离散数学课后习题答案(第三章)

合集下载

离散数学概论习题答案第3章

离散数学概论习题答案第3章

第二部分集合、矩阵、关系和函数集合论是处理集合,函数和关系的数学理论。

集合包括最基本的数学概念,例如集合,元素和成员关系。

在大多数现代数学公式中,集合论提供了一种描述数学对象的语言。

集合可用来表示数及其运算,还可表示和处理非数值计算,如数据间关系的描述等。

集合论,逻辑和一阶逻辑构成了数学公理化的基础。

同时,函数和关系是基于集合的映射,它们是满足某些属性的特殊集合。

接下来,我们将在两个单独的章节中介绍它们。

集和矩阵将在第3章中介绍,而关系和函数将在第4章中介绍。

第三章集合和矩阵3.1 集合3.1.1 集合概念集合没有确定的概念。

一般地,我们把研究的对象统称为元素;把一些元素组成的总体叫做集合,也简称集。

通常用大写英文字母表示集合。

例如,N代表是自然数集合,Z代表是整数集合,R代表是实数集合。

用小写英文字母表示集合内元素。

若元素a是集合A的一个元素,则表示为a A∈,读作元素a属于集合A;若元素a不是集合A的一个元素,则表示为a A∉,读作a不属于集合A。

集合分为有限集合和无限集合两种,下面给出定义。

表示集合方法有列举法和描述法两种方式,下面分别介绍。

1. 列举法当集合是有限集合时,可以列出集合的所有元素,用逗号隔开各元素,并用花括号把所有元素括起来。

这种表述方式为列举法。

例如:S1={a, b, c, d, e, f},S2={a, b, b, c, d, e, f},S3={ d, e, a, b, c, f}上述三个集合S1、S2和S3是相同集合,尽管有重复元素。

且集合元素之间没有次序关系。

一个集合可以作为另个集合的元素。

例如,S1={a, b,{ c, d, e, f }}集合S1包含元素a, b和{ c, d, e, f }。

因为{ c, d, e, f }是集合S1中的元素,故可记为:{}∈。

,,,c d e f A以上给出的集合实例都是有限集合。

当集合是无限集合时,无法列出集合的所有元素,可先列出一部分元素,若剩余元素与已给出元素存在一定规律,那剩余元素的一般形式很明显可用省略号表示。

离散数学第3版习题答案

离散数学第3版习题答案

离散数学第3版习题答案【篇一:华东师范大学离散数学章炯民课后习题第3章答案】xt>(1)2是正数吗?(2)x2+x+1=0。

(3)我要上学。

(4)明年2月1日下雨。

(5)如果股票涨了,那么我就赚钱。

解:(1) 不是(2) 不是(3) 不是(4) 是(5) 是2. 判断下列命题的真值:(1)若1+1=3,则2+2=4(2)若鸟会飞,则 1+1=3解:(1) 1(2) 011. 将下列两个命题符号化,并分别用真值表和等值演算的方法证明所得到的那两个命题公式是等值的。

(1)你不会休息所以就不会工作,你没有丰富的知识所以你就不会工作;(2)你会工作所以一定会休息并具有丰富的知识。

解:设p:你会休息,q:你会工作,r:你有丰富的知识。

原命题符号化为(1) (?p??q) ?(?r??q)(2) q?(p?r)12.(1)用等值演算的方法证明命题恒等式p?(q?p)=?p?(p??q)。

13. 构造一个只含命题变量p、q和r的命题公式a,满足:p、q和r的任意一个赋值是a的成真赋值当且仅当p、q和r中恰有两个为真。

解:(p?q??r)?( p??q?r)?(?p?q?r)14. 通过等值演算求p?(p?(q?p))的主析取范式和主合取范式。

解:主析取范式:(?p?q)?(?p??q)?(p??q)?(p?q )主合取范式不存在15. 一教师要从3名学生a、b和c中选派1~2人参加市级科技竞赛,需满足以下条件:(1)若a去,则c同去;(2)若b去,则c不能去;(3)若c不去,则a或b可以去。

问该如何选派?解:为此问题建立数学模型。

有三个方案:仅c去,仅b去,仅a和c去16. 证明{?,?}是功能完备集。

17. (1)证明p?(q?s),q,p??r?r?s。

证明:① p??r 前提引入② r 附加前提引入③ p ①②析取三段④ p?(q?s) 前提引入⑤ q?s ③④假言推理⑥ q 前提引入⑦ s ⑤⑥假言推理19. 构造下列推理的形式证明:“今天下午没有出太阳并且今天比昨天冷。

(完整版)离散数学课后习题答案(第三章)

(完整版)离散数学课后习题答案(第三章)

a t a t i m e an dA l lt h i ng si nt h ei r be i ng ar eg oo df o r so me t hi n 3-5.1 列出所有从X={a,b,c}到Y={s}的关系。

解:Z 1={<a,s>}Z 2={<b,s>} Z 3={<c,s>}Z 4={<a,s>,<b,s>} Z 5={<a,s>,<c,s>} Z 6={<b,s>,<c,s>}Z 7={<a,s>,<b,s>,<c,s>}3-5.2 在一个有n 个元素的集合上,可以有多少种不同的关系。

解 因为在X 中的任何二元关系都是X ×X 的子集,而X ×X=X 2中共有n 2个元素,取0个到n 2个元素,共可组成22n 个子集,即22|)(|n X X =⨯℘。

3-5.3 设A ={6:00,6:30,7:30,…, 9:30,10:30}表示在晚上每隔半小时的九个时刻的集合,设B={3,12,15,17}表示本地四个电视频道的集合,设R 1和R 2是从A 到B 的两个二元关系,对于二无关系R 1,R 2,R 1∪R 2,R 1∩R 2,R 1⊕R 2和R 1-R 2可分别得出怎样的解释。

解:A ×B 表示在晚上九个时刻和四个电视频道所组成的电视节目表。

R 1和R 2分别是A ×B 的两个子集,例如R 1表示音乐节目播出的时间表,R 2是戏曲节日的播出时间表,则R 1∪R 2表示音乐或戏曲节目的播出时间表,R 1∩R 2表示音乐和戏曲一起播出的时间表,R 1⊕R 2表示音乐节目表以及戏曲节目表,但不是音乐和戏曲一起的节日表,R 1-R 2表示不是戏曲时间的音乐节目时间麦。

3-5.4 设L 表示关系“小于或等于”,D 表示‘整除”关系,L 和D 刀均定义于解:L={<1,2>,<1,3>,<1,6>,<2,3>,<2,6>, <3,6>,<1,1>,<2,2>,<3,3>,<6,6>}D={<1,2>,<1,3>,<1,6>,<2,6>,<3,6>,<1,1>,<2,2>,<3,3>,<6,6>} L ∩D={<1,2>,<1,3>,<1,6>,<2,6>,<3,6>,<1,1>,<2,2>,<3,3>,<6,6>}3-5.5对下列每一式,给出A 上的二元关系,试给出关系图:a){<x,y>|0≤x ∧y ≤3},这里A={1,2,3,4};b){<x,y>|2≤x,y ≤7且x 除尽y ,这里A ={n|n ∈N ∧n ≤10}c) {<x,y>|0≤x-y<3},这里A={0,1,2,3,4};d){<x,y>|x,y 是互质的},这里A={2,3,4,5,6}解:a) R={<0,0>,<0,1>,<0,2>,<0,3>, <1,0>,<1,1>,<1,2>,<1,3>, <2,0>,<2,1>,<2,2>,<2,3>, <3,0>,<3,1>,<3,2>,<3,3>,} 其关系图b) R={<2,0>,<2,2>,<2,4>,<2,6>,<3,0>,<3,3>,<3,6>, <4,0>,<4,4>, <5,0>,<5,5>,i m e an dA l lt h in gs in th ei r be i ng ar eg oo df o rsa)若R1和R2是自反的,则R1○R2也是自反的;b)若R1和R2是反自反的,则R1○R2也是反自反的;c)若R1和R2是对称的,则R1○R2也是对称的;d)若R1和R2是传递的,则R1○R2也是传递的。

离散数学第3章答案

离散数学第3章答案

习题3.11.(1) {0,1,2,3,4,5,6,7,8,9}(2) {aa , ab , ba , bb }(3) {-1,1}(4) {11,13,17,19,23,29}(5) {1,2,3, (79)(6) {2}2. 用描述法表示下列集合:(1) 不超过200的自然数的集合;{|N 200}x x x ∈∧≤(2) 被5除余1的正整数的集合;+{|I (N 51)}x x y y x y ∈∧∃∈∧=+(3) 函数y =sin x 的值域;{|R 11}y y y ∈∧-≤≤(4) 72的质因子的集合;{|N |72(N 2|)}x x x y y y x y x ∈∧∧∀∈∧≤<→/(5) 不等式031>-x 的解集; {|R 3}x x x ∈∧>(6) 函数2312+-=x x y 的定义域集. {|R 12}x x x x ∈∧≠∧≠3. 用归纳定义法描述下列集合:(1) 允许有前0的十进制无符号整数的集合;① {0,1,2,3,4,5,6,7,8,9}A ⊆② 如果x A ∈,则{0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9}x x x x x x x x x x x x x x x x x x x x A ⊆(2) 不允许有前0的十进制无符号整数的集合;① {1,2,3,4,5,6,7,8,9}A ⊆② 如果x A ∈,则{0,1,2,3,4,5,6,7,8,9}x x x x x x x x x x A ⊆(3) 不允许有前0的二进制无符号偶数的集合;① 1A ∈② 如果x A ∈,则{0,1}x x A ⊆(4) 5的正整数倍的集合.① 5A ∈② 如果x A ∈,则5x A +∈4. 判断下列命题中,哪些是真的,哪些是假的(A 是任意集合):(1) ;A ∈∅(2) ;A ⊆∅ (3) };{A A ∈ (4) ;A A ⊆ (5) ;A A ∈ (6) };{A A = (7) }.{∅=∅答:(2),(3),(4)为真,(1),(5),(6),(7)为假。

离散数学答案(尹宝林版)第三章习题解答

离散数学答案(尹宝林版)第三章习题解答

第三章 公理系统1. 证明:(1) ))()(()(|C A C B B A →→→→→- (2) ))(())((|C A B C B A →→→→→- (3) A A →⌝⌝-| (4) A A ⌝⌝→-|(5) )()(|A B B A ⌝→⌝→→- (6) ))((|B A B A →⌝→⌝→- (7) B A A ∨→-| (8) A B A ∨→-| (9) A B A →∧-| (10) B B A →∧-| 解 (1) B A →,C B →,A A -|B A →,C B →,A B A →-| B A →,C B →,A B -| B A →,C B →,A C B →-|B A →,C B →,A C -|最后,使用3次演绎定理得到:))()(()(|C A C B B A →→→→→- (2) )(C B A →→,B ,A A -|)(C B A →→,B ,A )(|C B A →→- )(C B A →→,B ,A C B →-|)(C B A →→,B ,A B -|)(C B A →→,B ,A C -|最后,使用3次演绎定理得到:))(())((|C A B C B A →→→→→- (3) )(|A A A ⌝⌝→⌝⌝⌝⌝→⌝⌝- 公理一 A ⌝⌝ A A ⌝⌝→⌝⌝⌝⌝-|演绎定理 A ⌝⌝ )()(|A A A A ⌝⌝⌝→⌝→⌝⌝→⌝⌝⌝⌝- 公理三 A ⌝⌝ A A ⌝⌝⌝→⌝-|MP 规则 A ⌝⌝ )()(|A A A A →⌝⌝→⌝⌝⌝→⌝- 公理三 A ⌝⌝ A A →⌝⌝-| MP 规则A ⌝⌝A ⌝⌝-|A ⌝⌝ A -|MP 规则最后,由演绎定理得到:A A →⌝⌝-|(4) A A ⌝→⌝⌝⌝-|本题 (3) )()(|A A A A ⌝⌝→→⌝→⌝⌝⌝- 公理三 A A ⌝⌝→-|MP 规则(5) B A →-|A A →⌝⌝ 本题 (3) B A →, A ⌝⌝-| A 演绎定理B A →, A ⌝⌝-|B A → B A →, A ⌝⌝-| B MP 规则 B A →, A ⌝⌝-|B B ⌝⌝→ 本题 (4) B A →, A ⌝⌝-|B ⌝⌝ MP 规则 B A →-|B A ⌝⌝→⌝⌝演绎定理B A →-|)()(A B B A ⌝→⌝→⌝⌝→⌝⌝公理三B A →-|A B ⌝→⌝MP 规则 )()(|A B B A ⌝→⌝→→- 演绎定理(6) A ,B A →-| A A ,B A →-|B A → A ,B A →-|B MP 规则 A -|B B A →→)(演绎定理 A -|))(())((B A B B B A →⌝→⌝→→→ 本题 (5) A -|)(B A B →⌝→⌝ MP 规则 ))((|B A B A →⌝→⌝→-演绎定理 (7) )(|B A A →→⌝- 例3.4 B A A -⌝|, 演绎定理)(|B A A →⌝→-演绎定理即B A A ∨→-|(8) )(|A B A →⌝→-公理一即A B A ∨→-|(9) )(|B A A ⌝→→⌝- 例3.4 A ⌝B A ⌝→-|演绎定理 A ⌝)()(|B A B A ⌝→⌝⌝→⌝→- 本题 (4) A ⌝)(|B A ⌝→⌝⌝- MP 规则 )(|B A A ⌝→⌝⌝→⌝-演绎定理 ))(())((|A B A B A A →⌝→⌝→⌝→⌝⌝→⌝- 公理三A B A →⌝→⌝-)(|MP 规则即A B A →∧-|(10) )(|B A B ⌝→→⌝- 公理一 B A B ⌝→-⌝|演绎定理 )()(|B A B A B ⌝→⌝⌝→⌝→-⌝ 本题 (4) )(|B A B ⌝→⌝⌝-⌝ MP 规则 )(|B A B ⌝→⌝⌝→⌝-演绎定理 ))(())((|B B A B A B →⌝→⌝→⌝→⌝⌝→⌝- 公理三 B B A →⌝→⌝-)(|MP 规则即B B A →∧-|2. 以下结论对吗?若对,加以证明;若不对,举出反例。

自考 离散数学教材课后题第三章答案

自考  离散数学教材课后题第三章答案

3.1 习题参考答案1、写出下列集合的的表示式。

a)所有一元一次方程的解组成的集合。

A={x|x是所有一元一次方程的解组成的集合}晓津答案:A={x| ax+b=0∧a∈R∧b∈R}b) x2-1 在实数域中的因式集。

B={1,(x-1),(x+1)|x∈R}c)直角坐标系中,单位圆内(不包括单位圆周)的点集。

C={x,y| x2+y2<1 }晓津答案:C={a(x,y)|a为直角坐标系中一点且 x2+y2<1 }d)极坐标中,单位圆外(不包括单位圆周)的点集。

D={r,θ| r>1,0<=θ<=360}晓津答案:D={a(r,θ)|a为极坐标系中一点且 r>1,0<=θ<=2π }e)能被5整除的整数集E={ x| x mod 5=0}----------------------------------------------------------------2、判定下列各题的正确与错误。

a) {x}{x};正确b) {x}∈{x};正确晓津观点:本命题错误。

理由:{x}作为一个元素是一个集合,而右边集合中的元素并不是集合。

c) {x}∈{x,{x}};正确d) {x}{x,{x}};正确----------------------------------------------------------------3、设 A={1,2,4},B={1,3,{2}},指出下列各式是否成立。

a) {2}∈A; b) {2}∈B c) {2}Ad) {2}B; e) ∈A f) A解:jhju、晓津和wwbnb 的答案经过综合补充,本题的正确答案是:b、c、d、f成立,a,d、e不成立。

理由:a式中,{2}是一个集合,而在A中并无这样的元素。

因此不能说{2}属于A,当然如果说2∈A则是正确的。

对于e式也应作如此理解,空集是一个集合,在A中并无这个集合元素,如f 式则是正确的。

华东师范大学离散数学章炯民课后习题第3章答案

华东师范大学离散数学章炯民课后习题第3章答案

华东师范大学离散数学章炯民课后习题第3章答案第一篇:华东师范大学离散数学章炯民课后习题第3章答案1.下列语句哪些是命题?(1)2是正数吗?(2)x2+x+1=0。

(3)我要上学。

(4)明年2月1日下雨。

(5)如果股票涨了,那么我就赚钱。

解:(1)不是(2)不是(3)不是(4)是(5)是2.判断下列命题的真值:(1)若1+1=3,则2+2=4(2)若鸟会飞,则 1+1=3 解:(1)1(2)011.将下列两个命题符号化,并分别用真值表和等值演算的方法证明所得到的那两个命题公式是等值的。

(1)你不会休息所以就不会工作,你没有丰富的知识所以你就不会工作;(2)你会工作所以一定会休息并具有丰富的知识。

解:设p:你会休息,q:你会工作,r:你有丰富的知识。

原命题符号化为(1)(⌝p→⌝q)∧(⌝r→⌝q)(2)q→(p∧r)12.(1)用等值演算的方法证明命题恒等式p→(q→p)=⌝p→(p→⌝q)。

13.构造一个只含命题变量p、q和r的命题公式A,满足:p、q 和r的任意一个赋值是A的成真赋值当且仅当p、q和r中恰有两个为真。

解:(p∧q∧⌝r)∨(p∧⌝q∧r)∨(⌝p∧q∧r)14.通过等值演算求p→(p∧(q→p))的主析取范式和主合取范式。

解:主析取范式:(⌝p∧q)∨(⌝p∧⌝q)∨(p∧⌝q)∨(p∧q)主合取范式不存在15.一教师要从3名学生A、B和C中选派1~2人参加市级科技竞赛,需满足以下条件:(1)若A去,则C同去;(2)若B去,则C不能去;(3)若C不去,则A或B可以去。

问该如何选派?解:为此问题建立数学模型。

有三个方案:仅C去,仅B去,仅A和C去16.证明{⌝,→}是功能完备集。

17.(1)证明p→(q→s),q,p∨⌝r⇒r→s。

证明:① p∨⌝r前提引入② r附加前提引入③ p①②析取三段④ p→(q→s)前提引入⑤ q→s③④假言推理⑥ q前提引入⑦ s⑤⑥假言推理19.构造下列推理的形式证明:“今天下午没有出太阳并且今天比昨天冷。

离散数学第三章习题详细答案

离散数学第三章习题详细答案

3.9解:符号化:p:a是奇数. q:a是偶数. r:a能被2整除前提:(p→¬r),(q→r)结论:(q→¬p)证明:确。

方法2(等值演算法)(p→¬r)∧(q→r) →(q→¬p)⇔(¬p∨¬r)∧(¬q∨r) →(¬q∨¬p)⇔(p∧r) ∨(q∧¬r) ∨¬q∨¬p⇔((p∧r) ∨¬p)∨((q∧¬r) ∨¬q)⇔(r∨¬p) ∨(¬r∨¬q)⇔¬p∨(r∨¬r) ∨¬q⇔1即证得该式为重言式,则原结论正确。

方法3(主析取范式法)(p→¬r)∧(q→r) →(q→¬p)⇔(¬p∨¬r)∧(¬q∨r) →(¬q∨¬p)⇔(p∧r) ∨(q∧¬r) ∨¬q∨¬p⇔m0+ m1+ m2+ m3+ m4+ m5+ m6+ m7可知该式为重言式,则结论推理正确。

3.10. 解:符号化:p:a是负数. q:b是负数. r:a、b之积为负前提: r→(p∧¬q) ∨(¬p∧q)结论:¬r→(¬p∧¬q)方法1(真值法)证明:不正确。

方法2(主析取范式法)证明:(r→(p∧¬q) ∨(¬p∧q)) →(¬r→(¬p∧¬q))⇔¬ (¬r∨(p∧¬q) ∨(¬p∧q)) ∨(r∨(¬p∧¬q))⇔r∨(¬p∧¬q)⇔m0+m2+m4+m6+m7只含5个极小项,课件原始不是重言式,因此推理不正确3.11.填充下面推理证明中没有写出的推理规则。

离散数学第3-5章习题答案

离散数学第3-5章习题答案

第三章1、用枚举法写出下列集合。

①英语句子“I am a student”中的英文字母;解:{I,a,m,s,t,u,d,e,n}②大于5小于13的所有偶数;解:{6,,8,10,12}③20的所有因数;解:{1,2,4,5,10,20}④小于20的6的正倍数。

解:{6,12,18}2、用描述法写出下列集合。

①全体奇数;解:S={x|x是奇数}②所有实数集上一元二次方程的解组成的集合;解:S={x|x是实数集上一元二次方程的解}③二进制数;解:S={x|x是二进制数}④能被5整除的整数集合。

解:S={x|x是能被5整除的整数}3、求下列集合的基数。

①“proper set”中的英文字母;解:S={p,r,o,e,s,t}所以 cardS=|S|=6②{{1,2},{2,1,1},{2,1,2,1}};解: cardS=|S|=3③{x|x=2或x=3或x=4或x=5};解:cardS=|S|=4④{{1,{2,3}}}。

解:cardS=|S|=14、求下列集合的幂集。

①“power set”中的英文字母;解:S={p,o,w,e,r,s,t}(S)是所有S的子集构成的集合,这里不一一列举了。

②{3,6,9};解:℘(S)={Φ ,{3},{6},{9},{3,6},{3,9},{6,9},{3,6,9}} ③小于20的5的正倍数;解:S={5,10,15} ℘(S)={Φ,{5},{10},{15},{5,10},{5,15},{10,15},{5,10,15}} ④{{1,3}}。

解:℘(S)={Φ,{1,3}}5、设Φ=A ,B=a ,求P(A) ,P(P(A)) ,P(P(P(A))) ,P(B) ,P(P(B)) ,P(P(P(B)))。

解:P(A)={Φ};P(P(A))={Φ,{Φ}};P(P(P(A)))={Φ,{Φ},{{Φ}},{Φ,{Φ}}}P(B)={Φ,a };P(P(B))={Φ,{Φ},{a},{Φ,a}};P(P(P(B)))={Φ,{Φ},{{Φ}},{{a}},{{Φ,a}},{Φ,{Φ}},{Φ,{a}},{Φ,{Φ,a}},{{Φ},{a}},{{Φ},{Φ,a}},{{a},{Φ,a}},{Φ,{Φ},{a}},{Φ,{Φ},{Φ,a}},{Φ,{a},{Φ,a}},{{Φ},{a},{Φ,a}},{{Φ,{Φ},{a},{Φ,a}}}.6、如果集合A 和B 分别满足下列条件,能得出A 和B 之间有什么联系? ①A ∪B=A ; ②A ∩B=A ; ③A -B=A ; ④A ∩B=A -B ; ⑤A -B=B -A ; ⑥A B A =⊕。

离散数学答案_1-5章

离散数学答案_1-5章

第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔ 0∨(0∧1) ⇔0(2)(p?r)∧(﹁q∨s) ⇔(0?1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)?(p∧q∧﹁r) ⇔(1∧1∧1) ? (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

”答:p: π是无理数 1q: 3是无理数 0r: 2是无理数 1s: 6能被2整除 1t: 6能被4整除 0命题符号化为: p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔ (⌝p∧⌝q)∨(⌝q∧p)∨(⌝q∧⌝p)∨(p∧q)∨(p∧⌝q)⇔(⌝p∧⌝q)∨(p∧⌝q)∨(p∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P 中构造下面推理的证明:(2)前提:p →q,⌝(q ∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p ⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q)? ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)xF∀,在(a)中为假命题,在(b)中为真命题。

离散数学第三章

离散数学第三章

离散数学第三章第一篇:离散数学第三章第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r 结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r 结论:p∧q 证明:(2)①⌝(q∧r)前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p ⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q)⑤ 置换⑦(q→t)⑥化简⑧q ②⑥ 假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q 结论:s→r 证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r)前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s 结论:⌝p 证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦ 合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第二篇:离散数学离散数学课件作业第一部分集合论第一章集合的基本概念和运算1-1 设集合 A ={1,{2},a,4,3},下面命题为真是[ B ]A.2 ∈A;B.1 ∈ A;C.5 ∈A;D.{2} ⊆ A。

1-2 A,B,C 为任意集合,则他们的共同子集是[ D ]A.C;B.A;C.B;D.Ø。

1-3 设 S = {N,Z,Q,R},判断下列命题是否成立?(1)N ⊆ Q,Q ∈S,则 N ⊆ S[不成立](2)-1 ∈Z,Z ∈S,则-1 ∈S[不成立]1-4 设集合 A ={3,4},B = {4,3} ∩ Ø,C = {4,3} ∩{ Ø },D ={ 3,4,Ø },2E = {x│x ∈R 并且 x-7x + 12 = 0},F = { 4,Ø,3,3},试问哪两个集合之间可用等号表示?答:A = E;B = C;D = F1-5 用列元法表示下列集合(1)A = { x│x ∈N 且x2 ≤ 9 }(2)A = { x│x ∈N 且 3-x 〈 3 }答:(1)A = { 0,1,2,3 };(2)A = { 1,2,3,4,……} = Z+;第二章二元关系2-1 给定 X =(3, 2,1),R 是 X 上的二元关系,其表达式如下:R = {〈x,y〉x,y ∈X 且x≤ y }求:(1)domR =?;(2)ranR =?;(3)R 的性质。

离散数学左孝凌第三章答案

离散数学左孝凌第三章答案

离散数学左孝凌第三章答案【篇一:离散数学(左孝凌)课后习题解答】列句子中,哪些是命题?哪些不是命题?如果是命题,指出它的真值。

⑴中国有四大发明。

⑵计算机有空吗?⑶不存在最大素数。

⑷ 21+3<5。

⑸老王是山东人或河北人。

⑹ 2与3都是偶数。

⑺小李在宿舍里。

⑻这朵玫瑰花多美丽呀!⑼请勿随地吐痰!⑽圆的面积等于半径的平方乘以?。

⑾只有6是偶数,3才能是2的倍数。

⑿雪是黑色的当且仅当太阳从东方升起。

⒀如果天下大雨,他就乘班车上班。

解:⑴⑶⑷⑸⑹⑺⑽⑾⑿⒀是命题,其中⑴⑶⑽⑾是真命题,⑷⑹⑿是假命题,⑸⑺⒀的真值目前无法确定;⑵⑻⑼不是命题。

2. 将下列复合命题分成若干原子命题。

⑴李辛与李末是兄弟。

⑵因为天气冷,所以我穿了羽绒服。

⑶天正在下雨或湿度很高。

⑷刘英与李进上山。

⑸王强与刘威都学过法语。

⑹如果你不看电影,那么我也不看电影。

⑺我既不看电视也不外出,我在睡觉。

⑻除非天下大雨,否则他不乘班车上班。

解:⑴本命题为原子命题;⑵ p:天气冷;q:我穿羽绒服;⑶ p:天在下雨;q:湿度很高;⑷ p:刘英上山;q:李进上山;⑸ p:王强学过法语;q:刘威学过法语;⑹ p:你看电影;q:我看电影;⑺ p:我看电视;q:我外出;r:我睡觉;⑻ p:天下大雨;q:他乘班车上班。

3. 将下列命题符号化。

⑴他一面吃饭,一面听音乐。

⑵ 3是素数或2是素数。

⑶若地球上没有树木,则人类不能生存。

⑷ 8是偶数的充分必要条件是8能被3整除。

⑸停机的原因在于语法错误或程序错误。

⑹四边形abcd是平行四边形当且仅当它的对边平行。

⑺如果a和b是偶数,则a+b是偶数。

解:⑴ p:他吃饭;q:他听音乐;原命题符号化为:p∧q⑵ p:3是素数;q:2是素数;原命题符号化为:p∨q⑶ p:地球上有树木;q:人类能生存;原命题符号化为:?p→?q ⑸ p:停机;q:语法错误;r:程序错误;原命题符号化为:q∨r→p⑹ p:四边形abcd是平行四边形;q:四边形abcd的对边平行;原命题符号化为:p?q。

离散数学课后习题答案(第三章)

离散数学课后习题答案(第三章)
所以R在A上是自反的,即R是A上的等价关系。
3-10.7设R1和R2是非空集合A上的等价关系,试确定下述各式,哪些是A上的等价关系,对不是的式子,提供反例证明。
a)(A×A)-R1;
b)R1-R2;
c)R12;
d) r(R1-R2)(即R1-R2的自反闭包)。
解a)(A×A)-R1不是A上等价关系。例如:
3-10.6设R是集合A上的对称和传递关系,证明如果对于A中的每一个元素a,在A中同时也存在b,使<a,b>在R之中,则R是一个等价关系。
证明:对任意a∈A,必存在一个b∈A,使得<a,b>∈R.
因为R是传递的和对称的,故有:
<a,b>∈R∧<b, c>∈R<a, c>∈R<c,a>∈R
由<a,c>∈R∧<c, a>∈R<a,a>∈R
若c<0,则a<0u<0au>0
所以(a+bi)R(u+vi),即R在C*上是传递的。
关系R的等价类,就是复数平面上第一、四象限上的点,或第二、三象限上的点,因为在这两种情况下,任意两个点(a,b),(c,d),其横坐标乘积ac>0。
3-10.9设Π和Π是非空集合A上的划分,并设R和R分别为由Π和Π诱导的等价关系,那么Π细分Π的充要条件是RR。
2设<x,y>∈A,<u,v>∈A,若
<<x,y>,<u,v>>∈R==<<u,v>,<x,y>>∈R
即R是对称的。
3设任意<x,y>∈A,<u,v>∈A,<w,s>∈A,对
<<x,y>,<u,v>>∈R∧<<u,v>,<w,s>>∈R
(=)∧(=)=
<<x,y>,<w,s>>∈R
故R是传递的,于是R是A上的等价关系。
因此,RkRj,于是I/Rk细分I/Rj

离散数学(屈婉玲)答案-1-5章

离散数学(屈婉玲)答案-1-5章

离散数学(屈婉玲)答案-1-5章第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式//最后一列全为1(5)公式类型为可满足式(方法如上例)//最后一列至少有一个1(6)公式类型为永真式(方法如上例)//第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p ⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)(x∀,在(a)中为假命题,在(b)中为真命xF题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a)(A×A)-R1;
b)R1-R2;
c)R12;
d) r(R1-R2)(即R1-R2的自反闭包)。
解a)(A×A)-R1不是A上等价关系。例如:
A={a,b},R1={<a,a>,<b,b>}
A×A={<a,a>,<a,b>,<b,a>,<b,b>}
(A×A)-R1={<a,b>,<b,a>}
所以(A×A)-R1不是A上等价关系。
设S=[a]R,则SS
这就证明了Π细分Π。
3-10.10设Rj是表示I上的模j等价关系,Rk是表示I上的模k等价关系,证明I/Rk细分I/Rj当且仅当k是j的整数倍。
证明:由题设Rj={<x,y>|x≡y(modj)}
Rk={<x,y>|x≡y(modk)}
故<x,y>∈Rjx-y=cj (对某个c∈I)
<x,y>∈Rkx-y=dk (对某个d∈I)
a)假设I/Rk细分I/Rj,则RkRj
因此<k,0>∈Rk<k,0>∈Rj
故k-0=1k=cj (对某个c∈I)
于是k是j的整数倍。
b)若对于某个r∈I,有k=rj则:
<x,y>∈Rkx-y=ck (对某个c∈I)
x-y=crj (对某个c,r∈I)
<x,y>∈Rj
证明:若Π细分Π。由假设aRb,则在Π中有某个块S,使得a,b∈S,因Π细分Π,故在Π中,必有某个块S,使SS,即a,b∈S,于是有aRb,即RR。
反之,若RR,令S为H的一个分块,且a∈S,则S=[a]R={x|xRa}
但对每一个x,若xRa,因RR,故xRa,因此{x|xRa}{x|xRa}即[a]R[a]R
若c<0,则a<0u<0au>0
所以(a+bi)R(u+vi),即R在C*上是传递的。
关系R的等价类,就是复数平面上第一、四象限上的点,或第二、三象限上的点,因为在这两种情况下,任意两个点(a,b),(c,d),其横坐标乘积ac>0。
3-10.9设Π和Π是非空集合A上的划分,并设R和R分别为由Π和Π诱导的等价关系,那么Π细分Π的充要条件是RR。
b)设A={a,b,c}
R1={<a,b>,<b,a>,<b,c>,<c,b>,<a,c>,<c,a>,<a,a>,<b,b>,<c,c>}
R2={<a,a>,<b,b>,<c,c>,<b,c>,<c,b>}
R1-R2={<a,b>,<b,a>,<a,c>,<c,a>}
所以R1和R2是A上等价关系,但R1-R2不是A上等价关系。
证明:设A上定义的二元关系R为:
<<x,y>,<u,v>>∈R=
1对任意<x,y>∈A,因为=,所以
<<x,y>,<x,y>>∈R
即R是自反的。
2设<x,y>∈A,<u,v>∈A,若
<<x,y>,<u,v>>∈R==<<u,v>,<x,y>>∈R
即R是对称的。
3设任意<x,y>∈A,<u,v>∈A,<w,s>∈A,对
<a,b>∈R1○R1∧<b, c>∈R1○R1
(e1)(<a, e1>∈R1∧<e1, b>∈R1)∧(e2)(<b, e2>∈R1∧<e2, c>∈R1)
<a,b>∈R1∧<b, c>∈R1(∵R1传递)
<a,c>∈R12
即R12是传递的。
故R12是A上的等价关。
d)如b)所设,R1和R2是A上的等价关系,但
r(R1-R2)=(R1-R2)∪IA
={<a,b>,<b,a>,<a,c>,<c,a>,<a,a>,<b,b>,<c,c>}
不是A上的等价关系。
3-10.8设C*是实数部分非零的全体复数组成的集合,C*上的关系R定义为:(a+bi)R(c+di)ac>0,证明R是等价关系,并给出关系R的等价类的几何说明。
证明:(1)对任意非零实数a,有a2>0(a+bi)R(a+bi)
故R在C*上是自反的。
(2)对任意(a+bi)R(c+di)ac>0,
因ca=ac>0(c+di)R(a+bi),
所以R在C*上是对称的。
(3)设(a+bi)R(c+di),(c+di)R(u+vi),则有ac>0cu>0
若c>0,则a>0u>0au>0
因为R是传递的和对称的,故有:
<a,b>∈R∧<b, c>∈R<a, c>∈R<c,a>∈R
由<a,c>∈R∧<c, a>∈R<a,a>∈R
所以R在A上是自反的,即R是A上的等价关系。
3-10.7设R1和R2是非空集合A上的等价关系,试确定下述各式,哪些是A上的等价关系,对不是的式子,提供反例证明。
c)若R1是A上等价关系,则
<a,a>∈R1<a,a>∈R1○R1
所以R12是A上自反的。
若<a,b>∈R12则存在c,使得<a, c>∈R1∧<c,b>∈R1。因R1对称,故有
<b, c>∈R1∧<c,a>∈R1<b, a>∈R12
即R12是对称的。
若<a,b>∈R12∧<b, c>∈R12,则有
<<x,y>,<u,v>>∈R∧<<u,v>,<w,s>>∈R
(=)∧(=)=
<<x,y>,<w,s>>∈R
故R是传递的,于是R是A上的等价关系。
3-10.6设R是集合A上的对称和传递关系,证明如果对于A中的每一个元素a,在A中同时也存在b,使<a,b>在R之中,则R是一个等价关系。
证明:对任意a∈A,必存在一个b∈A,使得<a,b>∈R.
因此,RkRj,于是I/Rk细分I/Rj
fjasasdhgaowirghaoghaa;owghfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfja
相关文档
最新文档