高教版中职数学基础模块上册:3.2《函数的性质》优秀教案

合集下载

高教版中职教材—数学(基础模块)(上册)电子教(学)案

高教版中职教材—数学(基础模块)(上册)电子教(学)案

【课题】1.1 集合的概念【教学目标】知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合的表示法.【教学难点】集合表示法的选择与规范书写.【教学设计】(1)通过生活中的实例导入集合与元素的概念;(2)引导学生自然地认识集合与元素的关系;(3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;(4)通过练习,巩固知识.(5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】},99,正偶数集可以表示为}2,4,6,.0的解集;)所有奇数组成的集合;)由第一象限所有的点组成的集合.用描述法表示集合关键是找出元素的特征性质.0得12x-,1 2⎫-⎬⎭;)奇数集合}∈Z;)第一象限所有的点组成的集合为(){,x y x>的解集.强化思想本次课学了哪些内容?重点和难点各是什么?【课题】1.2 集合之间的关系【教学目标】知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合与集合间的关系及其相关符号表示.【教学难点】真子集的概念.【教学设计】(1)从复习上节课的学习内容入手,通过实际问题导入知识;(2)通过实际问题引导学生认识真子集,突破难点;(3)通过简单的实例,认识集合的相等关系;(4)为学生们提供观察和操作的机会,加深对知识的理解与掌握.【教学备品】教学课件.【课时安排】2课时.(90分钟) 【教学过程】}6x<.是用来表示集合与集合之间关系的符号;”是用来表示元素与集合之间关系的符号.首先要分清楚对象,然后再根据关系,正确选用符号.的元素,因此}6x<的元素,}6x<.}2的子集,并且集合叫做集合AB(或B A),读作“.空集是任何非空集合的真子集.对于集合A、B、C,如果C A {1,3,5}*巩固知识典型例题例5 用适当的符号填空:⑴{1,3,5} {1,2,3,4,5,6};⑵2x x={3,-3};{|9}⑶{2} { x| |x|=2 };⑷2 N;⑸a{ a };⑹{0} ;⑺{1,1}-2x x+=.{|10}解⑴{1,3,5}{1,2,3,4,5,6};⑵{x|x2=9}={3,-3};⑶ 因为{|2}{2,2}x x ==-,所以{2}{2}x x =; ⑷ 2∈N ; ⑸ a ∈{a }; ⑹ {0};⑺ 因为2{|10}x x +==,所以{1,1}-2{|10}x x +=.【课题】 1.3集合的运算(1)【教学目标】知识目标:(1)理解并集与交集的概念; (2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.【教学重点】交集与并集.【教学难点】用描述法表示集合的交集与并集.【教学设计】(1)通过生活中的实例导入交集与并集的概念,提高学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲与练结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过程行为行为意图间B={王燕,李炎,王勇,孙颖};C={王燕,王勇}.那么这三个集合之间有什么关系?问题3 集合A={直角三角形};B={等腰三角形};C={等腰直角三角形}.那么这三个集合之间有什么关系?解决通过上面的三个问题的思考,可以看出集合C中的元素是由既属于集合A又属于集合B中的所有元素构成的,也就是由集合A、B的相同元素所组成的,这时,将C称作是A与B 的交集.引导分析归纳总结自我分析了解式启发学生思考集合元素之间的关系5*动脑思考探索新知一般地,对于两个给定的集合A、B,由集合A、B的相同元素所组成的集合叫做A与B的交集,记作A B,读作“A 交B”.即{}A B x x A x B=∈∈且.集合A与集合B的交集可用下图表示为:求两个集合交集的运算叫做交运算.总结归纳仔细分析讲解关键词语强调图像含义思考理解记忆观察带领学生总结三个问题的共同点得到交集的定义10*巩固知识典型例题过 程行为 行为 意图 间例1 已知集合A ,B ,求A ∩B . (1) A ={1,2},B ={2,3}; (2) A ={a ,b },B ={c ,d , e , f }; (3) A ={1,3,5},B = ∅; (4) A ={2,4},B ={1,2,3,4}.分析 集合都是由列举法表示的,因为 A ∩B 是由集合A 和集合B 中相同的元素组成的集合,所以可以通过列举出集合的所有相同元素得到集合的交集.解 (1) 相同元素是2,A ∩B ={1,2}∩{2,3 }={2};(2) 没有相同元素A ∩B ={a , b }∩{c , d , e , f }=∅; (3) 因为A 是含有三个元素的集合, ∅是不含任何元素的空集,所以它们的交集是不含任何元素的空集,即A ∩B =∅;(4) 因为A 中的每一个元素的都是集合B 中的元素,所以A ∩B =A .例2设(){},|0A x y x y =+=,(){},|4B x y x y =-=,求AB .分析 集合A 表示方程0x y +=的解集;集合B 表示方程4x y -=的解集.两个解集的交集就是二元一次方程组0,4x y x y +=⎧⎨-=⎩的解集. 解 解方程组0,4.x y x y +=⎧⎨-=⎩得2,2x y =⎧⎨=-⎩.所以(){}2,2AB =-.例3 设{}|12A x x =-<,{}|03B x x =<,求AB .分析 这两个集合都是用描述法表示的集合,并且无法列举出集合的元素.我们知道,这两个集合都可以在数轴上表示出来,如下图所示.观察图形可以得到这两个集合的交集.解 {}{}|12|03AB x x x x =-<<{}|02x x =<.说明 强调 引领 讲解说明 引领 强调含义观察 思考 主动 求解 观察 思考 求解 领会通过 例题 进一 步领 会交 集 注意 观察 学生 是否 理解 知识 点 复习 方程 组的 解法 突出 数轴 的作 用 强调 数形 结合B.}y=,求B.23巡视}4x,求A B.指导11名,那么该班有多少名介绍={该班团员};={该班非团B.}2,}4B x,求A B.整体建构思考并回答下面的问题:.集合的并集和交集有什么区别?(含义和符号).在进行集合的并运算和交运算时各自的特点是什么?过 程行为 行为 意图 间B 的所有元素组成的集合叫做集合A 与集合B 的并集{}B x A x x B A ∈∈=或 ;(2)交运算是寻找两个集合都有的公共部分,并运算是将两个集合所有的元素进行合并.(3)列举法求解时要不重不漏,描述法求解时要利用好数轴并注意端点的处理.归纳强调 回答 理解 强化 的形 式强 调重 点突 破难 点70 *巩固知识 典型例题 例5 设{}{}2,1,0,1,5,3,2-==B A ,求B A ,B A . 解 {}{}{}22,1,0,15,3,2=-= B A ;{}{}2,1,0,15,3,2-= B A {}5,3,2,1,0,1-=.例6 设{0{1A x x B x x =<=<≤2},≤3},求B A ,B A . 解 将集合A 、B 在数轴上表示:{1AB x x =<≤2},{0AB x x =<≤3}.引领 分析 讲解 说明 领会 思考 求解进行 并交 的对 比例 题讲 解巩 固所 归纳 的强 化点75 *归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么? *自我反思 目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?1.{}{}1,0,1,2,0,2,4,6A B =-=,求B A ,B A .2.{}{}22,04A x xB x x=-<=,求B A ,B A .引导 提问 巡视 指导 回忆 反思 动手 求解 培养 学生 总结 反思 学习 过程 的能 力 85 *继续探索 活动探究(1)读书部分: 教材章节1.3;【课题】1.3集合的运算(2)【教学目标】知识目标:(1)理解全集与补集的概念;(2)会求集合的补集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过全集与补集问题的研究,培养学生的数学思维能力.【教学重点】集合的补运算.【教学难点】集合并、交、补的综合运算.【教学设计】(1)通过生活中的实例导入全集与补集的概念,提高学生的学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲练结合,数形结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】B,A B.}2,}4明确=,求A B,A B.B x下面我们将学习另外一种集合的运算.介绍兴趣导入过 程行为 行为 意图 间结论可以看到,P 、Q 都是U 的子集,并且集合Q 是由属于集合U 但不属于集合P 的元素所组成的集合.总结 归纳领会素的 关系15*动脑思考 探索新知 概念如果一个集合含有我们所研究的各个集合的全部元素,在研究过程中,可以将这个集合叫做全集,一般用U 来表示,所研究的各个集合都是这个集合的子集.在研究数集时,常把实数集R 作为全集.如果集合A 是全集U 的子集,那么,由U 中不属于A 的所有元素组成的集合叫做A 在全集U 中的补集. 表示集合A 在全集U 中的补集记作UA ,读作“A 在U 中的补集”.即{}|U A x x U x A =∈∉且.如果从上下文看全集U 是明确的,特别是当全集U 为实数集R 时,可以省略补集符号中的U ,将UA 简记为A ,读作“A 的补集”.集合A 在全集U 中的补集的图形表示,如下图所示:求集合A 在全集U 中的补集的运算叫做补运算.仔细 分析 讲解强调 引导说明思考 理解 记忆 观察 领会特别 注意 讲解 关键 词的 含义 强调 表示 方法 的书 写规 范性 充分 利用 图形 的直 观性20*巩固知识 典型例题通过过 程行为 行为 意图 间例1设{}0,1,2,3,4,5,6,7,8,9U =,{}1,3,4,5A =,{}3,5,7,8B =.求A U及B U .分析 集合A 的补集是由属于全集U 而且不属于集合A 的元素组成的集合. 解{}0,2,6,7,8,9A =U ;{}0,1,2,4,6,9B =U .例2 设U =R ,{}|12A x x =-<,求A .分析 作出集合A 在数轴上的表示,观察图形可以得到A .解 {}|12A x xx =->或.说明 通过观察图形求补集时,要特别注意端点的取舍.本题中,因为端点−1不属于集合A ,所以−1属于其补集A ;因为端点2属于集合A ,所以2不属于其补集A .由补集定义和上面的例题,可以得到: 对于非空集合A :A ∩(UA )=∅,A ∪(UA )=U ,U U=∅,U ∅=U ,U(UA )=A .说明讲解 引领引导 分析 讲解说明 理解观察 思考 主动 求解 观察 思考 理解 自我 总结例题 进一 步领 会补 集的 含义 及其 运算 特点 突出 数轴 的作 用 交给 学生 自我 发现 归纳35*运用知识 强化练习 教材 练习1.3.31.设{}U =小于10的正整数,{}147A =,,,求UA .2.设U R =,{}|24A x x=-,求A .提问巡视 指导互动 求解 交流反馈 学习 效果45*理论升华 整体建构以学A U,B U ,()()ABU U ,)()UU A B,()U A B ,()A B U.分析 这些集合都是用列举法表示的,可以通过列举集合的元素分别得到所求的集合. 解{}0,2,6,7,8,9A =U ;{}0,1,2,4,6,9B =U ()(){}0,2,6,9UU A B =; ()(){}0,1,2,4,6,7,8,9UU A B=因为{}3,5AB =,所以 (){0,1,2,4,6,7,8,9U AB =因为{1,3,4,5,7,8AB =(){0,2,6,9UA B =U A ,U B ,A B ,A B .分析 在理解集合运算的含义基础上,充分运用数轴的表示来进行求解.解 因为全集U =R ,A ={x | x U A ={x | U B ={x | {B x =-A B =R .B ,B ,UA ,U B ,()()U U A B ,()()U U A B .设{}|0180U αα=<<,{}|090A αα=<<,{}|90180αα=<<,求UA ,U B,()()U U A B ,)()U U A B .提问巡视 指导归纳小结 强化思想【课题】1.4 充要条件【教学目标】知识目标:了解“充分条件”、“必要条件”及“充要条件”.能力目标:通过对条件与结论的研究与判断,培养思维能力.【教学重点】(1)对“充分条件”、“必要条件”及“充要条件”的理解.(2)符号“⇒”,“⇐”,“⇔”的正确使用.【教学难点】“充分条件”、“必要条件”、“充要条件”的判定.【教学设计】(1)以学生的活动为主线.在条件与结论的关系的判断上,尽可能多的教给学生在独立尝试解决问题的基础上进行交流;(2)由易到难,具有层次性.从内涵上引导学生体会复合命题中条件和结论的关系. 【教学备品】教学课件.【课时安排】2课时.(90分钟) 【教学过程】【课题】2.1不等式的基本性质【教学目标】知识目标:⑴理解不等式的基本性质;⑵了解不等式基本性质的应用.能力目标:⑴了解比较两个实数大小的方法;⑵培养学生的数学思维能力和计算技能.【教学重点】⑴比较两个实数大小的方法;⑵不等式的基本性质.【教学难点】比较两个实数大小的方法.【教学设计】(1)以实例引入知识内容,提升学生的求知欲;(2)抓住解不等式的知识载体,复习与新知识学习相结合;(3)加强知识的巩固与练习,培养学生的思维能力.【教学备品】教学课件.【课时安排】1课时.(45分钟) 【教学过程】【课题】2.2区间【教学目标】知识目标:⑴掌握区间的概念;⑵用区间表示相关的集合.能力目标:通过数形结合的学习过程,培养学生的观察能力和数学思维能力.【教学重点】区间的概念.【教学难点】区间端点的取舍.【教学设计】⑴实例引入知识,提升学生的求知欲;⑵数形结合,提升认识;⑶通过知识的巩固与练习,培养学生的思维能力;⑷通过列表总结知识,提升认知水平.【教学备品】教学课件.【课时安排】1课时.(45分钟)【教学过程】}4x引导讲解过 程行为 行为 意图 间只含左端点的区间叫做右半开区间,如集合{|24}x x <表示的区间是右半开区间,用记号[2,4)表示;只含右端点的区间叫做左半开区间,如集合{|24}x x <表示的区间是左半开区间,用记号(2,4]表示.引入问题中,新时速旅客列车的运行速度值(单位:公里/小时)区间为(200,350).强调 细节领会强调 各区 间的 规范 书写10*巩固知识 典型例题例1 已知集合()1,4A =-,集合[0,5]B =,求:AB ,A B .解 两个集合的数轴表示如下图所示,(1,5]A B =-, [0,4)A B =.质疑 分析 讲解 思考 理解 复习 相关 集合 运算 知识 15 *运用知识 强化练习 教材练习2.2.11.已知集合(2,6)A =,集合()1,7B =-,求A B ,A B .2.已知集合[3,4]A =-,集合[1,6]B =,求A B ,A B .3. 已知集合(1,2]A =-,集合[0,3)B =,求A B ,A B .巡视辅导 思考 解题 交流 反馈 学习 效果20*动脑思考 明确新知 问题集合{|2}x x >可以用数轴上位于2右边的一段不包括端点的射线表示,如何用区间表示? 解决集合{|2}x x >表示的区间的左端点为2,不存在右端点, 质疑思考过 程行为 行为 意图 间为开区间,用记号(2,)+∞表示.其中符号“+∞”(读作“正无穷大”),表示右端点可以任意大,但是写不出具体的数.类似地,集合{|2}x x <表示的区间为开区间,用符号(,2)-∞表示(“-∞”读作“负无穷大”). 集合{|2}x x 表示的区间为右半开区间,用记号[2,)+∞表示;集合{|2}x x表示的区间为左半开区间,用记号(,2]-∞表示;实数集R 可以表示为开区间,用记号(,)-∞+∞表示. 注意“-∞”与“+∞”都是符号,而不是一个确切的数.讲解 说明 强调 细节领会 记忆 理解 明确学习 各种 区间25*巩固知识 典型例题例2 已知集合(,2)A =-∞,集合(,4]B =-∞,求AB ,A B .解 观察如下图所示的集合A 、B 的数轴表示,得 (1)(,4]AB B =-∞=;(2)(,2)A B A =-∞=.例3 设全集为R ,集合(0,3]A =,集合(2,)B =+∞, (1)求A ,B ;(2)求AB .解 观察如下图所示的集合A 、B 的数轴表示,得 (1) (,0](3,)A =-∞+∞,(,2]B =-∞; (2) (0,2]AB =.质疑 说明 讲解 启发 强调观察 思考 领会 主动 求解通过 例题 巩固 区间 的概 念 注意 规范 书写30*理论升华 整体建构B,A B.(0,3),求A,B,B A.巡视指导*归纳小结强化思想(1)本次课学了哪些内容?(2)通过本次课学习,你会解决哪些新问题了?引导【课题】2.3 一元二次不等式【教学目标】知识目标:⑴了解方程、不等式、函数的图像之间的联系;⑵掌握一元二次不等式的图像解法.能力目标:⑴通过对方程、不等式、函数的图像之间的联系的研究,培养学生的观察能力与数学思维能力;⑵通过求解一元二次不等式,培养学生的计算技能.【教学重点】⑴方程、不等式、函数的图像之间的联系;⑵一元二次不等式的解法.【教学难点】一元二次不等式的解法.【教学设计】⑴从复习一次函数图像、一元一次方程、一元一次不等式的联系入手;⑵类比观察一元二次函数图像,得到一元二次不等式的图像解法;⑶加强知识的巩固与练习,培养学生的数学思维能力;⑷讨论、交流、总结,培养团队精神,提升认知水平.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教学过程教师行为学生行为教学意图时间*揭示课题2.3 一元二次不等式*回顾思考复习导入问题一次函数的图像、一元一次方程与一元一次不等式之间存在着哪些联系?解决观察函数26y x=-的图像:介绍提出问题了解思考()0或()0(a≠感受新知二次函数的图像、一元二次方程与一元二次不等式之间存过 程行为 行为 意图 间解法利用一元二次函数2y ax bx c=++()0a >的图像可以解不等式20ax bx c ++>或20ax bx c ++<.(1)当240b ac ∆=->时,方程20ax bx c ++=有两个不相等的实数解1x 和2x 12()x x <,一元二次函数2y ax bx c =++的图像与x 轴有两个交点1(,0)x ,2(,0)x (如图(1)所示).此时,不等式20ax bx c ++<的解集是()12,x x ,不等式20a x bx c ++>的解集是12(,)(,)x x -∞+∞;(1) (2) (3) (2)当240b ac ∆=-=时,方程20ax bx c ++=有两个相等的实数解0x ,一元二次函数2y ax bx c =++的图像与x 轴只有一个交点0(,0)x (如图(2)所示).此时,不等式20ax bx c ++<的解集是∅;不等式20ax bx c ++>的解集是00(,)(,)x x -∞+∞.(3)当240b ac ∆=-<时,方程20ax bx c ++=没有实数解,一元二次函数2y ax bx c =++的图像与x 轴没有交点(如图(3)所示).此时,不等式20ax bx c ++<的解集是∅;不等式20ax bx c ++>的解集是R .归纳 总结讲解 分析 强调 讲解思考 观察 理解 领会 记忆引导 学生 经历 由特 殊到 一般 的提 炼过 程 强化 图像 作用 熟练 数形 结合 应用2(,)x +∞0(,)x +∞0([)2,x +∞R 0<12,)x∅]12,x }0x224b ac x =-.典型例题解下列各一元二次不等式:0.首先判定二次项系数是否为正数,再研究对应一元二次方程解的情况,最后对照表格写出不等式的解集.26x --=0的解(3,)+∞.)29x <可化为290-=的解集为)253x x -两边同乘1-,得3。

最新中职数学教材基础模块上册第三章:函数教案(公共基础类)数学

最新中职数学教材基础模块上册第三章:函数教案(公共基础类)数学

第三章函数3.1.1函数的概念【教学目标】1. 理解函数的概念,会求简单函数的定义域.2. 理解函数符号y=f (x)的意义,会求函数在x=a处的函数值.3. 通过教学,渗透一切事物相互联系和相互制约的辩证唯物主义观点.【教学重点】函数的概念及两要素,会求函数在x=a处的函数值,求简单函数的定义域.【教学难点】用集合的观点理解函数的概念.【教学方法】这节课主要采用问题解决法和分组教学法.运用现代化教学手段,通过两个实例,分析抽象出函数概念,使学生更容易理解函数关系的实质以及函数两要素.然后通过求函数值与定义域的两类题目,深化对函数概念的理解.【教学过程】3.1.2函数的表示方法【教学目标】1. 了解函数的解析法、列表法、图象法三种主要表示方法.2. 已知函数解析式会用描点法作简单函数的图象.3. 培养学生数形结合、分类讨论的数学思想方法,通过小组合作培养学生的协作能力.【教学重点】函数的三种表示方法;作函数图象.【教学难点】作函数图象.【教学方法】这节课主要采用问题解决法和分组讨论教学法.本节课先借助一个实例,简要介绍函数的三种表示方法,进一步刻画函数概念;然后通过两个例题,使学生初步感知如何由解析式分析函数性质以指导画图,避免画图的盲目性.通过本节教学,使学生初步了解数形结合研究函数的方法,为下面学习函数的单调性和奇偶性做铺垫.【教学过程】新课的?哪个变量作为点的横坐标?哪个变量作为点的纵坐标?(2) 函数的定义域是什么?(3) s的值能大于200吗?能是负值吗?为什么?函数的值域是什么?(4) 距离s 随行驶时间t 的增大有怎样的变化?4.例1作函数y=x3 的图象.解列表画图5.结合例1完成下列问题:(1) 函数y=x3 的定义域、值域是什么?(2) 函数值y随x的增大有怎样的变化?(3) f(a)与f(-a)相等吗?有怎样的关系?(4) 函数图象是轴对称图形还是中心对称图形?6.例2作函数y=1x2的图象.解列表画图教师引导学生利用函数图象分析回答函数的性质.师:由上例可以看出,我们在列表、作图时,要认真分析函数,避免盲目列表计算.函数的图象有利于我们研究函数的性质,如本例中函数的定义域、值域以及y随x增大而增大等性质.教师引导学生分析:函数y=x3 的定义域是R,当x>0时,y>0,这时函数的图象在第一象限,y 的值随着x 的值增大而增大;当x<0时,y<0,这时函数的图象在第三象限,y 的值随着x 的值减小而减小.教师引导学生完成列表、描点及连线,完成函数图象.师生合作完成例1,让学生体会取值前如何分析研究函数式的特点.学生分组讨论完成,从讨论中掌握分析函数性质的方法.力.本题的设置起到了承上启下的作用.为突破本节课难点而设计.问题(4)为下节引入函数的单调性做准备.让学生在作图过程中体会函数的性质,从做中学.尽可能把主动权交给学生,使学生在自主探索中发现问题解决问题.问题(3)(4)的设置是为引入函数的奇偶性作准备.3.1.3函数的单调性【教学目标】1.理解函数单调性的概念,掌握判断函数的单调性的方法.2.通过教学,使学生领会数形结合的数学方法;培养学生发现问题、分析问题、解决问题的能力.3.体验数学的严谨性,渗透由一般到特殊的辩证唯物主义观点.【教学重点】函数单调性的概念;学会运用图象法观察函数的单调性和用定义法证明一些函数的单调性.【教学难点】利用函数单调性的定义判断和证明函数的单调性.【教学方法】这节课主要采用类比教学法和分组教学法.教师用问题引导学生从函数图象的变化趋势类比得出增减函数的概念,然后对图象进行代数分析,得出用定义证明函数单调性的步骤.从形的直观感知到严密的代数分析,使学生领会数形结合研究函数的方法.借助两个证明题,深化学生对单调性概念的理解.【教学过程】环节教学内容师生互动设计意图导入从常见的美丽的建筑物图片入手,让学生感知数学的美,激发学生的学习兴趣.师:播放动画,师生共同欣赏后,引导学生观察部分曲线的变化趋势,引入课题.联系实际,激发兴趣.新1.课件展示下列函数图象师:提出问题,引导观察思考:1.观察图象的变化趋势怎样?2.你能看出当自变量增大或减少时函数值如何变化吗?生:观察动画,思考回答.从图象直观感知函数的单调性.课新课2.增函数与减函数的定义:增函数:在给定的区间上自变量增大(减少)时,函数值也随着增大(减少).减函数:在给定的区间上自变量增大(减少)时,函数值也随着减少(增大).3.例1给出函数y=f (x)的图象,如图所示,根据图象指出这个函数在哪个区间上是增函数?在哪个区间上是减函数?解函数y=f (x)在区间[-1,0],[2,3]上是减函数;在区间[0,1],[3,4]上是增函数.4.练习1(1) 观察教材P64 例1的函数图象,说出函数在(-∞,+∞)上是增函数还是减函数;(2) 观察教材P65 例2的函数图象,分别说出函数在(-∞,0)和(0,+∞)上是增函数还是减函数.5.设y=f (x),在给定的区间教师引导学生归纳增函数与减函数的定义.学生观察图象完成此题,掌握用图象来判断函数单调性的方法.教师强调,在说明函数单调性时,要指出明确的区间.学生回答,教师点评.通过观察函数图象直接给出增函数、减函数的定义,符合学生的特点,容易被学生接受.从观察直观图象入手,加深对单调性定义的理解,掌握用图象法判定函数单调性的方法,使学过的知识及时得到应用.通过练习1,让学生进一步掌握利用函数的图象来判断函数单调性的方法,从而提高学生的读图能力,并与前面学过的知识结合,对学过的函数有更新的认识.在此图象上任取两点A(x1,y1),B(x2,y2),记∆x=x2-x1,∆y=y2-y1.6.例2 证明函数f (x)=3 x教师带领学生结合增函数图象分析如何利用函数的解析式来判断一个函数是增函数.学生类比分析如何利用函数的解析式来判断一个函数是减函数.教师指出利用函数图象判断单调性的局限性,引导学生从函数解析式入手证明单调性的思路与步骤.教师讲解例题2,板书详细的解题过程.将增函数、减函数定义中的定性说明转化为定量分析.从而给出利用函数解析式来判断函数单调性的方法.启发学生思考,完成从直观到抽象、从感性思维到理性思维的升华.在板书例题的过程中,突出解题思路与步骤.通过例题解答,加深对函数单调性定义的理解,并自然而新课+2在区间(-∞,+∞)上是增函数.证明设x1,x2是任意两个不相等的实数,则∆x=x2-x1∆y=f (x2)-f (x1)=(3 x2+2)-(3 x1+2)=3(x2-x1),∆y∆x=3(x2-x1)x2-x1>0.因此,函数f (x)=3 x+2在区间(-∞,+∞)上是增函数.7.总结由函数的解析式判定函数单调性的步骤:S1 计算∆x和∆y;S2 计算k=∆y∆x.当k>0时,函数在这个区间上是增函数;当k<0时,函数在这个区间上是减函数.8.例3证明函数f (x)=1x在区间(0,+∞)上是减函数.证明:设x1,x2是任意两个不相等的正实数.因为∆x=x2-x1,∆y=f(x2)-f(x1)=1x2-1x1=2121xxxx-=-2112xxxx-=-21xxx∆.又因为x1 x2>0,所以∆y∆x=-211xx<0.因此,函数f (x)=x1在区间(0,+∞)上是减函数.教师引导学生总结解题步骤,可简记为:一设、二求、三判定.学生讨论并试解例题.老师点拨、解答学生疑难.然地将定义运用到判定函数单调性中,理论与实践相辅相成.突出重点,深化证明步骤,分解难点.通过学生讨论、老师点拨,顺利帮助学生判断∆y∆x的正负.巩固用函数解析式来判定单调性的思路和步骤.巩固理解,形成技能.新课9.练习2证明函数f (x)=3x在区间(-∞,0)上是减函数.学生模仿练习.小结1. 函数单调性的定义;2. 判定函数单调性的方法.学生阅读课本P66~68,畅谈本节课的收获.老师引导梳理,总结本节课的知识点.梳理总结也可针对学生薄弱或易错处进行强调和总结.作业教材P 69,练习A组第2题;练习B组第1、2题.巩固拓展.3.1.4函数的奇偶性【教学目标】1. 理解奇函数、偶函数的概念;掌握奇函数、偶函数的图象特征.2. 掌握判断函数奇偶性的方法.3. 通过教学,渗透数形结合思想,培养学生类比推理的能力,体会由具体到抽象、由特殊到一般的辩证唯物主义思想.【教学重点】奇偶性概念与函数奇偶性的判断.【教学难点】理解奇偶性概念与奇函数、偶函数的定义域.【教学方法】这节课主要采用类比教学法.先由两个具体的函数入手,引导学生发现函数f(x)在x与在-x的函数值之间的关系,由特殊到一般引出奇函数的定义,再由点的对称关系得出奇函数的图象特征.然后由学生自主探索,类比得出偶函数定义.结合定义与例题总结出判断函数奇偶性的步骤,在解题过程中深化对概念的理解.【教学过程】3.2.1一次、二次问题【教学目标】1. 通过实际问题感知一次、二次函数在实际生活中的应用.2. 培养学生从实际问题中抽象出数学模型并应用模型去解决实际问题的能力.3. 通过教学,培养学生应用数学的意识,提高学生分析问题、解决问题的能力.【教学重点】从实际问题中抽象简单的数学模型.【教学难点】从实际问题中抽象简单的数学模型.【教学方法】这节课主要采用问题解决法.教师引导学生对实际问题先用列表计算与画图的方法来直观感知,然后抽象成一次函数和二次函数来研究,通过教学,培养学生从实际问题中抽象出一次、二次函数模型并应用模型去解决实际问题的能力.【教学过程】3.2.2一次函数模型【教学目标】1. 掌握正比例函数和一次函数的关系;理解并掌握一次函数的性质.2. 培养学生数形结合研究函数性质的能力,渗透平移变换的数学思想.3. 体验数学的严谨性,培养学生理性分析问题的良好习惯.【教学重点】一次函数的性质.【教学难点】对正比例函数和直线的关系的理解.【教学方法】这节课主要采用讲练结合法.先定义一次函数,对特殊的一次函数——正比例函数,则采用由曲线与方程的角度来描述正比例函数与直线的关系,然后再考察一次函数与正比例函数的关系,从而得出一次函数的图象也是一条直线的结论,并结合函数的单调性深入分析一次函数的性质,将学生初中对具体的一次函数的认识上升到一般的理性结论.【教学过程】3.2.3二次函数模型【教学目标】1. 理解并掌握二次函数的图象和性质;了解二次函数与一元二次方程、一元二次不等式之间的关系;2. 通过教学,使学生初步掌握数形结合研究二次函数的方法;3. 渗透数形结合思想,渗透由特殊到一般的辩证唯物主义观点,培养学生观察分析、类比抽象的能力.【教学难点】函数对称性的分析与数形结合研究二次函数的方法.【教学方法】这节课主要采用启发式教学法和讲练结合法.本节课通过对例题中的二次三项式进行代数分析,探究二次函数性质的由来,使学生从初中对二次函数的直观感知上升到理性认识的高度.更重要的是在学习函数的一般通性之后,以二次函数为载体较系统地呈现数形结合研究函数的方法,为后面学习其它函数的性质奠定基础.【教学过程】新课观察图象并完成填空函数y=a x2的图象,当a>0时开口.当a<0时开口,对称轴是,顶点坐标是.函数是函数(用奇或偶填空).| a | 越大,开口越.例1研讨二次函数f (x)=12x2+4 x+6的性质与图象.解(1) 因为f (x)=12x2+4 x+6=12(x2+8 x+12)=12(x+4)2-2.由于对任意实数x,都有12(x+4)2≥0,所以 f (x)≥-2,并且,当x=-4时取等号,即f(-4)=-2.得出性质:x=-4时,取得最小值-2.记为y min=-2.点(-4,-2)是这个图象的顶点.(2) 当y=0时,12x2+4 x+6=0,x2+8 x+12=0,解得x1=-6,x2=-2.生:观察图象,小组合作讨论.然后每组选一名代表汇报各组的交流结果,最后师生一起汇总得出结论.师生共同解决例1,教师详细板书解题过程,带领学生仔细分析各个性质的由来.教师引导学生观察图象可得出:函数的对称轴是直线x=-4.师:这个结论是否是正确的呢?教师通过问题1、2,引导通过对例1中二次三项式的代数分析,使学生对二次函数的直观感知上升到理性认识的高度,更重要的是使学生掌握数形结合研究函数的方法,初步培养学生的画图、识图能力.分析图象与x轴的交点,一方面为描点作图,另一方面为下节研究函数与方程,不等式的关系做铺垫.对称性的教学设计是为了启发学生完成从直观到抽象、从2xy=2xy-=22xy=23xy=22xy-=23xy-=3.3函数的应用【教学目标】1. 会应用一次函数和二次函数解决有关简单实际问题.2. 培养学生建立简单的数学模型及应用模型去解决实际问题的能力.3. 通过教学,培养学生应用数学的意识,提高学生分析问题、解决问题的能力.【教学重点】应用函数知识解决一些简单的实际问题.【教学难点】从实际问题中抽象出函数模型.【教学方法】这节课主要采用讲练结合法.教师将四个例题与练习穿插在一起,教师引导与学生主动参与相结合,培养学生的审题能力,以及从实际问题中抽象出数学模型并应用模型去解决实际问题的能力.【教学过程】。

高教版中职教材—数学(基础模块)上册电子教案【完整版】(可编辑)

高教版中职教材—数学(基础模块)上册电子教案【完整版】(可编辑)

高教版中职教材—数学(基础模块)上册电子教案【完整版】【课题】1.1 集合的概念【教学目标】知识目标:(1)理解集合;会用适的法表示集合集合的表示法集合表示90分钟【教学过程】教学过程教师行为学生行为教学意图时间*新阶段学习导入语介绍中职阶段学习数学的必要性,数学的学习内容、学习方法、学习特点等等.同学们就要开始新的人生阶段了,很高兴可以和大家一起度过这段美好的时光.希望同学们可以通过自己不懈的努力,在毕业后能够找到一个合适的工作,能够独立生存,能够成为为家庭、为企业、为社会做出自我贡献的能工巧匠.当然要达到这样的目的需要你脚踏实地的认真的学做人、学做事,那么现在请让我们从学习开始……1.学习――旅程学习是一段旅程,对知识的探求永无止境,而且这段旅程可以从任何时候开始!未来的成功在现在脚下!2.老师――导游与大家一起开始这一段新的旅程、一起分享学习中的快乐、一起体会成长与进步的滋味.3.目的――运用我们应当能够理解数学,而且通过运用数学进行沟通和推理,在现实生活中应用数学来解决问题,养成一种数学上的自信心理.请不要害怕学数学,每个人都可以根据自己的能力和实际需要学好自己的数学.4.准备――必需品轻松愉快的心情、热情饱满的精神、全力以赴的态度、踏实努力的行动、科学认真的方法、及时真诚的交流.回答为什么要学数学?学什么样的数学?怎么学数学?介绍说明讲解说明倾听了解领会引领学生了解新阶段的数学学习特点重点是要树立学生的数学学习信心8 *揭示课题缤纷多彩的世界,众多繁杂的现象,需要我们去认识.将对象进行分类和归类,加强对其属性的认识,是解决复杂问题的重要手段之一.例如,按照使用功能分类存放物品,在取用时就十分方便.这就是我们将要研究学习的1.1集合.说明了解引入教学内容10 *创设情景兴趣导入问题某商店进了一批货,包括:面包、饼干、汉堡、彩笔、水笔、橡皮、果冻、薯片、裁纸刀、尺子.那么如何将这些商品放在指定的篮筐里?解决显然,面包、饼干、汉堡、果冻、薯片放在食品归纳面包、饼干、汉堡、果冻、薯片组成了食品播放课件质疑引导分析观看课件自我建构从实际事例使学生自然的走向知识点启发学生体会集合概念15 *动脑思考探索新知概念由某些确定的对象组成的整体叫做集合,简称集.组成集合的对象叫做这个集合的元素.如大于2并且小于5的自然数组成的集合是由哪些元素组成?…表示集合,小写英文字母…表示集合的元素.集合中的元素具有下列特点:互异性无序性:一个给定的集合中的元素排列无顺序;3 确定性的所有解;(4)不等式的所有解.解 1 由于小于10的自然数包括0、1、2、3、4、5、6、7、8、9十个数,它们是确定的对象,所以它们可以组成集合.(2)由于个子高没有具体的标准,对象是不确定的,因此不能组成集合.(3)方程的解是?1和1,它们是确定的对象,所以可以组成集合.(4)解不等式,得,它们是确定的对象,所以可以组成集合.类型由方程的所有解组成的集合叫做这个方程的解集.由不等式的所有解组成的集合叫做这个不等式的解集.像方程的解组成的集合那样,由有限个元素组成的集合叫做有限集.像不等式x-2 0的解组成的集合那样,由无限个元素组成的集合叫做无限集.像平面上与点O的距离为2 cm的所有点所有自然数组成的集合叫做自然数集,记作.所有正整数组成的集合叫做正整数集,记作或.所有整数组成的集合叫做整数集,记作.所有有理数组成的集合叫做有理数集,记作.所有实数组成的集合叫做实数集,记作.不含任何元素的集合叫做空集,记作.例如,方程x的实数解的集合是集合A的元素,记作(读作“属于A”),不是集合A的元素,记作(读作“不属于A”).集合中的对象(元素)必须是确定的.对于任何的一个对象,或者属于这个集合,或者不属于这个集合,二者必居其一.总结归纳讲解说明强调质疑分析讲解提问归纳说明引领强调讲解分析讲解理解领会记忆思考回答理解领会明确思考了解理解记忆领会带领学生理解整体个体意义为后习做准备通过例题进一步领会元素确定性观察学生是否理解知识点集合类型比较简单可以让学己分析强调各个数集的内涵和表示字母突出强调符号规范书写35 *运用知识强化练习练习1.1.11.用符号“”或“”填空:(1)?3 ,0.5 ,3 ;(2)1.5 ,?5 ,3 ;(3)?0.2 ,,7.21 ;(4)1.5 ,?1.2 ,.2.指出下列各集合中,哪个集合是空集?(1)方程的解集;(2)方程的解集.提问巡视指导思考动手求解交流及时了解学生知识掌握情况40 *创设情景兴趣导入问题不大于5的自然数不大于5的自然数只有0、1、2、3、4、5这6个,是可以一一列举的.(2)归纳当集合中元素可以一一列举质疑引导讲解总结思考自我分析自我建构用较简单的问题给学生参与学习的起点引导学生得出结论45 *动脑思考探索新知集合的表示有两种方法:(1)列举法.把集合的元素一一列举出来,写在花括号内,元素之间用逗号隔开.如不大于5的自然数.当集合为无限集或为元素很多的有限集时,在不发生误解的情况下可以采用省略的写法.例如,小于100的自然数集可以表示为,正偶数集可以表示为.(2)描述法.在花括号内画一条竖线,竖线的左侧写出集合的代表元素,竖线的右侧写出元素所具有的特征性质.如小于5的实数所组成的集合可表示为.如果从上下文能明显看出集合的元素为实数,那么可以将省略不写.如不等式的解集可以表示为.为了简便起见,有些集合在使用描述法表示时,可以省略竖线及其左边的代表元素,直接用中文来表示集合的特征性质.例如所有正奇数组成的集合可以表示为正奇数.仔细分析讲解关键词语强调说明理解记忆了解理解记忆了解带领学生总结集合两种表示方法特别注意强调写法的规范性50 *巩固知识典型例题例2 用列举法表示下列集合:(1)由大于且小于的所有偶数组成的集合;(2)方程的解集.分析这两个集合都是有限集.(1)题的元素可以直接列举出来;(2)题的元素需要解方程才能得到.解(1)集合表示为;(2)解方程得,.故方程解集为.例3 用描述法表示下列各集合:(1)不等式的解集;(2)所有奇数组成的集合;(3)由第一象限所有的点组成的集合.分析用描述法表示集合关键是找出元素的特征性质.(1)题解不等式就可以得到不等式解集元素的特征性质;(2)题奇数的特征性质是“元素都能写成的形式”.(3)题元素的特征性质是“为第一象限的点”,即横坐标与纵坐标都为正数.解(1)解不等式得,所以解集为;(2)奇数集合;(3)第一象限所有的点组成的集合为.说明强调引领讲解说明引领分析强调说明观察思考主动求解观察思考求解领会思考求解通过例题进一步领会集合的表示注意观察学生理解知识点突出表示法的书写要规范复习对应数学知识60 *运用知识强化练习教材练习1.1.21.用列举法表示下列各集合:(1)方程的解集;(2)方程的解集;(3)由数1,4,9,16,25组成的集合;(4)所有正奇数组成的集合.2.用描述法表示下列各集合:(1)大于3的实数所组成的集合;(2)方程的解集;(3)大于5的所有偶数所组成的集合;(4)不等式的解集.巡视指导动手求解检验学习的效果70 *理论升华整体建构本次课重点学习了集合的表示法:列举法、描述法,用列举法表示集合,元素清晰明了;用描述法表示集合,元素特征性质直观明确.因此表示集合时,要针对实际情况,选用合适的方法.例如,不等式(组)的解集,一般采用描述法来表示,方程(组)的解集,一般采用列举法来表示.总结归纳理解体会从整体再突出集合表示方法75 *巩固知识典型例题例4 用表示下列集合(1)方程x+5 0的解集;()不等式3x-7 5的解集(3)大于3且小于11的偶数组成的集合;()不大于5的所有实数组成的集合;1 ?5 ;2 x| x 4 ;3 4,6,8,10 ;4 x| x≤5 .引领分析讲解说明领会思考求解进行综合解巩固所归纳的强化点80*运用知识强化练习选用适当的方法表示出下列各集合:1 由大于10的所有自然数组成的集合;2 方程的解集;3 不等式的解集;4 平面直角坐标系中第二象限所有的点组成的集合;5 方程的解集;6 不等式组的解集.提问巡视指导归纳强调动手求解交流及时了解学生知识掌握情况85 *归纳小结强化思想本次课学了哪些内容?重点和难点各是什么?(1)本次课学了哪些内容?(2)通过本次课的学习,你会解决哪些新问题了?(3)在学习方法上有哪些体会?引导提问回忆反思培养学生总结学习过程88 *继续探索活动探究1 阅读理解:教材1.1,学习与训练1.1;2 书面作业:教材习题1.1,学习与训练1.1训练题;3 实践调查:探究生活中集合知识的应用说明记录90【课题】1.2 集合之间的关系【教学目标】知识目标:(1)()会90分钟【教学过程】教学过程教师行为学生行为教学意图时间*复习知识揭示课题前面学习了集合的相关问题,试着回忆下面的知识点:1.集合由某些确定的对象组成的整体.元素组成集合的对象.2.常用数集有哪些?用什么字母表示?3.集合的表示法1 列举法:在花括号内,一一列举集合的元素;2 描述法:代表元素|元素所具有的特征性质.4.元素与集合之间有属于或不属于的关系.”或“”填空:1 0 ;2 0 N;3 R;4 0.5 Z; 5 1 1,2,3 ; 2 x|x 1 ;(7)2 x|x 2k+1, kZ .质疑引导强调明确回忆加深回答对前面学习的内容进行复习有助于新内容的学5 *创设情景兴趣导入问题1.表示我班全体学生的集合,表示我班全体男学生的集合,那么,集合与集合之间存在什么关系呢?2.数学,语文,英语,计算机应用基础,体育与健康,物理,化学, N 数学,语文,英语,计算机应用基础,体育与健康,那么集合与集合N之间存在什么关系呢?3.Z与整数集N之间存在什么关系呢?解决显然,问题1中集合的元素(我班的男学生)肯定是集合的元素(我班的学生);问题2中集合的元素肯定是集合的元素;问题3中集合N的元素(自然数)肯定是集合Z的元素(整数).的元素肯定是集合的元素时称集合包含集合.两个集合之间的这种关系叫做包含关系.播放课件质疑引导分析观看课件理解自我建构用问题引导学生思考集合之间关系启发学生体会包含含义10 *动脑思考探索新知概念一般地,如果集合的元素都是集合的元素,那么称集合包含集合,并把集合叫做集合的子集.表示将集合包含集合记作或(读作“包含”或“包含于”).可以用下图表示出这两个集合之间的包含关系.拓展由子集的定义可知,任何一个集合都是它自身的子集,即.规定:空集是任何集合的子集,即.总结归纳说明强调引导介绍理解领会记忆观察了解带领学生理解包含意义特别介绍符号的规范性图形有助学生加深理解15 *巩固知识典型例题例1 用符号“”、“”、“”或“”填空:1 ;2 ;3 ;4 ;5 ;6 .分析“”与“”是用来表示集合与集合之间关系的符号;而“”与“”是用来表示元素与集合之间关系的符号.首先要分清楚对象,然后再根据关系,正确选用符号.解(1)集合的元素都是集合的元素,因此;(2)空集是任何集合的子集,因此;(3)自然数都是有理数,因此;(4)是实数,因此;(5)d不是集合的元素,因此;(6)集合的元素都是集合的元素,因此.说明引领讲解强调观察思考领会主动求解通过例题进一步指导学生元素与集合集合与集合关系的分类确定20 *运用知识强化练习教材练习1.2.1用符号“”、“”、“”或“”填空:(1);(2);(3);(4);(5);(6).提问巡视指导动手求解交流了解学生知识掌握情况25 *动脑思考探索新知概念如果集合B是集合A的子集,并且集合A中至少有一个元素不属于集合B,那么把集合B叫做集合A的真子集.表示记作或,读作“A真包含B”(或“B真包含于A”).拓展空集是任何非空集合的真子集.对于集合A、B、C,如果AB,BC,则AC *巩固知识典型例题例2选用适当的符号”或“”填空:1 1,3,5 __ 1,2,3,4,5 ;2 2 _ _ x| |x| 2 ;3 1 _ .解 1 1,3,5 1,2,3,4,5 ; 2 2 x| |x| 2 ; 31 .例3 设集合,试写出的所有子集,并指出其中的真子集.分析集合中有3个元素,可以分别列出空集、含1个元素的集合、含2个元素的集合、含3个元素的集合.解的所有子集为.除集合外,所有集合都是集合的真子集.说明讲解说明讲解强调主动求解思考理解通过例题进一步理解真包含的含义特别提醒注意空集35 *运用知识强化练习练习1.2.21.设集合,试写出的所有子集,并指出其中的真子集.2.设集合,集合,指出集合A与集合B之间的关系.巡视求解交流检验学习效果40 *创设情景兴趣导入问题设集合A x|x2-1 0 ,B -1,1 ,x2-1 0的解是x1 -1,x2 1,所以说集合A中的元素就是1,-1,可以看出集合A与集合B中的元素完全相同,集合A与集合B 相等.归纳集合A与集合B中的元素完全相同,只是表示方法不同,我们就说集合A与集合B 相等,即A B.质疑引导分析总结思考理解自我建构学生体会相等含义45 *动脑思考探索新知概念一般地,如果两个集合的元素完全相同,那么就说这两个集合相等.表示将集合与集合相等记作.拓展如果,同时,那么集合的元素都属于集合A,同时集合A的元素都属于集合,因此集合A与集合的元素完全相同,由集合相等的定义知.讲解强调说明领会记忆理解强调相等的本质含义50 *巩固知识典型例题例4 判断集合与集合的关系.分析要通过研究两个集合的元素之间的关系来判断这两个集合之间的关系.解由得或,所以集合A用列举法表示为;由得或,所以集合B用列举法表示为;可以看出,这两个集合的元素完全相同,因此它们相等,即.质疑提问分析引领思考主动求解总结归纳注意第一节中有关知识55 *运用知识强化练习判断集合A与B是否相等?1 A 0 ,B2 A …,-5,-3,-1,1,3,5,…, x| x 2m+1 ,mZ ;3 A x| x 2m-1 ,mZ , x| x 2m+1 ,mZ .巡视指导动手求解检验学习的效果60 *理论升华整体建构元素与集合关系:属于与不属于、;集合与集合关系:子集、真子集、相等、、;首先要分清楚对象,然后再根据关系,正确选用符号.总结理解体会从整体再次突出65 *巩固知识典型例题例5 用适当的符号填空 1,3,51,2,3,4,5,6; 3,-3 ⑶ 2 x| |x| 2 ;⑷ 2 N;⑸ a a ;⑹ 0 ?;⑺ .解; x|x2 9 3,-3 ⑷ 2∈N;⑸ a∈ a ;⑹ ?; ?,.引领分析质疑讲解说明领会思考求解强化巩固所归纳强化点,可以适当的教给学生完成,再进行核对75 *运用知识强化练习用适当的符号填空;(2);(3);(4);(5);(6);(7);(8).提问巡视指导求解汇总交流及时了解学生知识掌握情况80 *归纳小结强化思想本次课学了哪些内容?重点和难点各是什么?*自我反思目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?引导提问回忆反思培养学生学习过程能力85 *继续探索活动探究1 阅读:教材章节1.2;学习与训练1.2;2 书写:习题1.2,学习与训练1.2训练题;3 实践:寻找集合和集合关系的生活实例.说明记录90【课题】 1.3集合的运算(1)【教学目标】知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.【教学重点】交集与并集.【教学难点】用描述法表示集合的交集与并集.【教学设计】(1)通过生活中的实例导入交集与并集的概念,提高学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲与练结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时. 90分钟【教学过程】教学过程教师行为学生行为教学意图时间*揭示课题1.3集合的运算*创设情景兴趣导入问题1 在运动会上,某班参加百米赛跑的有4名同学,参加跳高比赛的有6名同学,既参加百米赛跑又参加跳高比赛的同学有2名同学,那么这些同学之间有什么关系?问题2 某班第一学期的三好学生有李佳、王燕、张洁、王勇;第二学期的三好学生有王燕、李炎、王勇、孙颖,那么该班哪些同学连续两个学期都是三好学生?用我们学过的集合来表示:A 李佳,王燕,张洁,王勇;B 王燕,李炎,王勇,孙颖;C 王燕,王勇 .那么这三个集合之间有什么关系?问题3 集合A 直角三角形;B 等腰三角形;C 等腰直角三角形、的相同元素所组成的,这时,将C称作是A与B的交集.质疑引导分析归纳总结思考自我分析了解从实际事例使学生自然的走向知识点引导式启发学生思考集合元素之间的关系5 *动脑思考探索新知一般地,对于两个给定的集合A、B,由集合、的相同元素所组成的集合叫做与的交集,记作,读作“交”.即.集合A与集合B的交集可用下图表示为:求两个集合集的运算叫做运算*巩固知识典型例题例1 已知集合AB,求A∩B.1 A 1,2 ,B 2,3 ; 2 A a,b ,B c,d , e , f ;3 A 1,3,5 ,B4 A 2,4 ,B 2,3,4 .分析因为 AB 是由集合A和集合B中的元素组成的集合解 1 相同元素是2A∩B 1,2 ∩ 2,3 2 ;2 没有元素AB a , b ∩ c, d , e , f ;3 因为A 是不含任何元素的空集,所以它们的交集是不含任何元素的空集,即A∩B ;4 因为AA∩B A.例2设,,求.分析集合表示方程的解集;集合表示方程的解集.两个解集的交集就是二元一次方程组的解集.解解方程组得所以.例3 设,,求.分析这两个集合都是用描述法表示的集合,并且无法列举出集合的元素.我们知道,这两个集合都可以在数轴上表示出来,如下图所示.观察图形可以得到这两个集合的交集.解.由交集定义和上面的例题,可以得到:对于任意两个集合A,B,都有;(2),;(3);(4)如果. 说明强调引领讲解说明引领强调含义说明启发引导观察思考主动求解观察思考求解领会思考求解通过例题进一步领会交集注意观察学生是否理解知识点复习方程组的解法突出数轴的作用数形结合可以交给学生自我发现归纳25 *运用知识强化练习练习1.3.11.设,,求.2.设,,求.3.设,,求.提问巡视指导动手求解交流及时了解知识掌握情况35 *创设情景兴趣导入问题1 某班有团员34名,非团员11名,那么该班有多少名同学?用我们学过的集合来表示:A 该班团员;B 该班非团员;C 该班同学 .那么这三个集合之间有什么关系?问题2 某班第一学期的三好学生有李佳、王燕、张洁、王勇;第二学期的三好学生有王燕、李炎、王勇、孙颖,那么该班第一学年的三好学生都有哪些同学?用我们学过的集合来表示:A 李佳,王燕,张洁,王勇;B 王燕,李炎,王勇,孙颖;C 李佳,王燕,张洁,王勇,李炎,孙颖 .那么这三个集合之间有什么关系?问题3 集合A 锐角三角形;B 钝角三角形;C 斜三角形 .那么这三个集合之间有什么关系?解决通过上面的三个问题的思考,可以看出集合C中的元素是由集合A、B的所有元素所组成的,这时,将C称作是A与B的并集.介绍质疑分析了解观看课件思考自我分析从实际事例使学生自然的走向知识点引导式启发学理解集合的元系40 *动脑思考探索新知一般地,对于两个给定的集合A、B,由集合、的所有元素所组成的集合叫做与的并集,记作(读作“A并B”).即.集合A与集合B的并集可用图形表示为:求两个集合并集的运算叫做并运算总结归纳仔细分析讲解关键词语思考理解记忆带领学生总结三个的统一点得到并集含义45 *巩固知识典型例题例4 已知集合AB,求A∪B.1 A 1,2 ,B 2,3 ; 2 A a , b ,B c, d , e , f ;3 A 1,3,5 ,B4 A 2,4 ,B 2,3,4 .分析因为AB是由集合A集合B的元素组成,解 1 A∪B 1,2 ∪ 2,3 1,2,3 ;2 A∪B a , b ∪ c , d , e , f a , b, c , d , e, f ;?3 因为所以A∪B 1,3,5 ∪ 1,3,5 ;4 集合A是集合B的真子集,A∪B 1,2,3,4 B.由并集定义和上面的例题,可以得到:对于任意两个集合AB,都有(1);(2);(3)(4)如果那么说明。

2024年度-高教版中职数学基础模块上册电子教案完整版

2024年度-高教版中职数学基础模块上册电子教案完整版
二次函数是形如$y=ax^2+bx+c$( $aneq0$)的函数,其图像是一个抛 物线。
03
指数函数
指数函数是形如$y=a^x$( $a>0,aneq1$)的函数,其图像是一 个指数曲线。
05
04
对数函数
对数函数是形如$y=log_a
x$(
$a>0,aneq1$)的函数,其图像是一
个对数曲线。
14
斜率计算
直线的斜率k是直线倾斜角的正切值,即k = tanα。已知直线上两点坐标(x1, y1)和(x2, y2),可以通过斜率公式k = (y2 - y1) / (x2 - x1)计算直线的斜率。
斜率性质
当直线与x轴垂直时,斜率不存在;当直线与x轴平行或重合时,斜率为0。
25
圆方程求解与圆心半径确定
04
三角函数及其应用
15
任意角三角函数定义及性质
任意角三角函数的定义
通过单位圆上的点的坐标来定义任意角的正 弦、余弦和正切函数。
三角函数的性质
包括周期性、奇偶性、增减性、最值等性质 。
诱导公式
利用周期性将任意角的三角函数转化为锐角 三角函数进行计算。
16
三角函数图像和变换
三角函数图像
正弦函数、余弦函数和正切函数的图像及其特点 。
其他应用
如地理中的太阳高度角计算、物理中的力学问题等。
18
05
数列与数学归纳法
19
数列概念及表示方法
数列定义
按照一定顺序排列的一列数 。
数列的表示方法
通项公式、递推公式、图像 法和列表法。
数列的分类
有穷数列和无穷数列;递增 数列、递减数列和常数列; 周期数列和非周期数列。

高教版(2021)中职数学基础模块上册第3单元《函数的性质》课件

高教版(2021)中职数学基础模块上册第3单元《函数的性质》课件

情境与问题
下图是北京市当时8月8日一天24小时内气温随时间变化的曲线图.
探究一 函数的增减性
问题1.分别根据函数
y x 2 y x 2 y x2
y1 x
的图象,分析并且观察自变量变化时,函数值有什么变化规律?
在整个定义域内 y 随x 的增大而增大
y x2
在整个定义域内 y 随x 的增大而减小
右图
为的图像,观察分析图像特点
观察图像可知:
定义域为x∈பைடு நூலகம்,但x≠0
g(1/2)=-4 g(-1/2)=4=-g(1/2)
g(1)=-2
g(-1)=2=-g(1)
g(2)=-1
g(-2)=1=-g(2)
g(4)=-1/2 g(-4)=1/2=-g(4)
f(-x)=-f(x)
探究二 奇函数
观察图像可知: 对于f(x)=x 定义域为x∈R, f(1)=1 f(-1)=-1=-f(1) f(2)=2 f(-2)=-2=-f(2) f(3)=3 f(-1)=-3=-f(3) f(4)=4 f(-2)=-4=-f(4) f(5)=5 f(-5)=-5=-f(5) 图像特征:图像关于原点中心对称。
y x 2
探究一 函数的增减性
y x2
在 (,0)
y 随x 的增大而增大
在 [0,)
y随x的增大而增大
在 (,0)
y 随x 的增大而减小
在 [0,)
y随x的增大而减小
y1 x
探究一 函数的增减性
由上例可知在定义域内某个一定区间内,是函数的局部可能单调递增 或单调递减,这个性质是对于定义域内某个局部而言的。 由上面的分析可得出:
难点:1.运用定义判断函数的奇偶性; 2.奇函数、偶函数的图象性质和几何定义

中职数学(基础模块)上册教案

中职数学(基础模块)上册教案

中职数学(基础模块)教案1.1集合的概念知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.教学重点:集合的表示法.教学难点:集合表示法的选择与规范书写.课时安排:2课时.1。

2集合之间的关系知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力。

教学重点:集合与集合间的关系及其相关符号表示.教学难点:真子集的概念.课时安排:2课时.1。

3集合的运算(1)知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.教学重点:交集与并集.教学难点:用描述法表示集合的交集与并集.课时安排:2课时.1.3集合的运算(2)知识目标:(1)理解全集与补集的概念;(2)会求集合的补集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过全集与补集问题的研究,培养学生的数学思维能力.教学重点:集合的补运算.教学难点:集合并、交、补的综合运算.课时安排:2课时.1.4充要条件知识目标:了解“充分条件"、“必要条件”及“充要条件”.能力目标:通过对条件与结论的研究与判断,培养思维能力.教学重点:(1)对“充分条件”、“必要条件”及“充要条件”的理解.(2)符号“”,“”,“"的正确使用.教学难点:“充分条件”、“必要条件”、“充要条件”的判定.课时安排:2课时.2.1不等式的基本性质知识目标:⑴理解不等式的基本性质;⑵了解不等式基本性质的应用.能力目标:⑴了解比较两个实数大小的方法;⑵培养学生的数学思维能力和计算技能.教学重点:⑴比较两个实数大小的方法;⑵不等式的基本性质.教学难点:比较两个实数大小的方法.课时安排:1课时.2.2区间知识目标:⑴掌握区间的概念;⑵用区间表示相关的集合.能力目标:通过数形结合的学习过程,培养学生的观察能力和数学思维能力.教学重点:区间的概念.教学难点:区间端点的取舍.课时安排:1课时.2.3一元二次不等式知识目标:⑴了解方程、不等式、函数的图像之间的联系;⑵掌握一元二次不等式的图像解法.能力目标:⑴通过对方程、不等式、函数的图像之间的联系的研究,培养学生的观察能力与数学思维能力;⑵通过求解一元二次不等式,培养学生的计算技能.教学重点:⑴方程、不等式、函数的图像之间的联系;⑵一元二次不等式的解法.教学难点:一元二次不等式的解法.课时安排:2课时.2.4含绝对值的不等式知识目标:(1)理解含绝对值不等式或的解法;(2)了解或的解法.能力目标:(1)通过含绝对值不等式的学习;培养学生的计算技能与数学思维能力;(2)通过数形结合的研究问题,培养学生的观察能力.教学重点:(1)不等式或的解法.(2)利用变量替换解不等式或.教学难点:利用变量替换解不等式或.课时安排:2课时.3.1函数的概念及其表示法知识目标:(1)理解函数的定义;(2)理解函数值的概念及表示;(3)理解函数的三种表示方法;(4)掌握利用“描点法”作函数图像的方法.能力目标:(1)通过函数概念的学习,培养学生的数学思维能力;(2)通过函数值的学习,培养学生的计算能力和计算工具使用技能;(3)会利用“描点法”作简单函数的图像,培养学生的观察能力和数学思维能力.教学重点:(1)函数的概念;(2)利用“描点法"描绘函数图像.教学难点:(1)对函数的概念及记号的理解;(2)利用“描点法”描绘函数图像.3。

中职数学(基础模块)上册第三章《函数》教学设计

中职数学(基础模块)上册第三章《函数》教学设计

中职数学(基础模块)上册第三章《函数》教学设计3.1 函数的概念及其表示法教学目标:(1) 理解函数的定义; (2) 理解函数值的概念及表示; (3) 理解函数的三种表示方法;(4) 了解利用“描点法”作函数图像的方法.教学重点:(1) 函数的概念;(2) 利用“描点法”描绘函数图像.教学难点:(1) 对函数的概念及记号)(x f y =的理解; (2) 利用“描点法”描绘函数图像.课时安排:2课时.教学过程:}中的任意一个值,有唯一的值与之对应.0,,x x -<与y =它们的对应法则不同,因此不是同一个函数典型例题 求下列函数的定义域:)11x =+;() 1,-+∞0,得12 x.因此函数的定义域为1,2⎛⎤-∞⎥⎝⎦.代数式中含有分式,使得代数式有意义的条件是分母不等于零;代数式中含有二次根式,使得代数式有意义的条件是被开方式大于或等于零.问题 观察下面的三个例子,分别用什么样的形式表示函数: 1.观察某城市2008年8月16日至8月25日的日最高气温统计表: 日 期16 17 18 19 20 21 22 23 24 25最高气温 29 29 28 30 25 28 29 28 29 30由表中可以清楚地看出日期x 和最高气温y (C )之间的函数关系.2. 某气象站用温度自动记录仪记录下来的2008年11月29日0时至14时的气温T (C )随时间t (h )变化的曲线如下图所示:曲线形象地反映出气温T (C )与时间t (h )之间的函数关系,这里函数的定义域为[]0,14.对定义域中的任意时间t ,有唯一的气温T 与之对应.例如,当6t =时,气温 2.2T C =︒;当14t =时,气温12.5T C =︒.3. 用S 来表示半径为r 的圆的面积,则2πS r =.这个公式清楚地反映了半径r 与圆的面积S 之间的函数关系,这里函数的定义域为+R .以任意的正实数0r 为半径的圆的面积为200πS r =.*动脑思考 探索新知x过 程活动 活动 意图(4,0.48),(5,0.6),(6,0.72),得到函数的图像法表示.归纳由例4的解题过程可以归纳出“已知函数的解析式,作函数图像”的具体步骤:(1)确定函数的定义域;(2)选取自变量x 的若干值(一般选取某些代表性的值)计算出它们对应的函数值y ,列出表格;(3)以表格中x 值为横坐标,对应的y 值为纵坐标,在直角坐标系中描出相应的点(,)x y ;(4)根据题意确定是否将描出的点联结成光滑的曲线. 这种作函数图像的方法叫做描点法.例5 利用“描点法”作出函数x y =的图像,并判断点(25,5)是否为图像上的点 (求对应函数值时,精确到0.01) . 解 (1)函数的定义域为),0[+∞.(2)在定义域内取几个自然数,分别求出对应函数值y ,列表:x0 1 2 3 4 5…y11.411.7322.24 …(3)以表中的x 值为横坐标,对应的y 值为纵坐标,在直角坐标系中依次作出点(y x ,).由于(25)255f ==,所以点(25,5)是图像上的点.(4)用光滑曲线联结这些点,得到函数图像.启发 分析强调归纳总结说明启发 引导强调领会 领会 理解 记忆 了解 思考 求解图像 的作 法 数形 结合 带领 学生 总结 归纳 函数 的图 像做 法特 别注 意步 骤性 和细 节 演示 过程 中提 醒学 生注 意作 图的 细节3.2函数的性质教学目标:⑴理解函数的单调性与奇偶性的概念;⑵会借助于函数图像讨论函数的单调性;⑶理解具有奇偶性的函数的图像特征,会判断简单函数的奇偶性.教学重点:⑴函数单调性与奇偶性的概念及其图像特征;⑵简单函数奇偶性的判定.教学难点:函数奇偶性的判断.(*函数单调性的判断)课时安排:2课时.教学过程:*揭示课题3.2函数的性质.*创设情景兴趣导入问题1观察某城市某天的气温时段图,此图反映了0时至14时的气温T(C)随时间t(h)变化的情况.回答下面的问题:(1)时,气温最低,最低气温为C,时气温最高,最高气温为°C.(2)随着时间的增加,在时间段0时到6时的时间段内,气温不断地;6时到14时这个时间段内,气温不断地.问题2下图为股市中,某股票在半天内的行情,请描述此股票的涨幅情况.过 程活动 活动 意图从上图可以看到,有些时候该股票的价格随着时间推移在上涨,即时间增加股票价格也增加;有时该股票的价格随着时间推移在下跌,即时间增加股票价格反而减小. 归纳类似地,函数值随着自变量的增大而增大(或减小)的性质就是函数的单调性.说明 引导 总结观察 思考 求解 了解图主 要指 引导 学生 体会 变化 上升 下降 的描 述 引出 函数 单调 性*动脑思考 探索新知 概念函数值随着自变量的增大而增大(或减小)的性质叫做函数的单调性. 类型设函数()y f x =在区间(),a b 内有意义.(1)如图(1)所示,在区间(),a b 内,随着自变量的增加,函数值不断增大,图像呈上升趋势.即对于任意的()12,,x x a b ∈,当12x x <时,都有()()12f x f x <成立.这时把函数()f x 叫做区间(),a b 内的增函数,区间(),a b 叫做函数()f x 的增区间.(2)如图(2)所示,在区间(),a b 内,随着自变量的增加,函数值不断减小,图像呈下降趋势.即对于任意的()12,,x x a b ∈,当12x x <时,都有()()12f x f x >成立.这时归纳 说明 仔细 分析 讲解 关键 词语 强调思考 理解 记忆 领会 理解带领 学生 总结 上述 图像 特点 得到 增减 概念 充分 讲解 函数 图像 变化过程活动活动意图函数()f x叫做区间(),a b内的减函数,区间(),a b叫做函数()f x的减区间.图(1)图(2)如果函数()f x在区间(),a b内是增函数(或减函数),那么,就称函数()f x在区间(),a b内具有单调性,区间(),a b叫做函数()f x的单调区间.几何特征函数单调性的几何特征:在自变量取值区间上,顺着x轴的正方向,若函数的图像上升,则函数为增函数;若图像下降则函数为减函数.判定方法判定函数的单调性有两种方法:借助于函数的图像或根据单调性的定义来判定.说明引导说明强调观察了解体会了解和增减之间的关系简单说明区间端点的问题数形结合结合*巩固知识典型例题例1小明从家里出发,去学校取书,顺路将自行车送还王伟同学.小明骑了30分钟自行车,到王伟家送还自行车后,又步行10分钟到学校取书,最后乘公交车经过20分钟回到家.这段时间内,小明离开家的距离与时间的关系如下图所示.请指出这个函数的单调性.分析对于用图像法表示的函数,可以通过对函数图像的观察来判断函数的单调性,从而得到单调区间.解由图像可以看出,函数的增区间为()0,40;减区间为()40,60.说明引领讲解强调观察思考主动求解理解通过例题进一步领会函数单调性图像的意过 程活动 活动 意图例2 判断函数42y x =-的单调性.分析 对于用解析式表示的函数,其单调性可以通过定义来判断,也可以作出函数的图像,通过观察图像来判断.无论采用哪种方法,都要首先确定函数的定义域.解法1 函数为一次函数,定义域为(,)-∞+∞,其图像为一条直线.确定图像上的两个点即可作出函数图像.列表如下:在直角坐标系中,描出点(0,-2),(1,2),作出经过这两个点的直线.观察图像知函数42y x =-在(,)-∞+∞内为增函数.x0 1 y-22质疑 分析 引领 讲解 演示思考 领会 理解 观察义 复习 描点 法作 图的 步骤 方法 再一 次强 化函 数单 调性 的图 像特 征*理论升华 整体建构由一次函数y kx b =+(0k ≠)的图像(如下图)可知:引导观察在例 题的 基础 上引过 程活动 活动 意图(1)当0k >时,图像从左至右上升,函数是单调递增函数; (2)当0k <时,图像从左至右下降,函数是单调递减函数.由反比例函数ky x=的图像(如下图)可知:(1)当0k >时,在各象限中y 值分别随x 值的增大而减小,函数是单调递减函数;(2)当0k <时,在各象限中y 值分别随x 值的增大而增大,函数是单调递增函数. 说明归纳引导 说明归纳思考 总结 观察 思考导学 生总 结一 次函 数和 反比 例函 数单 调性 尽量 交给 学生 自我 发现 总结*运用知识 强化练习 教材练习3.2.11.已知函数图像如下图所示.(1)根据图像说出函数的单调区间以及函数在各单调区间内的单调性.(2)写出函数的定义域和值域. 提问 巡视 指导思考 动手 求解 交流及时 了解 学生 知识 掌握 的情 况 *创设情景 兴趣导入 问题平面几何中,曾经学习了关于轴对称图形和中心对称图质疑观察从图 像入 手便 于学x yxy过 程活动 活动 意图形的知识.如图所示,点()3,2P 关于x 轴的对称点是沿着x 轴对折得到与P 相重合的点1P ,其坐标为 ;点()3,2P 关于y 轴的对称点是沿着y 轴对折得到与P 相重合的点2P ,其坐标为 ;点()3,2P 关于原点O 的对称点是线段OP 绕着原点O 旋转180°得到与P 相重合的点3P ,其坐标为 .引导分析 总结思考 求解 交流生理 解自 然得 到对 称的 概念 引导 启发 学生 了解 对称 特点*动脑思考 探索新知一般地,设点(),P a b 为平面上的任意一点,则 (1)点(),P a b 关于x 轴的对称点的坐标为(),a b -; (2)点(),P a b 关于y 轴的对称点的坐标为(),a b -; (3)点(),P a b 关于原点O 的对称点的坐标为(),a b --. 说明 归纳 思考 理解教给 学生 自我 分析 总结*巩固知识 典型例题例3 (1)已知点()2,3P -,写出点P 关于x 轴的对称点的坐标;(2)已知点,)P x y (,写出点P 关于y 轴对称点的坐标与关于原点O 的对称点的坐标;(3)设函数()y f x =,在函数图像上任取一点()(),P a f a ,写出点P 关于y 轴的对称点的坐标与关于原点O 的对称点的坐标.质疑 说明观察 思考通过 例题 进一 步领 会三 种对 称方 法的 特点P 1P 3 P 2过 程活动 活动 意图分析 本题需要利用三种对称点的坐标特征来进行研究. 解 (1)点()2,3P -关于x 轴的对称点的坐标为()2,3--;(2)点(),P x y 关于y 轴的对称点的坐标为(),x y -,点(),P x y 关于原点O 的对称点的坐标(),x y --;(3)点()(),P a f a 关于y 轴的对称点的坐标为()(),a f a -,点()(),P a f a 关于原点O 的对称点的坐标为()(),a f a --.引领 讲解主动 求解 理解 领会注意 数形 结合 分析*运用知识 强化练习 教材练习3.2.21.求满足下列条件的点的坐标: (1)与点()2,1-关于x 轴对称; (2)与点()1,3--关于y 轴对称;(3)与点()2,1-关于坐标原点对称; (4)与点()1,0-关于y 轴对称. 提问 巡视 指导 思考 动手 求解 交流 及时 了解 学生 知识 掌握 的情 况 *创设情景 兴趣导入 问题观察下列函数图像是否具有对称性,如果有关于什么对称? 图(1) 图(2) 生活中还有很多类似的对称图形(见对应课件).对于图(1),如果沿着y 轴对折,那么对折后y 轴两侧的质疑引导 说明思考 观察充分 利用 各种 图形 使学 生领 会图 形的 对称 生活 中的 对称3.3函数的实际应用举例教学目标:(1)理解分段函数的概念;(2)理解分段函数的图像;(3)了解实际问题中的分段函数问题.教学重点:(1)分段函数的概念;(2)分段函数的图像.教学难点:(1)建立实际问题的分段函数关系;(2)分段函数的图像.课时安排:2课时.教学过程:10)0.3x+书写解析式的时候,必须要指明是哪个范围的解析式,因1.6,10,10.x ⎧⎨这个函数与前面所见到的函数不同,在自变量的不同取值范围内,有不同的对应法则,需要用不同的解析式来表示.()10,+∞时,应该首先判断代入到相应的解析式中进行计算.3m)应交的水费0,>0.分段函数的定义域是自变量的各不同取值范围的并时,应该首先判断()0,+∞=)2==224()020=⨯0, < 3.0,3.x <。

中职数学基础模块上册3-3函数的性质教学课件

中职数学基础模块上册3-3函数的性质教学课件
如在研究函数时,如果我们知道它是奇函数或偶函 数,就可以先研究它在非负区间上的性质,然后利用对称 性便可得到它在非正区间上的性质,从而减少工作量.
练习
——奇偶性
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
练习
——奇偶性
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
——奇偶性
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
练习
3.3.2
函数的奇偶性
——奇偶性
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
大千世界,美无处不在.
——奇偶性
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
数学中也存在着对称美,函数图像的对称就是其中一种.
——奇偶性
如果一个函数是奇函数或偶函数,就说这个函数 具有奇偶性,其定义域一定关于原点中心对称.
——奇偶性
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
有没有某个函数,它既是奇函数又是偶函数?如果 有,请举例说明.
——奇偶性
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
——奇偶性
情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
练 习
3.3.3
几个常见的函数
—几个常见的函数 情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
回顾义务教育阶段学过的一次函数、反比例函数与二 次函数,它们的定义域、值域、单调性、奇偶性等各是怎 样的呢?如何用数学的语言表达?
—几个常见的函数 情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业
—几个常见的函数 情境导入 探索新知 例题辨析 巩固练习 归纳总结 布置作业

中职数学教材基础模块上册第三章第三节《函数》教学设计

中职数学教材基础模块上册第三章第三节《函数》教学设计

中职数学教材基础模块上册第三章第三节《函数》教学设计教学设计一、教学目标:1.知识与能力目标:了解函数的定义、性质和表示方法;掌握一次函数、二次函数的基本概念、性质和图像;掌握解一次方程和一次不等式的方法。

2.过程与方法目标:培养学生的观察能力和分析问题的能力;培养学生进行实际问题建模的能力。

3.情感态度和价值观目标:培养学生树立正确的数学学习态度和价值观,养成积极主动、勤奋刻苦、合作探究的学习习惯。

二、教学重点和难点:1.掌握函数的定义、性质和表示方法。

2.掌握一次函数、二次函数的基本概念、性质和图像。

3.掌握解一次方程和一次不等式的方法。

三、教学内容和学时安排:教学内容:1.函数的定义、性质和表示方法(1学时)-函数的定义和基本概念-函数的性质:定义域、值域、单调性和奇偶性-函数的表示方法:函数关系式、函数图像和函数表2.一次函数(2学时)-一次函数的定义和性质-一次函数的图像和特征-解一次方程和一次不等式的方法3.二次函数(3学时)-二次函数的定义和性质-二次函数的图像和特征-解二次方程和二次不等式的方法学时安排:第一学时:函数的定义、性质和表示方法第二学时:一次函数第三学时:二次函数四、教学方法和手段:1.导入法:通过提问师生双向交流,引出函数的概念,激发学生的学习兴趣。

2.讲授法:通过讲解和举例分析,逐步引导学生理解和掌握函数的定义、性质和表示方法。

3.实践法:通过练习和解题,巩固和运用所学的知识和方法。

4.合作学习法:通过小组合作、同步练习等活动,促进学生之间的互助合作,提升学生的学习效果。

五、教学流程:第一学时:函数的定义、性质和表示方法1.导入新知识(5分钟)-教师通过提问与学生互动,引出函数的概念:“你们对于函数的概念了解多少?函数在生活中有哪些实际应用?”-学生回答后,由教师引出函数的定义与基本概念。

2.讲解函数的定义、性质和表示方法(15分钟)-讲解函数的定义,引导学生认识自变量、因变量和函数值的概念。

高教版中职数学基础模块上册电子教案

高教版中职数学基础模块上册电子教案

高教版中职数学基础模块上册电子教案第一章:集合1.1 集合的概念教学目标:理解集合的概念,掌握集合的表示方法。

能够列举常见的集合类型,如自然数集、整数集、实数集等。

教学内容:集合的定义及表示方法集合的类型及特点教学活动:1. 引入集合的概念,通过实际例子讲解集合的表示方法。

2. 引导学生思考集合的特点,如无序性、确定性等。

3. 练习列举常见的集合类型,加深对集合概念的理解。

教学评价:课堂练习:列举五个常见的集合,并说明其表示方法。

课后作业:练习题,加深对集合概念的理解。

1.2 集合的运算教学目标:理解并掌握集合的运算规则,包括并集、交集、补集等。

能够运用集合的运算解决实际问题。

教学内容:集合的并集、交集、补集的定义及运算规则集合运算的应用教学活动:1. 引入集合的运算概念,通过实际例子讲解并集、交集、补集的运算规则。

2. 引导学生通过集合运算解决实际问题,如统计数据、几何图形等。

3. 练习集合运算,加深对集合运算的理解和应用能力。

教学评价:课堂练习:运用集合运算解决实际问题,如统计数据、几何图形等。

课后作业:练习题,加深对集合运算的理解和应用能力。

第二章:函数2.1 函数的概念教学目标:理解函数的基本概念,掌握函数的表示方法。

能够识别和理解函数的定义域、值域等基本要素。

教学内容:函数的定义及表示方法函数的定义域、值域等基本要素教学活动:1. 引入函数的概念,通过实际例子讲解函数的表示方法。

2. 引导学生思考函数的定义域、值域等基本要素,加深对函数概念的理解。

3. 练习识别和理解函数的基本要素,巩固对函数概念的认识。

教学评价:课堂练习:识别和理解给定的函数,说明其定义域、值域等基本要素。

课后作业:练习题,加深对函数概念的理解。

2.2 函数的性质教学目标:理解并掌握函数的性质,包括单调性、奇偶性、周期性等。

能够运用函数的性质解决实际问题。

教学内容:函数的单调性、奇偶性、周期性等性质函数性质的应用教学活动:1. 引入函数的性质概念,通过实际例子讲解单调性、奇偶性、周期性等性质。

高教版中职数学基础模块上册电子教案

高教版中职数学基础模块上册电子教案

高教版中职数学基础模块上册电子教案第一章:函数的概念与性质1.1 函数的定义理解函数的概念掌握函数的表示方法能够列出常见的一次函数、二次函数和反比例函数。

1.2 函数的性质理解函数的单调性、奇偶性、周期性能够判断简单函数的单调性、奇偶性、周期性第二章:三角函数2.1 三角函数的定义理解锐角三角函数的概念掌握正弦、余弦、正切、余切、半角公式2.2 三角函数的性质理解三角函数的单调性、奇偶性、周期性能够判断简单三角函数的单调性、奇偶性、周期性第三章:解三角形3.1 正弦定理和余弦定理理解正弦定理和余弦定理的公式能够运用正弦定理和余弦定理解决实际问题3.2 解三角形的应用能够运用正弦定理和余弦定理解决解三角形的问题能够运用解三角形解决实际问题第四章:数列4.1 数列的概念理解数列的定义掌握数列的通项公式、求和公式4.2 等差数列和等比数列理解等差数列和等比数列的概念掌握等差数列和等比数列的性质、求和公式第五章:不等式与不等式组5.1 不等式的概念理解不等式的定义掌握不等式的性质5.2 不等式组的解法掌握解一元一次不等式、一元二次不等式的方法能够解不等式组并求出解集第六章:平面解析几何6.1 平面直角坐标系理解平面直角坐标系的定义和组成掌握坐标轴上的点的坐标表示6.2 直线方程理解直线的点斜式和两点式方程掌握直线的一般式方程和标准式方程第七章:多项式与方程7.1 多项式的概念理解多项式的定义掌握多项式的运算规则7.2 一元二次方程理解一元二次方程的定义掌握一元二次方程的解法(因式分解、配方法、求根公式)第八章:概率与统计8.1 概率的基本概念理解随机事件、必然事件、不可能事件的概念掌握概率的计算方法(古典概型、条件概率、独立事件)8.2 统计的基本概念理解平均数、中位数、众数的概念掌握数据的收集、整理、描述(图表法、数值法)第九章:函数图像的绘制9.1 函数图像的基本概念理解函数图像的定义和作用掌握函数图像的绘制方法(描点法、直线法)9.2 常见函数图像的特点掌握一次函数、二次函数、反比例函数、三角函数图像的特点和性质第十章:数学应用10.1 数学在实际生活中的应用理解数学在实际生活中的重要性掌握运用数学知识解决实际问题的方法10.2 数学在其他领域的应用理解数学在其他领域(如科学、技术、经济)的重要性掌握运用数学知识解决其他领域问题的方法第十一章:排列组合与初等数论11.1 排列组合的概念理解排列与组合的概念掌握排列与组合的计算方法(排列数公式、组合数公式)11.2 初等数论的基本概念理解自然数、整数、有理数、无理数的概念掌握素数、合数、最大公约数、最小公倍数的概念及计算方法第十二章:复数12.1 复数的概念理解复数的基本概念和复数代数表示法掌握复数的运算规则(加法、减法、乘法、除法)12.2 复数的应用理解复数在实际问题中的应用掌握运用复数解决实际问题的方法第十三章:导数与微分13.1 导数的概念理解导数的定义和几何意义掌握基本函数的导数公式13.2 微分的概念理解微分的定义和应用掌握微分的计算方法第十四章:积分与微分方程14.1 积分concepts理解积分的方法(牛顿-莱布尼茨公式、换元积分、分部积分)掌握基本积分表和积分的应用14.2 微分方程的概念理解微分方程的定义和分类掌握一阶微分方程的解法(可分离变量法、齐次方程法、线性方程法)第十五章:数学建模与数学软件15.1 数学建模的概念理解数学建模的基本过程和方法掌握数学建模在实际问题中的应用15.2 数学软件的概念与应用了解常见的数学软件(如MATLAB、Mathematica、Excel)掌握数学软件的基本操作和应用技巧重点和难点解析本教案涵盖了中职数学基础模块上册的主要内容,包括函数与性质、三角函数、解三角形、数列、不等式与不等式组、平面解析几何、多项式与方程、概率与统计、函数图像的绘制、数学应用、排列组合与初等数论、复数、导数与微分、积分与微分方程以及数学建模与数学软件。

函数的性质(职高基础模块上册)

函数的性质(职高基础模块上册)
详细描述
定义域是函数中自变量可以取到的所有值的集合,它决定了函数关系存在的范围 。值域是函数中因变量取到的所有可能值的集合,它反映了函数关系的结果范围 。定义域和值域一起决定了函数的具体形式和性质。
02 函数的单调性
单调性的定义
单调增函数
对于函数$f(x)$,如果在区间$I$上, 对于任意$x_{1} < x_{2}$,都有 $f(x_{1}) < f(x_{2})$,则称$f(x)$ 在区间$I$上单调增。
函数的表示方法
总结词
函数的表示方法有多种,包括解析法、表格法和图象法。
详细描述
解析法是通过数学表达式来表示函数,例如 $f(x) = x^2 + 2x + 1$;表格法是通过一张表格列出一些自变量和因变量的对应 值来表示函数;图象法则是通过绘制函数图象来表示函数。
函数的定义域和值域
总结词
函数的定义域是指函数有意义的自变量取值范围,值域是指函数因变量的取值范 围。
奇偶性的判断方法
01 02
定义法
根据奇偶性的定义来判断。如果对于函数$f(x)$的定义域内任意一个 $x$,都有$f(-x)=-f(x)$,则$f(x)$为奇函数;如果对于函数$f(x)$的定 义域内任意一个$x$,都有$f(-x)=f(x)$,则$f(x)$为偶函数。
图像法
通过观察函数的图像来判断。如果函数的图像关于原点对称,则该函数 为奇函数;如果函数的图像关于y轴对称,则该函数为偶判断函数的周期性。
05 函数的图像与性质
函数图像的作法
描点法
通过选取函数定义域内的若干个 点,并按照坐标进行描绘,连接
各点得到函数图像。
参数法
将函数中的自变量用一个参数表示, 根据参数的变化范围,得到一系列 对应的函数值,从而作出函数图像。

高中数学函数性质的教案

高中数学函数性质的教案

高中数学函数性质的教案
教学内容:函数的性质
教学目标:
1.了解函数的定义,了解函数的性质;
2.能够判断一个函数是奇函数还是偶函数;
3.能够判断一个函数的周期性。

教学重点:
1.函数的定义;
2.奇函数与偶函数的判断;
3.函数的周期性。

教学难点:
1.如何判断函数的奇偶性;
2.如何判断函数的周期性。

教学过程:
一、引入:通过实景图片或实例引入函数的概念,让学生了解函数的定义及其作用。

二、理解:讲解函数的定义及性质,让学生对函数有一个全面的认识。

三、实例分析:通过几个具体的函数实例,让学生判断这些函数是奇函数还是偶函数,同时判断这些函数的周期性。

四、练习:让学生自行解答几道函数性质相关的题目,巩固所学知识。

五、总结:总结本课内容,强调函数的性质对数学问题的解决的重要性。

六、作业布置:布置相关作业,让学生进一步巩固所学内容。

七、反馈:下节课进行作业批改及学生问题解答,及时纠正学生的错误认识。

教学工具:投影仪、实例图片、幻灯片、黑板白板等。

教学评估:
1.学生能够准确判断函数的奇偶性;
2.学生能够准确判断函数的周期性;
3.学生能够解决相关的函数性质问题。

【高教版】中职数学基础模块上册3.2《函数的表示法》教案

【高教版】中职数学基础模块上册3.2《函数的表示法》教案
宿迁经贸高等职业技术学校
教师教案本
(—学年第一学期)
精神振奋信心坚定
德技双馨特点鲜明
专业名称
课程名称
授课教师
授课班级
系部
课名称
3.2函数的表示法
授课班级
授课时间
课题序号
授课课时
第到
授课形式
启发式、讲练结合
使用教具
教学目的
1.使学生能够面对以不同方式表达的函数关系时获得函数的基本特征。
2.让学生掌握函数的不同表示方法,并能够根据问题的特点和要求选择恰当的方法表达函数关系,发展学生应用数学解决问题的能力。
教学重点
函数的三种表示法及其优势和局限、以及应用
教学难点
函数的三种表示法及其优势和局限、以及应用
更新、补
充、删减
内容

课外作业
P64 1,2
授课主要内容或板书设计
3.2函数的表示法
函数的三种表示法:例题例题
1.列表法
2.解析法
3.图像法
学生练习学生练习
教学后记

【中职专用】(高教版2021十四五基础模块上册)数学3.2函数的表示方法 教案

【中职专用】(高教版2021十四五基础模块上册)数学3.2函数的表示方法 教案

党的十八大以来,我国实施精准扶贫、精准脱贫方略,脱贫攻坚取得了的成就,为全面建成小康社会打下了坚实基础.我国成为世界上减贫人口最多的国家,也是世界上率先完成联合国千年发展目标的国家.2015-2019 年,全国农村贫困人口数见表这个表格建立了全国农村贫困人口数与年份之间的对应关系.在义务教育阶段,我们已经学习了利用数学表达式来表示函数,那么是否也可以用这个表格来表示函数?探究与发现:回顾学过的知识,除了表达式、列表,我们1.解析法3.1“情境与问题(1)”中,我们用数学表达式y = 30y表示销售额y与销售量y之间的对应关系,这个数学表达式称为函数解析式,简称解析式.像这样利用解析式表示函数的方法称为解析法.如义务教育阶段学习的一次函数、一元二次函数、反比例函数等都是用解析法表示的.2.列表法我们用表格表示全国农村贫困人口数与年份之间的对应关系.像这样通过列出自变量的值与对应函数值的相应表格来表示函数的方法称为列表法.3.1“情境与问题(2)”中的恩格尔系数y随着时间y的对应关系也是用列表法表示的.3.图像法在汽车的研发过程中,需要对汽车进行一系列的性能测试,图3-2 是一种新型家用小汽车在高速公路上行驶时,油箱剩余油量y(y) 随时间y(h)变化的图像.像这样利用图像表示函数的方法称为图像法.例1 文具店内出售某种签字笔,每支售价6.5元,分别用列表法和解析法表示购买4支以内的签字笔时,应付款与签字笔支数之间的函数.解设y表示购买签字笔的支数,y表示应付款数(元),则y∈ {1,2,3,4}.(1)列表法表示见表(2)解析法表示为:y= 6.5y,y∈ {1,2,3,4}.例2 现阶段,我国很多城市普遍采用“阶梯水价” 的办法计量水费,发挥市场价格作用,增强了企业和居民的节水意识,避免水资源的浪费.如某市居民用水“阶梯水价”的收费标准如下:每户每年用水不超过180m³时,水价为5 元/ m³;超过180m³不超过260m³时,超过的部分按7 元/m³收费;超过260m³时,超过的部分按9 元/m³收费.结合给出的数据(不考虑其他影响因素)(1) 求出每户每年应缴水费y (元)与用水量y (y 3)之间的函数解析式,并画出函数的图像;(2) 若某用户某年用水 200m³,试求该用 户这一年应缴水费多少元?解 (1)依题意,得到应缴水费与用水量之间的关系,见表由表得到函数的解析式:⎧ 5x ,0 x 180, y = ⎪ x - 360, 180 < x 260,⎨7 ⎪⎩ 9x - 880,x > 260. 根据这个解析式,可以画出函数的图像.(2)因为该用户用水为 200m³,即 x =200, 处于收费标准的第二阶梯水价,所以y =7×200-360=1040即该用户这一年度应缴水费为 1040 元.在现实生活中,有很多函数是分段描述的.如,阶梯电费、出租车费、个人所得税等.这类函数的特点是:当自变量在不同范围内取值时,需要用不同的解析式来表示,我们称这样的函数为分段函数.练习 3.21.已知圆的半径为y,试分别写出圆的周长y和圆的面积y关于半径y的解析式.2.已知定义在R 上的一次函数y=ax+b 可以用下表表示,写出它的解析式.3.已知函数y = y(y)的图像,如下图,则(1)函数y=y(y)的定义域为;(2)y(1.6) = ;(3)函数y=y(y)的值域为.2,— 1 ≤ y≤ 0,4.已知函数y(y) = {y + 2,0 € y€ 2,4,y≤2.则(1)函数的定义域为,(2)y(1.5) = ;。

高教版(2021)中职数学基础模块上册《函数的性质》课件

高教版(2021)中职数学基础模块上册《函数的性质》课件

3.3.1 函数的单调性
下图是某市某天气温(℃)是时间(时)的函数图像,记这个函数为 = ().
由图可知:
在给定区间[4,14]上,对于图像上的任意两
点1 1 , 1 ,2 2 , 2 ,
当1 < 2 时,都有1 < 2 ,即f (x1)<f (x2).
在给定区间[14,24]上,对于图像上的任意
上升
从左至右图象呈______趋势.
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
3.3.1 函数的单调性
观察第二组函数图象,指出其变化趋势.
下降
从左至右图象呈______趋势.
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
3.3.1 函数的单调性
观察第三组函数图象,指出其变化趋势.
称为函数 = ()的增区间.
称为函数 = ()的减区间.
情境导入 探索新知
例题辨析 巩 = ()在区间上是增函数或减函数,那么称函数
= ()在区间上具有单调性,区间称为单调区间.
增区间也称为单调增区间,减区间也称为单调减区间.
如果对于区间上的任意两点1 ,2 ,
如果对于区间上的任意两点1 ,2 ,
当1 < 2 时,都有(1 ) < (2 ),那么称 当1 < 2 时,都有(1 ) > (2 ),那么称
函数 = ()在区间上是增函数,区间I
函数 = ()在区间上是减函数,区间
情境导入 探索新知
3.3.1 函数的单调性
一、判断函数单
二、函数单调
调性的方法
性的应用
图像法
定义法
记忆:同号递增,异号递减。
例题辨析 巩固练习 归纳总结 布置作业

中职数学基础模块教案

中职数学基础模块教案

中职数学基础模块教案第一章:数学基础概念1.1 实数1.1.1 有理数1.1.2 实数1.1.3 数的运算1.2 代数式1.2.1 代数式的概念1.2.2 代数式的运算1.2.3 代数式的简化1.3 方程与不等式1.3.1 方程的解法1.3.2 不等式的解法1.3.3 方程与不等式的应用第二章:函数与图形2.1 函数的概念2.1.1 函数的定义2.1.2 函数的表示方法2.1.3 函数的性质2.2 常见函数2.2.1 正比例函数2.2.2 反比例函数2.2.3 二次函数2.3 函数的图像2.3.1 图像的绘制方法2.3.2 图像的特点与分析2.3.3 图像的应用第三章:几何基础3.1 点、线、面的基本概念3.1.1 点的概念3.1.2 线段的概念3.1.3 三角形、四边形、圆的概念3.2 平面几何图形的性质与判定3.2.1 平行线的性质3.2.2 垂直线的性质3.2.3 圆的性质3.3 几何图形的计算与应用3.3.1 面积的计算3.3.2 周长的计算3.3.3 几何图形的应用第四章:三角函数4.1 三角函数的概念4.1.1 角度的概念4.1.2 三角函数的定义4.1.3 三角函数的性质4.2 三角函数的图像与性质4.2.1 正弦函数的图像与性质4.2.2 余弦函数的图像与性质4.2.3 正切函数的图像与性质4.3 三角函数的应用4.3.1 三角函数在测量中的应用4.3.2 三角函数在工程中的应用4.3.3 三角函数在科学计算中的应用第五章:概率与统计5.1 概率的基本概念5.1.1 随机事件的概念5.1.2 概率的计算方法5.1.3 概率的性质5.2 统计的基本概念5.2.1 统计量的概念5.2.2 数据的收集与整理5.2.3 描述统计的方法5.3 概率与统计的应用5.3.1 概率在实际问题中的应用5.3.2 统计在实际问题中的应用5.3.3 概率与统计的综合应用第六章:初等代数6.1 代数式的运算6.1.1 整式的运算6.1.2 分式的运算6.1.3 指数与对数的运算6.2 一元二次方程6.2.1 一元二次方程的定义6.2.2 一元二次方程的解法6.2.3 一元二次方程的应用6.3 不等式与不等式组6.3.1 不等式的性质6.3.2 一元一次不等式的解法6.3.3 不等式组的解法与应用第七章:函数的进一步研究7.1 函数的性质7.1.1 单调性7.1.2 奇偶性7.1.3 周期性7.2 函数图像的变换7.2.1 图像的平移7.2.2 图像的伸缩7.2.3 图像的翻折7.3 函数的应用7.3.1 函数在实际问题中的应用7.3.2 函数在数学问题中的应用7.3.3 函数与其他数学知识的综合应用第八章:几何进阶8.1 解析几何8.1.1 坐标系的概念8.1.2 点、直线、圆的方程8.1.3 解析几何的应用8.2 空间几何8.2.1 空间点的坐标8.2.2 空间直线与平面的方程8.2.3 空间几何体的性质与计算8.3 几何图形的变换8.3.1 旋转8.3.2 翻折8.3.3 缩放第九章:微积分基础9.1 极限的概念9.1.1 极限的定义9.1.2 极限的计算9.1.3 极限的应用9.2 导数的概念与计算9.2.1 导数的定义9.2.2 基本导数公式9.2.3 导数的应用9.3 积分的基础9.3.1 积分的定义9.3.2 基本积分公式9.3.3 积分的应用第十章:数学应用与实践10.1 数学在科学中的应用10.1.1 数学在物理中的应用10.1.2 数学在化学中的应用10.1.3 数学在生物学中的应用10.2 数学在工程技术中的应用10.2.1 数学在电子技术中的应用10.2.2 数学在机械工程中的应用10.2.3 数学在建筑中的应用10.3 数学在日常生活中的应用10.3.1 数学在财务管理中的应用10.3.2 数学在市场营销中的应用10.3.3 数学在生活中的其他应用第十一章:线性代数基础11.1 向量及其运算11.1.1 向量的定义11.1.2 向量的运算11.1.3 向量的应用11.2 矩阵及其运算11.2.1 矩阵的定义11.2.2 矩阵的运算11.2.3 矩阵的应用11.3 行列式及其应用11.3.1 行列式的定义11.3.2 行列式的计算11.3.3 行列式的应用第十二章:概率论与数理统计12.1 随机事件及其概率12.1.1 随机事件的概念12.1.2 概率的计算12.1.3 条件概率与独立性12.2 随机变量及其分布12.2.1 随机变量的概念12.2.2 离散型随机变量的分布12.2.3 连续型随机变量的分布12.3 数理统计的基本方法12.3.1 描述统计方法12.3.2 推断统计方法12.3.3 统计应用案例分析第十三章:离散数学初步13.1 集合及其运算13.1.1 集合的概念13.1.2 集合的运算13.1.3 集合的应用13.2 图论基础13.2.1 图的概念13.2.2 图的运算13.2.3 图的应用13.3 逻辑与布尔代数13.3.1 逻辑的基本概念13.3.2 布尔代数的基本运算13.3.3 布尔代数的应用第十四章:数学建模与解决问题14.1 数学建模的基本方法14.1.1 数学建模的概念14.1.2 数学建模的步骤14.1.3 数学建模的方法与应用14.2 数学在解决问题中的应用14.2.1 问题的定义与分析14.2.2 数学模型的建立14.2.3 数学模型的求解与分析14.3 数学建模案例分析14.3.1 经济管理领域的应用14.3.2 工程技术领域的应用14.3.3 社会生活领域的应用第十五章:数学思维与创新15.1 数学思维的基本方法15.1.1 合情推理与演绎推理15.1.2 抽象思维与形象思维15.1.3 批判性思维与创造性思维15.2 数学思维在解决问题中的应用15.2.1 问题的定义与分析15.2.2 数学思维方法的运用15.2.3 解决问题的策略与技巧15.3 数学创新与数学探究15.3.1 数学创新的概念与意义15.3.2 数学探究的基本方法15.3.3 数学创新与探究的案例分析重点和难点解析本文档为您提供了一份中职数学基础模块的教案,共包含十五个章节。

高教版中职数学(基础模块)上册3.2《函数的性质》ppt课件1

高教版中职数学(基础模块)上册3.2《函数的性质》ppt课件1

应用知识 强化练习
教材练习3.2.2
2.判断下列函数的奇偶性:
(1) f x x ;
(2)
f
x
1 x2

(3) f x 3x 1 ;
(4) f x 3x2 2 .
归纳小结 强化思想
几何对称
图像特征
函数性质
性质判断
归纳小结 强化思想
学习方法
学习行为
学习效果
继续探索 作业探究
阅读 教材章节3.2 书写 学习与训练3.2 实践 举出函数性质的生活事例
若f(x)=f(−x) ,则函数就是偶函数;若f(x)≠-f(−x)且f(x)≠f(−x) , 则函数就是非奇非偶函数.
演示
巩固知识 典型例题
例 4 判断下列函数的奇偶性:
(1) f x x3 ; (2) f x 2x2 1;
(3) f x x ; (4) f x x 1 .
解(1)函数的定义域为 , ,
2024/7/5
最新中小学教学课件
27
thank
you!
2024/7/5
最新中小学教学课件
28



谢 阅 读
谢 阅

编后语
• 同学们在听课的过程中,还要善于抓住各种课程的特点,运用相应的方法去听,这样才能达到最佳的学习效果。 • 一、听理科课重在理解基本概念和规律 • 数、理、化是逻辑性很强的学科,前面的知识没学懂,后面的学习就很难继续进行。因此,掌握基本概念是学习的关键。上课时要抓好概念的理解,
同时,大家要开动脑筋,思考老师是怎样提出问题、分析问题、解决问题的,要边听边想。为讲明一个定理,推出一个公式,老师讲解顺序是怎样的, 为什么这么安排?两个例题之间又有什么相同点和不同之处?特别要从中学习理科思维的方法,如观察、比较、分析、综合、归纳、演绎等。 • 作为实验科学的物理、化学和生物,就要特别重视实验和观察,并在获得感性知识的基础上,进一步通过思考来掌握科学的概念和规律,等等。 • 二、听文科课要注重在理解中记忆 • 文科多以记忆为主,比如政治,要注意哪些是观点,哪些是事例,哪些是用观点解释社会现象。听历史课时,首先要弄清楚本节教材的主要观点,然 后,弄清教材为了说明这一观点引用了哪些史实,这些史料涉及的时间、地点、人物、事件。最后,也是关键的一环,看你是否真正弄懂观点与史料间 的关系。最好还能进一步思索:这些史料能不能充分说明观点?是否还可以补充新的史料?有无相反的史料证明原观点不正确。 • 三、听英语课要注重实践 • 英语课老师往往讲得不太多,在大部分的时间里,进行的师生之间、学生之间的大量语言实践练习。因此,要上好英语课,就应积极参加语言实践活 动,珍惜课堂上的每一个练习机会。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【课题】3.2函数的性质【教学目标】知识目标:⑴理解函数的单调性与奇偶性的概念;⑵会借助于函数图像讨论函数的单调性;⑶理解具有奇偶性的函数的图像特征,会判断简单函数的奇偶性.能力目标:⑴通过利用函数图像研究函数性质,培养学生的观察能力;⑵通过函数奇偶性的判断,培养学生的数学思维能力.【教学重点】⑴函数单调性与奇偶性的概念及其图像特征;⑵简单函数奇偶性的判定.【教学难点】函数奇偶性的判断.(*函数单调性的判断)【教学设计】(1)用学生熟悉的主题活动将所学的知识有机的整合在一起;(2)引导学生去感知数学的数形结合思想.通过图形认识特征,由此定义性质,再利用图形(或定义)进行性质的判断;(3)在问题的思考、交流、解决中培养和发展学生的思维能力.【教学备品】教学课件.【课时安排】3课时.(90分钟)【教学过程】(第一课时)揭示课题3.2函数的性质.*创设情景兴趣导入(小组合作,解决问题)观察天津市2008年11月29日的气温时段图,此图反映了0时至14时的气温T(C)随时间t(h)变化的情况.回答下面的问题:(1)时,气温最低,最低气温为C,时气温最高,最高气温为°C.(2)随着时间的增加,在时间段0时到6时的时间段内,气温不断地;6时到14时这个时间段内,气温不断地.下图为股市中,某股票在半天内的行情,请描述此股票的涨幅情况.从上图可以看到,有些时候该股票的价格随着时间推移在上涨,即时间增加股票价格也增加;有时该股票的价格随着时间推移在下跌,即时间增加股票价格反而减小.类似地,函数值随着自变量的增大而增大(或减小)的性质就是函数的单调性. 动脑思考 探索新知(阅读教材找到概念) 函数值随着自变量的增大而增大(或减小)的性质叫做函数的单调性.设函数()y f x =在区间(),a b 内有意义.(1)如图(1)所示,在区间(),a b 内,随着自变量的增加,函数值不断增大,图像呈上升趋势.即对于任意的()12,,x x a b ∈,当12x x <时,都有()()12f x f x <成立.这时把函数()f x 叫做区间(),a b 内的增函数,区间(),a b 叫做函数()f x 的增区间.(2)如图(2)所示,在区间(),a b 内,随着自变量的增加,函数值不断减小,图像呈下降趋势.即对于任意的()12,,x x a b ∈,当12x x <时,都有()()12f x f x >成立.这时函数()f x 叫做区间(),a b 内的减函数,区间(),a b 叫做函数()f x 的减区间.图(1) 图(2)如果函数()f x 在区间(),a b 内是增函数(或减函数),那么,就称函数()f x 在区间(),a b 内具有单调性,区间(),a b 叫做函数()f x 的单调区间.函数单调性的几何特征:在自变量取值区间上,顺着x 轴的正方向,若函数的图像上升,则函数为增函数;若图像下降则函数为减函数.判定函数的单调性有两种方法:借助于函数的图像或根据单调性的定义来判定. 巩固知识 典型例题 (自主探究,学生代表板演)例1 判断函数42y x =-的单调性.分析 对于用解析式表示的函数,其单调性可以通过定义来判断,也可以作出函数的图像,通过观察图像来判断.无论采用哪种方法,都要首先确定函数的定义域.解法1 函数为一次函数,定义域为(,)-∞+∞,其图像为一条直线.确定图像上的两个点即可作出函数图像.列表如下:在直角坐标系中,描出点(0,-2),(1,2),作出经过这两个点的直线.观察图像知函数42y x =-在(,)-∞+∞内为增函数.x 0 1 y -2 2理论升华 整体建构 (师生共同完成)由一次函数y kx b =+(0k ≠)的图像(如下图)可知:(1)当0k >时,图像从左至右上升,函数是单调递增函数;(2)当0k <时,图像从左至右下降,函数是单调递减函数. 由反比例函数ky=的图像(如下图)可知: (1)当0k >时,在各象限中y 值分别随x 值的增大而减小函数是单调递减函数;(2)当0k <时,在各象限中y 值分别随x 值的增大而增大,函数是单调递增函数.运用知识 强化练习教材练习3.2.11.已知函数图像如下图所示.(1)根据图像说出函数的单调区间以及函数在各单调区间内的单调性.(2)写出函数的定义域和值域.(第二课时)创设情景 兴趣导入(小组合作,解决问题)平面几何中,曾经学习了关于轴对称图形和中心对称图形的知识.如图所示,点()3,2P 关于x 轴的对称点是沿着x 轴对折得到与P 相重合的点1P ,其坐标为 ;点()3,2P 关于y 轴的对称点是沿着y 轴对折得到与P 相重合的点2P ,其坐标为 ;点()3,2P 关于原点O 的对称点是线段OP 绕着原点O 旋转180°得到与P相重合的点3P ,其坐标为 .(各组学生代表总结发言)一般地,设点(),P a b 为平面上的任意一点,则(1)点(),P a b 关于x 轴的对称点的坐标为(),a b -;(2)点(),P a b 关于y 轴的对称点的坐标为(),a b -; (3)点(),P a b 关于原点O 的对称点的坐标为(),a b --.巩固知识 典型例题 (学生自主解决,齐答)例3 (1)已知点()2,3P -,写出点P 关于x 轴的对称点的坐标;(2)已知点,)P x y (,写出点P 关于y 轴对称点的坐标与关于原点O 的对称点的坐标;(3)设函数()y f x =,在函数图像上任取一点()(),P a f a ,写出点P 关于y 轴的对称点的坐标与关于原点O 的对称点的坐标.分析 本题需要利用三种对称点的坐标特征来进行研究.P 1P 3 P 2解 (1)点()2,3P -关于x 轴的对称点的坐标为()2,3--;(2)点(),P x y 关于y 轴的对称点的坐标为(),x y -,点(),P x y 关于原点O 的对称点的坐标(),x y --;(3)点()(),P a f a 关于y 轴的对称点的坐标为()(),a f a -,点()(),P a f a 关于原点O 的对称点的坐标为()(),a f a --.运用知识 强化练习 (小组PK,抢答)教材练习3.2.21.求满足下列条件的点的坐标:(1)与点()2,1-关于x 轴对称;(2)与点()1,3--关于y 轴对称;(3)与点()2,1-关于坐标原点对称;(4)与点()1,0-关于y 轴对称.(第三课时)创设情景 兴趣导入(阅读教材,小组合作回答)观察下列函数图像是否具有对称性,如果有关于什么对称?图(1) 图(2)生活中还有很多类似的对称图形(见对应课件).对于图(1),如果沿着y 轴对折,那么对折后y 轴两侧的图像完全重合.即函数图像上任意一点P 关于y 轴的对称点P '仍然在函数图像上,这时称函数图像关于y 轴对称;y 轴叫做这个函数图像的对称轴.对于图(2),如果将图像沿着坐标原点旋转180°,旋转前后的图像完全重合.即函数图像上任意一点P 关于原点O 的对称点P '仍然在函数的图像上,这时称函数图像关于坐标原点对称;原点O 叫做这个函数图像的对称中心.动脑思考 探索新知任务一:奇偶函数的概念 (阅读教材,初步记忆)设函数()y f x =的定义域为数集D ,对任意的x D ∈,都有x D -∈(即定义域关于坐标原点对称),且(1)()()f x f x -=⇔函数()y f x =的图像关于y 轴对称,此时称函数()y f x =为偶函数;(2)()()f x f x -=- ⇔函数()y f x =的图像关于坐标原点对称,此时称函数称函数()y f x =为奇函数.如果一个函数是奇函数或偶函数,那么,就说这个函数具有奇偶性.不具有奇偶性的函数叫做非奇非偶函数.任务二:会判断函数的奇偶性 (教师指导,学生总结)判断一个函数是否具有奇偶性的基本步骤是:(1)求出函数的定义域,如果对于任意的x D ∈都有x D -∈(即关于坐标原点对称),则分别计算出()f x 与()f x -,然后根据定义判断函数的奇偶性.(2)如果存在某个0x D ∈,但是0x D ∉,则函数肯定是非奇非偶函数. 当然,对于用图像法表示的函数,可以通过对图像对称性的观察判断函数是否具有奇偶性.巩固知识 典型例题 (教师示范一个,其它各组代表讲解)例4 判断下列函数的奇偶性:(1)()3f x x =; (2)()221f x x =+;(3)()f x =; (4)()1f x x =-.分析 需要依照判断函数奇偶性的基本步骤进行.解 (1)函数()3f x x =的定义域为(),-∞+∞,是关于原点对称的区间,且()()()33f x x x f x -=-=-=-,所以()3f x x =是奇函数; (2)()221f x x =+的定义域为(),-∞+∞,是关于原点对称的区间,且()()()222121f x x x f x -=-+=+=,所以函数()221f x x =+是偶函数;(3)()f x =的定义域是[)0,+∞,不是一个关于原点对称的区间,所以函数()f x =是非奇非偶函数;(4)()1f x x =-的定义域为(),-∞+∞,是关于原点对称的区间,且()()11f x x x -=--=--,由于()()f x f x -≠-,并且()()f x f x -≠,所以函数()1f x x =-是非奇非偶函数.运用知识 强化练习 (小组竞赛,教师点评)教材练习3.2.22.判断下列函数的奇偶性:(1)()f x x =; (2)()21f x x=; (3)()31f x x =-+; (4)()232f x x =-+.归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么?自我反思目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?继续探索活动探究(1)读书部分:教材章节3.2;(2)书面作业:学习与训练3.2;(3)实践调查:举出函数性质的生活实例.2017届高考小题精练(满分42分时间20分钟)姓名:班级:得分:1.下列关于同温同压下的两种气体12C18O和14N2的判断正确的是()A.体积相等时密度相等B.原子数相等时具有的中子数相等C.体积相等时具有的电子数相等D.质量相等时具有的质子数相等【答案】C考点:考查物质的量的有关计算2.将17.9 g Al、Fe、Cu组成的合金溶于足量的NaOH溶液中,产生气体3.36 L(标准状况)。

另取等质量的合金溶于过量的稀硝酸中,生成6.72 L NO(标准状况),向反应后的溶液中加人过量NaOH溶液,得到沉淀的质量为A.33.2 g B.25.4 g C.22.4 g D.19.6 g【答案】B【解析】试题分析:最终生成的沉淀是氢氧化铁和氢氧化铜,沉淀增加的质量就是和金属阳离子结合的OH-的质量,而结合的OH-的物质的量就是金属失去的电子的物质的量,根据电子的得失守恒可知,金属失去电子的物质的量是(6.72L/22.4L•mol-1)×3mol=0.9mol,而金属铝失去的电子的物质的量是0.3mol,则金属铝的质量是0.1mol×27g/mol=2.7g,所以和金属阳离子结合的OH-的质量是0.6mol×17g/mol=10.2g,则最终沉淀的质量是17.9g-2. 7g+10.2g=25.4g,选项B符合题意。

相关文档
最新文档