历年全国人教版数学高考真题与模拟题分类汇编 n单元 选修4系列(文科2014年) 含答案
历年全国人教版数学高考真题与模拟题分类汇编 n单元 选修4系列(理科2013年) 含答案
N单元选修4系列N1选修4-1 几何证明选讲图1-622.N1 选修4-1:几何证明选讲如图1-6所示,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC=3,延长CE交AB于点F,求△BCF外接圆的半径.22.解:(1)证明:联结DE,交BC于点G.由弦切角定理得,∠ABE=∠BCE.而∠ABE=∠CBE,故∠CBE=∠BCE,BE=CE.又因为DB⊥BE,所以DE为直径,∠DCE=90°,由勾股定理可得DB=DC.(2)由(1)知,∠CDE=∠BDE,DB=DC,故DG是BC的中垂线,所以BG=3 2.设DE的中点为O,联结BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°,所以CF⊥BF,故Rt△BCF外接圆的半径等于3 2.15.N1 (几何证明选讲选做题)如图1-3所示,AB是圆O的直径,点C在圆O上,延长BC到D使BC=CD,过C作圆O的切线交AD于E.若AB=6,ED=2,则BC=________.图1-315.2 3 由题知∠ACB=90°,又BC=CD,∴AD=AB=6,∠BAC=∠CAE,∴AE=AD-ED=4.∵CE为切线,∴∠ACE=∠ABC.∴∠ACE+∠CAE=∠ABC+∠BAC=90°.在△ACD中,∠ACD=90°,CE⊥AD,∴CD2=ED·DA=12,解得CD=2 3,故BC=23.图1-515.N1 (选修4-1:几何证明选讲)如图1-5所示,圆O上一点C在直径AB上的射影为D,点D在半径OC上的射影为E.若AB=3AD,则CEEO的值为________.15.8 设AB=6k,则AD=2k,DO=k,CO=3k,设EO=x,由射影定理:DO2=EO·CO,k2=x·3k,x=k3,故CEEO=3k-k3k3=8.图1-311.N1 如图1-2所示,在半径为7的⊙O中,弦AB,CD相交于点P.PA=PB=2,PD=1,则圆心O到弦CD的距离为________.11.32由相交弦定理可知PA ·PB =PC ·PD ,得PC =4,故弦CD =5,又半径r =7,记圆心O 到直线CD 的距离为d ,则d 2+⎝ ⎛⎭⎪⎫522=7,即d 2=34,故d =32. 21.N1 A .如图1-1所示,AB 和BC 分别与圆O 相切于点D ,C ,AC 经过圆心O ,且BC =2OC.求证:AC =2AD.图1-1证明:联结OD ,因为AB 和BC 分别与圆O 相切于点D ,C ,所以∠ADO =∠ACB =90°.又因为∠A =∠A ,所以Rt △ADO ∽Rt △ACB , 所以BC OD =AC AD. 又BC =2OC =2OD.故AC =2AD.11.N1 如图1-2,AB 为圆O 的直径,PA 为圆O 的切线,PB 与圆O 相交于D ,若PA =3,PD ∶DB =9∶16,则PD =________,AB =________.。
高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 N单元 选修4系列(文科2013年) Word版
N 单元 选修4系列N1选修4-1 几何证明选讲21.N1A .如图1-1所示,AB 和BC 分别与圆O 相切于点D ,C ,AC 经过圆心O ,且BC =2OC. 求证:AC =2AD.图1-1证明:联结OD ,因为AB 和BC 分别与圆O 相切于点D ,C , 所以∠ADO=∠ACB=90°.又因为∠A=∠A,所以Rt △ADO ∽Rt △ACB , 所以BC OD =AC AD .又BC =2OC =2OD. 故AC =2AD. N2 B .已知矩阵A =错误! 0,2),B =1,0) 2,6),求矩阵A -1B . 解:设矩阵A 的逆矩阵为a,c) b,d), 则-1,0) 0,2)a,c) b,d)=1,0) 0,1). 即-a,2c) -b,2d)=1,0) 0,1), 故a =-1,b =0,c =0,d =12,从而A 的逆矩阵为A-1=⎣⎢⎡⎦⎥⎤-1 0 0,12))).所以A -1B =⎣⎢⎡⎦⎥⎤-10 0,12)))1,0) 2,6)=-1,0) -2,3). N3 C .在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ,y =2tan θ(θ为参数),试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.解:因为直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),由x =t +1得t =x -1,代入y =2t ,得到直线l 的普通方程为2x -y -2=0.同理得到曲线C 的普通方程为y 2=2x.联立方程组⎩⎪⎨⎪⎧y =2(x -1),y 2=2x ,解得公共点的坐标为(2,2),12,-1.N4 D .已知a≥b>0,求证:2a 3-b 3≥2ab 2-a 2b.证明:2a 3-b 3-(2ab 2-a 2b)=2a(a 2-b 2)+b(a 2-b 2)=(a 2-b 2)(2a +b)=(a -b)(a +b)(2a +b).因为a≥b>0,所以a -b≥0,a +b>0,2a +b>0. 从而(a -b)(a +b)(2a +b)≥0,即2a 3-b 3≥2ab 2-a 2b. 22.N1 选修4-1:几何证明选讲如图1-6,AB 为⊙O 直径,直线CD 与⊙O 相切于E ,AD 垂直CD 于D ,BC 垂直CD 于C ,EF 垂直AB 于F ,联结AE ,BE ,证明:(1)∠FEB=∠CEB ;(2)EF 2=AD·BC.图1-622.解:证明:(1)由直线CD 与⊙O 相切,得∠CEB=∠EAB.由AB 为⊙O 的直径,得AE⊥EB,从而∠EAB+∠EBF=π2.又EF⊥AB,得∠FEB+∠EBF=π2,从而∠FEB=∠EAB.故∠FEB=∠CEB.(2)由BC⊥CE,EF⊥AB,∠FEB=∠CEB,BE 是公共边,得Rt △BCE ≌Rt △BFE ,所以BC =BF.类似可证:Rt △ADE ≌Rt △AFE ,得AD =AF. 又在Rt △AEB 中,EF⊥AB,故FE 2=AF·BF. 所以EF 2=AD·BC.B .N1 (几何证明选做题)如图1-4所示,AB 与CD 相交于点E ,过E 作BC 的平行线与AD 的延长线交于点P ,已知∠A=∠C,PD =2DA =2,则PE =________.图1-46 利用已知图形关系可得∠B CE =∠PED=∠BAP,可得△PDE∽△PEA,可得PE PA =PDPE ,而PD =2DA =2,则PA =3,则PE 2=PA·PD=6,PE = 6.22.N1 选修4-1:几何证明选讲如图1-6,直线AB 为圆的切线,切点为B ,点C 在圆上,∠ABC 的平分线BE 交圆于点E ,DB 垂直BE 交圆于点D.(1)证明:DB =DC ;(2)设圆的半径为1,BC =3,延长CE 交AB 于点F ,求△BCF 外接圆的半径.图1-622.解:(1)联结DE ,交BC 于点G.由弦切角定理得,∠ABE=∠BCE. 而∠ABE=∠CBE,故∠CBE=∠BCE,BE =CE. 又因为DB⊥BE,所以DE 为直径,∠DCE=90°, 由勾股定理可得DB =DC.(2)由(1)知,∠CDE=∠BDE,DB =DC , 故DG 是BC 的中垂线,所以BG =32. 设DE 的中点为O ,联结BO ,则∠BOG=60°, 从而∠ABE=∠BCE=∠CBE=30°, 所以CF⊥BF,故Rt △BCF 外接圆的半径等于32. 13.N1 如图1-2所示,在圆内接梯形ABCD 中,AB∥DC.过点A 作圆的切线与CB 的延长线交于点E.若AB =AD =5,BE =4,则弦BD 的长为________.图1-213.152 联结AC.由圆内接梯形的性质得,∠DCB=∠ABE,∠DAB+∠DCB=180°,∠ABC+∠DCB=180°,∴∠DAB=∠ABC,∠DAB+∠ABE=180°,又∵∠ADB =∠ACB,∴∠CAB=∠DBA,又∠ADB=∠ABD,∴∠BAC=∠BCA,∴BC=AB =5.由切割线定理得AE 2=BE·EC=4×(4+5)=36,由cos ∠ABE =-cos ∠DAB , 得-AD 2+AB 2-BD 22AD ·AB =AB 2+BE 2-AE22AB ·BE,即-52+52-BD 22×5×5=52+42-362×5×4,解之得BD =152.22.N1 选修4-1:几何证明选讲如图1-10,CD 为△ABC 外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且BC·AE=DC·AF,B ,E ,F ,C 四点共圆.(1)证明:CA 是△ABC 外接圆的直径;(2)若DB =BE =EA ,求过B ,E ,F ,C 四点的圆的面积与△ABC 外接圆面积的比值.图1-1022.解:(1)因为CD 为△ABC 外接圆的切线,所以∠DCB=∠A,由题设知BC FA =DCEA ,故△CDB∽△AEF,所以∠DBC=∠EFA.因为B ,E ,F ,C 四点共圆,所以∠CFE=∠DBC,故∠EFA=∠CFE=90°. 所以∠CBA=90°,因此CA 是△ABC 外接圆的直径.图1-11(2)联结CE ,因为∠CBE=90°,所以过B ,E ,F ,C 四点的圆的直径为CE , 由DB =BE ,有CE =DC. 又BC 2=DB·BA=2DB 2, 所以CA 2=4DB 2+BC 2=6DB 2. 而DC 2=DB·DA=3DB 2,故过B ,E ,F ,C 四点的圆的面积与△ABC 外接圆面积的比值为12.15.N1 (几何证明选讲选做题)如图1-3,在矩形ABCD 中,AB =3,BC =3,BE⊥AC,垂足为E ,则ED =________.图1-315.212AB =3,BC =3AC =3+9=2 3,∵AB 2=AE·AC,∴AE=32.又∵tan ∠ACB =AB BC =33,∴∠ACB=π6,故∠EAD=π6.在△AED 中,由余弦定理得ED 2=AE 2+AD 2-2AE·AD cos ∠EAD =34+9-2×32×3cos π6=214,故ED =212.N2选修4-2 矩阵N3选修4-4 参数与参数方程14.N3 (坐标系与参数方程选做题)已知曲线C 的极坐标方程为ρ=2cos θ.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为________.14.⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数) 将曲线C 的极坐标方程ρ=2cos θ化为普通方程为(x -1)2+y 2=1,则其参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ.(θ为参数).11.N3 在平面直角坐标系xOy 中,若直线l 1:⎩⎪⎨⎪⎧x =2s +1,y =s (s 为参数)和直线l 2:⎩⎪⎨⎪⎧x =at ,y =2t -1(t 为参数)平行,则常数a 的值为________.11.4 l 1:⎩⎪⎨⎪⎧x =2s +1,y =s ,即x -2y -1=0,l 2:⎩⎪⎨⎪⎧x =at ,y =2t -1,即2x -ay -a =0.由两直线平行,得21=-a -2≠-a-1,解得a =4.23.N3 选修4-4:坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos θ-π4=2 2.(1)求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t∈R 为参数),求a ,b 的值.23.解:(1)圆C 1的直角坐标方程为x 2+(y -2)2=4.直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧x 2+(y -2)2=4,x +y -4=0得⎩⎪⎨⎪⎧x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=2,y 2=2. 所以C 1与C 2交点的极坐标为4,π2,2 2,π4.注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3),故直线PQ 的直角坐标方程为x -y +2=0.由参数方程可得y =b 2x -ab2+1.所以⎩⎪⎨⎪⎧b2=1,-ab 2+1=2,解得a =-1,b =2.23.N3 选修4-4:坐标系与参数方程已知动点P ,Q 都在曲线C :⎩⎪⎨⎪⎧x =2cos t ,y =2sin t (t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点.(1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 23.解:(1)依题意有P(2cos α,2sin α),Q(2cos 2α,2sin 2α),因此M(cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cos α+cos 2α,y =sin α+sin 2α(α为参数,0<α<2π).(2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π). 当α=π时,d =0,故M 的轨迹过坐标原点.C .N3 (坐标系与参数方程选做题)圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t ,(t 为参数)的焦点坐标是________.(1,0) 由所给的曲线的参数方程化为普通方程为:y 2=4x ,为抛物线,其焦点坐标为(1,0).23.N3 选修4-4:坐标系与参数方程已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).23.解:(1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t 消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0, 得ρ2-8ρcos θ-10ρsin θ+16=0. 所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0,由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0解得⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =0,y =2. 所以C 1与C 2交点的极坐标分别为⎝ ⎛⎭⎪⎫2,π4,⎝ ⎛⎭⎪⎫2,π2.N4选修4-5 不等式选讲21.B12,N4 设a>0,b>0,已知函数f(x)=ax +bx +1.(1)当a≠b 时,讨论函数f(x)的单调性;(2)当x>0时,称f(x)为a ,b 关于x 的加权平均数. (i)判断f(1),fb a ,f b a 是否成等比数列,并证明f b a≤f ba; (ii)a ,b 的几何平均数记为G ,称2aba +b 为a ,b 的调和平均数,记为H.若H≤f(x)≤G,求x 的取值范围.21.解:(1)f(x)的定义域为(-∞,-1)∪(-1,+∞), f ′(x)=a (x +1)-(ax +b )(x +1)2=a -b(x +1)2.当a >b 时,f′(x)>0,函数f(x)在(-∞,-1),(-1,+∞)上单调递增; 当a <b 时,f′(x)<0,函数f(x)在(-∞,-1),(-1,+∞)上单调递减. (2)(i)计算得f(1)=a +b 2>0,f ⎝ ⎛⎭⎪⎫b a =2ab a +b >0,f ⎝⎛⎭⎪⎫b a =ab >0. 故f(1)f ⎝ ⎛⎭⎪⎫b a =a +b 2·2ab a +b =ab =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫b a 2,即 f(1)f ⎝ ⎛⎭⎪⎫b a =⎣⎢⎡⎦⎥⎤f ⎝⎛⎭⎪⎫b a 2.① 所以f(1),f ⎝ ⎛⎭⎪⎫b a ,f ⎝ ⎛⎭⎪⎫b a 成等比数列. 因a +b 2≥ab ,即f(1)≥f ⎝⎛⎭⎪⎫b a ,结合①得f ⎝ ⎛⎭⎪⎫b a ≤f ⎝⎛⎭⎪⎫b a . (ii)由(i)知f ba =H ,fba=G ,故由H≤f (x)≤G , 得f ⎝ ⎛⎭⎪⎫b a ≤f (x)≤f ⎝⎛⎭⎪⎫b a .② 当a =b 时,f ⎝ ⎛⎭⎪⎫b a =f(x)=f ⎝⎛⎭⎪⎫b a =a. 这时,x 的取值范围为(0,+∞); 当a >b 时,0<b a <1,从而ba <b a ,由f(x)在(0,+∞)上单调递增与②式,得ba≤x ≤b a ,即x 的取值范围为⎣⎢⎡⎦⎥⎤ba ,b a ; 当a <b 时,b a >1,从而b a >ba,由f(x)在(0,+∞)上单调递减与②式, 得b a ≤x ≤b a ,即x 的取值范围为⎣⎢⎡⎦⎥⎤b a ,b a . 24.N4选修4-5:不等式选讲 已知函数f(x)=|x -a|,其中a>1.(1)当a =2时,求不等式f(x)≥4-|x -4|的解集;(2)已知关于x 的不等式|f(2x +a)-2f(x)|≤2的解集为{x|1≤x≤2},求a 的值.24.解:(1)当a =2时,f(x)+|x -4|=⎩⎪⎨⎪⎧-2x +6,x≤2,2,2<x<4,2x -6,x≥4.当x≤2时,由f(x)≥4-|x -4|得-2x +6≥4,解得x ≤1; 当2<x<4时,f(x)≥4-|x -4|无解;当x≥4时,由f (x)≥4-|x -4|得2x -6≥4,解得x≥5;所以f(x)≥4-|x -4|的解集为{x|x≤1或x≥5}.(2)记h(x)=f(2x +a)-2f(x),则h(x)=⎩⎪⎨⎪⎧-2a ,x≤0,4x -2a ,0<x<a ,2a ,x≥a.由|h(x)|≤2,解得a -12≤x ≤a +12.又已知|h(x)|≤2的解集为{x|1≤x≤2}. 所以⎩⎪⎨⎪⎧a -12=1,a +12=2,于是a =3.24.N4 选修4-5:不等式选讲 设a ,b ,c 均为正数,a +b +c =1. 证明:(1)ab +bc +ca≤13;(2)a 2b +b 2c +c2a≥1.24.证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca. 由题设得(a +b +c)2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca)≤1,即ab +bc +ca≤13.(2)因为a 2b +b≥2a,b 2c +c≥2b,c2a +a≥2c,故a 2b +b 2c +c2a +(a +b +c)≥2(a+b +c), 即a 2b +b 2c +c2a ≥a +b +c. 所以a 2b +b 2c +c2a≥1.A .N4 (不等式选做题)设a ,b∈R ,|a -b|>2,则关于实数x 的不等式|x -a|+|x -b|>2的解集是________.(-∞,+∞) 利用绝对值不等式的性质可得|x -a|+|x -b|≥|(x-a)-(x -b)|=|b -a|=|a -b|.又由|a -b|>2恒成立,故不等式解集为(-∞,+∞).14.N4 设a +b =2,b>0,则12|a|+|a|b的最小值为________. 14.3412|a|+|a|b =a +b 4|a|+|a|b =a 4|a|+b 4|a|+|a|b ≥a 4|a|+2b 4|a|·|a|b ≥-14+1=34. 24.N4 选修4-5:不等式选讲已知函数f(x)=|2x -1|+|2x +a|,g(x)=x +3.(1)当a =-2时,求不等式f(x)<g(x)的解集; (2)设a >-1,且当x∈⎣⎢⎡⎭⎪⎫-a 2,12时,f(x)≤g(x),求a 的取值范围. 24.解:(1)当a =-2时,不等式f(x)<g(x)化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎪⎨⎪⎧-5x ,x<12,-x -2,12≤x≤1,3x -6,x>1.其图像如图所示,从图像可知,当且仅当x∈(0,2)时,y<0,所以原不等式的解集是{x|0<x<2}.(2)当x∈⎣⎢⎡⎭⎪⎫-a 2,12时,f(x)=1+a. 不等式f(x)≤g(x)化为1+a≤x+3.所以x≥a-2对x∈⎣⎢⎡⎭⎪⎫-a 2,12都成立. 故-a 2≥a -2,即a≤43. 从而a 的取值范围是⎝⎛⎦⎥⎤-1,43.N5选修4-7 优选法与试验设计P图1-13.BP 如图1-1所示,程序框图(算法流程图)的输出结果为( )A.34B.16C.1112D.25243.C 依次运算的结果是s =12,n =4;s =12+14,n =6;s =12+14+16,n =8,此时输出s ,故输出结果是12+14+16=错误!.。
2014年(全国卷II)(含答案)高考文科数学
2014年(全国卷II)(含答案)高考文科数学2014年普通高等学校招生全国统一考试(2 新课标Ⅱ卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.已知集合2{2,0,2},{|20}A B x x x =-=--=,则A ∩B=( )A. ∅B. {}2C. {0}D. {2}- 2.131i i +=-( ) A.12i + B. 12i -+ C. 12i - D. 12i --3.函数()f x 在0x x =处导数存在,若0:()0p f x =:0:q x x =是()f x 的极值点,则( )A .p 是q 的充分必要条件B. p 是q 的充分条件,但不是q 的必要条件C. p 是q 的必要条件,但不是q 的充分条件D. p 既不是q 的充分条件,学科 网也不是q 的必要条件4.设向量,a b 满足10a b +=,6a b -=,则a b ⋅=( )A. 1B. 2C. 3D. 55.等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A. (1)n n +B. (1)n n -C. (1)2n n +D. (1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为( )A.2717B.95C.2710 D.3111.若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是( )A.(],2-∞-B.(],1-∞-C.[)2,+∞D.[)1,+∞12.设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )A.[-1,1]B.11,22⎡⎤-⎢⎥⎣⎦C.2,2⎡-⎣D.22⎡⎢⎣⎦二、填空题:本大题共4小题,每小题5分.13.甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.14. 函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________.15. 偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________.16.数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________. 三、解答题:17.(本小题满分12分)四边形ABCD 的内角A 与C 互补,2,3,1====DA CD BC AB .(1)求C 和BD ;(2)求四边形ABCD 的面积.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点.(1)证明:PB //平面AEC ;(2)设1,3AP AD ==,三棱锥P ABD -的体积34V =,求A 到平面PBC 的距离.19.(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(本小题满分12分)设12,F F 分别是椭圆C:22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b .21.(本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-.(1)求a ;(2)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.22.(本小题满分10分)选修4-1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于,B C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E .证明:(1)BE EC =;(2)22AD DE PB ⋅=23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ,[0,]2πρθθ=∈. (1)求C 得参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:32l y x =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4-5:不等式选讲设函数1()||||(0)f x x x a a a =++-> (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.2014年普通高等学校招生全国统一考试(2 新课标Ⅱ卷)数学(文)试题参考答案:参考答案1.B【解析】试题分析:由已知得,{}21B =,-,故{}2A B =,选B .考点:集合的运算.2.B【解析】 试题分析:由已知得,131i i+-(13)(1i)2412(1i)(1i)2i i i ++-+===-+-+,选B . 考点:复数的运算.3.C【解析】试题分析:若0x x =是函数()f x 的极值点,则'0()0f x =;若'0()0f x =,则0x x =不一定是极值点,例如3()f x x =,当0x =时,'(0)0f =,但0x =不是极值点,故p 是q 的必要条件,但不是q 的充分条件,选C .考点:1、函数的极值点;2、充分必要条件.4.A【解析】试题分析:由已知得,22210a a b b +⋅+=,2226a a b b -⋅+=,两式相减得,44a b ⋅=,故1a b ⋅=.考点:向量的数量积运算.5.A【解析】试题分析:由已知得,2428a a a =⋅,又因为{}n a 是公差为2的等差数列,故2222(2)(6)a d a a d +=⋅+,22(4)a +22(12)a a =⋅+,解得24a =,所以2(2)n a a n d =+-2n =,故1()(n 1)2n n n a a S n +==+. 【考点】1、等差数列通项公式;2、等比中项;3、等差数列前n 项和.6.C【解析】试题分析:由三视图还原几何体为一个小圆柱和大圆柱组成的简单组合体.其中小圆柱底面半径为2、高为4,大圆柱底面半径为3、高为2,则其体积和为22243234πππ⨯⨯+⨯⨯=,而圆柱形毛坯体积为23654ππ⨯⨯=,故切削部分体积为20π,从而切削的部分的体积与原来毛坯体积的比值为20105427ππ=. 考点:三视图.7.C【解析】试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B =,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以11111133133A B DC B DC V S AD -∆=⋅==. 考点:1、直线和平面垂直的判断和性质;2、三棱锥体积.8.D【解析】试题分析:输入2,2x t ==,在程序执行过程中,,,M S k 的值依次为1,3,1M S k ===;2,5,2M S k ===;2,7,3M S k ===,程序结束,输出7S =.考点:程序框图.9.B【解析】试题分析:画出可行域,如图所示,将目标函数2z x y =+变形为122z y x =-+,当z 取到最大值时,直线122z y x =-+的纵截距最大,故只需将直线12y x =-经过可行域,尽可能平移到过A 点时,z 取到最大值.10330x y x y --=⎧⎨-+=⎩,得(3,2)A ,所以max z 3227=+⨯=. x yx-3y+3=0x+y-1=0x-y-1=0–1–2–3–41234–1–2–3–41234A O考点:线性规划.10.C【解析】 试题分析:由题意,得3(,0)4F .又因为03k tan 303==,故直线AB 的方程为33y (x )34=-,与抛物线2=3y x 联立,得21616890x x -+=,设1122(x ,y ),(x ,y )A B ,由抛物线定义得,12x x AB p =++=168312162+=,选C . 考点:1、抛物线的标准方程;2、抛物线的定义.11.D【解析】 试题分析:'1()f x k x =-,由已知得'()0f x ≥在()1,x ∈+∞恒成立,故1k x≥,因为1x >,所以101x<<,故k 的取值范围是[)1,+∞. 【考点】利用导数判断函数的单调性.12.A【解析】试题分析:依题意,直线MN 与圆O 有公共点即可,即圆心O 到直线MN 的距离小于等于1即可,过O 作OA ⊥MN ,垂足为A ,在Rt OMA ∆中,因为OMA ∠045=,故02sin 452OA OM OM ==1≤,所以2OM ≤2012x +,解得011x -≤≤. x yA 11OM N考点:1、解直角三角形;2、直线和圆的位置关系.13.13【解析】试题分析:甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种有9种不同的结果,分别为(红,红),(红,白),(红,蓝),(白,红),(白,白),(白,蓝),(蓝,红),(蓝,白),(蓝,蓝).他们选择相同颜色运动服有3种不同的结果,即(红,红),(白,白),(蓝,蓝),故他们选择相同颜色运动服的概率为3193P ==. 考点:古典概型的概率计算公式.14.1【解析】试题分析:由已知得,()sin cos cos sin 2cos sin f x x x x ϕϕϕ=+-sin cos cos sin x x ϕϕ=-sin()x ϕ=-1≤,故函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为1.考点:1、两角和与差的正弦公式;2、三角函数的性质.15.3【解析】试题分析:因为)(x f y =的图像关于直线2=x 对称,故(3)(1)3f f ==,又因为)(x f y =是偶函数,故(1)(1)3f f -==.考点:1、函数图象的对称性;2、函数的奇偶性.16.12. 【解析】试题分析:由已知得,111n n a a +=-,82a =,所以781112a a =-=,67111a a =-=-,56112a a =-=, 451112a a =-=,34111a a =-=-,23112a a =-=,121112a a =-=.三、解答题(17)解:(I )由题设及余弦定理得2222cos BD BC CD BC CD C =+-⋅=1312cos C - , ①2222cos BD AB DA AB DA A =+-⋅54cos C =+. ②由①,②得1cos 2C =,故060C =,7BD = (Ⅱ)四边形ABCD 的面积11sin sin 22S AB DA A BC CD C =⋅+⋅ 011(1232)sin 6022=⨯⨯+⨯⨯ 3=(18)解:(I )设BD 与AC 的交点为O ,连结EO.因为ABCD 为矩形,所以O 为BD 的中点,又E 为PD 的中点,所以EO ∥PB.EO ⊂平面AEC ,PB ⊄平面AEC,所以PB ∥平面AEC.(Ⅱ)V 1366PA AB AD AB =⋅⋅=. 由34V =,可得32AB =.作AH PB ⊥交PB 于H 。
2014年高考数学(文)真题分类汇编:N单元 选修4系列
数 学 N 单元 选修4系列 N1 选修4-1 几何证明选讲15.[2014·广东卷] (几何证明选讲选做题)如图1-1所示,在平行四边形ABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则△CDF 的周长△AEF 的周长=________.图1-115.3 21.[2014·江苏卷] A .[选修4-1:几何证明选讲] 如图1-7所示,AB 是圆O 的直径,C ,D 是圆O 上位于AB 异侧的两点.证明:∠OCB =∠D .图1-7证明:因为B ,C 是圆O 上的两点,所以OB =OC , 所以∠OCB =∠B .又因为C ,D 是圆O 上位于AB 异侧的两点, 所以∠B ,∠D 为同弧所对的两个圆周角, 所以∠B =∠D ,因此∠OCB =∠D . [2014·江苏卷] B .[选修4-2:矩阵与变换]已知矩阵A =⎣⎢⎡⎦⎥⎤-1 21 x ,B =⎣⎢⎡⎦⎥⎤1 12 -1,向量α=⎣⎢⎡⎦⎥⎤2y ,x ,y 为实数.若=,求x +y 的值. 22.[2014·辽宁卷] 选修4-1如图1-6,EP 交圆于E ,C 两点,PD 切圆于D ,G 为CE 上一点且PG =PD ,连接DG并延长交圆于点A ,作弦AB 垂直EP ,垂足为F .(1)求证:AB 为圆的直径; (2)若AC =BD ,求证:AB =ED .22.证明:(1)因为PD =PG ,所以∠PDG =∠PGD . 由于PD 为切线,故∠PDA =∠DBA .又由于∠PGD=∠EGA,故∠DBA=∠EGA,所以∠DBA+∠BAD=∠EGA+∠BAD,从而∠BDA=∠PF A.因为AF⊥EP,所以∠PF A=90°,所以∠BDA=90°,故AB为圆的直径.(2)连接BC,DC.由于AB是直径,故∠BDA在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,从而Rt△BDA≌Rt△ACB,所以∠DAB =∠CBA.又因为∠DCB=∠DAB,所以∠DCB=∠CBA,故DC∥AB.因为AB⊥EP,所以DC⊥EP,∠DCE为直角.所以ED为直径.又由(1)知AB为圆的直径,所以ED=AB.22.[2014·新课标全国卷Ⅱ] 选修4-1:几何证明选讲如图1-5,P是⊙O外一点,P A是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2P A,D为PC的中点,AD的延长线交⊙O于点E.证明:(1)BE=EC;(2)AD·DE=2PB2.图1-522.证明:(1)连接AB,AC.由题设知P A=PD,故∠P AD=∠PDA.因为∠PDA=∠DAC+∠DCA,∠P AD=∠BAD+∠P AB,∠DCA=∠P AB,所以∠DAC=∠BAD,从而BE=EC.因此BE=EC.(2)由切割线定理得P A2=PB·PC.因为P A=PD=DC,所以DC=2PB,BD=PB.由相交弦定理得AD·DE=BD·DC,所以AD·DE=2PB2.22.[2014·全国新课标卷Ⅰ] 选修4-1:几何证明选讲如图1-5,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.图1-5(1)证明:∠D=∠E;(2)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.22.证明:(1)由题设知A,B,C,D四点共圆,所以∠D=∠CBE.由已知得∠CBE=∠E,故∠D=∠E.(2)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,故点O在直线MN上.又AD不是⊙O的直径,M为AD的中点,故OM⊥AD,即MN⊥AD,所以AD∥BC,故∠A=∠CBE.又∠CBE=∠E,故∠A=∠E.由(1)知,∠D=∠E,所以△ADE为等边三角形.15.[2014·陕西卷]B.(几何证明选做题)如图1-3所示,△ABC中,BC=6,以BC为直径的半圆分别交AB,AC于点E,F,若AC=2AE,则EF=________.图1-315.37.[2014·天津卷] 如图1-1所示,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC于点E,过点B的圆的切线与AD的延长线交于点F.在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD·F A;③AE·CE=BE·DE;④AF·BD=AB·BF.则所有正确结论的序号是()A .①②B .③④C .①②③D .①②④ 7.DN2 选修4-2 矩阵N3 选修4-4 参数与参数方程 14.[2014·广东卷] (坐标系与参数方程选做题)在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为________.14.(1,2)12.[2014·湖南卷] 在平面直角坐标系中,曲线C :⎩⎨⎧x =2+22t ,y =1+22t(t 为参数)的普通方程为________.12.x -y -1=0 3[2014·江苏卷] C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1-22t ,y =2+22t(t 为参数),直线l与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.解:将直线l 的参数方程⎩⎨⎧x =1-22t ,y =2+22t代入抛物线方程y 2=4x ,得⎝⎛⎭⎫2+22t 2=4⎝⎛⎭⎫1-22t ,解得t 1=0,t 2=-8 2,所以AB =|t 1-t 2|=8 2. 23.[2014·辽宁卷] 选修4-4:坐标系与参数方程将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.23.解:(1)设(x 1,y 1)为圆上的点,经变换为C 上的点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1得x 2+⎝⎛⎭⎫y 22=1,即曲线C 的方程为x 2+y 24=1. 故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2. 不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝⎛⎭⎫12,1,所求直线斜率k =12,于是所求直线方程为y -1=12⎝⎛⎭⎫x -12,即2x -4y =-3, 化为极坐标方程,得2 ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.23.[2014·新课标全国卷Ⅱ] 选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.23.解:(1)C 的普通方程为 (x -1)2+y 2=1(0≤y ≤1). 可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t ,(t 为参数,0≤t ≤π). (2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎫1+cos π3,sin π3,即⎝⎛⎫32,32.23.[2014·全国新课标卷Ⅰ] 选修4-4:坐标系与参数方程已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程、直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.23.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数),直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到直线l 的距离d =55|4cos θ+3sin θ-6|,则|P A |=d sin 30°=2 55|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|P A |取得最大值, 最大值为2255.当sin(θ+α)=1时,|P A |取得最小值, 最小值为255.15. [2014·陕西卷]C.(坐标系与参数方程选做题)在极坐标系中,点⎝⎛⎭⎫2,π6到直线ρ sin ⎝⎛⎭⎫θ-π6=1的距离是________.15. 1N4 选修4-5 不等式选讲 4[2014·江苏卷] D .[选修4-5:不等式选讲]已知x >0,y >0,证明:(1+x +y 2)(1+x 2+y )≥9xy . 证明:因为x >0,y >0,所以1+x +y 2≥33xy 2>0, 1+x 2+y ≥33x 2y >0,故(1+x +y 2)(1+x 2+y )≥33xy 2·33x 2y =9xy .15.[2014·江西卷] x ,y ∈R ,若|x |+|y |+|x -1|+|y -1|≤2,则x +y 的取值范围为________. 15.[0,2] 24.[2014·辽宁卷] 选修4-5:不等式选讲设函数f (x )=2|x -1|+x -1,g (x )=16x 2-8x +1.记f (x )≤1的解集为M ,g (x )≤4的解集为N .(1)求M ;(2)当x ∈M ∩N 时,证明:x 2f (x )+x [f (x )]2≤14.24.解:(1)f (x )=⎩⎪⎨⎪⎧3x -3,x ∈[1,+∞),1-x ,x ∈(-∞,1).当x ≥1时,由f (x )=3x -3≤1得x ≤43,故1≤x ≤43;当x <1时,由f (x )=1-x ≤1得x ≥0, 故0≤x <1.所以f (x )≤1的解集M =⎩⎨⎧⎭⎬⎫x 0≤x ≤43.(2)由g (x )=16x 2-8x +1≤4得16⎝⎛⎭⎫x -142≤4,解得-14≤x ≤34,因此N =⎩⎨⎧⎭⎬⎫x -14≤x ≤34,故M ∩N =⎩⎨⎧⎭⎬⎫x 0≤x ≤34.当x ∈M ∩N 时,f (x )=1-x ,于是x 2f (x )+x ·[f (x )]2=xf (x )[x +f (x )]=xf (x )=x (1-x )=14-⎝⎛⎭⎫x -122≤14.24.[2014·新课标全国卷Ⅱ] 选修4-5:不等式选讲 设函数f (x )=⎪⎪⎪⎪x +1a +|x -a |(a >0). (1)证明:f (x )≥2;(2)若f (3)<5,求a 的取值范围.24.解:(1)证明:由a >0 ,有f (x )=⎪⎪⎪⎪x +1a +|x -a |≥⎪⎪⎪⎪x +1a -(x -a )=1a +a ≥2, 所以f (x )≥2.(2)f (3)=⎪⎪⎪⎪3+1a +|3-a |. 当a >3时,f (3)=a +1a ,由f (3)<5得3<a <5+212.当0<a ≤3时,f (3)=6-a +1a ,由f (3)<5得1+52<a ≤3.综上,a 的取值范围是⎝⎛⎭⎪⎫1+52,5+212.24.[2014·全国新课标卷Ⅰ] 选修4-5:不等式选讲 若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?请说明理由.24.解:(1)由ab =1a +1b ≥2ab ,得ab ≥2,当且仅当a =b =2时等号成立.故a 3+b 3≥2 a 3b 3≥42,当且仅当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥2 6ab ≥4 3.由于4 3>6,从而不存在a ,b ,使2a +3b =6. 15. [2014·陕西卷] A.(不等式选做题)设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则m 2+n 2的最小值为________.15.A.5 [解析]由柯西不等式可知(a 2+b 2)(m 2+n 2)≥(ma +nb )2,即5(m 2+n 2)≥25,当且仅当an =bm 时,等号成立,所以m 2+n 2 ≥ 5.N5 选修4-7 优选法与试验设计。
高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 N单元 选修4系列(文科2016年) Word版
数学N 单元选修4系列N1 选修4-1 几何证明选讲 22.N1选修41:几何证明选讲如图16所示,△OAB 是等腰三角形,∠AOB =120°.以O 为圆心,12OA 为半径作圆.(1)证明:直线AB 与⊙O 相切;(2)点C ,D 在⊙O 上,且A ,B ,C ,D 四点共圆,证明:AB ∥CD .图1622.证明:(1)设E 是AB 的中点,连接OE . 因为OA =OB ,∠AOB =120°, 所以OE ⊥AB ,∠AOE =60°.在Rt △AOE 中,OE =12AO ,即O 到直线AB 的距离等于⊙O 的半径,所以直线AB 与⊙O相切.(2)因为OA =2OD ,所以O 不是A ,B ,C ,D 四点所在圆的圆心.设O ′是A ,B ,C ,D 四点所在圆的圆心,作直线OO ′.由已知得O 在线段AB 的垂直平分线上,又O ′在线段AB 的垂直平分线上,所以OO ′⊥AB .同理可证,OO ′⊥CD ,所以AB ∥CD . 22.N1选修41:几何证明选讲如图15,在正方形ABCD 中,E ,G 分别在边DA ,DC 上(不与端点重合),且DE =DG ,过D 点作DF ⊥CE ,垂足为F .(1)证明:B ,C ,G ,F 四点共圆;(2)若AB =1,E 为DA 的中点,求四边形BCGF 的面积.图1522.解:(1)证明:因为DF ⊥EC ,所以△DEF ∽△CDF ,则有∠GDF =∠DEF =∠FCB ,DF CF=DE CD =DG CB, 所以△DGF ∽△CBF ,由此可得∠DGF =∠CBF .因此∠CGF +∠CBF =180°,所以B ,C ,G ,F 四点共圆. (2)由B ,C ,G ,F 四点共圆,CG ⊥CB 知FG ⊥FB .连接GB .由G 为Rt △DFC 斜边CD 的中点,知GF =GC ,故Rt △BCG ≌Rt △BFG ,因此,四边形BCGF 的面积S 是△GCB 面积S △GCB 的2倍,即S =2S △GCB =2×12×12×1=12.22.N1选修41:几何证明选讲如图16,⊙O 中的中点为P ,弦PC ,PD 分别交AB 于E ,F 两点.(1)若∠PFB =2∠PCD ,求∠PCD 的大小;(2)若EC 的垂直平分线与FD 的垂直平分线交于点G ,证明:OG ⊥CD .图1622.解:(1)连接PB ,BC ,则∠BFD =∠PBA +∠BPD ,∠PCD =∠PCB +∠BCD .因为=,所以∠PBA =∠PCB ,又∠BPD =∠BCD ,所以∠BFD =∠PCD .又∠PFB +∠BFD =180°,∠PFB =2∠PCD ,所以3∠PCD =180°,因此∠PCD =60°.(2)证明:因为∠PCD =∠BFD ,所以∠EFD +∠PCD =180°,由此知C ,D ,F ,E 四点共圆,其圆心既在CE 的垂直平分线上,又在DF 的垂直平分线上,故G 就是过C ,D ,F ,E 四点的圆的圆心,所以G 在CD 的垂直平分线上.又O 也在CD 的垂直平分线上,因此OG ⊥CD .21.A.N1选修41:几何证明选讲如图17,在△ABC 中,∠ABC =90°,BD ⊥AC ,D 为垂足,E 是BC 的中点,求证:∠EDC =∠ABD .图1721.A.证明:在△ADB 和△ABC 中, 因为∠ABC =90°,BD ⊥AC ,∠A 为公共角, 所以△ADB ∽△ABC ,于是∠ABD =∠C . 在Rt △BDC 中,因为E 是BC 的中点, 所以ED =EC ,从而∠EDC =∠C , 所以∠EDC =∠ABD .N2 选修4-2 矩阵21.B .N2选修42:矩阵与变换已知矩阵A =⎣⎢⎡⎦⎥⎤120 -2,矩阵B 的逆矩阵B -1=⎣⎢⎢⎡⎦⎥⎥⎤1 -1202,求矩阵AB . 21.B .解:设B =⎣⎢⎡⎦⎥⎤ab cd ,则B -1B =⎣⎢⎢⎡⎦⎥⎥⎤1 -1202⎣⎢⎡⎦⎥⎤abcd =⎣⎢⎡⎦⎥⎤1001, 即⎣⎢⎢⎡⎦⎥⎥⎤a -12cb -12d 2c 2d =⎣⎢⎡⎦⎥⎤1001,故⎩⎪⎨⎪⎧a -12c =1,b -12d =0,2c =0,2d =1,解得⎩⎪⎨⎪⎧a =1,b =14,c =0,d =12,所以B =⎣⎢⎢⎡⎦⎥⎥⎤114012.因此,AB =⎣⎢⎡⎦⎥⎤120 -2⎣⎢⎢⎡⎦⎥⎥⎤114012=⎣⎢⎢⎡⎦⎥⎥⎤1540 -1.N3 选修4-4 参数与参数方程 23.N3选修44:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .23.解:(1)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2.C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,则由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去)或a =1.当a =1时,极点也为C 1,C 2的公共点,在C 3上, 所以a =1.23.N3选修44:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.23.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2.将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0,于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,则tan α=±153. 所以l 的斜率为153或-153.23.N3选修44:坐标系与参数方程 在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin (θ+π4)=2 2.(1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 23.解:(1)C 1的普通方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值,d (α)=|3cos α+sin α-4|2=2|sin (α+π3)-2|, 当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时点P 的直角坐标为(32,12).21.C .N3选修44:坐标系与参数方程在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),椭圆C的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB的长.21.C .解:椭圆C 的普通方程为x 2+y 24=1.将直线l 的参数方程⎩⎪⎨⎪⎧x =1+12t ,y =32t代入x 2+y 24=1,得1+12t 2+32t 24=1,即7t 2+16t =0,解得t 1=0,t 2=-167.所以AB =|t 1-t 2|=167.N4 选修4-5 不等式选讲 24.N4选修45:不等式选讲 已知函数f (x )=|x +1|-|2x -3|. (1)在图17中画出y =f (x )的图像; (2)求不等式|f (x )|>1的解集.图1724.解:(1)f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,则y =f (x )的图像如图所示.(2)由f (x )的表达式及图像知,当f (x )=1时,x =1或x =3; 当f (x )=-1时,x =13或x =5.故f (x )>1的解集为{x |1<x <3},f (x )<-1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <13或x >5.所以|f (x )|>1的解集为{x ⎪⎪⎪x <13或1<x <3或x >5}.24.N4选修45:不等式选讲已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.24.解:(1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2;当x ≥12时,由f (x )<2得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0,因此|a +b |<|1+ab |.24.N4选修45:不等式选讲已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|,当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. 24.解:(1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6,得-1≤x ≤3. 因此,f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥|2x -a +1-2x |+a =|1-a |+a , 当x =12时等号成立,所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3.① 当a ≤1时,①等价于1-a +a ≥3,无解. 当a >1时,①等价于a -1+a ≥3,解得a ≥2. 所以a 的取值范围是选修45:不等式选讲设a >0,|x -1|<a 3,|y -2|<a3,求证:|2x +y -4|<a .21.D .证明:因为|x -1|<a 3,|y -2|<a3,所以|2x +y -4|=|2(x -1)+(y -2)|≤2|x -1|+|y -2|<2×a 3+a3=a .N5 选修4-7 优选法与试验设计。
高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 N单元 选修4系列(文科)
N 选修4系列N1 选修4-1 几何证明选讲22.N1如图1-8,⊙O和⊙O′相交于A,B两点,过A作两圆的切线分别交两圆于C,D两点,连结DB并延长交⊙O于点E,证明:(1)AC·BD=AD·AB;(2)AC=AE.图1-822.证明:(1)由AC与⊙O′相切于A,得∠CAB=∠ADB,同理∠ACB=∠DAB所以△ACB∽△DAB即AC·BD=AD·AB(2)由AD与⊙O相切于∠AED=∠BAD,又∠ADE=∠BDA,得△EAD∽△ABD.从而AE AB =AD BD,即AE·BD=AD·AB.结合(1)的结论,得AC=AE.22.N1如图1-5,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点.若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.图1-522.证明:(1)因为D ,E 分别为AB ,AC 的中点, 所以DE ∥BC .又已知CF ∥AB ,故四边形BCFD 是平行四边形,所以CF =BD =AD .而CF ∥AD ,连结AF ,所以四边形ADCF 是平行四边形,故CD =AF .因为CF ∥AB ,所以BC =AF ,故CD =BC .(2)因为FG ∥BC ,故GB =CF . 由(1)可知BD =CF ,所以GB =BD .而∠DGB =∠EFC =∠DBC ,故△BCD ∽△GBD .12.N1 正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =13.动点P从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为( )A .8B .6C .4D .312.B 本小题主要考查反射原理及三角形相似知识的应用,解题的突破口为确定反射后点P 的位置.结合点E 、F 的位置进行作图推理,利用反射过程中平行直线及相似三角形作图可得点P 回到E 点时与正方形的边碰撞次数为6次,故选B.15.N1 (几何证明选讲选做题)如图1-3所示,直线PB 与圆O 相切于点B ,D 是弦AC 上的点,∠PBA =∠DBA .若AD =m ,AC =n ,则AB =________.图1-315.mn 本题考查弦切角定理以及三角形相似知识,解决本题的突破口是利用弦切角定理得到∠PBA =∠ACB ,再利用三角形相似求出.因为PB 是圆的切线,所以∠PBA =∠ACB .又因为∠PBA =∠DBA ,所以∠DBA =∠ACB .又因为∠A =∠A ,所以△ABD ∽△ACB ,所以AB AC =ADAB,所以AB 2=AD ×AC =mn ,所以AB =mn .21 A .N1 如图1-7,AB 是圆O 的直径,D ,E 为圆O 上位于AB 异侧的两点,连结BD 并延长至点C ,使BD =DC ,连结AC ,AE ,DE .求证:∠E =∠C .图1-721A.证明:如图,连结OD ,因为BD =DC ,O 为AB 的中点, 所以OD ∥AC ,于是∠ODB =∠C .因为OB =OD ,所以∠因为点A ,E ,B ,D 异侧的两点,所以∠E 和∠B 为同弧所对的圆周角,故∠E =∠B .所以∠15 B. N1如图1,EF ⊥DB ,垂足为F ,若AB =6,AE =1,则DF ·DB =________.图1-615B :5 本题考查了射影定理的知识,解题的突破口是找出直角三角形内的射影定理.连接AD ,在Rt △ABD 中,DE ⊥AB ,所以DE 2=AE ×EB =5,在Rt △EBD 中,EF ⊥DB ,所以DE 2=DF ×DB =5.13.N1 如图1-3所示,已知AB 和AC 是圆的两条弦,过点B 作圆的切线与AC 的延长线相交于点D .过点C 作BD 的平行线与圆相交于点E ,与AB 相交于点F ,AF =3,FB =1,EF =32,则线段CD 的长为________.图1-313.43 由相交弦的性质可得AF ×FB =EF ×FC , ∴FC =AF ×FB EF =3×132=2, 又∵FC ∥BD ,∴AC AD =FC BD =AF AB =34,即BD =83,由切割线定理得BD 2=DA ×DC =4DC 2,解之得DC =43.N2 选修4-2 矩阵⎥⎤-1 3的特征值.于是矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-2 -3-2 λ-1=λ2-3λ-4.令f (λ)=0,解得A 的特征值λ1=-1,λ2=4.3.C3、N2 函数f (x )=⎪⎪⎪⎪⎪⎪sin x 2-1 cos x 的最小正周期是________.3.π 考查二阶矩阵和三角函数的值域,以矩阵为载体,实为考查三角函数的性质,易错点是三角函数的化简.f (x )=sin x cos x +2=12sin2x +2,由三角函数周期公式得,T =2π2=π. N3 选修4-4 参数与参数方程23.N3在直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示);(2)求圆C 1与C 2的公共弦的参数方程.23.解:(1)圆C 1的极坐标方程为ρ=2, 圆C 2的极坐标方程为ρ=4cos θ.解⎩⎪⎨⎪⎧ρ=2,ρ=4cos θ得ρ=2,θ=±π3,故圆C 1与圆C 2交点的坐标为⎝ ⎛⎭⎪⎫2,π3,⎝ ⎛⎭⎪⎫2,-π3.注:极坐标系下点的表示不唯一. (2)(解法一)由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ得圆C 1与C 2交点的直角坐标分别为(1,3),(1,-3).故圆C 1与C 2的公共弦的参数方程为⎩⎪⎨⎪⎧x =1,y =t ,-3≤t ≤ 3.(或参数方程写成⎩⎪⎨⎪⎧x =1,y =y ,-3≤y ≤3)于是圆C 1与C 2的公共弦的参数方程为⎩⎪⎨⎪⎧x =1,y =tan θ,-π3≤θ≤π3. 23.N3已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =2cos φ,y =3sin φ(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C 2的极坐标方程是ρ=2,正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为⎝⎛⎭⎪⎫2,π3.(1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|PA |2+|PB |2+|PC |2+|PD |2的取值范围. 23.解:(1)由已知可得 A ⎝⎛⎭⎪⎫2cos π3,2sin π3,B ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+π2,2sin ⎝ ⎛⎭⎪⎫π3+π2,C ⎝ ⎛⎭⎪⎫2cos ⎝⎛⎭⎪⎫π3+π,2sin ⎝⎛⎭⎪⎫π3+π, D ⎝⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+3π2,2sin ⎝ ⎛⎭⎪⎫π3+3π2, 即A (1,3),B (-3,1),C (-1,-3),D (3,-1). (2)设P (2cos φ,3sin φ),令S =|PA |2+|PB |2+|PC |2+|PD |2,则S =16cos 2φ+36sin 2φ+16=32+20sin 2φ.因为0≤sin 2φ≤1,所以S 的取值范围是.21 C .N3在极坐标系中,已知圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4,圆心为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程. 21C .解:在ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32中令θ=0,得ρ=1, 所以圆C 的圆心坐标为(1,0). 因为圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4, 所以圆C 的半径PC =22+12-2×1×2cos π4=1,于是圆C 过极点,所以圆C 的极坐标方程为ρ=2cos θ.10.N3 在极坐标系中,曲线C 1:ρ(2cos θ+sin θ)=1与曲线C 2:ρ=a (a >0)的一个交点在极轴上,则a =________.10.22本题考查直线与圆的极坐标方程,具体的解题思路和过程:把直线与圆的极坐标方程转化为普通方程,求出直线与坐标轴的交点代入圆方程求解.直线方程为2x +y -1=0,与x 轴的交点为⎝⎛⎭⎪⎫22,0,圆的方程为x 2+y 2=a 2,把交点⎝ ⎛⎭⎪⎫22,0代入得⎝ ⎛⎭⎪⎫222+02=a 2,又a >0,所以a =22. 本题易错一:不会转化,无法把极坐标方程转化为普通方程;易错二:直线与圆的交点实为直线与x 轴的交点,如果不会转化,导致计算加大,多走弯路.14.N3 (坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =5cos θy =5sin θ⎝ ⎛⎭⎪⎫θ为参数,0≤θ≤π2和⎩⎪⎨⎪⎧x =1-22ty =-22t (t 为参数),则曲线C 1与C 2的交点坐标为________.14.(2,1) 利用方程思想解决,C 1化为一般方程为:x 2+y 2=5,C 2化为直角坐标方程为:y =x -1,联立方程组得:⎩⎪⎨⎪⎧y =x -1,x 2+y 2=5,即x 2-x -2=0,解得x 1=-1,x 2=2.又由C 1中θ的取值范围可知,交点在第一象限,所以交点为(2,1).15 C. N3 直线2ρcos θ=1与圆ρ=2cos θ相交的弦长为________.15C : 3 本题考查了极坐标的相关知识,解题的突破口为把极坐标化为直角坐标.由22y 2=2x ②,联立①②得y =±32,所以弦长为 3. N4 选修4-5 不等式选讲15 A .N4 若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________.15.A :-2≤a ≤4 本题考查了不等式解法的相关知识,解题的突破口是理解不等式的几何意义.||x -a +||x -1≤3表示的几何意义是在数轴上一点x 到1的距离与到a 的距离之和小于或等于3个单位长度,此时我们可以以1为原点找离此点小于或等于3个单位长度的点即为a 的取值范围,不难发现-2≤a ≤4.24.N4已知f (x )=|ax +1|(a ∈R ),不等式f (x )≤3的解集为{x |-2≤x ≤1}. (1)求a 的值;(2)若⎪⎪⎪⎪⎪⎪f x -2f ⎝ ⎛⎭⎪⎫x 2≤k 恒成立,求k 的取值范围.24.解:(1)由|ax +1|≤3得-4≤ax ≤2.又f (x )≤3的解集为{x |-2≤x ≤1},所以当a ≤0时,不合题意.当a >0时,-4a ≤x ≤2a,得a =2.(2)记h (x )=f (x )-2f ⎝ ⎛⎭⎪⎫x 2,则h (x )=⎩⎪⎨⎪⎧1, x ≤-1,-4x -3,-1<x <-12,-1,x ≥-12,所以|h (x )|≤1,因此k ≥1.21 D .N4 已知实数x ,y 满足:|x +y |<13,|2x -y |<16,求证:|y |<518.21D .证明:因为3|y |=|3y |=|2(x +y )-(2x -y )|≤2|x +y |+|2x -y |, 由题设知|x +y |<13,|2x -y |<16,从而3|y |<23+16=56,所以|y |<518.24.N4已知函数f (x )=|x +a |+|x -2|. (1)当a =-3时,求不等式f (x )≥3的解集; (2)若f (x )≤|x -4|的解集包含,求a 的取值范围. 24.解:(1)当a =-3时,f (x )=⎩⎪⎨⎪⎧-2x +5,x ≤2,1,2<x <3,2x -5,x ≥3.当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1; 当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4; 所以f (x )≥3的解集为{x |x ≤1}∪{x |x ≥4}. (2)f (x )≤|x -4|⇔|x -4|-|x -2|≥|x +a |. 当x ∈时,|x -4|-|x -2|≥|x +a | ⇔4-x -(2-x )≥|x +a | ⇔-2-a ≤x ≤2-a .由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0. 故满足条件的a 的取值范围为.N5 选修4-7 优选法与试验设计11.N5 某制药企业为了对某种药用液体进行生物测定,需要优选培养温度,试验范围定为29℃~63℃,精确度要求±1℃.用分数法进行优选时,能保证找到最佳培养温度需要的最少试验次数为________.11.7 本题考查优选法中的分数法,以及对斐波那契数列的了解,意在考查考生在分数法中寻找最佳点的次数.具体的解题思路和过程:先由区间的间距,确定等分区间的份数,再对应斐波那契数列找出对应的次数.试验范围定为29℃~63℃ ,间距是63-29=34,故应分成34份,刚好对应斐波那契数列的F8=34,所以保证找到最佳培养温度需要的最少试验次数为8-1=7.本题易错一:对分数法的等分份数不理解,导致无法等分;易错二:对斐波那契数列的不了解,导致无法找到对应的点,求不出要做的试验次数.。
2014年高考(大纲全国卷)数学(文科) 附详细答案解析
解:由题设和正弦定理得 3sin Acos C=2sin Ccos A.
故 3tan Acos C=2sin C,
因为 tan A=1,所以 cos C=2sin C,tan C=1.
3
2
所以 tan B=tan[180°- (A+C)]= - tan(A+C)
=ttaann t+atnan-1=-1,
A.-1
B.0
C.1
D.2
7.有 6 名男医生、5 名女医生,从中选出 2 名男医生、1 名女医生组成一个医疗小组,则不
同的选法共有( ).
A.60 种
B.70 种
C.75 种
ห้องสมุดไป่ตู้
D.150 种
8.设等比数列{an}的前 n 项和为 Sn.若 S2=3,S4=15,则 S6=( ).
A.31
B.32
C.63
由 z=x+4y,得 y= - 1x+ . 44
先画出直线 y=-1x,再平移直线 y=-1x,
4
4
当经过点 B(1,1)时,z=x+4y 取得最大值为 5.
16.【答案】4
3
【解析】如图所示,设 l1 与圆 O:x2+y2=2 相切于点 B,
l2 与圆 O:x2+y2=2 相切于点 C,
则 OB= 2,OA= 10,AB=2 2.
( ).
A.1
B. 3
C.1
6
6
3
5.函数 y=ln(3 +1)(x>-1)的反函数是(
D. 3
3
).
A.y=(1-ex)3(x>-1) C.y=(1-ex)3(x∈R)
2014年普通高等学校招生全国统一考试(全国大纲卷)数学试题(文科)解析版
2014年普通高等学校统一考试(大纲)文科第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设集合,则中元素的个数为( )A .2B .3C .5D .72.已知角的终边经过点,则( )A .B .C .D .3.不等式组的解集为( )A .B .C .D .4.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( ) A .B .C .D .{1,2,4,6,8},{1,2,3,5,6,7}M N ==MN α(4,3)-cos α=453535-45-(2)0||1x x x +>⎧⎨<⎩{|21}x x -<<-{|10}x x -<<{|01}x x <<{|1}x x>1661335.函数的反函数是( )A .B .C .D .6.已知为单位向量,其夹角为,则( ) A .-1 B .0 C .1 D .27. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种8.设等比数列的前n 项和为,若则( ) A .31 B .32 C .63 D .641)(1)y x =>-3(1)(1)x y e x =->-3(1)(1)xy e x =->-3(1)()x y e x R =-∈3(1)()xy e x R =-∈a b 、60(2)a b b -∙={}n a n S 243,15,S S ==6S =9. 已知椭圆C :的左、右焦点为、,离心率为,过的直线交C 于A 、B 两点,若的周长为C 的方程为( )A .B .C .D .10.正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为( ) A.B .C .D .11.双曲线C :的离心率为2,则C的焦距等于()A .2B .C .4D .22221x y a b+=(0)a b >>1F 2F 32F l 1AF B ∆22132x y +=2213x y +=221128x y +=221124x y +=814π16π9π274π22221(0,0)x y a b a b-=>>12.奇函数的定义域为R ,若为偶函数,且,则( ) A .-2 B .-1 C .0 D .1第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 的展开式中的系数为 .(用数字作答)14.函数的最大值为 .()f x (2)f x +(1)1f =(8)(9)f f +=6(2)x -3x cos 22sin y x x =+15. 设x 、y 满足约束条件,则的最大值为 .16. 直线和是圆的两条切线,若与的交点为(1,3),则与的夹角的正切值等于 .三、解答题 (本大题共6小题. 解答应写出文字说明、证明过程或演算步骤.)(17)(本小题满分10分)数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2.(1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求数列{a n }的通项公式.解:(1)由a n+2=2a n+1-a n +2得a n+2- a n+1=a n+1-a n +2,即b n+1=b n +2,又b 1=a 2-a 1=1. 所以{b n }是首项为1,公差为2的等差数列;(1) 由(1)得b n =1+2(n-1),即a n+1-a n =2n-1.于是于是a n -a 1=n 2-2n ,即a n =n 2-2n +1+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2.(18)(本小题满分10分)02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩4z x y =+1l 2l 222x y +=1l 2l 1l 2l 111()(21)nnk k k k a a k +==-=-∑∑△ABC的内角A,B,C的对边分别是a,b,c,已知3acosC=2ccosA,tanA=,求B.解:由题设和正弦定理得,3sinAcosC=2sinCcosA,所以3tanAcosC=2sinC.因为tanA=,所以cosC=2sinC.tanC=.所以tanB=tan[180-(A+C)]=-tan(a+c)==-1,即B=135.(19)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B;(2)设直线AA1与平面BCC1B1,求二面角A1-AB-C的大小.解法一:(1)∵A1D⊥平面ABC, A1D平面AA1C1C,故平面AA1C1C⊥平面ABC,又BC⊥AC,所以BC⊥平面AA1C1C,连结A1C,因为侧面AA1C1C是棱形,所以AC1⊥A1C,由三垂线定理的AC1⊥A1B.(2) BC⊥平面AA1C1C,BC平面BCC1B1,故平面AA1C1C⊥平面BCC1B1,作A1E⊥C1C,E为垂足,则A1E⊥平面BCC1B1,又直线A A1∥平面BCC1B1,因而A1E为直线A A1与平面BCC1B1间的距离,A1,因为A1C为∠ACC1的平分线,故A1D=A1131312︒tan tan1tan tanA CA C+--︒︒⊂⊂作DF ⊥AB ,F 为垂足,连结A 1F,由三垂线定理得A 1F ⊥AB ,故∠A 1FD 为二面角A 1-AB-C 的平面角,由,得D 为AC 的中点,DF=,tan ∠A 1FD=,所以二面角A 1-AB-C的大小为解法二:以C为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C-x y z ,由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内. (1)设A 1(a ,0,c ),由题设有a ≤2,A (2,0,0)B (0,1,0),则(-2,1,0),,,由,即,于是①,所以.(2)设平面BCC 1B 1的法向量,则,,即,因,故y=0,且(a-2)x -c z =0,令x =c ,则z =2-a ,,点A到平面BCC 1B 1的距离为,又依题设,点A 到平面BCC 1B 1的距c=.代入①得a=3(舍去)或a=1.于是,设平面ABA 1的法向量,则,即.且-2p +q =0,令p,则q,r=1,,又为1=12AC BC AB ⨯⨯=1A DDF=AF =1(2,0,0),(2,0,)AC AA a c =-=-111(4,0,),(,1,)AC AC AA a c BA a c =+=-=-12AA =2=2240a a c -+=11AC BA ⋅=2240a a c -+=11AC BA ⊥(,,)m x y z =m CB ⊥1,m CB m BB ⊥⊥10,0m CB m BB ⋅=⋅=11(0,1,0),(2,0,)CB BB AA a c ==-(,0,2)m c a =-cos ,CA m CA m CA c mc ⋅⋅<>===1(1AA =-(,,)n p q r =1,n AA n AB ⊥⊥10,0n AA n AB ⋅=⋅=0p -=(3,2n =(0,0,1)p =平面ABC 的法向量,故cos ,所以二面角A 1-AB-C 的大小为arccos20. (本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别是0.6,0.5,0.5,0.4,各人是否使用设备相互独立,(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k 台设备供甲、乙、丙、丁使用,若要求“同一工作日需使用设备的人数大于k ”的概率小于0.1,求k 的最小值.解:记A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i=0,1,2.B 表示事件:甲需使用设备.C 表示事件:丁需使用设备.D 表示事件:同一工作日至少3人需使用设备.E 表示事件:同一工作日4人需使用设备.F 表示事件:同一工作日需使用设备的人数大于k. (1)D=A 1·B ·C+A 2·B+A 2··CP(B)=0.6,P(C)=0.4,P(A i )=.所以P(D)=P(A 1·B ·C+A 2·B+A 2··C )= P(A 1·B ·C)+P(A 2·B)+P(A 2··C ) = P(A 1P)·P(B)·P(C)+P(A 2)·P(B)+P(A 2)·p ()·p (C )=0.31. (2)由(1)知,若k=3,则P(F)==0.31>0.1.又E=B ·C ·A 2,P(E)=P(B ·C ·A 2)= P(B)·P(C)·P(A 2)=0.06; 若k=4,则P(F)=0.06<0.1. 所以k 的最小值为3.21. (本小题满分12分)函数f(x )=a x 3+3x 2+3x (a ≠0).(1)讨论函数f(x )的单调性;(2)若函数f(x )在区间(1,2)是增函数,求a 的取值范围.解:(1),的判别式△=36(1-a ). (i )若a ≥1,则,且当且仅当a=1,x =-1,故此时f (x )在R 上是增函数.1,4n p n p n p⋅<>==14B 220.5,0,1,2i C i ⨯=B B B 2()363f x ax x '=++2()3630f x ax x '=++=()0f x '≥()0f x '=(ii )由于a ≠0,故当a<1时,有两个根:, 若0<a<1,则当x ∈(-,x 2)或x ∈(x 1,+)时,,故f (x )在(-,x 2),(x 1,+)上是增函数;当x ∈(x 2,x 1)时,,故f (x )在(x 2,x 1)上是减函数;(2)当a>0,x >0时, ,所以当a>0时,f (x )在区间(1,2)是增函数. 若a<0时,f (x )在区间(1,2)是增函数当且仅当且,解得. 综上,a 的取值范围是. 22. (本小题满分12分)已知抛物线C:的焦点为F ,直线y=4与y 轴的交点为P ,与C 的交点为Q ,且. (1)求抛物线C 的方程;(2)过F 的直线l 与C 相交于A,B 两点,若AB 的垂直平分线与C 相交于M,N 两点,且A,M,B,N 四点在同一个圆上,求直线l 的方程.解:(1)设Q (x 0,4),代入由中得x 0=, 所以,由题设得,解得p =-2(舍去)或p =2.所以C 的方程为.(2)依题意知直线l 与坐标轴不垂直,故可设直线l 的方程为,(m ≠0)代入中得,()0f x '=12x x ==∞∞()0f x '>∞∞()0f x '<()0f x '>(1)0f '≥(2)0f '≥504a -≤<5[,0)(0,)4-+∞22(0)y px p =>54QF PQ =l '22(0)y px p =>8p088,22p p PQ QF x p p ==+=+85824p p p+=⨯24y x =1x my =+24y x =2440y my --=设A (x 1,y 1),B(x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4, 故AB 的中点为D (2m 2+1,2m ),,有直线的斜率为-m ,所以直线的方程为,将上式代入中,并整理得. 设M(x 3,y 3),N(x 4,y 4),则. 故MN的中点为E(). 由于MN 垂直平分AB ,故A,M,B,N 四点在同一个圆上等价于,从而,即,化简得 m 2-1=0,解得m =1或m =-1,所以所求直线l 的方程为x -y-1=0或x +y-1=02124(1)AB y m =-=+l 'l '2123x y m m=-++24y x =2244(23)0y y m m+-+=234344,4(23)y y y y m m+=-=-+23422223,),m MN y y m m ++-=-=12AE BE MN ==2221144AB DE MN +=222222224224(1)(21)4(1)(2)(2)m m m m m m m+++++++=。
2014年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)
2014年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=( )A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)2.(5分)若tanα>0,则( )A.sinα>0B.cosα>0C.sin2α>0D.cos2α>0 3.(5分)设z=+i,则|z|=( )A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=( )A.2B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是( )A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=( )A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为( )A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=( )A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=( )A.1B.2C.4D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=( )A.﹣5B.3C.﹣5或3D.5或﹣3 12.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是( )A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2) 二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 .14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是 .16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN= m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C 交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f(1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。
高考数学分类汇编(高考真题+模拟新题)选修4系列 理
N 单元 选修4系列15.[2014·广东卷] (几何证明选讲选做题)如图13所示,在平行四边形ABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则△CDF 的面积△AEF 的面积=________.图1315.9 [解析] 本题考查相似三角形的性质定理,面积比等于相似比的平方. ∵EB =2AE ,∴AE =13AB =13CD .又∵四边形ABCD 是平行四边形,∴△AEF ∽△CDF ,∴△CDF 的面积△AEF 的面积=⎝ ⎛⎭⎪⎫CD AE 2=9.15.[2014·湖北卷] (选修41:几何证明选讲)如图13,P 为⊙O 外一点,过P 点作⊙O 的两条切线,切点分别为A ,B ,过PA 的中点Q 作割线交⊙O 于C ,D 两点,若.15.4 [解析] 由切线长定理得QA 2=QC ·QD =1×(1+3)=4,解得QA =2.故PB =PA =2QA =4.12.[2014·湖南卷] 如图13所示,已知AB ,BC 是⊙O 的两条弦,AO ⊥BC ,AB =3,BC =22,则⊙O 的半径等于________.12.32[解析] 设圆的半径为r ,记AO 与BC 交于点D ,依题可知AD =1.由相交弦定理可得1×(2r -1)=2×2,解得r =32.22.[2014·辽宁卷] 选修41:几何证明选讲如图17所示,EP 交圆于E ,C 两点,PD 切圆于D ,G 为CE 上—点且PG =PD ,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F .(1)求证:AB 为圆的直径;(2)若AC=BD,求证:AB=ED.22.证明:(1)因为PD=PG,所以∠PDG=∠PGD.由于PD为切线,故∠PDA=∠DBA,又因为∠PGD=∠EGA,所以∠DBA=∠EGA,所以∠DBA+∠BAD=∠EGA+∠BAD,从而∠BDA=∠PFA.又AF⊥EP,所以∠PFA=90°,所以∠BDA=90°,故AB为圆的直径.(2)连接BC,DC.由于AB是直径,故∠BDA=∠ACB=90.在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,从而得Rt△BDA≌Rt△ACB,于是∠DAB=∠CBA.又因为∠DCB=∠DAB,所以∠DCB=∠CBA,故DC∥AB.因为AB⊥EP,所以DC⊥EP,∠DCE为直角,所以ED为直径,又由(1)知AB为圆的直径,所以ED=AB.22.[2014·新课标全国卷Ⅰ] 选修41:几何证明选讲如图16,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.图16(1)证明:∠D=∠E;(2)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.22.证明:(1)由题设知A,B,C,D四点共圆,所以∠D=∠CBE.由已知得∠CBE=∠E,故∠D=∠E.(2)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,故O在直线MN上.又AD不是⊙O的直径,M为AD的中点,故OM⊥AD,即MN⊥AD,所以AD∥BC,故∠A=∠CBE.又∠CBE=∠E,故∠A=∠E,由(1)知,∠D=∠E,所以△ADE为等边三角形.22.[2014·新课标全国卷Ⅱ] 选修41:几何证明选讲如图14,P 是⊙O 外一点,PA 是切线,A 为切点,割线PBC 与⊙O 相交于点B ,C ,PC =2PA ,D 为PC 的中点,AD 的延长线交⊙O 于点E ,证明:(1)BE =EC ;(2)AD ·DE =2PB 2.22.证明:(1)连接AB ,AC .由题设知PA =PD , 故∠PAD =∠PDA .因为∠PDA =∠DAC +∠DCA , ∠PAD =∠BAD +∠PAB , ∠DCA =∠PAB ,所以∠DAC =∠BAD ,从而BE =EC . 因此BE =EC .(2)由切割线定理得PA 2=PB ·因为PA =PD =DC ,所以DC =2PB ,BD =PB . 由相交弦定理得AD ·DE =BD ·DC ,所以AD ·DE =2PB 2. 15.[2014·陕西卷]图13B .(几何证明选做题)如图13,△ABC 中,BC =6,以BC 为直径的半圆分别交AB ,AC 于点E ,F ,若AC =2AE ,则EF =________.15. B .3 [解析] B .由题意,可知∠AEF =∠ACB ,又∠A =∠A ,所以△AEF ∽ACB ,所以AE AC =EF BC.因为AC =2AE ,BC =6,所以EF =3.6.[2014·天津卷]图12如图12所示,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC于点E,过点B的圆的切线与AD的延长线交于点F.在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD·FA;③AE·CE=BE·DE;④AF·BD=AB·BF.则所有正确结论的序号是( )A.①② B.③④C.①②③ D.①②④6.D [解析] 如图所示,∵∠1=∠3,∠2=∠4,且∠1=∠2,∴∠4=∠3,∴BD平分∠CBF,∴△ABF∽△BDF.∵ABBD=AFBF,∴AB·BF=AF·BD.∵AFBF=BFDF,∴BF2=AF·DF.故①②④正确.14.[2014·重庆卷] 过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B,C.若PA=6,AC=8,BC=9,则AB=________.14.4 [解析] 根据题意,作出图形如图所示,由切割线定理,得PA2=PB·PC=PB·(PB +BC),即36=PB·(PB+9)∴PB=3,∴PC=12.由弦切角定理知∠PAB=∠PCA,又∠APB=∠CPA,∴△PAB∽△PCA,∴ABCA=PBPA,即AB=PB·CAPA=3×86=4.21.[2014·福建卷] (Ⅰ)选修42:矩阵与变换已知矩阵A的逆矩阵.(1)求矩阵A;(2)求矩阵A-1的特征值以及属于每个特征值的一个特征向量.21. (Ⅰ)解:(1)因为矩阵A 是矩阵A -1的逆矩阵,且||A-1=2×2-1×1=3≠0,所以A =13⎝ ⎛⎭⎪⎫2 -1-1 2=.(2)矩阵A -1的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-2 -1-1 λ-2=λ2-4λ+3=(λ-1)(λ-3),令f (λ)=0,得矩阵A -1的特征值为λ1=1或λ2=3,所以ξ1=⎝ ⎛⎭⎪⎫1-1)是矩阵A -1的属于特征值λ1=1的一个特征向量,ξ2=⎝ ⎛⎭⎪⎫11)是矩阵A -1的属于特征值λ2=3的一个特征向量.13.[2014·天津卷] 在以O 为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a 相交于A ,B 两点.若△AOB 是等边三角形,则a 的值为________.13.3 [解析] 将ρ=4sin θ与ρsin θ=a 转化为直角坐标方程分别为x 2+(y -2)2=4与y =a .联立⎩⎪⎨⎪⎧y =a ,x 2+(y -2)2=4,得x 2=-a 2+4a ,且0<a <4. ∵△AOB 为等边三角形,∴a 2=3(-a 2+4a ),解得a =3或a =0(舍).4.[2014·安徽卷] 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数),圆C 的极坐标方程是ρ=4cos θ,则直线l 被圆C 截得的弦长为( )A.14 B .214C. 2 D .2 24.D [解析] 直线l 的普通方程为y =x -4,圆C 的直角坐标方程是(x -2)2+y 2=4,圆心(2,0)到直线l 的距离d =|2-0-4|2=2,所以直线l 被圆C 截得的弦长为222-(2)2=2 2.3.[2014·北京卷] 曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A .在直线y =2x 上B .在直线y =-2x 上C .在直线y =x -1上D .在直线y =x +1上3.B [解析] 曲线方程消参化为(x +1)2+(y -2)2=1,其对称中心点为(-1,2),验证知其在直线y =-2x 上.21. [2014·福建卷] (Ⅱ)选修44:坐标系与参数方程已知直线l 的参数方程为⎩⎪⎨⎪⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围. 21. (Ⅱ)解:(1)直线l 的普通方程为2x -y -2a =0,圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =≤4,解得-25≤a ≤2 5. 14.[2014·广东卷] (坐标系与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为ρsin 2θ=cos θ和ρsin θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2交点的直角坐标为________.14.(1,1) [解析] 本题主要考查将极坐标方程化为直角坐标方程的方法.将曲线C 1的方程ρsin 2θ=cos θ 化为直角坐标方程为y 2=x ,将曲线C 2的方程ρsin θ=1化为直角坐标方程为y =1.由⎩⎪⎨⎪⎧y 2=x ,y =1,解得⎩⎪⎨⎪⎧x =1,y =1.故曲线C 1和C 2交点的直角坐标为(1,1).16.[2014·湖北卷] (选修44:坐标系与参数方程)已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =t ,y =3t 3(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2,则C 1与C 2交点的直角坐标为________. 16.()3,1 [解析] 由⎩⎪⎨⎪⎧x =t ,y =3t 3,消去t 得y =33x (x ≥0),即曲线C 1的普通方程是y =33x (x ≥0);由ρ=2,得ρ2=4,得x 2+y 2=4,即曲线C 2的直角坐标方程是x 2+y 2=4.联立⎩⎪⎨⎪⎧y =33x (x ≥0),x 2+y 2=4,解得⎩⎨⎧x =3,y =1.故曲线C 1与C 2的交点坐标为()3,1.11.[2014·湖南卷] 在平面直角坐标系中,倾斜角为π4的直线l 与曲线C :⎩⎪⎨⎪⎧x =2+cos α,y =1+sin α(α为参数)交于A ,B 两点,且|AB |=2.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________.11.ρcos θ-ρsin θ=1 [解析] 依题意可设直线l :y =x +b ,曲线C :⎩⎪⎨⎪⎧x =2+cos α,y =1+sin α的普通方程为(x -2)2+(y -1)2=1.由|AB |=2可知圆心(2,1)在直线l :y =x +b 上,即l :y =x -1,所以l 的极坐标方程是ρcos θ-ρsin θ-1=0.11.[2014·江西卷] (2)(坐标系与参数方程选做题)若以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( )A .ρ=1cos θ+sin θ,0≤θ≤π2B .ρ=1cos θ+sin θ,0≤θ≤π4C .ρ=cos θ+sin θ,0≤θ≤π2D .ρ=cos θ+sin θ,0≤θ≤π411.(2)A [解析] 依题意,方程y =1-x 的极坐标方程为ρ(cos θ+sin θ)=1,整理得ρ=1cos θ+sin θ.因为0≤x ≤1,所以 0≤y ≤1,结合图形可知,0≤θ≤π2.23.[2014·辽宁卷] 选修44:坐标系与参数方程 将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.23.解:(1)设(x 1,y 1)为圆上的点,在已知变换下变为C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1,由x 21+y 21=1得x 2+⎝ ⎛⎭⎪⎫y 22=1,即曲线C 的方程为x 2+y 24=1.故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线的斜率k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.23.[2014·新课标全国卷Ⅰ] 选修44:坐标系与参数方程已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.23.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数),直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离d =55|4cos θ+3sin θ-6|, 则|PA |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255. 当sin(θ+α)=1时,|PA |取得最小值,最小值为255.23.[2014·新课标全国卷Ⅱ] 选修44:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.23.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1). 可得C 的参数方程为 ⎩⎪⎨⎪⎧x =1+cos t ,y =sin t ,(t 为参数,0≤t ≤π). (2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝ ⎛⎭⎪⎫1+cos π3,sin π3,即⎝ ⎛⎭⎪⎫32,32. 15.[2014·陕西卷] C .(坐标系与参数方程选做题)在极坐标系中,点⎝⎛⎭⎪⎫2,π6到直线ρsin ⎝⎛⎭⎪⎫θ-π6=1的距离是________.15. C .1 [解析] C .点⎝ ⎛⎭⎪⎫2,π6的极坐标可化为x =ρcos θ=2cos π6=3,y =ρsin θ=2sinπ6=1,即点⎝⎛⎭⎪⎫2,π6在平面直角坐标系中的坐标为(3,1).直线ρsin ⎝ ⎛⎭⎪⎫θ-π6=ρsin θcos π6-ρcos θsin π6=1,即该直线在直角坐标系中的方程为x-3y +2=0,由点到直线的距离公式得所求距离为d =|3-3+2|12+(-3)2=1.自选模块2.[2014·浙江卷] (1)在极坐标系Ox 中,设集合A ={(ρ,θ)|0≤θ≤π4,0≤ρ≤cos θ},求集合A 所表示区域的面积;(2)在直角坐标系xOy 中,直线l :⎩⎪⎨⎪⎧x =-4+t cos π4,y =t sin π4(t 为参数),曲线C :⎩⎪⎨⎪⎧x =a cos θ,y =2sin θ(θ为参数),其中a >0.若曲线C 上所有点均在直线l 的右下方,求a 的取值范围.解:(1)在ρ=cos θ两边同乘ρ,得ρ2=ρcos θ.化成直角坐标方程,得x 2+y 2=x ,即⎝ ⎛⎭⎪⎫x -122+y 2=14.所以集合A 所表示的区域为:由射线y =x (x ≥0),y =0(x ≥0),圆⎝ ⎛⎭⎪⎫x -122+y 2=14所围成的区域,如图所示的阴影部分,所求面积为π16+18.(2)由题意知,直线l 因为曲线C 上所有点均在直线l 的右下方,故对θ∈R ,有a cos θ-2sin θ+4>0恒成立,即a 2+4cos(θ+φ)>-4⎝ ⎛⎭⎪⎫其中tan φ=2a 恒成立,所以a 2+4<4.又a >0,得0<a <2 3. 15.[2014·重庆卷] 已知直线l的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =3+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0(ρ≥0,0≤θ<2π),则直线l 与曲线C 的公共点的极径ρ=________.15. 5 [解析] 由题意,得直线l 的普通方程为x -y +1=0,曲线C 的平面直角坐标方程为y 2=4x ,联立直线l 与曲线C 的方程,解得⎩⎪⎨⎪⎧x =1,y =2,所以直线l 与曲线C 的公共点的极径ρ=(1-0)2+(2-0)2= 5.21.[2014·福建卷] (Ⅲ)选修45:不等式选讲已知定义在R 上的函数f (x )=|x +1|+|x -2|的最小值为a . (1)求a 的值;(2)若p ,q ,r 是正实数,且满足p +q +r =a ,求证:p 2+q 2+r 2≥3. 21. (Ⅲ)解:(1)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3, 当且仅当-1≤x ≤2时,等号成立, 所以f (x )的最小值等于3,即a =3.(2)由(1)知p +q +r =3,又p ,q ,r 是正实数,所以(p 2+q 2+r 2)(12+12+12)≥(p ×1+q ×1+r ×1)2=(p +q +r )2=9,即p 2+q 2+r 2≥3.8.、[2014·广东卷] 设集合A ={(x 1,x 2,x 3,x 4,x 5)|x i ∈{-1,0,1},i =1,2,3,4,5},那么集合A 中满足条件“1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3”的元素个数为( )A .60B .90C .120D .1308.D [解析] 本题考查排列组合等知识,考查的是用排列组合思想去解决问题,主要根据范围利用分类讨论思想求解.由“1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3”考虑x 1,x 2,x 3,x 4,x 5的可能取值,设集合M ={0},N ={-1,1}.当x 1,x 2,x 3,x 4,x 5中有2个取值为0时,另外3个从N 中取,共有C 25×23种方法;当x 1,x 2,x 3,x 4,x 5中有3个取值为0时,另外2个从N 中取,共有C 35×22种方法;当x 1,x 2,x 3,x 4,x 5中有4个取值为0时,另外1个从N 中取,共有C 45×2种方法.故总共有C 25×23+C 35×22+C 45×2=130种方法, 即满足题意的元素个数为130.9.[2014·广东卷] 不等式|x -1|+|x +2|≥5的解集为________. 9.(-∞,-3]∪[2,+∞) [解析] 本题考查绝对值不等式的解法.|x -1|+|x +2|≥5的几何意义是数轴上的点到1与-2的距离之和大于等于5的实数,所以不等式的解为x ≤-3或x ≥2,即不等式的解集为(-∞,-3]∪[2,+∞).13.[2014·湖南卷] 若关于x 的不等式|ax -2|<3的解集为⎩⎨⎧⎭⎬⎫x -53<x <13,则a =________.13.-3 [解析] 依题意可得-3<ax -2<3,即-1<ax <5 ,而-53<x <13,即-1<-3x <5,所以a =-3.11.[2014·江西卷] (1)(不等式选做题)对任意x ,y ∈R ,|x -1|+|x |+|y -1|+|y +1|的最小值为( )A .1B .2C .3D .411.(1)C [解析] 易知|x -1|+|x |≥1,当且仅当0≤x ≤1时等号成立;|y -1|+|y +1|≥2, 当且仅当-1≤y ≤1时等号成立.故|x -1|+|x |+|y -1|+|y +1|≥3.24.[2014·辽宁卷] 选修45:不等式选讲设函数f (x )=2|x -1|+x -1,g (x )=16x 2-8x +1.记f (x )≤1的解集为M ,g (x )≤4的解集为N .(1)求M ;(2)当x ∈M ∩N 时,证明:x 2f (x )+x [f (x )]2≤14.24.解:(1)f (x )=⎩⎪⎨⎪⎧3x -3,x ∈[1,+∞),1-x ,x ∈(-∞,1).当x ≥1时,由f (x )=3x -3≤1得x ≤43,故1≤x ≤43;当x <1时,由f (x )=1-x ≤1得x ≥0,故0≤x <1.所以f (x )≤1的解集M =⎩⎨⎧⎭⎬⎫x 0≤x ≤43.(2)由g (x )=16x 2-8x +1≤4得16⎝ ⎛⎭⎪⎫x -142≤4,解得-14≤x ≤34,因此N =⎩⎨⎧⎭⎬⎫x -14≤x ≤34,故M ∩N =⎩⎨⎧⎭⎬⎫x 0≤x ≤34.当x ∈M ∩N 时,f (x )=1-x ,于是x 2f (x )+x ·[f (x )]2=xf (x )[x +f (x )]=xf (x )=x (1-x )=14-⎝ ⎛⎭⎪⎫x -122≤14.24.[2014·新课标全国卷Ⅰ] 选修45:不等式选讲若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值.(2)是否存在a ,b ,使得2a +3b =6?并说明理由.24.解:(1)由ab =1a +1b≥2ab,得ab ≥2,当且仅当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥4 2,当且仅当a =b = 2时等号成立.所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使2a +3b =6.24.[2014·新课标全国卷Ⅱ] 选修45:不等式选讲设函数f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |(a >0).(1)证明:f (x )≥2;(2)若f (3)<5,求a 的取值范围.24.解:(1)证明:由a >0,有f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |≥⎪⎪⎪⎪⎪⎪x +1a-(x -a )=1a+a ≥2,所以f (x )≥2.(2)f (3)=⎪⎪⎪⎪⎪⎪3+1a +|3-a |.当a >3时,f (3)=a +1a,由f (3)<5得3<a <5+212.当0<a ≤3时,f (3)=6-a +1a ,由f (3)<5得1+52<a ≤3.综上,a 的取值范围是⎝⎛⎭⎪⎫1+52,5+212.15.[2014·陕西卷] A .(不等式选做题)设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则m 2+n 2的最小值为________.15.A. 5 [解析] A .由柯西不等式可知(a 2+b 2)(m 2+n 2)≥(ma +nb )2,代入数据,得m 2+n 2≥5,当且仅当an =bm 时,等号成立,故m 2+n 2的最小值为 5.自选模块1.[2014·浙江卷] (1)解不等式2|x -2|-|x +1|>3;(2)设正数a ,b ,c 满足abc =a +b +c ,求证:ab +4bc +9ac ≥36,并给出等号成立条件.解:(1)当x ≤-1时,2(2-x )+(x +1)>3,得x <2,此时x ≤-1; 当-1<x ≤2时,2(2-x )-(x +1)>3,得x <0,此时 -1<x <0;当x >2时,2(x -2)-(x +1)>3,得x >8,此时x >8. 综上所述,原不等式的解集是(-∞,0)∪(8,+∞).(2)证明:由abc =a +b +c ,得1ab +1bc +1ca=1.由柯西不等式,得(ab +4bc +9ac )⎝ ⎛⎭⎪⎫1ab +1bc +1ca ≥(1+2+3)2,所以ab +4bc +9ac ≥36,当且仅当a =2,b =3,c =1时,等号成立.16.[2014·重庆卷] 若不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,则实数a 的取值范围是________.16.⎣⎢⎡⎦⎥⎤-1,12 [解析] 令f (x )=|2x -1|+|x +2|,则①当x <-2时,f (x )=-2x +1-x -2=-3x -1>5;②当-2≤x ≤12时,f (x )=-2x +1+x +2=-x +3,故52≤f (x )≤5;③当x >12时,f (x )=2x -1+x +2=3x +1>52.综合①②③可知f (x )≥52,所以要使不等式恒成立,则需a 2+12a +2≤52,解得-1≤a ≤12.1.[2014·长沙模拟] 已知点P 所在曲线的极坐标方程为ρ=2cos θ,点Q 所在曲线的参数方程为⎩⎪⎨⎪⎧x =1+t ,y =4+2t (t 为参数),则|PQ |的最小值是( )A .2 B.4 55+1C .1 D.4 55-11.D [解析] 易知点P 在圆x 2+y 2-2x =0上,圆心为(1,0),半径为1,点Q 在直线2x -y +2=0上,故|PQ |的最小值是|2+2|5-1=4 55-1.4.[2014·株洲模拟] 在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴的正半轴为极轴)中,直线C 2的方程为ρ(cos θ-sin θ)+1=0,则曲线C 1与C 2的交点的个数为________.4.2 [解析] 由题意,曲线C 1的参数方程⎩⎨⎧x =2cos α,y =3sin α(α为参数)可化为一般方程x 24+y 23=1,直线C 2的极坐标方程ρ·(cos θ-sin θ)+1=0可化为普通方程x -y +1=0.联立两个方程,消去y 可得x 24+(x +1)23=1,即7x 2+8x -8=0.因为Δ=82+4×7×8>0,所以直线与椭圆相交,且有两个交点.5.[2014·湖南长郡中学月考] 在极坐标系中,圆C 1的方程为ρ=4 2cos ⎝ ⎛⎭⎪⎫θ-π4,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,已知圆C 2的参数方程为⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(a >0,θ为参数).若圆C 1与圆C 2外切,则实数a =____________. 5. 2 [解析] 依题意,ρ=4 2cos θ-π4=4cos θ+4sin θ,化成普通方程为x2+y 2=4x +4y ,即(x -2)2+(y -2)2=8,即该圆的圆心为C 1(2,2),半径r 1=2 2.将⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(a >0,θ为参数)化成普通方程为(x +1)2+(y +1)2=a 2,即圆心为C 2(-1,-1),半径r 2=a .由丙点间两圆外切可得|C 1C 2|=3 2=2 2+a ,所以a = 2.6.[2014·衡阳模拟] 已知曲线C 的极坐标方程为ρ=4cos θ.若以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,则曲线C 的参数方程为________.6.⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数) [解析] 由曲线C 的极坐标方程为ρ=4cos θ,可得其普通方程为x2+y 2=4x ,即(x -2)2+y 2=4,所以曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数).7.[2014·湖南雅礼中学月考] 已知极坐标系下曲线ρ=4sin θ表示圆,则点A ⎝⎛⎭⎪⎫4,π6到圆心的距离为____________.7.2 3 [解析] 将曲线ρ=4sin θ化成普通方程为x 2+y 2=4y ,则该圆的圆心为(0,2),而点A ⎝ ⎛⎭⎪⎫4,π6的直角坐标为(2 3,2),由两点间距离公式可得d =(2 3)2+(2-2)2=2 3.8.[2014·湖南十三校联考] 以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数),圆C 的极坐标方程为ρ=2cos θ,若直线l 经过圆C 的圆心,则常数a 的值为________.8.1 [解析] 将直线l 的参数方程⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)化为普通方程为y =x -a ,将圆C 的极坐标方程ρ=2cos θ化为普通方程为x 2+y 2=2x ,则圆心为(1,0),代入直线y =x-a 可得a =1.9.[2014·湖南师大附中月考] 在极坐标系中,已知点A 的极坐标为(2,π),直线l 的极坐标方程为ρsin θ+π4=2,则点A 到直线l 的距离是____________.9.2 2 [解析] 由题意,直线l 的极坐标方程为ρsin θcos π4+cos θsin π4=2,即ρsin θ+ρcos θ=2,则直线l 的直角坐标方程为x +y -2=0.又点A 的直角坐标为(-2,0),所以点A 到直线l 的距离d =|-2-2|2=2 2.。
高考数学分类练习 N单元 选修4系列(文科)含答案1
数 学 N 单元 选修4系列N1 选修4-1 几何证明选讲15.N1 (几何证明选讲选做题)如图11,AB 为圆O 的直径,E 为AB 延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线EC 的垂线,垂足为D .若AB =4,CE =23,则AD =________.图1115.3 连接OC ,则OC ⊥DE ,∴OC ∥AD ,∴OC AD =OE AE.由切割线定理得CE 2=BE ·AE ,∴BE (BE +4)=12,解得BE =2,∴AD =OC ·AE OE =2×64=3.22.N1 选修41:几何证明选讲如图17,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于点E . (1)若D 为AC 的中点,证明:DE 是⊙O 的切线; (2)若OA =3CE ,求∠ACB 的大小.图1722.解:(1)证明:连接AE,由已知得,AE⊥BC,AC⊥AB.在Rt△AEC中,由已知得,DE=DC,故∠DEC=∠DCE.连接OE,则∠OBE=∠OEB.又∠ACB+∠ABC=90°,所以∠DEC+∠OEB=90°,故∠OED=90°,即DE是⊙O的切线.(2)设CE=1,AE=x,由已知得AB=23,BE=12-x2.由射影定理可得,AE2=CE·BE,所以x2=12-x2,即x4+x2-12=0,可得x=3,所以∠ACB=60°.22.N1选修41:几何证明选讲如图19,O是等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=23,求四边形EBCF的面积.图1922.解:(1)证明:由于△ABC是等腰三角形,AD⊥BC,所以AD是∠CAB的平分线.又因为⊙O 分别与AB ,AC 相切于点E ,F ,所以AE =AF ,故AD ⊥EF . 从而EF ∥BC .(2)由(1)知,AE =AF ,AD ⊥EF ,故AD 是EF 的垂直平分线.又EF 为⊙O 的弦,所以O 在AD 上.连接OE ,OM ,则OE ⊥AE .由AG 等于⊙O 的半径得AO =2OE ,所以∠OAE =30°, 因此△ABC 和△AEF 都是等边三角形. 因为AE =23,所以AO =4,OE =2.因为OM =OE =2,DM =12MN =3,所以OD =1.于是AD =5,AB =1033.所以四边形EBCF 的面积为12×10332×32-12×(23)2×32=1633.22.N1 选修41:几何证明选讲如图17,AB 切⊙O 于点B ,直线AO 交⊙O 于D ,E 两点,BC ⊥DE ,垂足为C . (1)证明:∠CBD =∠DBA ;(2)若AD =3DC ,BC =2,求⊙O 的直径.图1722.解:(1)证明:因为DE 为⊙O 的直径, 所以∠BED +∠EDB =90°.又BC ⊥DE ,所以∠CBD +∠EDB =90°, 从而∠CBD =∠BED . 又AB 切⊙O 于点B , 得∠DBA =∠BED , 所以∠CBD =∠DBA . (2)由(1)知BD 平分∠CBA , 则BA BC =ADCD=3.又BC =2,从而AB =32, 所以AC =AB 2-BC 2=4,所以AD =3.由切割线定理得AB 2=AD ·AE ,即AE =AB 2AD=6,故DE =AE -AD =3, 即⊙O 的直径为3.6.N1 如图12,在圆O 中,M ,N 是弦AB 的三等分点,弦CD ,CE 分别经过点M ,N ,若CM =2,MD =4,CN =3,则线段NE 的长为( )图12A.83 B .3 C.103 D.526.A 根据相交弦定理知,CM ·MD =AM ·MB ,CN ·NE =AN ·NB .又因为M ,N 是弦AB 的三等分点,所以CM ·MD =CN ·NE ,即2×4=3×NE ,所以NE =83.N2 选修4-2 矩阵N3 选修4-4 参数与参数方程 23.N3 选修44:坐标系与参数方程在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.23.解:(1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2=2,故ρ1-ρ2=2,即|MN |= 2.由于圆C 2的半径为1,所以△C 2MN 的面积为12.23.N3 选修44:坐标系与参数方程 在直角坐标系xOy中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |最大值.23.解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =32,y =32. 所以C 2与C 3交点的直角坐标为(0,0)和32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α). 所以|AB |=|2sin α-23cos α|=4sin α-π3.当α=5π6时,|AB |取得最大值,最大值为4.12.N3 在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为________.12.x 2+y 2-2y =0 将曲线C 的极坐标方程ρ=2sin θ两边同乘一个ρ,得ρ2=2ρsin θ,即x 2+y 2=2y ,故曲线C 的直角坐标方程为x 2+y 2-2y =0.23.N3 选修44:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t (t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 23.解:(1)由ρ=23sin θ,得ρ2=23ρsin θ, 从而有x 2+y 2=23y ,所以x 2+(y -3)2=3. (2)设P 3+12t ,32t ,又C (0,3),则|PC |=3+12t 2+32t -32=t 2+12, 故当t =0时,|PC |取得最小值, 此时,P 点的直角坐标为(3,0).14.N3 (坐标系与参数方程选做题)在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为⎩⎨⎧x =t 2,y =22t(t 为参数),则C 1与C 2交点的直角坐标为________.14.(2,-4) 曲线C 1的直角坐标方程为x +y =-2,曲线C 2的普通方程为y 2=8x ,由⎩⎪⎨⎪⎧x +y =-2,y 2=8x ,得⎩⎪⎨⎪⎧x =2,y =-4,所以C 1与C 2交点的直角坐标为(2,-4).N4 选修4-5 不等式选讲 24.N4 选修45:不等式选讲已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围. 24.解:(1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0. 当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0,解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x 23<x <2.(2)由题设可得,f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a ,所以函数f (x )的图像与x 轴围成的三角形的三个顶点分别为A ⎝ ⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2,所以a 的取值范围为(2,+∞). 24.N4 选修45:不等式选讲设a ,b ,c ,d 均为正数,且a +b =c +d .证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.24.证明:(1)因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd ,由题设a +b =c +d ,ab >cd 得(a +b )2>(c +d )2.因此a +b >c +d .(2)(i)若|a -b |<|c -d |,则(a -b )2<(c -d )2,即 (a +b )2-4ab <(c +d )2-4cd . 因为a +b =c +d ,所以ab >cd . 由(1)得a +b >c +d .(ii)若a +b >c +d ,则(a +b )2>(c +d )2,即a +b +2ab >c +d +2cd . 因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件. 24.N4 选修45:不等式选讲已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值;(2)求at +12+bt 的最大值. 24.解:(1)由|x +a |<b ,得 -b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得⎩⎪⎨⎪⎧a =-3,b =1. (2)-3t +12+ t =3×4-t +t ≤[(3)2+12][(4-t )2+(t )2]=24-t +t =4,当且仅当4-t 3=t1,即t =1时等号成立, 故(-3t +12+ t )max =4. N4 选修4-7 优选法与试验设计。
2014年全国统一高考数学试卷(文科)(新课标ⅱ)(含答案及解析)
2014年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合A={﹣2,0,2},B={x|x2﹣x﹣2=0},则A∩B=()A.∅B.{2}C.{0}D.{﹣2}2.(5分)=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i 3.(5分)函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件4.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.55.(5分)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n 项和S n=()A.n(n+1)B.n(n﹣1)C.D.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.(5分)正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为()A.3B.C.1D.8.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.79.(5分)设x,y满足约束条件,则z=x+2y的最大值为()A.8B.7C.2D.110.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C 于A,B两点,则|AB|=()A.B.6C.12D.711.(5分)若函数f(x)=kx﹣ln x在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)12.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣,]D.[﹣,]二、填空题:本大题共4小题,每小题5分.13.(5分)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.14.(5分)函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为.15.(5分)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(﹣1)=.16.(5分)数列{a n}满足a n+1=,a8=2,则a1=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.19.(12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.三、选修4-1:几何证明选讲22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.四、选修4-4,坐标系与参数方程23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.五、选修4-5:不等式选讲24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合A={﹣2,0,2},B={x|x2﹣x﹣2=0},则A∩B=()A.∅B.{2}C.{0}D.{﹣2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】先解出集合B,再求两集合的交集即可得出正确选项.【解答】解:∵A={﹣2,0,2},B={x|x2﹣x﹣2=0}={﹣1,2},∴A∩B={2}.故选:B.【点评】本题考查交的运算,理解好交的定义是解答的关键.2.(5分)=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】分子分母同乘以分母的共轭复数1+i化简即可.【解答】解:化简可得====﹣1+2i故选:B.【点评】本题考查复数代数形式的化简,分子分母同乘以分母的共轭复数是解决问题的关键,属基础题.3.(5分)函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件【考点】29:充分条件、必要条件、充要条件.【专题】5L:简易逻辑.【分析】根据可导函数的极值和导数之间的关系,利用充分条件和必要条件的定义即可得到结论.【解答】解:函数f(x)=x3的导数为f'(x)=3x2,由f′(x0)=0,得x0=0,但此时函数f(x)单调递增,无极值,充分性不成立.根据极值的定义和性质,若x=x0是f(x)的极值点,则f′(x0)=0成立,即必要性成立,故p是q的必要条件,但不是q的充分条件,故选:C.【点评】本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.4.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.5.(5分)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n 项和S n=()A.n(n+1)B.n(n﹣1)C.D.【考点】83:等差数列的性质.【专题】54:等差数列与等比数列.【分析】由题意可得a42=(a4﹣4)(a4+8),解得a4可得a1,代入求和公式可得.【解答】解:由题意可得a42=a2•a8,即a42=(a4﹣4)(a4+8),解得a4=8,∴a1=a4﹣3×2=2,∴S n=na1+d,=2n+×2=n(n+1),故选:A.【点评】本题考查等差数列的性质和求和公式,属基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为()A.3B.C.1D.【考点】LF:棱柱、棱锥、棱台的体积.【专题】5F:空间位置关系与距离.【分析】由题意求出底面B1DC1的面积,求出A到底面的距离,即可求解三棱锥的体积.【解答】解:∵正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC 中点,∴底面B1DC1的面积:=,A到底面的距离就是底面正三角形的高:.三棱锥A﹣B1DC1的体积为:=1.故选:C.【点评】本题考查几何体的体积的求法,求解几何体的底面面积与高是解题的关键.8.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.9.(5分)设x,y满足约束条件,则z=x+2y的最大值为()A.8B.7C.2D.1【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【解答】解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点A时,直线y=﹣的截距最大,此时z最大.由,得,即A(3,2),此时z的最大值为z=3+2×2=7,故选:B.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C 于A,B两点,则|AB|=()A.B.6C.12D.7【考点】K8:抛物线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】求出焦点坐标,利用点斜式求出直线的方程,代入抛物线的方程,利用根与系数的关系,由弦长公式求得|AB|.【解答】解:由y2=3x得其焦点F(,0),准线方程为x=﹣.则过抛物线y2=3x的焦点F且倾斜角为30°的直线方程为y=tan30°(x﹣)=(x ﹣).代入抛物线方程,消去y,得16x2﹣168x+9=0.设A(x1,y1),B(x2,y2)则x1+x2=,所以|AB|=x1++x2+=++=12故选:C.【点评】本题考查抛物线的标准方程,以及简单性质的应用,弦长公式的应用,运用弦长公式是解题的难点和关键.11.(5分)若函数f(x)=kx﹣ln x在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)【考点】6B:利用导数研究函数的单调性.【专题】38:对应思想;4R:转化法;51:函数的性质及应用.【分析】求出导函数f′(x),由于函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,可得f′(x)≥0在区间(1,+∞)上恒成立.解出即可.【解答】解:f′(x)=k﹣,∵函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,∴f′(x)≥0在区间(1,+∞)上恒成立.∴k≥,而y=在区间(1,+∞)上单调递减,∴k≥1.∴k的取值范围是:[1,+∞).故选:D.【点评】本题考查了利用导数研究函数的单调性、恒成立问题的等价转化方法,属于中档题.12.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣,]D.[﹣,]【考点】JE:直线和圆的方程的应用.【专题】5B:直线与圆.【分析】根据直线和圆的位置关系,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN=1,∴x0的取值范围是[﹣1,1].故选:A.【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.二、填空题:本大题共4小题,每小题5分.13.(5分)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,由此求得他们选择相同颜色运动服的概率.【解答】解:所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,故他们选择相同颜色运动服的概率为=,故答案为:.【点评】本题主要考查相互独立事件的概率乘法公式,属于基础题.14.(5分)函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为1.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】56:三角函数的求值;57:三角函数的图像与性质.【分析】直接利用两角和与差三角函数化简,然后求解函数的最大值.【解答】解:函数f(x)=sin(x+φ)﹣2sinφcosx=sinxcosφ+sinφcosx﹣2sinφcosx=sinxc osφ﹣sinφcosx=sin(x﹣φ)≤1.所以函数的最大值为1.故答案为:1.【点评】本题考查两角和与差的三角函数,三角函数最值的求解,考查计算能力.15.(5分)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(﹣1)= 3.【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数奇偶性和对称性的性质,得到f(x+4)=f(x),即可得到结论.【解答】解:法1:因为偶函数y=f(x)的图象关于直线x=2对称,所以f(2+x)=f(2﹣x)=f(x﹣2),即f(x+4)=f(x),则f(﹣1)=f(﹣1+4)=f(3)=3,法2:因为函数y=f(x)的图象关于直线x=2对称,所以f(1)=f(3)=3,因为f(x)是偶函数,所以f(﹣1)=f(1)=3,故答案为:3.【点评】本题主要考查函数值的计算,利用函数奇偶性和对称性的性质得到周期性f(x+4)=f(x)是解决本题的关键,比较基础.16.(5分)数列{a n}满足a n+1=,a8=2,则a1=.【考点】8H:数列递推式.【专题】11:计算题.【分析】根据a8=2,令n=7代入递推公式a n+1=,求得a7,再依次求出a6,a5的结果,发现规律,求出a1的值.=,a8=2,【解答】解:由题意得,a n+1令n=7代入上式得,a8=,解得a7=;令n=6代入得,a7=,解得a6=﹣1;令n=5代入得,a6=,解得a5=2;…根据以上结果发现,求得结果按2,,﹣1循环,∵8÷3=2…2,故a1=故答案为:.【点评】本题考查了数列递推公式的简单应用,即给n具体的值代入后求数列的项,属于基础题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.【考点】HP:正弦定理;HR:余弦定理.【专题】56:三角函数的求值.【分析】(1)在三角形BCD中,利用余弦定理列出关系式,将BC,CD,以及cosC 的值代入表示出BD2,在三角形ABD中,利用余弦定理列出关系式,将AB,DA以及cosA的值代入表示出BD2,两者相等求出cosC的值,确定出C的度数,进而求出BD的长;(2)由C的度数求出A的度数,利用三角形面积公式求出三角形ABD与三角形BCD面积,之和即为四边形ABCD面积.【解答】解:(1)在△BCD中,BC=3,CD=2,由余弦定理得:BD2=BC2+CD2﹣2BC•CDcosC=13﹣12cosC①,在△ABD中,AB=1,DA=2,A+C=π,由余弦定理得:BD2=AB2+AD2﹣2AB•ADcosA=5﹣4cosA=5+4cosC②,由①②得:cosC=,则C=60°,BD=;(2)∵cosC=,cosA=﹣,∴sinC=sinA=,则S=AB•DAsinA+BC•CDsinC=×1×2×+×3×2×=2.【点评】此题考查了余弦定理,同角三角函数间的基本关系,以及三角形面积公式,熟练掌握余弦定理是解本题的关键.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行;MK:点、线、面间的距离计算.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)设BD与AC 的交点为O,连结EO,通过直线与平面平行的判定定理证明PB∥平面AEC;(Ⅱ)通过AP=1,AD=,三棱锥P﹣ABD的体积V=,求出AB,作AH⊥PB 角PB于H,说明AH就是A到平面PBC的距离.通过解三角形求解即可.【解答】解:(Ⅰ)证明:设BD与AC 的交点为O,连结EO,∵ABCD是矩形,∴O为BD的中点∵E为PD的中点,∴EO∥PB.EO⊂平面AEC,PB⊄平面AEC∴PB∥平面AEC;(Ⅱ)∵AP=1,AD=,三棱锥P﹣ABD的体积V=,∴V==,∴AB=,PB==.作AH⊥PB交PB于H,由题意可知BC⊥平面PAB,∴BC⊥AH,故AH⊥平面PBC.又在三角形PAB中,由射影定理可得:A到平面PBC的距离.【点评】本题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.19.(12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.【考点】BA:茎叶图;BB:众数、中位数、平均数;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(Ⅰ)根据茎叶图的知识,中位数是指中间的一个或两个的平均数,首先要排序,然后再找,(Ⅱ)利用样本来估计总体,只要求出样本的概率就可以了.(Ⅲ)根据(Ⅰ)(Ⅱ)的结果和茎叶图,合理的评价,恰当的描述即可.【解答】解:(Ⅰ)由茎叶图知,50位市民对甲部门的评分有小到大顺序,排在排在第25,26位的是75,75,故样本的中位数是75,所以该市的市民对甲部门的评分的中位数的估计值是75.50位市民对乙部门的评分有小到大顺序,排在排在第25,26位的是66,68,故样本的中位数是=67,所以该市的市民对乙部门的评分的中位数的估计值是67.(Ⅱ)由茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为,故该市的市民对甲、乙两部门的评分高于90的概率得估计值分别为0.1,0.16,(Ⅲ)由茎叶图知,市民对甲部门的评分的中位数高于乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分标准差要小于乙部门的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.【点评】本题主要考查了茎叶图的知识,以及中位数,用样本来估计总体的统计知识,属于基础题.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【考点】K4:椭圆的性质.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程.【专题】53:导数的综合应用.【分析】(Ⅰ)求函数的导数,利用导数的几何意义建立方程即可求a;(Ⅱ)构造函数g(x)=f(x)﹣kx+2,利用函数导数和极值之间的关系即可得到结论.【解答】解:(Ⅰ)函数的导数f′(x)=3x2﹣6x+a;f′(0)=a;则y=f(x)在点(0,2)处的切线方程为y=ax+2,∵切线与x轴交点的横坐标为﹣2,∴f(﹣2)=﹣2a+2=0,解得a=1.(Ⅱ)当a=1时,f(x)=x3﹣3x2+x+2,设g(x)=f(x)﹣kx+2=x3﹣3x2+(1﹣k)x+4,由题设知1﹣k>0,当x≤0时,g′(x)=3x2﹣6x+1﹣k>0,g(x)单调递增,g(﹣1)=k﹣1,g(0)=4,当x>0时,令h(x)=x3﹣3x2+4,则g(x)=h(x)+(1﹣k)x>h(x).则h′(x)=3x2﹣6x=3x(x﹣2)在(0,2)上单调递减,在(2,+∞)单调递增,∴在x=2时,h(x)取得极小值h(2)=0,g(﹣1)=k﹣1,g(0)=4,则g(x)=0在(﹣∞,0]有唯一实根.∵g(x)>h(x)≥h(2)=0,∴g(x)=0在(0,+∞)上没有实根.综上当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.【点评】本题主要考查导数的几何意义,以及函数交点个数的判断,利用导数和函数单调性之间的关系是解决本题的关键,考查学生的计算能力.三、选修4-1:几何证明选讲22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【考点】N4:相似三角形的判定;NC:与圆有关的比例线段.【专题】17:选作题;5Q:立体几何.【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.四、选修4-4,坐标系与参数方程23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【考点】QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.五、选修4-5:不等式选讲24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。
高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 N单元 选修4系列 Word版含答案
N 单元 选修4系列N1选修4-1 几何证明选讲21.N1 A .如图1-1所示,AB 和BC 分别与圆O 相切于点D ,C ,AC 经过圆心O ,且BC =2OC. 求证:AC =2AD.图1-1证明:联结OD ,因为AB 和BC 分别与圆O 相切于点D ,C , 所以∠ADO=∠ACB=90°.又因为∠A=∠A,所以Rt △ADO ∽Rt △ACB , 所以BC OD =AC AD .又BC =2OC =2OD. 故AC =2AD. N2 B .已知矩阵A =错误! 0,2),B =1,0) 2,6),求矩阵A -1B . 解:设矩阵A 的逆矩阵为a,c) b,d), 则-1,0) 0,2)a,c) b,d)=1,0) 0,1). 即-a,2c) -b,2d)=1,0) 0,1), 故a =-1,b =0,c =0,d =12,从而A 的逆矩阵为A-1=⎣⎢⎡⎦⎥⎤-1 0 0,12))).所以A -1B =⎣⎢⎡⎦⎥⎤-10 0,12)))1,0) 2,6)=-1,0) -2,3). N3 C .在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ,y =2tan θ(θ为参数),试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.解:因为直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),由x =t +1得t =x -1,代入y =2t ,得到直线l 的普通方程为2x -y -2=0.同理得到曲线C 的普通方程为y 2=2x.联立方程组⎩⎪⎨⎪⎧y =2(x -1),y 2=2x ,解得公共点的坐标为(2,2),12,-1.N4 D .已知a≥b>0,求证:2a 3-b 3≥2ab 2-a 2b.证明:2a 3-b 3-(2ab 2-a 2b)=2a(a 2-b 2)+b(a 2-b 2)=(a 2-b 2)(2a +b)=(a -b)(a +b)(2a +b).因为a≥b>0,所以a -b≥0,a +b>0,2a +b>0. 从而(a -b)(a +b)(2a +b)≥0,即2a 3-b 3≥2ab 2-a 2b. 22.N1 选修4-1:几何证明选讲如图1-6,AB 为⊙O 直径,直线CD 与⊙O 相切于E ,AD 垂直CD 于D ,BC 垂直CD 于C ,EF 垂直AB 于F ,联结AE ,BE ,证明:(1)∠FEB=∠CEB ;(2)EF 2=AD·BC.图1-622.解:证明:(1)由直线CD 与⊙O 相切,得∠CEB=∠EAB.由AB 为⊙O 的直径,得AE⊥EB,从而∠EAB+∠EBF=π2.又EF⊥AB,得∠FEB+∠EBF=π2,从而∠FEB=∠EAB.故∠FEB=∠CEB.(2)由BC⊥CE,EF⊥AB,∠FEB=∠CEB,BE 是公共边,得Rt △BCE ≌Rt △BFE ,所以BC =BF.类似可证:Rt △ADE ≌Rt △AFE ,得AD =AF. 又在Rt △AEB 中,EF⊥AB,故FE 2=AF·BF. 所以EF 2=AD·BC.B .N1 (几何证明选做题)如图1-4所示,AB 与CD 相交于点E ,过E 作BC 的平行线与AD 的延长线交于点P ,已知∠A=∠C,PD =2DA =2,则PE =________.图1-46 利用已知图形关系可得∠BCE=∠PED=∠BAP,可得△PDE∽△PEA,可得PE PA =PDPE ,而PD =2DA =2,则PA =3,则PE 2=PA·PD=6,PE = 6.22.N1 选修4-1:几何证明选讲如图1-6,直线AB 为圆的切线,切点为B ,点C 在圆上,∠ABC 的平分线BE 交圆于点E ,DB 垂直BE 交圆于点D.(1)证明:DB =DC ;(2)设圆的半径为1,BC =3,延长CE 交AB 于点F ,求△BCF 外接圆的半径.图1-622.解:(1)联结DE ,交BC 于点G.由弦切角定理得,∠ABE=∠BCE. 而∠ABE=∠CBE,故∠CBE=∠BCE,BE =CE. 又因为DB⊥BE,所以DE 为直径,∠DCE=90°, 由勾股定理可得DB =DC.(2)由(1)知,∠CDE=∠BDE,DB =DC , 故DG 是BC 的中垂线,所以BG =32. 设DE 的中点为O ,联结BO ,则∠BOG=60°, 从而∠ABE=∠BCE=∠CBE=30°, 所以CF⊥BF,故Rt △BCF 外接圆的半径等于32. 13.N1 如图1-2所示,在圆内接梯形ABCD 中,AB∥DC.过点A 作圆的切线与CB 的延长线交于点E.若AB =AD =5,BE =4,则弦BD 的长为________.图1-213.152 联结AC.由圆内接梯形的性质得,∠DCB=∠ABE,∠DAB+∠DCB=180°,∠ABC+∠DCB=180°,∴∠DAB=∠ABC,∠DAB+∠ABE=180°,又∵∠ADB =∠ACB,∴∠CAB=∠DBA,又∠ADB=∠ABD,∴∠BAC=∠BCA,∴BC=AB =5.由切割线定理得AE 2=BE·EC=4×(4+5)=36,由cos ∠ABE =-cos ∠DAB , 得-AD 2+AB 2-BD 22AD ·AB =AB 2+BE 2-AE22AB ·BE,即-52+52-BD 22×5×5=52+42-362×5×4,解之得BD =152.22.N1 选修4-1:几何证明选讲如图1-10,CD 为△ABC 外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且BC·A E =DC·AF,B ,E ,F ,C 四点共圆.(1)证明:CA 是△ABC 外接圆的直径;(2)若DB =BE =EA ,求过B ,E ,F ,C 四点的圆的面积与△ABC 外接圆面积的比值.图1-1022.解:(1)因为CD 为△ABC 外接圆的切线,所以∠DCB=∠A,由题设知BC FA =DCEA ,故△CDB∽△AEF,所以∠DBC=∠EFA.因为B ,E ,F ,C 四点共圆,所以∠CFE=∠DBC,故∠EFA=∠CFE=90°. 所以∠CBA=90°,因此CA 是△ABC 外接圆的直径.图1-11(2)联结CE ,因为∠CBE=90°,所以过B ,E ,F ,C 四点的圆的直径为CE , 由DB =BE ,有CE =DC. 又BC 2=DB·BA=2DB 2, 所以CA 2=4DB 2+BC 2=6DB 2. 而DC 2=DB·DA=3DB 2,故过B ,E ,F ,C 四点的圆的面积与△ABC 外接圆面积的比值为12.15.N1 (几何证明选讲选做题)如图1-3,在矩形ABCD 中,AB =3,BC =3,BE⊥AC,垂足为E ,则ED =________.图1-315.212AB =3,BC =3AC =3+9=2 3,∵AB 2=AE·AC,∴AE=32.又∵tan ∠ACB =AB BC =33,∴∠ACB=π6,故∠EAD=π6.在△AED 中,由余弦定理得ED 2=AE 2+AD 2-2AE·AD cos ∠EAD =34+9-2×32×3cos π6=214,故ED =212.N2 选修4-2 矩阵N3 选修4-4 参数与参数方程14.N3 (坐标系与参数方程选做题)已知曲线C 的极坐标方程为ρ=2cos θ.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为________.14.⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数) 将曲线C 的极坐标方程ρ=2cos θ化为普通方程为(x -1)2+y 2=1,则其参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ.(θ为参数).11.N3 在平面直角坐标系xOy 中,若直线l 1:⎩⎪⎨⎪⎧x =2s +1,y =s (s 为参数)和直线l 2:⎩⎪⎨⎪⎧x =at ,y =2t -1(t 为参数)平行,则常数a 的值为________.11.4 l 1:⎩⎪⎨⎪⎧x =2s +1,y =s ,即x -2y -1=0,l 2:⎩⎪⎨⎪⎧x =at ,y =2t -1,即2x -ay -a =0.由两直线平行,得21=-a -2≠-a-1,解得a =4.23.N3 选修4-4:坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos θ-π4=2 2.(1)求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t∈R 为参数),求a ,b 的值.23.解:(1)圆C 1的直角坐标方程为x 2+(y -2)2=4.直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧x 2+(y -2)2=4,x +y -4=0得⎩⎪⎨⎪⎧x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=2,y 2=2. 所以C 1与C 2交点的极坐标为4,π2,2 2,π4.注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3),故直线PQ 的直角坐标方程为x -y +2=0.由参数方程可得y =b 2x -ab2+1.所以⎩⎪⎨⎪⎧b2=1,-ab 2+1=2,解得a =-1,b =2.23.N3 选修4-4:坐标系与参数方程已知动点P ,Q 都在曲线C :⎩⎪⎨⎪⎧x =2cos t ,y =2sin t (t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点.(1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 23.解:(1)依题意有P(2cos α,2sin α),Q(2cos 2α ,2sin 2α),因此M(cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cos α+cos 2α,y =sin α+sin 2α(α为参数,0<α<2π).(2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π). 当α=π时,d =0,故M 的轨迹过坐标原点.C .N3 (坐标系与参数方程选做题)圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t ,(t 为参数)的焦点坐标是________.(1,0) 由所给的曲线的参数方程化为普通方程为:y 2=4x ,为抛物线,其焦点坐标为(1,0).23.N3 选修4-4:坐标系与参数方程已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).23.解:(1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t 消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0, 得ρ2-8ρcos θ-10ρsin θ+16=0. 所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0,由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0解得⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =0,y =2. 所以C 1与C 2交点的极坐标分别为⎝ ⎛⎭⎪⎫2,π4,⎝ ⎛⎭⎪⎫2,π2.N4选修4-5 不等式选讲21.B12,N4 设a>0,b>0,已知函数f(x)=ax +bx +1.(1)当a≠b 时,讨论函数f(x)的单调性;(2)当x>0时,称f(x)为a ,b 关于x 的加权平均数. (i)判断f(1),fb a ,f b a 是否成等比数列,并证明f b a≤f ba; (ii)a ,b 的几何平均数记为G ,称2aba +b 为a ,b 的调和平均数,记为H.若H≤f(x)≤G,求x 的取值范围.21.解:(1)f(x)的定义域为(-∞,-1)∪(-1,+∞), f ′(x)=a (x +1)-(ax +b )(x +1)2=a -b(x +1)2.当a >b 时,f′(x )>0,函数f(x)在(-∞,-1),(-1,+∞)上单调递增; 当a <b 时,f′(x)<0,函数f(x)在(-∞,-1),(-1,+∞)上单调递减. (2)(i)计算得f(1)=a +b 2>0,f ⎝ ⎛⎭⎪⎫b a =2ab a +b >0,f ⎝⎛⎭⎪⎫b a =ab >0. 故f(1)f ⎝ ⎛⎭⎪⎫b a =a +b 2·2ab a +b =ab =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫b a 2,即 f(1)f ⎝ ⎛⎭⎪⎫b a =⎣⎢⎡⎦⎥⎤f ⎝⎛⎭⎪⎫b a 2.① 所以f(1),f ⎝ ⎛⎭⎪⎫b a ,f ⎝ ⎛⎭⎪⎫b a 成等比数列. 因a +b 2≥ab ,即f(1)≥f ⎝⎛⎭⎪⎫b a ,结合①得f ⎝ ⎛⎭⎪⎫b a ≤f ⎝⎛⎭⎪⎫b a . (ii)由(i)知f ba =H ,fba=G ,故由H≤f (x)≤G , 得f ⎝ ⎛⎭⎪⎫b a ≤f (x)≤f ⎝⎛⎭⎪⎫b a .② 当a =b 时,f ⎝ ⎛⎭⎪⎫b a =f(x)=f ⎝⎛⎭⎪⎫b a =a. 这时,x 的取值范围为(0,+∞); 当a >b 时,0<b a <1,从而ba <b a ,由f(x)在(0,+∞)上单调递增与②式,得ba≤x ≤b a ,即x 的取值范围为⎣⎢⎡⎦⎥⎤ba ,b a ; 当a <b 时,b a >1,从而b a >ba,由f(x)在(0,+∞)上单调递减与②式, 得b a ≤x ≤b a ,即x 的取值范围为⎣⎢⎡⎦⎥⎤b a ,b a . 24.N4 选修4-5:不等式选讲 已知函数f(x)=|x -a|,其中a>1.(1)当a =2时,求不等式f(x)≥4-|x -4|的解集;(2)已知关于x 的不等式|f(2x +a)-2f(x)|≤2的解集为{x|1≤x≤2},求a 的值.24.解:(1)当a =2时,f(x)+|x -4|=⎩⎪⎨⎪⎧-2x +6,x≤2,2,2<x<4,2x -6,x≥4.当x≤2时,由f(x)≥4-|x -4|得-2x +6≥4,解得x ≤1; 当2<x<4时,f(x)≥4-|x -4|无解;当x≥4时,由f (x)≥4-|x -4|得2x -6≥4,解得x≥5;所以f(x)≥4-|x -4|的解集为{x|x≤1或x≥5}.(2)记h(x)=f(2x +a)-2f(x),则h(x)=⎩⎪⎨⎪⎧-2a ,x≤0,4x -2a ,0<x<a ,2a ,x≥a.由|h(x)|≤2,解得a -12≤x ≤a +12.又已知|h(x)|≤2的解集为{x|1≤x≤2}. 所以⎩⎪⎨⎪⎧a -12=1,a +12=2,于是a =3.24.N4 选修4-5:不等式选讲 设a ,b ,c 均为正数,a +b +c =1. 证明:(1)ab +bc +ca≤13;(2)a 2b +b 2c +c2a≥1.24.证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca. 由题设得(a +b +c)2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca)≤1,即ab +bc +ca≤13.(2)因为a 2b +b≥2a,b 2c +c≥2b,c2a +a≥2c,故a 2b +b 2c +c2a +(a +b +c)≥2(a+b +c), 即a 2b +b 2c +c2a ≥a +b +c. 所以a 2b +b 2c +c2a≥1.A .N4 (不等式选做题)设a ,b∈R ,|a -b|>2,则关于实数x 的不等式|x -a|+|x -b|>2的解集是________.(-∞,+∞) 利用绝对值不等式的性质可得|x -a|+|x -b|≥|(x-a)-(x -b)|=|b -a|=|a -b|.又由|a -b|>2恒成立,故不等式解集为(-∞,+∞).14.N4 设a +b =2,b>0,则12|a|+|a|b的最小值为________. 14.34 12|a|+|a|b =a +b 4|a|+|a|b =a 4|a|+b 4|a|+|a|b ≥a 4|a|+2b 4|a|·|a|b ≥-14+1=34. 24.N4 选修4-5:不等式选讲已知函数f(x)=|2x -1|+|2x +a|,g(x)=x +3.(1)当a =-2时,求不等式f(x)<g(x)的解集; (2)设a >-1,且当x∈⎣⎢⎡⎭⎪⎫-a 2,12时,f(x)≤g(x),求a 的取值范围. 24.解:(1)当a =-2时,不等式f(x)<g(x)化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎪⎨⎪⎧-5x ,x<12,-x -2,12≤x≤1,3x -6,x>1.其图像如图所示,从图像可知,当且仅当x∈(0,2)时,y<0,所以原不等式的解集是{x|0<x<2}.(2)当x∈⎣⎢⎡⎭⎪⎫-a 2,12时,f(x)=1+a. 不等式f(x)≤g(x)化为1+a≤x+3.所以x≥a-2对x∈⎣⎢⎡⎭⎪⎫-a 2,12都成立. 故-a 2≥a -2,即a≤43. 从而a 的取值范围是⎝⎛⎦⎥⎤-1,43.N5选修4-7 优选法与试验设计P图1-13.BP 如图1-1所示,程序框图(算法流程图)的输出结果为( )A.34B.16C.1112D.25243.C 依次运算的结果是s =12,n =4;s =12+14,n =6;s =12+14+16,n =8,此时输出s ,故输出结果是12+14+16=错误!.。
高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 N单元 选修4系列(文科)
数 学N 单元 选修4系列N1 选修4-1 几何证明选讲 22.N1 选修41:几何证明选讲如图16所示,△OAB 是等腰三角形,∠AOB =120°.以O 为圆心,12OA 为半径作圆.(1)证明:直线AB 与⊙O 相切;(2)点C ,D 在⊙O 上,且A ,B ,C ,D 四点共圆,证明:AB ∥CD .图1622.证明:(1)设E 是AB 的中点,连接OE . 因为OA =OB ,∠AOB =120°, 所以OE ⊥AB ,∠AOE =60°.在Rt △AOE 中,OE =12AO ,即O 到直线AB 的距离等于⊙O 的半径,所以直线AB 与⊙O相切.(2)因为OA =2OD ,所以O 不是A ,B ,C ,D 四点所在圆的圆心.设O ′是A ,B ,C ,D 四点所在圆的圆心,作直线OO ′.由已知得O 在线段AB 的垂直平分线上,又O ′在线段AB 的垂直平分线上,所以OO ′⊥AB .同理可证,OO ′⊥CD ,所以AB ∥CD . 22.N1 选修41:几何证明选讲如图15,在正方形ABCD 中,E ,G 分别在边DA ,DC 上(不与端点重合),且DE =DG ,过D 点作DF ⊥CE ,垂足为F .(1)证明:B ,C ,G ,F 四点共圆;(2)若AB =1,E 为DA 的中点,求四边形BCGF 的面积.图1522.解:(1)证明:因为DF ⊥EC ,所以△DEF ∽△CDF ,则有∠GDF =∠DEF =∠FCB ,DF CF=DE CD =DG CB, 所以△DGF ∽△CBF ,由此可得∠DGF =∠CBF .因此∠CGF +∠CBF =180°,所以B ,C ,G ,F 四点共圆. (2)由B ,C ,G ,F 四点共圆,CG ⊥CB 知FG ⊥FB .连接GB .由G 为Rt △DFC 斜边CD 的中点,知GF =GC ,故Rt △BCG ≌Rt △BFG ,因此,四边形BCGF 的面积S 是△GCB 面积S △GCB 的2倍,即S =2S △GCB =2×12×12×1=12.22.N1 选修41:几何证明选讲如图16,⊙O 中的中点为P ,弦PC ,PD 分别交AB 于E ,F 两点.(1)若∠PFB =2∠PCD ,求∠PCD 的大小;(2)若EC 的垂直平分线与FD 的垂直平分线交于点G ,证明:OG ⊥CD .图1622.解:(1)连接PB ,BC ,则∠BFD =∠PBA +∠BPD ,∠PCD =∠PCB +∠BCD .因为=,所以∠PBA =∠PCB ,又∠BPD =∠BCD ,所以∠BFD =∠PCD .又∠PFB +∠BFD =180°,∠PFB =2∠PCD ,所以3∠PCD =180°,因此∠PCD =60°.(2)证明:因为∠PCD =∠BFD ,所以∠EFD +∠PCD =180°,由此知C ,D ,F ,E 四点共圆,其圆心既在CE 的垂直平分线上,又在DF 的垂直平分线上,故G 就是过C ,D ,F ,E 四点的圆的圆心,所以G 在CD 的垂直平分线上.又O 也在CD 的垂直平分线上,因此OG ⊥CD .21.A.N1 选修41:几何证明选讲如图17,在△ABC 中,∠ABC =90°,BD ⊥AC ,D 为垂足,E 是BC 的中点,求证:∠EDC =∠ABD .图1721.A.证明:在△ADB 和△ABC 中, 因为∠ABC =90°,BD ⊥AC ,∠A 为公共角, 所以△ADB ∽△ABC ,于是∠ABD =∠C . 在Rt △BDC 中,因为E 是BC 的中点, 所以ED =EC ,从而∠EDC =∠C , 所以∠EDC =∠ABD .N2 选修4-2 矩阵21.B .N2 选修42:矩阵与变换已知矩阵A =⎣⎢⎡⎦⎥⎤1 20 -2,矩阵B 的逆矩阵B -1=⎣⎢⎢⎡⎦⎥⎥⎤1 -120 2,求矩阵AB . 21.B .解:设B =⎣⎢⎡⎦⎥⎤a b c d ,则B -1B = ⎣⎢⎢⎡⎦⎥⎥⎤1 -120 2⎣⎢⎡⎦⎥⎤a bc d =⎣⎢⎡⎦⎥⎤1 00 1,即⎣⎢⎢⎡⎦⎥⎥⎤a -12c b -12d 2c 2d =⎣⎢⎡⎦⎥⎤100 1,故⎩⎪⎨⎪⎧a -12c =1,b -12d =0,2c =0,2d =1,解得⎩⎪⎨⎪⎧a =1,b =14,c =0,d =12,所以B =⎣⎢⎢⎡⎦⎥⎥⎤1 140 12.因此,AB =⎣⎢⎡⎦⎥⎤1 20 -2⎣⎢⎢⎡⎦⎥⎥⎤1 140 12=⎣⎢⎢⎡⎦⎥⎥⎤1 540 -1.N3 选修4-4 参数与参数方程 23.N3 选修44:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .23.解:(1)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2.C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsinθ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ. 若ρ≠0,则由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去)或a =1.当a =1时,极点也为C 1,C 2的公共点,在C 3上, 所以a =1.23.N3 选修44:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.23.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2.将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0,于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,则tan α=±153. 所以l 的斜率为153或-153.23.N3 选修44:坐标系与参数方程 在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin (θ+π4)=2 2.(1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 23.解:(1)C 1的普通方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值,d (α)=|3cos α+sin α-4|2=2|sin (α+π3)-2|, 当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时点P 的直角坐标为(32,12).21.C .N3 选修44:坐标系与参数方程在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),椭圆C的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB的长.21.C .解:椭圆C 的普通方程为x 2+y 24=1.将直线l 的参数方程⎩⎪⎨⎪⎧x =1+12t ,y =32t代入x 2+y 24=1,得1+12t 2+32t 24=1,即7t 2+16t =0,解得t 1=0,t 2=-167.所以AB =|t 1-t 2|=167.N4 选修4-5 不等式选讲 24.N4 选修45:不等式选讲 已知函数f (x )=|x +1|-|2x -3|. (1)在图17中画出y =f (x )的图像; (2)求不等式|f (x )|>1的解集.图1724.解:(1)f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,则y =f (x )的图像如图所示.(2)由f (x )的表达式及图像知,当f (x )=1时,x =1或x =3; 当f (x )=-1时,x =13或x =5.故f (x )>1的解集为{x |1<x <3},f (x )<-1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <13或x >5.所以|f (x )|>1的解集为{x ⎪⎪⎪x <13或1<x <3或x >5}.24.N4 选修45:不等式选讲已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.24.解:(1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2;当x ≥12时,由f (x )<2得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0,因此|a +b |<|1+ab |.24.N4 选修45:不等式选讲已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|,当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. 24.解:(1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6,得-1≤x ≤3. 因此,f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥|2x -a +1-2x |+a =|1-a |+a , 当x =12时等号成立,所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3.① 当a ≤1时,①等价于1-a +a ≥3,无解. 当a >1时,①等价于a -1+a ≥3,解得a ≥2. 所以a 的取值范围是 选修45:不等式选讲 设a >0,|x -1|<a 3,|y -2|<a3,求证:|2x +y -4|<a .21.D .证明:因为|x -1|<a 3,|y -2|<a3,所以|2x +y -4|=|2(x -1)+(y -2)|≤2|x -1|+|y -2|<2×a 3+a3=a .N5 选修4-7 优选法与试验设计。
全国数学试题分类解析汇编(11月第四期)N单元 选修4系列
N 单元 选修4系列目录N 单元 选修4系列 (1)N1 选修4-1 几何证明选讲 (1)N2 选修4-2 矩阵 (1)N3 选修4-4 参数与参数方程 (1)N4 选修4-5 不等式选讲 (1)N5 选修4-7 优选法与试验设计 (1)N1 选修4-1 几何证明选讲【数学理卷·2015届广东省广州市执信中学高三上学期期中考试(201411)】15.如图,已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且2DF CF ==,1:2:4::=BE FB AF ,若CE 与圆相切, 则线段CE 的长为 .【知识点】与圆有关的比例线段;圆的切线的性质定理的证明.N1【答案】【解析】72解析:∵1:2:4::=BE FB AF ,∴可设AF=4k ,BF=2k ,BE=k >0.由相交弦定理可得:AF FBDF FC ??,∴4222k k ??,解得12k =. ∴12,1,2AF FB BE ===.∴72EA =,根据切割线定理可得:2177224CE BE EA=??,解得72CE =.故答案为72。
【思路点拨】利用相交弦定理和切割线定理即可得出.【数学文卷·2015届河北省衡水中学高三上学期期中考试(201411)】22、选修4-1:几何证明选讲如图过圆E 外一点A 作一条直线与圆E 交于B 、C 两点,且AB=13AC ,作直线AF 与圆E 相切于点F ,连结EF 交BC 于点D ,已知圆E 的半径为2,30EBC ∠=o(1) 求AF 的长;(2) 求证:AD=3ED【知识点】切割线定理;三角形相似的判定与性质. N1 【答案】【解析】(1)AF=3;(2)证明:见解析.解析:(1)延长BE 交圆E 于点M ,连接CM ,则∠BCM=90°,又BM=2BE=4,∠EBC=30°,所以BC=23,根据切割线定理得:23339AF AB AC =⋅=⋅=,所以AF=3--------5分(2)过E 作EH ⊥BC 与H ,则△EDH ∽△ADF ,从而有ED EH AD AF =,又由题意知BH=13,22BC EB == 所以EH=1,因此13ED AD =,即AD=3ED--------10分 【思路点拨】(1)根据切割线定理知,只需求出线段BC 的长,为此延长BE 交圆E 于点M ,连接CM ,在Rt △BCM 中求得BC=23,从而得AF=3;(2)取BC 中点H 连接EH ,由△EDH ∽△ADF 可证得结论.【数学文卷·2015届广东省广州市执信中学高三上学期期中考试(201411)】15.(几何证明选讲选做题)如图,AB 是圆O 的直径,BC 是圆O 的切线,切点为B ,OC 平行于弦AD ,若3OB =,5OC =,则CD =【知识点】与圆有关的比例线段.N1【答案】【解析】4 解析:∵AB 是圆O 的直径,BC 是圆O 的切线,∴OB ⊥BC .在Rt △OBC 中,224BC OC OB =-=.∵AD ∥OC ,∴∠A=∠BOC ,∠ADO=∠COD .∵∠A=∠ADO ,∴∠BOC=∠DOC .又∵OB=OD ,OC 为公共边.∴△BOC ≌△DOC .∴CD=CB=4.【思路点拨】利用圆的切线的性质和勾股定理可得BC ,再利用平行线的性质和全等三角形的性质可得CD=CB .即可得出.N2 选修4-2 矩阵N3 选修4-4 参数与参数方程【数学理卷·2015届广东省广州市执信中学高三上学期期中考试(201411)】14.在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为__________【知识点】点的极坐标和直角坐标的互化;两点间的距离公式.N3【答案】【解析】251+ 解析:由cos 1ρθ=+得,cos 1q r =-,代入cos 1ρθ=得()11r r -=,解得152r +=或152r -=(舍), 所以曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为152+, 故答案为:152+. 【思路点拨】联立cos 1ρθ=+与cos 1ρθ=消掉q 即可求得r ,即为答案.【数学文卷·2015届湖南省长郡中学2015届高三月考试卷(三)word 版】12.在极坐标系中,直线sin()24πρθ+=被圆4ρ=截得的弦长为______.【知识点】 极坐标的意义. N3【答案】【解析】43解析:直线sin()24πρθ+=的直角坐标方程为220x y +-=, 圆4ρ=的 直角坐标方程为2216x y +=,因为圆心(0,0)到直线的距离d=2,半径r=4, 所以截得的弦长为43.【思路点拨】先把直线和圆的极坐标方程化为直角坐标方程,再利用直角坐标方程求弦长.【数学文卷·2015届广东省广州市执信中学高三上学期期中考试(201411)】14.(坐标系与参数方程选做题)在极坐标系中,已知两点(5,)3A π、2(8,)3B π,则||AB = 【知识点】简单曲线的极坐标方程.N3【答案】【解析】7 解析:∵∠AOB=3π,∴22258258cos 493AB π=+-⨯⨯=, ∴AB=7.故答案为:7.【思路点拨】利用余弦定理即可得出.N4 选修4-5 不等式选讲【数学理卷·2015届湖南省衡阳八中高三上学期第四次月考(201411)】20.(本小题满分13分)等比数列{a n }的前n 项和为S n .已知]任意的n ∈N *,点(n ,S n )均在函数y =b x +r (b >0且b ≠1,b ,r 均为常数)的图象上.(1)求r 的值;(2)当b =2时,记212log n n b a += (n ∈N *). 证明:对任意的n ∈N *,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n >n +1成立. 【知识点】数学归纳法.N4 【答案】【解析】(1)-1;(2)见解析解析:(1)由题意,S n =b n +r ,当n ≥2时,S n -1=b n -1+r ,所以a n =S n -S n -1=b n -1(b -1),由于b >0且b ≠1,所以n ≥2时,{a n }是以b 为公比的等比数列,又a 1=b +r ,a 2=b (b -1),a 2a 1=b ,即b b -1b +r=b ,解得r =-1. …………5分 (2)证明:由(1)知a n =2n -1,因此b n =2n (n ∈N *),所证不等式为2+12·4+14·…·2n +12n>n +1. ①当n =1时,左式=32,右式=2,左式>右式,所以结论成立. ②假设n =k 时结论成立,即2+12·4+14·…·2k +12k>k +1, …………8分 则当n =k +1时,2+12·4+14·…·2k +12k ·2k +32k +1>k +1·2k +32k +1=2k +32k +1, 要证当n =k +1时结论成立,只需证2k +32k +1>k +2,即证2k +32>k +1k +2,由均值不等式2k +32=k +1+k +22>k +1k +2成立,故2k +32k +1>k +2成立,所以,当n =k +1时,结论成立.由①②可知,n ∈N *时,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立.…………12分 【思路点拨】(1)由已知中因为对任意的n ∈N +,点(n ,S n ),均在函数y=b x +r (b >0且b≠1,b ,r 均为常数的图象上.根据数列中an 与Sn 的关系,我们易得到一个关于r 的方程,再由数列{a n }为等比数列,即可得到r 的值.(2)将b=2代入,我们可以得到数列{a n }的通项公式,再由bn=2(log 2a n +1)(n ∈n ),我们可给数列{b n }的通项公式,进而可将不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1进行简化,然后利用数学归纳法对其进行证明.【数学文卷·2015届河北省衡水中学高三上学期期中考试(201411)】23、选修4-5:不等式选讲设函数()213f x x x =+--(1)求函数()y f x =的最小值;(2)若()722a f x ax ≥+-恒成立,求实数a 的取值范围。
2018年6月高2019届高2016级高考文科数学试题分类汇编14N单元 选修4系列
N单元选修4系列N1 选修4-1 几何证明选讲.N3 选修4-4 参数与参数方程22.N3[2018·全国卷Ⅰ]选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcos θ-3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.22.解:(1)由x=ρcos θ,y=ρsin θ得C2的直角坐标方程为(x+1)2+y2=4.(2)由(1)知C2是圆心为A(-1,0),半径为2的圆.由题设知,C1是过点B(0,2)且关于y轴对称的两条射线.记y轴右边的射线为l1,y轴左边的射线为l2.由于B在圆C2的外面,故C1与C2有且仅有三个公共点等价于l1与C2只有一个公共点且l2与C2有两个公共点,或l2与C2只有一个公共点且l1与C2有两个公共点.=2,故k=-或k=0.当l1与C2只有一个公共点时,A到l1所在直线的距离为2,所以+经检验,当k=0时,l1与C2没有公共点;当k=-时,l1与C2只有一个公共点,l2与C2有两个公共点.=2,故k=0或k=.当l2与C2只有一个公共点时,A到l2所在直线的距离为2,所以+经检验,当k=0时,l1与C2没有公共点;当k=时,l2与C2没有公共点.综上,所求C1的方程为y=-|x|+2.22.N3[2018·全国卷Ⅱ][选修4-4:坐标系与参数方程]在直角坐标系xOy中,曲线C的参数方程为==(θ为参数),直线l的参数方程为=+=+(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.22.解:(1)曲线C的直角坐标方程为+=1.当cos α≠0时,l的直角坐标方程为y=tan α·x+2-tan α;当cos α=0时,l的直角坐标方程为x=1.(2)将l的参数方程代入C的直角坐标方程,整理得关于t的方程(1+3cos2α)t2+4(2cos α+sin α)t-8=0.①因为曲线C截直线l所得线段的中点(1,2)在C内,所以①有两个解,设为t1,t2,则t1+t2=0.又由①得t1+t2=-++,故2cos α+sin α=0,于是直线l的斜率k=tan α=-2.22.N3[2018·全国卷Ⅲ][选修4-4:坐标系与参数方程]在平面直角坐标系xOy中,☉O的参数方程为==(θ为参数),过点(0,-)且倾斜角为α的直线l与☉O交于A,B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.22.解:(1)☉O的直角坐标方程为x2+y2=1.当α=时,l与☉O交于两点.当α≠时,记tan α=k,则l的方程为y=kx-.l与☉O交于两点当且仅当+<1,解得k<-1或k>1,即α∈或α∈.综上,α的取值范围是.(2)l的参数方程为==-+为参数.设A,B,P对应的参数分别为t A,t B,t P,则t P=+,且t A,t B满足t2-2t sin α+1=0.于是t A+t B=2sin α,t P=sin α.又点P的坐标(x,y)满足==-+所以点P的轨迹的参数方程是==--为参数.N4 选修4-5 不等式选讲23.N4[2018·全国卷Ⅲ][选修4-5:不等式选讲]设函数f(x)=|2x+1|+|x-1|.(1)画出y=f(x)的图像;(2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值.图1-623.解:(1)f(x)=--+-y=f(x)的图像如图所示.(2)由(1)知,y=f(x)的图像与y轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a≥3且b≥2时,f(x)≤ax+b在[0,+∞)成立,因此a+b的最小值为5.N5 选修4-7 优选法与试验设计1.[2018·唐山期末]在直角坐标系xOy中,椭圆C关于坐标轴对称.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,A,B(2,0)为椭圆C上两点.(1)求直线OA的直角坐标方程与椭圆C的参数方程;(2)若点M在椭圆C上,且点M在第一象限内,求四边形OAMB的面积S的最大值.1.解:(1)由A得直线OA的倾斜角为,所以直线OA的斜率为tan=-1,即直线OA的直角坐标方程为x+y=0.由x=ρcosα,y=ρsinα可得A的直角坐标为(-,).因为椭圆C关于坐标轴对称,且B(2,0),所以可设椭圆C:+=1,其中t>0且t≠12.将(-,)代入C的方程,可得t=4,故椭圆C的方程为+=1,所以椭圆C的参数方程为==(α为参数).(2)由(1)得M(2cosα,2sinα),0<α<.点M到直线OA的距离d=cosα+sinα,所以S=S△MOA+S△MOB=3cosα+sinα+2sinα=3cosα+3sinα=6sin+,所以当α=时,四边形OAMB的面积S取得最大值6.2.[2018·武威期末]已知曲线C的参数方程为=+=+(α为参数),以直角坐标系的原点为极点,x轴正半轴为极轴建立极坐标系.(1)求曲线C的极坐标方程;(2)若直线l的极坐标方程为sinθ-cosθ=,求直线l被曲线C截得的弦长.2.解:(1)∵曲线C的参数方程为=+=+(α为参数),∴曲线C的普通方程为(x-3)2+(y-1)2=10,曲线C表示以点(3,1)为圆心,为半径的圆.将==代入并化简得ρ=6cosθ+2sinθ,即曲线C的极坐标方程为ρ=6cosθ+2sinθ.(2)∵sinθ-cosθ=,∴ρsinθ-ρcosθ=1,可得直线l的直角坐标方程为y-x=1,∴圆心C到直线l的距离d=,∴所求弦长为2-=.3.[2018·桂林、贺州期末联考]在平面直角坐标系xOy中,已知曲线C1:x2+y2=1,将曲线C1上的所有点的横坐标、纵坐标分别伸长为原来的倍、2倍后得到曲线C2.以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的极坐标方程为ρ(2cosα-sinα)=6.(1)试写出直线l的直角坐标方程和曲线C2的参数方程;(2)在曲线C2上求一点P,使点P到直线l的距离最大,并求出此最大值.3.解:(1)由题意知,直线l的直角坐标方程为2x-y-6=0,曲线C2的直角坐标方程为+=1,∴曲线C2的参数方程为==(θ为参数).(2)设点P的坐标为(cosθ,2sinθ),则点P到直线l的距离d=---,∴当sin-=1,即θ=+2kπ(k∈Z)时,d取得最大值,此时点P-,d max==2.4.[2018·丹东期末]已知函数f(x)=|x+3|+|1-x|的最小值为m.(1)求m的值;(2)若a>0,b>0,a+b=m,求证:+≥.4.解:(1)f(x)=|x+3|+|1-x|≥|x+3+1-x|=4,所以m=4.(2)证明:由(1)知a+b=4,所以+=+·+=++.因为+≥2·=1,当且仅当=,即a=,b=时等号成立,所以+≥.5.[2018·唐山期末]已知函数f(x)=|x+1|-|x-1|,g(x)=x2+ax-2.(1)当a=3时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a的取值范围.5.解:(1)不等式|x+1|-|x-1|≥x2+3x-2等价于+-或-+-或--+-解得-3≤x≤1,所以不等式f(x)≥g(x)的解集是[-3,1].(2)当x∈[-1,1]时,令F(x)=g(x)-f(x)=x2+(a-2)x-2.不等式f(x)≥g(x)的解集包含[-1,1]等价于=--=-解得1≤a≤3,所以a的取值范围为[1,3].。
高考数学文科(高考真题+模拟新题)分类汇编:N单元 选修4系列
数 学 N 单元 选修4系列 N1 选修4-1 几何证明选讲15.[2014·广东卷] (几何证明选讲选做题)如图1-1所示,在平行四边形ABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则△CDF 的周长△AEF 的周长=________.图1-115.3 [解析] 本题考查相似三角形的性质定理,周长比等于相似比.∵EB =2AE ,∴AE =13AB =13CD .又∵四边形ABCD 是平行四边形,∴△AEF ~△CDF ,∴△CDF 的周长△AEF 的周长=CD AE =3.21.[2014·江苏卷] A .[选修4-1:几何证明选讲] 如图1-7所示,AB 是圆O 的直径,C ,D 是圆O 上位于AB 异侧的两点.证明:∠OCB =∠D .图1-7证明:因为B ,C 是圆O 上的两点,所以OB =OC , 所以∠OCB =∠B .又因为C ,D 是圆O 上位于AB 异侧的两点, 所以∠B ,∠D 为同弧所对的两个圆周角, 所以∠B =∠D ,因此∠OCB =∠D . [2014·江苏卷] B .[选修4-2:矩阵与变换]已知矩阵A =⎣⎢⎡⎦⎥⎤-1 21 x ,B =⎣⎢⎡⎦⎥⎤1 12 -1,向量α=⎣⎢⎡⎦⎥⎤2y ,x ,y 为实数.若=,求x +y 的值.解:由已知得,=⎣⎢⎡⎦⎥⎤-1 2 1 x 错误!=错误!),B α=错误! ))错误!)=错误!). 因为=,所以⎣⎢⎡⎦⎥⎤-2+2y 2+xy )=⎣⎢⎡⎦⎥⎤2+y 4-y ).故⎩⎪⎨⎪⎧-2+2y =2+y ,2+xy =4-y ,解得⎩⎪⎨⎪⎧x =-12,y =4,所以x +y =72.22.[2014·辽宁卷] 选修4-1如图1-6,EP 交圆于E ,C 两点,PD 切圆于D ,G 为CE 上一点且PG =PD ,连接DG并延长交圆于点A ,作弦AB 垂直EP ,垂足为F .(1)求证:AB 为圆的直径; (2)若AC =BD ,求证:AB =ED .22.证明:(1)因为PD =PG ,所以∠PDG =∠PGD . 由于PD 为切线,故∠PDA =∠DBA .又由于∠PGD =∠EGA ,故∠DBA =∠EGA , 所以∠DBA +∠BAD =∠EGA +∠BAD , 从而∠BDA =∠PF A .因为AF ⊥EP ,所以∠PF A =90°,所以∠BDA =90°,故AB 为圆的直径. (2)连接BC ,DC .由于AB 是直径,故∠BDA 在Rt △BDA 与Rt △ACB 中,AB =BA ,AC =BD ,从而Rt △BDA ≌Rt △ACB ,所以∠DAB =∠CBA .又因为∠DCB =∠DAB ,所以∠DCB =∠CBA ,故DC ∥AB . 因为AB ⊥EP ,所以DC ⊥EP ,∠DCE 为直角.所以ED 为直径.又由(1)知AB 为圆的直径,所以ED =AB . 22.[2014·新课标全国卷Ⅱ] 选修4-1:几何证明选讲 如图1-5,P 是⊙O 外一点,P A 是切线,A 为切点,割线PBC 与⊙O 相交于点B ,C ,PC =2P A ,D 为PC 的中点,AD 的延长线交⊙O 于点E .证明:(1)BE =EC ; (2)AD ·DE =2PB 2.图1-5 22.证明:(1)连接AB ,AC .由题设知P A =PD , 故∠P AD =∠PDA .因为∠PDA=∠DAC+∠DCA,∠P AD=∠BAD+∠P AB,∠DCA=∠P AB,所以∠DAC=∠BAD,从而BE=EC.因此BE=EC.(2)由切割线定理得P A2=PB·PC.因为P A=PD=DC,所以DC=2PB,BD=PB.由相交弦定理得AD·DE=BD·DC,所以AD·DE=2PB2.22.[2014·全国新课标卷Ⅰ] 选修4-1:几何证明选讲如图1-5,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.图1-5(1)证明:∠D=∠E;(2)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.22.证明:(1)由题设知A,B,C,D四点共圆,所以∠D=∠CBE.由已知得∠CBE=∠E,故∠D=∠E.(2)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,故点O在直线MN上.又AD不是⊙O的直径,M为AD的中点,故OM⊥AD,即MN⊥AD,所以AD∥BC,故∠A=∠CBE.又∠CBE=∠E,故∠A=∠E.由(1)知,∠D=∠E,所以△ADE为等边三角形.15.[2014·陕西卷]B.(几何证明选做题)如图1-3所示,△ABC 中,BC =6,以BC 为直径的半圆分别交AB ,AC 于点E ,F ,若AC =2AE ,则EF =________.图1-315. 3 [解析]由题目中所给图形的位置关系,可知∠AEF =∠ACB ,又∠A =∠A ,所以△AEF ∽△ACB ,所以AE AC =EFBC.又AC =2AE ,BC =6,所以EF =3. 7.[2014·天津卷] 如图1-1所示,△ABC 是圆的内接三角形,∠BAC 的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分∠CBF ;②FB 2=FD ·F A ;③AE ·CE =BE ·DE ;④AF ·BD =AB ·BF .则所有正确结论的序号是( )A .①②B .③④C .①②③D .①②④7.D [解析] ∵∠DBC =∠DAC ,∠DBF =∠DAB ,且∠DAC =∠DAB ,∴∠DBC =∠DBF ,∴BD 平分∠CBF ,∴△ABF ∽△BDF ,∴AB BD =AF BF =BFDF,∴AB ·BF =AF ·BD ,BF 2=AF ·DF .故①②④正确.由相交弦定理得AE ·DE =BE ·CE ,故③错误.N2 选修4-2 矩阵N3 选修4-4 参数与参数方程 14.[2014·广东卷] (坐标系与参数方程选做题)在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为________.14.(1,2) [解析] 本题考查极坐标方程与直角坐标方程的转化以及曲线交点坐标的求解.曲线C 1的直角坐标方程是2x 2=y ,曲线C 2的直角坐标是x =1.联立方程C 1与C 2得⎩⎪⎨⎪⎧2x 2=y ,x =1,解得⎩⎪⎨⎪⎧y =2,x =1,所以交点的直角坐标是(1,2). 12.[2014·湖南卷] 在平面直角坐标系中,曲线C :⎩⎨⎧x =2+22t ,y =1+22t (t 为参数)的普通方程为________.12.x -y -1=0 [解析] 依题意,消去参数可得x -2=y -1,即x -y -1=0. 3[2014·江苏卷] C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1-22t ,y =2+22t(t 为参数),直线l与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.解:将直线l 的参数方程⎩⎨⎧x =1-22t ,y =2+22t 代入抛物线方程y 2=4x ,得⎝⎛⎭⎫2+22t 2=4⎝⎛⎭⎫1-22t ,解得t 1=0,t 2=-8 2,所以AB =|t 1-t 2|=8 2. 23.[2014·辽宁卷] 选修4-4:坐标系与参数方程将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.23.解:(1)设(x 1,y 1)为圆上的点,经变换为C 上的点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1得x 2+⎝⎛⎭⎫y 22=1,即曲线C 的方程为x 2+y 24=1. 故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝⎛⎭⎫12,1,所求直线斜率k =12,于是所求直线方程为y -1=12⎝⎛⎭⎫x -12,即2x -4y =-3, 化为极坐标方程,得2 ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.23.[2014·新课标全国卷Ⅱ] 选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎦⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.23.解:(1)C 的普通方程为 (x -1)2+y 2=1(0≤y ≤1). 可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t ,(t 为参数,0≤t ≤π). (2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎫1+cos π3,sin π3,即⎝⎛⎭⎫32,32.23.[2014·全国新课标卷Ⅰ] 选修4-4:坐标系与参数方程已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程、直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.23.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数),直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到直线l 的距离d =55|4cos θ+3sin θ-6|, 则|P A |=d sin 30°=2 55|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|P A |取得最大值, 最大值为2255.当sin(θ+α)=1时,|P A |取得最小值, 最小值为255.15. [2014·陕西卷]C.(坐标系与参数方程选做题)在极坐标系中,点⎝⎛⎭⎫2,π6到直线ρ sin ⎝⎛⎭⎫θ-π6=1的距离是________.15. 1 [解析]易知点⎝⎛⎭⎫2,π6的直角坐标为(3,1),直线ρsin ⎝⎛⎭⎫θ-π6=1的直角坐标方程为x -3y +2=0.由点到直线距离公式,得d =|3-3+2|12+(-3)2=1.N4 选修4-5 不等式选讲4[2014·江苏卷] D .[选修4-5:不等式选讲]已知x >0,y >0,证明:(1+x +y 2)(1+x 2+y )≥9xy .证明:因为x >0,y >0, 所以1+x +y 2≥33xy 2>0, 1+x 2+y ≥33x 2y >0,故(1+x +y 2)(1+x 2+y )≥33xy 2·33x 2y =9xy .15.[2014·江西卷] x ,y ∈R ,若|x |+|y |+|x -1|+|y -1|≤2,则x +y 的取值范围为________.15.[0,2] [解析] ⎩⎪⎨⎪⎧|x |+|x -1|≥1,|y |+|y -1|≥1⇒|x |+|y |+|x -1|+|y -1|≥2⇒|x |+|y |+|x -1|+|y -1|=2⇒⎩⎪⎨⎪⎧|x |+|x -1|=1,|y |+|y -1|=1⇒⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤1⇒0≤x +y ≤2. 24.[2014·辽宁卷] 选修4-5:不等式选讲设函数f (x )=2|x -1|+x -1,g (x )=16x 2-8x +1.记f (x )≤1的解集为M ,g (x )≤4的解集为N .(1)求M ;(2)当x ∈M ∩N 时,证明:x 2f (x )+x [f (x )]2≤14.24.解:(1)f (x )=⎩⎪⎨⎪⎧3x -3,x ∈[1,+∞),1-x ,x ∈(-∞,1).当x ≥1时,由f (x )=3x -3≤1得x ≤43,故1≤x ≤43;当x <1时,由f (x )=1-x ≤1得x ≥0, 故0≤x <1.所以f (x )≤1的解集M =⎩⎨⎧⎭⎬⎫x 0≤x ≤43.(2)由g (x )=16x 2-8x +1≤4得16⎝⎛⎭⎫x -142≤4,解得-14≤x ≤34,因此N =⎩⎨⎧⎭⎬⎫x -14≤x ≤34,故M ∩N =⎩⎨⎧⎭⎬⎫x 0≤x ≤34.当x ∈M ∩N 时,f (x )=1-x ,于是 x 2f (x )+x ·[f (x )]2=xf (x )[x +f (x )]=xf (x )=x (1-x )=14-⎝⎛⎭⎫x -122≤14.24.[2014·新课标全国卷Ⅱ] 选修4-5:不等式选讲设函数f (x )=⎪⎪⎪⎪x +1a +|x -a |(a >0). (1)证明:f (x )≥2;(2)若f (3)<5,求a 的取值范围.24.解:(1)证明:由a >0 ,有f (x )=⎪⎪⎪⎪x +1a +|x -a |≥⎪⎪⎪⎪x +1a -(x -a )=1a +a ≥2, 所以f (x )≥2.(2)f (3)=⎪⎪⎪⎪3+1a +|3-a |. 当a >3时,f (3)=a +1a ,由f (3)<5得3<a <5+212.当0<a ≤3时,f (3)=6-a +1a ,由f (3)<5得1+52<a ≤3.综上,a 的取值范围是⎝⎛⎭⎪⎫1+52,5+212.24.[2014·全国新课标卷Ⅰ] 选修4-5:不等式选讲 若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?请说明理由.24.解:(1)由ab =1a +1b ≥2ab ,得ab ≥2,当且仅当a =b =2时等号成立.故a 3+b 3≥2 a 3b 3≥42,当且仅当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥2 6ab ≥4 3.由于4 3>6,从而不存在a ,b ,使2a +3b =6. 15. [2014·陕西卷] A.(不等式选做题)设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则m 2+n 2的最小值为________.15.A.5 [解析]由柯西不等式可知(a 2+b 2)(m 2+n 2)≥(ma +nb )2,即5(m 2+n 2)≥25,当且仅当an =bm 时,等号成立,所以m 2+n 2 ≥ 5.1.[2014·长沙模拟] 已知点P 所在曲线的极坐标方程为ρ=2cos θ,点Q 所在曲线的参数方程为⎩⎪⎨⎪⎧x =1+t ,y =4+2t (t 为参数),则|PQ |的最小值是( )A .2 B.4 55+1C .1 D.4 55-11.D [解析] 易知点P 在圆x 2+y 2-2x =0上,圆心为(1,0),半径为1,点Q 在直线2x -y +2=0上,故|PQ |的最小值是|2+2|5-1=4 55-1.4.[2014·株洲模拟] 在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴的正半轴为极轴)中,直线C 2的方程为ρ(cos θ-sin θ)+1=0,则曲线C 1与C 2的交点的个数为________.4.2 [解析] 由题意,曲线C 1的参数方程⎩⎨⎧x =2cos α,y =3sin α(α为参数)可化为一般方程x 24+y 23=1,直线C 2的极坐标方程ρ·(cos θ-sin θ)+1=0可化为普通方程x -y +1=0.联立两个方程,消去y 可得x 24+(x +1)23=1,即7x 2+8x -8=0.因为Δ=82+4×7×8>0,所以直线与椭圆相交,且有两个交点.5.[2014·湖南长郡中学月考] 在极坐标系中,圆C 1的方程为ρ=4 2cos ⎝⎛⎭⎫θ-π4,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,已知圆C 2的参数方程为⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(a >0,θ为参数).若圆C 1与圆C 2外切,则实数a =____________. 5.2 [解析] 依题意,ρ=4 2cos θ-π4=4cos θ+4sin θ,化成普通方程为x 2+y 2=4x +4y ,即(x -2)2+(y -2)2=8,即该圆的圆心为C 1(2,2),半径r 1=22.将⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(a >0,θ为参数)化成普通方程为(x +1)2+(y +1)2=a 2,即圆心为C 2(-1,-1),半径r 2=a .由丙点间两圆外切可得|C 1C 2|=3 2=2 2+a ,所以a = 2.6.[2014·衡阳模拟] 已知曲线C 的极坐标方程为ρ=4cos θ.若以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,则曲线C 的参数方程为________.6.⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数) [解析] 由曲线C 的极坐标方程为ρ=4cos θ,可得其普通方程为x 2+y 2=4x ,即(x -2)2+y 2=4,所以曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数).7.[2014·湖南雅礼中学月考] 已知极坐标系下曲线ρ=4sin θ表示圆,则点A ⎝⎛⎭⎫4,π6到圆心的距离为____________.7.2 3 [解析] 将曲线ρ=4sin θ化成普通方程为x 2+y 2=4y ,则该圆的圆心为(0,2),而点A ⎝⎛⎭⎫4,π6的直角坐标为(23,2),由两点间距离公式可得d =(2 3)2+(2-2)2=2 3.8.[2014·湖南十三校联考] 以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数),圆C 的极坐标方程为ρ=2cos θ,若直线l 经过圆C 的圆心,则常数a 的值为________.8.1 [解析] 将直线l 的参数方程⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)化为普通方程为y =x -a ,将圆C的极坐标方程ρ=2cos θ化为普通方程为x 2+y 2=2x ,则圆心为(1,0),代入直线y =x -a可得a =1.。
2014《高考调研》高考数学总复习(人教新课标)配套单元测试:选修系列4含解析
选修系列4综合测试一、选择题(本大题共10小题,每小题5分,共50分.每小题中只有一项符合题目要求)1.已知直线l的参数方程为错误!(t为参数),则其直角坐标方程为()A。
错误!x+y+2-错误!=0 B.错误!x-y+2-错误!=0C.x-3y+2-错误!=0 D.x+错误!y+2-错误!=0答案B解析∵错误!∴y-2=错误!(x-1),即错误!x-y+2-错误!=0.2.如图,梯形ABCD中,AD∥BC,AD=5,BC=10,AC与BD 交于点O,过O点作EF∥AD,交AB于E,交DC于F,则EF=A.错误!B.错误!C.10 D.203.已知实数集R,集合M={x||x-2|≤2},集合N={x|y=错误!},则M∩(∁RN)=( )A.{x|0≤x〈1} B.{x|0≤x≤1}C.{x|1〈x≤4}D.{x|1≤x≤4}答案B解析由已知得M={x|0≤x≤4},N={x|x〉1},∴M∩(∁R N)={x|0≤x≤4}∩{x|x≤1}={x|0≤x≤1}.4.在极坐标系中,点(2,错误!)到圆ρ=2cosθ的圆心的距离为(A.2 B.错误!C。
1+π29D.3答案D解析由错误!可知,点(2,错误!)的直角坐标为(1,错误!),圆ρ=2cosθ的方程为x2+y2=2x,即(x-1)2+y2=1,则圆心到点(1,错误!)的距离为错误!.5.曲线错误!(t为参数)与坐标轴的交点是(A.(0,错误!)、(错误!,0) B.(0,错误!)、(错误!,0)C.(0,-4)、(8,0)D.(0,错误!)、(8,0)解析当x=0时,t=错误!,而y=1-2t,即y=错误!,得与y轴的交点为(0,错误!);当y=0时,t=错误!,而x=-2+5t,即x=错误!,得与x轴的交点为(错误!,0).6.如图,E,C分别是∠A两边上的点,以CE为直径的⊙O交∠A 的两边于点D、点B,若∠A=45°,则△AEC与△ADB的面积比为( )A.2∶1 B.1∶2C.错误!∶1 D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数 学
N 单元 选修4系列
N1 选修4-1 几何证明选讲
15.N1 (几何证明选讲选做题)如图11所示,在平行四边形ABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则△CDF 的周长△AEF 的周长
=________.
图11
15.3 本题考查相似三角形的性质定理,周长比等于相似比.∵EB =2AE ,∴AE =13AB =13
CD.又∵四边形ABCD 是平行四边形,∴△AEF ~△CDF ,∴△CDF 的周长△AEF 的周长=CD AE
=3. 21.N1 A .
如图17所示,AB 是圆O 的直径,C ,D 是圆O 上位于AB 异侧的两点. 证明:∠OCB =∠D.
图17
证明:因为B ,C 是圆O 上的两点,所以OB =OC ,
所以∠OCB =∠B.
又因为C ,D 是圆O 上位于AB 异侧的两点,
所以∠B ,∠D 为同弧所对的两个圆周角,
所以∠B =∠D ,因此∠OCB =∠D.
21. N2 B .
已知矩阵A =⎣⎢⎡⎦⎥⎤-1 21 x
,B =⎣⎢⎡⎦⎥⎤1 12 -1,向量α=⎣⎢⎡⎦
⎥⎤2y ,x ,y 为实数.若A α=B α,求x +y 的值. 解:由已知得,A α=⎣⎢⎡⎦
⎥⎤-1 2 1 x 错误!=错误!), B α=错误! ))错误!)=错误!).
因为A α=B α,所以⎣⎢⎡⎦⎥⎤-2+2y 2+xy )=⎣⎢⎡⎦
⎥⎤2+y 4-y ). 故⎩⎨⎧-2+2y =2+y ,2+xy =4-y ,解得⎩⎨⎧x =-12,y =4,
所以x +y =72
. 22.N1 选修41:几何证明选讲
图16
如图16,EP 交圆于E ,C 两点,PD 切圆于D ,G 为CE 上一点且PG =PD ,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F.
(1)求证:AB 为圆的直径;
(2)若AC =BD ,求证:AB =ED.
22.证明:(1)因为PD =PG ,所以∠PDG =∠PGD.
由于PD 为切线,故∠PDA =∠DBA.
又由于∠PGD =∠EGA ,故∠DBA =∠EGA ,
所以∠DBA +∠BAD =∠EGA +∠BAD ,
从而∠BDA =∠PFA.
因为AF ⊥EP ,所以∠PFA =90°,
所以∠BDA =90°,故AB 为圆的直径.
(2)连接BC,DC.
由于AB是直径,故∠BDA=∠ACB=90°.
在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,从而Rt△BDA≌Rt△ACB,所以∠DAB=∠CBA.
又因为∠DCB=∠DAB,所以∠DCB=∠CBA,故DC∥AB.
因为AB⊥EP,所以DC⊥EP,∠DCE为直角.
所以ED为直径.又由(1)知AB为圆的直径,所以ED=AB.
22.N1 选修41:几何证明选讲
如图15,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E.证明:
(1)BE=EC;
(2)AD·DE=2PB2.
图15
22.证明:(1)连接AB,AC.由题设知PA=PD,
故∠PAD=∠PDA.
因为∠PDA=∠DAC+∠DCA,
∠PAD=∠BAD+∠PAB,
∠DCA=∠PAB,
所以∠DAC=∠BAD,从而BE=EC.
因此BE=EC.。