力系、平衡方程
理论力学第3章 力系的平衡条件与平衡方程
10
例题二的解答
解:选取研究对象:杆CE(带有销 钉D)以及滑轮、绳索、重物组成 的系统(小系统)受力分析如图, 列平衡方程:
M D (F ) 0 M C (F ) 0 M B (F ) 0
( F C cos ) CD F ( DE R ) PR 0 F Dx DC F ( CE R ) PR 0 F BD F ( DE R ) P ( DB R ) 0 Dy
2012年11月3日星期六
北京邮电大学自动化学院
29
滚动摩擦力偶的性质
滚动摩擦力偶M 具有如下性质(与滑动摩擦力性质类似): ◆ 其大小由平衡条件确定; ◆ 转向与滚动趋势相反; ◆ 当滚子处于将滚未滚的平衡临界状态时, M = M max =δFN
式中:δ —滚动摩擦系数,它的量纲为长度; FN —法向反力(一般由平衡条件确定)。
q (2a b) 2a
2
YA q (2a b)
16
2012年11月3日星期六
北京邮电大学自动化学院
课堂练习3
多跨静定梁由AB梁和BC梁用中间铰B连接而成,支撑和荷 载情况如图所示,已知P = 20kN,q=5kN⋅m,α = 45°。求 支座A、C的反力和中间铰B处的反力。
2012年11月3日星期六
x
xC
x
2012年11月3日星期六
北京邮电大学自动化学院
5
平行分布线载荷的简化
Q
q
1、均布荷载 Q=ql
l 2
l 2
Q
q
2、三角形荷载 Q=ql /2
2l 3
l 3
Q
3、梯形荷载 Q=(q1+q2)l /2 (自己求合力的位置)
第四章:力系的平衡条件与平衡方程
未知量个数 <= 独立平衡方程数 静定
(全部未知量可以由平衡方程完全求解)
未知量个数 > 独立平衡方程数 静不定或超静定
(未知量不能全部由平衡方程求解)
物体系的平衡·静定和超静定问题
未知量个数 <= 独立平衡方程数 静定
(全部未知量可以由平衡方程完全求解)
未知量个数 > 独立平衡方程数 静不定或超静定
∑ M B = 0 −8FAy + 5*8 +10*6 +10* 4 +10* 2 = 0
得 FAy = 20kN ∑ Fiy = 0 FAy + FBy − 40 = 0
得 FBy = 20kN
求各杆内力
取节点A
⎧⎪∑ ⎨⎪⎩∑
Fiy Fix
= =
0 0
→ →
FAD FAC
取节点C
⎧⎪∑ ⎨⎪⎩∑
解得 P3max=350kN
22mm 22mm
所以,平衡载重P3取值范围为:
75kN ≤ P3 ≤ 350kN
(2)P3=180kN时:
∑ M A = 0 4P3 − 2P2 −14P1 + 4FB = 0
解得 FB=870kN
∑ Fy = 0 FA + FB − P1 − P2 − P3 = 0
∑M =0
FA'
⋅r
sinθ
− M2
=
0
解得 M 2 = 8kN ⋅m
FB = FA = 8kN
例
已知:OA=R,AB=
l,
r F
,
不计物体自重与摩擦,系统在图示位置平衡;
求: 力偶矩M 的大小,轴承O处的约 束力,连杆AB受力,滑块给导 轨的侧压力.
《工程力学:第三章-力系的平衡条件和平衡方程》解析
工程力学 1. 选择研究对象。以吊车大梁 AB为研究对象,进行受力分析 (如图所示) 2.建立平衡方程
第三章 力系的平衡条件和平衡方程
FAX FTB cos 0 Fy 0
F
x
0
: (1)
M
FAy FQ FP FTB sin 0
A
(F ) 0
工程力学
第三章 力系的平衡条件和平衡方程
§3.3 考虑摩擦时的平衡问题
3.3.1 滑动摩擦定律
概念:
静摩擦力:F 最大静摩擦力:Fmax 滑动摩擦力: Fd
静摩擦因数:
水平拉力: Fp
Fmax f s FN
fs
工程力学
第三章 力系的平衡条件和平衡方程
3.3.2 考虑摩擦时构件的平衡问题
考虑摩擦力时与不考虑摩擦力时的平衡 解题方法和过程基本相同, 但是要注意摩擦力的方向与运动趋势方向相反;且在滑动之前摩擦 力不是一个定值,而是在一定范围内取值。
l l sin 0
(3)
工程力学
第三章 力系的平衡条件和平衡方程
• 联立方程(1)(2)(3)得:
FAX
FQ FP 3 l x 2
(2)由FTB结果可以看出,当x=L时,即当电动机移动到大梁右 端B点时,钢索所受的拉力最大,最大值为
非静定问题:未知数的数目多于等于独立的平衡方程的数目,不能 解出所有未知量。相应的结构为非静定结构或超静定结构。
会判断静定问题和非静定问题
工程力学
第三章 力系的平衡条件和平衡方程
工程力学
第三章 力系的平衡条件和平衡方程
3.2.2 刚体系统平衡问题的特点与解法
1.整体平衡与局部平衡的概念 系统如果整体是平衡的,则组成系统的每一个局部以及每一个 2.研究对象有多种选择 刚体也必然是平衡的。
第三章力系的平衡介绍
工 程 力 学
§3-2
平面力系的平衡条件
F1 Fn F3
1、平面任意力系的平衡方程 F2 平面任意力系平衡的充要条件是: 力系的主矢和对任意点的主矩都等于零。
0 FR
第 三 章 力 系 的 平 衡
Mo 0
平面任意力系
FR ( Fx ) 2 ( Fy ) 2
M O M O (F )
2
0
F
x
0,
F
y
0,
F
z
0
即:汇交力系的平衡条件是力系中所有各力在各个坐
标轴中每一轴上的投影的代数和分别等于零。
工 程 力 学
三、空间平行力系的平衡方程
第 三 章 力 系 的 平 衡
F
z
0,
M (F ) 0, M (F ) 0
x
y
工 程 力 学
四、空间力偶系的平衡方程
第 三 章 力 系 的 平 衡
工 程 力 学
例:如图所示为一种起吊装置的结构简图。图中尺寸d , 载荷F, <FAD =60均为已知。若不计各杆自重,试求杆AF与杆AD在各 自的约束处所受的约束力。
第 三 章 力 系 的 平 衡
工 程 力 学
第 三 章 力 系 的 平 衡
工 程 力 学
例:滑轮支架系统如图所示。已知G,a,r,θ ,其余物体重 量不计,试求A和B的约束力。
工 程 力 学
3、平面汇交力系的平衡方程
F
x
0,
F
y
0
4、平面力偶系的平衡条件
第 三 章 力 系 的 平 衡
M 0
即:力偶系各力偶力偶矩的代数和等于零。
工 程 力 学
理论力学:第3 章 力系的平衡
力系平衡是静力学研究的主要内容之一,也是静力学最重要的内容。其中平面力系的平衡又
是重要之重要内容,平面物系的平衡又是重要之重要内容。
事实上我们已经得到力系的平衡条件(充要):
R
0,M O
0 。下面将其写成代数方程即
平衡方程,用其解决具体问题。
3.1 平面力系的平衡条件与平衡方程
受力图如图(c),列解方程:
Y 0, P cos G sin 0
P
使 P 最小,则
G sin cos
G sin cos( )
cos( ) 1,
arctan 3
3652'
Pmin
G sin
20
3 5
12kN
4
另解:(几何法) 画自行封闭的力三角形,如图(d),则
Q
G(b
e) 50b a
Hale Waihona Puke 350.0kN∴ 使起重机正常工作的平衡重为:333.3kN≤Q≤350.0kN 注:也可按临界平衡状态考虑,求 Pmin 和 Pmax。 静力学的应用:
学习静力学有何用处?——上面几个例题有所反映。
例 1:碾子问题——满足工作条件的载荷设计。
例 2:梁平衡问题——结构静态设计(一类重要工程问题)。
分由由由图图图析(((:acb)))汽:::车受平面平行力mmm系EBB(((,FFF))易) 列解000,,,方程。下shl面只给出方程:
例 4 平行力系典型题目,稳定性问题且求范围。 行动式起重机的稳定性极其重要,要求具有很好的稳定裕度,满载时不向右翻倒,空载时不 向左翻倒。已知自重 G = 500kN,最大载荷 Pmax = 210kN,各种尺寸为:轨距 b = 3m,e = 1.5m, l = 10m,a = 6m,试设计平衡重 Q,使起重机能正常工作,且轨道反力不小于 50kN。
第3章力系平衡方程
F F
2 x y
2
38.822 3.82
(kN) 33
主矢FR′的方向为
tan
F F
y
3.8 32.82
0.1158
6 .6
x
主矢FR′在第四象限内,与x轴的夹角为6.6°。
2019/1/5
(2)求主矩MO 力系对点O的主矩为 MO=∑MO(F) =-F1sin20°· b-F2cos30°· b + F2sin30°· a +m =-20×0.342×10- 30×0.866×10+30×0.5×6+100 =-138(kN· m) 顺时针方向。
图3-5
2019/1/5
【例3-2】图
【解】 (1)建立直角坐标系,计算合力在x轴和y轴 上的投影
FRx Fx F1 cos30 F2 cos60 F3 cos45 F4 cos45
=200×0.866-300×0.5-100×0.707+250×0.707 =129.25N
MO(FR)= MO(F1)+ MO(F2)+…+ MO(Fn) =∑MO(F)
(3-6)
2019/1/5
【例3-5】 如图3-9所示,每1m长挡土墙所受土压 力的合力为FR,如FR=200kN,求土压力FR使挡土墙倾覆的 力矩。 【解】土压力FR可使挡土墙绕 A点倾覆,故求土压力FR使墙倾覆 的力矩,就是求FR对A点的力矩。 由已知尺寸求力臂d比较麻烦,但 如果将FR分解为两个力F1和F2,则 两分力的力臂是已知的,故由式 (3-6)可得
图3-16
力的平移定理
2019/1/5
工程力学第三章-力系的平衡
将上式两边向x、y、z 轴投影,可得平衡方程
F F F
可以求解3个未知量。
x y
z
0 0 0
• 2.平面汇交力系
力系的平衡
• 力偶系的平衡方程 • 1.空间力偶系
平衡的充要条件(几何条件) M Mi 0 将上式两边向x、y、z 轴投影,可得平衡方程
M M M
可以求解3个未知量。
ix iy iz
0 0 0
• 2.平面力偶系
力系的平衡
• 平衡的充要条件:力偶系中各力偶矩的代数和等于零.
m 0
i
• 任意力系的平衡方程 空间任意力系: • 平衡的充要条件:力系的主矢和对任一点的主矩均为零。
FR 0
MO 0
G3 a
e
G 3(a b) FNAb G1e G 2L 0 G 3(a b) G1e G 2L FNA 2 b
由(1)、(2)式 得:
G1 G2 L
G1e G 2L G3 ab
3
A FN A b
B FN B
(2)空载时
不翻倒条件:FNB≥0 (4) 由 mA 0 得:
FAB = 45 kN
600
y B TBC 15 15 30 TBD
0 0 0
x
C
D
150
B
300
TBD=G E
A
E
FAB G
解题技巧及说明:
1、一般地,对于只受三个力作用的物体,且角度特殊时用 几 何法(解力三角形)比较简便。 2、一般对于受多个力作用的物体,且角度不特殊或特殊, 都用解析法。 3、投影轴常选择与未知力垂直,最好使每个方程中只有一 个未知数。
工程力学第二章(力系的平衡)
6m
F 3m 1m
E
G
6m
MAF 0,
A
FAx
FBy 12 m G 1 m
FAy
F 9m G 11 m 0
B
FBx
FBy
得: FBy= 47.5 kN
例7 如图所示为一悬臂梁,A 为固定端,设
梁上受强度为 q 的均布载荷作用,在自由端B 受一集中力 F 和一力偶 M 作用,梁的跨度为l, 求固定端的约束力。
M
F
q
45
B
A
l
解:1、 取梁为研究对象,受力分析如图
2、 选取坐标系,列平衡方程
q
M
F
45
Fx 0, FAx F cos 45o 0
第二章 力系的平衡
本章重点:
1、力系平衡方程及其应用 2、物体系统平衡问题分析 3、桁架内力分析
§2-1 力系的平衡方程
F2
z
F1
MO
z
FR′
y o
y o
x
Fn
x
空间任意力系向任意点O简化为: 主矢 FR′=∑Fi 主矩 MO=∑MO(Fi )
平衡的充分必要条件: FR' 0 Mo 0
注意:对任意一点的主矩为零。
联立求解得 FB 750 N
例2 利用铰车绕过定
滑轮B的绳子吊起一货 物重G = 20 kN,滑轮 由两端铰接的水平刚 杆AB和斜刚杆BC支持 于点B 。不计铰车的 自重,试求杆AB和BC 所受的力。
A
30°
B
30°
C
G
a
A 30° B
30°
C
G
a
解:1、取滑轮 B 轴销为研究
工力C第三章力系的平衡方程及应用
M
静力学
第三章 力系的平衡方程及其应用
静力学
例3-3 伸臂式起重机,已知匀质梁AB 重P =4kN,吊车连 同吊起重物重P1=10kN。有关尺寸如图。
y
试求:拉索BD 的拉力及铰链 A 的约束力。
D
解:取AB梁连同重物为研究对象,
FAy
FT
C 30°
A
FAx
画受力图。 取坐标,列平衡方程。
B
x由: X 0
• 空间任意力系平衡方程:基本形式、四矩式、五矩式 和六矩式。
• 应当注意:每一种形式最多只能列6个独立平衡方程, 解6个未知数,任何多于6个的方程都是这些方程的线性 组合。
• 空间任意力系平衡方程是平衡方程的一般形式。汇交 力系、平行力系、力偶系及平面力系是其特殊形式。
第三章 力系的平衡方程及其应用
对图(d):
FT1
由 M B (F ) 0 0.4FT cos 1YH 0
(d)
X H
H
由 X 0
FT sin X H X B 0
(e)
YH
FT2 由 Y 0
FT cos YH YB 0
(f )
(c)
YB E X B
B
F'T
但若系统的n物体中,有n1个物体为二力构件或受平面 力偶系, n2个受平面汇交力系或平面平行力系、n3个受平 面任意力系作用,则最多可列的独立平衡方程的数目m为
m n1 2n2 3n3
可解m个未知数。
第三章 力系的平衡方程及其应用
静力学
设k为物体系统的未知量数目
若k = m,未知量数目等于可列独立平衡方程的数
FB
理论力学第3章 力系的平衡
基础部分——静力学第3 章力系的平衡主要内容:§3-7 重心即:力系平衡的充分必要条件是,力系的主矢和对任一点3-2-1 平衡方程的一般形式∑=iF F R ∑=)(i O O F M M 已知∑=iF F R ∑=)(i O O F M M 投影式:平衡方程i即:力系中所有力在各坐标轴上投影的代数和分别等于零;所有力对各坐标轴之矩的代数和分别等于零。
说明:¾一般¾6个3个投影式,3个力矩式;¾一般形式基本形式3-2-2 平面一般力系的平衡方程xy zOF1F2Fn平面内,¾一般形式¾3个2个投影式,1个力矩式;¾ABAzzCC附加条件:不垂直附加条件:不共线Bx二矩式的证明必要性充分性合力平衡AA 点。
B 点。
过ABBx故必有合力为零,力系平衡证毕平面问题3个3个 解题思路BAMFo45l l[例3-1] 悬臂梁,2解:M A 校核:0)(=∑F MB满足!解题思路?AyF AxF[例3-2] 伸臂梁F AxF AyF BF q 解:0=∑x F 0)(=∑F AM3(F −+0=∑yF3(F −+(F −+0)(=∑F AM=∑yF0=∑x F F AxF AyF BF q 思考:如何用其他形式的平衡方程来求解?0=∑x F 3(F −+0)(=∑F AMF AxF F BF q 0)(=∑F BM(F −+二矩式思考练习][练习FFlll F ACB DlllACB DM=F l[思考][思考]lll F ACB DlllACB DF见书P54例3-1—约束lllACB DF—约束CBADEFM—约束—约束—整体平衡局部平衡CB ADEFM研究对象的选取原则¾仅取整体或某个局部,无法求解;¾一般先分析整体,后考虑局部;¾尽量做到一个方程解一个未知力。
qCBAm2m2m2m2MBCM[例3-3] 多跨梁,求:如何选取研究对象?F CqF CFAxF AyM ABAqF'BxF'ByM A F Ax F AyF Bx F By解:先将分布力用合力来代替。
《理论力学》第4章 力系的平衡
F ix
0:
FA cos30 FB cos60 F cos60 0
F iy
0:
FA sin 30 FB sin 60 F sin 60 0
解得: F 3F / 2, F F / 2
A
B
★理论力学电子教案
第4章 力系的平衡
第4章 力系的平衡
18
例题 求图示梁的约束力。已知FP=15kN,M=20kNm,图中长度 单位为m。
★理论力学电子教案
第4章 力系的平衡
19
解 :分 析 梁 , 作 示 力 图.
首 先 由 M iD' 0 可 直 接 求 得FB。 然 后 由 Fix 0与 Fiy 0 分 别 求 出FC与FA。
MA FAx
FAy A
F1
FBx
B FBy
★理论力学电子教案
F1
m C
AB
第4章 力系的平衡
26
F2 D
独立平衡方程个数6;未知
量个数8。称2次超静定。
工程中的结构大多数为超静定结构,为什么?
★理论力学电子教案
第4章 力系的平衡
27
超静定问题能求解吗?
超静定问题并不是不能解决的问题,而只是不 能仅用平衡方程来解决的问题。问题之所以成为超 静定的,是因为静力学中把物体抽象成为刚体,略 去了物体的变形;如果考虑到物体受力后的变形, 在平衡方程之外,再列出某些补充方程,问题也就 可以解决。
如果所考察的问题的未知力的数目多于独立平衡方程的
数目,仅仅用平衡方程就不可能完全求得那些未知力,这类
问题称为超静定问题或静不定问题(statically indeterminate
平面力系的平衡方程及应用
各力的作用线都在同一平面内且 汇交于一点的力系。
正文
力在直角坐标轴上的投影
1
Fx=F·cosa ; Fy=F·sina = F ·cosb
说明: (1)力在坐标轴上的投影为代数量; (2)力的指向与坐标轴的正向一致时,力的投影为正值,否则为负。
正文
合力投影定理
推论1:力偶对刚体的作用与力偶在其作用面内的位置无关;
推论2:只要保持力偶矩的大小和力偶的转向不变,可以同时改变力偶中力的大小和力偶臂的长短,而不改变力偶对刚体的作用。
M
M
M
力偶表示方法
正文
思考:
力偶与力的异同
共同点:单位统一,符号规定统一。 差异点:1.力矩随矩心位置不同而变化;力 偶矩对物体作用效果与矩心选取无关。 2.力偶矩可以完全描述一个力偶;力对点之矩不能完全描述一个力。
′
F
M
单 手 攻 丝
正文
平面任意力系的简化
1
平面一般力系向平面内一点简化
F3
F1
F2
O
O
O
F
R′
MO
F
1′
M1
F1 =F1
′ M1=MO(F1)
F
2′
M2
F
3′
M3
F2 =F2
′ M2=MO(F2)
F3 =F3
′ M3=MO(F3)
简化中心
O
FR=F1+F2+F3= F1+F2+F3 MO=M1+M2+M3=MO(F1)+ MO(F2) + MO(F3)
正文
平面力偶系的合成与平衡
第3章力系的平衡条件与平衡方程
第3章 力系的平衡条件与平衡方程3.1 平面力系的平衡条件与平衡方程3.1.1 平面一般力系的平衡条件与平衡方程如果一个平面一般力系的主矢和力系对任一点的主矩同时都等于零,物体将不会移动也不会转动,则该物体处于平衡状态。
力系平衡的充分必要条件:力系的主矢和力系对任一点的主矩都分别等于零,即 110()0i n R i n O O ii F F M M F ==⎫==⎪⎪⎬⎪==⎪⎭∑∑平衡条件的解析式:11100()0nix i niy i n O i i F F M F ===⎫=⎪⎪⎪=⎬⎪⎪=⎪⎭∑∑∑ 或 00()0x y O F F M F ⎫=⎪⎪=⎬⎪=⎪⎭∑∑∑ 平面一般力系的平衡方程该式表明,平面一般力系的平衡条件也可叙述为:力系中各力在任选的坐标轴上的投影的代数和分别等于零,以及各力对任一点的矩的代数和也等于零。
平面汇交力系:平面汇交力系对平面内任意一点的主矩都等于零,即恒满足()0O M F ≡∑物体在平面汇交力系作用下平衡方程:00x yF F ⎫=⎪⎬=⎪⎭∑∑例题3-1 图所示为悬臂式吊车结构图。
其中AB 为吊车大梁,BC为钢索,A 处为固定铰支座,B 处为铰链约束。
已知起重电动机E 与重物的总重量为PF (因为两滑轮之间的距离很小,PF 可视为集中力作用在大梁上)梁的重力为QF 已知角度30θ=。
求:1、电动机处于任意位置时,钢索BC所受的力和支座A处的约束力;2、分析电动机处于什么位置时。
钢索受力最大,并确定其数值。
解:1、选择研究对象以大梁为研究对象,对其作受力分析,并建立图示坐标系。
建立平衡方程 取A 为矩心。
根据()0A M F =∑sin 02Q P TB lF F x F l θ-⨯-⨯+⨯=222sin 2sin30P Q P Q P TB QlF x F F x F l F x F F l l l θ⨯+⨯+===+由xF =∑cos 0Ax TB F F θ-=2()cos303()2Q P P Ax Q F F x F x F F l l =+=+由yF =∑sin 0Ay Q P TB F F F F θ---+=122[()]2Q P Ay Q P TB Q P Q P F F x F F F F F F l F l xF l =--+=--++-=-+由 2P TB QF x F F l =+ 可知当x l =时钢索受力最大, 其最大值为 22P TB Q P QF lF F F F l =+=+在平面力系的情形下,力矩中心应尽量选在两个或多个未知力的交点上,这样建立的力矩平衡方程中将不包含这些未知力;坐标系中坐标轴取向应尽量与多数未知力相垂直,从而这些未知力在这一坐标轴上的投影等于零,这样可减少力的平衡方程中未知力的数目。
理论力学第3章力系平衡方程及应用
Fx 0 Fy 0
3.1 平面力系平衡方程
【例3-5】 如图所示,求A ,B处的约束力。
40kN
A
45
B
C
2m
2m
3.1 平面力系平衡方程
【解】 本题可用三力平衡汇交定理确定约束力 的作用线(如图a)
(两矩式)
B
A
x
A、B 连线不垂直于x 轴
MA F 0 MB F 0 MC F 0
(三矩式) C B
A
C
A、B、C三点不
在同一条直线上
3.1 平面力系平衡方程
3.1.3 平面平行力系平衡方程
假设作用在平面oxy内的所有的力平行于轴y,则力的投 影方程∑Fx= 0 自然满足。因此平面平行力系也只有两个独 立的平衡方程,最多解两个未知量。
为铰链,中间无外力作用,为二
力构件
FB
B C
A FA
C 处为固定铰支座,有1个
方向待定的约束力,由于主动力
C 只有1个力偶,为保持系统平衡,
FC
约束力FC和FA必组成1力偶,与 主动力偶平衡。
3.1 平面力系平衡方程
E B
【解】
r
M
M 0
M FC CE 0
CE 2 r 2 l 3 2 r
【例3-1】
【解】以料车为研究对象,画出受力分析图:
F
F
d e
WC
q
a b
W
C
B
FB
A
FA
红色的表示未知力。
理论力学:第3章 力系的平衡
1第3章 力系的平衡 3.1 主要内容空间任意力系平衡的必要和充分条件是:力系的主矢和对任一点的主矩等于零,即 0=R F 0=O M 空间力系平衡方程的基本形式 0,0,0=∑=∑=∑z y x F F F 0)(,0)(,0)(=∑=∑=∑F F F z y x M M M空间汇交力系平衡的必要和充分条件是:力系的合力 0=R F空间汇交力系平衡方程的基本形式0,0,0=∑=∑=∑z y x F F F空间力偶系平衡的必要和充分条件是:各分力偶矩矢的矢量和 0=∑i M空间力偶系平衡方程的基本形式 0)(,0)(,0)(=∑=∑=∑F F F z y x M M M平面力系平衡的必要和充分条件:力系的主矢和对于任一点的主矩都等于零,即:0=∑='F F R;0)(=∑=F O O M M 平面力系的平衡方程有三种形式:基本形式: 0)(,0,0=∑=∑=∑F M F F O y x二矩式: 0)(,0)(,0=∑=∑=∑F M F M F B A x (A 、B 连线不能与x 轴垂直)三矩式: 0)(,0)(,0=∑=∑=∑F M F M M C B A (A 、B 、C 三点不共线)平面力系有三个独立的平衡方程,可解三个未知量。
平面汇交力系平衡的必要和充分条件是合力为零,即0=∑=F F R 平衡的解析条件:各分力在两个坐标轴上投影的代数和分别等于零,即0,0=∑=∑y x F F两个独立的平衡方程,可解两个未知量。
平面力偶系平衡的必要和充分条件为:力偶系中各力偶矩的代数和等于零,即∑=0Mi一个独立的平衡方程,可解一个未知量。
3.2 基本要求1.熟练掌握力的投影,分布力系的简化、力对轴之矩等静力学基本运算。
2.能应用各种类型力系的平衡条件和平衡方程求解单个刚体和简单刚体系统的平衡问题。
对平面一般力系的平衡问题,能熟练地选取分离体和应用各种形式的平衡方程求解。
3.正确理解静定和超静定的概念,并会判断具体问题的静定性。
工程力学3-力系的平衡条件和平衡方程
根据力的平衡条件,可以列出平衡方程。对于一个物体,在X轴和Y轴上的力可以表示为F1、F2、F3、F4等,根 据平衡条件,可以列出两个平衡方程:F1X+F2X+F3X+F4X=0和F1Y+F2Y+F3Y+F4Y=0。
平衡方程的分类
平面力系的平衡方程
对于平面力系,可以列出三个平衡方程,分别表示X轴、Y轴 和Z轴上的力的平衡。
• 总结词:平面力系的平衡方程是用来求解未知力的数学工具,一般形式为 ∑X=0和∑Y=0。
• 详细描述:平面力系的平衡方程是根据平衡条件建立的数学方程,一般形式为 ∑X=0和∑Y=0,其中X和Y表示力在两个相互垂直的方向上的投影。通过解平衡 方程,可以求出未知力的值。
空间力系的平衡条件和平衡方程
• 总结词:空间力系中,力的合成与分解遵循平行六面体法则,平衡条件是力系 中所有力在三个相互垂直的方向上的投影之和为零。
• 详细描述:在空间力系中,力的合成与分解遵循平行六面体法则,即一个力可 以分解为三个相互垂直的分力。平衡条件是指力系中所有力在三个相互垂直的 方向上的投影之和为零,即合力矩为零。满足平衡条件的力系不会产生相对运 动或相对运动趋势。
• 总结词:空间力系的平衡方程是用来求解未知力的数学工具,一般形式为 ∑X=0、∑Y=0和∑Z=0。
跨学科融合
力系的平衡条件和平衡方程将与其它学科进行更紧密的融合,如计算机科学、人工智能 等,为解决复杂问题提供更高效的方法。
实际应用
力系的平衡条件和平衡方程在实际应用中将更加注重与工程实践的结合,提高解决实际 问题的效率。
力系平衡条件和平衡方程的实际应用
工程设计
在工程设计中,力系的平衡条件和平衡方程被广泛应用于结构分析 和优化设计,以确保结构的稳定性和安全性。
第3章力系的平衡条件和平衡方程
1第3章 力系的平衡条件与平衡方程平面力系的平衡条件与平衡方程3.1.1 平面一般力系的平衡条件与平衡方程若是一个平面一般力系的主矢和力系对任一点的主矩同时都等于零,物体将不会移动也不会转动,则该物体处于平衡状态。
力系平衡的充分必要条件:力系的主矢和力系对任一点的主矩都别离等于零,即 110()0i nR i nO O ii F F M M F ==⎫==⎪⎪⎬⎪==⎪⎭∑∑平衡条件的解析式: 11100()0nix i niy i n O i i F F M F ===⎫=⎪⎪⎪=⎬⎪⎪=⎪⎭∑∑∑ 或00()0x y OF F M F ⎫=⎪⎪=⎬⎪=⎪⎭∑∑∑ 平面一般力系的平衡方程该式表明,平面一般力系的平衡条件也可叙述为:力系中各力在任选的坐标轴上的投影的代数和别离等于零,和各力对任一点的矩的代数和也等于零。
平面汇交力系:2平面汇交力系对平面内任意一点的主矩都等于零,即恒知足()0OMF ≡∑物体在平面汇交力系作用下平衡方程:00x yF F ⎫=⎪⎬=⎪⎭∑∑例题3-1 图所示为悬臂式吊车结构图。
其中AB 为吊车大梁,BC 为钢索,A 处为固定铰支座,B 处为铰链约束。
已知起重电动机E 与重物的总重量为PF (因为两滑轮之间的距离很小,PF 可视为集中力作用在大梁上)梁的重力为QF 已知角度30θ=。
求:一、电动机处于任意位置时,钢索BC 所受的力和支座A 处的约束力;二、分析电动机处于什么位置时。
钢索受力最大,并肯定其数值。
3解:一、选择研究对象以大梁为研究对象,对其作受力分析,并成立图示坐标系。
成立平衡方程取A 为矩心。
按照 ()0A M F =∑sin 02Q P TB lF F x F l θ-⨯-⨯+⨯=222sin 2sin 30P Q P Q P TB QlF x F F x F l F x F F l l l θ⨯+⨯+===+ 由xF =∑cos 0Ax TB F F θ-=2()cos303()2QP P Ax Q F F x F x F F l l =+=+由yF =∑sin 0Ay Q P TB F F F F θ---+=4122[()]2Q P Ay Q P TB Q P Q P F F x F F F F F F l F l xF l =--+=--++-=-+由 2P TB QF x F F l =+ 可知当x l =时钢索受力最大, 其最大值为 22P TB Q P QF lF F F F l =+=+在平面力系的情形下,力矩中心应尽可能选在两个或多个未知力的交点上,这样成立的力矩平衡方程中将不包括这些未知力;坐标系中坐标轴取向应尽可能与多数未知力相垂直,从而这些未知力在这一坐标轴上的投影等于零,这样可减少力的平衡方程中未知力的数量。
力系的平衡条件与平衡方程资料
X 0
可否求出T、YA、XA;
T
XA A YA
D 300
B
E
PQ
思考题2
C
(2)由下图所示的受力图,试按
mA(F) 0 mB (F) 0 mc (F ) 0
可否求出T、YA、XA。
T
XA A YA
D 300
B
E
PQ
由下图所示的受力图,可否列出下列四 思考题3 个独立的平衡方程?
YB
- 4 × 3 × 1.5 - 20 × 3 + 4 YB = 0
YB = 19.5 kN
P 1m
q
C
XA
2m
2m
A
YA
Fy = 0 YA - 20 + 19.5 = 0
XB B YB
YA = 0.5 kN
( 2 ) 取 BC 为研究对象画受力图
P 1m
XC
C
YC
XB B
YB
MC ( F ) = 0
Fy 0
FN P cos j 0 FN P cos j
考虑极限平衡状态有: F Fmax fs FN
从而得到: FT P ( fs cos j sin j). 当 FT P ( fs cos j sin j) 时, 物块才能下滑。
(3) 画受力图如右 列平衡方程
P
(c) j
解: 取起重机,画受力图.
Fx 0 FAx FB 0
F y
0
FAy P1 P2 0
M A 0 FB 5 1.5 P1 3.5 P2 0
FAy 50kN FB 31kN FAx 31kN
•利用“力偶只能由力偶来平衡”的概念解题有时较方 便:
理论力学第3章力系平衡方程及应用
a
分布力(均布载荷) 合力作用线位于AB
中点。
3.1 平面力系平衡方程
a
【解】
y M=qa2 a
2qa
F3
C
FAx
A
aFAy
45
B
D
x
2a FB a
F3 2qa
MA 0
q 2 2 a q a a F B 2 a 2 q sa 4 i 3 n a 5 0
FB 2qa
Fx 0 FAx2qcao4s50 FAx qa
C
【解】 F2
构件CGB( 图b)
F2
构件AED
(图c)
C
R
D
45
FC
FD
D
G
45
F1
E
a
F1
E
a
A
B
G 图b
FBy
图c A FAx
MA
FAy
构件CD(图a )
3个未知量 B FBx
4个未知量
F'C
3个独立方程
3个独立方程
【基本思路】
C R
杆CGB受力图计算FCAED受力图
计算A处的反力(偶);CGB受力图计算
3.2 平面物体系平衡问题
q
C
B
30
FC FBy
l
l
【解】 杆CB
FBx
MB 0
FCco3s0l qll/2 0
FC
3 ql 30.5kN/m 2m 0.577kN
3
3
3.2 平面物体系平衡问题
【解】整体
FAy
l
l
l
Fx 0
MA
A
FAx
力系的平衡方程及应用
Y M2 F2
F1
M1
M3
F3
X
要使用这个物体处于平衡状态,那么合力应该为“0”,合力矩也应该为 “0”
平衡方程建立
根据投影定理,把各力投影到建立的坐标轴上(与坐标轴方向相同为正,反之为负) 根据合力矩定理将所有力偶矩求代数和(逆时针为正,顺时针为负)。
Y M2 F2
F1
M1
M3
F3
X
得平衡方程: ∑F x==0 ∑F y==0 ∑M==0
物体处于平衡状态,由解析法得出: 所有X方向的合力为“0” 既:∑Fx=F1x+F2x+F3x=0 所有Y方向的合力为“0” 既:∑Fy=F1y+F2y+F3y=0 所有合力矩为“0” 既:∑M=M1+M2+M3=0
平衡方程的应用
求解平衡力系的方法。
方法: 1.选:选取研究对象,既受已知力,又受要求的力或
机械基础
平面力系的平衡方程 及应用
制作:XXX
第二章、第四节 力系平衡方程
本节内容: 1、力的投影。 2、合力矩定理。 3、平面力系的分类。 4、平衡的定义和力系平衡方程。 5、求解平衡力系的方法。 6、平衡方程的应用。
复习力的投影和合力矩定理
力的投影定理:力向轴投影的代数值
Y F
Fy a Fx
与要求的力相关的力。 2.画:画出研究对象的受力分析图。 3.建:建立坐标系,原点可任意,使坐标轴于较多的力 平行。 4.列:根据受力情况列平衡方程。矩心的选择有利于减少未知
数并且要合理。 5.解:解平衡方程。 6.答:答案,必要时进行讨论和说明。
解题过程
1.受力图示:
yFW FyFxAX
2.以A点为原点建立直角坐标系并选取A为矩心列平衡方程: ∑Fx=F-Fx=0 ∑FY=FY-W=0 ∑Ma=W×0.2-F×1.0=0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Y
(2)根据平面汇交力系平衡方程
式,列平衡方程求解。
r
O
A
θ θ
G
B
X
FNA
FNB
FX 0 FY 0
F
F
NA
NA
cos F NB cos G 0
sin F NB sin 0
解得FNA=FNB=20KN
60°
W
(2)根据平面汇交力学平衡方程式,列平衡方程求解。
∑Fx =0
∑Fy=0
F TB cos 60 F TA sin 45 0
F TB sin 60 F TA cos 45 G 0
FB=7.32N
o O
o
O
解得FA=5.18N;
3. 汽车制动装置如图,制动时用力F踩踏板,通过拉 杆使汽车制动,设F=90N,踏板和拉杆自重不计,求
一、平面受力时的解析表示法 平面受力时的解析表示法是通过力在坐标轴上 的投影为基础建立起来的。设有一已知力F作用 于构件的点A,在力 F作用线所在平面建立直角坐 标系Oxy。
投影是标量; 力是矢量。
通常 F在x 轴上投影用Fx 表示,在 y轴上的投影用Fy 表 示。Fx、Fy 是力F沿x轴y轴分解所得到的两正交分力, 其正负号规定为:若投影的指向与坐标轴正向一致为正, 反之为负。由图可知: Fx= F・cosα;Fy= F・cosβ= F・sinα 显然利用力在直角坐标轴上的投影可以表示力在直角坐 标上分力的大小和方向。
y
x
FB
【练习】如图,储罐架在砖座上,储罐半径r=0.5m, G=24KN,砖座间距离L=0.8m。不计摩擦,试求砖座 0 对储罐的约束力。
53.13
r O A B
G
L
Y
r O A θ θ G B X
FNA
FNB
解 (1)取储罐为研究对象,画受力图。
砖座对储罐的约束为光滑面约束,分别用FNA、FNB,则G、 FNA、FNB三个力组成平面汇交力系。
第六节 力系 平衡方程
本节课学习目标 1.掌握力系的定义及分类; 2.掌握平面平衡方程式; 3.能正确应用平衡方程式解决实际问题。
我们在学习约束反力之后知道,有时虽能确 定出约束反力的方向,但大小并不能直接得出,
这时就需要在解决实际问题时,应用平衡方程。
平衡方程是在解决工程实际问题中,通过对力
的分析计算时所建立起来的力的数学解析表达式, 是工程实际中对受力情况的一种定量分析的方法。
图示位置时拉力Q及铰链支座B的约束反力。 解:以制动装置整体为研究对象, 受三个力如图所示。 可得列平衡方程 ∑Fx=0 -Fcos45º -FBcos30º +Q=0 ∑Fy=0 -Fsin45º +FBsin30º =0 代入数据得 Q-0.866FB-63.63=0 0.5FB-63.63=0 解之得FB=127.3N Q=173.9N
例题:重10KN的物体用两根钢索悬挂。设钢索重 力忽略不计,求钢索的拉力是多少。
60°
45°
W
y
FTA 45°
FTB
解(1)取重物为研究对象,画 受力图。 钢索对重物的约束为柔性约束, 故约束反力FTA、 FTB方向为沿绳 x 索背离物体,与轴线的夹角如 图。W、 FTA、 FTB三个力组成平 面汇交力系。
力的作用线任意分布在同一平面内的力系 。
三、平面汇交力系平衡方程 平面汇交力系合成是结果为一合力,若平面汇 交力系的合力为零,则该力系将不会引起物体运 动状态的改变,即该力系为平衡力系。
平面汇交力系平衡条件:当平面汇交力系平衡 时,力系在X、Y轴投影代数和为零。
F 0 X F 0 Y
二、力系 1.定义:构件上有两个以上的作用力,这些力组 成一个力系。
2.平面力系:力系中所有的作用力在同一平面内。
(1)平面汇交力系
F2
F3
各力的作用线都汇交于一点。
二、力系 1.定义:构件上有两个以上的作用力,这些力组 成一个力系。
2.平面力系:力系中所有的作用力在同一平面内。
(2)平面任意力系