浙江省绍兴市2017年中考数学试卷(解析版)

合集下载

2017年浙江省绍兴市中考数学试题含答案 (2).docx

2017年浙江省绍兴市中考数学试题含答案 (2).docx

2017 年浙江省绍兴市中考数学试题含答案浙江省绍兴市 2017 年中考数学试题第Ⅰ卷(共 60 分)一、选择题:本大题共 10 个小题 , 每小题 4 分, 共 40 分. 在每小题给出的四个选项中,只有一项是符合题目要求的.21. 5 的相反数是()A .1B . 5C .1 D . 5552. 研究表明,可燃烧是一种可代替石油的新型清洁能源,在我国某海域已探明的可燃烧存储量达 150 000 000 000 立方米,其中数字 150 000 000 000 用科学记数法可表示为 ( )A . 15 1010B . 0.15 1012C .1.5 1011D .1.5 1012 3. 如图的几何体由五个相同的小正方体搭成, 它的主观图是()A .B .C .D .4. 在一个不透明的袋子中装有 4 个红球和 3 个黑球,它们除颜色外其它均相同,从中任意摸出一个球,則摸出黑球的概率是() A .1B .3C.4D .577775. 下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.149.15 9.14 9.15方差6.66.86.76.6根据表中数据,要从中选择 A .甲B .乙―名成绩好且友挥稳定的运动员参加比赛,应选择(C. 丙D .丁)6. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7 米,顶端距离地面 2.4 米 . 如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面 2 米. 则小巷的宽度为()A.0.7米B.1.5米 C. 2.2米D.2.4米h 随时 t变化规律如7.均匀地向一个容器注水,最后把容器注满. 在注水过程中,水面高度图所示 ( 图中OABC为折线 ) ,这个容器的形状可以是()A.B. C.D.8.在探索“尺规三等分角” 这个数学名题的过程中,曾利用了如图,该图中,四边形 ABCD 是矩形, E 是 BA 延长线上一点, F 是 CE 上一点,ACF AFC , FAE FEA .若ACB 21 ,则ECD 的度数是()A.7B.21 C. 23D.249.矩形 ABCD 的两条对称轴为坐标轴,点 A 的坐标为 2,1 .一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点 A 重合,此时抛物线的函数表达式为y x2,再次平移透明纸,使这个点与点 C 重合,则该抛物线的函数表达式变为()A.y x28x 14B.y x28x 14C. y x24x 3D.y x24x 310. 一块竹条编织物,先将其按如图所示绕直线MN 翻转 180,再将它按逆时针方向旋转90 ,所得的竹条编织物是()A.B. C.D.第Ⅱ卷(共 90 分)二、填空题(每题 5 分,满分 30 分,将答案填在答题纸上)11.分解因式: x2 y y.12.如图,一块含 45角的直角三角板,它的一个锐角顶点 A 在O 上,边 AB , AC 分别与O 交于点 D , E ,则DOE 的度数为.13. 如图,R t ABC的两个锐角顶点A, B在函数y kx 0 的图象上, AC / / x 轴,xAC 2 .若点 A 的坐标为 2,2 ,则点 B 的坐标为.14.如图为某城市部分街道示意图,四边形ABCD 为正方形,点 G 在对角线 BD 上,GE CD, GF BC , AD 1500m ,小敏行走的路线为B A G E ,小聪行走的路线为 B A D E F .若小敏行走的路程为3100m ,则小聪行走的路程为m .15. 以R t ABC 的锐角顶点 A 为圆心,适当长为半径作弧,与边AB, AC 各相交于一点,再分别以两个交点为圆心,适当长为半径作弧,过两弧的交点与点 A 作直线,与边 BC 交于点 D .若ADB60 ,点 D 到 AC 的距离为 2 ,则 AB 的长为.16. 如图,AOB45 ,点 M , N 在边 OA 上, OM x,ON x 4 ,点 P 是边 OB 上的点. 若使点P, M , N构成等腰三角形的点P恰好有三个,则x的值是.为半径作弧,与边AB, AC 各相交于一点,再分别以两个交点为圆心,适当长为半径作弧,过两弧的交点与点 A 作直线,与边 BC 交于点 D .若ADB 60,点 D 到 AC 的距离为 2 ,则 AB 的长为.16. 如图,AOB45 ,点 M , N 在边 OA 上, OM x,ON x 4 ,点 P 是边 OB 上的点. 若使点P, M , N 构成等腰三角形的点 P 恰好有三个,则 x 的值是.三、解答题(本大题共 8 小题, 17—20 小题,命题 8 分,第 21 题 10 分,第22,23 小题 12 分,第 24 题 14 分,共 80 分. 解答应写出文字说明、证明过程或演算步骤 . )17. (1)计算:2 303 218 .4(2)解不等式:4x 5 2 x 1.18.某市规定了毎月用水 18 立方米以内(含 18 立方米)和用水 18 立方米以上两种不同的收费标准 . 该市的用户毎月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示 .(1)若某月用水量为18 立方米,则应交水费多少元?(2)求当x为多少立方米?18 时,y 关于x 的函数表达式. 若小敏家某月交水费81元,则这个月用水量19.为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如图所示),并用调查结果绘绘制了图计图解答以下问题. 21世纪教育网版权所有1、图 2 两幅统计图(均不完整),请根据统(1)本次接受问卷调查的同学有多少人?补全条形统计图.(2)本校有七年级同学800 人,估计双休日参加体育锻炼时间在的人数.20. 如图,学校的实验楼对面是一栋教学楼,小敏在实验楼的窗户3 小时以内(不含C 测得教学楼顶3 小时)D 的仰角是 18,教学楼底部 B 的俯角是20,量得实验楼与教学楼之间的距离是AB30m.(1)求BCD的度数.(2)求教学楼的高BD.21.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长度为50m .设饲养室为长为x m ,占地面积为y m2.(1) 如图1,问饲养室为长x 为多少时,占地面积 y最大?(2)如图2,现要求在图中所示位置留2m的门,且仍使饲养室占地面积最大 . 小敏说:“只要饲养室长比( 1)中的长多2m就行了 . ”请你通过计算,判断小敏的说法是否正确.22.定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD ,AB =BC , ABC 90.①若 AB CD 1, AB CD,对角线BD的长.②若AC BD,求证:AD CD .(2)如图2,矩形ABCD中,AB5, BC 9,点P是对角线BD上一点. 且BP 2PD,过点P作直线分别交AD , BC 于点 E, F ,使四边形 ABEF是等腰直角四边形 . 求AE的长.23. 已知ABC , AB A C, D 为直线 BC 上一点, E 为直线 AC 上一点,AD AE,设BAD, CDE.1D在线段 BC 上,点 E 在线段 AC 上.()如图,若点①如果ABC60 ,ADE 70 , 那么= , = .②求,之间的关系式.(2)是否存在不同于以上②中的,之间的关系式?若存在,求出这个关系式,若不存在,请说明理由.24.如图1,已知ABCD , AB x 轴, AB 6, 点 A的坐标为1, 4 ,点D的坐标为3,4 ,点 B 在第四象限,点P 是ABCD 边上一个动点.(1) 若点P在边BC 上,PD CD ,求点 P 的坐标.2AB, AD上,点 P 关于坐标轴对称的点Q,落在直线y x 1上,求点 P()若点 P 在边的坐标.(3)若点 P 在边 AB , AD,CD 上,点 G 是 AD 与 y 轴的交点,如图 2 ,过点 P 作 y 轴的平行线PM,过点G作 x轴的平行线GM,它们相交于点M,将PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P 的坐标(直接写出答案).。

2017年浙江省绍兴市中考数学试卷

2017年浙江省绍兴市中考数学试卷

2017 年浙江省绍兴市中考数学试卷一、选择题(本大题共10 小题,每题 4 分,共 40 分)1.(4 分)﹣ 5 的相反数是()A.B. 5C.﹣D.﹣ 52.(4 分)研究表示,可燃冰是一种代替石油的新式洁净能源,在我国某海疆已探明的可燃冰储存量达0 立方米,此中数字0 用科学记数法可表示为()A.15×1010B.0.15×1012C. 1.5× 1011D.1.5×10123.(4 分)如图的几何体由五个同样的小正方体搭成,它的主视图是()A.B.C.D.4.(4 分)在一个不透明的袋子中装有 4 个红球和 3 个黑球,它们除颜色外其余均同样,从中随意摸出一个球,则摸出黑球的概率是()A. B. C. D.5.(4 分)下表记录了甲、乙、丙、丁四名射击运动员近来几次选拔赛成绩的平均数和方差:甲乙丙丁均匀数(环)9.149.159.149.15方差 6.6 6.8 6.7 6.6依据表中数据,要从中选择一名成绩好且发挥稳固的运动员参加竞赛,应选择()A.甲B.乙C.丙D.丁6.(4 分)如图,巷子左右双侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7 米,顶端距离地面 2.4 米,假如保持梯子底端地点不动,将梯子斜靠在右墙时,顶端距离地面 2 米,则巷子的宽度为()A.0.7 米B.1.5 米C.2.2 米D.2.4 米7.(4 分)均匀地向一个容器灌水,最后把容器注满,在灌水过程中,水面高度h 随时间 t 的变化规律如下图(图中OABC 为折线),这个容器的形状能够是()A.B.C.D.8.(4 分)在探究“尺规三均分角”这个数学名题的过程中,曾利用了如图.该图中,四边形 ABCD是矩形,E 是 BA 延伸线上一点, F 是 CE上一点,∠ACF=∠AFC,∠ FAE=∠FEA.若∠ ACB=21°,则∠ ECD的度数是()A.7° B.21°C.23°D.24°9.(4 分)矩形 ABCD的两条对称轴为坐标轴,点 A 的坐标为( 2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点 C 重合,则该抛物线的函数表达式变成()A.y=x2+8x+14 B.y=x2﹣8x+14 C. y=x2+4x+3D.y=x2﹣ 4x+310.( 4分)一块竹条编织物,先将其按如下图绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是()A.B.C.D.二、填空题(本大题共 6 小题,每题 5 分,共30 分)11.( 5 分)分解因式:x2y﹣ y=.12.( 5 分)如图,一块含45°角的直角三角板,它的一个锐角极点 A 在⊙O上,边 AB, AC分别与⊙O 交于点D,E,则∠ DOE的度数为.13.( 5 分)如图, Rt△ABC的两个锐角极点A,B 在函数 y=(x> 0)的图象上,AC∥x 轴, AC=2,若点 A 的坐标为( 2,2),则点 B 的坐标为.14.( 5 分)如图为某城市部分街道表示图,四边形ABCD为正方形,点G 在对角线 BD 上, GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为 B→A→G→E,小聪行走的路线为 B→A→D→E→F.若小敏行走的行程为 3100m,则小聪行走的路程为m.15.( 5 分)以 Rt△ABC的锐角极点 A 为圆心,适合长为半径作弧,与边 AB,AC各订交于一点,再分别以这两个交点为圆心,适合长为半径作弧,过两弧的交点与点A 作直线,与边 BC交于点 D.若∠ ADB=60°,点 D 到 AC的距离为 2,则 AB的长为.16.( 5 分)如图,∠ AOB=45°,点 M, N 在边 OA 上, OM=x,ON=x+4,点 P 是边 OB 上的点,若使点 P, M ,N 组成等腰三角形的点 P 恰巧有三个,则 x 的值是.三、解答题(本大题共8 小题,共 80 分)17.( 8 分)(1)计算:(2﹣π)0+| 4﹣3| ﹣.(2)解不等式: 4x+5≤2(x+1)18.( 8 分)某市规定了每个月用水18 立方米之内(含 18 立方米)和用水 18 立方米以上两种不一样的收费标准,该市的用户每个月应交水费y(元)是用水量x(立方米)的函数,其图象如下图.( 1)若某月用水量为18 立方米,则应交水费多少元?( 2)求当 x>18 时, y 对于 x 的函数表达式,若小敏家某月交水费81 元,则这个月用水量为多少立方米?19.( 8 分)为认识本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷检查(问卷检查表如下图),并用检查结果绘制了图 1,图 2 两幅统计图(均不完好),请依据统计图解答以下问题:(1)本次接受问卷检查的同学有多少人?补全条形统计图.(2)本校有七年级同学 800 人,预计双休日参加体育锻炼时间在 3 小时之内(不含 3 小时)的人数.20.( 8 分)如图,学校的实验楼对面是一幢教课楼,小敏在实验楼的窗口 C 测得教课楼顶部 D 的仰角为 18°,教课楼底部 B 的俯角为 20°,量得实验楼与教课楼之间的距离 AB=30m.(1)求∠ BCD的度数.(2)讨教课楼的高 BD.(结果精准到 0.1m,参照数据: tan20 °≈0.36,tan18 °≈ 0.32)21.( 10 分)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑资料可建围墙的总长为50m.设饲养室长为x(m),占地面积为 y( m2).(1)如图 1,问饲养室长 x 为多少时,占地面积 y 最大?(2)如图 2,现要求在图中所示地点留 2m 宽的门,且仍使饲养室的占地面积最大,小敏说:“只需饲养室长比( 1)中的长多 2m 就行了.”请你经过计算,判断小敏的说法能否正确.22.( 12 分)定义:有一组邻边相等,而且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图 1,等腰直角四边形 ABCD,AB=BC,∠ABC=90°,①若 AB=CD=1, AB∥CD,求对角线 BD 的长.②若 AC⊥BD,求证: AD=CD,(2)如图 2,在矩形 ABCD中,AB=5,BC=9,点 P 是对角线 BD 上一点,且 BP=2PD,过点 P 作直线分别交边 AD, BC于点 E,F,使四边形 ABFE是等腰直角四边形,求 AE 的长.23(.12 分)已知△ ABC,AB=AC,D 为直线 BC上一点,E 为直线 AC上一点,AD=AE,设∠ BAD=α,∠ CDE=β.( 1)如图,若点 D 在线段 BC上,点 E 在线段 AC上.①假如∠ ABC=60°,∠ ADE=70°,那么α= °,β= °,②求α,β之间的关系式.(2)能否存在不一样于以上②中的α,β之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明原因.24.( 14 分)如图 1,已知 ?ABCD,AB∥x 轴, AB=6,点 A 的坐标为( 1,﹣ 4),点 D 的坐标为(﹣ 3,4),点 B 在第四象限,点 P 是?ABCD边上的一个动点.( 1)若点 P 在边 BC上, PD=CD,求点 P 的坐标.( 2)若点 P 在边 AB,AD 上,点 P 对于坐标轴对称的点 Q 落在直线 y=x﹣ 1 上,求点 P 的坐标.( 3)若点 P 在边 AB,AD,CD 上,点 G 是 AD 与 y 轴的交点,如图 2,过点 P作 y 轴的平行线 PM,过点 G 作 x 轴的平行线 GM,它们订交于点 M ,将△ PGM 沿直线PG翻折,当点M 的对应点落在座标轴上时,求点P 的坐标.(直接写出答案)2017 年浙江省绍兴市中考数学试卷参照答案与试题分析一、选择题(本大题共10 小题,每题 4 分,共 40 分)1.(4 分)(2017?绍兴)﹣ 5 的相反数是()A.B. 5C.﹣D.﹣ 55,【解答】解:﹣ 5 的相反数是应选: B.2.(4 分)(2017?绍兴)研究表示,可燃冰是一种代替石油的新式洁净能源,在我国某海疆已探明的可燃冰储存量达0 立方米,此中数字 0 用科学记数法可表示为()A.15×1010 B.0.15×1012 C. 1.5× 1011 D.1.5×1012【解答】解: 0=1.5×1011,应选: C.3.(4 分)(2017?绍兴)如图的几何体由五个同样的小正方体搭成,它的主视图是()A.B.C.D.【解答】解:从正面看第一层是三个小正方形,第二层左侧一个小正方形,应选: A.4.(4 分)(2017?绍兴)在一个不透明的袋子中装有 4 个红球和 3 个黑球,它们除颜色外其余均同样,从中随意摸出一个球,则摸出黑球的概率是()A.B.C.D.【解答】解:∵在一个不透明的袋子中装有除颜色外其余均同样的 4 个红球和3个黑球,∴从中随意摸出一个球,则摸出黑球的概率是.应选 B.5.(4 分)(2017?绍兴)下表记录了甲、乙、丙、丁四名射击运动员近来几次选拔赛成绩的均匀数和方差:甲乙丙丁均匀数(环)9.149.159.149.15方差 6.6 6.8 6.7 6.6依据表中数据,要从中选择一名成绩好且发挥稳固的运动员参加竞赛,应选择()A.甲B.乙C.丙D.丁【解答】解:丁的均匀数最大,方差最小,成绩最稳定,因此选丁运动员参加竞赛.应选 D.6.(4 分)(2017?绍兴)如图,巷子左右双侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为 0.7 米,顶端距离地面 2.4 米,假如保持梯子底端地点不动,将梯子斜靠在右墙时,顶端距离地面 2 米,则巷子的宽度为()A.0.7 米B.1.5 米C.2.2 米D.2.4 米【解答】解:在 Rt△ACB中,∵∠ ACB=90°,BC=0.7米, AC=2.4米,∴AB2=0.72+2.42=6.25.在 Rt△A′BD中,∵∠ A′DB=90,°A′D=2米, BD2+A′D2′2,′ =A B∴BD2 +22=6.25,∴BD2 =2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.应选 C.7.(4 分)(2017?绍兴)均匀地向一个容器灌水,最后把容器注满,在灌水过程中,水面高度h 随时间 t 的变化规律如下图(图中OABC为折线),这个容器的形状能够是()A.B.C.D.【解答】解:灌水量必定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细相关.则相应的摆列次序就为D.应选: D.8.(4 分)(2017?绍兴)在探究“尺规三均分角”这个数学名题的过程中,曾利用了如图.该图中,四边形 ABCD是矩形,E 是 BA 延伸线上一点, F 是 CE上一点,∠ ACF=∠ AFC,∠ FAE=∠FEA.若∠ ACB=21°,则∠ ECD的度数是()A.7° B.21°C.23°D.24°【解答】解:∵四边形 ABCD是矩形,∴∠ D=90°,AB∥CD,AD∥BC,∴∠ FEA=∠ECD,∠ DAC=∠ACB=21°,∵∠ ACF=∠AFC,∠ FAE=∠FEA,∴∠ ACF=2∠ FEA,设∠ ECD=x,则∠ ACF=2x,∴∠ ACD=3x,在Rt△ACD中,3x+21°=90°,解得: x=23°;应选: C.9.( 4 分)(2017?绍兴)矩形 ABCD的两条对称轴为坐标轴,点A 的坐标为( 2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点 A 重合,此时抛物线的函数表达式为 y=x2,再次平移透明纸,使这个点与点 C 重合,则该抛物线的函数表达式变成()A.y=x2+8x+14 B.y=x2﹣8x+14 C. y=x2+4x+3D.y=x2﹣ 4x+3【解答】解:∵矩形 ABCD的两条对称轴为坐标轴,∴矩形 ABCD对于坐标原点对称,∵A 点 C 点是对角线上的两个点,∴ A 点、 C 点对于坐标原点对称,∴ C 点坐标为(﹣ 2,﹣ 1);∴抛物线由 A 点平移至 C 点,向左平移了 4 个单位,向下平移了 2 个单位;∵抛物线经过 A 点时,函数表达式为y=x2,∴抛物线经过 C 点时,函数表达式为y=(x+4)2﹣2=x2+8x+14,应选 A.10.( 4 分)(2017?绍兴)一块竹条编织物,先将其按如下图绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是()A.B.C.D.【解答】解:先将其按如下图绕直线MN 翻转 180°,再将它按逆时针方向旋转 90°,所得的竹条编织物是 B,应选 B.二、填空题(本大题共 6 小题,每题 5 分,共 30 分)11.( 5 分)(2017?绍兴)分解因式: x2y﹣ y= y(x+1)(x﹣ 1).【解答】解: x2y﹣y,=y(x2﹣1),=y(x+1)( x﹣ 1),故答案为: y( x+1)( x﹣ 1).12.( 5 分)( 2017?绍兴)如图,一块含 45°角的直角三角板,它的一个锐角极点 A 在⊙ O 上,边 AB,AC分别与⊙ O 交于点 D,E,则∠ DOE的度数为 90° .【解答】解:∵∠ A=45°,∴∠ DOE=2∠A=90°.故答案为: 90°.13.(5 分)(2017?绍兴)如图,Rt△ABC的两个锐角极点A,B 在函数 y=(x> 0)的图象上, AC∥ x 轴, AC=2,若点 A 的坐标为( 2,2),则点 B 的坐标为(4,1).【解答】解:∵点 A(2,2)在函数 y=(x> 0)的图象上,∴2=,得 k=4,∵在 Rt△ ABC中, AC∥ x 轴, AC=2,∴点 B 的横坐标是 4,∴y==1,∴点 B 的坐标为( 4, 1),故答案为:( 4, 1).14.(5 分)(2017?绍兴)如图为某城市部分街道表示图,四边形 ABCD为正方形,点 G在对角线 BD上,GE⊥CD,GF⊥ BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为 B→A→D→E→F.若小敏行走的行程为 3100m,则小聪行走的行程为 4600 m.【解答】解:连结 GC,∵四边形 ABCD为正方形,因此 AD=DC,∠ ADB=∠CDB=45°,∵∠ CDB=45°,GE⊥ DC,∴△ DEG是等腰直角三角形,∴DE=GE.在△ AGD和△ GDC中,∴△ AGD≌△ GDC∴AG=CG在矩形 GECF中, EF=CG,∴EF=AG.∵BA+AD+DE+EF﹣ BA﹣AG﹣GE=AD=1500m.∵小敏共走了 3100m,∴小聪行走的行程为3100+1500=4600(m)故答案为: 460015.(5 分)(2017?绍兴)以 Rt△ABC的锐角极点 A 为圆心,适合长为半径作弧,与边 AB,AC 各订交于一点,再分别以这两个交点为圆心,适合长为半径作弧,过两弧的交点与点 A 作直线,与边 BC交于点 D.若∠ ADB=60°,点 D 到 AC的距离为 2,则 AB 的长为 2 .【解答】解:如图,作 DE⊥AC于 E.由题意 AD 均分∠ BAC,∵DB⊥AB,DE⊥AC,∴DB=DE=2,在 Rt△ADB 中,∵∠ B=90°,∠ BDA=60°,BD=2,∴AB=BD?tan60°=2,故答案为 216.(5 分)(2017?绍兴)如图,∠ AOB=45°,点 M,N 在边 OA 上,OM=x,ON=x+4,点 P 是边 OB 上的点,若使点 P,M,N 组成等腰三角形的点 P 恰巧有三个,则 x 的值是 x=0 或 x=4﹣ 4 或 4<x<4 .【解答】解:分三种状况:①如图 1,当 M 与 O 重合时,即 x=0 时,点 P 恰巧有三个;②如图 2,以 M 为圆心,以 4 为半径画圆,当⊙ M 与 OB 相切时,设切点为C,⊙M 与 OA交于 D,∴MC⊥ OB,∵∠ AOB=45°,∴△ MCO 是等腰直角三角形,∴MC=OC=4,∴OM=4,当 M 与 D 重合时,即 x=OM﹣ DM=4﹣4 时,同理可知:点 P 恰巧有三个;③如图 3,取 OM=4,以 M 为圆心,以 OM 为半径画圆,则⊙ M 与 OB 除了 O 外只有一个交点,此时 x=4,即以∠ PMN 为顶角,MN 为腰,切合条件的点 P 有一个,以 N 圆心,以 MN 为半径画圆,与直线 OB 相离,说明此时以∠ PNM 为顶角,以 MN 为腰,切合条件的点 P 不存在,还有一个是以 NM为底边的切合条件的点P;点 M 沿 OA 运动,到 M1时,发现⊙ M1与直线 OB 有一个交点;∴当 4<x<4 时,圆 M 在挪动过程中,则会与 OB 除了 O 外有两个交点,知足点P 恰巧有三个;综上所述,若使点P,M, N 组成等腰三角形的点 P 恰巧有三个,则x的值是:x=0 或 x=4﹣4 或 4.故答案为: x=0 或 x=4﹣4 或 4.三、解答题(本大题共8 小题,共 80 分)17.( 8 分)(2017?绍兴)( 1)计算:(2﹣π)0+| 4﹣3| ﹣.(2)解不等式: 4x+5≤2(x+1)【解答】解:(1)原式=1 =﹣3;(2)去括号,得 4x+5≤2x+2移项归并同类项得, 2x≤﹣ 3解得 x.18.( 8 分)(2017?绍兴)某市规定了每个月用水 18 立方米之内(含18 立方米)和用水 18 立方米以上两种不一样的收费标准,该市的用户每个月应交水费y(元)是用水量 x(立方米)的函数,其图象如下图.( 1)若某月用水量为 18 立方米,则应交水费多少元?( 2)求当 x>18 时, y 对于 x 的函数表达式,若小敏家某月交水费81 元,则这个月用水量为多少立方米?【解答】解:(1)由纵坐标看出,某月用水量为18 立方米,则应交水费18 元;(2)由 81 元> 45 元,得用水量超出 18 立方米,设函数分析式为 y=kx+b ( x≥18),∵直线经过点( 18,45)(28,75),∴,解得,∴函数的分析式为 y=3x﹣9 (x≥18),当 y=81 时, 3x﹣9=81,解得 x=30,答:这个月用水量为 30 立方米.19.(8 分)(2017?绍兴)为认识本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷检查(问卷检查表如下图),并用检查结果绘制了图1,图 2 两幅统计图(均不完好),请依据统计图解答以下问题:(1)本次接受问卷检查的同学有多少人?补全条形统计图.(2)本校有七年级同学 800 人,预计双休日参加体育锻炼时间在 3 小时之内(不含 3 小时)的人数.【解答】解:(1)40÷25%=160(人)答:本次接受问卷检查的同学有 160 人;D 组人数为: 160×18.75%=30(人)统计图补全如图:(2) 800×=600(人)答:预计双休日参加体育锻炼时间在 3 小时之内(不含 3 小时)的人数为 600 人.20.( 8 分)(2017?绍兴)如图,学校的实验楼对面是一幢教课楼,小敏在实验楼的窗口 C 测得教课楼顶部 D 的仰角为 18°,教课楼底部 B 的俯角为 20°,量得实验楼与教课楼之间的距离AB=30m.(1)求∠ BCD的度数.(2)讨教课楼的高 BD.(结果精准到 0.1m,参照数据: tan20 °≈0.36,tan18 °≈ 0.32)【解答】解:(1)过点 C 作 CE⊥BD,则有∠ DCE=18°,∠ BCE=20°,∴∠ BCD=∠DCE+∠ BCE=18°+20°=38°;(2)由题意得: CE=AB=30m,在 Rt△CBE中, BE=CE?tan20°≈10.80m,在Rt△CDE中, DE=CD?tan18°≈ 9.60m,∴教课楼的高 BD=BE+DE=10.80+9.60≈20.4m,则教课楼的高约为 20.4m.21.( 10 分)(2017?绍兴)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑资料可建围墙的总长为50m.设饲养室长为 x(m),占地面积为y( m2).(1)如图 1,问饲养室长 x 为多少时,占地面积 y 最大?(2)如图 2,现要求在图中所示地点留 2m 宽的门,且仍使饲养室的占地面积最大,小敏说:“只需饲养室长比( 1)中的长多 2m 就行了.”请你经过计算,判断小敏的说法能否正确.【解答】解:(1)∵ y=x?=﹣( x﹣ 25)2+,∴当 x=25 时,占地面积最大,即饲养室长 x 为 25m 时,占地面积y 最大;(2)∵ y=x?=﹣( x﹣26)2+338,∴当 x=26 时,占地面积最大,即饲养室长 x 为 26m 时,占地面积 y 最大;∵ 26﹣25=1≠2,∴小敏的说法不正确.22.( 12 分)(2017?绍兴)定义:有一组邻边相等,而且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图 1,等腰直角四边形 ABCD,AB=BC,∠ABC=90°,①若 AB=CD=1, AB∥CD,求对角线 BD 的长.②若 AC⊥BD,求证: AD=CD,(2)如图 2,在矩形 ABCD中,AB=5,BC=9,点 P 是对角线 BD 上一点,且 BP=2PD,过点 P 作直线分别交边 AD, BC于点 E,F,使四边形 ABFE是等腰直角四边形,求 AE 的长.【解答】解:(1)①∵ AB=AC=1, AB∥CD,∴S四边形ABCD是平行四边形,∵ AB=BC,∴四边形 ABCD是菱形,∵∠ ABC=90°,∴四边形 ABCD是正方形,∴BD=AC==.(2)如图 1 中,连结 AC、BD.∵ AB=BC,AC⊥BD,∴∠ ABD=∠CBD,∵BD=BD,∴△ ABD≌△ CBD,∴AD=CD.(2)若 EF⊥ BC,则 AE≠EF,BF≠EF,∴四边形 ABFE表示等腰直角四边形,不切合条件.若 EF与 BC不垂直,①当 AE=AB时,如图 2 中,此时四边形 ABFE是等腰直角四边形,∴ AE=AB=5.②当 BF=AB时,如图 3 中,此时四边形 ABFE是等腰直角四边形,∴ BF=AB=5,∵ DE∥BF,∴ DE:BF=PD:PB=1:2,∴ DE=2.5,∴AE=9﹣ 2.5=6.5,综上所述,知足条件的AE的长为 5 或 6.5.23.( 12 分)(2017?绍兴)已知△ ABC,AB=AC,D 为直线 BC上一点, E 为直线AC上一点, AD=AE,设∠ BAD=α,∠ CDE=β.( 1)如图,若点 D 在线段 BC上,点 E 在线段 AC上.①假如∠ ABC=60°,∠ ADE=70°,那么α= 20 °,β= 10 °,②求α,β之间的关系式.(2)能否存在不一样于以上②中的α,β之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明原因.【解答】解:(1)①∵ AB=AC,∠ ABC=60°,∴∠ BAC=60°,∵AD=AE,∠ ADE=70°,∴∠ DAE=180°﹣2∠ADE=40°,∴α=∠BAD=60°﹣40°=20°,∴∠ ADC=∠BAD+∠ABD=60°+20°=80°,∴β=∠CDE=∠ADC﹣∠ ADE=10°,故答案为: 20, 10;②设∠ ABC=x,∠ AED=y,∴∠ ACB=x,∠ AED=y,在△ DEC中, y=β+x,在△ ABD中,α+x=y+β=β+x+β,∴α=2β;(2)①当点 E 在 CA 的延伸线上,点 D 在线段 BC上,如图 1设∠ ABC=x,∠ ADE=y,∴∠ ACB=x,∠ AED=y,在△ ABD中, x+α=β﹣ y,在△ DEC中, x+y+β=180,°∴α=2β﹣ 180°,②当点 E在 CA的延伸线上,点 D 在 CB的延伸线上,如图 2,同①的方法可得α=180﹣°2β.24.( 14 分)( 2017?绍兴)如图 1,已知 ?ABCD,AB∥x 轴, AB=6,点 A 的坐标为( 1,﹣ 4),点 D 的坐标为(﹣ 3, 4),点 B 在第四象限,点 P 是?ABCD边上的一个动点.(1)若点 P 在边 BC上, PD=CD,求点 P 的坐标.(2)若点 P 在边 AB,AD 上,点 P 对于坐标轴对称的点 Q 落在直线 y=x﹣ 1 上,求点 P 的坐标.(3)若点 P 在边 AB,AD,CD 上,点 G 是 AD 与 y 轴的交点,如图 2,过点 P作 y 轴的平行线 PM,过点 G 作 x 轴的平行线 GM,它们订交于点 M ,将△ PGM 沿直线PG翻折,当点M 的对应点落在座标轴上时,求点P 的坐标.(直接写出答案)【解答】解:(1)∵ CD=6,∴点 P 与点 C重合,∴点 P 坐标为( 3,4).(2)①当点 P 在边 AD 上时,∵直线 AD 的分析式为 y=﹣2x﹣2,设 P(a,﹣ 2a﹣ 2),且﹣ 3≤a≤1,若点 P 对于 x 轴的对称点 Q1( a, 2a+2)在直线 y=x﹣1 上,∴ 2a+2=a﹣ 1,解得 a=﹣3,此时 P(﹣ 3, 4).若点 P 对于 y 轴的对称点 Q3(﹣ a,﹣ 2a﹣ 2)在直线 y=x﹣1 上时,∴﹣ 2a﹣2=﹣a﹣1,解得 a=﹣ 1,此时 P(﹣ 1, 0)②当点 P 在边 AB 上时,设 P(a,﹣ 4)且 1≤ a≤ 7,若等P 对于 x 轴的对称点 Q2( a, 4)在直线 y=x﹣1 上,∴4=a﹣1,解得 a=5,此时 P(5,﹣ 4),若点 P 对于 y 轴的对称点 Q4(﹣ a,﹣ 4)在直线 y=x﹣ 1 上,∴﹣ 4=﹣ a﹣1,解得 a=3,此时 P(3,﹣ 4),综上所述,点 P 的坐标为(﹣ 3,4)或(﹣ 1,0)或( 5,﹣ 4)或( 3,﹣ 4).( 3)①如图 1 中,当点 P 在线段 CD上时,设 P(m,4).在 Rt△PNM′中,∵ PM=PM′=6,PN=4,∴NM′==2,在 Rt△OGM′中,∵ OG2+OM′22,=GM′∴22+( 2﹣ m)2 =m2,解得 m=﹣,∴P(﹣, 4)依据对称性可知, P(, 4)也知足条件.②如图 2 中,当点 P 在 AB 上时,易知四边形PMGM′是正方形,边长为2,此时P(2,﹣ 4).③如图 3 中,当点 P 在线段 AD 上时,设 AD 交 x 轴于 R.易证∠M′RG=∠M′GR,推出 M′R=M′G=GM,设 M′R=M′G=GM=x.∵直线 AD 的分析式为 y=﹣2x﹣2,∴R(﹣ 1,0),在 Rt△OGM′中,有 x2=22+(x﹣1)2,解得 x=,∴ P(﹣, 3).点 P 坐标为( 2,﹣ 4)或(﹣, 3)或(﹣, 4)或(, 4).参加本试卷答题和审题的老师有:2300680618;gbl210;sjzx;gsls;弯弯的小河;家有子女;499807835;王学峰;HLing;蓝月梦;CJX;zgm666;463454002;tcm123;fangcao; sks; HJJ;星月相随(排名不分先后)2017年 7月 25日。

2017年浙江省绍兴市中考数学试卷(含答案)

2017年浙江省绍兴市中考数学试卷(含答案)
∴∠OBD=∠BOD=60°,
又BC垂直平分OD,∴OM=DM,
∴BM为∠OBD的平分线,
∴∠OBM=∠DBM=30°,
又OA=OB,且∠BOD为△AOB的外角,
∴∠BAO=∠ABO=30°,
∴∠ABC=∠ABO+∠OBM=60°,
同理∠ACB=60°,
∴∠BAC=60°,
∴∠ABC=∠ACB=∠BAC,
又∠BOE为△AOB的外角,
∴∠OAB=∠OBA=30°,
∴∠ABC=∠ABO+∠OBE=60°,
同理∠C=60°,
∴∠BAC=60°,
∴∠ABC=∠BAC=∠C,
∴△ABC为等边三角形,
故甲作法正确;
根据乙的思路,作图如下:
连接OB,BD,
∵OD=BD,OD=OB,
∴OD=BD=OB,
∴△BOD为等边三角形,
甲:1、作OD的中垂线,交⊙O于B,C两点,
2、连接AB,AC,△ABC即为所求的三角形
乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点。
2、连接AB,BC,CA.△ABC即为所求的三角形。
对于甲、乙两人的作法,可判断( )
A.甲、乙均正确B.甲、乙均错误C.甲正确、乙错误D.甲错误,乙正确
第二个灯的里程数为50,
第三个灯的里程数为90米

第n个灯的里程数为10+40(n﹣1)=(40n﹣30)米,
故当n=14时候,40n﹣30=530米处是灯,
则510米、520米、540米处均是树,
故应该是树、树、灯、树,
故选B。
10.(2017绍兴)如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设Pn﹣1Dn﹣2的中点为Dn﹣1,第n次将纸片折叠,使点A与点Dn﹣1重合,折痕与AD交于点Pn(n>2),则AP6的长为( )

2017年中考数学浙江省绍兴市届中考数学试卷[解析版]

2017年中考数学浙江省绍兴市届中考数学试卷[解析版]

2017年浙江省绍兴市中考数学试卷一、选择题1、-5的相反数是()A 、B、5 C 、D、-52、研究表明,可燃冰是一种可替代石油的新型清洁能源。

在我国某海域已探明的可燃冰储存量达150 000 000 000立方米,其中数字150 000 000 000用科学记数法可表示为()A、15×1010B、0.15×1012C、1.5×1011D、1.5×10123、如图的几何体由五个相同的小正方体搭成,它的主视图是()A 、B 、C 、D 、4、在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其它均相同,从中任意摸出一个球,则摸出黑球的概率是()A 、B 、C 、D 、5、下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:()A、甲B、乙C、丙D、丁6、如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米.则小巷的宽度为()A、0.7米B、1.5米C、2.2米D、2.4米7、均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A、B、C、D、8、在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图,该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA。

若∠ACB=21°,则∠ECD的度数是()A、7°B、21°C、23°D、24°9、矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A、y=x2+8x+14B、y=x2-8x+14C、y=x2+4x+3D、y=x2-4x+310、一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是()A、B、C、D、二、填空题11、分解因式:=________.12、如图,一块含45°角的直角三角板,它的一个锐角顶点A在⊙O上,边AB,AC分别与⊙O交于点D,E.则∠DOE的度数为________.13、如图,Rt△ABC的两个锐角顶点A,B在函数y= (x>0)的图象上,AC//x轴,AC=2.若点A的坐标为(2,2),则点B的坐标为________.14、如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪得行走的路线为B→A→D→E→F.若小敏行走的路程为3100m,则小聪行走的路程为________m.15、以Rt△ABC的锐角顶点A为圆心,适当长为半径作弧,与边AB,AC各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D.若∠ADB=60°,点D 到AC的距离为2,则AB的长为________.16、如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点.若使点P,M,N 构成等腰三角形的点P恰好有三个,则x的值是________.三、解答题17、计算题。

2017年浙江省绍兴市中考数学试卷

2017年浙江省绍兴市中考数学试卷

2017年浙江省绍兴市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分。

请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.(4分)﹣5的相反数是()A.B.5 C.﹣ D.﹣52.(4分)研究表明,可燃冰是一种替代石油的新型清洁能源,在我国某海域已探明的可燃冰存储量达150000000000立方米,其中数字150000000000用科学记数法可表示为()A.15×1010B.0.15×1012C.1.5×1011D.1.5×10123.(4分)如图的几何体由五个相同的小正方体搭成,它的主视图是()A.B.C.D.4.(4分)在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是()A.B.C.D.5.(4分)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁6.(4分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米7.(4分)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A.B. C. D.8.(4分)在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图.该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ACB=21°,则∠ECD的度数是()A.7°B.21°C.23°D.24°9.(4分)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+310.(4分)一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是()A. B.C.D.二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)分解因式:x2y﹣y=.12.(5分)如图,一块含45°角的直角三角板,它的一个锐角顶点A在⊙O上,边AB,AC分别与⊙O交于点D,E,则∠DOE的度数为.13.(5分)如图,Rt△ABC的两个锐角顶点A,B在函数y=(x>0)的图象上,AC∥x轴,AC=2,若点A的坐标为(2,2),则点B的坐标为.14.(5分)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100m,则小聪行走的路程为m.15.(5分)以Rt△ABC的锐角顶点A为圆心,适当长为半径作弧,与边AB,AC 各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D.若∠ADB=60°,点D到AC的距离为2,则AB 的长为.16.(5分)如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是.三、解答题(本大题共8小题,第17-20小题每小题8分,第21题10分,第22,23小题每小题8分,第24小题14分,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)(1)计算:(2﹣π)0+|4﹣3|﹣.(2)解不等式:4x+5≤2(x+1)18.(8分)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准,该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米?19.(8分)为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如图所示),并用调查结果绘制了图1,图2两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的同学有多少人?补全条形统计图.(2)本校有七年级同学800人,估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数.20.(8分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)21.(10分)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,问饲养室长x为多少时,占地面积y最大?(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.22.(12分)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.23.(12分)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=°,β=°,②求α,β之间的关系式.(2)是否存在不同于以上②中的α,β之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由.24.(14分)如图1,已知▱ABCD,AB∥x轴,AB=6,点A的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点P是▱ABCD边上的一个动点.(1)若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x﹣1上,求点P的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P 作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM 沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)2017年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分。

2017年浙江省绍兴、义乌市中考数学试卷有答案

2017年浙江省绍兴、义乌市中考数学试卷有答案

数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前浙江省绍兴、义乌市2017年初中毕业生学业考试数 学(总分150分,考试时间120分钟)一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分) 1.5-的相反数是( ) A .15B .5C .15-D .5-2.研究表明,可燃冰是一种可替代石油的新型清洁能源.在我国某海域已探明的可燃冰储存量达150000000000立方米,其中数字150000000000用科学记数法可表示为( ) A .101510⨯B .120.1510⨯C .111.510⨯D .121.510⨯ 3.如图的几何体由五个相同的小正方体搭成,它的主视图是( )(第3题)ABCD4.在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是( ) A .17B .37C .47D .575.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )A .甲B .乙C .丙D .丁 6.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米.则小巷的宽度为 ( ) A .0.7米 B .1.5米C .2.2米D .2.4米7.均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为折线),这个容器的形状可以是 ( )(第7题)ABCD8.在探索“尺规三等分角”这个数学名题的过程中,曾利用了右图,该图中,四边形ABCD 是矩形,E 是BA 延长线上一点,F 是CE 上一点,ACF AFC ∠=∠,FAE FEA ∠=∠.若21ACB ∠=︒,则ECD ∠的度数是( )A .7︒B .21︒C .23︒D .24︒9.矩形ABCD 的两条对称轴为坐标轴,点A 的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A 重合,此时抛物线的函数表达式为2y x =,再次平移透明纸,使这个点与点C 重合,则该抛物线的函数表达式变为( )A .2814y x x =++ B.2814y xx=-+ C .243y x x =++D .243y x x =-+10.一块竹条编织物,先将其按如图所示绕直线MN 翻转180︒,再将它按逆时针方向旋转90︒,所得的竹条编织物是( )(第6题)(第8题) 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页) 数学试卷 第4页(共22页)(第10题)A .B .C .D .二、填空题(本大题有6小题,每小题5分,共30分) 11.分解因式:2x y y -= .12.如图,一块含45︒角的直角三角板,它的一个锐角顶点A 在O 上,边AB ,AC 分别与O 交于点D ,E .则DOE ∠的度数为 .(第12题)(第13题)(第14题)13.如图,Rt ABC △的两个锐角顶点A ,B 在函数(0)ky x x=>的图象上,AC x ∥轴,2AC =.若点A 的坐标为(2,2),则点B 的坐标为 .14.如图为某城市部分街道示意图,四边形ABCD 为正方形,点G 在对角线BD 上,GE CD ⊥,GF BC ⊥,1500m AD =,小敏行走的路线为B A G E →→→,小聪行走的路线为B A D E F →→→→.若小敏行走的路程为3100m ,则小聪行走的路程为 m .15.以Rt ABC △的锐角顶点A 为圆心,适当长为半径作弧,与边AB ,AC 各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A 作直线,与边BC 交于点D .若60ADB ∠=︒,点D 到AC 的距离为2,则AB 的长为 .16.如图,45AOB ∠=︒,点M ,N 在边OA 上,OM x =,4ON x =+,点P 是边OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 恰好有三个,则x 的值是 .三、解答题(本大题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题8分)(1)计算:0π)|4+-.(2)解不等式:452(1)x x ++≤.18.(本题8分)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费y (元)是用水量x (立方米)的函数,其图象如图所示.(1)若某月用水量18立方米,则应交水费多少元? (2)求当18x >时,y 关于x 的函数表达式.若小敏家某月交水费81元,则这个月用水量为多少立方米?19.(本题8分)为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如下图所示),并用调查结果绘制了图1、图2两幅统计图(均不完整),请根据统计图解答以下问题.七年级部分同学双休日参加 体育锻炼时间的条形统计图图1七年级部分同学双休日参加 体育锻炼时间的扇形统计图(第16题)数学试卷 第5页(共22页) 数学试卷 第6页(共22页)图2(1)本次接受问卷调查的同学有多少人?补全条形统计图.(2)本校有七年级同学800人,估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数.20.(本题8分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C 测得教学楼顶部D 的仰角为18︒,教学楼底部B 的俯角为20︒,量得实验楼与教学楼之间的距离30cm AB =. (1)求BCD ∠的度数. (2)求教学楼的高BD .(结果精确到0.1m .参考数据:tan200.36︒≈,tan180.32︒≈)21.(本题10分)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m .设饲养室长为(m)x ,占地面积为2(m )y .(1)如图1,问饲养室长x 为多少时,占地面积y 最大? (2)如图2,现要求在图中所示位置留2m 宽的门,且仍使饲养室的占地面积最大.小敏说:“只要饲养室长比(1)中的长多2m 就行了.”请你通过计算,判断小敏的说法是否正确.图1图222.(本题12分)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD ,AB BC =,90ABC ∠=︒. ①若1AB CD ==,AB CD ∥,求对角线BD 的长;②若AC BD ⊥,求证:AD CD =.(2)如图2,在矩形ABCD 中,5AB =,9BC =,点P 是对角线BD 上一点,且2BP PD =,过点P 作直线分别交边AD ,BC 于点E ,F ,使四边形ABFE 是等腰直角四边形.求AE 的长.图1图223.(本题12分)已知ABC △,AB AC =,D 为直线BC 上一点,E 为直线AC 上一点,AD AE =,设BAD α∠=,CDE β∠=. (1)如图,若点D 在线段BC 上,点E 在线段AC 上.①如果60ABC ∠=︒,70ADE ∠=︒,那么α= ︒,β= ︒; ②求α,β之间的关系式. (2)是否存在不同于以上②中的α,β之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由.24.(本题14分)如图1,已知□ABCD ,AB x ∥轴,6AB =,点A 的坐标为(1,4)-,点D 的坐标为(3,4)-,点B 在第四象限,点P 是□ABCD 边上的一个动点. (1)若点P 在边BC 上,PD CD =,求点P 的坐标.(2)若点P 在边AB ,AD 上,点P 关于坐标轴对称的点Q 落在1y x =-上,求点P 的坐标.(3)若点P 在边AB ,AD ,CD 上,点G 是AD 与y 轴的交点,如图2,过点P 作y 轴的平行线PM ,过点G 作x 轴的平行线GM ,它们相交于点M ,将PGM △沿直线PG 翻折,当点M 的对应点落在坐标轴上时,求点P 的坐标(直接写出答案).-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共22页) 数学试卷 第8页(共22页)图1图2浙江省绍兴、义乌市2017年初中毕业生学业考试数学答案解析一、选择题 1.【答案】B【解析】5-的相反数是(5)5--=.故选B .【提示】一个数的相反数是在它的前面添加“-”,并化简. 【考点】相反数 2.【答案】C【解析】150000000000一共有12位数,那么12111n =-=,则11150000000000 1.510=⨯,故选:C .【提示】用科学记数法表示数:把一个数字记为10na ⨯的形式(11||0a ≤<,n 为整数).表示绝对值较大的数时,1n =-位数 【考点】科学记数法,表示绝对值较大的数 3.【答案】A【解析】从正面看到的图形是数学试卷 第9页(共22页) 数学试卷 第10页(共22页)【提示】从折线图的倾斜度出发,根据注水的速度不变,而容器水里的高度除了与时间有关,且与容器里的底面积有关,则底面积越大的,水的高度增加的越慢. 【考点】函数的图象 8.【答案】C【解析】在矩形ABCD 中,A B C D ∥,90BCD ∠=︒,所以F E A E C D ∠=∠,9069ACD ACB∠=︒-∠=︒,因为A C F A ∠=∠,FAE FEA ∠=∠,AFC FAE FEA ∠=∠+∠,所以2ACF FEA ∠=∠,则369ACD ACF ECD ECD ∠=∠+∠=∠=︒,所以23ECD ∠=︒故选C .【提示】由矩形的性质不难得到FEA ECD ∠=∠,9069ACD ACB ∠=︒-∠=︒;根据三角形的外角性质及已知条件不难得出2ACF FEA ∠=∠,即可得ACD ∠被线CE 三等分,则可解出ECD ∠.【考点】三角形的外角性质,矩形的性质 9.【答案】A【解析】如图,(2,1)A ,则可得(21)C --,.由(2,1)A 到(21)C --,,需要向左平移4个单位,向下平移2个单位,则抛物线的函数表达式为2y x =,经过平移与为22(4)2814y x x x =+-=++,故选A .【提示】题中的意思就是将抛物线2y x =平移后,点A 平移到了点C ,由A 的坐标不难得出C 的坐标,由平移的性质可得点A 怎样平移到点C ,那么抛物线2y x =,就怎样平移到新的抛物线. 【考点】二次函数的图象 10.【答案】B【解析】绕MN 翻折180︒后,是下面的图形:再逆时针旋转90︒,可得故选B .【提示】绕MN 翻折180︒,本来排在第一行的横纸条排在了第5条,而且5根竖条,分别叠放在它的下、上、上、下、上面,通过这样的分析,确认五根横条的位置,再将其逆时针旋转90︒可得答案. 【考点】翻折变换(折叠问题) 二、填空题11.【答案】(1)(1)y x x +-【解析】原式2(1)(1)(1)y x y x x =-=+- 故答案为(1)(1)y x x +-.【提示】观察整式可得,应选提取公因式y ,再运用平方差公式分解因式. 【考点】因式分解——运用公式法 12.【答案】90︒【解析】DAE ∠与DOE ∠在同一个圆中,且所对的弧都是DE ,则224590D O E D A E ∠=∠=⨯︒=︒. 故答案为90︒.【提示】运用圆周角与圆心角的关系即可解答.数学试卷 第11页(共22页) 数学试卷 第12页(共22页)【解析】根据题中的语句作图可得下面的图,过点D 作于E ,t a nB D ∠由尺规作图-角平分线的作法可得2=,只有3个点P ;数学试卷 第13页(共22页) 数学试卷 第14页(共22页)交OB 两点和;此时,选D的同学有(人),补全条形统计图如下.204060++所以182038BCD DCE BCE∠=∠+∠=︒+︒=︒.502xx-=-最大,即当饲养室长为25m时,占地面积最大.50(212xx--大,即饲养室长为26m时,占地面积最大.因为数学试卷第15页(共22页)数学试卷第16页(共22页),所以ABCD是菱形.度,所以菱形所以ABD CBD≅△△,所以AD CD=.综上所述,AE的长为5或6.5数学试卷第17页(共22页)数学试卷第18页(共22页)在ABD △中,x yαβ+=+,所以2αβ=.(2)解:如图,点E在CA延长线上,点D在线段BC上,设ABC x∠=,ADE y∠=,则ACB x∠=,AED y∠=,在ABD△中,x yαβ+=-,在D E C△中,180x yβ++=︒,所以2180αβ=-︒.注:求出其它关系式,相应给分,如点E在CA的延长线上,点D在CB的延长线上,可得1802αβ=︒-.【提示】(1)①在ADE△中,由70AD AE ADE=∠=︒,,不难求出AED∠和DAE∠;由60AB AC ABC=∠=︒,,可得60BAC C ABC∠=∠=∠=︒,则BAC DAEα=∠-∠,再根据三角形外角的性质可得AED Cβ=∠-∠;②求解时可借助设未知数的方法,然后再把未知数消去的方法,可设ABC x ADE y∠=∠=,;(2)有很多种不同的情况,做法与(1)中的②类似,可求这种情况:点E在CA延长线上,点D在线段BC上.【考点】三角形的外角性质)解:在ABCD中,在边AD上时,由已知得,直线数学试卷第19页(共22页)数学试卷第20页(共22页)数学试卷第21页(共22页) 数学试卷 第22页(共22页)②如下图,当点P 在AD 边上时,设,⎛⎫⎛⎫。

2017年浙江省绍兴、义乌市中考数学试卷及答案

2017年浙江省绍兴、义乌市中考数学试卷及答案

数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前浙江省绍兴、义乌市2017年初中毕业生学业考试数学 ...................................................... 1 浙江省绍兴、义乌市2017年初中毕业生学业考试数学答案解析 (5)浙江省绍兴、义乌市2017年初中毕业生学业考试数学(总分150分,考试时间120分钟)一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分) 1.5-的相反数是( ) A .15B .5C .15-D .5-2.研究表明,可燃冰是一种可替代石油的新型清洁能源.在我国某海域已探明的可燃冰储存量达150000000000立方米,其中数字150000000000用科学记数法可表示为( ) A .101510⨯B .120.1510⨯C .111.510⨯D .121.510⨯ 3.如图的几何体由五个相同的小正方体搭成,它的主视图是( )(第3题)ABCD4.在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是( )A .17B .37C .47D .575.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )A .甲B .乙C .丙D .丁 6.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米.则小巷的宽度为 ( ) A .0.7米 B .1.5米C .2.2米D .2.4米7.均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为折线),这个容器的形状可以是 ( )(第7题)ABCD8.在探索“尺规三等分角”这个数学名题的过程中,曾利用了右图,该图中,四边形ABCD 是矩形,E 是BA 延长线上一点,F 是CE 上一点,ACF AFC ∠=∠,FAE FEA ∠=∠.若21ACB ∠=︒,则ECD∠的度数是( )A.7︒B .21︒C .23︒D .24︒9.矩形ABCD 的两条对称轴为坐标轴,点A 的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A 重合,此时抛物线的函数表达式为2y x =,再次平移透明纸,使这个点与点C 重合,则该抛物线的函数表达式变为( )(第6题)(第8题) 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共24页) 数学试卷 第4页(共24页)A .2814y x x =++B .2814y x x =-+C .243y x x =++D .243y x x =-+10.一块竹条编织物,先将其按如图所示绕直线MN 翻转180︒,再将它按逆时针方向旋转90︒,所得的竹条编织物是 ( )(第10题)A .B .C .D .二、填空题(本大题有6小题,每小题5分,共30分) 11.分解因式:2x y y -= .12.如图,一块含45︒角的直角三角板,它的一个锐角顶点A 在O 上,边AB ,AC 分别与O 交于点D ,E .则DOE ∠的度数为 .(第12题)(第13题)(第14题)13.如图,Rt ABC △的两个锐角顶点A ,B 在函数(0)ky x x=>的图象上,AC x ∥轴,2AC =.若点A 的坐标为(2,2),则点B 的坐标为 .14.如图为某城市部分街道示意图,四边形ABCD 为正方形,点G 在对角线BD 上,GE CD ⊥,GF BC ⊥,1500m AD =,小敏行走的路线为B A G E →→→,小聪行走的路线为B A D E F →→→→.若小敏行走的路程为3100m ,则小聪行走的路程为m .15.以Rt ABC △的锐角顶点A 为圆心,适当长为半径作弧,与边AB ,AC 各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A 作直线,与边BC 交于点D .若60ADB ∠=︒,点D 到AC 的距离为2,则AB 的长为 .16.如图,45AOB ∠=︒,点M ,N 在边OA 上,OM x =,4ON x =+,点P 是边OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 恰好有三个,则x 的值是 . 三、解答题(本大题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题8分)(1)计算:0π)|4+-.(2)解不等式:452(1)x x ++≤.18.(本题8分)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费y (元)是用水量x (立方米)的函数,其图象如图所示.(1)若某月用水量18立方米,则应交水费多少元? (2)求当18x >时,y 关于x 的函数表达式.若小敏家某月交水费81元,则这个月用水量为多少立方米?19.(本题8分)为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如下图所示),并用调查结果绘制了图1、图2两幅统计图(均不完整),请根据统计图解答以下问题.七年级部分同学双休日参加 体育锻炼时间的条形统计图(第16题)数学试卷 第5页(共24页) 数学试卷 第6页(共24页)图1七年级部分同学双休日参加 体育锻炼时间的扇形统计图图2(1)本次接受问卷调查的同学有多少人?补全条形统计图.(2)本校有七年级同学800人,估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数.20.(本题8分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C 测得教学楼顶部D 的仰角为18︒,教学楼底部B 的俯角为20︒,量得实验楼与教学楼之间的距离30cm AB =. (1)求BCD ∠的度数. (2)求教学楼的高BD .(结果精确到0.1m .参考数据:tan200.36︒≈,tan180.32︒≈)21.(本题10分)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m .设饲养室长为(m)x ,占地面积为2(m )y .(1)如图1,问饲养室长x 为多少时,占地面积y 最大? (2)如图2,现要求在图中所示位置留2m 宽的门,且仍使饲养室的占地面积最大.小敏说:“只要饲养室长比(1)中的长多2m 就行了.”请你通过计算,判断小敏的说法是否正确.图1图222.(本题12分)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD ,AB BC =,90ABC ∠=︒. ①若1AB CD ==,AB CD ∥,求对角线BD 的长;②若AC BD ⊥,求证:AD CD =.(2)如图2,在矩形ABCD 中,5AB =,9BC =,点P 是对角线BD 上一点,且2BP PD =,过点P 作直线分别交边AD ,BC 于点E ,F ,使四边形ABFE 是等腰直角四边形.求AE 的长.图1图223.(本题12分)已知ABC △,AB AC =,D 为直线BC 上一点,E 为直线AC 上一点,AD AE =,设BAD α∠=,CDE β∠=. (1)如图,若点D 在线段BC 上,点E 在线段AC 上.①如果60ABC ∠=︒,70ADE ∠=︒,那么α= ︒,β= ︒; ②求α,β之间的关系式. (2)是否存在不同于以上②中的α,β之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由.24.(本题14分)如图1,已知□ABCD ,AB x ∥轴,6AB =,点A 的坐标为(1,4)-,点D 的坐标为(3,4)-,点B 在第四象限,点P 是□ABCD 边上的一个动点. (1)若点P 在边BC 上,PD CD =,求点P 的坐标.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________。

2017年浙江省绍兴市中考数学试卷(解析版)

2017年浙江省绍兴市中考数学试卷(解析版)

2017年浙江省绍兴市中考数学试卷(解析版)题号一二三得分注意事项:1.本试卷共XX页,三个大题,满分50分,考试时间为100分钟。

请用钢笔或圆珠笔直接答在试卷上。

2.答卷前将密封线内的项目填写清楚。

一、单选题(共15分)评卷人得分1.-5的相反数是( )(5分)A.B. 5C.D. -52.研究表明,可燃冰是一种可替代石油的新型清洁能源。

在我国某海域已探明的可燃冰储存量达150 000 000 000立方米,其中数字150 000 000 000用科学记数法可表示为( )(5分)A. 15×1010B. 0.15×1012C. 1.5×1011D. 1.5×10123.矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为( )(5分)A. y=x2+8x+14B. y=x2-8x+14C. y=x2+4x+3D. y=x2-4x+3二、填空题(共15分)评卷人得分4.(5分)5.(5分)6.(5分)三、解答题(共20分)评卷人得分资料7.求教学楼的高BD(5分) 8.求∠BCD的度数.(5分)资料9.是否存在不同于以上②中的α,β之间的关系式?若存在,请求出这个关系式(求出一个即可);若不存在,说明理由.(5分)10.如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=________°,β=________°.②求α,β之间的关系式.________(5分)******答案及解析******一、单选题(共15分)1.答案:B2.答案:C3.答案:A二、填空题(共15分)4.答案:90°5.答案:(4,1)6.答案:4600三、解答题(共20分)7.答案:由已知得CE=AB=30(m),在Rt△CBE中,BE=CE×tan20°≈30×0.36=10.80(m),在Rt△CDE中,DE=CE×tan18°≈30×0.32=9.60(m),∴教学楼的高BD=BE+DE=10.80+9.60≈20.4(m).答:教学楼的高为20.4m.8.答案:9.答案:10.答案:20;10;α=2β。

2017年浙江省绍兴市中考数学试卷

2017年浙江省绍兴市中考数学试卷

2017年浙江省绍兴市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分。

请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.(4分)﹣5的相反数是()A.B.5 C.﹣D.﹣52.(4分)研究表明,可燃冰是一种替代石油的新型清洁能源,在我国某海域已探明的可燃冰存储量达150000000000立方米,其中数字150000000000用科学记数法可表示为()A.15×1010B.0.15×1012C.1.5×1011D.1.5×10123.(4分)如图的几何体由五个相同的小正方体搭成,它的主视图是()A.B.C.D.4.(4分)在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是()A.B.C.D.5.(4分)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁6.(4分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米7.(4分)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A. B. C.D.8.(4分)在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图.该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ACB=21°,则∠ECD的度数是()A.7°B.21°C.23°D.24°9.(4分)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+310.(4分)一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是()A. B.C.D.二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)分解因式:x2y﹣y=.12.(5分)如图,一块含45°角的直角三角板,它的一个锐角顶点A在⊙O上,边AB,AC分别与⊙O交于点D,E,则∠DOE的度数为.13.(5分)如图,Rt△ABC的两个锐角顶点A,B在函数y=(x>0)的图象上,AC∥x轴,AC=2,若点A的坐标为(2,2),则点B的坐标为.14.(5分)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100m,则小聪行走的路程为m.15.(5分)以Rt△ABC的锐角顶点A为圆心,适当长为半径作弧,与边AB,AC 各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D.若∠ADB=60°,点D到AC的距离为2,则AB的长为.16.(5分)如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是.三、解答题(本大题共8小题,第17-20小题每小题8分,第21题10分,第22,23小题每小题8分,第24小题14分,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)(1)计算:(2﹣π)0+|4﹣3|﹣.(2)解不等式:4x+5≤2(x+1)18.(8分)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准,该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米?19.(8分)为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如图所示),并用调查结果绘制了图1,图2两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的同学有多少人?补全条形统计图.(2)本校有七年级同学800人,估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数.20.(8分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)21.(10分)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,问饲养室长x为多少时,占地面积y最大?(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.22.(12分)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.23.(12分)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=°,β=°,②求α,β之间的关系式.(2)是否存在不同于以上②中的α,β之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由.24.(14分)如图1,已知▱ABCD,AB∥x轴,AB=6,点A的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点P是▱ABCD边上的一个动点.(1)若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x﹣1上,求点P的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P 作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM 沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)2017年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分。

2017年浙江省绍兴市中考数学试卷

2017年浙江省绍兴市中考数学试卷

2017年浙江省绍兴市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分。

请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.(4分)﹣5的相反数是()A.B.5 C.﹣ D.﹣52.(4分)研究表明,可燃冰是一种替代石油的新型清洁能源,在我国某海域已探明的可燃冰存储量达150000000000立方米,其中数字150000000000用科学记数法可表示为()A.15×1010B.0.15×1012C.1.5×1011D.1.5×10123.(4分)如图的几何体由五个相同的小正方体搭成,它的主视图是()A.B.C.D.4.(4分)在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是()A.B.C.D.5.(4分)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.149.159.149.15方差 6.6 6.8 6.7 6.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁6.(4分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米7.(4分)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A.B. C. D.8.(4分)在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图.该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ACB=21°,则∠ECD的度数是()A.7°B.21°C.23°D.24°9.(4分)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+310.(4分)一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是()A. B.C.D.二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)分解因式:x2y﹣y=.12.(5分)如图,一块含45°角的直角三角板,它的一个锐角顶点A在⊙O上,边AB,AC分别与⊙O交于点D,E,则∠DOE的度数为.13.(5分)如图,Rt△ABC的两个锐角顶点A,B在函数y=(x>0)的图象上,AC∥x轴,AC=2,若点A的坐标为(2,2),则点B的坐标为.14.(5分)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100m,则小聪行走的路程为m.15.(5分)以Rt△ABC的锐角顶点A为圆心,适当长为半径作弧,与边AB,AC 各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D.若∠ADB=60°,点D到AC的距离为2,则AB 的长为.16.(5分)如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是.三、解答题(本大题共8小题,第17-20小题每小题8分,第21题10分,第22,23小题每小题8分,第24小题14分,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)(1)计算:(2﹣π)0+|4﹣3|﹣.(2)解不等式:4x+5≤2(x+1)18.(8分)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准,该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米?19.(8分)为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如图所示),并用调查结果绘制了图1,图2两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的同学有多少人?补全条形统计图.(2)本校有七年级同学800人,估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数.20.(8分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)21.(10分)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,问饲养室长x为多少时,占地面积y最大?(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.22.(12分)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.23.(12分)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=°,β=°,②求α,β之间的关系式.(2)是否存在不同于以上②中的α,β之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由.24.(14分)如图1,已知▱ABCD,AB∥x轴,AB=6,点A的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点P是▱ABCD边上的一个动点.(1)若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x﹣1上,求点P的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P 作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM 沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)2017年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分。

2017年浙江省绍兴市中考数学试卷

2017年浙江省绍兴市中考数学试卷

2017年浙江省绍兴市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣5的相反数是( )A .15B .5C .﹣15D .﹣5 2.(4分)研究表明,可燃冰是一种替代石油的新型清洁能源,在我国某海域已探明的可燃冰存储量达150000000000立方米,其中数字150000000000用科学记数法可表示为( )A .15×1010B .0.15×1012C .1.5×1011D .1.5×10123.(4分)如图的几何体由五个相同的小正方体搭成,它的主视图是( )A .B .C .D .4.(4分)在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是( )A .17B .37C .47D .575.(4分)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙 丙 丁 平均数(环) 9.149.15 9.14 9.15 方差6.6 6.8 6.7 6.6 根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )A .甲B .乙C .丙D .丁6.(4分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米7.(4分)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A.B. C.D.8.(4分)在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图.该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ACB=21°,则∠ECD的度数是()A.7°B.21°C.23°D.24°9.(4分)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+310.(4分)一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是()A. B.C.D.二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)分解因式:x2y﹣y=.12.(5分)如图,一块含45°角的直角三角板,它的一个锐角顶点A在⊙O上,边AB,AC分别与⊙O交于点D,E,则∠DOE的度数为.13.(5分)如图,Rt△ABC的两个锐角顶点A,B在函数y=kx(x>0)的图象上,AC∥x轴,AC=2,若点A的坐标为(2,2),则点B的坐标为.14.(5分)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100m,则小聪行走的路程为m.15.(5分)以Rt△ABC的锐角顶点A为圆心,适当长为半径作弧,与边AB,AC 各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D.若∠ADB=60°,点D到AC的距离为2,则AB 的长为.16.(5分)如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是.三、解答题(本大题共8小题,共80分)17.(8分)(1)计算:(2√3﹣π)0+|4﹣3√2|﹣√18.(2)解不等式:4x+5≤2(x+1)18.(8分)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准,该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米?19.(8分)为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如图所示),并用调查结果绘制了图1,图2两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的同学有多少人?补全条形统计图.(2)本校有七年级同学800人,估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数.20.(8分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)21.(10分)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,问饲养室长x为多少时,占地面积y最大?(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.22.(12分)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.23.(12分)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=°,β=°,②求α,β之间的关系式.(2)是否存在不同于以上②中的α,β之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由.24.(14分)如图1,已知▱ABCD,AB∥x轴,AB=6,点A的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点P是▱ABCD边上的一个动点.(1)若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x﹣1上,求点P的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P 作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM 沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)2017年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)(2017•绍兴)﹣5的相反数是( )A .15B .5C .﹣15D .﹣5 【解答】解:﹣5的相反数是5,故选:B .2.(4分)(2017•绍兴)研究表明,可燃冰是一种替代石油的新型清洁能源,在我国某海域已探明的可燃冰存储量达150000000000立方米,其中数字150000000000用科学记数法可表示为( )A .15×1010B .0.15×1012C .1.5×1011D .1.5×1012【解答】解:150000000000=1.5×1011,故选:C .3.(4分)(2017•绍兴)如图的几何体由五个相同的小正方体搭成,它的主视图是( )A .B .C .D .【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形, 故选:A .4.(4分)(2017•绍兴)在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是( )A .17B .37C .47D .57【解答】解:∵在一个不透明的袋子中装有除颜色外其他均相同的4个红球和3个黑球,∴从中任意摸出一个球,则摸出黑球的概率是37. 故选B .5.(4分)(2017•绍兴)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙 丙 丁 平均数(环) 9.149.15 9.14 9.15 方差6.6 6.8 6.7 6.6 根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )A .甲B .乙C .丙D .丁【解答】解:丁的平均数最大,方差最小,成绩最稳当,所以选丁运动员参加比赛.故选D .6.(4分)(2017•绍兴)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )A .0.7米B .1.5米C .2.2米D .2.4米【解答】解:在Rt △ACB 中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB 2=0.72+2.42=6.25.在Rt △A′BD 中,∵∠A′DB=90°,A′D=2米,BD 2+A′D 2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.7.(4分)(2017•绍兴)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A.B. C.D.【解答】解:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为D.故选:D.8.(4分)(2017•绍兴)在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图.该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ACB=21°,则∠ECD的度数是()A.7°B.21°C.23°D.24°【解答】解:∵四边形ABCD是矩形,∴∠D=90°,AB∥CD,AD∥BC,∴∠FEA=∠ECD,∠DAC=∠ACB=21°,∵∠ACF=∠AFC,∠FAE=∠FEA,∴∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∴∠ACD=3x,在Rt△ACD中,3x+21°=90°,解得:x=23°;故选:C.9.(4分)(2017•绍兴)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+3【解答】解:∵矩形ABCD的两条对称轴为坐标轴,∴矩形ABCD关于坐标原点对称,∵A点C点是对角线上的两个点,∴A点、C点关于坐标原点对称,∴C点坐标为(﹣2,﹣1);∴抛物线由A点平移至C点,向左平移了4个单位,向下平移了2个单位;∵抛物线经过A点时,函数表达式为y=x2,∴抛物线经过C点时,函数表达式为y=(x+4)2﹣2=x2+8x+14,故选A.10.(4分)(2017•绍兴)一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是()A. B.C.D.【解答】解:先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是B,故选B.二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)(2017•绍兴)分解因式:x2y﹣y=y(x+1)(x﹣1).【解答】解:x2y﹣y,=y(x2﹣1),=y(x+1)(x﹣1),故答案为:y(x+1)(x﹣1).12.(5分)(2017•绍兴)如图,一块含45°角的直角三角板,它的一个锐角顶点A在⊙O上,边AB,AC分别与⊙O交于点D,E,则∠DOE的度数为90°.【解答】解:∵∠A=45°,∴∠DOE=2∠A=90°.故答案为:90°.13.(5分)(2017•绍兴)如图,Rt △ABC 的两个锐角顶点A ,B 在函数y=k x (x >0)的图象上,AC ∥x 轴,AC=2,若点A 的坐标为(2,2),则点B 的坐标为 (4,1) .【解答】解:∵点A (2,2)在函数y=k x(x >0)的图象上, ∴2=k 2,得k=4, ∵在Rt △ABC 中,AC ∥x 轴,AC=2,∴点B 的横坐标是4,∴y=44=1, ∴点B 的坐标为(4,1),故答案为:(4,1).14.(5分)(2017•绍兴)如图为某城市部分街道示意图,四边形ABCD 为正方形,点G 在对角线BD 上,GE ⊥CD ,GF ⊥BC ,AD=1500m ,小敏行走的路线为B→A→G→E ,小聪行走的路线为B→A→D→E→F .若小敏行走的路程为3100m ,则小聪行走的路程为 4600 m .【解答】解:连接GC,∵四边形ABCD为正方形,所以AD=DC,∠ADB=∠CDB=45°,∵∠CDB=45°,GE⊥DC,∴△DEG是等腰直角三角形,∴DE=GE.在△AGD和△GDC中,{AD=DC∠ADG=∠CDG DG=DG∴△AGD≌△GDC∴AG=CG在矩形GECF中,EF=CG,∴EF=AG.∵BA+AD+DE+EF﹣BA﹣AG﹣GE =AD=1500m.∵小敏共走了3100m,∴小聪行走的路程为3100+1500 =4600(m)故答案为:460015.(5分)(2017•绍兴)以Rt△ABC的锐角顶点A为圆心,适当长为半径作弧,与边AB,AC各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D.若∠ADB=60°,点D到AC的距离为2,则AB的长为2√3.【解答】解:如图,作DE⊥AC于E.由题意AD平分∠BAC,∵DB⊥AB,DE⊥AC,∴DB=DE=2,在Rt△ADB中,∵∠B=90°,∠BDA=60°,BD=2,∴AB=BD•tan60°=2√3,故答案为2√316.(5分)(2017•绍兴)如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使点P,M,N构成等腰三角形的点P恰好有三个,则x 的值是x=0或x=4√2﹣4或4<x<4√2.【解答】解:分三种情况:①如图1,当M与O重合时,即x=0时,点P恰好有三个;②如图2,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴OM=4√2,当M与D重合时,即x=OM﹣DM=4√2﹣4时,同理可知:点P恰好有三个;③如图3,取OM=4,以M为圆心,以OM为半径画圆,则⊙M与OB除了O外只有一个交点,此时x=4,即以∠PMN为顶角,MN为腰,符合条件的点P有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以∠PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM 为底边的符合条件的点P;点M沿OA运动,到M1时,发现⊙M1与直线OB有一个交点;∴当4<x<4√2时,圆M在移动过程中,则会与OB除了O外有两个交点,满足点P恰好有三个;综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是:x=0或x=4√2﹣4或4<x<4√2.故答案为:x=0或x=4√2﹣4或4<x<4√2.三、解答题(本大题共8小题,共80分)17.(8分)(2017•绍兴)(1)计算:(2√3﹣π)0+|4﹣3√2|﹣√18.(2)解不等式:4x+5≤2(x+1)【解答】解:(1)原式=1+3√2−4−3√2=﹣3;(2)去括号,得4x+5≤2x+2移项合并同类项得,2x≤﹣3解得x≤−3 2.18.(8分)(2017•绍兴)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准,该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米?【解答】解:(1)由纵坐标看出,某月用水量为18立方米,则应交水费18元;(2)由81元>45元,得用水量超过18立方米,设函数解析式为y=kx +b (x ≥18),∵直线经过点(18,45)(28,75),∴{18k +b =4528k +b =75, 解得{k =3b =−9, ∴函数的解析式为y=3x ﹣9 (x ≥18),当y=81时,3x ﹣9=81,解得x=30,答:这个月用水量为30立方米.19.(8分)(2017•绍兴)为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如图所示),并用调查结果绘制了图1,图2两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的同学有多少人?补全条形统计图.(2)本校有七年级同学800人,估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数.【解答】解:(1)40÷25%=160(人)答:本次接受问卷调查的同学有160人;D 组人数为:160×18.75%=30(人)统计图补全如图:(2)800×20+40+60160=600(人) 答:估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数为600人.20.(8分)(2017•绍兴)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C 测得教学楼顶部D 的仰角为18°,教学楼底部B 的俯角为20°,量得实验楼与教学楼之间的距离AB=30m .(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)【解答】解:(1)过点C作CE⊥BD,则有∠DCE=18°,∠BCE=20°,∴∠BCD=∠DCE+∠BCE=18°+20°=38°;(2)由题意得:CE=AB=30m,在Rt△CBE中,BE=CE•tan20°≈10.80m,在Rt△CDE中,DE=CD•tan18°≈9.60m,∴教学楼的高BD=BE+DE=10.80+9.60≈20.4m,则教学楼的高约为20.4m.21.(10分)(2017•绍兴)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,问饲养室长x为多少时,占地面积y最大?(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.【解答】解:(1)∵y=x•50−x2=﹣12(x﹣25)2+6252,∴当x=25时,占地面积最大,即饲养室长x为25m时,占地面积y最大;(2)∵y=x•50−(x−2)2=﹣12(x﹣26)2+338,∴当x=26时,占地面积最大,即饲养室长x为26m时,占地面积y最大;∵26﹣25=1≠2,∴小敏的说法不正确.22.(12分)(2017•绍兴)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.【解答】解:(1)①∵AB=AC=1,AB∥CD,∴S四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC=√12+12=√2.(2)如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD,∴AD=CD.(2)若EF⊥BC,则AE≠EF,BF≠EF,∴四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,∴AE=AB=5.②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,∴BF=AB=5,∵DE∥BF,∴DE:BF=PD:PB=1:2,∴DE=2.5,∴AE=9﹣2.5=6.5,综上所述,满足条件的AE的长为5或6.5.23.(12分)(2017•绍兴)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=20°,β=10°,②求α,β之间的关系式.(2)是否存在不同于以上②中的α,β之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由.【解答】解:(1)①∵AB=AC,∠ABC=60°,∴∠BAC=60°,∵AD=AE,∠ADE=70°,∴∠DAE=180°﹣2∠ADE=40°,∴α=∠BAD=60°﹣40°=20°,∴∠ADC=∠BAD+∠ABD=60°+20°=80°,∴β=∠CDE=∠ADC﹣∠ADE=10°,故答案为:20,10;②设∠ABC=x,∠AED=y,∴∠ACB=x,∠AED=y,在△DEC中,y=β+x,在△ABD中,α+x=y+β=β+x+β,∴α=2β;(2)①当点E在CA的延长线上,点D在线段BC上,如图1设∠ABC=x,∠ADE=y,∴∠ACB=x,∠AED=y,在△ABD中,x+α=β﹣y,在△DEC中,x+y+β=180°,∴α=2β﹣180°,②当点E在CA的延长线上,点D在CB的延长线上,如图2,同①的方法可得α=180°﹣2β.24.(14分)(2017•绍兴)如图1,已知▱ABCD,AB∥x轴,AB=6,点A的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点P是▱ABCD边上的一个动点.(1)若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x﹣1上,求点P的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P 作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM 沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)【解答】解:(1)∵CD=6,∴点P与点C重合,∴点P坐标为(3,4).(2)①当点P在边AD上时,∵直线AD的解析式为y=﹣2x﹣2,设P(a,﹣2a﹣2),且﹣3≤a≤1,若点P关于x轴的对称点Q1(a,2a+2)在直线y=x﹣1上,∴2a+2=a﹣1,解得a=﹣3,此时P(﹣3,4).若点P关于y轴的对称点Q3(﹣a,﹣2a﹣2)在直线y=x﹣1上时,∴﹣2a﹣2=﹣a﹣1,解得a=﹣1,此时P(﹣1,0)②当点P在边AB上时,设P(a,﹣4)且1≤a≤7,若等P关于x轴的对称点Q2(a,4)在直线y=x﹣1上,∴4=a﹣1,解得a=5,此时P(5,﹣4),若点P关于y轴的对称点Q4(﹣a,﹣4)在直线y=x﹣1上,∴﹣4=﹣a﹣1,解得a=3,此时P(3,﹣4),综上所述,点P的坐标为(﹣3,4)或(﹣1,0)或(5,﹣4)或(3,﹣4).(3)①如图1中,当点P在线段CD上时,设P(m,4).在Rt△PNM′中,∵PM=PM′=6,PN=4,∴NM′=√M′P2−PN2=2√5,在Rt△OGM′中,∵OG2+OM′2=GM′2,∴22+(2√5﹣m)2=m2,解得m=﹣6√5 5,∴P(﹣6√55,4)根据对称性可知,P(6√55,4)也满足条件.②如图2中,当点P在AB上时,易知四边形PMGM′是正方形,边长为2,此时P(2,﹣4).③如图3中,当点P 在线段AD 上时,设AD 交x 轴于R .易证∠M′RG=∠M′GR ,推出M′R=M′G=GM ,设M′R=M′G=GM=x .∵直线AD 的解析式为y=﹣2x ﹣2,∴R (﹣1,0),在Rt △OGM′中,有x 2=22+(x ﹣1)2,解得x=52, ∴P (﹣52,3). 点P 坐标为(2,﹣4)或(﹣52,3)或(﹣6√55,4)或(6√55,4).参与本试卷答题和审题的老师有:2300680618;gbl210;sjzx;gsls;弯弯的小河;家有儿女;499807835;王学峰;HLing;蓝月梦;CJX;zgm666;463454002;tcm123;fangcao;sks;HJJ;星月相随(排名不分先后)菁优网2017年7月25日。

2017年中考数学浙江绍兴试卷

2017年中考数学浙江绍兴试卷

浙江省绍兴市2017年中考数学试题第Ⅰ卷(共60分)一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 5-的相反数是( )A .15B .5C .15- D .5- 2. 研究表明,可燃烧是一种可代替石油的新型清洁能源,在我国某海域已探明的可燃烧存储量达150000000000立方米,其中数字150000000000用科学记数法可表示为( )A .101510⨯B .120.1510⨯C .111.510⨯D .121.510⨯3. 如图的几何体由五个相同的小正方体搭成,它的主观图是( )A .B .C .D .4. 在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其它均相同,从中任意摸出一个球,則摸出黑球的概率是( )A .17B .37 C.47 D .57:根据表中数据,要从中选择―名成绩好且友挥稳定的运动员参加比赛,应选择( )A .甲B .乙 C. 丙 D .丁6. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米.则小巷的宽度为( )A .0.7米B .1.5米 C.2.2米 D .2.4米7. 均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h 随时t 变化规律如图所示(图中OABC 为折线),这个容器的形状可以是( )A .B . C. D .8. 在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图,该图中,四边形ABCD 是矩形,E 是BA 延长线上一点,F 是CE 上一点,,ACF AFC FAE FEA ∠=∠∠=∠.若21ACB ∠= ,则ECD ∠的度数是( )A .7B .21 C.23 D .249.矩形ABCD 的两条对称轴为坐标轴,点A 的坐标为()2,1.一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A 重合,此时抛物线的函数表达式为2y x =,再次平移透明纸,使这个点与点C 重合,则该抛物线的函数表达式变为 ( )A .2814y x x =++B .2814y x x =-+C. 243y x x =++ D .243y x x =-+10. 一块竹条编织物,先将其按如图所示绕直线MN 翻转180 ,再将它按逆时针方向旋转90 ,所得的竹条编织物是( )A .B . C.D .第Ⅱ卷(共90分)二、填空题(每题5分,满分30分,将答案填在答题纸上)11.分解因式:2x y y -= .12.如图,一块含45角的直角三角板,它的一个锐角顶点A 在O 上,边,AB AC 分别与O 交于点,D E ,则DOE ∠的度数为 .13.如图,R ∆t ABC 的两个锐角顶点,A B 在函数()0k y x x=>的图象上,//AC x 轴,2AC =.若点A 的坐标为()2,2,则点B 的坐标为 .14.如图为某城市部分街道示意图,四边形ABCD 为正方形,点G 在对角线BD 上,,,1500GE CD GF BC AD m ⊥⊥=,小敏行走的路线为B A G E →→→,小聪行走的路线为B A D E F →→→→.若小敏行走的路程为3100m ,则小聪行走的路程为 m .15.以R ∆t ABC 的锐角顶点A 为圆心,适当长为半径作弧,与边,AB AC 各相交于一点,再分别以两个交点为圆心,适当长为半径作弧,过两弧的交点与点A 作直线,与边BC 交于点D .若60ADB ∠=,点D 到AC 的距离为2,则AB 的长为 .16.如图,45AOB ∠= ,点,M N 在边OA 上,,4OM x ON x ==+,点P 是边OB 上的点.若使点,,P M N 构成等腰三角形的点P 恰好有三个,则x 的值是 .三、解答题 (本大题共8小题,17—20小题,命题8分,第21题10分,第22,23小题12分,第24题14分,共80分.解答应写出文字说明、证明过程或演算步骤.)17. (1) 计算:()04π+-(2)解不等式:()4521x x +≤+.18. 某市规定了毎月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户毎月应交水费y (元)是用水量x (立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当18x >时,y 关于x 的函数表达式.若小敏家某月交水费81元,则这个月用水量为多少立方米?19. 为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如图所示),并用调查结果绘绘制了图1、图2两幅统计图(均不完整),请根据统计图解答以下问题.(1)本次接受问卷调查的同学有多少人?补全条形统计图. (2)本校有七年级同学800人,估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数.20.如图,学校的实验楼对面是一栋教学楼,小敏在实验楼的窗户C 测得教学楼顶D 的仰角是18︒ ,教学楼底部B 的俯角是20︒,量得实验楼与教学楼之间的距离是30AB m = .(1)求BCD ∠ 的度数.(2)求教学楼的高BD .21.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长度为50m .设饲养室为长为()x m ,占地面积为()2y m . (1)如图1 ,问饲养室为长x 为多少时,占地面积y 最大?(2)如图2,现要求在图中所示位置留2m 的门,且仍使饲养室占地面积最大.小敏说:“只要饲养室长比(1)中的长多2m 就行了.”请你通过计算,判断小敏的说法是否正确.22.定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1 ,等腰直角四边形=,90ABCD AB BC ABC ︒∠=, .①若1,AB CD ==AB CD ,对角线BD 的长.②若AC BD ⊥ ,求证:AD CD =.(2)如图2 ,矩形ABCD 中,5,9,AB BC == 点P 是对角线BD 上一点. 且2BP PD = ,过点P 作直线分别交,AD BC 于点,E F ,使四边形ABEF 是等腰直角四边形.求AE 的长.23.已知,,ABC AB AC D ∆=为直线BC 上一点,E 为直线AC 上一点,AD AE = ,设,BAD CDE ββ∠=∠= .(1)如图,若点D 在线段BC 上,点E 在线段AC 上.①如果60,70,ABC ADE ︒︒∠=∠= 那么=α ,=β . ②求αβ, 之间的关系式.(2)是否存在不同于以上②中的αβ,之间的关系式?若存在,求出这个关系式,若不存在,请说明理由.24.如图1,已知,ABCD AB x 轴,6,AB =点A 的坐标为()1,4,- 点D 的坐标为()3,4-,点B 在第四象限,点P 是ABCD 边上一个动点.(1) 若点P 在边BC 上,PD CD =,求点P 的坐标.(2)若点P 在边,AB AD 上,点P 关于坐标轴对称的点Q ,落在直线1y x =-上,求点P 的坐标.(3) 若点P 在边,AB AD CD ,上,点G 是AD 与y 轴的交点,如图2,过点P 作y 轴的平行线PM ,过点G 作x 轴的平行线GM ,它们相交于点M ,将PGM ∆沿直线PG 翻折,当点M 的对应点落在坐标轴上时,求点P 的坐标(直接写出答案).2017年浙江省绍兴市中考数学试卷一、选择题1、-5的相反数是( )A 、B 、5C 、D 、-52、研究表明,可燃冰是一种可替代石油的新型清洁能源。

2017年浙江省绍兴、义乌市中考数学试卷-答案

2017年浙江省绍兴、义乌市中考数学试卷-答案

【解析】从正面看到的图形是【考点】算术平均数 6.【答案】C【解析】设梯子斜靠在右墙时,底端到右墙角的距离为x 米,由勾股定理可得222220.7 2.42x =+=+梯子的长度,可解得 1.5x =,则小巷的宽度为0.7 1.5 2.2+=(米).故选C .【提示】当梯子斜靠在右墙时,梯子的长度并不改变,而且墙与水平面是垂直的,则可运用勾股定理构造方程解出底端到右墙角的距离.再求小巷的宽度. 【考点】解直角三角形的应用 7.【答案】D【解析】从折线图可得,倾斜度:OB OA BC <<,表示水上升的高度的速度:OB OA BC <<,则OB 段所在的容器的底面积最大,OA 段的次之,BC 段的最小,即容器的分布是中等长方体,最大长方体,最小长方体,所以符合这一情况的只有D .故选D .【提示】从折线图的倾斜度出发,根据注水的速度不变,而容器水里的高度除了与时间有关,且与容器里的底面积有关,则底面积越大的,水的高度增加的越慢. 【考点】函数的图象 8.【答案】C【解析】在矩形ABCD 中,AB CD ∥,90BCD ∠=︒,所以FEA ECD ∠=∠,9069ACD ACB ∠=︒-∠=︒,因为ACF AFC ∠=∠,FAE FEA ∠=∠,AFC FAE FEA ∠=∠+∠,所以2ACF FEA ∠=∠, 则369ACD ACF ECD ECD ∠=∠+∠=∠=︒,所以23ECD ∠=︒故选C .【提示】由矩形的性质不难得到FEA ECD ∠=∠,9069ACD ACB ∠=︒-∠=︒;根据三角形的外角性质及已知条件不难得出2ACF FEA ∠=∠,即可得ACD ∠被线CE 三等分,则可解出ECD ∠. 【考点】三角形的外角性质,矩形的性质 9.【答案】A【解析】如图,(2,1)A ,则可得(21)C --,.由(2,1)A 到(21)C --,,需要向左平移4个单位,向下平移2个单位,则抛物线的函数表达式为2y x =,经过平移与为22(4)2814y x x x =+-=++,故选A .【提示】题中的意思就是将抛物线2y x =平移后,点A 平移到了点C ,由A 的坐标不难得出C 的坐标,由平移的性质可得点A 怎样平移到点C ,那么抛物线2y x =,就怎样平移到新的抛物线.【考点】二次函数的图象 10.【答案】B【解析】绕MN 翻折180︒后,是下面的图形:再逆时针旋转90︒,可得故选B .【提示】绕MN 翻折180︒,本来排在第一行的横纸条排在了第5条,而且5根竖条,分别叠放在它的下、上、上、下、上面,通过这样的分析,确认五根横条的位置,再将其逆时针旋转90︒可得答案. 【考点】翻折变换(折叠问题) 二、填空题11.【答案】(1)(1)y x x +-【解析】原式2(1)(1)(1)y x y x x =-=+-故答案为(1)(1)y x x +-.【提示】观察整式可得,应选提取公因式y ,再运用平方差公式分解因式. 【考点】因式分解——运用公式法 12.【答案】90︒【解析】DAE ∠与DOE ∠在同一个圆中,且所对的弧都是DE ,则224590DOE DAE ∠=∠=⨯︒=︒. 故答案为90︒.BD ADB∠tan∠的角平分线,由角平分线的性质可得为BAC只有3个点P;当4MP MN ==时,过点M 作MD OB ⊥于D ,当4OM MP ==时,圆M 与OB 刚好交OB 两点2P 和3P ;此时242OM MD ==,选D 的同学有1602040601030----=(人),补全条形统计图如下.204060++所以182038BCD DCE BCE ∠=∠+∠=︒+︒=︒.502x x-=-时,占地面积最大. 50(212x x--时,占地面积最大.因为26,所以ABCD 是菱形.度,所以菱形所以ABD CBD ≅△△,所以AD CD =.综上所述,AE的长为5或6.5注:求出其它关系式,相应给分,如点E 在CA 的延长线上,点D 在CB 的延长线上,可得1802αβ=︒-.)解:在ABCD 中,在边AD 上时,由已知得,直线关于x 轴对称点②如下图,当点P 在AD 边上时,设(,22)P m m --,P-.422==-=,则(2,4) GM PM。

2017年浙江省绍兴市中考数学试卷

2017年浙江省绍兴市中考数学试卷

2017年浙江省绍兴市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣5的相反数是()A. B.5 C.﹣D.﹣52.(4分)研究表明,可燃冰是一种替代石油的新型清洁能源,在我国某海域已探明的可燃冰存储量达150000000000立方米,其中数字150000000000用科学记数法可表示为()A.15×1010B.0.15×1012C.1.5×1011D.1.5×10123.(4分)如图的几何体由五个相同的小正方体搭成,它的主视图是()A.B.C.D.4.(4分)在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是()A. B. C. D.5.(4分)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.149.159.149.15方差 6.6 6.8 6.7 6.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁6.(4分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米7.(4分)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A.B. C.D.8.(4分)在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图.该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ACB=21°,则∠ECD的度数是()A.7°B.21°C.23°D.24°9.(4分)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+310.(4分)一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是()A. B.C.D.二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)分解因式:x2y﹣y=.12.(5分)如图,一块含45°角的直角三角板,它的一个锐角顶点A在⊙O上,边AB,AC分别与⊙O交于点D,E,则∠DOE的度数为.13.(5分)如图,Rt△ABC的两个锐角顶点A,B在函数y=(x>0)的图象上,AC∥x轴,AC=2,若点A的坐标为(2,2),则点B的坐标为.14.(5分)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100m,则小聪行走的路程为m.15.(5分)以Rt△ABC的锐角顶点A为圆心,适当长为半径作弧,与边AB,AC 各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D.若∠ADB=60°,点D到AC的距离为2,则AB的长为.16.(5分)如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是.三、解答题(本大题共8小题,共80分)17.(8分)(1)计算:(2﹣π)0+|4﹣3|﹣.(2)解不等式:4x+5≤2(x+1)18.(8分)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准,该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米?19.(8分)为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如图所示),并用调查结果绘制了图1,图2两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的同学有多少人?补全条形统计图.(2)本校有七年级同学800人,估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数.20.(8分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)21.(10分)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,问饲养室长x为多少时,占地面积y最大?(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.22.(12分)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.23.(12分)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=°,β=°,②求α,β之间的关系式.(2)是否存在不同于以上②中的α,β之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由.24.(14分)如图1,已知▱ABCD,AB∥x轴,AB=6,点A的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点P是▱ABCD边上的一个动点.(1)若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x﹣1上,求点P的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P 作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM 沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)2017年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)(2017•绍兴)﹣5的相反数是()A. B.5 C.﹣D.﹣5【解答】解:﹣5的相反数是5,故选:B.2.(4分)(2017•绍兴)研究表明,可燃冰是一种替代石油的新型清洁能源,在我国某海域已探明的可燃冰存储量达150000000000立方米,其中数字150000000000用科学记数法可表示为()A.15×1010B.0.15×1012C.1.5×1011D.1.5×1012【解答】解:150000000000=1.5×1011,故选:C.3.(4分)(2017•绍兴)如图的几何体由五个相同的小正方体搭成,它的主视图是()A.B.C.D.【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:A.4.(4分)(2017•绍兴)在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是()A. B. C. D.【解答】解:∵在一个不透明的袋子中装有除颜色外其他均相同的4个红球和3个黑球,∴从中任意摸出一个球,则摸出黑球的概率是.故选B.5.(4分)(2017•绍兴)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.149.159.149.15方差 6.6 6.8 6.7 6.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁【解答】解:丁的平均数最大,方差最小,成绩最稳当,所以选丁运动员参加比赛.故选D.6.(4分)(2017•绍兴)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.7.(4分)(2017•绍兴)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A.B. C.D.【解答】解:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为D.故选:D.8.(4分)(2017•绍兴)在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图.该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ACB=21°,则∠ECD的度数是()A.7°B.21°C.23°D.24°【解答】解:∵四边形ABCD是矩形,∴∠D=90°,AB∥CD,AD∥BC,∴∠FEA=∠ECD,∠DAC=∠ACB=21°,∵∠ACF=∠AFC,∠FAE=∠FEA,∴∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∴∠ACD=3x,在Rt△ACD中,3x+21°=90°,解得:x=23°;故选:C.9.(4分)(2017•绍兴)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+3【解答】解:∵矩形ABCD的两条对称轴为坐标轴,∴矩形ABCD关于坐标原点对称,∵A点C点是对角线上的两个点,∴A点、C点关于坐标原点对称,∴C点坐标为(﹣2,﹣1);∴抛物线由A点平移至C点,向左平移了4个单位,向下平移了2个单位;∵抛物线经过A点时,函数表达式为y=x2,∴抛物线经过C点时,函数表达式为y=(x+4)2﹣2=x2+8x+14,故选A.10.(4分)(2017•绍兴)一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是()A. B.C.D.【解答】解:先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是B,故选B.二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)(2017•绍兴)分解因式:x2y﹣y=y(x+1)(x﹣1).【解答】解:x2y﹣y,=y(x2﹣1),=y(x+1)(x﹣1),故答案为:y(x+1)(x﹣1).12.(5分)(2017•绍兴)如图,一块含45°角的直角三角板,它的一个锐角顶点A在⊙O上,边AB,AC分别与⊙O交于点D,E,则∠DOE的度数为90°.【解答】解:∵∠A=45°,∴∠DOE=2∠A=90°.故答案为:90°.13.(5分)(2017•绍兴)如图,Rt△ABC的两个锐角顶点A,B在函数y=(x>0)的图象上,AC∥x轴,AC=2,若点A的坐标为(2,2),则点B的坐标为(4,1).【解答】解:∵点A(2,2)在函数y=(x>0)的图象上,∴2=,得k=4,∵在Rt△ABC中,AC∥x轴,AC=2,∴点B的横坐标是4,∴y==1,∴点B的坐标为(4,1),故答案为:(4,1).14.(5分)(2017•绍兴)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100m,则小聪行走的路程为4600m.【解答】解:连接GC,∵四边形ABCD为正方形,所以AD=DC,∠ADB=∠CDB=45°,∵∠CDB=45°,GE⊥DC,∴△DEG是等腰直角三角形,∴DE=GE.在△AGD和△GDC中,∴△AGD≌△GDC∴AG=CG在矩形GECF中,EF=CG,∴EF=AG.∵BA+AD+DE+EF﹣BA﹣AG﹣GE=AD=1500m.∵小敏共走了3100m,∴小聪行走的路程为3100+1500=4600(m)故答案为:460015.(5分)(2017•绍兴)以Rt△ABC的锐角顶点A为圆心,适当长为半径作弧,与边AB,AC各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D.若∠ADB=60°,点D到AC的距离为2,则AB的长为2.【解答】解:如图,作DE⊥AC于E.由题意AD平分∠BAC,∵DB⊥AB,DE⊥AC,∴DB=DE=2,在Rt△ADB中,∵∠B=90°,∠BDA=60°,BD=2,∴AB=BD•tan60°=2,故答案为216.(5分)(2017•绍兴)如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是x=0或x=4﹣4或4<x<4.【解答】解:分三种情况:①如图1,当M与O重合时,即x=0时,点P恰好有三个;②如图2,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴OM=4,当M与D重合时,即x=OM﹣DM=4﹣4时,同理可知:点P恰好有三个;③如图3,取OM=4,以M为圆心,以OM为半径画圆,则⊙M与OB除了O外只有一个交点,此时x=4,即以∠PMN为顶角,MN为腰,符合条件的点P有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以∠PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM 为底边的符合条件的点P;点M沿OA运动,到M1时,发现⊙M1与直线OB有一个交点;∴当4<x<4时,圆M在移动过程中,则会与OB除了O外有两个交点,满足点P恰好有三个;综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是:x=0或x=4﹣4或4.故答案为:x=0或x=4﹣4或4.三、解答题(本大题共8小题,共80分)17.(8分)(2017•绍兴)(1)计算:(2﹣π)0+|4﹣3|﹣.(2)解不等式:4x+5≤2(x+1)【解答】解:(1)原式=1=﹣3;(2)去括号,得4x+5≤2x+2移项合并同类项得,2x≤﹣3解得x.18.(8分)(2017•绍兴)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准,该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米?【解答】解:(1)由纵坐标看出,某月用水量为18立方米,则应交水费18元;(2)由81元>45元,得用水量超过18立方米,设函数解析式为y=kx+b (x≥18),∵直线经过点(18,45)(28,75),∴,解得,∴函数的解析式为y=3x﹣9 (x≥18),当y=81时,3x﹣9=81,解得x=30,答:这个月用水量为30立方米.19.(8分)(2017•绍兴)为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如图所示),并用调查结果绘制了图1,图2两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的同学有多少人?补全条形统计图.(2)本校有七年级同学800人,估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数.【解答】解:(1)40÷25%=160(人)答:本次接受问卷调查的同学有160人;D组人数为:160×18.75%=30(人)统计图补全如图:(2)800×=600(人)答:估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数为600人.20.(8分)(2017•绍兴)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)【解答】解:(1)过点C作CE⊥BD,则有∠DCE=18°,∠BCE=20°,∴∠BCD=∠DCE+∠BCE=18°+20°=38°;(2)由题意得:CE=AB=30m,在Rt△CBE中,BE=CE•tan20°≈10.80m,在Rt△CDE中,DE=CD•tan18°≈9.60m,∴教学楼的高BD=BE+DE=10.80+9.60≈20.4m,则教学楼的高约为20.4m.21.(10分)(2017•绍兴)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,问饲养室长x为多少时,占地面积y最大?(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.【解答】解:(1)∵y=x•=﹣(x﹣25)2+,∴当x=25时,占地面积最大,即饲养室长x为25m时,占地面积y最大;(2)∵y=x•=﹣(x﹣26)2+338,∴当x=26时,占地面积最大,即饲养室长x为26m时,占地面积y最大;∵26﹣25=1≠2,∴小敏的说法不正确.22.(12分)(2017•绍兴)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.【解答】解:(1)①∵AB=AC=1,AB∥CD,∴S四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC==.(2)如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD,∴AD=CD.(2)若EF⊥BC,则AE≠EF,BF≠EF,∴四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,∴AE=AB=5.②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,∴BF=AB=5,∵DE∥BF,∴DE:BF=PD:PB=1:2,∴DE=2.5,∴AE=9﹣2.5=6.5,综上所述,满足条件的AE的长为5或6.5.23.(12分)(2017•绍兴)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=20°,β=10°,②求α,β之间的关系式.(2)是否存在不同于以上②中的α,β之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由.【解答】解:(1)①∵AB=AC,∠ABC=60°,∴∠BAC=60°,∵AD=AE,∠ADE=70°,∴∠DAE=180°﹣2∠ADE=40°,∴α=∠BAD=60°﹣40°=20°,∴∠ADC=∠BAD+∠ABD=60°+20°=80°,∴β=∠CDE=∠ADC﹣∠ADE=10°,故答案为:20,10;②设∠ABC=x,∠AED=y,∴∠ACB=x,∠AED=y,在△DEC中,y=β+x,在△ABD中,α+x=y+β=β+x+β,∴α=2β;(2)①当点E在CA的延长线上,点D在线段BC上,如图1设∠ABC=x,∠ADE=y,∴∠ACB=x,∠AED=y,在△ABD中,x+α=β﹣y,在△DEC中,x+y+β=180°,∴α=2β﹣180°,②当点E在CA的延长线上,点D在CB的延长线上,如图2,同①的方法可得α=180°﹣2β.24.(14分)(2017•绍兴)如图1,已知▱ABCD,AB∥x轴,AB=6,点A的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点P是▱ABCD边上的一个动点.(1)若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x﹣1上,求点P的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P 作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM 沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)【解答】解:(1)∵CD=6,∴点P与点C重合,∴点P坐标为(3,4).(2)①当点P在边AD上时,∵直线AD的解析式为y=﹣2x﹣2,设P(a,﹣2a﹣2),且﹣3≤a≤1,若点P关于x轴的对称点Q1(a,2a+2)在直线y=x﹣1上,∴2a+2=a﹣1,解得a=﹣3,此时P(﹣3,4).若点P关于y轴的对称点Q3(﹣a,﹣2a﹣2)在直线y=x﹣1上时,∴﹣2a﹣2=﹣a﹣1,解得a=﹣1,此时P(﹣1,0)②当点P在边AB上时,设P(a,﹣4)且1≤a≤7,若等P关于x轴的对称点Q2(a,4)在直线y=x﹣1上,∴4=a﹣1,解得a=5,此时P(5,﹣4),若点P关于y轴的对称点Q4(﹣a,﹣4)在直线y=x﹣1上,∴﹣4=﹣a﹣1,解得a=3,此时P(3,﹣4),综上所述,点P的坐标为(﹣3,4)或(﹣1,0)或(5,﹣4)或(3,﹣4).(3)①如图1中,当点P在线段CD上时,设P(m,4).在Rt△PNM′中,∵PM=PM′=6,PN=4,∴NM′==2,在Rt△OGM′中,∵OG2+OM′2=GM′2,∴22+(2﹣m)2=m2,解得m=﹣,∴P(﹣,4)根据对称性可知,P(,4)也满足条件.②如图2中,当点P在AB上时,易知四边形PMGM′是正方形,边长为2,此时P(2,﹣4).③如图3中,当点P在线段AD上时,设AD交x轴于R.易证∠M′RG=∠M′GR,推出M′R=M′G=GM,设M′R=M′G=GM=x.∵直线AD的解析式为y=﹣2x﹣2,∴R(﹣1,0),在Rt△OGM′中,有x2=22+(x﹣1)2,解得x=,∴P(﹣,3).点P坐标为(2,﹣4)或(﹣,3)或(﹣,4)或(,4).参与本试卷答题和审题的老师有:2300680618;gbl210;sjzx;gsls;弯弯的小河;家有儿女;499807835;王学峰;HLing;蓝月梦;CJX;zgm666;463454002;tcm123;fangcao;sks;HJJ;星月相随(排名不分先后)菁优网2017年7月25日。

浙江省绍兴市2017年中考数学试题(解析版)

浙江省绍兴市2017年中考数学试题(解析版)
所以△ADG≅△CDG, 所以 AG=CG. 又因为 GE⊥CD,GF⊥BC,∠BCD=90°, 所以四边形 GECF 是矩形, 所以 CG=EF. 又因为∠CDG=45°, 所以 DE=GE, 所以小聪走的路程为 BA+AD+DE+EF=3000+(GE+AG)=3000+1600=4600(m).
王老师编辑整理
王老师编辑整理
10、一块竹条编织物,先将其按如图所示绕直线 MN 翻转 180°,再将它按逆时针方向旋转 90°,所得的竹 条编织物是( )
A、
B、
C、
D、
【答案】B
【考点】翻折变换(折叠问题)
【解析】【解答】解:绕 MN 翻折 180°后,是下面的图形:
再逆时针旋转 90°,可得
故选 B. 【分析】绕 MN 翻折 180°,本来排在第一行的横纸条排在了第 5 条,而且 5 根竖条,分别叠放在它的 下、上、上、下、上面,通过这样的分析,确认五根横条的位置,再将其逆时针旋转 90°可得答案.
故答案为 2 . 【分析】由尺规作图-角平分线的作法可得 AD 为∠BAC 的角平分线,由角平分线的性质可得 BD=2,又已 知∠ADB 即可求出 AB 的值. 16、如图,∠AOB=45°,点 M,N 在边 OA 上,OM=x,ON=x+4,点 P 是边 OB 上的点.若使点 P,M,N 构 成等腰三角形的点 P 恰好有三个,则 x 的值是________.
当 MD=MN=4 时,圆 M 与 OB 只有一个交点,此时 OM= MD=4 ,
【解析】【解答】解:从正面看到的图形是
王老师编辑整理
王老师编辑整理
故选 A. 【分析】主视图是从主视方向看到的图形,也可以说是从正面看到的图形. 4、在一个不透明的袋子中装有 4 个红球和 3 个黑球,它们除颜色外其它均相同,从中任意摸出一个球, 则摸出黑球的概率是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年浙江省绍兴市中考数学试卷一、选择题(共10小题)1.(2017绍兴)3的相反数是( ) A . 3 B . 3-C .13D . 13-考点:相反数。

解答:解:根据相反数的概念及意义可知:3的相反数是﹣3。

故选B 。

2.(2017绍兴)下列运算正确的是( ) A . 2x x x +=B .623x x x ÷=C .34x x x ⋅= D . 235(2)6x x =考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。

解答:解:A 、x +x =2x ,此选项错误; B 、x 6÷x 2=x 4,此选项错误; C 、x •x 3=x 4,此选项正确; D 、(2x 2)3=8x 6,此选项错误。

故选C 。

3.(2017绍兴)据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为( ) A . 4.6×108B . 46×108C . 4.6×109D . 0.46×1010考点:科学记数法—表示较大的数。

解答:解:4 600 000 000用科学记数法表示为:4.6×109。

故选:C 。

4.(2017绍兴)如图所示的几何体,其主视图是( )A .B .C .D .考点:简单组合体的三视图。

解答:解:从物体正面看,看到的是一个等腰梯形。

故选C 。

5.(2017绍兴)化简111x x --可得( ) A .21x x- B . 21x x--C .221x x x+- D .221x x x-- 考点:分式的加减法。

解答:解:原式=211(1)x x x x x x--=---。

故选B 。

6.(2017绍兴)在如图所示的平面直角坐标系内,画在透明胶片上的▱ABCD ,点A 的坐标是(0,2).现将这张胶片平移,使点A 落在点A ′(5,﹣1)处,则此平移可以是( )A . 先向右平移5个单位,再向下平移1个单位B . 先向右平移5个单位,再向下平移3个单位C . 先向右平移4个单位,再向下平移1个单位D . 先向右平移4个单位,再向下平移3个单位 考点:坐标与图形变化-平移。

解答:解:根据A 的坐标是(0,2),点A ′(5,﹣1),横坐标加5,纵坐标减3得出,故先向右平移5个单位,再向下平移3个单位, 故选:B 。

7.(2017绍兴)如图,AD 为⊙O 的直径,作⊙O 的内接正三角形ABC ,甲、乙两人的作法分别是:甲:1、作OD的中垂线,交⊙O于B,C两点,2、连接AB,AC,△ABC即为所求的三角形乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点。

2、连接AB,BC,CA.△ABC即为所求的三角形。

对于甲、乙两人的作法,可判断()A.甲、乙均正确B.甲、乙均错误C.甲正确、乙错误D.甲错误,乙正确考点:垂径定理;等边三角形的判定与性质;含30度角的直角三角形。

解答:解:根据甲的思路,作出图形如下:连接OB,∵BC垂直平分OD,∴E为OD的中点,且OD⊥BC,∴OE=DE=12OD,又OB=OD,在Rt△OBE中,OE=12 OB,∴∠OBE=30°,又∠OEB=90°,∴∠BOE=60°,∵OA=OB,∴∠OAB=∠OBA,又∠BOE为△AOB的外角,∴∠OAB=∠OBA=30°,∴∠ABC=∠ABO+∠OBE=60°,同理∠C=60°,∴∠BAC=60°,∴∠ABC=∠BAC=∠C,∴△ABC为等边三角形,故甲作法正确;根据乙的思路,作图如下:连接OB,BD,∵OD=BD,OD=OB,∴OD=BD=OB,∴△BOD为等边三角形,∴∠OBD=∠BOD=60°,又BC垂直平分OD,∴OM=DM,∴BM为∠OBD的平分线,∴∠OBM=∠DBM=30°,又OA=OB,且∠BOD为△AOB的外角,∴∠BAO=∠ABO=30°,∴∠ABC=∠ABO+∠OBM=60°,同理∠ACB=60°,∴∠BAC=60°,∴∠ABC=∠ACB=∠BAC,∴△ABC为等边三角形,故乙作法正确,故选A8.(2017绍兴)如图,扇形DOE的半径为3,边长为3的菱形OABC的顶点A,C,B分别在OD,OE,上,若把扇形DOE围成一个圆锥,则此圆锥的高为()A .12B . 22C .372D .352考点:圆锥的计算;菱形的性质。

解答:解:连接OB ,AC ,BO 与AC 相交于点F ,∵在菱形OABC 中,AC ⊥BO ,CF =AF ,FO =BF ,∠COB =∠BOA , 又∵扇形DOE 的半径为3,边长为,∴FO =BF =1.5, cos ∠FOC =FO 1.53CO 23==, ∴∠FOC =30°, ∴∠EOD =2×30°=60°, ∴603DE 180ππ⨯==, 底面圆的周长为:2πr =π, 解得:r =12,圆锥母线为:3, 则此圆锥的高为:221353()22-=, 故选:D 。

9.(2017绍兴)在一条笔直的公路边,有一些树和路灯,每相邻的两盏灯之间有3棵树,相邻的树与树,树与灯间的距离是10cm,如图,第一棵树左边5cm处有一个路牌,则从此路牌起向右510m~550m之间树与灯的排列顺序是()A.B.C.D.考点:规律型:图形的变化类。

解答:解:根据题意得:第一个灯的里程数为10米,第二个灯的里程数为50,第三个灯的里程数为90米…第n个灯的里程数为10+40(n﹣1)=(40n﹣30)米,故当n=14时候,40n﹣30=530米处是灯,则510米、520米、540米处均是树,故应该是树、树、灯、树,故选B。

10.(2017绍兴)如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设P n﹣1D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1重合,折痕与AD交于点P n(n>2),则AP6的长为()A .512532⨯B .69352⨯C .614532⨯D .711352⨯考点:翻折变换(折叠问题)。

解答:解:由题意得,AD =12BC =52,AD 1=AD ﹣DD 1=158,AD 2=25532⨯,AD 3=37532⨯,AD n =21532nn +⨯,故AP 1=54,AP 2=1516,AP 3=26532⨯…APn =12532n n-⨯,故可得AP 6=512532⨯。

故选A 。

二、填空题(共6小题)11.(2017绍兴)分解因式:3a a -= 。

考点:提公因式法与公式法的综合运用。

解答:解:32(1)(1)(1)a a a a a a a -=-+-。

12.(2017绍兴)教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为21(4)312y x =--+,由此可知铅球推出的距离是 m 。

考点:二次函数的应用。

解答:解:令函数式21(4)312y x =--+中,0y =, 21(4)3012x --+=, 解得110x =,22x =-(舍去),即铅球推出的距离是10m。

故答案为:10。

13.(2017绍兴)箱子中装有4个只有颜色不同的球,其中2个白球,2个红球,4个人依次从箱子中任意摸出一个球,不放回,则第二个人摸出红球且第三个人摸出白球的概率是。

考点:列表法与树状图法。

解答:解:画树状图得:∵共有24种等可能的结果,第二个人摸出红球且第三个人摸出白球的有8种情况,∴第二个人摸出红球且第三个人摸出白球的概率是:81 243。

故答案为:13。

14.(2017绍兴)小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后,用15分钟返回家,则表示父亲、母亲离家距离与时间之间的关系是(只需填序号)。

考点:函数的图象。

解答:解:∵小明的父母出去散步,从家走了20分到一个离家900米的报亭,母亲随即按原速返回,∴表示母亲离家的时间与距离之间的关系的图象是④;∵父亲看了10分报纸后,用了15分返回家,∴表示父亲离家的时间与距离之间的关系的图象是②。

故答案为:④②。

15.(2017绍兴)如图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B 落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.则BC:AB的值为。

考点:翻折变换(折叠问题)。

解答:解:连接CC′,∵将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处。

∴EC=EC′,∴∠EC′C=∠ECC′,∵∠DC′C=∠ECC′,∴∠EC′C=∠DC′C,∴得到CC′是∠EC'D的平分线,∵∠CB′C′=∠D=90°,∴CB′=CD,又∵AB′=AB,所以B′是对角线AC中点,即AC=2AB,所以∠ACB=30°,∴cot∠ACB=cot30°=BC3 AB,BC:AB的值为:3。

故答案为:3。

16.(2017绍兴)如图,矩形OABC 的两条边在坐标轴上,OA =1,OC =2,现将此矩形向右平移,每次平移1个单位,若第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,则第n 次(n >1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为(用含n 的代数式表示)考点:反比例函数综合题。

解答:解:设反比例函数解析式为ky x=,则 ①与BC ,AB 平移后的对应边相交;与AB 平移后的对应边相交的交点的坐标为(2,1.4), 则1.42k =, 解得142.85k ==, 故反比例函数解析式为145y x=。

则第n 次(n >1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为:14141455(1)5(1)n n n n -=++; ②与OC ,AB 平移后的对应边相交;0.62kk -=, 解得65k =。

故反比例函数解析式为65y x=。

则第n 次(n >1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为:66655(1)5(1)n n n n -=++。

相关文档
最新文档