八年级下册数学(浙教版)第一章第3节《二次根式的运算》ppt 课件
合集下载
新浙教版八年级数学下册第一章《二次根式》公开课课件1 (3).ppt
(2) a)2 a(a0)
a (a 0)
(3) a2 a 0 (a 0 )
a(a 0)
注:若 a 2 a 则 a 0 ; 若 a 2 a 则 a 0;
2.二次根式的性质(2):
(4 )a b ab(a 0 ,b 0 )
(5) aa(a0 b0) bb
3.二次根式的运算:
运算
a a(a0,b0)
bb
完成课本 目标与评定
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2021/1/142021/1/14Thursday, January 14, 2021
• 10、人的志向通常和他们的能力成正比例。2021/1/142021/1/142021/1/141/14/2021 6:49:33 PM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/1/142021/1/142021/1/14Jan-2114-Jan-21 • 12、越是无能的人,越喜欢挑剔别人的错儿。2021/1/142021/1/142021/1/14Thursday, January 14, 2021 • 13、志不立,天下无可成之事。2021/1/142021/1/142021/1/142021/1/141/14/2021
解: x 5 0 ① 3 x 0 ②
解得 5 x 3
说明:二次根式被开方 数大于等于0,所以求二 次根式中字母的取值范 围常转化为不等式(组)
5 已y知 2xx25 ,则 x y_2 _
?
题型2:二次根式的由题意,得 x 4 0且2x y 0
题型1:二次根式有意义的条件 1.当x取何值时,下列二次根式有意义:
a (a 0)
(3) a2 a 0 (a 0 )
a(a 0)
注:若 a 2 a 则 a 0 ; 若 a 2 a 则 a 0;
2.二次根式的性质(2):
(4 )a b ab(a 0 ,b 0 )
(5) aa(a0 b0) bb
3.二次根式的运算:
运算
a a(a0,b0)
bb
完成课本 目标与评定
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2021/1/142021/1/14Thursday, January 14, 2021
• 10、人的志向通常和他们的能力成正比例。2021/1/142021/1/142021/1/141/14/2021 6:49:33 PM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/1/142021/1/142021/1/14Jan-2114-Jan-21 • 12、越是无能的人,越喜欢挑剔别人的错儿。2021/1/142021/1/142021/1/14Thursday, January 14, 2021 • 13、志不立,天下无可成之事。2021/1/142021/1/142021/1/142021/1/141/14/2021
解: x 5 0 ① 3 x 0 ②
解得 5 x 3
说明:二次根式被开方 数大于等于0,所以求二 次根式中字母的取值范 围常转化为不等式(组)
5 已y知 2xx25 ,则 x y_2 _
?
题型2:二次根式的由题意,得 x 4 0且2x y 0
题型1:二次根式有意义的条件 1.当x取何值时,下列二次根式有意义:
浙教版八年级数学下册课件-1.3二次根式的运算1 (共20张PPT)
二次根式的化简 要细心
练一练:
计算
2 1 (1)3 40 ( 2 ) 5 10
练习3
一个直角三角形的两条直角边分别长2 2cm 与 10cm , 求这个直角三角形的面积。
1 2 S 2 2 10 2 ( 5 cm ) 2 练习4 (综合练习)
1、 x 1 x 1 x 2 1 的成立的条件是(
复习提问
1、二次根式的乘法运算法则是什么?用文 字语言怎么表达?对于运算的结果有什么 要求? (1) a b ab a 0, b 0
(2) 二次根式相乘:被开方数相乘, 根指数不变; (3) 尽量化简。
复习提问
2 、二次根式的除法运算法则是什么?
用文字语言怎么表达?对于运算的结果有 什么要求? (1)
学生乙: 3 12 3 解:原式 4 3 4 9
3 16 3 4 9 8 3 书写不 11 规范 9
化简后漏写乘号, 乘法关系被误认为 带分数关系
例3 计算:
归纳
1 2 12 4 3 48 27
4 3 12 3 解:原式 4 3 9 4 ( 4 1 2) 3 9 根号前的有理因式 要写成假分数,不 140 3 能写成带分数 9
a a a 0, b 0 b b
上一页
(2) 二次根式相除:被开方数相除, 根指数不变;
(3) 尽量化简。
二次根式有下面的性质
ab a b (a 0, b 0) a b a ( a 0, b 0 ) b
根据二次根式的性质可以得到
a b ab(a 0, b 0) a b a (a 0, b 0) b
例1
新浙教版八年级数学下册第一章《二次根式》精品课件 (3).ppt
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
(精确到头0.01千米)
北
轮船 东
你想知道......
我们的人体中含有多少脂肪才算适当吗?
根据科学研究表明,可以利用身体的体重(W,单位:kg) 和身高(h,单位:m)计算身体脂肪水平,也称身体质量 指数(BMI:Body Mass Index), 计算公式是BMI=W/ h2
(注:男性的BMI指数正常范围是24—27 女性的BMI指数正常范围是18—24)
变式练习:若二次根式 x 2 的值为3,
求x的值.
a2 1
3 -2
2a1
a
a 12
你能用魔法师变出的这些代数式 作为被开方数构造二次根式吗?
小试牛刀:
一艘轮船先向东北方向航行2小时,再向西北方向 航行t小时。船的航速是每时25千米。 1、用关于t的代数式表示船离开出发地的距离。 2、求当t=3时,船离开出发地多少千米。
有意义,字母
x
的取值必须满足什
么条件?
解 : 由 x-2≥ 0, 且 x-3≠ 0, 得 x≥ 2 且 x≠ 3。
想一想:假如把题目改为:要使
二次根式的性质课件(浙教版)
( a)
2
a
a≥0
2
a取任何实数
3.从运算结果来看:
( a)
2
=a
a (a≥0)
2
a =∣a∣ =
-a(a<0)
例1 计算:
(1) (−10)2 − ( 15)2
(2)( 2 − (−2)2) × 2 + 2 2
解: (1)(-10)2 -(15)2 = -10 -15=10-15=-5
(2)
( 2 − (−2)2) × 2 + 2 2
1
3
( 0) =
2
2
2
0
2是2的算术平方根,
根据算术平方根的意义,
2是一个平方等于2的非负数,
2
因此有( 2)
2
性质.( a )2=a (a≥0)
文字叙述:任何一个非负数的算术平方根的平方都等于这个数.
温故知新:齐声朗读
非负数的三种表现情势:a2, ︱a︱,
(-13)2 = 169
(-12)2 = 144
= 2−1+1+ 2
=2 2
6、如图,P是直角坐标系中一点。
(1)用二次根式表示点P到原点O的距离。
(2)如果x= , y=
y
┓
┓
,求点P到原点O的距离。
1.
OP= 2 + 2
2.
OP=
( 2)2 + ( 7)2
x
=
=3
2+7
连续递推,豁然开朗
7.实数p在数轴上的位置如图所示,化简
(1 − )2 + | 2 − p |
= ( 2 − 2) × 2 + 2 2
1.3.2二次根式的运算课件2004年浙教版八年级下
4m B 6m
E 7m C1.3 Nhomakorabea二次根式的运算(2)
复习归纳
二次根式的性质: ( 1)
( a) a
2
(a≥0)
a (a≤0) 。
(2)
倍 速 课 时 学 练
a |a|=
2
a (a≥0) ;
复习归纳
二次根式的性质: ( 3)
ab
a b (a ≥0 , b≥0)
倍 速 课 时 学 练
( 4)
a b
a (a ≥0 , b>0) b
• (a-1)的值.
2
时,代数式(a-1)2-(a+
2)
倍 速 课 时 学 练
• 比较 4 6 与 2 5 的大小,并说明理由.
倍 速 课 时 学 练
• 如图,两根高分别为4m和7m的竹杆相距6m,一 根绳子拉直系在两根竹杆的顶端,问两竹杆顶端 间的绳子有多长? D A
倍 速 课 时 学 练
复习归纳
二次根式有下面运算的性质
a b
倍 速 课 时 学 练
ab (a ≥0 , b≥0)
(a ≥0 , b>0)
a b
a b
• 例3 先化简,再求出近似值(精确到0.01):
1 1 12 1 3 3
倍 速 课 时 学 练
• 例4 计算:
•
• (1)
27 3 6 2 ;
3 ( 3 3) 6 8
• (2)
• (3)
倍 速 课 时 学 练
( 48 27 ) 3
• 例5 计算: • (1) • (2) • (3) 倍 速 课 时 学 练
(2 2 3 3 )(3 3 2 2 )
八年级数学下册浙教版课件:1.3 二次根式的运算(3)(共18张PPT)
60m (2)若BC=6m,则AC=_______
B A
C
1.一名自行车极限运动爱好者准备从点A处骑到点B处。 问题1:若斜坡AB的坡比(即斜坡 上A,B两点之间的垂直距离BE 与水平距离AE的比值)为1:0.8, AE=1.5米,该爱好者从点A处 骑到点B处后升高了多少米? 他通过的路程是多少米? B
∴CD=
1AB= 20 2 2
cm
P
D
(直角三角形斜边上的中线等于斜边的一半 )
∵ CG=
5 2
cm
∴UV=2CG= cm
10 2
MN=2CE=
cm
同理可得 RS=2CF=
20 2
30 2
Cm,
cm
答:3张长方形纸条的长度分别为
10 2
Cm,
20 2
30 2
cm.
试一试:
1.在△ABC中,∠C=90°,记AB=c,BC=a, AC=b。
A
1.5米
E
BE 1 15 解 , AE 1.5, BE 1.5 0.8 , AE 0.8 8 3 3 15 AB 41 8 2 8
2 2
2.若这名爱好者从点A处出发,沿着A B C D的路线前进至点D,已知斜坡AB的坡比(即BE与 AE的长度之比)为1:0.8,AE=1.5米,BE=CF,斜坡CD 的坡比(即CF与FD的长度之比)为1:1.6,BC= 1 CD, 2 那么该爱好者经过的路程是多少米?
C D
F A E B
3.如图,一艘快艇从O港出发,向东北方向行驶到A 处,然后向西行驶到B处,再向东南方向行驶,共经过1 时回到O港.已知快艇的速度是60千米/时,问:AB这 段路程是多少千米?
八年级数学下册二次根式二次根式的运算教学课件新版浙教版
ab
x2
xy 1 x2 y2
巩固提升:
1. 8 18 50 __0__. 2. 75 48 27 _6___3_.
3.3 2 4 1 1 8 _4__2__.
22
4. 12
1 3
11 3
__53___3_.
5. (2 2 3)2 12 =_4___3_ 2
6.( 2 3 5)( 2 3 5) =__4___2__1_0__
把下列各式化简(分母有理化):
(1)-4 2 37
(2) 2a a+b
(3) 2 3 40
解:(1)-4 2 =-4 2 • 7 =-4 14 .
3 7 3 7• 7
21
(2) 2a = a+b
2a a+b
a+b • a+b
=
2a a+b a+b
.
(3) 2 =
2
= 2 • 10 = 20 = 2 5 = 5 .
3 25x
9y2
19 = 19 = 19
16
16 4
25x 5 x
9y2
3y
注意: 如果被开方数是带 分数,应先化成假 分数再进行运算。
把分母中的根号化去,使分母变成有理数,这个过程叫做分
母有理化。
例:计算 1 3
5
2 3 2
27
3 8
2a
解:1 解法1: 3 3 3 5
5 5 55
解法2 :
5 26 5
3 6= 6
2
5
如果根号前 有系数,就 把系数相除, 仍旧作为二 次根号前的 系数
a
b
a b
a 0,b 0
商的算术平方根等于被除式的算术平方根除以
浙教版八年级下册 1.3 二次根式的运算 课件(共26张PPT)
(2)若用这些纸条为一幅正方形美术作品镶边(纸条不重叠), 正方形美
术作品的面积为多少平方厘米?
解:
(2)三张长方形连接在一起的总长度为:
10 2
20 2
A
B
?
C
30 2
10 2 20 2+30 2=60 2cm
AB=5 2cm
AC=60 2 4=15 2cm
正方形的边长BC AC AB
= (m)
.
C
∴BE=AE÷0.8=
AEΒιβλιοθήκη FD
(m)
∴AB = +
= (m)
,
∵CF= BE=
=
.
∴DF=1.6CF= (m)
∴CD = +
=
(m)
答:这个小男孩经过的总路程约为7.71米.
∵CD= m
( 3) 2 3
(1 2) 2 1 2
(1 2)
2 1
三. 性质复习
最简二次根式
1.根号内是一个不含平
方因数的整数
例1 计算
1
3
(2)
4
12 24 化成最简二次根式
2.分母中不含根号
8
2
1
2
2
2
解:原式=
6 -12 2
2 2
2
2
2
1
3
3 2
3
E
G
D
图2
F
B
例题分析
例7 如图,一张等腰直角三角形彩色纸,AC=BC=40cm,将斜边上
术作品的面积为多少平方厘米?
解:
(2)三张长方形连接在一起的总长度为:
10 2
20 2
A
B
?
C
30 2
10 2 20 2+30 2=60 2cm
AB=5 2cm
AC=60 2 4=15 2cm
正方形的边长BC AC AB
= (m)
.
C
∴BE=AE÷0.8=
AEΒιβλιοθήκη FD
(m)
∴AB = +
= (m)
,
∵CF= BE=
=
.
∴DF=1.6CF= (m)
∴CD = +
=
(m)
答:这个小男孩经过的总路程约为7.71米.
∵CD= m
( 3) 2 3
(1 2) 2 1 2
(1 2)
2 1
三. 性质复习
最简二次根式
1.根号内是一个不含平
方因数的整数
例1 计算
1
3
(2)
4
12 24 化成最简二次根式
2.分母中不含根号
8
2
1
2
2
2
解:原式=
6 -12 2
2 2
2
2
2
1
3
3 2
3
E
G
D
图2
F
B
例题分析
例7 如图,一张等腰直角三角形彩色纸,AC=BC=40cm,将斜边上
2014年新浙教版八年级下1.3二次根式的运算(3)同步课件1
C
A
D
B
课内练习
课本P19页: 第2、3题
归纳
小结
二次根式的运算(乘除运算):
a b
a b
ab (a ≥0 , b≥业
1: 作业本(2) 2:课本P19页 作业题
学习目标
熟练地运用二次根式的性质化简二次根 式; 会运用二次根式解决简单的实际问题; 进一步体验二次根式及其运算的实际意 义和应用价值。
1.3 二次根式的运算(3)
节前问题:
如图,架在消防车上的云梯AB长为15m, A AD:BD=1 :0.6,云梯底 部离地面的距离BC为2m。 你能求出云梯的顶端离地 面的距离AE吗? D E B
C
在日常生活和生产实际中,我们在解决一些问 题,尤其是涉及直角三角形的边长计算的问题 时,经常用到二次根式及其运算。
在△ABC中,∠C=Rt∠,记AB=c,BC=a,AC=b。
(1)若a:c= 1 ,求b:c.
2
(2)若 a : c 2 : 3, c 6 3, 求b。
例题学习
例6: 如图,扶梯AB的坡比(BE与AE的长 度之比)为1:0.8,滑梯1 CD的坡比为1:1.6, 3 AE= 米,BC= CD。一男孩从扶梯走到滑 2 2 梯的顶部,然后从滑梯滑下,他经过了多 少路程(结果要求先化简,再取近似值, 精确到0.01米)
B C
A
E
F
D
课内练习
1:如图,一道斜坡的坡比为1:10, 已知AC=24m。求斜坡AB的长。
B A C
例题学习
例7:如图是一张等腰直角三角形彩色纸,AC=BC=40cm, 将斜边上的高CD四等分,然后裁出3张宽度相等的长方形 纸条。(1)分别求出3张长方形纸条的长度
2021春浙八年级数学下1.3二次根式的运算(3)课件(共21张ppt)(精品课件在线)_1
能不能用其他的几何图形来镶边呢?
现在若给你一张等腰直角三角形彩色纸, AC=BC=40cm. 从中裁出3张宽度相等的长方形纸条你有什么不同的方 法裁剪么?
E
G M
C
...
F H
N
C
D.E. F.
C
F E D
A
D
BA
H MN
BA HM N K
B
现在若给你一张等腰直角三角形彩色纸, AC=BC=40cm. 从中裁出3张宽度相等的长方形纸条你有什么不同的方 法裁剪么?
E
.. G . M
F H
N
A
D
B
如图是一张等腰直角三角形彩色纸,AC=BC=40cm.将斜边 上的高CD四等分,然后裁出3张宽度相等的长方形纸条.
(3)若用这些纸为一幅正方形美术作品镶边(纸条不
重叠),如图,正方形美术作品的面积最大不能超过多
少cm2?
52
15 2
52
E
G M
C
...
F H
N
A
D
B
解:由于三张纸条的连接在一起的总长度为:
10 2 20 2 30 2 60 2(cm)
∴给这幅作品所镶的边框,可以看作由4张宽为 5 cm2,
长为
15 cm2 的彩色纸条围成。
∴正方形的边长= 15 2 5 2 10 2(cm)
正方形的面积= (10 2)2 200 (cm2 )
答:这幅作品的面积最大不能超过200cm2
∴AD=DB (等腰三角形三线合一)
C E OF
1
∴CD=
AB= 20 2 cm
G
P
H
2
M
Q
新浙教版八年级数学下册第一章《二次根式的运算(第3课时)》公开课课件.ppt
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
1.3 二次根式的运算
(第3课时)
•注例意6:如在图日1常-3生,活扶和梯生A产B的实坡际比中,(我BE们与在A解E的决长一度些问之题比,) 尤为其1是:涉0及.8,直角滑三梯角CD形的边坡长比计为算的1:问1题.6时,,AE经=常用米3到,二B次C= 根C式D.及一其男12 运孩算从。扶梯走到滑梯的顶部,然后从滑2 梯滑
C
A
B
D 1-4
1-5
解:(1)在RtABC中,AC=BC=40(cm),
AB AC2 BC2 402 402 40 ( 2 cm). CDAB,AD=BD(等腰三角形三线合一),
CD1AB20 ( 2 cm)(直角三角形斜边上的中线等于斜边的一半). 2
1CD120 25 2. 44 最上面长方形纸条的长是1 CD的2倍, 4
。2020年12月19日星期六2020/12/192020/12/192020/12/19
• 15、会当凌绝顶,一览众山小。2020年12月2020/12/192020/12/192020/12/1912/19/2020
பைடு நூலகம்
浙教版八年级数学下册第一章《 二次根式的运算(3)》课件
课本P19页: 第2、3题
归纳
小结
二次根式的运算(乘除运算):
a • b a b (a ≥0 , b≥0)
a b
a (a ≥0 , b>0) b
布置 作业
1: 作业本(2) 2:课本P19页 作业题
学习目标
熟练地运用二次根式的性质化简二次根 式; 会运用二次根式解决简单的实际问题; 进一步体验二次根式及其运算的实际意 义和应用价值。
1.3 二次根式的运算(3)
节前问题:
如图,架在消防车上的云梯AB长为15m, AD:BD=1 :0.6,云梯底 A 部离地面的距离BC为2m。 你能求出云梯的顶端离地
面的距离AE吗?
D B
E C
在日常生活和生产实际中,我们在解决一些问 题,尤其是涉及直角三角形的边长计算的问题 时,经常用到二次根式及其运算。
BC
A
EF
D
课内练习
1:如图,一道斜坡的坡比为1:10, 已知AC=24m。求斜坡AB的长。
B
A
C
例题学习
例7:如图是一张等腰直角三角形彩色纸,AC=BC=40cm, 将斜边上的高CD四等分,然后裁出3张宽度相等的长方形 纸条。(1)分别求出3张长方形纸条的长度
(2)若用这些纸条为一幅正方形美术作品镶边(纸条不 重叠),如右图,正方形美术声入耳;家事国事天下事,事事关心。2021/10/252021/10/25October 25, 2021 •8、先生不应该专教书,他的责任是教人做人;学生不应该专读书,他的责任是学习人生之道。2021/10/252021/10/252021/10/252021/10/25
课内练习
在△ABC中,∠C=Rt∠,记AB=c,BC=a,AC=b。 (1)若a:c= 1 ,求b:c.
新浙教版八年级数学下册第一章《二次根式的运算1》公开课课件
自主导学:
题号 1 2 3 4 答案 A A B B
二次根式乘除运算法则
a b ab(a 0,b 0), a a (a 0,b 0) bb
合作探究与展示
计算: zxxkw
(1) 2 6
(2) 1 2 27 3 10
(3) 5.2 109 1.3108
2、一个正三角形路标如图,若它的边长
(1) ( 6 2) 2
(2) 2( 2 3) (精确到0.01)
(3) ( 6 2) 3 2 (4) 2 ( 6 2)
例2 一个正三角形路标如图,若它的边长
为 2 2个单位,求这个路标的面积.
A
22
B
D
C
例3 解方程:(1) 3 3x 18 (2) 3 3x 2
5、如图,P(x,y)是直角坐标系内一点,已知A(0,1) (1)用二次根式表示点P到点A的距离。
你会计算吗? (1) 0.4 10
(2) 0.03 3
有简便的方法吗?根据什么?
积和商的二次根式的性质: ab a b, (a 0, b 0)
a a bb
(a 0,b 0)
反过来:
二次根式乘除运算法则
a b ab(a o,b 0), a a (a 0,b 0) bb
计算:
A 132 122 132 122
B 52 62 (5 6)2
C (16)(81) 16 81
D 25 121 25 121
2. 如果 2x2 x3 x 2 x ,
则x的取值范围为_______
3. 若 (3x 1)(3 x) 3x 1 3 x ,
则x应满足什么条件?
试一试
(3) 2 4
5、 15 6
3 A
题号 1 2 3 4 答案 A A B B
二次根式乘除运算法则
a b ab(a 0,b 0), a a (a 0,b 0) bb
合作探究与展示
计算: zxxkw
(1) 2 6
(2) 1 2 27 3 10
(3) 5.2 109 1.3108
2、一个正三角形路标如图,若它的边长
(1) ( 6 2) 2
(2) 2( 2 3) (精确到0.01)
(3) ( 6 2) 3 2 (4) 2 ( 6 2)
例2 一个正三角形路标如图,若它的边长
为 2 2个单位,求这个路标的面积.
A
22
B
D
C
例3 解方程:(1) 3 3x 18 (2) 3 3x 2
5、如图,P(x,y)是直角坐标系内一点,已知A(0,1) (1)用二次根式表示点P到点A的距离。
你会计算吗? (1) 0.4 10
(2) 0.03 3
有简便的方法吗?根据什么?
积和商的二次根式的性质: ab a b, (a 0, b 0)
a a bb
(a 0,b 0)
反过来:
二次根式乘除运算法则
a b ab(a o,b 0), a a (a 0,b 0) bb
计算:
A 132 122 132 122
B 52 62 (5 6)2
C (16)(81) 16 81
D 25 121 25 121
2. 如果 2x2 x3 x 2 x ,
则x的取值范围为_______
3. 若 (3x 1)(3 x) 3x 1 3 x ,
则x应满足什么条件?
试一试
(3) 2 4
5、 15 6
3 A
新浙教版八年级数学下册第一章《二次根式的运算》优质优课件
C
A
B
D 1-5
1-6
做一做!
• 1.在Rt⊿ABC中,∠C=Rt∠,记BC=a,AC=b,AB=c.
(1)若a:c= 2 : 3 ,求b:c;
(2)若a:c= 1
2
,c= 6 ,求b
2.如图,大坝横截面的迎水坡AD的坡比(DE与AE的长度之比) 为4:3,背水坡BC的坡比为1:2,大坝的高DE=50m,坝顶宽 CD=30m,求大坝截面的面积和周长(周长精确到0.01m)
1.3
二次根式的运算(3)
例6如图1-4,扶梯AB的坡比(BE与AE的长度之比)为1:0.8
,滑梯CD的坡比为1:1.6,AE=
米1
2
,BC=
C23D.一男孩从扶
梯走到滑梯的顶部,然后从滑梯滑下,他经过了多少路程(
结果要求先化简,再取近似值,精确到0.01)?
BC
AE
F
D
例7 如图1-5是一张等腰直角三角形彩色纸, AC=BC=40cm.将斜边上的高CD四等分,然后裁出3张 宽度相等的长方形纸条. (1)分别求出3张长方形纸条的长度; (2)若用这些纸条为一幅正方形美术作品镶边(纸 条不重叠),如图1-6,正方形美术作品的面积最大 不能超过多少cm2
D
C
A
B
EF
• 3.如图,一艘快艇从O港出发,向东北方向行驶到 A处,然后向西行驶到B处,共经过1时回到0港。 已知快艇的速度是60km/h,问AB这段路程是多少 km(精确到0.01km)?
北
B
A
450
450
oLeabharlann 东拓展提高!• 从一张等腰直角三角形纸板中剪一个尽可能大的正方 形,应怎样剪?画图说明你的剪法。如果这张纸板的 斜边长为30cm,能剪出最大的正方形的面积是多少 cm2?
A
B
D 1-5
1-6
做一做!
• 1.在Rt⊿ABC中,∠C=Rt∠,记BC=a,AC=b,AB=c.
(1)若a:c= 2 : 3 ,求b:c;
(2)若a:c= 1
2
,c= 6 ,求b
2.如图,大坝横截面的迎水坡AD的坡比(DE与AE的长度之比) 为4:3,背水坡BC的坡比为1:2,大坝的高DE=50m,坝顶宽 CD=30m,求大坝截面的面积和周长(周长精确到0.01m)
1.3
二次根式的运算(3)
例6如图1-4,扶梯AB的坡比(BE与AE的长度之比)为1:0.8
,滑梯CD的坡比为1:1.6,AE=
米1
2
,BC=
C23D.一男孩从扶
梯走到滑梯的顶部,然后从滑梯滑下,他经过了多少路程(
结果要求先化简,再取近似值,精确到0.01)?
BC
AE
F
D
例7 如图1-5是一张等腰直角三角形彩色纸, AC=BC=40cm.将斜边上的高CD四等分,然后裁出3张 宽度相等的长方形纸条. (1)分别求出3张长方形纸条的长度; (2)若用这些纸条为一幅正方形美术作品镶边(纸 条不重叠),如图1-6,正方形美术作品的面积最大 不能超过多少cm2
D
C
A
B
EF
• 3.如图,一艘快艇从O港出发,向东北方向行驶到 A处,然后向西行驶到B处,共经过1时回到0港。 已知快艇的速度是60km/h,问AB这段路程是多少 km(精确到0.01km)?
北
B
A
450
450
oLeabharlann 东拓展提高!• 从一张等腰直角三角形纸板中剪一个尽可能大的正方 形,应怎样剪?画图说明你的剪法。如果这张纸板的 斜边长为30cm,能剪出最大的正方形的面积是多少 cm2?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15 2
5
F H N
A
B
解:由于三张纸条的连接在一起的总长度为:
10 2 20 2 30 2 60 2 (cm)
∴给这幅作品所镶的边框,可以看作由4张宽为5
cm,长为
15 2
2
cm 的彩色纸条围成。
∴正方形的边长= 正方形的面积=
15 2 5 2 10 2 (cm)
多少米?他通过的路程
A 2米 E
是多少米?
在日常生活和生产实际中,我们在解决一些问题,
尤其是涉及直角三角形的边长计算的问题时,经常用
到二次根式及其运算。
在△ABC中,∠C=Rt∠,记AB=c,BC=a,AC=b。
( 2) 若a : c 2 : 3,c 6 3,求b
a 1 3 b 3 2 2 (1) , 又 b c a c, c 2 2 c 2 a 2 (2) , c 6 3, a 6 2,b 62 6 c 3
补充练习
(1)、一道斜坡的坡比为 1:3,已知AC=6米,则斜 坡AB的长为 2 10米 ;
B
C
6米
A
(2)、如图,等腰直角三角形彩 纸中,AC=BC=40cm, 按图中方式 裁剪出长方形纸条CDEF,若纸条 的宽为 5 2cm,则该纸条的长度 40-5 2)cm 为(
A
C D
F
E
B
作业
课后作业题1、2、3必做, 4、5选做.
二次根式运算的
应用
问题情景
1、一辆汽车从一道斜坡上开过,已知斜坡的坡比
为1:10,AC=24m,求斜坡的长.
B
A
C
斜坡的竖直高度和对应的水平宽度的比叫做坡比
问题情景
2、一名自行车极限运动爱好者准备从点A处骑 到点B处。(如图) 若斜坡AB的坡比为1:1, AE=2米,该爱好者从点
B
A处骑到点B处后升高了
D
F H N
A
B
如图是一张等腰直角三角形彩色纸,AC=BC=40cm.
将斜边上的高CD四等分, 然后裁出3张宽度相等的长方形纸条.
(1)你能分别求出3张长方形纸条的长度吗?
(1)解:在Rt△ABC,AC=BC=40(cm)
∴AB= AC2 BC2 402 402 40 2 (cm) ∵ AC=BC ,CD⊥AB
(10 2 ) 200(cm )
2 2
答:这幅作品的面积最大不能超过200cm2
能不能用其他的几何图形来镶边呢?
现在若给你一张等腰直角三角形彩色纸, AC=BC=40cm.
从中裁出3张宽度相等的长方形纸条你有什么不同的方
法裁剪么?
C
E G M
C
F H N D
C
F E D
. . .
D
E
.
. .
上的高CD四等分,然后裁出3张宽度相等的长方形纸条.
(2)若用这些纸为一幅正方形美术作品镶边,你有几种镶法?
C
E G M
. . .
D
F H N
A
B
如图是一张等腰直角三角形彩色纸,AC=BC=40cm.将斜边
上的高CD四等分,然后裁出3张宽度相等的长方形纸条. (3)若用这些纸为一幅正方形美术作品镶边(纸条 不重叠),如图,正方形美术作品的面积最大不能 超过多少cm2?
1 (1)若a:c= ,求a:b 2
例 6 如图,扶梯 AB 的坡比(BE 与 AE 的长度
3 之比)为 1:0.8,滑梯 CD 的坡比为 1:1.6,AE= 2
2 米 ,BC=
1 2
CD. 一男孩从扶梯走到滑梯的
顶部,然后从滑梯滑下,他经过了多少路程? (结果精确到 0.01 米)
C
F
D
3 3 15 解:在Rt△AEB中,AE= 米,BE= ÷0.8= 米 2 2 8
G M E
C
. O F . P H .Q
D
N
(直角三角形斜边上的中线等于斜边的一半 )
1 ∴CD= 2
∴AD=DB (等腰三角形三线合一) AB=20 2 cm
A
B
∵ CO= 5 2 cm
∴EF=2CO= 10 2 cm
同理可得 GH=2CP= 20 2 cm
MN=2CQ= 30 2 cm
如图是一张等腰直角三角形彩色纸,AC=BC=40cm.将斜边
2 2 15 2 3 41 AE BE ( ) ( ) 3 8 8
2 2
答:这个男孩经过的总路程约为7.71米。
A
1、如图,架在消防车上的云梯AB长 为15m,AD:BD=1 :0.6,云梯底
部离地面的距离BC为2m。
你能求出云梯的顶端离地面的
D E B
C
距离AE吗?
2、如图,大坝横截面的迎水坡AD的坡比为4:3,背水
到O港.已知快艇的速度是60千米/时,问AB这段路程是
多少千米?(精确到0.1千米).
北 B 45° O
A
东
2、从一张等腰直角三角形纸板中剪一个尽可 能大的正方形,应怎样剪?画图说明你的剪法。 如果这张纸板的斜边长为30cm,能剪出最大的 正方形的面积是多少cm2?
我们在解决有关二次根式运算
的应用题时,要注意什么?
F H M N
A
B A
BA HM N K
B
现在若给你一张等腰直角三角形彩色纸, AC=BC=40cm.
从中裁出3张宽度相等的长方形纸条你有什么不同的方
法裁剪么?
C
E G M
C
F H N N M
C
F
. . .
D
F
E
D
E
D
A
B
A V K Q P O
B A HM N K
. . .
B
做一做
1、如图,一艘快艇从O港出发,向东北方向行驶到A处, 然后向西行驶到B处,再向东南方向行驶,共经过1时回
坡BC的坡比为1:2,大坝高DE=50m,坝顶宽CD=30m,
求大坝截面的面积和周长(周长精确到0.01m)。
B
C
A
E
F
D
例7、如图是一张等腰直角三角形彩色纸,AC=BC=40cm.
将斜边上的高CD四等分,然后裁出3张宽度相等的长方 形纸条. (1)你能分别求出3张长方形纸条的长度吗?
C
E
G
M
. . .
AB
15 在Rt△CFD中,DF= ×1.6=3米 8 15 2 3 89 2 2 2 CD CF DF ( ) 3 8 8
1 3 89 BC CD 2 16
3 41 3 89 3 89 3 41 9 89 AB BC CD 7.71米 8 16 8 8 16
5
F H N
A
B
解:由于三张纸条的连接在一起的总长度为:
10 2 20 2 30 2 60 2 (cm)
∴给这幅作品所镶的边框,可以看作由4张宽为5
cm,长为
15 2
2
cm 的彩色纸条围成。
∴正方形的边长= 正方形的面积=
15 2 5 2 10 2 (cm)
多少米?他通过的路程
A 2米 E
是多少米?
在日常生活和生产实际中,我们在解决一些问题,
尤其是涉及直角三角形的边长计算的问题时,经常用
到二次根式及其运算。
在△ABC中,∠C=Rt∠,记AB=c,BC=a,AC=b。
( 2) 若a : c 2 : 3,c 6 3,求b
a 1 3 b 3 2 2 (1) , 又 b c a c, c 2 2 c 2 a 2 (2) , c 6 3, a 6 2,b 62 6 c 3
补充练习
(1)、一道斜坡的坡比为 1:3,已知AC=6米,则斜 坡AB的长为 2 10米 ;
B
C
6米
A
(2)、如图,等腰直角三角形彩 纸中,AC=BC=40cm, 按图中方式 裁剪出长方形纸条CDEF,若纸条 的宽为 5 2cm,则该纸条的长度 40-5 2)cm 为(
A
C D
F
E
B
作业
课后作业题1、2、3必做, 4、5选做.
二次根式运算的
应用
问题情景
1、一辆汽车从一道斜坡上开过,已知斜坡的坡比
为1:10,AC=24m,求斜坡的长.
B
A
C
斜坡的竖直高度和对应的水平宽度的比叫做坡比
问题情景
2、一名自行车极限运动爱好者准备从点A处骑 到点B处。(如图) 若斜坡AB的坡比为1:1, AE=2米,该爱好者从点
B
A处骑到点B处后升高了
D
F H N
A
B
如图是一张等腰直角三角形彩色纸,AC=BC=40cm.
将斜边上的高CD四等分, 然后裁出3张宽度相等的长方形纸条.
(1)你能分别求出3张长方形纸条的长度吗?
(1)解:在Rt△ABC,AC=BC=40(cm)
∴AB= AC2 BC2 402 402 40 2 (cm) ∵ AC=BC ,CD⊥AB
(10 2 ) 200(cm )
2 2
答:这幅作品的面积最大不能超过200cm2
能不能用其他的几何图形来镶边呢?
现在若给你一张等腰直角三角形彩色纸, AC=BC=40cm.
从中裁出3张宽度相等的长方形纸条你有什么不同的方
法裁剪么?
C
E G M
C
F H N D
C
F E D
. . .
D
E
.
. .
上的高CD四等分,然后裁出3张宽度相等的长方形纸条.
(2)若用这些纸为一幅正方形美术作品镶边,你有几种镶法?
C
E G M
. . .
D
F H N
A
B
如图是一张等腰直角三角形彩色纸,AC=BC=40cm.将斜边
上的高CD四等分,然后裁出3张宽度相等的长方形纸条. (3)若用这些纸为一幅正方形美术作品镶边(纸条 不重叠),如图,正方形美术作品的面积最大不能 超过多少cm2?
1 (1)若a:c= ,求a:b 2
例 6 如图,扶梯 AB 的坡比(BE 与 AE 的长度
3 之比)为 1:0.8,滑梯 CD 的坡比为 1:1.6,AE= 2
2 米 ,BC=
1 2
CD. 一男孩从扶梯走到滑梯的
顶部,然后从滑梯滑下,他经过了多少路程? (结果精确到 0.01 米)
C
F
D
3 3 15 解:在Rt△AEB中,AE= 米,BE= ÷0.8= 米 2 2 8
G M E
C
. O F . P H .Q
D
N
(直角三角形斜边上的中线等于斜边的一半 )
1 ∴CD= 2
∴AD=DB (等腰三角形三线合一) AB=20 2 cm
A
B
∵ CO= 5 2 cm
∴EF=2CO= 10 2 cm
同理可得 GH=2CP= 20 2 cm
MN=2CQ= 30 2 cm
如图是一张等腰直角三角形彩色纸,AC=BC=40cm.将斜边
2 2 15 2 3 41 AE BE ( ) ( ) 3 8 8
2 2
答:这个男孩经过的总路程约为7.71米。
A
1、如图,架在消防车上的云梯AB长 为15m,AD:BD=1 :0.6,云梯底
部离地面的距离BC为2m。
你能求出云梯的顶端离地面的
D E B
C
距离AE吗?
2、如图,大坝横截面的迎水坡AD的坡比为4:3,背水
到O港.已知快艇的速度是60千米/时,问AB这段路程是
多少千米?(精确到0.1千米).
北 B 45° O
A
东
2、从一张等腰直角三角形纸板中剪一个尽可 能大的正方形,应怎样剪?画图说明你的剪法。 如果这张纸板的斜边长为30cm,能剪出最大的 正方形的面积是多少cm2?
我们在解决有关二次根式运算
的应用题时,要注意什么?
F H M N
A
B A
BA HM N K
B
现在若给你一张等腰直角三角形彩色纸, AC=BC=40cm.
从中裁出3张宽度相等的长方形纸条你有什么不同的方
法裁剪么?
C
E G M
C
F H N N M
C
F
. . .
D
F
E
D
E
D
A
B
A V K Q P O
B A HM N K
. . .
B
做一做
1、如图,一艘快艇从O港出发,向东北方向行驶到A处, 然后向西行驶到B处,再向东南方向行驶,共经过1时回
坡BC的坡比为1:2,大坝高DE=50m,坝顶宽CD=30m,
求大坝截面的面积和周长(周长精确到0.01m)。
B
C
A
E
F
D
例7、如图是一张等腰直角三角形彩色纸,AC=BC=40cm.
将斜边上的高CD四等分,然后裁出3张宽度相等的长方 形纸条. (1)你能分别求出3张长方形纸条的长度吗?
C
E
G
M
. . .
AB
15 在Rt△CFD中,DF= ×1.6=3米 8 15 2 3 89 2 2 2 CD CF DF ( ) 3 8 8
1 3 89 BC CD 2 16
3 41 3 89 3 89 3 41 9 89 AB BC CD 7.71米 8 16 8 8 16