,∴ ∠BAC=∠EAF=60°,∴∠BAC+∠CAE=∠CAE+∠EAF,即∠BAE=∠CAF.在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩,∴ACF ABE≌(SAS);(2)解:∵ AD为等边△ABC的高,∴ DC=12BC=2,∠DAC=12∠BAC=30°,∴ AD=∵ AE∴ DE==∴ EC∵ ∠AEF=60°, ∠DAC=30°,∴ ∠AGE=180°-60°-30°=90°,∴ ∠CGE=180°-90°=90°.∵ N为CE的中点,∴ NG=12EC(3)解:取AC的中点H,连接BH,NH,∵ BH为等边△ABC的中线,AC=2,∴ BH⊥AC,AH=CH=12∴BH∵ N为CE的中点,∴ NH是△ACE的中位线,AE∴ NH=12∵ 在旋转过程中, BN≤BH+HN=∴ BN而且当点H在线段 BN上时BN可以取到最大值,∴ BN【点睛】本题考查等边三角形性质,三角形全等判定,勾股定理,三角形中位线,最短路径,掌握等边三角形性质,三角形全等判定方法,勾股定理应用,三角形中位线性质,最短路径解决方法是解题关键.3、多边形的边数为11,它的内角和为1620︒【分析】设多边形的变数为:x,根据多边形内角和和外角和的性质,通过列一元一次方程并求解,即可完成求解.【详解】设多边形的变数为:xx-⨯︒,多边形的内角和为:360︒∴多边形的内角和为:()2180根据题意,得:()21804360180x -⨯︒-⨯︒=︒∴11x =∴多边形的内角和为:()1121801620-⨯︒=︒.【点睛】本题考查了多边形内角和、多边形外角和、一元一次方程的知识;解题的关键是熟练掌握多边形内角和、多边形外角和的性质,从而完成求解.4、(1)①70°;②60°;③110°;(2)()12BEC αβ∠+=;(3)60° 【分析】(1)①根据四边形内角和为360度进行求解即可;②先根据平行线的性质求出∠ABE =180°-∠A =40°,再由角平分线的定义求出∠ABC =2∠ABE =80°,再由四边形内角和为360度进行求解即可;③先根据四边形内角和为360度求出∠ABC +∠ACB =140°,再由角平分线的定义得到12EBC ABC ∠=∠,12ECB ACB ∠=∠,最后利用三角形内角和定理求解即可; (2)同(1)③的方法求解即可;(3)同(1)③的方法,先求出240BCD CDE ∠+∠=,然后根据角平分线的定义以及三角形内角和定理求解即可.【详解】(1)①∵∠A =140°,∠D =80°,∠B =∠C , ∴()1=360702C AD --=∠∠∠ 故答案为:70°;②∵BE ∥AD ,∠A =140°,∴∠ABE =180°-∠A =40°,∵BE 平分∠ABC ,∴∠ABC =2∠ABE =80°,∴∠C =360°-∠A -∠D -∠ABC =60°,故答案为:60°;③∵∠A =140°,∠D =80°,∴∠ABC +∠ACB =360°-∠A -∠D =140°,∵∠ABC 和∠BCD 的平分线相交于点E , ∴12EBC ABC ∠=∠,12ECB ACB ∠=∠, ∴()111=180=180=180=110222BEC EBC ECB ABC ACB ACB ABC -----+∠∠∠∠∠∠∠ 故答案为:110°;(2)A α∠=,D β∠=,∴()=360=360ABC ACB A D αβ∠+∠---+∠∠∵∠ABC 和∠BCD 的平分线相交于点E ,∴12EBC ABC ∠=∠,12ECB ACB ∠=∠,∴()()1111=180=180=180=2222BEC EBC ECB ABC ACB ACB ABC αβ-----++∠∠∠∠∠∠∠故答案为:()12BEC αβ∠+=; (3)∵52180540300240BCD CDE A B E ∠+∠=-⨯-∠+∠+∠=-=()(),又∵CP ,DP 分别平分∠BCD 和∠EDC ,∴12PCD BCD ∠=∠,12PDC CDE ∠=∠. ∴()1124012022PCD PDC BCD CDE ∠+∠=∠+∠=⨯=,∴()180********P PCD PDC ∠=-∠+∠=-=.【点睛】本题主要考查了四边形内角和,三角形内角和定理,多边形内角和公式,角平分线的定义,解题的关键在于能够熟练掌握多边形内角和公式.5、(1)①125°②∠P =90°+12α;(2)∠P =12(∠A +∠B )(3)∠P =12(∠A +∠B +∠E +∠F )−180°【分析】(1)①根据角平分线的定义可得:∠CDP =12∠ADC ,∠DCP =12∠ACD ,根据三角形内角和为180°可得∠P 与∠A 的数量关系;②同①的方法即可求解;(2)根据角平分线的定义可得:∠CDP =12∠ADC ,∠DCP =12∠BCD ,根据四边形内角和为360°,可得∠BCD +∠ADC =360°−(∠A +∠B ),再根据三角形内角和为180°,可得∠P 与∠A +∠B 的数量关系;(3)根据角平分线的定义可得:∠CDP =12∠ADC ,∠DCP =12∠BCD ,根据六边形内角和为720°,可得∠BCD +∠EDC =720°−(∠A +∠B +∠E +∠F ),再根据三角形内角和为180°,可得∠P 与∠A +∠B 的数量关系.【详解】解:(1)①∵DP 、CP 分别平分∠ADC 和∠ACD ,∴∠CDP =12∠ADC ,∠DCP =12∠ACD∵∠A +∠ADC +∠ACD =180°∴∠ADC +∠ACD =180°−∠A∵∠P +∠PDC +∠PCD =180°∴∠P=180°−(∠PDC+∠PCD)=180°−12(∠ADC+∠ACD)∴∠P=180°−12(180°−∠A)=90°+12∠A=90°+12×70°=125°故答案为:125°;②∵DP、CP分别平分∠ADC和∠ACD,∴∠CDP=12∠ADC,∠DCP=12∠ACD∵∠A+∠ADC+∠ACD=180°∴∠ADC+∠ACD=180°−∠A∵∠P+∠PDC+∠PCD=180°∴∠P=180°−(∠PDC+∠PCD)=180°−12(∠ADC+∠ACD)∴∠P=180°−12(180°−∠A)=90°+12∠A=90°+12α故答案为:∠P=90°+12α;(2)∠P=12(∠A+∠B)理由如下:∵DP、CP分别平分∠ADC和∠BCD,∴∠CDP=12∠ADC,∠DCP=12∠BCD∵∠A+∠B+∠BCD+∠ADC=360°∴∠BCD+∠ADC=360°−(∠A+∠B)∵∠P+∠PDC+∠PCD=180°∴∠P=180°−(∠PDC+∠PCD)=180°−12(∠ADC+∠BCD)∴∠P=180°−12[360°−(∠A+∠B)]=12(∠A+∠B)(3)∵DP、CP分别平分∠EDC和∠BCD∴∠PDC=12∠EDC,∠PCD=12∠BCD∵∠A+∠B+∠E+∠F+∠BCD+∠EDC=720°∴∠BCD+∠EDC=720°−(∠A+∠B+∠E+∠F)∵∠P+∠PDC+∠PCD=180°∴∠P=180°−(∠PDC+∠PCD)=180°−12(∠EDC+∠BCD)∴∠P=180°−12[720°−(∠A+∠B+∠E+∠F)]∴∠P=12(∠A+∠B+∠E+∠F)−180°故答案为:∠P=12(∠A+∠B+∠E+∠F)−180°.【点睛】本题考查了四边形综合题,多边形的内角和,角平分线的性质,利用多边形的内角和表示角的数量关系是本题的关键.。
(北师大版)苏州市八年级数学上册第六单元《数据的分析》测试题(含答案解析)
一、选择题1.某篮球队5名场上队员的身高(单位:cm )分别是183、187、190、200、195,现用一名身高为210cm 的队员换下场上身高为195cm 的队员,与换人前相比,场上队员身高的( )A .平均数变大,方差变小B .平均数变小,方差变大C .平均数变大,方差变大D .平均数变小,方差变小2.某专卖店专销售某品牌运动鞋,店主对上一周中不同尺码的运动鞋销售情况统计如下:A .平均数B .中位数C .众数D .方差3.某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数与中位数分别是( )A .4次,4次B .3.5次,4次C .4次,3.5次D .3次,3.5次4.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9.3环,方差分别为2=0.54S 甲,20.62S =乙,20.56S =丙,2=0.45S 丁,则成绩最稳定的是( )A .甲B .乙C .丙D .丁 5.一组数据:3,4,4,4,5.若拿掉一个数据4,则发生变化的统计量是( ) A .极差 B .方差 C .中位数 D .众数6.在一次射击练习中,某运动员命中的环数是7,9,9,10,10,其中9是( )A .平均数B .中位数C .众数D .既是平均数和中位数,又是众数7.在学校的一次年级数学统考中,八(1)的平均分为110 分,八(2)的平均分为90分,若两个班的总分相同,则两个班的平均分是( ) A .80分B .99分C .100分D .110分8.小李大学毕业到一家公司应聘英文翻译,该公司对他进行了听、说、读、写的英语水平测试,他的各项成绩(百分制)分别为70、80、90、100.他这四项测试的平均成绩是( ) A .80B .85C .90D .959.如表是某校合唱团成员的年龄分布统计,则这组数据(年龄)的中位数是( )频数 5 4 13 3A .15B .14C .13D .1610.已知数据1x 、2x 、3x 、、100x 是龙岩市某企业普通职工的2019年的年收入,设这100个数据的平均数为a ,中位数为b ,方差为c ,如果再加上中国首富马化腾的年收入101x ,则在这101个数据中,a 一定增大,那么对b 与c 的判断正确的是( ) A .b 一定增大,c 可能增大 B .b 可能不变,c 一定增大 C .b 一定不变,c 一定增大D .b 可能增大,c 可能不变11.已知123,,x x x 的方差是1,数据12323,23,23x x x +++的方差是( ) A .1B .2C .4D .812.某班抽取6名同学参加体能测试,成绩如下:70,75,80,80,75,90.下列叙述中,正确的是( )A .中位数是75和80B .众数是80C .众数是75D .众数是75和80二、填空题13.设甲组数据:6,6,6,6,的方差为2,S 甲乙组数据:1,1,2的方差为2S 乙,则2S 甲与2S 乙的大小关系是________.14.若3,2,x ,5的平均数是4,则x= _______.15.小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,根据图中的信息,成绩较稳定的是____.16.甲、乙两名同学参加“古诗词大赛”活动,五次比赛成绩的平均分都是85分,若两人比赛成绩的方差分别为S 2甲=1.25和S 2乙=3,则成绩比较稳定的是__________(填甲或乙). 17.一组数据2,3-,0,3,6,4的方差是_________. 18.若一组数据-1,0,2,4,x 的极差为7,则x 的值是______.19.某校拟招聘一名数学教师,现有甲、乙、丙三名教师人围,三名教师的笔试、面试成绩如下表所示: 教师 甲 乙 丙 笔试成绩 80分 82分 78分 面试成绩76分74分78分综合成绩按照笔试成绩占60%,面试成绩占40%进行计算,学校录取综合成绩得分最高者,则被录取的教师是__________.20.若一组数据123,,n x x x x ⋯⋯的平均数是a ,方差是b ,则1232323,2323n x x x x ---⋯⋯-、的平均数是_____________,方差是__________.三、解答题21.某学校倡导全校1200名学生进行经典诗词背诵活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之后,随机抽取部分学生调查“一周诗词背诵数量”,根据调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词背诵数量”,绘制成统计表: 一周诗词背诵数量 3首 4首 5首 6首 7首 8首 人数101015☆2520(1)求本次调查抽取的学生人数,并补全上面的条形统计图; (2)活动启动之初学生“一周诗词背诵数量”的中位数是__________首;(3)估计大赛后一个月该校学生一周诗词背诵6首(含6首)以上的人数比活动启动之初一周诗词背诵6首(含6首)以上的人数多了多少人?22.某区举办中学生科普知识竞赛,各学校分别派出一支代表队参赛.知识竞赛满分为100分,规定85分及以上为“合格”,95分及以上为“优秀”现将A ,B 两个代表队的竞赛成绩分布图及统计表展示如下:组别平均分中位数方差合格率优秀率A队88906170%30%B队a b7175%25%(2)小明的成绩虽然在本队排名属中游,但是竞赛成绩低于本队的平均分,那么小明应属于哪个队?(3)从平均分、合格率、优秀率、队内成绩的整齐性等方面进行综合评价,你认为集体奖应该颁给哪一队?23.玉米是一种重要的粮食作物,也是全世界总产量最高的农作物.玉米的容重是指每升玉米的重量,可以反映出玉米的饱满度以及整齐度.超市采购员小李准备进购一批玉米,小李对甲、乙两个乡镇的玉米进行实地考察,各随机采摘了20根玉米进行容重检测,这些玉米的容重记为x(单位:g/L),对数据进行整理后,将所得的数据分为5个等级:五等玉米:600≤x<630;四等玉米:630≤x<660;三等玉米:660≤x<690;二等玉米:690≤x<720;一等玉米:x≥720.其中二等玉米和一-等玉米,我们把它称为“优等玉米”.下面给出了小李整理、描述和分析数据的部分信息.a.甲乡镇被抽取的20根玉米的容重分别为(单位:g/L):610620635650655635670675680675 680680685690710705710660720730容重等级600≤x<630630≤x< 660660≤x<690690≤x<720x≥720甲乡镇24a b2乙乡镇被抽取的玉米容重在660≤x< 690这一组的数据是:660 670 685 680 685 685 685c.分析数据:样本数据的平均数、众数、中位数、“优等玉米”所占的百分比如下表:乡镇平均数众数中位数“优等玉米”所占的百分比甲673.75680677.5d%乙673.75685c35%(1)上述表中的a=________,b=________,c=________,d=________;(2)若小李只选择一个产地采购玉米,根据以上数据,你认为小李选择哪个乡镇采购玉米比较好?(写出一条理由即可)(3)小李最终决定在甲乡镇采购400根玉米,在乙乡镇采购600根玉米,估计本次小李采购的玉米中“优等玉米”的数量是多少?24.国庆长假期间,兴趣小组随机采访了10位到高邮的游客使用“街兔”共享电动车的次数,得到了这10位游客1天内使用“街兔”共享电动车的次数,统计如下:使用次数02346人数11431共享电动车的次数的中位数是次,众数是次,平均数是次;(2)若小明同学把统计表中的数据“6”错看成了“5”,则用“街兔”共享电动车的次数的中位数、众数、和平均数这三个统计量中不受影响的是;(填“中位数”、“众数”或“平均数”)(3)若国庆长假期间,每天约有1200位游客到高邮,试估计这些游客7天国庆长假期间使用“街兔”共享电动车的总次数.25.聪聪利用暑假到工厂进行社会实践活动,他跟在张师傅后学加工某种机器零件,共加工9天,每天加工的机器零件个数如下:1,2,3,4,5,6,7,8,9.(1)求聪聪这9天加工零件数的平均数;(2)聪聪问张师傅加工的零件数,张师傅说;我每天加工的零件数是两位数,并且每天加工零件数的个位上数字都与你相同,这9天加工零件数的平均数比你多30但方差和你一样,听完张师傅的话,聪聪笑着说,张师傅我知道了,根据上面的信息,请你直接写出张师傅每天加工的零件数.26.为加强抗击疫情的教育宣传,某中学开展防疫知识线上竞赛活动,八年级(1)、(2)班各选出5名选手参加竞赛,两个班各选出的5名选手的竞赛成绩(满分为100分)如图所示:(1)请你计算两个班的平均成绩各是多少分;(2)写出两个班竞赛成绩的中位数,结合两个班竞赛成绩的平均数和中位数,你认为哪个班的竞赛成绩较好;(3)计算两个班竞赛成绩的方差,并说明哪个班的竞赛成绩较为整齐.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】分别计算出原数据和新数据的平均数和方差即可得.【详解】解:原数据的平均数为15×(183+187+190+200+195)=191(cm),方差为15×[(183-191)2+(187-191)2+(190-191)2+(200-191)2+(195-191)2]=35.6(cm2),新数据的平均数为15×(183+187+190+200+210)=194(cm),方差为15×[(183-194)2+(187-194)2+(190-194)2+(200-194)2+(210-194)2]=95.6(cm2),∴平均数变大,方差变大,故选:C.【点睛】本题主要考查方差和平均数,解题的关键是掌握方差的计算公式.2.C解析:C【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.3.A解析:A【分析】加权平均数:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则(x1w1+x2w2+…+x n w n)÷(w1+w2+…+w n)叫做这n个数的加权平均数,依此列式计算即可求出参加篮球运动次数的平均数,根据中位数的定义,将这组数据按从小到大或从大到小排列,处在中间位置的数据是中位数,当数据的个数为偶数时,中间两个数据的平均数为这组数据的中位数.【详解】解:(2×2+3×2+4×10+5×6)÷20=(4+6+40+30)÷20=80÷20=4(次).由于这组数据共有20个,所以中位数为第10和11个数据的平均数,因此这组数据的中位数为(4+4)÷2=4(次)故选:A.【点睛】本题考查的是加权平均数和中位数的求法.本题易出现的错误是求2,3,4,5这四个数的平均数,对平均数的理解不正确,掌握相关定义是解题的关键.4.D解析:D【分析】直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可.【详解】解:∵S甲2=0.54,S乙2=0.62,S丙2=0.56,S丁2=0.45∴S丁2<S甲2<S丙2<S乙2,∴成绩最稳定的是丁.故选:D.【点睛】本题考查方差,正确理解方差的意义是解题关键.5.B解析:B【分析】依据定义和公式分别计算新旧两组数据的极差、方差、中位数、众数,由此即可求解.【详解】原数据3,4,4,4,5的极差为5-3=2,原数据3,4,4,4,5的中位数为4, 原数据3,4,4,4,5的众数为4, 原数据3,4,4,4,5的平均数为344455++++=4,原数据3,4,4,4,5的方差为15×[(3-4)2+(4-4)2×3+(5-4)2]=0.4; 新数据的3,4,4,5的极差为5-3=2,新数据的3,4,4,5的中位数为(4+4)÷2=4,新数据的3,4,4,5的众数为4, 新数据的3,4,4,5的平均数为34455+++=4, 新数据的3,4,4,5的方差为14×[(3-4)2+(4-4)2×2+(5-4)2]=0.5; ∴添加一个数据4,方差发生变化, 故选B . 【点睛】本题主要考查的是众数、中位数、方差、极差,熟练掌握相关概念和公式是解题的关键.6.D解析:D 【解析】 试题数据按从小到大顺序排列为7,9,9,10,10,所以中位数是9; 数据9和10都出现了两次,出现次数最多,所以众数是9和10; 平均数=(7+9+9+10+10)÷5=9.∴此题中9既是平均数和中位数,又是众数. 故选D .点睛:平均数是指在一组数据中所有数据之和再除以数据的个数;在一组数据中出现次数最多的数据叫做这一组数据的众数,注意众数不止一个;中位数是指将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).7.B解析:B 【分析】设一班总人数为m ,二班总人数为n ,总成绩为y ,根据已知条件列式即可; 【详解】设一班总人数为m ,二班总人数为n ,总成绩为y , 则110y m =,90y n =,∴11090m n=,得到911m n=,∴两个班的平均分9110901109018011999201111n nm n nm nn n n⨯++====++.故答案是B.【点睛】本题主要考查了平均数的知识点,准确分析是解题的关键.8.B解析:B【分析】利用平均数公式计算即可.【详解】他这四项测试的平均成绩是708090100854+++=,故选:B.【点睛】此题考查平均数的计算公式,正确掌握公式是解题的关键.9.A解析:A【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【详解】解:将这组数据按从小到大的顺序排列,处于中间位置的那个数是15岁,由中位数的定义可知,这组数据的中位数是15岁.故选:A.【点睛】本题为统计题,考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.10.B解析:B【分析】我们根据平均数的意义,中位数的定义,及方差的意义,分析由于加入x201后,数据的变化特征,易得到答案.【详解】解:∵数据x1,x2,x3,…,x200是龙岩市某企业普通职工的2019年的年收入,而x 201为中国首富马云的年收入,则x 201会远大于x 1,x 2,x 3,…,x 200, 故这201个数据中,年收入平均数大大增大, 但中位数可能不变,也可能稍微变大,但由于数据的集中程度也受到x 201比较大的影响,而更加离散,则方差变大 故选:B . 【点睛】本题考查的知识点是方差,平均数,中位数,正确理解平均数的意义,中位数的定义,及方差的意义,是解答本题的关键,另外,根据实际情况,分析出x 201为中国首富马云的年收入,则x 201会远大于x 1,x 2,x 3,…,x 200也是解答本题的关键.11.C解析:C 【分析】根据平均数与方差的概念,求出数据2x 1+3,2x 2+3,2x 3+3的平均数与方差即可. 【详解】设数据1x ,2x ,3x 的平均数是x ,方差是2s , ∴()12313x x x x =++, ()()()2222123113s x x x x x x ⎡⎤=-+-+-=⎣⎦,∴数据21x +3,22x +3,23x +3的平均数为:()()()()12312311232323232333x x x x x x x x ⎡⎤=+++++=⨯+++=+⎣⎦', 方差为()()()222212312323232323233s x x x x x x ⎡⎤=+--++--++--⎣'⎦ ()()()222123143x x x x x x ⎡⎤=⨯-+-+-⎣⎦414=⨯=. 故选:C . 【点睛】本题考查了求数据的平均数与方差的应用问题,灵活运算是解题的关键.12.D解析:D 【分析】根据中位数,众数的概念逐项分析.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是数据出现次数最多的数据. 【详解】把数据70,75,80,80,75,90按大小顺序排列为70,75,75,80,80,90,最中间的两个数是75,80,故其中位数为(75+80)÷2=77.5; 80和75出现次数最多,均为2次,故众数是75和80.【点睛】本题考查了统计学中的中位数与众数的定义,解答这类题学生常常对中位数的计算方法掌握不好而错选.二、填空题13.【分析】根据方差的意义进行判断即可【详解】解:因为甲组的数据都相等没有波动而乙组数有波动所以s 甲2<s 乙2故答案为:s 甲2<s 乙2【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量方差越大 解析:22S S <乙甲【分析】根据方差的意义进行判断即可.【详解】解:因为甲组的数据都相等,没有波动,而乙组数有波动,所以s 甲2<s 乙2.故答案为:s 甲2<s 乙2.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 14.6【分析】利用平均数乘以数据的个数得到的和减去已知的几个数即可得到x 的值【详解】∵32x5的平均数是4∴故答案为:6【点睛】此题考查利用平均数求未知的数据正确掌握平均数的计算方法正确计算是解题的关键解析:6【分析】利用平均数乘以数据的个数得到的和减去已知的几个数即可得到x 的值.【详解】∵3,2,x ,5的平均数是4,∴443256x =⨯---=,故答案为:6.【点睛】此题考查利用平均数求未知的数据,正确掌握平均数的计算方法,正确计算是解题的关键. 15.小明【分析】观察图象可得:小明的成绩较集中波动较小即方差较小故小明的成绩较为稳定【详解】解:根据图象可直接看出小明的成绩波动不大根据方差的意义知波动越小成绩越稳定故答案为:小明【点睛】此题主要考查了 解析:小明【分析】观察图象可得:小明的成绩较集中,波动较小,即方差较小,故小明的成绩较为稳定.解:根据图象可直接看出小明的成绩波动不大,根据方差的意义知,波动越小,成绩越稳定,故答案为:小明.【点睛】此题主要考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.16.甲【分析】根据方差的意义即可求得答案【详解】∵S 甲2=125S 乙2=3∴S 甲2<S 乙2∴甲的成绩比较稳定故答案为:甲【点睛】此题考查方差的意义掌握方差的意义是解题的关键即方差越大其数据波动越大即成绩解析:甲【分析】根据方差的意义即可求得答案.【详解】∵S 甲2=1.25,S 乙2=3,∴S 甲2<S 乙2,∴甲的成绩比较稳定,故答案为:甲.【点睛】此题考查方差的意义,掌握方差的意义是解题的关键,即方差越大其数据波动越大,即成绩越不稳定.17.【分析】先求得数据的平均数然后代入方差公式计算即可【详解】解:数据的平均数=(2-3+3+6+4)=2方差故答案为【点睛】本题考查方差的定义牢记方差公式是解答本题的关键 解析:253【分析】先求得数据的平均数,然后代入方差公式计算即可.【详解】解:数据的平均数=16(2-3+3+6+4)=2, 方差2222222125(22)(32)(02)(32)(62)(42)63s ⎡⎤=-+--+-+-+-+-=⎣⎦. 故答案为253. 【点睛】本题考查方差的定义,牢记方差公式是解答本题的关键.18.6-3【分析】根据极差的定义分两种情况进行讨论当x 是最大值时x-(-1)=7当x是最小值时4-x=7再进行计算即可【详解】解:∵数据-1024x的极差为7∴当x是最大值时x-(-1)=7解得x=6当解析:6,-3【分析】根据极差的定义分两种情况进行讨论,当x是最大值时,x-(-1)=7,当x是最小值时,4-x=7,再进行计算即可.【详解】解:∵数据-1,0,2,4,x的极差为7,∴当x是最大值时,x-(-1)=7,解得x=6,当x是最小值时,4-x=7,解得x=-3,故答案为:6,-3【点睛】此题考查了极差,求极差的方法是用最大值减去最小值,本题注意分两种情况讨论.19.乙【分析】根据题意先算出甲乙丙三人的加权平均数再进行比较即可得出答案【详解】甲的综合成绩为80×60+76×40=784(分)乙的综合成绩为82×60+74×40=788(分)丙的综合成绩为78×6解析:乙【分析】根据题意先算出甲、乙、丙三人的加权平均数,再进行比较,即可得出答案.【详解】甲的综合成绩为80×60%+76×40%=78.4(分),乙的综合成绩为82×60%+74×40%=78.8(分),丙的综合成绩为78×60%+78×40%=78(分),∵78<78.4<78.8,∴被录取的教师为乙,故答案为:乙【点睛】本题考查了加权平均数的计算公式,注意计算平均数时按60%和40%进行计算.20.4b【分析】根据平均数和方差的变化规律即可得出答案【详解】∵数据x1x2…xn的平均数是a∴数据2x1-32x2-3…2xn-3的平均数是;∵数据x1x2…xn的方差是b∴数据2x1-32x2-3…a 4b解析:23【分析】根据平均数和方差的变化规律,即可得出答案.【详解】∵数据x1、x2、…、x n的平均数是a,∴数据2x1-3、2x2-3、…、2x n-3的平均数是23a-;∵数据x1、x2、…、x n的方差是b,∴数据2x1-3、2x2-3、…、2x n-3的方差是224b b⋅=,故答案为:23a-;4b.【点睛】本题考查了平均数与方差,关键是掌握平均数与方差的计算公式和变化规律:若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,在数据上同加或减同一个数,方差不变.三、解答题21.(1)45,图见解析;(2)4.5首;(3)450人【分析】(1)根据5首的人数和在扇形统计图中所对圆心角的度数,可以求得本次抽取的学生人数,然后可以计算出4首的人数,从而可以将条形统计图补充完整;(2)根据统计图中的数据,可以得到中位数;(3)根据统计图中的数据,可以计算出大赛后一个月该校学生一周诗词背诵6首(含6首)以上的人数比活动启动之初一周诗词背诵6首(含6首)以上的人数.【详解】解:(1)20÷60360=120人,背诵4首的学生有:120×135360=45(人),补全的条形统计图如图所示;(2)活动启动之初学生“一周诗词背诵数量”的中位数是(4+5)÷2=4.5(3)☆=120-10-10-15-25-20=40人,1200×(402520161311120120++++-)=450(人) 所以,大赛后一个月该校学生一周诗词背诵6首(含6首)以上的人数比活动启动之初一周诗词背诵6首(含6首)以上的人数多了450人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.22.(1)87a =,85b =;(2)B 队;(3)A 队【分析】(1)结合条形图中的数据,再根据平均数和中位数的概念求解即可(2)由A 队的中位数为90分高于平均分88分,B 队的中位数85分低于平均数87分可得答案(3)从平均分,合格率,优秀率及方差的意义即可解答【详解】(1)B 对成绩的平均分702803856904952100387236423a ⨯+⨯+⨯+⨯+⨯+⨯==+++++ 中位数8585852b +== (2)A 队的中位数为90分高于平均分88,B 队的中位数为85分低于平均分87, ∴小明应属于B 队.(3)应该颁给A 队.理由如下:①A 组的平均分和中位数高于B 队,优秀率也高于B 队,说明A 队的总体平均水平高于B 队;②A 队的中位数高于B 队,说明A 队高分段学生较多;③虽然B 队合格率高于A 队,但A 队方差低于B 队,即A 队的成绩比B 队的成绩整齐. 所以集体奖应该颁给A 队.【点睛】本题考查了条形统计图,中位数,平均数,以及方差,读懂题意,熟练掌握平均数,中位数的概念以及方差的意义是解题关键.23.(1)8,4,685,30;(2)选择乙乡镇,因为乙乡镇优等玉米的比例大;(3)330【分析】(1)通过对甲乡镇的计数可得a 、b 和d 的值,利用中位数的定义可得c 的值;(2)通过甲乡镇与乙乡镇平均数相同,但是乙乡镇中位数和优等玉米百分比高可得结论; (3)利用甲乡镇与乙乡镇的优等玉米百分比即可求解.【详解】解:(1)对甲乡镇的计数可得:8a =,4b =,610020d %=⨯%=30%,即30d =; 乙乡镇的中位数为6856856852c +==; (2)选择乙乡镇,因为乙乡镇优等玉米的比例大;(3)4003060035330⨯%+⨯%=(根).【点睛】本题考查统计图与统计表、中位数、样本估计总体等,从统计图和统计表中获取有用信息是解题的关键.24.(1)3,3,3.2;(2)中位数,众数;(3)26880次【分析】(1)根据众数、中位数和平均数的定义分别求解可得;(2)由中位数和众数不受极端值影响可得答案;(3)用总人数乘以样本中居民的平均使用次数即可得.【详解】解:(1)这10位居民一周内使用共享单车次数的中位数是3+3=32(次), 出现使用次数最多的是3次,故众数为3次, 平均数为01+21+34+43+61=3.210⨯⨯⨯⨯⨯(次), 故答案为:3、3、3.2; (2)把数据“6”看成了“5”,那么中位数,众数和平均数中不受影响的是中位数和众数, 故答案为:中位数和众数.(3)估计该小区居民一周内使用共享单车的总次数为1200×3.2×7=26880次.【点睛】本题考查的是平均数、众数、中位数的定义及其求法,牢记定义是关键.25.(1)5件;(2)31,32,33,34,35,36,37,38,39【分析】(1)利用平均数的定义即可求解;(2)根据“平均数比你多30但方差一样”可得张师傅每天加工的零件数都比聪聪多30,即可求解.【详解】解:(1)这9天加工零件数的平均数为:12345678959++++++++=(件); (2)∵每天加工零件数的个位上数字都与聪聪的相同,这9天加工零件数的平均数比聪聪多30,且方差一样,∴张师傅每天加工的零件数为:31,32,33,34,35,36,37,38,39.【点睛】本题考查平均数和方差,掌握平均数和方差的定义是解题的关键.26.(1)八(1)班平均成绩86分;八(2)班平均成绩86分;(2)八(1)班中位数80分,八(2)班中位数85分,八(2)班成绩较好,见解析;(3)八(1)班方差64,八(2)班方差114,八(1)班成绩较为整齐,见解析【分析】(1)根据平均数的概念求解即可;(2)根据中位数的定义即可得到结论;(3)先计算出两个班的方差,再根据方差的意义求解即可.【详解】(1)八(1)班的平均成绩是:1(80809080100)865++++=(分)八(2)班的平均成绩是:1(80100957085)865++++=(分)(2)八(1)班的中位数是80分,八(2)班的中位数85分;两个班的平均成绩相同,八(2)班的中位数比八(1)班的中位数大,八(2)班的优秀学生多, ∴八(2)班的成绩优秀.(3)八(1)班的方差为:222222(1)1[(8086)(8086)(9086)(8086)(10086)]645S =-+-+-+-+-= 八(2)班的方差为:222222(2)1[(8086)(10086)(9586)(7086)(8586)]1145S =-+-+-+-+-= 22(1)(2)S S <∴八(1)班的成绩较为整齐.【点睛】本题考查了平均数,中位数,方差的概念及统计意义,熟练掌握其概念是解题关键.。
北师版八年级数学下册第六章综合素质评价含答案
北师版八年级数学下册第六章综合素质评价一、选择题(每题3分,共30分)1.在▱ABCD中,∠A+∠C=200°,则∠A的度数是()A.100°B.160°C.80°D.60°2.十边形的内角和为()A.180°B.360°C.1 080°D.1 440°3.【2022·广东】如图,在▱ABCD中,一定正确的是()A.AD=CD B.AC=BD C.AB=CD D.CD=BC(第3题)(第5题)(第6题)4.下列不能..判定一个四边形是平行四边形的是()A.一组对边平行且相等的四边形B.两组对角分别相等的四边形C.一组对边平行,且一组对角相等的四边形D.一组对边相等,且另一组对边平行的四边形5.【2021·恩施州】如图,在▱ABCD中,AB=13,AD=5,AC⊥BC,则▱ABCD 的面积为()A.30 B.60 C.65 D.65 26.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE等于()A.4 B.6 C.8 D.107.如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F,图中全等三角形有()A.5对B.4对C.3对D.2对(第7题)(第8题)(第9题)8.如图,在▱ABCD中,AC⊥AB,∠ABD=30°,AC与BD交于点O,AO=1,则BC的长是()A.7B. 5 C.3 D.2 29.【2022·南充】如图,在正五边形ABCDE中,以AB为边向内作正三角形ABF,则下列结论错误..的是()A.AE=AF B.∠EAF=∠CBFC.∠F=∠EAF D.∠C=∠E10.【2023·北京人大附中模拟】如图,△ABC的面积为24,点D为AC边上的一点,延长BD交BC的平行线AG于点E,连接EC,以DE,EC为邻边作平行四边形DECF,DF交BC边于点H,连接AH.当AD=12CD时,则△AHC的面积为()A.4B.6C.8D.12二、填空题(每题3分,共24分)11.【教材P152随堂练习T2改编】【2022·南充】数学实践活动中,为了测量校园内被花坛隔开的A,B两点的距离,同学们在AB外选择一点C,测得AC,BC两边中点的距离DE为10 m(如图),则A,B两点的距离是________m.(第11题)(第16题)(第17题)(第18题) 12.正六边形的每个外角是________.13.【开放题】在四边形ABCD中,对角线AC,BD交于点O,AD∥BC,请添加一个条件:____________,使四边形ABCD为平行四边形(不添加任何辅助线).14.【教材P155习题T2改编】若一个多边形的内角和为1 260°,则这个多边形的边数为________.15.在▱ABCD中,对角线AC,BD相交于点O,如果AC=14,BD=8,AB=x,那么x的取值范围是____________.16.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长为________.17.如图,在平面直角坐标系中,▱OBCD的顶点O,B,D的坐标分别为(0,0),(5,0),(2,3),则顶点C的坐标是__________.18.【2022·苏州】如图,在平行四边形ABCD中,AB⊥AC, AB=3, AC=4,分别以A,C为圆心,大于12AC的长为半径画弧,两弧相交于点M,N,过M,N两点作直线,与BC交于点E,与AD交于点F,连接AE,CF.则四边形AECF 的周长为________.三、解答题(19~22题每题10分,23题12分,24题14分,共66分) 19.【2022·宿迁】如图,在▱ABCD中,点E,F分别是边AB,CD的中点.求证:AF=CE.20.【教材P137习题T3变式】【2021·怀化】已知:如图,四边形ABCD为平行四边形,点E,A,C,F在同一直线上,AE=CF.求证:(1)△ADE≌△CBF;(2)ED∥BF.21.如图,在△ABC中,∠ABC=90°,在边AC上截取AD=AB,连接BD,过点A作AE⊥BD于点E,F是边BC的中点,连接EF.若AB=5,BC=12,求EF的长度.22.【2022·无锡】如图,在▱ABCD中,点O为对角线BD的中点,EF过点O且分别交AB,DC于点E,F,连接DE,BF.求证:(1)△DOF≌△BOE;(2)DE=BF.23.如图,在▱AB C D中,∠ADC,∠DAB的平分线DF,AE分别与线段BC相交于点F,E,DF与AE相交于点G.(1)求证:AE⊥DF;(2)若AD=10,AB=6,AE=4,求DF的长.24.【操作探究题】在平面直角坐标系中,已知点A(3,0),点B(3,2),点C与点A关于y轴对称,点D与点B关于原点O对称,依次连接AB,BC,CD,DA.(1)请在如图所示的平面直角坐标系中画出示意图,并写出点C与点D的坐标.(2)四边形ABCD是否为平行四边形?请说明理由.(3)在x轴上是否存在一点P,使得△BDP的面积等于四边形ABCD面积的一半?若存在,请直接写出点P的坐标;若不存在,请说明理由.答案一、1.A 2.D 3.C 4.D 5.B 6.C7.C 8.A9.C10.C【点拨】如图,连接EH.∵△ABC的面积为24,AD=12CD,∴S△BDC=16. ∵AE∥BC,∴S△ABC =S△BCE=24,S△AHC=S△EHC.∴S△CDE =S△BCE-S△BDC=24-16=8.∵四边形DECF是平行四边形,∴DF∥EC.∴S△EHC =S△CDE=8=S△AHC.二、11.2012.60°13.AD=BC(答案不唯一)14.915.3<x<1116.2017.(7,3)18.10 【点思路】根据勾股定理得到BC=AB2+AC2=5.由作图可知,MN是线段AC的垂直平分线,所以EC=EA, AF=CF.易得AE=BE=CE=12BC=2.5.根据平行四边形的性质得到AD=BC=5,∠ACD=∠BAC=90°,易得AF=DF=CF=2.5,于是得到结果.三、19.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵点E,F分别是边AB,CD的中点,∴AE=BE=CF=DF.又∵AE∥CF,∴四边形AECF是平行四边形.∴AF=CE.20.证明:(1)∵四边形ABCD为平行四边形,∴DA =BC ,DA ∥BC .∴∠DAC =∠BCA .∵∠DAC +∠EAD =180°,∠BCA +∠FCB =180°,∴∠EAD =∠FCB .在△ADE 和△CBF 中,⎩⎨⎧AE =CF ,∠EAD =∠FCB ,AD =CB ,∴△ADE ≌△CBF (SAS).(2)由(1)知△ADE ≌△CBF ,∴∠E =∠F .∴ED ∥BF .21.解:∵在△ABD 中,AB =AD ,AE ⊥BD ,∴BE =ED ,即点E 是线段BD 的中点.又∵点F 是线段BC 的中点,∴EF 是△BCD 的中位线.∴EF =12DC .∵在Rt △ABC 中,∠ABC =90°,AB =5,BC =12,∴AC =AB 2+BC 2=52+122=13.又∵AD =AB =5,∴DC =AC -AD =13-5=8.∴EF =12DC =4.22.证明:(1)∵点O 为对角线BD 的中点,∴OD =OB .∵四边形ABCD 是平行四边形,∴DF ∥EB .∴∠DFE =∠BEF .在△DOF 和△BOE 中,⎩⎨⎧∠DFO =∠BEO ,∠DOF =∠BOE ,DO =BO ,∴△DOF ≌△BOE (AAS).(2)∵△DOF≌△BOE,∴OF=OE.又∵OD=OB,∴四边形DEBF是平行四边形.∴DE=BF.23.(1)证明:在▱ABCD中,AB∥CD,∴∠ADC+∠DAB=180°.∵DF,AE分别是∠ADC,∠DAB的平分线,∴∠ADF=∠CDF=12∠ADC,∠DAE=∠BAE=12∠DAB.∴∠ADF+∠DAE=12(∠ADC+∠DAB)=90°.∴∠AGD=90°.∴AE⊥DF.(2)解:如图,过点D作DH∥AE,DH交BC的延长线于点H.则四边形AEHD是平行四边形,且FD⊥DH.∴DH=AE=4,EH=AD=10.在▱ABCD中,AD∥BC,∴∠ADF=∠CFD,∠DAE=∠BEA.由(1)知∠CDF=∠ADF,∠BAE=∠DAE.∴∠CDF=∠CFD,∠BAE=∠BEA.∴DC=FC,AB=EB.在▱ABCD中,AD=BC=10,AB=DC=6,∴CF=BE=6,BF=BC-CF=10-6=4.∴FE=BE-BF=6-4=2.∴FH=FE+EH=2+10=12.在Rt△FDH中,DF=FH2-DH2=122-42=82,即DF的长是8 2. 24.解:(1)如图所示.∵点A(3,0),点C与点A关于y轴对称,∴C(-3,0).∵点B(3,2),点D与点B关于原点O对称,∴D(-3,-2).(2)四边形ABCD是平行四边形.理由如下:如图,连接BD.∵点C与点A关于y轴对称,∴OA=OC.∵点D与点B关于原点O对称,∴OB=OD.∴四边形ABCD是平行四边形.(3)存在.点P的坐标为(3,0)或(-3,0).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 小亮和小武进行五子棋比赛,小亮提议:“我们两人同时抛掷2枚硬币,如果2枚硬币无均正面朝上让你先下,否则我先下。
”
(1)小亮的提议公平吗?为什么?
(2)如果不公平,你能设计一个公平的规则吗?
【答案】
要判断规则公不公平,我们可以用前面学过的可能性知识来解决,小亮和小武报恩掷硬币可能出现的情况用下表表示:
从表中可以一目了然地看出硬币都朝上的可能性是1
4。
如果规则公平,可能性应该是
3
4。
从表中可以看出,同时出现正面和同时出现反面的可能性的2
4
,也就是
1
2。
因此,规则可
以这规定:如果朝上的面相同,即都是正面或都是反面,小亮先下,朝上的面不同,即一正一反,小武先下。
(换成1枚硬币也行。
)
2.在右面圆盘上涂蓝色和红色。
【本题考查:可能性】
(1)指针指在红色的可能性大。
(2)指针指在蓝色的可能性大。
(3)指针指在蓝色和红色的可能性一样大。
【答案】
3. 6名学生玩“飞行棋”。
小东在一块长方体橡皮的各面分别写“1,2,3,4,5,6”,任意掷出橡皮,朝上的数字是几,那个人就前进几步。
【本题考查:可能性】
(1)你认为小东设计的方案公平吗?为什么?
(2)如果不公平,那么应该怎样设计才公平呢?
【答案】(1)不公平,长方体横的情况比竖着的情况多。
(2)将橡皮切成正方形。
4. 两人玩游戏,掷骰子定输赢,骰子每个面分别写着1,2,3,4,5,6。
【本题考查:事件发生的概率】
(1)请你当法官:这样的游戏规则公平吗?
(2)他们赢得可能性各是多少?
(3)如果你认为不公平,那么应该怎样修改规则?
【答案】(1)不公平3和6是3倍数,1、2、4、5不是3的倍数。
(2)王杰赢的可能性是,李菲赢的可能性是。
(3)朝上的面是单数的算王杰赢,朝上的面是双数的算李菲赢。
(答案不唯一)。
4.
转动①、②两个转盘的指针,根据两个指针所指颜色的可能性完成下面的统计表。
【本题考查:事件发生的概率】
(1)共有()种可能出现的结果。
(2)两个指针同时指向同一种颜色的可能性是()。
【答案】表略;
5. 有两个相同的骰子,每个面分别写着1,2,3,4,5,6,同是掷出后,它们的和大于4的可能性是多大?【本题考查:事件发生的概率】
【答案】
6. 用空白的圆形转盘,请你按要求涂色。
【本题考查:事件发生的概率】
(1)使指针停在红色和黄色区域的可能性都是。
(2)使指针停在红色和黄以区域的可能性都是。
(3)使指针停在红色和黄色区域的可能性相等。
【答案】提示:(1)把圆分为两部分,分别图上红色和黄色;
(2)把圆分为四部分,部分涂红色,部分涂黄色,剩余的涂蓝色;
(3)可以把圆分为两部分,分别图上红色和黄色;
7. 下面是一个投靶的圆形盘面,共有10个圆环,小青投了10次靶,中10环的可能性一定是吗?说说理由。
【本题考查:事件发生的概率】
【答案】不一定盘面的10个圆环的面积大小不一样大,10次靶投中的环数不是均等的。
所以中10环的可能性不一定是
8. 袋子里有5张卡片,分别写着1,2,3,4,5。
任意从袋子里取出一张卡片,如果取出的卡片是单数则甲获胜,如果取出的卡片是双数则乙获胜。
【本题考查:事件发生的概率】
(1)这个游戏规则对双方公平吗?为什么?
(2)如果不公平,你能设计一个公平的游戏规则吗?
【答案】(1)不公平;单数有1、2、3共三个数,双数有2、4共两个数,单数总数多,出现的可能性大。
(2)袋子里有6张卡片,分别写着1,2,3,4,5、6。
任意从袋子里取出一张卡片,如果取出的卡片是单数则甲获胜,如果取出的卡片是双数则乙获胜。