2.3.4平面向量共线的坐标表示解析
高一数学平面向量的基本定理及坐标表示
探究(一):平面向量的坐标运算
思考1:设i、j是与x轴、y轴同向的两个 单位向量,若a=(x1,y1),b=(x2,y2),则
a=x1i+y1j,b=x2i+y2j,根据向量的线
性运算性质,向量a+b,a-b,λa (λ∈R)如何分别用基底i、j表示?
a+b=(x1+x2)i+(y1+y2)j,
a-b=(x1-x2)i+(y1-y2)j,
a+b=(x1+x2,y1+y2); a-b=(x1-x2,y1-y2); λa=(λx1,λy1).
思考3:如何用数学语言描述上述向量 的坐标运算?
两个向量和(差)的坐标分别等于这两 个向量相应坐标的和(差); 实数与向量的积的坐标等于用这个实数 乘原来向量的相应坐标.
思考4:如图,已知点A(x1,y1),B(x2,y2), 那么向量 的坐标如何?一般地,一个 任意向量的坐标如何计算?
向量a,b(b≠0)共线
yC
B
b
a
D
A
O
x
思考4:已知点P1(x1,y1),P2(x2,y2), 若点P分别是线段P1P2的中点、三等分点, 如何用向量方法求点P的坐标?
y
P
P2
P1 P P
O
x
思考5:一般地,若点P1(x1,y1),
P2(x2,y2),点P是直线P1P2上一点,
且
,那么点P的坐标有何计算
y Aa
O
x
探究(二):平面向量共线的坐标表示
思考1:如果向量a,b共线(其中b≠0), 那么a,b满足什么关系?
a=λb. 思考2:设a=(x1,y1),b=(x2,y2),若向 量a,b共线(其中b≠0),则这两个向量 的坐标应满足什么关系?反之成立吗?
平面向量共线的坐标表示解析
由平面几何知A识G得 2:AD
B
3
2(x1 x3 2x1 , y1 y3 2y1)
3
2
2
OGOA AG
D
A
G
(x1,
y1)
(
x2
x3 3
2x1
,
y2
y3 3
2y1
)
C
(x2 x3 x1 , y2 y3 y1 )
O
X
3
3
G (x1x2x3,y1y2y3)
3
3
rr a 2b
1.已知a (2,4),b (1,2),则a与b的关系是(.D...).
(1)当点P是线段P1P2的中点时,求点P的坐标; (2)当点P是线段P1P2的一个三等分点时,求点P的坐标。
解:(2)
法二:设Px, y
y P2
x P1 Px1,y 12 Py P1 2,1 2x2x,y2y
P1
P
有
x y
x1 y1
1 2 1 2
x2 y2
x y
O
解P 有 点坐 2x1标 x2,2y1y2
A.30...............B.60............C.45..............D.75
4.设向量a32、b不13平行s,in求证co:s向量a b和向量a b不平行。
4.向量a,b不平行,求证:向量 a – b 与a + b不平行。
证明:设向量 a – b 与a + b平行。
rr rr
设 ab r( ab )r r
( 1 ) a ( 1 ) b 0
1 1
0 0
显然,上述方程没有实数解。
∴ 向量 a – b 与a + b平行。
人教A版2019高中数学必修4讲义:第二章 2.3 2.3.4 平面向量共线的坐标表示_含答案
2.3.4 平面向量共线的坐标表示预习课本P98~100,思考并完成以下问题如何利用向量的坐标运算表示两个向量共线?[新知初探]平面向量共线的坐标表示[点睛] (1)平面向量共线的坐标表示还可以写成x 1x 2=y 1y 2(x 2≠0,y 2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例;(2)当a ≠0,b =0时,a ∥b ,此时x 1y 2-x 2y 1=0也成立,即对任意向量a ,b 都有:x 1y 2-x 2y 1=0⇔a ∥b .[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)已知a =(x 1,y 1),b =(x 2,y 2),若a ∥b ,则必有x 1y 2=x 2y 1.( )(2)向量(2,3)与向量(-4,-6)反向.( )答案:(1)√ (2)√2.若向量a =(1,2),b =(2,3),则与a +b 共线的向量可以是( )A .(2,1)B .(-1,2)C .(6,10)D .(-6,10)答案:C3.已知a =(1,2),b =(x,4),若a ∥b ,则x 等于( )A .-12 B.12C .-2D .2 答案:D4.已知向量a =(-2,3),b ∥a ,向量b 的起点为A (1,2),终点B 在x 轴上,则点B 的坐标为________.答案:⎝⎛⎭⎫73,0[典例] (1)已知向量a =(1,2),b =(λ,1),若(a +2b )∥(2a -2b ),则λ的值等于( ) A.12 B.13C .1D .2 (2)已知A (2,1),B (0,4),C (1,3),D (5,-3).判断AB 与CD 是否共线?如果共线,它们的方向相同还是相反?[解析] (1)法一:a +2b =(1,2)+2(λ,1)=(1+2λ,4),2a -2b =2(1,2)-2(λ,1)=(2-2λ,2),由(a +2b )∥(2a -2b )可得2(1+2λ)-4(2-2λ)=0,解得λ=12. 法二:假设a ,b 不共线,则由(a +2b )∥(2a -2b )可得a +2b =μ(2a -2b ),从而⎩⎪⎨⎪⎧1=2μ,2=-2μ,方程组显然无解,即a +2b 与2a -2b 不共线,这与(a +2b )∥(2a -2b )矛盾,从而假设不成立,故应有a ,b 共线,所以1λ=21,即λ=12. [答案] A(2)[解] AB =(0,4)-(2,1)=(-2,3),CD =(5,-3)-(1,3)=(4,-6), ∵(-2)×(-6)-3×4=0,∴AB ,CD 共线. 又CD =-2AB ,∴AB ,CD 方向相反.综上,AB 与CD 共线且方向相反.已知a =(1,2),b =(-3,2),当k 为何值时,ka +b 与a -3b 平行,平行时它们的方向相同还是相反?解:ka +b =k (1,2)+(-3,2)=(k -3,2k +2), a -3b =(1,2)-3(-3,2)=(10,-4),若ka +b 与a -3b 平行,则-4(k -3)-10(2k +2)=0,解得k =-13,此时ka +b =-13a +b =-13(a -3b ),故ka +b 与a -3b 反向. ∴k =-13时,ka +b 与a -3b 平行且方向相反.[典例] (1)已知OA =(3,4),OB =(7,12),OC =(9,16),求证:A ,B ,C 三点共线;(2)设向量OA =(k,12),OB =(4,5),OC =(10,k ),当k 为何值时,A ,B ,C 三点 共线?[解] (1)证明:∵AB =OB -OA =(4,8),AC =OC -OA =(6,12), ∴AC =32AB ,即AB 与AC 共线. 又∵AB 与AC 有公共点A ,∴A ,B ,C 三点共线.(2)若A ,B ,C 三点共线,则AB ,AC 共线, ∵AB =OB -OA =(4-k ,-7),AC =OC -OA =(10-k ,k -12),∴(4-k )(k -12)+7(10-k )=0.解得k =-2或k =11.一般是看AB 与BC AB 与AC AC BC AC BC AB λBC ,或AB =λAC 设点A (x,1),B (2x,2),C (1,2x ),D (5,3x ),当x 为何值时,AB 与CD 共线且方向相同,此时,A ,B ,C ,D 能否在同一条直线上?解:AB =(2x,2)-(x,1)=(x,1),BC =(1,2x )-(2x,2)=(1-2x,2x -2),CD =(5,3x )-(1,2x )=(4,x ).由AB 与CD 共线,所以x 2=1×4,所以x =±2.又AB 与CD 方向相同,所以x =2.此时,AB =(2,1),BC =(-3,2),而2×2≠-3×1,所以AB 与BC 不共线,所以A ,B ,C 三点不在同一条直线上.所以A ,B ,C ,D 不在同一条直线上.题点一:两直线平行判断1. 如图所示,已知直角梯形ABCD,AD⊥AB,AB=2AD=2CD,过点C作CE⊥AB于E,用向量的方法证明:DE∥BC;证明:如图,以E为原点,AB所在直线为x轴,EC所在直线为y轴建立直角坐标系,设|AD|=1,则|DC|=1,|AB|=2.∵CE⊥AB,而AD=DC,∴四边形AECD为正方形,∴可求得各点坐标分别为E(0,0),B(1,0),C(0,1),D(-1,1).∵ED=(-1,1)-(0,0)=(-1,1),BC=(0,1)-(1,0)=(-1,1),∴ED=BC,∴ED∥BC,即DE∥BC.题点二:几何形状的判断2.已知直角坐标平面上四点A(1,0),B(4,3),C(2,4),D(0,2),求证:四边形ABCD是等腰梯形.证明:由已知得,AB=(4,3)-(1,0)=(3,3),CD=(0,2)-(2,4)=(-2,-2).∵3×(-2)-3×(-2)=0,∴AB与CD共线.AD=(-1,2),BC=(2,4)-(4,3)=(-2,1),∵(-1)×1-2×(-2)≠0,∴AD与BC不共线.∴四边形ABCD是梯形.∵BC=(-2,1),AD=(-1,2),∴|BC|=5=|AD|,即BC=AD.故四边形ABCD是等腰梯形.题点三:求交点坐标3. 如图所示,已知点A(4,0),B(4,4),C(2,6),求AC和OB交点P的坐标.解:法一:设OP=t OB=t(4,4)=(4t,4t),则AP=OP-OA=(4t,4t)-(4,0)=(4t-4,4t),AC=OC-OA=(2,6)-(4,0)=(-2,6).由AP ,AC 共线的条件知(4t -4)×6-4t ×(-2)=0,解得t =34.∴OP =(3,3). ∴P 点坐标为(3,3).法二:设P (x ,y ), 则OP =(x ,y ),OB =(4,4). ∵OP ,OB 共线,∴4x -4y =0.① 又CP =(x -2,y -6),CA =(2,-6), 且向量CP ,CA 共线,∴-6(x -2)+2(6-y )=0.②解①②组成的方程组,得x =3,y =3,∴点P 的坐标为(3,3).应用向量共线的坐标表示求解几何问题的步骤层级一 学业水平达标1.下列向量组中,能作为表示它们所在平面内所有向量的基底的是( )A .e 1=(0,0),e 2=(1,-2)B .e 1=(-1,2),e 2=(5,7)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=⎝⎛⎭⎫12,-34 解析:选B A 中向量e 1为零向量,∴e 1∥e 2;C 中e 1=12e 2,∴e 1∥e 2;D 中e 1=4e 2,∴e 1∥e 2,故选B.2.已知点A (1,1),B (4,2)和向量a =(2,λ),若a ∥AB ,则实数λ的值为( )A .-23B.32C.23 D .-32解析:选C 根据A ,B 两点的坐标,可得AB =(3,1),∵a ∥AB ,∴2×1-3λ=0,解得λ=23,故选C. 3.已知A (2,-1),B (3,1),则与AB 平行且方向相反的向量a 是( )A .(2,1)B .(-6,-3)C .(-1,2)D .(-4,-8)解析:选D AB =(1,2),向量(2,1)、(-6,-3)、(-1,2)与(1,2)不平行;(-4,-8)与(1,2)平行且方向相反.4.已知向量a =(x,2),b =(3,-1),若(a +b )∥(a -2b ),则实数x 的值为( )A .-3B .2C .4D .-6解析:选D 因为(a +b )∥(a -2b ),a +b =(x +3,1),a -2b =(x -6,4),所以4(x +3)-(x -6)=0,解得x =-6.5.设a =⎝⎛⎭⎫32,tan α,b =⎝⎛⎭⎫cos α,13,且a ∥b ,则锐角α为( ) A .30°B .60°C .45°D .75° 解析:选A ∵a ∥b ,∴32×13-tan α cos α=0, 即sin α=12,α=30°. 6.已知向量a =(3x -1,4)与b =(1,2)共线,则实数x 的值为________.解析:∵向量a =(3x -1,4)与b =(1,2)共线,∴2(3x -1)-4×1=0,解得x =1.答案:17.已知A (-1,4),B (x ,-2),若C (3,3)在直线AB 上,则x =________. 解析:AB =(x +1,-6),AC =(4,-1), ∵AB ∥AC ,∴-(x +1)+24=0,∴x =23.答案:238.已知向量a =(1,2),b =(-2,3),若λa +μb 与a +b 共线,则λ与μ的关系是________.解析:∵a =(1,2),b =(-2,3),∴a +b =(1,2)+(-2,3)=(-1,5),λa +μb =λ(1,2)+μ(-2,3)=(λ-2μ,2λ+3μ),又∵(λa +μb )∥(a +b ),∴-1×(2λ+3μ)-5(λ-2μ)=0,∴λ=μ.答案:λ=μ9.已知A ,B ,C 三点的坐标为(-1,0),(3,-1),(1,2),并且AE =13AC ,BF =13BC ,求证:EF ∥AB .证明:设E ,F 的坐标分别为(x 1,y 1)、(x 2,y 2), 依题意有AC =(2,2),BC =(-2,3),AB =(4,-1). ∵AE =13AC ,∴(x 1+1,y 1)=13(2,2). ∴点E 的坐标为⎝⎛⎭⎫-13,23. 同理点F 的坐标为⎝⎛⎭⎫73,0,EF =⎝⎛⎭⎫83,-23. 又83×(-1)-4×⎝⎛⎭⎫-23=0,∴EF ∥AB . 10.已知向量a =(2,1),b =(1,1),c =(5,2),m =λb +c (λ为常数).(1)求a +b ;(2)若a 与m 平行,求实数λ的值.解:(1)因为a =(2,1),b =(1,1),所以a +b =(2,1)+(1,1)=(3,2).(2)因为b =(1,1),c =(5,2),所以m =λb +c =λ(1,1)+(5,2)=(λ+5,λ+2).又因为a =(2,1),且a 与m 平行,所以2(λ+2)=λ+5,解得λ=1.层级二 应试能力达标1.已知平面向量a =(x,1),b =(-x ,x 2),则向量a +b ( )A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第二、四象限的角平分线解析:选C 因为a +b =(0,1+x 2),所以a +b 平行于y 轴.2.若A (3,-6),B (-5,2),C (6,y )三点共线,则y =( )A.13B.-13C.9 D.-9解析:选D A,B,C三点共线,∴AB∥AC,而AB=(-8,8),AC=(3,y+6),∴-8(y+6)-8×3=0,即y=-9.3.已知向量a=(1,0),b=(0,1),c=ka+b(k∈R),d=a-b,如果c∥d,那么() A.k=1且c与d同向B.k=1且c与d反向C.k=-1且c与d同向D.k=-1且c与d反向解析:选D∵a=(1,0),b=(0,1),若k=1,则c=a+b=(1,1),d=a-b=(1,-1),显然,c与d不平行,排除A、B.若k=-1,则c=-a+b=(-1,1),d=a-b=-(-1,1),即c∥d且c与d反向.4.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个顶点的坐标是()A.(1,5)或(5,5)B.(1,5)或(-3,-5)C.(5,-5)或(-3,-5)D.(1,5)或(5,-5)或(-3,-5)解析:选D设A(-1,0),B(3,0),C(1,-5),第四个顶点为D,①若这个平行四边形为▱ABCD,则AB=DC,∴D(-3,-5);②若这个平行四边形为▱ACDB,则AC=BD,∴D(5,-5);③若这个平行四边形为▱ACBD,则AC=DB,∴D(1,5).综上所述,D点坐标为(1,5)或(5,-5)或(-3,-5).5.已知AB=(6,1),BC=(x,y),CD=(-2,-3),BC∥DA,则x+2y的值为________.解析:∵AD=AB+BC+CD=(6,1)+(x,y)+(-2,-3)=(x+4,y-2),∴DA=-AD=-(x+4,y-2)=(-x-4,-y+2).∵BC∥DA,∴x(-y+2)-(-x-4)y=0,即x+2y=0.答案:06.已知向量OA =(3,-4),OB =(6,-3),OC =(5-m ,-3-m ).若点A ,B ,C 能构成三角形,则实数m 应满足的条件为________.解析:若点A ,B ,C 能构成三角形,则这三点不共线,即AB 与AC 不共线. ∵AB =OB -OA =(3,1),AC =OC -OA =(2-m,1-m ),∴3(1-m )≠2-m ,即m ≠12.答案:m ≠127.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a 与b 之间的数量关系;(2)若AC =2AB ,求点C 的坐标.解:(1)若A ,B ,C 三点共线,则AB 与AC 共线.AB =(3,-1)-(1,1)=(2,-2),AC =(a -1,b -1),∴2(b -1)-(-2)(a -1)=0,∴a +b =2.(2)若AC =2AB ,则(a -1,b -1)=(4,-4),∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,∴⎩⎪⎨⎪⎧ a =5,b =-3,∴点C 的坐标为(5,-3).8.如图所示,在四边形ABCD 中,已知A (2,6),B (6,4),C (5,0),D (1,0),求直线AC 与BD 交点P 的坐标.解:设P (x ,y ),则DP =(x -1,y ),DB =(5,4),CA =(-3,6),DC =(4,0).由B ,P ,D 三点共线可得DP =λDB =(5λ,4λ). 又∵CP =DP -DC =(5λ-4,4λ), 由于CP 与CA 共线得,(5λ-4)×6+12λ=0.解得λ=47, ∴DP =47DB =⎝⎛⎭⎫207,167,∴P 的坐标为⎝⎛⎭⎫277,167.。
平面向量共线的坐标表示
解:∵a=(1,0),b=(2,1), ∴ka-b=k(1,0)-(2,1)=(k-2,-1), a+3b=(1,0)+3(2,1)=(7,3). 由两向量平行得 3(k-2)-7×(-1)=0. 1 ∴k=-3.
7 此时,ka-b=- ,-1 3
1 1 =-3(7,3)=-3(a+3b). ∴它们是反向的.
• 2.3.4 平面向量共线的坐标表示
• 1.通过实例了解如何用坐标表示两个共线向量,以及两直 线平行和两向量共线的判定的区别.(易混点) • 2.理解用坐标表示的平面向量共线的条件 ,并能会应 用.(重点) • 3.会根据平面向量的坐标判断向量是否共线.(难点)
• 两向量平行的条件
•
如果两个非零向量共线,你能通过它们的坐标判断它们 同向还是反向吗? • 提示:当两个向量的对应坐标同号或同为零时,同向.当 两个向量的对应坐标异号或同为零时,反向. • 例如:向量(1,2)与(-1,-2)反向;向量(1,0)与(3,0)同向; • 向量(-1,2)与(-3,6)同向;向量(-1,0)与(3,0)反向等.
→ → → 【典例】 已知向量AB=(6,1),BC=(x,y),CD=(-2, → → -3),当BC∥DA时,求实数 x,y 应满足的关系.
→ → → → → 【错误解答】DA=-AD=-(AB+BC+CD) =-[(6,1)+(x,y)+(-2,-3)]=(-x-4,-y+2). → → → BC=(x,y),当BC∥DA时,x(-x-4)-y(-y+2)=0 即 x2-y2+4x+2y=0.
→ BC=(1,0)+m(0,1)=(1,m). → → 而AB、BC共线,∴1×m-1×(-2)=0. ∴m=-2,∴当 m=-2 时, A、B、C 三点共线.
平面向量基本定理
a
M D
C
例5、 如图,已知梯形ABCD, AB//CD,且AB= 2DC,M,N分别是DC,AB 的中点. 请大家动手, D 在图中确定一组 基底,将其他向 量用这组基底表 A 示出来。
M
C
N
B
解析: 设AB = e1,AD =
1 1 DC = 2 AB = 2e1
e2,则有:
即(2 - )a +(k - 4 )b = 0
k – 4 = 0 8.
2 - = 0
k =
评析 本题在解决过程中用到了两向量 共线的充要条件这一定理,并借助平 面向量的基本定理减少变量,除此之 外,还用待定系数法列方程,通过消 元解方程组。这些知识和考虑问题的 方法都必须切实掌握好。
2e 2 e1 ___;BD __________ e 2 e1 AD __________ _________
AF AB EF EF AD eBD 2 AD e e 2 1 2 2e e EA 2 e eFD AB AF 2 e ee e 1 2 2 1 1 2 B A e 2 e1
2.3.1 2.3.2 2.3.3 2.3.4
平面向量的基本定理 平面向量的正交分解及坐标表示 平面向量的坐标运算 平面向量共线的坐标表示
思考:
给定平面内任意两个向量 e1、e2 ,如何 作出向量 3e1 + 2e2 、 e1 - 2e2 ?平面内任一向量是否都 可以用形如 a =λe1 +λe2 的向量表示呢? 1 2
平面向量共线的坐标表示
向量共线的应用
向量共线可以用于解决一些实际问题,例如物理 学中的力合成、物理学中的速度合成等。
向量共线也可以用于解析几何中的图形变换、线 性变换等。
在向量研究中,向量共线还可以用于证明一些定 理和推导一些公式。
向量共线的坐标表示
向量共线定理
如果两个向量$\overrightarrow{AB}$和 $\overrightarrow{CD}$共线,那么存在实数 $\lambda$使得 $\overrightarrow{AB}=\lambda\overrightarrow{C D}$。
坐标表示
设$\overrightarrow{AB}=(x_1,y_1)$, $\overrightarrow{CD}=(x_2,y_2)$,如果 $\overrightarrow{AB}=\lambda\overrightarrow{C D}$,则有$\left\{\begin{matrix} x_1=\lambda x_2 \\ y_1=\lambda y_2 \end{matrix}\right.$。
向量共线的代数表示
总结词
如果两个向量$\overset{\longrightarrow}{a}$和 $\overset{\longrightarrow}{b}$共线,那么存在一个 非零实数$\lambda$,使得 $\overset{\longrightarrow}{b} = \lambda\overset{\longrightarrow}{a}$。
向量共线的性质
要点一
向量共线的性质包括
交换律、结合律、分配律等。这些性质可以用来简化向 量的运算,并用于解决实际问题。
2.3.4平面向量共线的坐标表示
本节课到此结束,请同学们课后再 做好复习与作业。谢谢!
作业:课本P101习题2.3.4:6、7 B组1~4
《聚焦课堂》
再见!
聚焦作业手册P80: 8T
已知A(2,3)、B(5,4)、C(7,10),若AP=AB+λAC (λ∈R),试求λ为何值时,点P在第三象限内? 解:设P(x,y). AP =(x-2,y-3), AB =(3, 1), x-2=3+5λ y-3=1+7λ AC =(5, 7), (x-2, y-3) =(3, 1)+λ(5, 7) =(3+5λ, 1+7λ) x=5+5λ <0 y=4+7λ <0
∴只能有:
(1)k 1 : ke1 e2 e 1 ke2 ,同向共线. (2)k 1 : ke1 e2 (e 1 ke2 ) ,反向共线.
{ k 1 0
k 0
λ 1 k 1.
a ( x1 , y1 ), b ( x2 , y2 ).
B( x 2 , y 2 )
x1=x2,且y1=y2
( x2 x1 , y2 y1 )
A( x1 , y1 )
探究:
向量平行的坐标表示
向量平行的向量表示
设a=(x1,y1), b=(x2,y2), 其中a≠0, b // a b = λa (x2,y2) =λ(x1,y1) = (λx1,λy1)
(x , y ) λa 3.两个结论 AB ( x2 x1 , y2 y1 ) a b x1=x2,且y1=y2 4.共线向量的充要条件:(a≠0) x1y2-x2y1=0 向量a与b共线 b=λa
a b ( x 1 x 2 , y1 y2 ), a b ( x 1 x 2 , y1 y2 ),
2.3.4 平面向量共线的坐标表示
这两种表示本质上是一样, 解题时根据具体 情况适当选用.
如果 a // b ,那么 x1 y2 x2 y1 0 。
反之如果 x1 y2 x2 y1 0 ,那么 a // b 。
例1 : 已知a (4,2), (6, y ), 且a // b, 求y. b
例2 : (1)已知A(1,1), B (1,3), C (2,5), 求证 : A, B, C三点共线.
例 4:如图,已知点A(4,0),B(4,4),C(2,6),求 直线AC、OB交点P的坐标.
[例5] 已知A(-1,2),B(1,4). (1)求AB的中点M的坐标; (2)求AB的三等分点P、Q的坐标;
例6: P1 P PP2 ( 1), 点P1 , P , P2坐标分别为(x1 , y1 ), ( x , y ), 设
问1:向量共线定理是什么? b 对于向量 a , (a 0) , a // b存在唯一实数λ,使得 b a -4) 8) 向量a (1 , 与b (2 , 是否平行? 问2:向量 a ( x1 , y1 ), b ( x2 , y2 ) 其中 a 0 如果 a // b x1、x2、y1、y2 之间有怎样的关系呢? 已知 a ( x1 , y1 ), b ( x2 , y2 ) ,其中 a 0 ,
x ( x 2 , y2 )求证: y
x1 x 2 1 y1 y2 1
小结:
两向量平行的条件:
1.b // a(a 0) 存在唯一实数 , 使b a.
2.若a ( x1 , y1 ), b ( x2 , y2 ), 则a // b(b 0) x1 y2 x2 y1 0, 即x1 y2 x2 y1
2.3.3 平面向量的坐标运算 2.3.4 平面向量共线的坐标表示
2.3.3 平面向量的坐标运算2.3.4 平面向量共线的坐标表示 ●温故知新1.(1)式子12(2)如果基底的两个向量1e 、2e ________,则这个基底为正交基底.2.在直角坐标系中建立一个________{},i j ,对于平面内任一向量a 可分解为x y =+a i j ,则有序 实数对______叫做向量a 的坐标,记作_________.3.设OA x y =+i j ,则向量OA 的坐标______就是_________的坐标;反过来,_________的坐标______也就是向量OA 的坐标.4.向量的加法法则:两向量首尾相接,则和向量为首向量的______指向末向量的______. ●课题引入在直角坐标平面中,(1)画出()2,4OA =,如何画()2,4=a ?(2)若()2,4=a ,()3,1=b ,画出+a b ,如何求+a b 的坐标?●教材新知1.2.(1)若向量的起点是坐标原点,则向量的坐标等于___________; (2)设()11,A x y ,()22,B x y ,则AB =_________.即一个向量的坐标等于表示此有向线段的___________减去___________.3.将一个向量的始点平移到坐标原点,则向量的坐标和平移后向量的______是相同的.4.设()11,x y =a ,()22,x y =b ,其中≠0b ,则a ‖b ⇔________1212,x x y y λλ=⎧⇔⇔⎨=⎩___________. 5.设()11,A x y ,()22,B x y ,()33,C x y ,只要证明________,便可证得A、B 、C 三点共线. 6.设()111,P x y ,()222,P x y ,(),P x y ,()121PP PP λλ=≠-时,x =_______,y =_______. (1)当1λ=,即点P 为12P P 的______,此时x =_______,y =_______.(2)ABC ∆中,()11,A x y ,()22,B x y ,()33,C x y ,重心(),G x y ,则x =_______,y =_______.●题组集训(1)若点P 的坐标为()11,x y ,向量PQ 的坐标为()22,x y ,则点Q 的坐标为( )A.()1212,x x y y --B.()2121,x x y y --C.()1212,x x y y ++D.()1212,x x y y -+ (2)()3,2=a ,()0,1=-b ,则向量2-b a 的坐标是( )A.()3,4-B.()3,4-C.()3,4D.()3,4-- (3)设()2,3AB =,(),BC m n =,()1,4CD =-,则DA =( )A.()1,7m n ++B.()1,7m n ----C.()1,7m n --D.()1,7m n -+-+ (4)若()0,0O ,()1,1A 且'2OA OA =,则点'A 的坐标为_______.(5)已知点()3,2M -,()5,1N --,若12MP MN =,则点P 的坐标是_______.●课堂精讲【例1】已知点A 、B 、C 的坐标分别为()2,4A -、()0,6B 、()8,10C -.求向量122AB BC AC +-的坐标.【例2】已知()1,2=a ,()3,2=-b ,当k 为何值时,k +a b 与3-a b 平行?平行时它们是同向还是反向?【变式训练】已知点()4,0A ,()5,5B ,()2,6C ,O 为坐标原点,求直线AC 与OB 的交点P 的坐 标.【例3】已知点()6,3A ,O 为坐标原点,点P 在直线OA 上,且12OP PA =,若P 是线段OB 的中点,求点B 的坐标.【变式训练1】在ABC ∆中,已知点()3,7A 、()2,5B -.若线段AC 、BC 的中点都在坐标轴上,求点C 的坐标.【变式训练2】如图,已知三点()0,8A ,()4,0B -,()5,3C -,D 点在线段AB 上,且13AD DB=, E 点在线段BC 上,若BDE ∆的面积是ABC ∆面积的一半,求向量AE 的坐标.●课后反馈(1)若三点()1,1P ,()2,4A -,(),9B x -共线,则( )A.1x =-B.3x =C.92x =D.51x = (2)在平行四边形ABCD 中,AC 为一条对角线,若()2,4AB =,()1,3AC =,则BD =( )A.()2,4--B.()3,5--C.()3,5D.()2,4 (3)已知两点()2,1A -,()3,1B ,与AB 平行且方向相反的向量a 是( )A.()1,2=-aB.()9,3=aC.()1,2=-aD.()4,8=--a (4)已知()5,2=-a ,()4,3=--b ,(),x y =c ,若23-+=0a b c ,则c 等于( ) A.81,3⎛⎫ ⎪⎝⎭ B.138,33⎛⎫ ⎪⎝⎭ C.134,33⎛⎫ ⎪⎝⎭ D.134,33⎛⎫-- ⎪⎝⎭(5)设1,tan 3α⎛⎫= ⎪⎝⎭a ,3cos ,2α⎛⎫= ⎪⎝⎭b ,且a 与b 共线,则锐角α的值为( )A.12πB.6πC.4πD.3π(6)若ABC ∆的三条边得中点分别为()2,1和()3,4-,()1,1--,则ABC ∆的重心坐标为______.(7)设向量()1,2=a ,()2,3=b ,若向量λ+a b 与向量()4,7=--c 共线,则λ=______. (8)若()3,4=a ,b ‖a 且b 的起点为()1,2,终点为(),3x x ,则=b ________. (9)若()4,3=-a ,(),5x =b ,()1,y =-c ,若+=a b c ,则(),x y =_______.(10)已知()5,1A ,()1,3B ,113OA OA =,113OB OB =,求11A B .(11)设向量()1,3=-a ,()2,4=-b ,()1,2=--c .若表示向量4a 、42-b c 、()2-a c 、d 的有向线段首尾相接能构成四边形,求向量d .(12)已知O 是坐标原点,()2,1A -,()4,8B -,且3AB BC +=0,求OC 的坐标.(13)平面内给定三个向量()3,2=a ,()1,2=-b ,()4,1=c ,回答下列问题: ①求32+-a b c ;②求满足m n =+a b c 的实数m ,n ; ③若()k +a c ‖()2-b a ,求实数k .(14)如图所示,已知()4,5A ,()1,2B ,()12,1C ,()11,6D ,AC 与BD 相交于点P ,求BP 的坐 标及点P 的坐标.(15)已知平行四边形ABCD 的一个顶点坐标为()2,1A -,一组对边AB 、 CD 的中点分别为()3,0M 、()1,2N --,求平行四边形的各个顶点的坐标.。
平面向量共线的坐标表示
向量$\overset{\longrightarrow}{AB}$的坐标是$(x_2 - x_1,y_2 - y_1)$,其中 $(x_1,y_1)$和$(x_2,y_2)$分别是点A和点B的坐标。
坐标表示法的应用
向量加法
向量数乘
对于两个向量 $\overset{\longrightarrow}{AB}$和 $\overset{\longrightarrow}{CD}$
向量$\overset{\longrightarrow}{AB}$的长度称为向量的模,用符号 $|\overset{\longrightarrow}{AB}|$表示,其大小是线段$MN$的长度。
向量的方向
向量$\overset{\longrightarrow}{AB}$的方向是从点A指向点B,与线段AB的方向一致。
详细描述
设$\overset{\longrightarrow}{a} = (x_1, y_1)$和 $\overset{\longrightarrow}{b} = (x_2, y_2)$是同一 直线上的两个向量。$t$为任意实数
向量的分解与合成
总结词
平面向量的分解与合成是指将一个向量分解为若干个 向量的和,或将若干个向量的和合成一个向量。
03
向量共线定理的证明
向量共线的定义
两个向量共线
两个向量共线是指它们的方向相同或相反,即它们的角度为0 度或180度。
坐标表示
平面向量的坐标表示是利用两个实数来表示向量的起点和终 点,即$(x_{1}, y_{1})$和$(x_{2}, y_{2})$。
向量共线定理的证明方法
方法一
利用向量的坐标表示证明
对于一个实数$\lambda$和一个向量 $\overset{\longrightarrow}{AB}$
第二章23234平面向量共线的坐标表示
[活学活用] 已知 a=(1,2),b=(-3,2),当实数 k 为何值时,(ka+b)∥(a- 3b)?这两个向量的方向是相同还是相反? 解:∵a=(1,2),b=(-3,2), ∴ka+b=(k-3,2k+2),a-3b=(10,-4). 由题意得(k-3)×(-4)-10(2k+2)=0,解得 k=-13. 此时 ka+b=-13a+b=-13(a-3b), ∴当 k=-13时,(ka+b)∥(a-3b),并且它们的方向相反.
A.3
B.-3
1 C.3 解析:选 C
D.-13 ∵a∥b,∴(-1)×(-1)=3x,∴x=13.
返回
2.已知 A(2,-1),B(3,1),则与 AB平行且方向相反的向量 a
是
()
A.(2,1) C.(-1,2)
B.(-6,-3) D.(-4,-8)
解析:选 D AB=(1,2),向量(2,1)、(-6,-3)、(-1,2) 与(1,2)不平行;(-4,-8)与(1,2)平行且方向相反.
返回
3.已知向量 a=(1,2),b=(-2,3),若 λa+μb 与 a+b 共线,则 λ 与 μ 的关系是________. 解析:∵a=(1,2),b=(-2,3),∴a+b=(1,2)+(-2,3)=(- 1,5),λa+μb=λ(1,2)+μ(-2,3)=(λ-2μ,2λ+3μ), 又∵(λa+μb)∥(a+b), ∴-1×(2λ+3μ)-5(λ-2μ)=0, ∴λ=μ. 答案:λ=μ
返回
∴yx==-2+11+231+×+2323×23-31,,
即xy==3545.,
故 P 点坐标为54,35.
(2)当 P1P 与 PP2 反向时,则有 P1P =-23 PP2 ,设 P 点坐
2.3.4 平面向量共线的坐标表示(A3)
2015 年( )月( )日 班级 姓名
在坐标系中以原点为始点,画出向量 a=(2,3),终点为 A;b=(6,4),终点为 B. 则线段 AB 的中点 P 的坐标 问题 1 设 P1、P2 的坐标分别是(x1,y1)、(x2,y2),求线段 P1P2 的中点 P 的坐标.
2.3.4
问题 2 设 P1(x1,y1),P2(x2,y2),试用 λ 及 P1,P2 点的坐标表示 P(x,y)点的坐标.
例3
已知点 A(3,-4)与点 B(-1,2),点 P 在直线 AB 上,且| AP |=2| PB |,求点 P 的坐标.
【小结】若 P 2 ,则 P 与 P1、P2 三点共线. 1 P =λ PP 当 λ∈ 时,P 位于线段 P1P2 的内部,特别地 λ=1 时,P 为线段 P1P2 的中点; 当 λ∈ 时,P 位于线段 P1P2 的延长线上; 当 λ∈ 时,P 位于线段 P1P2 的反向延长线上. 例 1 已知 a=(1,2),b=(-3,2),当 k 为何值时,ka+b 与 a-3b 平行?平行时它们是同向还是 反向?
1 2 3
4 5 6
x
a 与非零向量 b 为共线向量的充要条件是有且只有一个实数 λ 使得 a=λb.那么这个共线向量定理 如何用坐标来表示? 【平面向量共线的坐标表示】 问题 1 设向量 a=(x1,y1),b=(x2,y2)(b≠0),如果 a∥b,那么 x1y2-x2y1=0,写出证明过程.
问题 3 已知△ABC 的三个顶点坐标依次为 A(x1,y1),B(x2,y2),C(x3,y3).求△ABC 的重心 G 的 坐标.
问题 2 设向量 a=(x1,y1),b=(x2,y2),b≠0,如果 x1y2-x2y1=0,那么 a∥b.请你写出证明过 程.
平面向量共线
人教A版必修四·新课标·数学
版块导航
4.已知向量 a,b 不共线,c=ka+b(k∈R),d=a-b, 如果 c∥d,那么( )
A.k=1 且 c 与 d 同向 B.k=1 且 c 与 d 反向 C.k=-1 且 c 与 d 同向 D.k=-1 且 c 与 d 反向
解析:∵c∥d,∴存在实数 λ,使 c=λd,即 ka+b=λ(a -b),
答案:C
人教A版必修四·新课标·数学
版块导航
3.已知向量 a=(1,1),b=(2,x),若 a+b 与 4b-2a 平
行,则实数 x 的值是( )
A.-2
B.0
C.1
D.2
解析:因为 a=(1,1),b=(2,x),所以 a+b=(3,x+1), 4b-2a=(6,4x-2),因为 a+b 与 4b-2a 平行,所以 3(4x- 2)-6(x+1)=0,解得 x=2.故选 D.
2.证明三点共线的方法 设 A(x1,y1)、B(x2,y2)、C(x3,y3), 只要证明 向量共线 ,便可证得 A、B、C 三点 共线.
3.线段的中点坐标 设 P1(x1,y1),P2(x2,y2),则 P1P2 的中点 P 的坐标为 x1+2 x2,y1+2 y2.
想一想
人教A版必修四·新课标·数学
版块导航
解:∵a=(1,1),b=(x,1), ∴u=(1,1)+2(x,1)=(1,1)+(2x,2)=(2x+1,3); v=2(1,1)-(x,1)=(2-x,1). (1)u=3v⇔(2x+1,3)=3(2-x,1)⇔(2x+1,3)=(6-3x,3) ⇔2x+1=6-3x. 解之,得 x=1.
A.x=-1 C.x=92
B.x=3 D.x=51
《2.3.4平面向量的基本定理及坐标表示》课件3
误区警示 考虑不全面而出错 【示例】 若向量 a=(-1,x)与 b=(-x,2)共线,求 x. [错解] ∵a, b 共线,∴(-1)×2-x(-x)=0,得 x=- 2(舍去) 或 x= 2,故 x= 2为所求. 舍去 x=- 2没有道理. [正解] ∵a,b 共线,∴(-1)×2-x(-x)=0,得 x=± 2, 而 x= 2时,a=(-1, 2),b=(- 2,2)= 2(-1, 2)= 2 a,此时 a、b 同向共线; x=- 2时,b=- 2a,此时 a、b 异向共线. 故 x=± 2为所求.
5 → 而CM=x,y-4,
(8 分)
5 7 → CB=4-0,3-4=4,4.
∵C,M,B 三点共线, → → ∴CM与CB共线.
5 7 ∴4x-4y-4=0,即 7x-16y=-20.
(10 分) ②
12 由①②得 x= 7 ,y=2.
规律方法
此类题目应充分利用向量共线定理或向量共线坐标
的条件进行判断, 特别是利用向量共线坐标的条件进行判断时, 要注意坐标之间的搭配.
→ → → 【变式 1】 若OA=(-1,2),OB=(1,0),OC=(5,-4). 求证:A、B、C、三点共线. 证明 → =OB → -OA → =(2,-2), AB
2.3.4 平面向量共线的坐标表示
【课标要求】 1.通过实例了解如何用坐标表示两个共线向量. 2.理解用坐标表示的平面向量共线的条件. 3.会根据平面向量的坐标判断向量是否共线. 【核心扫描】 1.用坐标表示两向量共线.(重点) 2.根据平面向量的坐标判断向量共线.(难点) 3.两直线平行与两向量共线的判定.(易混点)
共线的两个向量可以是同向共线,也可以是反向共 线.解答这类试题时,要认真审题,对求得的参数需进行讨论, 舍去不合题意的参数值.
高中数学必修四 第2章 平面向量课件 2.3.4 平面向量共线的坐标表示
类型二 利用向量共线求参数 【例2】 已知a=(1,2),b=(-3,2),当k为何值时,ka+b与a-3b 平行?平行时它们是同向还是反向? [思路探索] 先求ka+b,a-3b的坐标,再由向量共线的充要条件 列方程组求k. 解 法一 ka+b=k(1,2)+(-3,2)=(k-3,2k+2), a-3b=(1,2)-3(-3,2)=(10,-4). 当ka+b与a-3b平行时,存在唯一的实数λ, 使ka+b=λ(a-3b), 即(k-3,2k+2)=λ(10,-4),
∴-6(x-2)+2(6-y)=0.② 解①②组成的方程组,得x=3,y=3, ∴点P的坐标为(3,3). [规律方法] 求解直线或线段的交点问题,常规方法为写出直线 或线段对应的直线方程,建立方程组求解,而利用向量方法借助 共线向量的充要条件可减少运算量,且思路简单明快.
【活学活用3】 平面上有A(-2,1),B(1,4),D(4,-3)三点,
新知导学 平面向量共线的坐标表示
前提条件
a=(x1,y1),b=(x2,y2),其中b≠0
结论 当且仅当 x1y2-x2y1=0 时,向量a,b(b≠0)共线
温馨提示:平面向量共线的坐标表示的记忆策略
互动探究 探究点1 如果两个非零向量共线,你能通过它们的坐标判断它们 同向还是反向吗? 提示 当两个向量的对应坐标同号或同为零时,同向;当两个向 量的对应坐标异号或同为零时,反向.例如,向量(1,2)与(-1, -2)反向;向量(1,0)与(3,0)同向;向量(-1,2)与(-3,6)同向;向 量(-1,0)与(3,0)反向等. 探究点2 若a∥b,a=(x1,y1),b=(x2,y2),则必有yx11=xy22吗? 提示 不一定,两个向量中,若有与坐标轴(x轴)平行的向量或 零向量,则不能写成比例式.
高中数学-第二章-平面向量-2.3-平面向量的基本定理及坐标表示-2.3.2-2.3.3-知识巧解学案-新人教A版必修4
2.3.2 平面向量的坐标表示及运算2.3.3 平面向量共线的坐标表示疱工巧解牛知识•巧学一、平面向量的正交分解1.由平面向量基本定理可知,我们选定平面中的一组不共线向量作为基底,则这个平面内的任意一向量都可用这组基底唯一表示.在解决实际问题时,往往根据需要,人为地选定一组基底来表示相关的量.如图2-3-11,△ABC 中,D 、E 分别是边、的中点.图2-3-11求证:DE 21BC. 证明:先选定一组基底,设=a ,=b ,则=b -a .又∵AD =21AB =21a ,AE =21=21b , ∴=-=21b 21 a =21 (b -a ). ∴=2,即△ABC 中,DE 21BC. 学法一得 利用平面向量的基本定理证明向量共线的过程是:先选好一组基底,用该基底把相关的向量表示出来,再根据两向量共线的条件,确定唯一的实数,证得两向量共线,其实质是判定出两向量的方向与模的关系.2.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.此时,这两个互相垂直的基底为正交基底.二、正交分解下向量的坐标1.向量的坐标表示在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底,任作一个向量a .由平面向量基本定理知,有且只有一对实数(x ,y),使得a =x i +y j .由于向量a 与有序实数对(x ,y)是一一对应的,因此,我们就把(x ,y)叫做向量a 的(直角)坐标,记作a =(x ,y),其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,a =(x ,y)叫做向量的坐标表示.显然,i =(1,0),j =(0,1),0=(0,0).图2-3-12设向量a=(x,y),a方向相对于x轴正方向的旋转角为θ.由三角函数的定义可知:x=|a|cosθ,y=|a|sinθ,即向量a的坐标由它的模和方向唯一确定,与它的位置无关.2.向量坐标的唯一性在直角坐标平面内,以原点O为起点作=a,则点A的位置由a唯一确定.设=x i+y j,则向量的坐标(x,y)就是点A的坐标;反过来,点A的坐标(x,y)也就是向量的坐标.图2-3-13如图2-3-13所示,CD=OA=a,CD向量的坐标怎样表示?由向量相等的定义可知,对于一个向量,只要不改变它的大小和方向,是可以任意平行移动的,这就是我们常说的自由向量.向量在移动的过程中,其坐标是不变的,此时OA向量的坐标等于CD的坐标,即相等向量的坐标相同.3.一一对应原理任何一个平面向量都有唯一的坐标表示,但是每一个坐标表示的向量却不一定是唯一的,也就是说,向量的坐标表示和向量不是一一对应的关系,但和起点为坐标原点的向量是一一对应的关系.由此可见,在全体有序实数对与坐标平面内的所有向量之间可以建立一一对应关系.因此在直角坐标系中,点或向量都可以看作有序实数对的直观形象.学法一得①平面向量的坐标表示是平面向量基本定理的具体运用,其关键是在直角坐标系的两坐标轴上取与正方向一致的两个单位向量作为基底,用该基底把平面直角坐标系中的某一向量表示出来.②由于向量是可以平移的,模相等方向相同的向量是相等的向量,所以平面内任一向量所对应的坐标,与把该向量的起点移至原点,终点所对应的坐标相等.三、向量的坐标运算1.加法运算对于向量的加法除了用向量线性运算的结合律和分配律去证明外,还可用几何作图的方法予以证明.设a=(x1,y1),b=(x2,y2),求a+b.图2-3-14如图2-3-14所示,OA =a ,OB =b ,以a 、b 为邻边作平行四边形,则OC =a +b .作BB ′⊥x 轴,垂足为B ′,AA ′⊥x 轴,垂足为A ′,CD ⊥x 轴,垂足为D ,AC ′⊥CD ,垂足为C ′.从作图过程可知Rt △BB ′O ≌Rt △CC ′A.所以OB ′=AC ′=A ′D ,BB ′=CC ′.所以C 点的坐标为x C =OA ′+A ′D=x 1+x 2,y C =C ′D+C ′C=y 1+y 2,即=(x 1+x 2,y 1+y 2),也就是a +b =(x 1+x 2,y 1+y 2).也就是说:两个向量和的坐标分别等于这两个向量相应坐标的和.上述结论对于三个或三个以上向量加法仍然成立.2.减法运算由向量线性运算的结合律和分配律,可得a -b =(x 1i +y 1j )-(x 2i +y 2j )=(x 1-x 2)i +(y 1-y 2)j ,即a -b =(x 1-x 2,y 1-y 2),也就是说:两个向量差的坐标等于这两个向量相应坐标的差. 类似于向量的加法运算,也可以通过作图验证减法的坐标运算规则.3.实数与向量积的坐标如图2-3-15,已知OA =a ,OB =λa ,不妨设λ>0,作AA ′⊥x 轴,BB ′⊥x 轴,垂足分别为A ′、B ′.图2-3-15由△AOA ′∽△BOB ′,∴B B A A B O A O OB OA ''=''=. 由λ1=OB OA ,OA ′=x ,A ′A=y , ∴B O x '=λ1,B B y '=λ1,得OB ′=λx ,B ′B=λy , 即OB =(λx ,λy),即λa =(λx ,λy).同理可证当λ<0时,结论也成立;当λ=0时,λa =0,结论显然也成立.综上所述,实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.学法一得 当λ>0时,λa 所对应的坐标可看作把a 的坐标伸长(λ>1)或缩短(0<λ<1)到原来的λ倍而得到;当λ<0时,可看作把a 的相反向量的坐标伸长(λ<-1)或缩短(-1<λ<0)到原来的-λ倍而得到.典题•热题知识点一 利用图形间的关系求坐标例1 在平面内以点O 的正东方向为x 轴正向,正北方向为y 轴的正向建立直角坐标系.质点在平面内作直线运动,分别求下列位移向量的坐标.(1)向量a 表示沿东北方向移动了2个长度单位;(2)向量b 表示沿北偏西30°方向移动了3个长度单位;(3)向量c 表示沿南偏东60°方向移动了4个长度单位.解:设=a ,=b ,=c ,并设P(x 1,y 1),Q(x 2,y 2),R(x 3,y 3).图2-3-16(1)如图2-3-16,可知∠POP ′=45°,|OP |=2,所以a =OP =P P P O '+=2i +2j ,所以a =(2,2).(2)因为∠QOQ ′=60°,||=3,所以b ==Q O '+Q '=23-i +323j ,所以b =(23-,323). (3)因为∠ROR ′=30°,||=4,所以c ==R O '+R R '=32i -2j .所以c =(32,-2). 方法归纳 求解向量坐标时,常用到解直角三角形的知识或任意角的三角函数的定义.构造直角三角形是学习过程中常用到的一种解题手段.知识点二 向量的坐标运算例2 已知点O(0,0),A(1,2),B(4,5)及=+t .求:(1)t 为何值时,点P 在x 轴上?P 在y 轴上?P 在第二象限?(2)四边形OABP 能成为平行四边形吗?若能,求出相应的t 值;若不能,请说明理由. 解: (1)=+t =(1+3t ,2+3t).若P 在x 轴上,只需2+3t=0,即t=32-; 若P 在y 轴上,只需1+3t=0,即t=31-; 若P 在第二象限,则需⎩⎨⎧>+<+,032,031t t 解得-32<t <-31. (2)OA =(1,2),PB =(3-3t ,3-3t).若四边形OABP 为平行四边形,需=.于是⎩⎨⎧=-=-233,133t t 无解,故四边形OABP 不能成为平行四边形.巧解提示:向量的坐标表示为用“数”的运算处理“形”的问题搭起了桥梁.向量的坐标表示实际是向量的代数表示,使向量的运算完全代数化,为几何问题的解决又提供了一种崭新的方法.知识点三 求向量坐标例3 已知A(0,0),B(21,31-),C(21-,32),则下列计算正确的是( ) A.向量的坐标为(21-,31) B.向量的坐标为(0,31) C.向量的坐标为(21-,32) D.向量+的坐标为(0,31) 思路分析:利用“向量的坐标=终点坐标-起点坐标”直接得到结果.=(21,31-)-(0,0)=(21,31-), =(21-,32)-(21,-31)=(-1,1), CA =(0,0)-(21-,32)=(21,32-), +AB =(21-,32)+(21,31-)=(0,31). 答案:D例4 在直角坐标系xOy 中,已知点A(3,2)、B(-2,4),求向量+的方向和长度. 解:如图2-3-17,可知=(3,2),=(-2,4).图2-3-17 设OC =OA +OB ,则OC =OA +OB =(3,2)+(-2,4)=(1,6).由两点间距离公式,得|OC |=376122=+. 设相对x 轴正向的转角为α,则tan α=6,使用计算器计算得α=80°32′. 所以向量+的方向偏离x 轴正方向约为80°32′,长度等于37.知识点四 利用向量坐标解综合题例5 已知a =(6,-4),b =(0,2),c =a +λb ,若c 的终点在直线y=21x 上,求实数λ的值. 思路分析:此题是向量与直线结合的问题,关键是建立关于λ的等式关系.图2-3-18解:如图2-3-18所示,过A 作平行于y 轴的直线交直线y=21x 于C 点,则可求得C(6,3),过C 点作直线OA 的平行线,交y 轴于D 点,则四边形AODC 为平行四边形,易求得|OD|=7,所以27||||=OB OD ,即λ=27. 巧解提示:设c =(x ,y),由题设,可得(x ,y)=(6,-4)+λ(0,2),即(x ,y)=(6,-4+2λ).∴⎩⎨⎧+-==.24,6λy x∵c 的终点在直线y=21x 上, ∴-4+2λ=21×6.解得λ=27. 例6 已知向量u =(x ,y)与向量v =(y ,2y-x)的对应关系用v =f(u )表示.(1)设a =(1,1),b =(1,0),求向量f(a )及f(b )的坐标;(2)证明对于任意向量a 、b 及常数m 、n 恒有f(m a +n b )=mf(a )+nf(b )成立;(3)求使f(c )=(p ,q)(p ,q 为常数)的向量c 的坐标.思路分析:为应用题设条件,必须将向量用坐标表示,通过坐标进行计算,从而使问题解决. 解:(1)f(a )=(1,2×1-1)=(1,1);f(b )=(0,2×0-1)=(0,-1).(2)设a =(a 1,a 2),b =(b 1,b 2),则m a +n b =(m a 1+n b 1,m a 2+n b 2),∴f(m a +n b )=(ma 2+nb 2,2ma 2+2nb 2-ma 1-nb 1),mf(a )+nf(b )=m(a 2,2a 2-a 1)+n(b 2,2b 2-b 1)=(ma 2+nb 2,2ma 2+2nb 2-ma 1-nb 1).∴f(m a +n b )=mf(a )+nf(b )成立.(3)设c =(x ,y),则f(c )=(y ,2y-x)=(p ,q),∴⎩⎨⎧=-=.2,q x y p y∴x=2p-q ,即向量c=(2p-q ,p).例7 已知任意四边形ABCD 中,E 、F 分别是AD 、BC 的中点,如图2-3-19所示.图2-3-19 求证:EF =21(AB +DC ). 思路分析:根据向量加法的三角形法则或坐标运算法则可以用不同方法证明.证明:建立直角坐标系,A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),D(x 4,y 4). 则=(x 2-x 1,y 2-y 1),=(x 3-x 4,y 3-y 4), ∴21(AB +)=(2,241324132y y y y x x x x --+--+). 又E(2,24141y y x x ++),F(2,23232y y x x ++), 则=(22,2241324132y y y y x x x x +-++-+), ∴EF =21(AB +DC ). 巧解提示:∵E 、F 分别是AD 、BC 的中点,图2-3-20 ∴+=+=0. 又=++,=++,两式相加得2=+,即=21(+). 问题•探究材料信息探究材料:一个力可以分解为平面内任意两个方向上的力.如图2-3-21:图2-3-21拖拉机拉着耙,对耙的拉力是斜向上方的,我们可以说,这个力产生两个效果:使耙克服泥土的阻力前进,同时把耙向上提,使它不会插得太深.这两个效果相当于两个力分别产生的:一个水平的力F 1使耙前进,一个竖直向上的力F 2把耙上提,即力F 可以用两个力F 1和F 2来代替,即力F 被分解成两个力F 1和F 2.问题 能不能将上面的物理知识抽象为数学知识?这一数学知识有何作用?探究过程:由物理学知识可知力是矢量,它可以抽象为数学中的向量.因此物理学中力的分解可以抽象为数学中一个平面内的向量都可以分解为两个不共线的向量,即平面内任意一向量 都可以沿两个不共线的方向分解成两个向量的和,并且这种分解是唯一的,其实质就是平面向量基本定理.这一定理是向量坐标表示的理论基础.同时这个定理体现了化归的数学思想方法,在用向量解决几何问题时,我们可以选择适当的基底化归,从而导致问题的解决. 探究结论:上面的物理知识可以抽象为数学中的平面向量基本定理,该定理是向量坐标化的理论基础,也是联系向量问题与几何问题的桥梁与纽带.方案设计探究问题 试探究用向量求76cos 74cos 72cosπππ++的值的方法. 探究过程:要求76cos 74cos 72cos πππ++可先求cos0+cos 72π+cos 74π+cos 76π+cos 78π +cos 710π+cos 712π的值,由于0、72π、74π、76π、78π、710π、712π这七个角每相邻两个角都相差72π,则可考虑在直角坐标系中构造一个边长为1的正七边形OABCDEF ,且使A 点的坐标为(1,0),则由此可得出OA 、、BC BC 、CD 、、和FO 的坐标,再利用它们的和是零向量及零向量的横坐标、纵坐标都为零即可求解.探究结论:如图2-3-22所示,将边长为1的正七边形OABCDEF 放入直角坐标系中,则图2-3-22=(1,0),=(cos 72π,sin 72π),=(cos 74π,sin 74π),=(cos 76π,sin 76π),DE =(cos 78π,sin 78π),EF =(cos 710π,sin 710π),FO =(cos 712π,sin 712π). 由于++++++=0,则有cos0+cos72π+cos 74π+cos 76π+cos 78π+cos 710π+cos 712π=0. 又cos 78π=cos 76π,cos 710π=cos 74π,cos 712π=cos 72π,cos0=1, 所以有1+2(cos 72π+cos 74π+cos 76π)=0,即cos 72π+cos 74π+cos 76π=21-. 思想方法探究问题 在数学中,我们经常遇到一个点把一条线段分成两部分,如果已经知道了两个端点的坐标,那么怎样用两个端点的坐标来表示这个分点的坐标就成为我们关心的问题.向量是解决几何问题的有效工具,能否用向量分析这一问题?探究过程:在数学上,我们把分线段成两部分的点称为定比分点,假设点P 分有向线段的比为λ,即=λ,O 为平面上一定点,那么会有+λ=0,=λλ++1OB OA .事实上,因为=λ,所以+λ=0,于是有(-)+λ(-)=0,(1+λ) =+λ,所以=λλ++1OB OA . 如果在直角坐标系中,设O 为坐标原点,P(x,y),A(x 1,y 1),B(x 2,y 2),则有(x,y)=)1,1(1),(),(21212211λλλλλλ++++=++y y x x y x y x ,即⎪⎪⎩⎪⎪⎨⎧++=++=.1,12121λλλλy y y x x x 探究结论:P 点的坐标为(λλλλ++++1,12121y y x x ),此公式就叫做线段的定比分点公式.它可以直接利用线段端点的坐标来表示分点的坐标,显得方便、快捷. 如下面的问题,已知O(0,0)和A(6,3)两点,若点P 在直线OA 上,且21=PA OP ,又P 是线段OB 的中点,利用公式就可以直接得到点B 的坐标.假设P(x,y),由定比分点公式有22116210=+⨯+=x ,2113210+⨯+=y ,即P(2,1).又因为P 是线段OB 的中点,所以点B 的坐标(4,2).欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求。
高一数学必修4课件:2-3-4平面向量共线的坐标表示
)
第二章 2.3.4
成才之路 ·数学 ·人教A版 · 必修4
[拓展]三点共线问题 剖析:(1)若A(x1,y1),B(x2,y2),C(x3,y3),则A,B,C 三点共线的条件为(x2-x1)(y3-y1)-(x3-x1)(y2-y1)=0. (2)若已知三点的坐标,判断其是否共线可采用以下两种 方法: ①直接利用上述条件,计算(x2-x1)(y3-y1)-(x3-x1)(y2- y1)是否为0. → → ②任取两点构成向量,计算出两向量如 AB 、 AC ,再通过 两向量共线的条件进行判断.
[分析]
方法一:由O,B,P三点共线,可设
→ OP
=
→ → → λOB,利用AP与AC共线求λ. 方法二:设P(x,y),由O、P、B三点共线及A、P、C三 点共线建立x,y的方程组,解方程组求P(x,y).
第二章 2.3.4
成才之路 ·数学 ·人教A版 · 必修4
[解析]
→ → → 方法一:设 OP =λ OB =(4λ,4λ),则 AP =(4λ-
λ+2=-4k ∴ 2λ+3=-7k
,∴λ=2.
第二章 2.3.4
成才之路 ·数学 ·人教A版 · 必修4
命题方向
三点共线问题
[例2]
→ → → O是坐标原点, OA =(k,12), OB =(4,5), OC =
(10,k).当k为何值时,A、B、C三点共线? [分析] → → → 由A、B、C三点共线可知, AB , AC , BC 中任
[分析]
→ → 可转化为证明AB∥AC.
第二章 2.3.4
成才之路 ·数学 ·人教A版 · 必修4
[证明]
1 由A(1,5)、B2,4、C(0,3),
平面向量的分解及坐标表示
在解析几何中,平面向量分解可以用来表示点、线、面等几何元素,从而方便地研究几何图形的性质和关系。
向量在解析几何中的运算
平面向量分解可以用于解决解析几何中的运算问题,例如向量的加法、减法、数乘、向量的模等。
在线性代数中的应用
向量组的线性组合
在线性代数中,平面向量分解可以用 来表示向量组的线性组合,从而方便 地研究线性方程组和矩阵的运算。
向量分解的坐标变换
• 在直角坐标系和极坐标系之间进行转换时,需要进行坐标变换。例如,将直角坐标系下的向量 $\overset{\longrightarrow}{a}$转换为极坐标系下的向量$\overset{\longrightarrow}{a}$,需要使用坐标变换公式$x = r\cos\theta, y = r\sin\theta$进行计算。同样地,将极坐标系下的向量$\overset{\longrightarrow}{a}$转换为直角坐标系 下的向量$\overset{\longrightarrow}{a}$也需要使用相应的坐标变换公式。
05 平面向量分解的坐标表示
向量分解的坐标表示公式
直角坐标系中,向量 $overset{longrightarrow}{a}$可以 表示为$overset{longrightarrow}{a} = a_1 mathbf{i} + a_2 mathbf{ j}$, 其中$a_1$和$a_2$是实数, $mathbf{i}$和$mathbf{ j}$是单位 向量。
THANKS FOR WATCHING
感谢您的观看
03
的任意向量都可以由两个不共线的非零向量线性表示。
向量分解的几何意义
01
向量分解的几何意义是将一个向 量分解为两个方向的向量,这两 个方向由基向量确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
讲解范例
例1. 已知a (4, 2), b (6, y ), 且
a // b, 求y .
解: a// b , a 4,2, b 6, y 4 y 6 2 0
y 3
讲解范例
例2. 已知A(1, 1),B(1, 3),C(2, 5),
湖南省长沙市一中卫星远程学校
小结
此类题目应充分利用向量共线定理或向量共线坐标的条
件进行判断,特别是利用向量共线坐标的条件进行判断时,要 注意坐标之间的搭配.
湖南省长沙市一中卫星远程学校
则P1 P ( x x1 , y y1 ), PP2 ( x 2 x, y 2 y ) x1 x 2 x 2 y y1 y 2 2
(1)当点P是线段P1P2的中点时,求点P的坐标; (2)当点P是线段P1P2的一个三等分点时,求点P的坐标。 解:(2)
1 若P PP2 , 那么 1P 2
y P
P2
1 P1 OP OP P 1 P 1 P OP 1 1P 2 3 1 OP 1 OP 2 OP 1 3 2 x1 x2 2 y1 y2 2 1 , OP1 OP2 3 3 3 3
P
设点P是线段P1P2上的点,P1、P1 2的坐标分别为
P1 P PP2 ( x x1 , y y1 ) ( x 2 x, y 2 y )
中点公式, 应用广泛, 必须牢记!
P1
X O
湖南省长沙市一中卫星远程学校
例4.设点P是线段P1P2上的一点,P1、P2的坐标分别是
a与b 共线 (b 0) 当且仅当 x1 y2 x2 y1 0时.
向量共线的坐标表示:
向量共线的两个等价条件
a b 或 a // b (b 0) x1 y2 x2 y1 0 .
向量共线的两个等价条件
a b 或 a // b (b 0) x1 y2 x2 y1 0 .
湖南省长沙市一中卫星远程学校
1.已知a (2,4), b (1,2), 则a与b的关系是( ..... D) A.不共线........ B.相等........ C.同向........ D.反向 2.向量( x1 , y1 )与向量( x 2 , y 2 )平行,当且仅当( .... ) D C x1 y1 x1 x 2 A. ......B. .....C.x1 y 2 x 2 y1 .....D.以上都正确 x2 y 2 y1 y 2 3.设a ( 3 , sin ), b (cos , 1 ), 且a // b,则锐角为(.... C) 2 3 A.30.......... .....B.60.......... ..C.45.......... ....D.75
设
1 0 1 0
显然,上述方程没有实数解。 ∴ 向量 a – b 与a + b平行。
湖南省长沙市一中卫星远程学校
2.3.4 平面向量共线的坐标表示
课前热身
设向量a =(1,3),b=(-2,4),若向量4a,3b-2a,c表示的有
向线段首尾相连能够成三角形,则c=
4a (3b 2a) c 0
c (3b 2a)
湖南省长沙市一中卫星远程学校
复习 两个向量的共线定理是什么?
b 0 . a 与 b 共线,
O
x
已知三角形的三个顶点 的坐标分别为: A( x1 , y1 ), B( x2 , y 2 ), C ( x 3 , y3 ),求三角形的重心 G的坐标。
x 2 x3 y 2 y 3 解:设BC 的中点为D,则D( , ) 2 2 2 由平面几何知识得: AG AD 3 2 x1 x3 2 x1 y1 y 3 2 y1 ( , ) 3 2 2
解法2: OP (OP1 OP2 ) 2 ( x1 , y1 ) 、 ( x2 , y2 ) x1 x 2 y1 y 2 (1)点P是线段 P1( P2的中点,求 , P的坐标; ) 2 2 (2)点P是线段P1P2的一个三等分点,求P的坐标; x x y y 1 2 1 2 解:设P( x, y ), 点P的坐标为( , ) 2 Y 2 P2
P1
ห้องสมุดไป่ตู้
O 1 x x1 x2 x 2 有 2 x1 x2 2 y1 y 2 y y 1 y y 解有 P 点坐标 , 1 2 2 3 3
x
例2.设点P是线段P1P2上的一点,P1、P2的坐标分别是
( x1, y1 ),( x2 , y2 )
OG OA AG x 2 x3 2 x1 y 2 y 3 2 y1 ( x1 , y1 ) ( , ) 3 3 x 2 x3 x1 y 2 y 3 y1 ( , ) 3 3
Y
B
D A G C
O
X
x1 x2 x3 y1 y2 y3 G( , ) 3 3
m 6
湖南省长沙市一中卫星远程学校
讲解范例
例3. 若向量a ( 1, x )与b ( x , 2)
共线且方向相同 , 求x .
【典型例题】 例1 已知 a=(1,2),b=(-3,2),当 k 为何值时,ka+b 与 a
-3b 平行?平行时它们是同向还是反向?
解 ka+b=k(1,2)+(-3,2)=(k-3,2k+2),
试判断A,B,C三点之间的位置关系.
三点共线
跟踪训练 2 已知三点 A(1,2),B(2,4),C(3,m)共线,试求 m 的值. → 解 AB=(2,4)-(1,2)=(1,2). → AC=(3,m)-(1,2)=(2,m-2). → → ∵A,B,C 三点共线,即向量AB,AC共线,
1 m 2 2 2 0
当且仅当存在实数 ,使 a b .
那么,如何用坐标表示两个共线向量?
推导过程:
设a ( x1 , y1 ), b ( x2 , y2 ), 其中b 0. 由a b 得:( x1 , y1 ) ( x2 , y2 )
x1 x 2 , 消去:x1 y2 x2 y1 0. y1 y2
a-3b=(1,2)-3(-3,2)=(10,-4), ∵ka+b 与 a-3b 平行, 1 ∴(k-3)×(-4)-10(2k+2)=0,解得 k=-3. 1 2 1 此时 ka+b= -3-3,-3+2 =-3(a-3b), 1 ∴当 k=-3时,ka+b 与 a-3b 平行,并且反向.
( x1, y1 ),( x2 , y2 )
(1)当点P是线段P1P2的中点时,求点P的坐标; (2)当点P是线段P1P2的一个三等分点时,求点P的坐标。 解:(2)
x x1 , y y1
法二:设Px, y 1 P PP 1P 2, 2 1
2
y P
P2
x2 x, y 2 y
a 2b
3、 1 4.设向量a b不平行,求证:向量 a b和向量a b不平行。 2 3 sin cos
湖南省长沙市一中卫星远程学校
4.向量a,b不平行,求证:向量 a – b 与a + b不平行。 证明:设向量 a – b 与a + b平行。
a b (a b) (1 )a (1 )b 0