ansys fluent中文版流体计算工程案例详解
ansys fluent2020综合应用案例详解
ansys fluent2020综合应用案例详解随着计算流体力学(CFD)技术的快速发展,越来越多的工程领域开始使用CFD软件来进行流体分析和模拟。
在众多的CFD软件中,ANSYS Fluent无疑是最受欢迎和广泛使用的软件之一。
本文将详细介绍ANSYS Fluent 2020在综合应用方面的案例,以帮助读者更好地理解和使用这一强大的工具。
一、背景介绍ANSYS Fluent是由ANSYS公司开发的一款流体力学分析软件,广泛应用于航空航天、汽车工程、能源、环境保护、化工等领域。
Fluent 2020是该软件的最新版本,具有更强大的功能和更高的计算效率。
本文将通过详细介绍几个典型的应用案例,展示Fluent 2020在不同领域中的综合应用能力。
二、燃烧室模拟案例燃烧室是内燃机、煤气轮机等燃烧设备的核心组成部分,燃烧室内的燃烧过程直接影响着整个系统的性能和排放。
利用Fluent 2020的燃烧模型,可以模拟和分析燃烧室内的温度、压力、燃烧产物浓度等关键参数,并优化燃烧室的设计。
三、风洞模拟案例风洞模拟是航空航天领域常用的手段,用于模拟飞行器在不同飞行状态下的气动性能。
通过运用Fluent 2020的湍流模型和多相流模型,可以精确地模拟风洞中的气流传输和飞行器表面的气动力状况,为飞行器设计和优化提供可靠的依据。
四、液体输送模拟案例液体输送系统在石油、化工、食品等行业中扮演着重要角色。
利用Fluent 2020的多相流模型,可以模拟液体在管道中的流动情况,并分析管道的压降、流速分布、混合等特性。
通过优化管道的设计和操作参数,可以提高液体输送系统的效率和经济性。
五、散热器设计案例散热器在电子设备、汽车引擎等领域中广泛应用,用于降低设备的温度并保持其正常运行。
利用Fluent 2020的传热模型和流动模型,可以模拟和优化散热器内的流动和热传输过程,以提高散热效果并减少能量消耗。
六、船舶流体力学模拟案例船舶的航行性能直接受流体力学特性的影响,因此对船舶的流体力学性能进行模拟和优化十分重要。
Fluent经典实例分析
一年一度的毕业设计就要到来了,CAE软件依然是流体专业众多学子毕设的拦路虎,为了使各高校流体同学顺利完成毕业设计以及有志于在流体行业有一番作为的青年才俊迅速掌握一门技能,从而更好地适应职场需求,北京经纬云图仿真科技有限公司感谢各位同行的支持和厚爱,特组织各方面CAE软件专家长期进行免费在线网络培训,诚邀您的参与!特此声明:本公司的所有培训将主要以工程实例为基础进行,让您真正的学到知识,懂得原理,而不仅仅是简单的软件操作。
最重要的一点是为了回馈广大同仁们,本公司的培训完全免费,机不可失失不再来啊!主办单位:北京经纬云图仿真科技有限公司培训时间:每周五晚8:00---9:30培训方式:在线免费网络培训培训2000人QQ群:281194860(参与培训请加入,注明:FLUENT培训)培训内容:见附录附录:1,基础流动计算以AICD装置为例,说明利用fluent进行基础的流动模拟的步骤,包括计算设置和简单的后处理2,两相流Mix模型应用以某烟雾报警器为例,利用mix两相流模型,预测烟雾报警器内部的烟雾浓度分布3,空化问题以某拉瓦尔喷管型的空化装置为例,利用mix两相流模型和空化模型,计算装置内的水的空化情况4,水的蒸发和凝结以某水蒸气动力装置为例,利用mix两相流模型和蒸发凝结模型(fluent自带蒸发凝结模型和udf编程),并利用瞬态计算的方法,得到装置的瞬时流场分布和水凝结情况5,湿空气的露点问题以某实验装置为例,说明露点问题与蒸发凝结问题的本质区别,利用mix两相流模型和udf 露点模型,计算过冷空气中的水析出的问题,并与理论结果进行对比6,萃取问题(溶液间传质问题)以某反应塔的一层为例,利用mix两相流模型、组分输运模型和udf传质模型,计算甲苯的萃取过程,以及利用瞬态计算的方法,得到脉动进口条件对于萃取过程的影响7,水中气泡上升以某鱼缸中通过气泡的模型为例,利用vof两相流模型和udf气泡源,利用瞬态计算的方法,得到水中的连续气泡上升的流动动画8,融化、蒸发联合作用问题以低压力环境中的固态铝加热为例,利用vof两相流模型、融化凝固模型、蒸发凝结模型和udf加热源,利用瞬态计算的方法,计算铝融化后的液面形状9,粒子冲蚀问题以某钻井装置为例,利用DPM模型和粒子冲蚀模型,计算在钻井的过程中,钻头以及装置各部分的磨损情况10,高温粒子喷涂问题以某高温粒子喷涂装置为例,利用DPM模型和粒子融化、蒸发模型,计算在高温喷涂的过程中,不同半径粒子的运动轨迹,和粒子的融化、蒸发情况11,二维齿轮动网格以某二维齿轮泵为例,利用动网格模型中的刚体运动模型,模拟齿轮泵的啮合工作过程12,Six dof动网格问题以三维空间中小球斜射入水的问题为例,利用动网格模型和six dof模型,模拟小球从空气中斜射入水过程中的运动和受力情况13,流热耦合问题以某水泵的相关部件为例,利用流热耦合方法和udf热源,模拟水泵工作过程中的摩擦生热问题,以及冷却问题14,电磁搅拌问题以带有电磁搅拌的坩埚为例,利用udf体积力源项和mix两相流模型的方法,模拟电磁搅拌对于坩埚内合金金属的浓度分布的影响15,多孔介质问题以某带有多孔漏斗装置的化学反应塔为例,首先对多孔漏斗进行直接数值模拟得到多孔介质的属性参数,然后利用多孔介质和组分输运模型进行计算,得到反应塔内部各组分的浓度分布。
fluent流体工程仿真计算实例与应用
fluent流体工程仿真计算实例与应用1. 引言随着计算机技术的发展,流体动力学仿真技术在工业领域得到广泛的应用。
FLUENT是流体动力学仿真中非常常用的软件之一,用于求解复杂流场问题。
本文将介绍FLUENT的基本原理以及其在工程中的应用。
2. FLUENT的基本原理FLUENT采用了基于有限体积法和压力关联法的数值方法。
它将流体域离散化为一个网格,然后在网格中进行求解。
由于压力和速度是流体动力学中的基本物理量,因此FLUENT采用了压力关联法来处理这些量。
此外,FLUENT还采用了基于高阶差分方法的离散化方法,以提高数值计算的精度。
3. FLUENT的应用3.1 汽车行业汽车行业是FLUENT应用的重要领域之一。
在这个领域,FLUENT主要用于汽车设计的空气动力学分析。
通过FLUENT可以得到汽车各个部件的气流分布、流体阻力等重要参数,有助于车辆的设计和优化。
3.2 能源行业在能源行业,FLUENT被广泛用于燃烧和气流分析。
通过FLUENT可以得到燃烧过程中的温度、浓度等关键参数,有助于燃烧控制和优化。
此外,FLUENT还可以用于风力发电机的设计和优化。
3.3 航空航天行业在航空航天行业,FLUENT主要用于飞机的空气动力学分析。
通过FLUENT可以得到飞机的升力、阻力、气流分布等关键参数,有助于飞机的设计和优化。
4. 结论FLUENT是一款非常常用的流体动力学仿真软件,广泛应用于汽车、能源、航空航天等多个领域。
通过FLUENT可以得到流体动力学分析中的关键参数,有助于工程师做出更好的设计和优化。
ansys fluent中文版流体计算工程案例详解
ansys fluent中文版流体计算工程案例详解ANSYS Fluent是一种用于计算流体力学的软件,通过数值模拟的方式进行流体分析和设计。
在实际应用中,需要使用流体计算工程案例来验证仿真结果的准确性和可靠性。
下面将介绍一些常见的应用案例。
1.汽车空气动力学设计。
在汽车设计中,空气动力学是一个非常重要的因素。
使用ANSYS Fluent可以对汽车外形进行流体分析,如气流、气压、气动力等。
通过对气流的模拟,可以优化车身外形设计,提高汽车的性能和燃油经济性。
2.船舶流场分析。
船舶的流体设计是提高船舶速度和燃油经济性的重要因素。
使用ANSYS Fluent可以对船舶外形和水动力性能进行分析。
通过模拟船舶在水中的流动情况,可以优化船体外形和螺旋桨设计,提高航行效率。
3.风力发电机设计。
风力发电机是一种通过风力发电的机械设备。
通过ANSYS Fluent对风场进行数值模拟,可以预测风力发电机的性能和稳定性。
通过分析叶片的气动力学特性,可以优化叶片的设计,提高风力发电机的发电效率。
4.石油钻井液流分析。
石油钻井过程中,需要注入液体来冷却钻头并加速岩屑的排除。
使用ANSYS Fluent对液体的流动情况进行数值模拟,可以预测液体的流动速度和压降,优化钻井液的配比,提高钻井效率。
5.医用注射器设计。
医用注射器是一种常见的医疗器械。
通过使用ANSYS Fluent分析注射器的流场,可以优化注射器的设计。
通过预测注射器注射药液时的速度和压降,可以优化注射器的内部结构和开孔位置,提高注射的精度和安全性。
总之,ANSYS Fluent可以应用于各种流体力学领域,帮助工程师们进行流体力学设计与分析,取得更高效准确的结果。
这些案例都为设计和实施各种流体系统提供了指导,可以大大提高工作效率。
fluent流体工程仿真计算实例与应用
fluent流体工程仿真计算实例与应用引言流体力学在工程和科学领域中扮演着重要的角色。
通过流体力学的研究,我们可以了解和预测液体和气体在不同条件下的行为。
然而,在真实的实验中,获取流体的准确和详细的数据是非常困难和昂贵的。
因此,流体工程仿真计算成为了一种重要的工具,它可以在实际实验之前通过计算的方式对流体进行建模和分析。
fluent流体工程仿真计算简介Fluent是一款商业化的流体动力学仿真软件,由ANSYS公司开发。
它是一个基于计算流体力学(CFD)的软件工具,能够对各种复杂的流体问题进行建模和分析。
该软件提供了丰富的功能和工具,使工程师能够模拟和解决涉及流体力学的问题。
流体力学仿真计算的优势与传统的实验方法相比,流体力学仿真计算具有以下几个优势: 1. 成本效益:流体力学仿真计算可以节约大量的实验成本,同时缩短了实验周期。
2. 控制参数的灵活性:在真实实验中,很多参数无法被精确控制,而在仿真计算中,我们可以精确地控制和调整各种参数。
3. 快速修改和优化:在实验中,修改和优化系统需要经历繁琐的实验过程,而在仿真计算中,可以轻松地进行快速修改和优化。
4. 可视化和详细分析:通过仿真计算,我们可以获得流体行为的详细信息,同时可以使用可视化工具展示仿真结果。
实例与应用1. 空气动力学仿真空气动力学是流体力学的一个重要分支,研究涉及空气流动的物体。
通过Fluent软件,我们可以对飞行器、汽车、建筑物等在空气中的流动行为进行仿真。
这样的仿真可以帮助工程师改进设计,提高性能和效率。
在空气动力学仿真中,我们可以通过设置不同的参数和条件,如飞行速度、角度、流体密度等,来模拟不同的飞行状态和环境。
通过仿真结果,可以获得飞行过程中的压力分布、升力和阻力等关键性能指标。
2. 建筑气流仿真在建筑领域中,气流对于建筑物的设计和能源消耗具有重要影响。
通过Fluent软件,可以对建筑物内、外的气流进行仿真。
建筑气流仿真可以帮助工程师优化建筑物的通风系统、改善空气质量、减少能耗。
ansys fluent2020综合应用案例详解
ansys fluent2020综合应用案例详解一、引言Ansys Fluent是一款广泛应用于流体动力学分析的软件,被广泛应用于航空航天、汽车、船舶、电子设备、能源等多个行业。
该软件功能强大,包含了前处理、求解器以及后处理等多个模块,能够实现流体动力学分析的全方位服务。
本文将通过一个综合应用案例,详细解析Ansys Fluent 2020的使用方法和应用领域。
二、案例详解本案例将通过一个实际项目——某型电动汽车的空气动力性能优化,来详细解析Ansys Fluent 2020的综合应用。
1. 项目背景某电动汽车制造商希望提高其车型的空气动力性能,减少风阻,从而提高车辆的行驶效率和续航里程。
他们找到了一个具有丰富经验的咨询公司,希望通过Ansys Fluent 2020对车辆的空气动力性能进行优化。
2. 前处理咨询公司首先使用Ansys Fluent 2020的前处理模块,对车辆进行建模。
他们使用CAD工具创建了车辆的三维模型,并使用Ansys Fluent的网格生成功能,将车辆模型划分为有限个网格。
这一步是流体动力学分析的基础,良好的网格质量可以提高分析的精度和稳定性。
3. 求解器应用在完成前处理之后,咨询公司使用Ansys Fluent 2020的求解器模块,对车辆的空气动力性能进行模拟。
他们设定了模拟的条件,包括车速、风速、车辆姿态等,然后进行模拟计算。
通过求解器模块的应用,可以获取车辆在不同条件下的空气动力性能数据。
4. 后处理应用在模拟完成后,咨询公司使用Ansys Fluent 2020的后处理模块,对模拟结果进行详细分析。
他们通过图表和数据,展示了车辆在不同条件下的风阻系数、升力系数等空气动力性能指标。
通过这些数据,可以清楚地看到车辆在各个角度和速度下的空气动力性能表现。
5. 优化方案制定基于模拟结果和分析数据,咨询公司为电动汽车制造商提供了优化方案。
他们建议对车辆的外观进行优化设计,以降低风阻系数和提高空气动力性能。
AnsysFluent基础详细入门教程(附简单算例)
AnsysFluent基础详细⼊门教程(附简单算例)Ansys Fluent基础详细⼊门教程(附简单算例)当你决定使FLUENT解决某⼀问题时,⾸先要考虑如下⼏点问题:定义模型⽬标:从CFD模型中需要得到什么样的结果?从模型中需要得到什么样的精度;选择计算模型:你将如何隔绝所需要模拟的物理系统,计算区域的起点和终点是什么?在模型的边界处使⽤什么样的边界条件?⼆维问题还是三维问题?什么样的⽹格拓扑结构适合解决问题?物理模型的选取:⽆粘,层流还湍流?定常还是⾮定常?可压流还是不可压流?是否需要应⽤其它的物理模型?确定解的程序:问题可否简化?是否使⽤缺省的解的格式与参数值?采⽤哪种解格式可以加速收敛?使⽤多重⽹格计算机的内存是否够⽤?得到收敛解需要多久的时间?在使⽤CFD分析之前详细考虑这些问题,对你的模拟来说是很有意义的。
第01章fluent介绍及简单算例 (2)第02章fluent⽤户界⾯22 (3)第03章fluent⽂件的读写 (5)第04章fluent单位系统 (8)第05章fluent⽹格 (10)第06章fluent边界条件 (36)第07章fluent流体物性 (55)第08章fluent基本物理模型 (63)第11章传热模型 (75)第22章fluent 解算器的使⽤ (82)第01章fluent介绍及简单算例FLUENT是⽤于模拟具有复杂外形的流体流动以及热传导的计算机程序。
对于⼤梯度区域,如⾃由剪切层和边界层,为了⾮常准确的预测流动,⾃适应⽹格是⾮常有⽤的。
FLUENT解算器有如下模拟能⼒:●⽤⾮结构⾃适应⽹格模拟2D或者3D流场,它所使⽤的⾮结构⽹格主要有三⾓形/五边形、四边形/五边形,或者混合⽹格,其中混合⽹格有棱柱形和⾦字塔形。
(⼀致⽹格和悬挂节点⽹格都可以)●不可压或可压流动●定常状态或者过渡分析●⽆粘,层流和湍流●⽜顿流或者⾮⽜顿流●对流热传导,包括⾃然对流和强迫对流●耦合热传导和对流●辐射热传导模型●惯性(静⽌)坐标系⾮惯性(旋转)坐标系模型●多重运动参考框架,包括滑动⽹格界⾯和rotor/stator interaction modeling的混合界⾯●化学组分混合和反应,包括燃烧⼦模型和表⾯沉积反应模型●热,质量,动量,湍流和化学组分的控制体源●粒⼦,液滴和⽓泡的离散相的拉格朗⽇轨迹的计算,包括了和连续相的耦合●多孔流动●⼀维风扇/热交换模型●两相流,包括⽓⽳现象●复杂外形的⾃由表⾯流动上述各功能使得FLUENT具有⼴泛的应⽤,主要有以下⼏个⽅⾯●Process and process equipment applications●油/⽓能量的产⽣和环境应⽤●航天和涡轮机械的应⽤●汽车⼯业的应⽤●热交换应⽤●电⼦/HV AC/应⽤●材料处理应⽤●建筑设计和⽕灾研究总⽽⾔之,对于模拟复杂流场结构的不可压缩/可压缩流动来说,FLUENT是很理想的软件。
学会使用ANSYSFluent进行流体力学模拟和分析
学会使用ANSYSFluent进行流体力学模拟和分析流体力学是研究流体运动和相互作用的科学。
在工程学领域,流体力学广泛应用于模拟和分析各种工程问题,如气体和液体流动、热传递、质量传递等。
而ANSYSFluent是一种常用的流体力学模拟和分析软件,可以帮助工程师和科研人员进行流体力学模型的建立、仿真和结果分析。
本文将介绍如何学会使用ANSYSFluent进行流体力学模拟和分析。
第一章:ANSYSFluent简介ANSYSFluent是面向工程领域的一款强大的计算流体力学软件。
它提供了广泛的模型和分析工具,可以模拟和分析各种流体力学问题。
ANSYSFluent具有友好的界面,简单易用,同时也具备高级的功能和定制性。
该软件在汽车、航空、化工等领域得到了广泛的应用。
第二章:流体力学模拟流程在使用ANSYSFluent进行流体力学模拟和分析之前,我们需要先了解整个模拟流程。
首先,我们需要定义几何模型,可以通过导入CAD模型或手动构建几何体。
然后,对几何模型进行网格划分,将其离散成小的单元。
接下来,设置流体材料的物性参数,如密度、粘度和热传导系数。
然后,定义流体动力学模型,如流动方程和边界条件。
最后,进行求解和后处理,通过数值方法求解流体力学方程,并分析结果。
第三章:几何建模在ANSYSFluent中,我们可以使用多种方法进行几何建模。
一种常用的方法是通过导入CAD模型,可以直接打开各种常见格式的CAD文件。
另一种方法是使用Fluent的几何建模工具,可以手动构建几何体。
该工具提供了创建基本几何体(如圆柱、球体等)、布尔操作(如并集、交集等)和边界设置等功能,可以方便地生成复杂的几何体。
第四章:网格划分网格划分是流体力学模拟中的重要环节。
好的网格划分可以提高计算精度和计算效率。
在ANSYSFluent中,我们可以使用多种方法进行网格划分。
一种常用的方法是结构化网格划分,它将几何体划分成规则的网格单元。
另一种方法是非结构化网格划分,它允许在几何体中创建任意形状的网格单元。
基于ANSYS FLUENT的两相流分析例1
基于ANSYS FLUENT的两相流分析例1众所周知,FLUENT和CFX是ANSYS中最牛的两个流体分析软件。
下面以FLUENT 为例,说明其在多相流分析中的应用。
该例子来自于FLUENT帮助,但是其建模,网格划分以及命名集的定义方式则进行了改变。
希望该例子对于大家做多相流的分析有所帮助。
问题:一个水-空气混合物在管道内向上流动,在T型交叉点分成两支。
管道宽25mm,输入部分长125mm,顶部和右边都是250mm。
空气和水在进口处的速度见下图,而两个出口处的出流权重分为为0.38和0.62.现在要求对该两相流做一个稳态分析。
使用ANSYS fluent分析过程如下(1)创建项目示意图(WORKBENCH)设置geometry单元格的属性(2)创建几何模型(geometry) 设置单位为mm创建草图并施加尺寸约束修改模型从草图生成面物体这样,几何建模工作完成,存盘后退出DM. (3)划分网格并设置命名集(mesh)下面进入到mesh单元格,首先划分网格,添加一个尺寸控制,并设置单元划分尺寸为2.5mm.划分网格结果如下然后定义命名集,其实就是定义速度进口边,以及流出边。
这些定义会在后面用到。
选择最下面这条边,并定义命名集inlet再选择最右边这条边,定义命名集outlet1最后选择最上边这条边,定义命名集outlet2这样,网格划分和命名集定义结束,存盘并退出mesh. (4)设置流体分析模型(setup)点击WB中的setup,马上弹出下列对话框OK后进入fluent。
(4.1)设置一般选项进入general菜单项,接受默认设置。
做基于压力的稳态分析,是二维的平面问题。
(4.2)定义计算模型首先确定是多相分析(两相分析)接着确定是紊流分析(4.3)定义材料模型系统默认只有空气材料,需要加入水这种材料从FLUENT自带的材料库中找到水这种材料,并复制到本模型的数据库中这样,材料模型的定义工作结束。
ansys fluent 流体数值计算方法与实例
ansys fluent 流体数值计算方法与实例Ansys Fluent 是一种广泛使用的流体数值计算方法,可用于模拟流体流动过程,例如空气动力学、海洋动力学、航空航天等领域。
本文将介绍 Ansys Fluent 的基本概念和数值计算方法,并探讨 Ansys Fluent 在实际工程中的应用实例。
1. Ansys Fluent 的基本概念Ansys Fluent 是 Ansys 公司开发的一款数值计算方法,主要用于模拟流体运动。
它包括三个主要部分:模型建立、求解器和结果后处理。
模型建立部分用于创建流体运动的数学模型,包括流体的物理性质、边界条件、初始条件等。
求解器部分用于对模型进行数值求解,以得到流场的数值解。
结果后处理部分用于对求解得到的流场进行可视化和分析。
2. Ansys Fluent 的数值计算方法Ansys Fluent 的数值计算方法基于有限体积法(Finite Volume Method,FVM)和有限元法(Finite Element Method,FEM)。
在 FVM 中,模型被划分为多个小部分,每个小部分被划分为多个小体积,然后对每个小体积进行求解。
求解器根据流体的物理性质和边界条件计算出每个小体积内的流体速度、压力等物理量,然后将这些物理量代入下一个小体积中,以此类推,最终得到整个模型的解。
在 FEM 中,模型被划分为多个小区域,然后在每个小区域内使用离散化的单元进行求解。
每个单元包含有限个节点和有限个边界面,单元内的物理量可以通过节点和边界面之间的方程进行求解。
3. Ansys Fluent 在实际工程中的应用实例Ansys Fluent 在实际工程中的应用非常广泛,以下是几个实际工程中的应用实例:1. 空气动力学在飞机设计和飞行模拟中,Ansys Fluent 可以用于模拟空气流动,包括气动力学、湍流流动、温度变化等方面。
通过 Ansys Fluent,可以分析飞机在不同高度、速度和风速下的气动力学特性,并进行飞行模拟,为飞机的设计和优化提供数值支持。
ansys-fluids流体计算的例子
ANSYS EXERCISE – ANSYS 8.1Flow Over a Flat PlateCopyright 2001-2005, John R. BakerJohn R. Baker; phone: 270-534-3114; email: jbaker@This exercise is intended only as an educational tool to assist those who wish to learn how to use ANSYS. It is not intended to be used as a guide for determining suitable modeling methods for any application. The author assumes no responsibility for the use of any of the information in this tutorial. There has been no formal quality control process applied to this tutorial, so there is certainly no guarantee that there are not mistakes on the following pages. The author would appreciate feedback at the email address above if mistakes are discovered in this tutorial.In this exercise, you will solve the classical flat plate 2-D airflow problem, illustrated below, using ANSYS. The problem is adapted from the textbook, Fundamentals of Fluid Mechanics, by Munson, Young, and Okiishi. The airflow velocity for flow over the flat plate will be solved for, based on the specified velocity and pressure boundary conditions, and the plate dimensions. Step-by-step instructions are provided beginning on the following page.Notes: The fluid is air, with density, ρ=1.23 kg/m3, and dynamic viscosity, μ =1.79E-5 N-s/m2. The plate is 1 m long, as shown, and is very thin. It will be modeled with a thickness of 0.001 m. The plate is modeled in a square field, with edge lengths of 2 m. The 2 m edge length dimensions are arbitrary. These lengths are chosen large enough such that the effects of the flat plate on the flow are captured completely within the square field. Also, the flow velocity in all directions is zero along the sides of the flat plate.The steps that willbe followed, after launching ANSYS, are:Preprocessing:1. Change Preferences2. Change Jobname.3. Define element type. (Fluid141 element, which is a 2-D element for fluid analysis.)4. Define the fluid. (Air – SI Units.)5. Create keypoints.6. Create areas.7. Specify meshing controls / Mesh the areas to create nodes and elements.8. Zoom in to see flat plate region (optional).Solution:9. Specify boundary conditions.10. Specify number of solution iterations.11. Solve.Postprocessing:11. Plot the x-direction velocity (VX) distribution.12. List VX at Nodes.Exit13. Exit the ANSYS program, saving all data._____________________________________________________________________________ Notes:•It is assumed in this tutorial that the user has already launched ANSYS and is working in the Graphical User Interface (GUI).•The menu picks needed to perform all required tasks are specified in italics in the step-by-step instructions below. It is sometimes more convenient to enter certain commands directly at the command line. The method of direct command line entry, however, is not emphasized in this exercise. Primarily, in this exercise, the analysis will be performed using menu picks from the ANSYS Graphical User Interface.SUGGESTION: As you work through this exercise, on the ANSYS Toolbar click on “SAVE_DB” often!At any point, if you want to resume from the previous time the model was saved, simply click on “RESUM_DB” on this same Toolbar. Any information entered since the last save will be lost, but this is a nice feature in the event that you make an input mistake, and are unsure of how to correct it.Note: Most of the required tasks are performed using menu picks from the ANSYS GUI, as specified in italics in the step-by-step instructions below. It is sometimes more convenient, however, to enter certain commands directly at the command line. The command line is seen on the screen.The Main Menu is on the left side of the screen.The method of direct command line entry is used in some cases in this exercise, whenever this method seems more convenient than using menu picks.Often, as an alternative, an input file, known as a “batch file”, is created, which is simply an ASCII text file containing a string of ANSYS commands in the appropriate order. ANSYS can read in this file as if it were a program, and perform the analysis in “batch mode”, without ever opening up the Graphical User Interface. The batch file option is not covered in this exercise.There are a number of ways to model a system and perform an analysis in ANSYS. The steps below present only one method.Preprocessing:1. Change Preferences. Main Menu -> Preferences -> FLOTRAN CFD -> OK2. Change jobname. At the upper left-hand corner of the screen:File -> Change JobnameEnter “flatplate”, and click on “OK”.3. Define element type:Preprocessor -> Element Type -> Add/Edit/DeleteClick on “Add”. The “Library of Element Types” box appears, as shown. Highlight “FLOTRAN CFD”, and “2D FLOTRAN 141”. Click on “OK”, then “Close”.4. Define fluid properties: Preprocessor -> FLOTRAN Set Up ->Fluid PropertiesOn the box, shown below, change the first two input fields to “AIR-SI”, and then click on “OK”. Another box will appear. Accept all defaults on that box by clicking on “OK”.5. Create keypoints:There are several options available for creating the basic geometry. The method that will be employed involves creating “keypoints”, then generating two separate areas, with corners defined by the keypoints.Preprocessor -> -Modeling- Create -> Keypoints -> In Active CS…Fill in the fields as shown below, then click “APPLY”. When you click on “Apply”, the command is issued to create keypoint number 1 at (x,y,z)=(-1,1,0). Note that when the Z field is left blank, in this case, the blank space defaults to zero, which is desired. Since you clicked on “Apply”, instead of “OK”, then the keypoint creation box remains open.Create keypoint number 2 at (x,y,z)=(0,1,0), using the input shown below. After entering the input, again, click on “APPLY”:Create 12 total keypoints in the same manner. The locations for all 12 are shown in the following table. When the final keypoint is created, click on “OK” instead of “APPLY”.“OK” issues the command and also closes the keypoint creation box.Keypoint Number X-Location Y-Location1 -1 12 0 13 1 14 -0.5 05 0 06 0.5 0-0.0017 -0.5-0.0018 0-0.0019 0.510 -1 -111 0 -112 1 -1Before moving on, it is probably a good idea to check the keypoint locations. Along thetop toolbar choose:List -> Keypoint -> Coordinates Only.A box should open up with the keypoint location information. If any keypoint is not inthe correct location, at this point, you can just re-issue the keypoint creation command for that particular keypoint. To do this, choose:Preprocessor -> -Modeling- Create -> Keypoints -> In Active CS…Fill in the correct information for that particular keypoint in the box, and click “OK”. The keypoint will be moved to the correct location. If you have some keypoint incorrectly numbered above number 12, this will not cause a problem. Just be sure you have keypoint numbers 1 thru 12 located correctly.You can close the box listing the keypoint locations, by clicking, in that listing box, on “File-> Close”.6. Create areas:It may be a good idea to save your model at this point, by clicking “SAVE_DB”on the ANSYS Toolbar. Now, if you make a mistake from which you do not know howto recover, just click on “RESUM_DB”, and the model will resume from the point of the last save.We will create two separate areas. One is the left half of the flow field, and the other is the right half. We will do this by defining areas, as outlined below, using the defined keypoints as corners of the areas. The figure below shows the end result, exceptthe figure shows an extremely exaggerated thickness of the flat plate. This is done forclarity. The black dots denote keypoints, and the circled numbers denote the keypoint numbers.In creating the areas, it is probably easiest to use the direct command line entry approach. At the command line, type in, as shown below: a,1,2,5,4,7,8,11,10Hit “Enter”, and the left half of the flow field is generated as an area, defined by the keypoints entered with the “a” command. Now, create the right half, by typing, at the command line: a,2,3,12,11,8,9,6,5After hitting “Enter”, the right side is generated. Note that, although we have created the flow field in two halves, the entire 2 m x 2 m field could have been produced as a single square. Then, the flat plate could have been cut out of that square. However, the method being employed will produce a line of “nodes” protruding vertically from the center of the flat plate, and this will be desirable when the fluid velocity results are compared to the analytical solution. At this time, the horizontal flat plate appears in the graphics window as a single line, because it is so thin. The plot in the graphics window should appear as:7. Specify Mesh Size Controls / Mesh the Model.There are a number of ways to perform this step, but for this exercise, the procedure has been automated, and will involve typing only a single word, below. The actual method employed would involve entering 24 commands at the command line. Because of the possibility of typographical errors, however, for this exercise, this step has been automated, using the “macro” option within ANSYS. A macro has been created. It is a text file named mshfield.mac. It is available for download on the website from which this tutorial was downloaded. The file, mshfield.mac, should be copied to your ANSYS working directory. The commands in the macro are discussed in the Appendix, at the end of these instructions. However, to execute all of the required commands (assuming you have the file “mshfield.mac” stored in your current ANSYS working directory), all that is needed is to type, at the command line:mshfieldThen, hit “Enter”. All of the necessary commands should be executed, and the mesh should appear, as shown in the following figure on the next page. The requiredcommands are listed in the appendix.GUI with Finite Element Mesh in Graphics Window8. Zoom in to see the flat plate (optional)This step is not necessary, but it may be helpful to you to see the flat plate geometry, and the fine mesh near the plate. If you wish to zoom in, first, it may be best to turn off the X-Y-Z Axis “Triad” display, as it is really just in the way. We know that we defined our model so that +x is to the right on the screen, and +y is upward. To turn off the X-Y-Z Axis “Triad” display, on the menu across the very top of the GUI choose:PltCtrls -> Window Controls -> Window OptionsA box appears. Change the [/TRIAD] option to “Not Shown”, and then click “OK”.Then, back to the menu across the very top of the GUI, select:PltCtrls -> Pan, Zoom, Rotate…The “Pan-Zoom-Rotate” box below appears. On that box, select “Box Zoom”Then, in the graphics window, press the left mouse button, and drag to producea box near the center of the flow area. Then, click once with the left mousebutton, and you will see a zoomed view of the region around the plate, withthe fine mesh. At any time, to return to the full model view, on the “Pan-Zoom-Rotate” box, click on “Fit” (near the bottom of the box).Solution:9. Specify boundary conditions.In Step 6, there is a sketch of the geometry, with an exaggerated thickness for the flat plate. You may want to refer to this figure and the figure on page 1, during the boundary condition specification. The boundary condition specification steps are outlined below, in steps 9a thru 9e, where VX denotes X-direction flow velocity, and VY denotes Y-direction flow velocity. Before beginning the specifications, it is probably best to plot the lines, without showing the areas, for better clarity. On the menu along the very top of the GUI, select:Plot -> LinesYou should then see colored lines, which are the boundaries of the areas. Unless you are zoomed in, the flat plate will probably appear as a single horizontal line. Although not necessary, you may also want to turn on “Keypoint Numbering”. To do this, again on the very top menu, choose: PltCtrls -> NumberingZoomed View of PlateThe box below opens. Click on the box to the right of “Keypoint numbers” to toggle from “Off” to “On”. Then, click on “OK”. If you have the lines plotted, then the keypoint numbers should also show.9a) Specification of VX Value and VY=0 on the line connecting keypoints 1 and 10.One way to do this is to choose, and the ANSYS Main Menu:Solution -> Define Loads-> Apply->Fluid/CFD-> Velocity -> On LinesA picking menu appears, as shown (below, left). Click on the far left vertical line (theline which connects keypoints 1 and 10), and it should highlight. In the picking menu, choose “OK”. (Note that if you accidently highlight the wrong line, you can unselect it using the picking menu, and switching from “Pick” to “Unpick”. But here, it’s probably easiest to just hit “Cancel” on the picking menu, then re-open the picking box, using: Solution -> -Loads- Apply -> -Fluid/CFD- Velocity -> On Lines.)After highlighting the appropriate line, and clicking “OK” in the Picking Menu, a box appears (shown below right). Enter “0.072764” (or your assigned value) for VX, and 0.0 for “VY”, then click “OK”. Since this is a 2-D analysis, you don’t need a VZ value.9b) Specification of VX=VY=0.0 along the edges of the flat plate. Here, we could use the picking option to select the correct lines, as we did in Step 9a. But, it would involve zooming in to pick the correct closely-spaced lines. It may be easiest here to initially just select the correct lines, using two successive command line entries, which are:ksel,s,kp,,4,9lslk,s,1Hit “Enter” after each command. Note that there are supposed to be two consecutive commas, as shown, in the “ksel” command. The first command above selects keypoints 4 thru 9, and the second command selects the set of all lines which have their endpoints within the selected set of keypoints. Now, on the menus, choose:Solution -> Define Loads-> Apply -> Fluid/CFD-> Velocity -> On LinesThis time, when the picking menu appears, you don’t need to pick on any lines in the model, just choose “Pick All” at the bottom of the picking menu. Only the lines of interest are currently selected. When the “Velocity Constraints” box opens, just enter VX=0.0 and VY=0.0, then click on “OK”.Now, it is very important that you re-select all entities. On the very top menu, choose: Select -> Everything (or else, equivalently, you can type, at the command line: allsel , then hit “Enter”.Then, on the top menu, choose: Plot -> Lines8c) Specification of atmospheric pressure on five of the six lines that define the outer boundary. These are the lines defined by end keypoints 1-2; 2-3; 3-12; 12-11; and 11-10. Note that the farthest left vertical line, connecting keypoints 1 and 10, is not included in the set. Here, we can return to the picking menu method. Choose:Solution -> Define Loads-> Apply -> Fluid/CFD-> Pressure DOF -> On LinesA picking menu opens. Click on all five of the lines noted above to highlight them. If you make a mistake in picking, it may be best to just click on “Cancel” in the picking menu, then re-start step 8c. Once the correct five lines are highlighted, choose “OK” in the picking menu, and the “Pressure Constraint” box will open, as shown below. Enter “0” for “Pressure value”, and click “OK”. This “0” value indicates atmospheric pressure.10. Specify Number of Solution Iterations:Solution -> FLOTRAN Set Up ->Execution CtrlThe box below appears. Change the first input field value to 500, as shown. No other changes are needed. Click OK.11. Solve the problem:Solution -> Run FLOTRANThe problem will run until the specified 500 iterations are completed. This will take a few minutes. When the solution is completed, a box will appear that reads “Solution is Done!”. You may close this box.Postprocessing:12. Plot the x-direction velocity distribution.First, read in the results by selecting:General Postproc -> Read Results-> Last SetThen, to plot, choose:General Postproc -> Plot Results ->Contour Plot-> Nodal SoluThe box below opens:Highlight “DOF solution” and “X-Component of Fluid Velocity” and click “OK”. In the graphics window, a plot, as shown below, should appear. Note that the velocity values corresponding to the colors are shown in the legend to the right.You may want to zoom in closer to the flat plate to get a better view of the velocity distribution near the flat plate. See Step 8 for instructions on zooming in to get a closer look. It is also possible to save plots in the graphics window to graphics files, in formats such as “TIFF”, “JPEG”, or “BITMAP”, and subsequently insert them into a word processing document. This option is not covered in this exercise. If you want to try this, though, you can select, from the top menu: PltCtrls -> Hard Copy -> To File. A box opens up with the plot file creation options.13. List VX at Nodes.13a. Select nodes along the plate center (x=0.0 meters).For comparison with the analytical solution, you will need a listing of specific x-direction velocities at specific locations in the flow field. ANSYS has calculated VX, VY, and the pressure at each “node”. Because of our method of creating the model by automatic “meshing” of the areas, at this time, we do not know specific node numbers at specific locations. But, we can get a listing of node numbers, including the locations of each node, and also a listing of velocities by node numbers. To keep the amount of information to a workable level, it is probably best to include in these lists only a subset of nodes. To get such a list, we can first select only the nodes at x=0 (at the center of the plate – recall the plate ends are at x=-0.5 m and x=+0.5 m). This is a case where it isprobably easiest to just use the direct command line entry option, rather than operate through the menus. On the command line, type:nsel,s,loc,x,0Hit “enter”.Then, reduce the selected set even further by reselecting, from the currently selected set, only those nodes above the plate, up to y=0.15 m. To do this, type, at the command line:nsel,r,loc,y,0,0.15Hit “enter”.13b. List the locations of the selected nodes.On the very top menu, choose List -> Nodes. In the box that appears, on the “Output listing will contain” option, choose “Coordinates Only”. Then for the “Sort first by” option, select “Y coordinate” as shown below:Then, just click on “OK” at the bottom. A listing box appears:You can get a hard copy of the information in this box by clicking, in this listing box:File -> Print.You can also save this information to a file using the option:File -> Save As.If desired, you may close the node listing box to get it out of the way. To do this, in that listing box, choose: File -> Close.13c. List x-direction velocity (VX) at each of these nodes.First, for convenience, sort the nodes so that the results listing will list the velocities of the selected nodes in ascending order of y-location. Choose:General Postproc -> List Results -> -Sorted Listing-> Sort NodesIn the box that opens, shown below, select “Ascending Order”, for “ORDER”, and highlight “Geometry” and “Y”, as shown, and hit “OK”. This produces another listing box of node locations, which you may close.Then, to get the list of nodal velocities, select:General Postproc -> List Results -> Nodal SolutionIn the box that appears, select “DOF Solution” and “X Component of Fluid Velocity”, as shown, then click “OK”.The listing, as shown below, should appear. You will probably want to either print these velocities out, or save them to a file, as you did the node locations. The locations of the same nodes have already been listed, in Step 13b, above. Since you now have velocities (VX) at various y-locations, all at the center of the plate (x=0), the results for these nodes can be checked with the analytical solution.Re-select all nodes in the model for additional plotting, or listing, as desired. To do this, simply type, at the command line: “allsel” and hit enter:Or else, on the very top menu, choose: Select -> EverythingSubsequent lists and plots will include all nodes. Steps 12 and 13 can be repeated to get listings of velocities and pressures of nodes at other locations. Of course, Y-direction velocities (VY) are also available. In addition, there are options for velocity vector plots, and also animations of the steady-state flow, available on the ANSYS Post-processor.14. Exit ANSYS, Saving All Data. On the ANSYS Toolbar, choose:Quit ->Save Everything -> OKTo recall the model and solution at a later date, assuming you have deleted no files, simply re-launch ANSYS, specify the same working directory as before, re-issue the same jobname as used in Step 2 of these instructions, and then click on “RESUME_DB” on the ANSYS Toolbar shown above.To see the resumed model in the graphics window, you may then need to click on “Plot” on the very top menu, then, choose either “Elements”, “Nodes”, or “Areas”, depending on which entities you wish to plot.Appendix – Discussion of Step 7 (This appendix is included for discussion only, and may be skipped.)The commands on the following page are designed to produce a fine mesh near the plate, but a more coarse mesh away from the plate. In Step 7 of these instructions, all of these commands were issued automatically, by simply typing “mshfield”. This only worked because a file named “mshfield.mac” was copied to your ANSYS working directory. This is not a standard ANSYS command. It is a user-created macro containing a string of commands.Regarding the mesh, a fine mesh was desired near the flat plate, where the velocity gradients are highest. This is necessary to accurately calculate the flow velocity near the plate. However, away from the high velocity gradient region, a fine mesh is not necessary. For solution accuracy, there is no problem with simply creating a very fine mesh in all regions of the model. However, producing a fine mesh in regions where it is not necessary results in longer solution time and higher computer memory and hard drive storage requirements, without significantly increasing the solution accuracy. Therefore, it is useful to control the mesh. A discussion of the method used follows: •We first select the two horizontal lines, which define the plate top and bottom, and we specify that there are to be 100 element divisions along each of these lines. This is accomplished with the first five commands.•Then, the vertical line along the center of the flow field, above the flat plate, is selected, and 30 element divisions are specified, with a spacing ratio of 0.01. This means that the ratio of the longest division to the shortest is 100. This is done with commands 6 thru 8.•Next, the vertical line along the center of the flow field, below the flat plate, is selected, and again, 30 element divisions are specified, with a spacing ratio of 100. This is handled with commands 9 thru 11. Note: It may be confusing that in one case we entered a spacing ratio of “0.01”, and in the other case, we entered a spacing ratio of “100”. In both cases, this means that the ratio of the longest division to the shortest is 100. The line “directions” (which are determined and stored internally in ANSY) were automatically determined when the areas were generated. Because of these directions, in the first case, the spacing ratio of “0.01” will produce the smallest element divisions at the ends of the lines nearer the plate. In the next case, a spacing ratio of “100” is needed to produce the smaller divisions nearer the plate. It is possible to check the directions of all lines, but it is not necessary in this exercise, because the required commands have already been determined for you.•Next, the two vertical lines at the ends of the flow fields are selected, and the number of element divisions specified for each is 20. The spacing ratio is uniform, so no spacing ratio is entered. This is handled with commands 12 thru16.•Next, the four horizontal lines, at the top and bottom of the flow fields, are selected, and the number of element divisions specified for each is 10. Again, the spacing ratio is uniform, so no spacing ratio is entered. This is handled with commands 17 thru 21.•Everything is re-selected with the “allsel” command, command number 22.•The element shape is set to triangular, with the “mshape” command. Triangular elements are sometimes better than quadrilateral elements for irregularly shaped areas, such as we have.•The two areas are meshed, using the “amesh” command.The mesh that should result was shown in Step 7 of these instructions.Rather than use the macro “mshfield.mac”, in Step 7, the commands below could have been issued in the order shown below, at the ANSYS command line. The user would not have typep the numbers in parentheses, but would have just typed the commands. These numbers were included for reference only. The user could have typed the commands, exactly as shown, including all commas, and hit “Enter” after each command was typed. The macro “mshfield.mac” is simply an ASCII text file containing the string of commands below (without the numbers).Commands:(1) ksel,s,kp,,4,6(2)lslk,s,1(3) ksel,s,kp,,7,9(4) lslk,a,1(5) lesize,all,,,200(6) ksel,s,kp,,2,5,3(7) lslk,s,1(8) lesize,all,,,30,0.01(9) ksel,s,kp,,8,11,3(10) lslk,s,1(11) lesize,all,,,30,100(12) ksel,s,kp,,1,10(13) lslk,s,1(14) ksel,s,kp,,3,12(15) lslk,a,1(16) lesize,all,,,20(17) ksel,s,kp,,1,3(18) lslk,s,1(19) ksel,s,kp,,10,12(20) lslk,a,1(21) lesize,all,,,10(22) allsel(23) mshape,1,2d(24) amesh,all。
ansys流体分析实例
ANSYS流体分析实例简介ANSYS是一款广泛应用于工程设计与分析的软件,其中包括了流体分析功能。
本文将通过一个实例来介绍如何使用ANSYS进行流体分析。
实例背景在工程中,流体分析是一项重要的任务,可以帮助工程师了解流体在系统中的行为,并优化系统设计。
本实例中,我们将以一辆汽车进行流体分析,以了解车辆行驶时的气流情况,以及如何改善车辆的气动性能。
前提条件在进行流体分析之前,我们需要准备以下前提条件:1.安装ANSYS软件:确保正确安装并配置了ANSYS软件,包括流体分析模块。
2.几何模型:准备好汽车的几何模型,可以将其导入到ANSYS软件中进行分析。
分析步骤步骤1:导入几何模型首先,打开ANSYS软件并创建一个新的流体分析项目。
然后,从菜单中选择“几何导入”选项,并导入汽车的几何模型文件。
确保几何模型正确导入,并对其进行必要的调整。
步骤2:设置边界条件在进行流体分析之前,我们需要设置边界条件。
首先,选择汽车模型的表面,并定义其为壁面。
然后,选择汽车周围的环境空间,并定义其为流体区域。
根据实际情况,可以设置不同的边界条件,如进口、出口、壁面摩擦等。
步骤3:设置流体模型接下来,我们需要设置流体模型。
选择合适的流体模型,并设置相关参数。
根据具体情况,可以选择不同的流体模型,如气体流动模型、液体流动模型等。
步骤4:求解流动方程在完成边界条件和流体模型的设置后,我们需要对流动方程进行求解。
选择适当的求解器,并设置求解选项。
可以选择稳态求解或者非稳态求解,根据需要设置相应的时间步长和收敛准则。
步骤5:分析结果当求解完成后,我们可以对结果进行分析。
ANSYS软件提供了丰富的后处理工具,可以直观地显示流场分布、压力分布、速度分布等。
通过对结果的分析,可以了解汽车周围的气流情况,并评估汽车的气动性能。
实例结果分析通过对汽车进行流体分析,我们可以获得以下结果:1.汽车周围的气流分布图:可以看到气流在汽车周围的分布情况,以及可能存在的流动分离、涡流等现象。
ansysfluent中文版流体计算工程案例详解
ansysfluent中文版流体计算工程案例详解以汽车空气动力学为例,我们可以利用ANSYS Fluent来模拟车辆行驶过程中的风阻和气动性能。
首先,我们需要建立车辆的几何模型,并进行网格划分。
网格划分的精度和密度直接影响到计算结果的准确性。
在划分网格时,我们需要考虑到车辆外形的复杂性以及细节特征,如轮胎、后视镜等。
建立几何模型和划分网格后,我们可以导入该模型并设置初始条件。
初始条件包括初始流速、压力和温度等。
接下来,我们需要设置流体物性,如空气的密度、粘度和热导率等。
在进行计算之前,我们还需要设置边界条件。
车辆表面通常设定为无滑移壁面,即在边界处满足流速为零的条件。
此外,我们还需要设置出口条件来模拟车辆行驶过程中的空气流动。
出口条件可以设定为自由出流或常数质量流率出流。
此外,我们还可以设置车辆的速度和方向等边界条件。
设置完边界条件后,我们可以开始求解流体力学方程。
ANSYS Fluent使用的是控制方程的有限差分形式来近似求解。
利用迭代算法,可以逐步优化流场的精度和稳定性,直至达到收敛条件。
在求解过程中,我们可以通过图形输出和数据记录等方式来观察和分析结果。
图形输出可以显示出流场、压力分布、速度分布和湍流特性等。
数据记录可以提供流场参数的详细信息,如压力、温度、速度和质量流率等。
通过以上步骤,我们可以获得汽车在不同速度下的风阻系数、力矩和气动特性等重要参数。
这些结果可以为汽车的空气动力学设计和优化提供依据。
综上所述,ANSYS Fluent可以应用于各种流体力学计算工程。
通过几何建模、网格划分、边界条件设置、流体力学方程和求解等步骤,我们可以对流动过程进行模拟和分析,并获得各种流场参数。
这些参数对于优化设计、性能评估和产品改进等方面具有重要意义。
ansys fluent实例详解
ansys fluent实例详解
ANSYS Fluent是一款流体动力学模拟软件,适用于广泛的流体动力学分析和优化,如流场分析、传热分析、反应器分析和多相流分析等。
下面我们来详细介绍一下ANSYS Fluent实例。
1. 加热器模拟
在加热器模拟中,我们需要对流动领域进行分析。
通过ANSYS Fluent,我们可以对加热器的流场、温度分布和速度分布进行分析。
在这个模拟中,我们需要输入材料的物理性质、几何结构和热负载,然后进行计算。
最终,我们可以得到加热器内的流场分布和其它相关的计算结果。
2. 管道流动模拟
3. 燃烧模拟
在燃烧模拟中,我们需要对燃烧过程进行分析。
利用ANSYS Fluent,我们可以输入燃料和氧气的初始条件,然后进行数值模拟。
我们可以得到燃烧的温度、压力、燃料和氧气的比例以及产生的废气等相关的计算结果。
4. 风扇模拟
5. 船舶流场模拟
总之,ANSYS Fluent实例可以应用于多种领域,如化工、机械、航空航天、能源、汽车等。
利用它可以帮助我们更好地了解流体行为和流体流动中的一些问题,并且优化设计和工程流程。
ansys fluent 2020 案例模型
【序言】ANSYS Fluent 2020是一款广泛应用于工程领域的计算流体力学(CFD)软件,具有强大的模拟功能和广泛的应用范围。
本文将介绍ANSYS Fluent 2020在不同领域的具体案例模型,通过这些案例模型的分析,可以更好地了解如何在实际工程中应用ANSYS Fluent 2020进行流体力学模拟。
【一、航空航天领域】1.1 飞机机翼气动特性模拟在航空航天领域,飞机的气动特性对飞行性能具有重要影响。
使用ANSYS Fluent 2020可以建立飞机机翼的流体力学模型,通过对气流在机翼表面的流动状况进行模拟,可以分析机翼的升力、阻力和气动效率等重要参数。
1.2 空气动力学仿真除了飞机机翼,ANSYS Fluent 2020还可用于模拟飞机的整机空气动力学特性。
通过建立飞机外形的三维流体力学模型,可以分析飞机在不同飞行状态下的气动效应,从而为飞机设计和改进提供重要的参考数据。
【二、汽车工程领域】2.1 汽车车身空气动力学仿真在汽车工程领域,ANSYS Fluent 2020可以用于模拟汽车车身的空气动力学特性。
通过建立汽车外形的流体力学模型,可以分析汽车在行驶过程中的空气阻力、升力和气动噪音等问题,为汽车设计优化提供科学依据。
2.2 发动机流场模拟除了汽车车身,ANSYS Fluent 2020还可用于模拟内燃机的燃烧过程和排气流场。
通过对发动机内部流动的数值模拟,可以优化燃烧过程、提高发动机效率,同时减少尾气排放和噪音产生。
【三、能源与环境领域】3.1 风力发电机叶片流场模拟在风能领域,ANSYS Fluent 2020可用于模拟风力发电机叶片的流场特性。
通过对叶片表面气流的详细分析,可以优化叶片设计,提高风力发电机的转化效率,减少杂音和振动。
3.2 污染物扩散模拟在环境保护领域,ANSYS Fluent 2020可以用于模拟大气污染物的扩散情况。
通过建立城市或工业区域的空气流动模型,可以预测污染物的扩散范围和浓度分布,为环境评估和污染防治提供科学依据。
ANSYS CFD管道流体分析经典算例 Fluid
Fluid #2: Velocity analysis of fluid flow in a channel USING FLOTRAN Introduction:In this example you will model fluid flow in a channelPhysical Problem:Compute and plot the velocity distribution within the elbow. Assume that the flow is uniform at both the inlet and the outlet sections and that the elbow has uniform depth.Problem Description:T he channel has dimensions as shown in the figureThe flow velocity as the inlet is 10 cm/sUse the continuity equation to compute the flow velocity at exitObjective:T o plot the velocity profile in the channelT o plot the velocity profile across the elbowYou are required to hand in print outs for the aboveFigure:IMPORTANT: Convert all dimensions and forces into SI unitsSTARTING ANSYSC lick on ANSYS 6.1in the programs menu.S elect Interactive.T he following menu comes up. Enter the working directory. All your files will be stored in this directory. Also under UseDefault Memory Model make sure the values 64 for Total Workspace, and 32 for Database are entered. To change these values unclick Use Default Memory ModelMODELING THE STRUCTUREG o to the ANSYS Utility Menu (the top bar)Click Workplane>W P Settings…The following window comes up:o Check the Cartesian and Grid Only buttonso Enter the values shown in the figure aboveGo to the ANSYS Main Menu (on the left hand side of the screen) and click Preprocessor>Modeling>Create>Keypoints>On Working PlaneCreate keypoints corresponding to the vertices in the figure. The keypoints look like below.Now create lines joining these key points.M odeling>Create>Lines>Lines>Straight lineT he model looks like the one below.Now create fillets between lines L4-L5 and L1-L2.C lick Modeling>Create>Lines>Line Fillet. A pop-up window will now appear. Select lines 4 and 5. Click OK. The following window will appear:T his window assigns the fillet radius. Set this value to 0.1 m.Repeat this process of filleting for Lines 1 and 2.The model should look like this now:N ow make an area enclosed by these lines.M odeling>Create>Areas>Arbitrary>By LinesS elect all the lines and click OK. The model looks like the followingT he modeling of the problem is done.ELEMENT PROPERTIESSELECTING ELEMENT TYPE:Click Preprocessor>Element Type>Add/Edit/Delete... In the 'Element Types' window that opens click on Add... The following window opens.∙Type 1 in the Element type reference number.∙Click on Flotran CFD and select 2D Flotran 141. Click OK. Close the Element types window.∙So now we have selected Element type 1 to be solved using Flotran, the computational fluid dynamics portion of ANSYS. This finishes the selection of element type.DEFINE THE FLUID PROPERTIES:∙Go to Preprocessor>Flotran Set Up>Fluid Properties.∙On the box, shown below, set the first two input fields as Air-SI, and then click on OK. Another box will appear. Accept the default values by clicking OK.∙Now we’re ready to define the Material PropertiesMATERIAL PROPERTIESW e will model the fluid flow problem as a thermal conduction problem. The flow corresponds to heat flux, pressurecorresponds to temperature difference and permeability corresponds to conductance.Go to the ANSYS Main MenuClick Preprocessor>Material Props>Material Models. The following window will appearA s displayed, choose CFD>Density. The following window appears.F ill in 1.23 to set the density of Air. Click OK.Now choose CFD>Viscosity. The following window appears:N ow the Material 1 has the properties defined in the above table so the Material Models window may be closed.MESHING: DIVIDING THE CHANNEL INTO ELEMENTS:G o to Preprocessor>Meshing>Size Cntrls>ManualSize>Lines>All Lines.I n the window that comes up type 0.01 in the field for 'Element edge length'.N ow Click OK.Now go to Preprocessor>Meshing>Mesh>Areas>Free. Click the area and the OK. The mesh will look like thefollowing.BOUNDARY CONDITIONS AND CONSTRAINTSG o to Preprocessor>Loads>Define Loads>Apply>Fluid CFD>Velocity>On lines. Pick the left edge of theouter block and Click OK. The following window comes up.E nter 0.1 in the VX value field and click OK. The 0.1 corresponds to the velocity of 0.1 meter per second of air flowingfrom the left side.R epeat the above and set the Velocity to ZERO for the air along all of the edges of the pipe. (VX=VY=0 for all sides)O nce they have been applied, the pipe will look like this:∙Go to Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid CFD>Pressure DOF>On Lines.∙Pick the outlet line. (The horizontal line at the top of the area) Click OK.∙Enter 0 for the Pressure value.∙Now the Modeling of the problem is done.SOLUTIONG o to ANSYS Main Menu>Solution>Flotran Set Up>Execution Ctrl.∙The following window appears. Change the first input field value to 300, as shown. No other changes are needed. Click OK.G o to Solution>Run FLOTRAN.W ait for ANSYS to solve the problem.C lick on OK and close the 'Information' window.POST-PROCESSINGP lotting the velocity distribution…Go to General Postproc>Read Results>Last Set.Then go to General Postproc>Plot Results>Contour Plot>Nodal Solution. The following window appears:∙Select DOF Solution and Velocity VSUM and Click OK.∙This is what the solution should look like:∙Next, go to Main Menu>General Postproc>Plot Results>Vector Plot>Predefined.The following window will appear:∙Select OK to accept the defaults. This will display the vector plot to compare to the solution of the same tutorial solved using the Heat Flux analogy. Note: This analysis is FAR more precise as shown by the followingsolution:∙Go to Main Menu>General Postproc>Path Operations>Define Path>By Nodes∙Pick points at the ends of the elbow as shown. We will graph the velocity distribution along the line joiningthese two points.∙The following window comes up.∙Enter the values as shown.∙Now go to Main Menu>General Postproc>Path Operations>Map onto Path. The following window comes up.∙Now go to Main Menu>General Postproc>Path Operations>Plot Path Items>On Graph.∙The following window comes up.∙Select VELOCITY and click OK.∙The graph will look as follows:。
FLUENT算例 (3)
三维圆管紊流流动状况的数值模拟分析在工程和生活中,圆管内的流动是最常见也是最简单的一种流动,圆管流动有层流和紊流两种流动状况。
层流,即液体质点作有序的线状运动,彼此互不混掺的流动;紊流,即液体质点流动的轨迹极为紊乱,质点相互掺混、碰撞的流动。
雷诺数是判别流体流动状态的准则数。
本研究用CFD 软件来模拟研究三维圆管的紊流流动状况,主要对流速分布和压强分布作出分析。
1 物理模型三维圆管长2000mm l =,直径100mm d =。
流体介质:水,其运动粘度系数62110m /s ν-=⨯。
Inlet :流速入口,10.005m /s υ=,20.1m /s υ= Outlet :压强出口Wall :光滑壁面,无滑移2 在ICEM CFD 中建立模型2.1 首先建立三维圆管的几何模型Geometry2.2 做Blocking因为截面为圆形,故需做“O ”型网格。
2.3 划分网格mesh注意检查网格质量。
在未加密的情况下,网格质量不是很好,如下图因管流存在边界层,故需对边界进行加密,网格质量有所提升,如下图2.4 生成非结构化网格,输出fluent.msh 等相关文件3 数值模拟原理紊流流动当以水流以流速20.1m /s υ=,从Inlet 方向流入圆管,可计算出雷诺数10000υdRe ν==,故圆管内流动为紊流。
假设水的粘性为常数(运动粘度系数62110m /s ν-=⨯)、不可压流体,圆管光滑,则流动的控制方程如下:①质量守恒方程:()()()0u v w t x y zρρρρ∂∂∂∂+++=∂∂∂∂ (0-1)②动量守恒方程:2()()()()()()()()()()[]u uu uv uw u u ut x y z x x y y z z u u v u w p x y z xρρρρμμμρρρ∂∂∂∂∂∂∂∂∂∂+++=++∂∂∂∂∂∂∂∂∂∂'''''∂∂∂∂+----∂∂∂∂ (0-2)2()()()()()()()()()()[]v vu vv vw v v v t x y z x x y y z z u v v v w px y z yρρρρμμμρρρ∂∂∂∂∂∂∂∂∂∂+++=++∂∂∂∂∂∂∂∂∂∂'''''∂∂∂∂+----∂∂∂∂ (0-3)2()()()()()()()()()()[]w wu wv ww w w w t x y z x x y y z z u w v w w px y z zρρρρμμμρρρ∂∂∂∂∂∂∂∂∂∂+++=++∂∂∂∂∂∂∂∂∂∂'''''∂∂∂∂+----∂∂∂∂ (0-4)③湍动能方程:()()()()[())][())][())]t t k k t k k k ku kv kw k k t x y z x x y yk G z zμμρρρρμμσσμμρεσ∂∂∂∂∂∂∂∂+++=+++∂∂∂∂∂∂∂∂∂∂+++-∂∂ (0-5)④湍能耗散率方程:212()()()()[())][())][())]t t k k t k k u v w t x y z x x y y C G C z z k kεεμμρερερερεεεμμσσμεεεμρσ∂∂∂∂∂∂∂∂+++=+++∂∂∂∂∂∂∂∂∂∂+++-∂∂ (0-6)式中,ρ为密度,u 、ν、w 是流速矢量在x 、y 和z 方向的分量,p 为流体微元体上的压强。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ansys fluent中文版流体计算工程案例详解
ANSYS Fluent是一种流体计算动力学软件,可用于解决各种
流体力学问题。
本文将详细介绍ANSYS Fluent中文版的流体
计算工程案例,包括案例的基本背景、模拟过程和结果分析。
这些案例旨在帮助用户深入了解ANSYS Fluent的使用方法和
流体计算工程实践。
一个典型的案例是流体在管道中的流动。
该案例背景是,一根长直管道内有水流动,管道的直径为0.1米,长度为10米。
水的初始速度为1 m/s,管道的壁面是光滑的,管道两端的压
差为100Pa。
现在需要使用ANSYS Fluent模拟该流体流动过程,并进一步分析不同参数对流动的影响。
首先,在ANSYS Fluent中创建一个新的仿真项目,并选择“仿真”模块。
在界面上点击“新建”按钮,在弹出的对话框中填写
相应的参数,例如案例名称、计算器类型和尺寸单位。
点击“确定”后,进入模拟设置页面。
首先,需要定义获得流动场稳定解所需的物理模型和求解方法。
在“物理模型”选项卡中,选择“连续相”和“非恒定模型”。
在“湍流模型”中选择某种适合的模型,例如k-ε模型。
在“重力”
选项卡中,定义流体的密度和重力加速度。
接下来,在“模型”选项卡中,定义管道的几何和边界条件。
选择“管道”作为流体领域的几何模型,并定义长度、直径和内壁
面的润滑系数。
在“边界”选项卡中,定义管道两端的入口和出
口条件,例如速度和压力。
将管道两端的压力差设置为100Pa,
在入口处设置水的初始速度为1 m/s。
在出口处选择“出流”边
界条件。
完成几何和边界条件的定义后,点击“模拟”选项卡进入模拟设
置界面。
在“求解控制”中,设置计算时间步长和迭代次数。
选
择合适的网格划分方法,并进行网格划分。
点击“网格”选项卡,选择合适的网格类型,并进行网格划分。
在划分网格后,可以使用“导入”按钮导入网格文件,并进行网格优化。
完成设置后,点击“计算”按钮开始进行模拟计算。
在计算过程中,可以实时观察流体场的变化情况,并通过Fluent Post-processing工具进行结果分析。
在结果分析中,可以得到管道
内流体的速度、压力和流量等参数的分布情况,并进行必要的后处理。
在本案例中,可以通过改变管道直径、长度、入口速度和壁面条件等参数,来进一步分析它们对流体流动的影响。
例如,可以通过改变管道直径来研究雷诺数对流动的影响;可以改变管道长度来研究阻力损失的变化规律。
总结来说,ANSYS Fluent中文版提供了强大的流体计算功能,通过模拟案例可以深入了解其使用方法和流体计算工程实践。
本文详细介绍了管道流动的案例背景、模拟过程和结果分析,旨在帮助用户更好地掌握ANSYS Fluent的使用。
通过对不同
参数的研究,可以进一步提高流体计算工程的准确性和可靠性。