小学奥数几何专地题目

合集下载

小学五年级奥数专题之几何计数题一及答案

小学五年级奥数专题之几何计数题一及答案

A B C D 1、分别用枚举法、、分别用枚举法、组合组合法数下列图形:法数下列图形:有多少条有多少条线段线段?E F 有多少个角?有多少个角?有多少个有多少个三角形三角形?有多少个有多少个长方形长方形? 有多少个有多少个梯形梯形?有多少个正方形?有多少个正方形?取出一个由四个小方格组成的田形,一共有多少种不同的方法?的田形,一共有多少种不同的方法?2、如图6-27,这是一个4×8的矩形的矩形网格网格,每一个小格都是一个正方形。

请问:⑴包含有两个“★”的矩形共有多少个?⑴包含有两个“★”的矩形共有多少个?⑵至少包含一个“★”的矩形有多少个?⑵至少包含一个“★”的矩形有多少个?3、如图6-21,木板上钉着12枚钉子,排成三行四列的长枚钉子,排成三行四列的长方阵方阵。

用橡皮筋一共可以套出多少个不同的三角形?少个不同的三角形?4、如图,如图,在在半圆弧及其直径上共有9个点,个点,以这些点以这些点为顶点可以画出多少个为顶点可以画出多少个四边形四边形?多少个多少个三角形三角形?5、一个三角形的3条边上共有7个点,画出这7个点之间的全部连线(同一条边上的(同一条边上的两点两点不画)后,发现在这些连线的发现在这些连线的交点交点没有出现过重合;没有出现过重合;请问三角形内共有多少个交请问三角形内共有多少个交点?点?答案:答案: 1、C 2 6=15;C 2 5=10;C 2 5=10;30;C 2 5·C 25=100;60;25 2、30;162 3、C 3 12-20=200 4、C 4 9-1-C 3 4·C 1 5=105 5、C 4 7-4=27 。

小学六年级奥数几何计数问题专项强化训练(中难度)

小学六年级奥数几何计数问题专项强化训练(中难度)

小学六年级奥数几何计数问题专项强化训练(中难度)例题1:在一个正方形的边长为5cm的区域内,用红、蓝两种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求两种颜色的砖头必须完全分开铺,且不能有重叠部分,那么一共有多少种不同的铺法?解析:首先我们知道正方形边长为5cm,正方形砖头的边长可以为1cm、2cm、3cm、4cm或5cm。

由于两种颜色的砖头必须完全分开铺,且不能有重叠部分,所以我们可以分别计算每种颜色砖头的铺法数量,然后相乘得到总的铺法数量。

对于红色砖头的铺法数量,我们可以考虑从左上角开始铺设。

当砖头的边长为1cm时,只有一种铺法。

当砖头的边长为2cm时,有两种铺法,水平或垂直放置。

当砖头的边长为3cm时,有三种铺法,水平放置、垂直放置或者斜放。

同理,当砖头的边长为4cm时,有四种铺法,水平放置、垂直放置、斜放或者两个合并一起放置。

当砖头的边长为5cm时,只有一种铺法,即整个正方形都用红色砖头铺满。

因此,红色砖头的铺法数量为1 + 2 + 3 + 4 + 1 = 11种。

同理,蓝色砖头的铺法数量也为11种。

总的铺法数量为11 * 11 = 121种。

专项练习应用题:1. 在一个正方形的边长为6cm的区域内,用红、蓝、黄三种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求三种颜色的砖头必须完全分开铺,且不能有重叠部分,那么一共有多少种不同的铺法?2. 在一个正方形的边长为8cm的区域内,用红、蓝两种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求两种颜色的砖头必须完全分开铺,且不能有重叠部分,那么一共有多少种不同的铺法?3. 在一个正方形的边长为10cm的区域内,用红、蓝、绿三种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求三种颜色的砖头必须完全分开铺,且不能有重叠部分,那么一共有多少种不同的铺法?4. 在一个正方形的边长为7cm的区域内,用红、蓝两种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求两种颜色的砖头必须完全分开铺,但可以有重叠部分,那么一共有多少种不同的铺法?5. 在一个正方形的边长为9cm的区域内,用红、蓝、绿三种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求三种颜色的砖头必须完全分开铺,但可以有重叠部分,那么一共有多少种不同的铺法?6. 有一条长度为10cm的线段,若将其分成三段长度相等的线段,那么一共有多少种不同的分法?7. 有一条长度为12cm的线段,若将其分成四段长度相等的线段,那么一共有多少种不同的分法?8. 有一条长度为15cm的线段,若将其分成五段长度相等的线段,那么一共有多少种不同的分法?9. 有一条长度为8cm的线段,若将其分成两段长度为整数的线段,且这两段线段的长度之差为1cm,那么一共有多少种不同的分法?10. 有一条长度为11cm的线段,若将其分成三段长度为整数的线段,且这三段线段的长度之差为1cm,那么一共有多少种不同的分法?11. 有一条长度为14cm的线段,若将其分成四段长度为整数的线段,且这四段线段的长度之差为1cm,那么一共有多少种不同的分法?12. 在一个正方形的边长为4cm的区域内,用红、蓝两种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求两种颜色的砖头可以重叠铺,那么一共有多少种不同的铺法?13. 在一个正方形的边长为6cm的区域内,用红、蓝、黄三种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求三种颜色的砖头可以重叠铺,那么一共有多少种不同的铺法?14. 在一个正方形的边长为9cm的区域内,用红、蓝、绿三种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求三种颜色的砖头可以重叠铺,那么一共有多少种不同的铺法?15.在一个正方形的边长为5cm的区域内,用红、蓝、黄、绿四种颜色的正方形砖头铺满,每个颜色的砖头都可以使用任意多个,要求四种颜色的砖头可以重叠铺,那么一共有多少种不同的铺法?例题2:题目:在一个正方形格子图中,每个格子都填上了数字0或1,使得每行每列的数字和都为偶数。

小学数学竞赛《几何图形》专题训练30题含答

小学数学竞赛《几何图形》专题训练30题含答

小学数学竞赛《几何图形》专题训练30题含答一、单选题1.同同按照一定的规律摆出了下面的四幅图。

如果按照这个规律继续摆,第5幅图用()根小棒。

A.23B.31C.352.一种长方形屏幕长与宽的比是16:9,下面几种规格屏幕合格的()A.长1.6米,宽1米B.长45米,宽920米C.长1.2米,宽80厘米D.以上都不对3.下图中,平行线间梯形A,B的面积相等,梯形B的下底是()cm。

A.5B.3C.3.3D.无法确定4.一条()长8cm。

A.直线B.线段C.射线5.下面哪一组的4根小棒能刚好拼成一个长方形?()A.B.C.D.二、填空题6.最大的—位数是,最小的两位数是,它们的和是.7.一块圆柱形橡皮泥,底面积是9平方厘米,高是6厘米。

把它捏成底面积是9平方厘米的圆锥形,高是厘米、如果捏成高是6厘米的圆锥形,底面积是平方厘米。

8.看图填空有个长方形.有个梯形.9.一个大三角形剪成两个小三角形,每个小三角形的内角和是度。

10.根据百位数表填数。

11.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连接AE、CE,则ΔADE的面积是。

12.数图形。

上图中有个正方体,个圆柱体,个球体。

13.把这个物体放到地面上,观察并填空。

是由个小正方体拼成的。

如果把这个图形的表面涂上绿色,不涂色的有个小正方体、一个面涂绿色的有个小正方体、有2个面涂绿色的有个小正方体、有3个面涂绿色的有个小正方体、有4个面涂绿色的有个小正方体、有5个面涂红色的有个小正方体。

14.观察用完全相同的正方体木块摆出的模型,把观察角度和图结合起来.①从前向后看是②从上向下看是③从左向右看是A.B.C.三、作图题15.按要求用一条线段把下面的图形分成两个图形。

①②③16.下面的长方形中,共有28个小方格,其中有4个小方格中分别写了“我”“爱”“数”“学”四个字,请你把这个长方形沿着格线剪成大小相等的四块,而且每块中要有1个字。

奥数几何经典500例

奥数几何经典500例

奥数几何经典500例
奥数几何经典500例是一本经典的数学辅导书籍,其中包含了许多有趣且具有挑战性的几何问题。

下面是我根据题目要求,以人类视角描述的十个题目:
1. 点和线:请描述一个点和一条直线之间的关系,以及在不同的情况下它们可能相交的方式。

2. 圆的性质:请描述圆的定义以及它的基本性质,例如半径、直径和圆周长等。

3. 三角形的分类:请描述三角形的分类方法,例如根据边长或角度大小分类,并给出具体的例子。

4. 相似三角形:请描述相似三角形的定义和性质,以及如何使用相似三角形来解决几何问题。

5. 三角形的重心:请描述三角形的重心是指哪个点,以及它与三角形的关系和性质。

6. 直角三角形:请描述直角三角形的定义和性质,以及如何使用勾股定理来解决直角三角形的问题。

7. 平行四边形:请描述平行四边形的性质和特点,以及如何使用平行四边形的性质来解决几何问题。

8. 正方形和矩形:请描述正方形和矩形的定义和性质,以及它们之间的区别和联系。

9. 圆锥和圆台:请描述圆锥和圆台的定义和性质,以及如何计算它们的体积和表面积。

10. 直线和平面的交点:请描述直线和平面的交点的定义和性质,以及如何使用交点来解决几何问题。

这些题目涵盖了奥数几何经典500例中的一些典型问题,通过以人类视角进行描述,使读者更容易理解和解决这些问题。

希望这些描述能够帮助读者更好地掌握几何学知识,提高解题能力。

小学奥数几何专题--巧求周长(六年级)竞赛测试.doc

小学奥数几何专题--巧求周长(六年级)竞赛测试.doc

小学奥数几何专题--巧求周长(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx 题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】求图中所有线段的总长(单位:厘米)【答案】48【解析】要注意到,题目所求的是图中所有线段的总长,而图中的线段,并不仅仅是、、、四段,还包括、等等,因此不能简单地将图中标示的线段长度进行求和.同时应该注意到,;,等等.因此,为了计算图中所有线段的总长,需要先计算AB、BC、CD 、DE这四条线段分别被累加了几次.这里,可以按照每条线段分别是由几部分组成的加以讨论:由1段组成的线段共有4条,即AB、BC、CD、DE,而求和过程中AB、BC、CD、DE这四条线段各被累加了1次.类似地考虑到,由2段组成的线段共有3条,求和过程中AB、DE各被累加了1次,BC、CD各被累加了2次.由3段组成的线段共有2条,求和过程中AB、DE各被累加了1次,BC、CD各被累加了2次.由4段组成的线段只有AE,其中AB、BC、CD、DE各被计算了1次.综上所述,AB、DE各被计算了4次,BC、CD各被计算了6次.因而图中所有线段的总长度为:{{9}l先考虑大长方形的长上各边:应用上一道题目的结论,每条边上长为4、3、1、2的线段分别被计算了4、6、6、4次.然后再考虑大长方形的宽:因为共有个长方形,所以长度为2的宽被计算了次.故总周长可以用下式计算得到:.【题文】如图,正方形的边长为,被分割成如下个小长方形,求这个小长方形的所有周长之和.评卷人得分【答案】56【解析】.【题文】如右图,正方形的边长是厘米,过正方形内的任意两点画直线,可把正方形分成个小长方形。

这个小长方形的周长之和是多少厘米?【答案】72【解析】从总体考虑,在求这个小长方形的周长之和时,、、、这四条边被用了次,其余四条虚线被用了次,所以个小长方形的周长之和是:(厘米)。

小学奥数几何题100道及答案(完整版)

小学奥数几何题100道及答案(完整版)

小学奥数几何题100道及答案(完整版)题目1:一个正方形的边长是5 厘米,它的面积是多少平方厘米?解题方法:正方形面积= 边长×边长,即5×5 = 25(平方厘米)答案:25 平方厘米题目2:一个长方形的长是8 分米,宽是6 分米,它的周长是多少分米?解题方法:长方形周长= (长+ 宽)×2,即(8 + 6)×2 = 28(分米)答案:28 分米题目3:一个三角形的底是10 厘米,高是6 厘米,它的面积是多少平方厘米?解题方法:三角形面积= 底×高÷2,即10×6÷2 = 30(平方厘米)答案:30 平方厘米题目4:一个平行四边形的底是12 米,高是8 米,它的面积是多少平方米?解题方法:平行四边形面积= 底×高,即12×8 = 96(平方米)答案:96 平方米题目5:一个梯形的上底是 4 厘米,下底是6 厘米,高是5 厘米,它的面积是多少平方厘米?解题方法:梯形面积= (上底+ 下底)×高÷2,即(4 + 6)×5÷2 = 25(平方厘米)答案:25 平方厘米题目6:一个圆的半径是3 厘米,它的面积是多少平方厘米?解题方法:圆的面积= π×半径²,即3.14×3²= 28.26(平方厘米)答案:28.26 平方厘米题目7:一个半圆的半径是 4 分米,它的周长是多少分米?解题方法:半圆的周长= 圆周长的一半+ 直径,即3.14×4×2÷2 + 4×2 = 20.56(分米)答案:20.56 分米题目8:一个长方体的长、宽、高分别是5 厘米、4 厘米、3 厘米,它的表面积是多少平方厘米?解题方法:长方体表面积= (长×宽+ 长×高+ 宽×高)×2,即(5×4 + 5×3 + 4×3)×2 = 94(平方厘米)答案:94 平方厘米题目9:一个正方体的棱长是6 分米,它的体积是多少立方分米?解题方法:正方体体积= 棱长³,即6³= 216(立方分米)答案:216 立方分米题目10:一个圆柱的底面半径是2 厘米,高是5 厘米,它的侧面积是多少平方厘米?解题方法:圆柱侧面积= 底面周长×高,底面周长= 2×3.14×2,即2×3.14×2×5 = 62.8(平方厘米)答案:62.8 平方厘米题目11:一个圆锥的底面半径是3 厘米,高是4 厘米,它的体积是多少立方厘米?解题方法:圆锥体积= 1/3×底面积×高,底面积= 3.14×3²,即1/3×3.14×3²×4 = 37.68(立方厘米)答案:37.68 立方厘米题目12:两个边长为4 厘米的正方形拼成一个长方形,长方形的长和宽分别是多少?面积是多少?解题方法:长方形的长为8 厘米,宽为4 厘米,面积= 8×4 = 32(平方厘米)答案:长8 厘米,宽4 厘米,面积32 平方厘米题目13:一个三角形的面积是18 平方厘米,底是6 厘米,高是多少厘米?解题方法:高= 面积×2÷底,即18×2÷6 = 6(厘米)答案:6 厘米题目14:一个平行四边形的面积是24 平方米,底是 4 米,高是多少米?解题方法:高= 面积÷底,即24÷4 = 6(米)答案:6 米题目15:一个梯形的面积是30 平方分米,上底是5 分米,下底是7 分米,高是多少分米?解题方法:高= 面积×2÷(上底+ 下底),即30×2÷(5 + 7)= 5(分米)答案:5 分米题目16:一个圆环,外圆半径是5 厘米,内圆半径是 3 厘米,圆环的面积是多少平方厘米?解题方法:圆环面积= 外圆面积-内圆面积,即 3.14×(5²- 3²)= 50.24(平方厘米)答案:50.24 平方厘米题目17:一个长方体的棱长总和是48 厘米,长、宽、高的比是3:2:1,长方体的体积是多少立方厘米?解题方法:一条长、宽、高的和为48÷4 = 12 厘米,长为6 厘米,宽为4 厘米,高为2 厘米,体积= 6×4×2 = 48(立方厘米)答案:48 立方厘米题目18:一个正方体的表面积是54 平方分米,它的一个面的面积是多少平方分米?解题方法:一个面的面积= 表面积÷6,即54÷6 = 9(平方分米)答案:9 平方分米题目19:一个圆柱的底面直径是4 分米,高是3 分米,它的表面积是多少平方分米?解题方法:底面积= 3.14×(4÷2)²= 12.56 平方分米,侧面积= 3.14×4×3 = 37.68 平方分米,表面积= 2×12.56 + 37.68 = 62.8(平方分米)答案:62.8 平方分米题目20:一个圆锥的底面周长是18.84 分米,高是5 分米,它的体积是多少立方分米?解题方法:底面半径= 18.84÷3.14÷2 = 3 分米,体积= 1/3×3.14×3²×5 = 47.1(立方分米)答案:47.1 立方分米题目21:一个长方体的水箱,长 5 分米,宽4 分米,高 3 分米,里面装满水,把水倒入一个棱长为5 分米的正方体水箱,水深多少分米?解题方法:水的体积= 5×4×3 = 60 立方分米,正方体水箱底面积= 5×5 = 25 平方分米,水深= 60÷25 = 2.4 分米答案:2.4 分米题目22:一块长方形的铁皮,长8 分米,宽6 分米,从四个角各切掉一个边长为1 分米的正方形,然后做成一个无盖的盒子,这个盒子的容积是多少立方分米?解题方法:盒子长6 分米,宽4 分米,高1 分米,容积= 6×4×1 = 24(立方分米)答案:24 立方分米题目23:一个圆柱的体积是60 立方厘米,底面积是12 平方厘米,高是多少厘米?解题方法:高= 体积÷底面积,即60÷12 = 5(厘米)答案:5 厘米题目24:一个圆锥和一个圆柱等底等高,圆柱的体积是27 立方分米,圆锥的体积是多少立方分米?解题方法:等底等高的圆锥体积是圆柱体积的1/3,即27×1/3 = 9(立方分米)答案:9 立方分米题目25:把一个棱长为 6 厘米的正方体铁块熔铸成一个底面积为36 平方厘米的圆柱体,这个圆柱体的高是多少厘米?解题方法:正方体体积= 6³= 216 立方厘米,圆柱体的高= 体积÷底面积,即216÷36 = 6(厘米)答案:6 厘米题目26:一个直角三角形的两条直角边分别是3 厘米和4 厘米,斜边是5 厘米,这个三角形的面积是多少平方厘米?解题方法:直角三角形面积= 两条直角边乘积的一半,即3×4÷2 = 6(平方厘米)答案:6 平方厘米题目27:一个等腰三角形的周长是20 厘米,其中一条腰长8 厘米,底边长多少厘米?解题方法:等腰三角形两腰相等,所以底边长= 周长-腰长×2,即20 - 8×2 = 4(厘米)答案:4 厘米题目28:一个扇形的圆心角是90°,半径是6 厘米,这个扇形的面积是多少平方厘米?解题方法:扇形面积= 圆心角÷360°×圆的面积,即90÷360×3.14×6²= 28.26(平方厘米)答案:28.26 平方厘米题目29:一个长方体的底面是边长为5 厘米的正方形,高是8 厘米,这个长方体的体积是多少立方厘米?解题方法:长方体体积= 底面积×高,底面积= 5×5 = 25 平方厘米,体积= 25×8 = 200(立方厘米)答案:200 立方厘米题目30:一个圆柱的底面周长是18.84 厘米,高是10 厘米,它的体积是多少立方厘米?解题方法:底面半径= 18.84÷3.14÷2 = 3 厘米,体积= 3.14×3²×10 = 282.6(立方厘米)答案:282.6 立方厘米题目31:一个圆锥的底面直径是8 厘米,高是6 厘米,它的体积是多少立方厘米?解题方法:底面半径= 8÷2 = 4 厘米,体积= 1/3×3.14×4²×6 = 100.48(立方厘米)答案:100.48 立方厘米题目32:把一个棱长为8 厘米的正方体木块削成一个最大的圆柱,这个圆柱的体积是多少立方厘米?解题方法:圆柱的底面直径和高都是8 厘米,体积= 3.14×(8÷2)²×8 = 401.92(立方厘米)答案:401.92 立方厘米题目33:一个长方体玻璃缸,从里面量长4 分米,宽 3 分米,高5 分米,缸内水深2.5 分米。

【奥数系列训练】(含答案)12——几何体的计算

【奥数系列训练】(含答案)12——几何体的计算

【奥数系列训练】(含答案)12——几何体的计算请填入正确答案:【题目1】用棱长为1cm的18个正方体做长方体,要使他的表面积最小,问最小表面积应该多大?【题目2】有两个边长为8cm正方体盒子。

A盒子放入直径8cm,高8cm的圆柱体铁块一个,B盒子放入直径4cm、高8cm的圆柱体铁块4个。

现在A盒注满水,把A盒中水倒入B盒,使B盒注满水。

A盒剩下水是多少立方公分?【题目3】一个正方体木块,棱长是5,如果在他上面截去一个棱长为5×3×2的长方体,那么,他的表面积减少百分之几?【题目4】现有一张长40公分,宽20公分的长方形铁皮。

请你用它做一只深是5公分的正方体无盖铁片盒(焊接处及铁片厚度不计,容积越大越好)。

你做的铁皮盒的容积是多少立方公分?【题目5】把12件同样的长17、宽7、高3的长方体物品拼装成一件大的长方体包装物。

如何包装使长方体的表面积最小,最小表面积是多少?【题目6】从一个长9公分、宽7公分、高5公分的长方体中截下一个最大的立方体,剩下部分的棱长总和最大是多少公分?【题目7】在底面是正方形,棱长都是整公尺数,棱长总和为96公尺的长方体中,居中打一个底面为正方形,面积为4平方公尺的上下直穿的长方体的洞。

前、后、左、右也分别居中打一个长14公尺,宽2公尺的长方体洞。

这个几何体的表面积是多少平方公尺?【题目8】一个长方体盒子,从里面量长40公分,宽12公分,高7公分。

在这个盒子里放一个长5公分,宽4公分,高3公分的方形木块。

问最多可以放多少块?【题目9】一个棱长为6公分的正方体,沿着△ADE所在的平面将正方体切掉一个角,问切掉的三棱锥EABD的体积是多少?【题目10】用一张长30公分,宽20公分的长方形铁皮,做一个深5公分的长方体无盖铁皮盒(焊接处与铁皮厚度不计)。

这个铁皮盒的容积最大是多少立方公分?【参考答案】1.【解答】要使着18个棱长为1cm的小正方体做成的长方体的表面积最小,就应该使做成的长方体接近于正六面体(正方体)。

3 小学奥数——几何图形 试题及解析

3 小学奥数——几何图形 试题及解析

小学奥数——几何图形一.选择题(共50小题)1.图中的八边形是将大长方形纸片剪去一个小长方形得到.则至少需要知道()条线段的长度,才可以计算出这个八边形的周长.A.4B.3C.5D.102.如图中阴影部分是正方形,最大长方形的周长是()厘米.A.22B.26C.36D.无法确定3.如图,由6个边长为3厘米的小正方形拼成的图形,它的周长是()厘米.A.36B.39C.42D.454.把一个直径是4厘米的圆分成两个完全相等的半圆,这两个半圆的周长之和是()A.12.56厘米B.16.56厘米C.20.56厘米D.24.56厘米5.如图,有8条线段,至少要分别测量编号为()的三条线段的长度,才能求出这个图形的周长.A.①②⑤B.①②③C.①②⑦D.②③⑦6.如图,是一个台阶的侧面(线段AC,BC,AB的长依次为5米、12米、13米)要在台阶上面铺上红地毯,且上下各多铺出两米,需要地毯的长度是()米.A.17B.18C.20D.217.如图,正方形被一条曲线分成了A、B两部分,下面第()种说法不正确?A.如果a>b,那么A的周长大于B的周长B.如果a<b,那么A的周长小于B的周长C.如果a=b,那么A的周长等于B的周长D.不管a、b哪个大,A、B的周长总是相等8.如图是用3个长8厘米、宽3厘米的长方形拼成的,这个图形的周长是()A.66厘米B.48厘米C.45厘米2C.489.图中多边形每相邻两条边都互相垂直,若要计算起其周长,那么至少要知道()边长.A.6B.5C.4D.310.一个长方形花园长是30米,宽是10米,沿着花园走两圈,共走了()A.45米B.90米C.160米D.200米11.把如图的长方形用一条曲线分成甲、乙两个图形,甲图与乙图的周长相比,()A.甲图的长B.乙图的长C.甲图与乙图同样长12.如图,在由1⨯1的正方形组成的网格中写有2015四个数字(阴影部分),其边线要么是水平或竖直的直线段,要么是连接1⨯1的正方形相邻两边中点的线段,或者是1⨯1的正方形的对角线,则图中2015四个数字(阴影部分)的面积是()A.47B.471 D.481213.如图中,正八边形ABCDEFGH的面积为1,其中有两个正方形ACEG和PQRS.那么正八边形中阴影部分的面积()2B.A.123C.35D.5814.如图,大正方形的边长为14,小正方形的边长为10,阴影部分的面积之和是()A.25B.40C.49D.5015.大、中、小三个正方形,边长都是整数厘米,小正方形的周长比中正方形的边长小,把这两个正方形放在大正方形上(如图),大正方形露出的部分的面积是10平方厘米(图中阴影部分).那么,大正方形的面积是()平方厘米.A.25B.36C.49D.6416.如图,大正六边形内部有7个完全一样的小正六边形,已知阴影部分的面积是180平方厘米.那么大正六边形的面积是()平方厘米.A.240B.270C.300D.36017.如图所示,在58的方格中,阴影部分的面积为37cm2.则非阴影部分的面积为()cm2.lA.43B.74C.80D.11118.图中,将两个正方形放在一起,大、小正方形的边长分别为0,6,则图中阴影部分面积为()A.42B.40C.38D.3619.下图中,四边形ABCD都是边长为1的正方形,E、F、G、H分别是AB、BC、CD、DA的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数m n的值等于()mn,那么,A.5B.7C.8D.1220.有5个长方形,它们的长和宽都是整数,且5个长和5个宽恰好是1~10这10个整数;现在用这5个长方形拼成1个大正方形,那么,大正方形面积的最小值为()A.169B.144C.121D.10021.一个梯形的上底增加2厘米,下底减少2厘米,高不变,它的面积与原面积相比()A.变大了C.不变B.变小了D.高不知道,所以无法比较22.已知图中正方形的两个顶点正好是两个等腰直角三角形斜边上的中点,小等腰直角三角形与正方形中的圆面积相等,请问正方形中的阴影面积与大等腰直角三角形面积的比值3B.2C.1是()A.11 D.3223.如图,梯形ABCD中,AB//D C,∠ADC+∠BCD=90︒,且DC=2A B,分别以DA、AB、BC为边向梯形外作正方形,其面积分别为S,S,S,则S,S,S之间的关系是下123123列选项中的()A.S+S>S;B.S+S=S;C.S+S<S;D.无法确定.12313213224.小王将一些同样大小的正三角形纸片摆放在桌上.第一次放1张纸片;第二次在这个小正三角形纸片四周再放三张纸片;第三次在第二次摆好的图形四周再摆放纸片;⋯摆放要求是:每次摆放的每张纸片必须和上一次摆放的纸片至少有一条边重合,且纸片之间除边之外,无重合(见图).第20次摆放后,该图形共用了正三角形纸片()张.A.571B.572C.573D.57425.在8⨯8网格的所有方格中放入黑白两种围棋子,每个方格放一枚棋子,要求每行中的白色棋子的数目互不相同,每列中的白色棋子的数目相等,那么这个8⨯8网格中共有( )枚黑色棋子.A.42B.32C.22D.1226.在6⨯6网格的所有方格中放入围棋子,每个方格放1枚棋子,要求每行中的白色棋子的数目互不相等,每列中的白色棋子的数目都相等,那么这个6⨯6网格中共有()枚黑.色围棋子.A.18B.14C.12D.1027.一块木板上有13枚钉子(如图1所示)用橡皮筋套住其中的几枚钉子,可以构成三角形,正方形,梯形等等(如图2).请回答:可以构成()个正方形.A.9B.10C.11D.1228.在如图中,一共能数出()个含有“☆”的长方形.A.8B.10C.12D.1429.如图,木板上有10根钉子,任意相邻的两根钉子距离都相等,以这些钉子为顶点,用橡皮筋可套出()个正三角形.A.6B.10C.13D.1530.以平面上任意4个点为顶点的三角形中,钝角三角形最多有()个.A.5B.2C.4D.331.图中,有()个三角形.A.13B.15C.14D.1632.图中共有()个三角形.A.10B.9C.19D.1833.两个小三角形不重叠放置可以拼成一个大三角形,那么这个大三角形不可能由()拼成.A.两个锐角三角形B.两个直角三角形C.两个钝角三角形D.一个锐角三角形和一个钝角三角形34.将长方形ABCD对角线平均分成12段,连接成如图,长方形ABCD内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.A.14B.16C.18D.2035.在桌面上,将一个边长为1的正六边形纸片与一个边长为1的正三角形纸片拼接,要求无重叠,且拼接的边完全重合,则得到的新图形的边数为()A.8B.7C.6D.536.用210个大小相同的正方形拼成一个长方形,不同的拼法有()种.A.2B.4C.6D.837.一个长方形由15个小正方形拼成,如图所示,若这个长方形的周长是64cm,则它的面积为()cm2.A.960B.256C.240D.12838.如图,每条边都相等,每个角都是直角,则根据信息,求下图的面积为)平方厘米.(A.16B.20C.24D.3239.如图,四边形ABCD为长方形,四边形CDEF为平行四边形.下面四种说法中正确的是()A.甲的面积比乙的面积大B.甲的面积比乙的面积小C.只有当丙、丁两部分面积相等时,甲、乙两部分面积才相等D.甲、乙两部分面积总是相等的,与丙、丁两部分面积的大小无关40.如图,正方形ABCD的边长是10厘米,长方形EFGH的长为8厘米,宽为5厘米.则阴影部分的甲与阴影部分乙面积的差是()平方厘米.A.40B.50C.60D.8041.如图,线段BE将长方形ABCD分成M、N两个部分,如果M部分比N部分的面积小l80平方厘米,那么AE的长是()A.24厘米B.21厘米C.20厘米D.14厘米42.如图,一个33的正方形网格,如果小正方形边长是1,那么阴影部分的面积是()A.5B.4C.3D.243.如图所示,四边形BCDE为平行四边形,∆AOE的面积为6,求∆BOC的面积.()A.3B.4C.5D.644.如图,M为平行四边形ABCD的边BC上的一点,且BM:MC=2:3,已知三角形C MN的面积为45cm2,则平行四边形ABCD的面积为()cm2.A.30B.45C.90D.10045.如图,长方形ABCD中的AE、AF、AG、AH四条线段把此长方形面积五等分,又长等于()平方厘米.方形长20厘米、宽12厘米,那么三角形AFG的面积S∆AFGA.41.2B.43.2C.43.1D.42.346.在等腰梯形ABCD中,AB平行于CD,AB=6,CD=14,∠AEC是直角,CE=CB,则AE2等于()A.84B.80C.75D.6447.下面的四个图形中,第()幅图只有2条对称轴.A. B.C. D.48.下面图形中,恰有2条对称轴()A. B. C. D.49.在如图的阴影三角形中,不能由右图中的阴影三角形经过旋转、平移得到的是图(的三角形.)中A. B.C. D.50.在下面的阴影三角形中,不能由图中的阴影三角形经过旋转、平移得到的是图(的三角形.)中A. B. C. D.参考答案与试题解析一.选择题(共50小题)1.图中的八边形是将大长方形纸片剪去一个小长方形得到.则至少需要知道()条线段的长度,才可以计算出这个八边形的周长.A.4B.3C.5【解析】如上图,把线段①平移到②的位置可以组成一个大长方形,大长方形的4条边,对边相等,所以只需知道相邻两条边的长度,③=④,所以只需知道1条线段的长度,所以求八边形的周长需要知道:2+1=3条线段的长度.故选:B.2.如图中阴影部分是正方形,最大长方形的周长是()厘米.D.10A.22B.26C.36【解析】(9+4)⨯2=26答:最大长方形的周长是26厘米.3.如图,由6个边长为3厘米的小正方形拼成的图形,它的周长是(D.无法确定)厘米.A.36B.39C.42D.45【解析】3⨯4=12(厘米)3⨯2=6(厘米)(12+6)⨯2+6=36+6=42(厘米)答:它的周长是42厘米.故选:C.4.把一个直径是4厘米的圆分成两个完全相等的半圆,这两个半圆的周长之和是()A.12.56厘米B.16.56厘米C.20.56厘米D.24.56厘米【解析】(3.14⨯4÷2+4)⨯2=(6.28+4)⨯2=10.28⨯2=20.56(厘米)答:这两个半圆周长之和是20.56厘米.故选:C.5.如图,有8条线段,至少要分别测量编号为()的三条线段的长度,才能求出这个图形的周长.A.①②⑤B.①②③C.①②⑦D.②③⑦【解析】由图形可知,④+⑥的线段补给⑧所在的长方形边的虚线部分,⑦-⑤等长线段的补给③所在边的虚线部分,这样就构成了一个完整的长方形,原图形的周长就是答长方形的周长+2个⑤的线段总长,所以图形的周长只要知道①②⑤即可求得.故选:A.6.如图,是一个台阶的侧面(线段AC,BC,AB的长依次为5米、12米、13米)要在台阶上面铺上红地毯,且上下各多铺出两米,需要地毯的长度是()米.A.17B.18C.20D.21【解析】12+5+2⨯2=12+5+4=21(米)答:需要地毯的长度是21米.故选:D.7.如图,正方形被一条曲线分成了A、B两部分,下面第()种说法不正确?A.如果a>b,那么A的周长大于B的周长B.如果a<b,那么A的周长小于B的周长C.如果a=b,那么A的周长等于B的周长D.不管a、b哪个大,A、B的周长总是相等【解析】A的周长=曲线长+正方形边长⨯2+b-aB的周长=曲线长+正方形边长⨯2+a-b所以A、B、C选项都是正确的,错误的是D.8.如图是用3个长8厘米、宽3厘米的长方形拼成的,这个图形的周长是()22A.66厘米B.48厘米C.45厘米【解析】8⨯6-3⨯1=48-3=45(厘米)答:这个图形的周长是45厘米.故选:C.9.图中多边形每相邻两条边都互相垂直,若要计算起其周长,那么至少要知道()边长.A.6B.5C.4D.3【解析】根据题干分析可得:这个图形的横着的边长之和是:b;竖着的边长之和是:a+2c;所以这个图形的周长是:2a+2b+2c=2(a+b+c),故计算这个图形的周长至少需要知道3条边,故选:D.10.一个长方形花园长是30米,宽是10米,沿着花园走两圈,共走了()A.45米B.90米C.160米D.200米【解析】(30+10)⨯2⨯2=160(米)故选:C.11.把如图的长方形用一条曲线分成甲、乙两个图形,甲图与乙图的周长相比,()A.甲图的长C.甲图与乙图同样长【解析】B.乙图的长2C.482B.因为,甲图形的周长是:AB+BC+AC,乙图形的周长是:DC+AD+AC,而AB=CD,AD=BC,所以,甲、乙两个图形的周长相等;故选:C.12.如图,在由1⨯1的正方形组成的网格中写有2015四个数字(阴影部分),其边线要么是水平或竖直的直线段,要么是连接1⨯1的正方形相邻两边中点的线段,或者是1⨯1的正方形的对角线,则图中2015四个数字(阴影部分)的面积是()A.47B.471D.4812【解析】据分析可知:将小三角形移到空白处补全完整正方形,共47.5个,所以阴影部分的面积是4712;故选:B.13.如图中,正八边形ABCDEFGH的面积为1,其中有两个正方形ACEG和PQRS.那么正八边形中阴影部分的面积()A.123C.35D.58【解析】根据分析,将图中阴影部分进行等积变形,由图不难发现,阴影部分和空白部分的面积刚好相等,正八边形中阴影部分的面积占:1 2故选:A.14.如图,大正方形的边长为14,小正方形的边长为10,阴影部分的面积之和是()A.25B.40C.49D.50【解析】根据分析,如下图所示,图①逆时针旋转90︒,阴影部分可拼成一等腰直角三角形,S=142÷4=49故选:C.15.大、中、小三个正方形,边长都是整数厘米,小正方形的周长比中正方形的边长小,把这两个正方形放在大正方形上(如图),大正方形露出的部分的面积是10平方厘米(图中阴影部分).那么,大正方形的面积是()平方厘米.A.25B.36C.49D.64【解析】根据分析,一条阴影部分的面积为10÷2=5平方厘米.因为都是整数,所以只能为1⨯5.故,大正方形面积=(1+5)⨯(1+5)=6⨯6=36平方厘米.故选:B.16.如图,大正六边形内部有7个完全一样的小正六边形,已知阴影部分的面积是180平方厘米.那么大正六边形的面积是()平方厘米.A.240B.270C.300D.360【解析】如图所示,将图分割成面积相等的小正三角形,显然,图中的空白部分的面积和等于3个小正六边形.而阴影部分由6个小正六边形组成,所以,大正六边形是由9个小正六边形组成的.一个小正六边形的面积为:180÷6=30(平方厘米),大正六边形的面积为:30⨯9=270(平方厘米),故选:B.l17.如图所示,在 5 ⨯ 8 的方格中,阴影部分的面积为 37cm 2 .则非阴影部分的面积为 ()cm 2 .A.43【解析】如图,B.74C.80 D .111阴影部分占了 18.5 个格,面积为 37cm 2 ,每格的面积是: 37 ÷ 18.5 = 2(cm 2 ) ;非阴影就分占 21.5 格,其面积是: 21.5 ⨯ 2 = 43(cm 2 ) ; 答:则非阴影部分的面积为 43cm 2 ;故选: A .18.图中,将两个正方形放在一起,大、小正方形的边长分别为 0 ,6,则图中阴影部分面积为 ()A.42B.40C.38D .36【解析】10 ⨯10 + 6 ⨯ 6 - 6 ⨯ (10 + 6) ÷ 2 - 10 ⨯10 ÷ 2= 100 + 36 - 48 - 50【解析】由以上可知,两个阴影面积比为 : = 3: 2 ,= 38答:阴影部分的面积是 38.故选: C .19.下图中,四边形 ABCD 都是边长为 1 的正方形,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA 的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数m + n 的值等于 ()mn,那么,A.5B.7C.8 D .121 12 33 + 2 = 5.故选: A .20.有 5 个长方形,它们的长和宽都是整数,且 5 个长和 5 个宽恰好是1~10 这 10 个整数;现在用这 5 个长方形拼成 1 个大正方形,那么,大正方形面积的最小值为()A.169【解析】如图所示,B.144C.121 D .100,于是可得:正方形的边长为 11,则其面积为11⨯11 = 121.答:大正方形面积的最小值为 121.故选: C .3B. 2C.1则正方形的面积是 ( )2 + ( )2 = + =小等腰三角形与大等腰三角形的面积和: + =21.一个梯形的上底增加 2 厘米,下底减少 2 厘米,高不变,它的面积与原面积相比 ()A.变大了C.不变B.变小了D.高不知道,所以无法比较【解析】因为梯形的面积 = (上底 + 下底) ⨯ 高 ÷2 ,若“上底增加 2 厘米,下底减少 2 厘米,高不变”则(上底 + 下底)的和不变,且高不变,所以梯形的面积不变.故选: C .22.已知图中正方形的两个顶点正好是两个等腰直角三角形斜边上的中点,小等腰直角三角形与正方形中的圆面积相等,请问正方形中的阴影面积与大等腰直角三角形面积的比值是 ()A.1 1D.32【解析】设小等腰三角形的边长是 a ,大等腰三角形的边长为 b , 则小三角形的斜边是 2a ,大三角形的斜边为 2b2a 2b a 2 b 2 a 2 + b 22 2 2 2 2a 2b 2 a 2 + b 22 2 2又因小等腰直角三角形与正方形中的圆面积相等,所以正方形中的阴影面积与大等腰直角三角形面积相等.所以它们的比值是 1.故选: C .23.如图,梯形 ABCD 中,AB / / D C ,∠ADC + ∠BCD = 90︒ ,且 DC = 2 A B ,分别以 DA 、AB 、BC 为边向梯形外作正方形,其面积分别为S , S , S ,则 S , S , S 之间的关系是下12 3 1 2 3列选项中的 ()A.S+S>S;B.S+S=S;C.S+S<S;D.无法确定.123132132【解析】过点A作AE//BC交CD于点E,因为AB//D C,所以四边形AECB是平行四边形,所以AB=CE,BC=AE,∠BCD=∠AED,因为∠ADC+∠BCD=90︒,DC=2A B,所以AB=DE,∠ADC+∠AED=90︒,所以∠DAE=90︒那么AD2+AE2=DE2,因为S=AD2,S=AB2=DE2,S=BC2=AE2,123所以S=S+S.213故选:B.24.小王将一些同样大小的正三角形纸片摆放在桌上.第一次放1张纸片;第二次在这个小正三角形纸片四周再放三张纸片;第三次在第二次摆好的图形四周再摆放纸片;⋯摆放要求是:每次摆放的每张纸片必须和上一次摆放的纸片至少有一条边重合,且纸片之间除边之外,无重合(见图).第20次摆放后,该图形共用了正三角形纸片()张.A.571B.572C.573D.574【解析】根据分析可得,.第 20 次摆放后,该图形共用:1 + 3 + 6 + 9 +⋯+ 3 ⨯ (20 - 1)= 1 + 3 + 6 + 9 +⋯+ 57= (3 + 57) ⨯ (20 - 1) ÷ 2 + 1= 570 + 1= 571 (个 )答:第 20 次摆放后,该图形共用了正三角形纸片 571 张.故选: A .25.在 8 ⨯ 8 网格的所有方格中放入黑白两种围棋子,每个方格放一枚棋子,要求每行中的白色棋子的数目互不相同,每列中的白色棋子的数目相等,那么这个8 ⨯ 8 网格中共有 () 枚黑色棋子.A.42B.32C.22 D .12【解析】由分析得0 + 1 + 2 + 3 + 5 + 6 + 7 + 8 = 32 (枚 )8 ⨯ 8 - 32 = 32 (枚 )故选: B .26.在 6 ⨯ 6 网格的所有方格中放入围棋子,每个方格放 1 枚棋子,要求每行中的白色棋子的数目互不相等,每列中的白色棋子的数目都相等,那么这个 6 ⨯ 6 网格中共有 () 枚黑色围棋子.A.18B.14C.12 D .10【解析】每行的数目可以为 0 ~ 6 个,每列都相等,所以一定是 6 的倍数,0 + 1 + 2 + 3 + 4 + 5 + 6 = 21 ,如果去掉 3,那么剩下的数: 21 - 3 = 18 正好是 6 的倍数,所以,白棋子有 18 个,则,黑色围棋子有: 6 ⨯ 6 - 18 = 18 (个 )故选: A .27.一块木板上有 13 枚钉子(如图 1 所示)用橡皮筋套住其中的几枚钉子,可以构成三角形,正方形,梯形等等(如图 2) .请回答:可以构成 () 个正方形.A.9【解析】B.10C.11D.12第一种正方形有5个,第二种正方形有4个,第三个正方形有1个,第四种正方形有1个,共11个.故选:C.28.在如图中,一共能数出()个含有“☆”的长方形.A.8B.10C.12D.14【解析】根据分析可得,共有:6+6=12(个);答:图中,一共能数出12个含有“☆”的长方形.故选:C.29.如图,木板上有10根钉子,任意相邻的两根钉子距离都相等,以这些钉子为顶点,用橡皮筋可套出()个正三角形.A.6B.10C.13D.15【解析】单个的三角形有9个,4个三角形组成的大三角形3个,最外面的最大的三角形1个,共有:9+3+1=13(个)答:用橡皮筋可套出13个正三角形.故选:C.30.以平面上任意4个点为顶点的三角形中,钝角三角形最多有()个.A.5B.2C.4D.3【解析】如图,平面上任意4点构成了4个钝角三角形:∆ABC、∆ABD、∆ACD、∆BCD,所以以平面上任意4个点为顶点的三角形中,钝角三角形最多有4个.故选:C.31.图中,有()个三角形.A.13B.15C.14D.16【解析】由题意,由一个小三角形构成的,有6个;由两个小三角形构成的,有3个;由三个小三角形构成的,有6个;大三角形1个,所以三角形的个数为6+3+6+1=16个,故选:D.32.图中共有()个三角形.A.10B.9C.19D.18而实际空白部分面积总和是 10 平方厘米,可得单位 1 的实际面积是10 ÷ 15 = (平方厘米);【解析】根据题干分析可得:8 + 8 + 2 = 18 (个 ) ,答:图中一共有 18 个三角形.故选: D .33.两个小三角形不重叠放置可以拼成一个大三角形,那么这个大三角形不可能由() 拼成.A.两个锐角三角形B.两个直角三角形C.两个钝角三角形D.一个锐角三角形和一个钝角三角形【解析】因为拼在一起的两个小三角形一定有两条边共线,这时能组成一个平角,A 、因为两个锐角的和小于 180 度,所以,两个锐角三角形不可能拼成一个大三角形;B 、因为 90︒ + 90︒ = 180︒ ,所以两个直角三角形能拼成一个大三角形;C 、因为钝角 + 锐角有可能等于180︒ ,所以两个钝角三角形可能拼成一个大三角形;D 、因为钝角 + 锐角有可能等于180︒ ,所以两个钝角三角形可能拼成一个大三角形;故选: A .34.将长方形 ABCD 对角线平均分成 12 段,连接成如图,长方形 ABCD 内部空白部分面积总和是 10 平方厘米,那么阴影部分面积总和是() 平方厘米.A.14B.16C.18 D .20【解析】设把中间最小的空白长方形的面积看作单位1 = ab ,那么与它相邻的阴影部分的面积就是 2a ⨯ 2b - ab = 3ab = 3 ,同理,相邻的空白部分的面积就是 5ab = 5 ,依此规律,面积依次下去为 7,9,11,则空白部分的面积总和是1 + 5 + 9 = 15 ,23那么阴影部分面积总和是: 3 + 7 + 11 = 21 ,;则实际面积是:21⨯23=14(平方厘米)答:阴影部分面积总和是14平方厘米.故选:A.35.在桌面上,将一个边长为1的正六边形纸片与一个边长为1的正三角形纸片拼接,要求无重叠,且拼接的边完全重合,则得到的新图形的边数为()A.8B.7C.6D.5【解析】180︒⨯(6-2)÷6=180︒⨯4÷6=120︒180︒÷6=60︒120︒+60︒=180︒所以,拼接后的图形是:6+3-4=5(条)答:得到的新图形的边数为5.故选:D.36.用210个大小相同的正方形拼成一个长方形,不同的拼法有()种.A.2B.4C.6D.8【解析】210=2⨯3⨯5⨯7因数的总个数:(1+1)⨯(1+1)⨯(1+1)⨯(1+1)=16(个)不同的拼法有:16÷2=8(种)答:不同的拼法有8种.故选:D.37.一个长方形由15个小正方形拼成,如图所示,若这个长方形的周长是64cm,则它的面积为()cm2.(A.960B.256C.240D.128【解析】64÷[(5+3)⨯2]=64÷16=4(厘米)4⨯4⨯15=240(平方厘米)答:它的面积为240cm2.故选:C.38.如图,每条边都相等,每个角都是直角,则根据信息,求下图的面积为)平方厘米.A.16B.20C.24D.32【解析】如右图进行分割,把图形分成了8个边长是2厘米的小正方形2⨯2⨯8=32(平方厘米)答:这个图形的面积是32平方厘米.故选:D.39.如图,四边形ABCD为长方形,四边形CDEF为平行四边形.下面四种说法中正确的是()A.甲的面积比乙的面积大B.甲的面积比乙的面积小C.只有当丙、丁两部分面积相等时,甲、乙两部分面积才相等D.甲、乙两部分面积总是相等的,与丙、丁两部分面积的大小无关【解析】四边形ABCD为长方形,所以BC=AD,AB=CD,因为四边形CDEF为平行四边形,所以C D=EF,所以AB=EF,两边同时加上BE,所以BF=AE;根据等底等高的三角形的面积相等,所以得出三角形CBF的面积=三角形DAE的面积,则:三角形CBF的面积-丁的面积=三角形DAE的面积-丁的面积,所以甲、乙两部分面积总是相等,与与丙、丁两部分面积的大小无关;故选:D.40.如图,正方形ABCD的边长是10厘米,长方形EFGH的长为8厘米,宽为5厘米.则阴影部分的甲与阴影部分乙面积的差是()平方厘米.A.40B.50C.60D.80【解析】10⨯10-8⨯5=60(平方厘米)故选:C.41.如图,线段BE将长方形ABCD分成M、N两个部分,如果M部分比N部分的面积小l80平方厘米,那么AE的长是()A.24厘米B.21厘米C.20厘米D.14厘米【解析】设N部分的面积为x,那么M部分的面积为x-180,x+(x-180)=30⨯202x-180=600;2x=600+1802x=780x=390;N部分的面积是390平方厘米.设梯形的上底为y,(y+30)⨯20⨯1=390210y+300=39010y=90y=9;AE=30-9=21(厘米)故选:B.42.如图,一个3⨯3的正方形网格,如果小正方形边长是1,那么阴影部分的面积是()A.5B.4C.3D.2【解析】通过观察可知,阴影部分的面积=长是3宽是1的长方形的面积-中间边长是1的正方形的面积.3⨯1-1⨯1=2故选:D.43.如图所示,四边形BCDE为平行四边形,∆AOE的面积为6,求∆BOC的面积.()A.3【解析】连接BD,B.4C.5D.6因为,BE//CD,OB=OB,所以,∆BOC的面积等于∆BOD的面积,又因为,DE//AC,AB=AB,所以,∆ABE的面积等于∆ABD的面积,又因为,∆ABO是∆ABE和∆ABD的公共部分,所以,∆BOD的面积等于∆AOE的面积,即,∆BOD的面积=∆AOE的面积=6.答:∆BOC的面积是6.故选:D.44.如图,M为平行四边形ABCD的边BC上的一点,且BM:MC=2:3,已知三角形C MN的面积为45cm2,则平行四边形ABCD的面积为()cm2.A.30B.45C.90D.100【解析】如图,连接AC.Q四边形ABCD是平行四边形,∴AD//B N,∴∆A DM∽∆NCM,)2 = ,= S∴ S∆ADM = (S∆MNCDM 4CM 9Q S∴ S∆MNC ∆ADM= 45 ,= 20 ,Q CM : DM = 3: 2 ,∴ S∴ S∴ S = 30 , ∆ACM= 50 ,∆ADC平行四边形ABCD= 2S∆ADC= 100 ,故选: D .45.如图,长方形 ABCD 中的 AE 、 AF 、 AG 、 AH 四条线段把此长方形面积五等分,又长方形长 20 厘米、宽 12 厘米,那么三角形 AFG 的面积 S∆AFG等于 ( ) 平方厘米.A.41.2B.43.2C.43.1D .42.3【解析】由题意可知 S∆ABE= S∆AEF= S∆AGH= S∆ADH=20 ⨯125= 48 ,∴ B E = EF , DH = HG ,Q 1g BE g AB = 48 ,2∴ BE = EF = 8 , CF = 20 - 16 = 4 ,Q 1g DH g AD = 48 ,2∴ DH = HG = 4.8 , CG = 2.4 ,∴ S 1 2∴ S∆AFG= 48- 4.8 = 43.2 ,故选: B .46.在等腰梯形ABCD中,AB平行于CD,AB=6,CD=14,∠AEC是直角,CE=CB,则AE2等于()A.84【解析】如图,B.80C.75D.64连接AC,过点A作AF⊥CD于点F,过点B作BG⊥CD于点G,则AF=BG,AB=FG=6,DF=CG=4.在直角∆AFC中,AC2=AF2+FC2=AF2+102=AF2+100,在直角∆BGC中,BC2=BG2+GC2=AF2+42=AF2+16,又Q CE=CB,∠AEC=90︒,∴AE2=AC2-EC2=AF2+100-(A F2+16)=84,即AE2=84.故选:A.47.下面的四个图形中,第()幅图只有2条对称轴.A. B.C. D.【解析】如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴.观察易知,符合题意的是C.故选:C.48.下面图形中,恰有2条对称轴()A. B. C. D.【解析】根据轴对称图形的定义,可得:A有4条对称轴,B没有对称轴,C有2条对称轴,D有1条对称轴.故选:C.49.在如图的阴影三角形中,不能由右图中的阴影三角形经过旋转、平移得到的是图()中的三角形.A. B.C. D.【解析】根据分析,可以逆向思维,可以将题中的阴影三角形经过旋转、平移,长直角边旋转和短直角边旋转后得到的图形,不难看出,只有A选项是不可能出现的.图中图中①、②、③三边应为顺时针关系,A不合要求.故选:A.50.在下面的阴影三角形中,不能由图中的阴影三角形经过旋转、平移得到的是图()中的三角形.A. B. C. D.【解析】解析:由图可知:A、C、D都可由原三角形经过旋转和平移得到,而B选项必须经过对称才能与原三角形重合,故选:B.。

小学奥数几何专题--复杂直线型面积-3(六年级)竞赛测试.doc

小学奥数几何专题--复杂直线型面积-3(六年级)竞赛测试.doc

小学奥数几何专题--复杂直线型面积-3(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】图中两个正方形的边长分别是6厘米和4厘米,则图中阴影部分三角形的面积是多少平方厘米.【答案】8【解析】.【题文】如图,有三个正方形的顶点、、恰好在同一条直线上,其中正方形的边长为10厘米,求阴影部分的面积.【答案】100【解析】评卷人得分对于这种几个正方形并排放在一起的图形,一般可以连接正方形同方向的对角线,连得的这些对角线互相都是平行的,从而可以利用面积比例模型进行面积的转化.如右图所示,连接、、,则,根据几何五大模型中的面积比例模型,可得,,所以阴影部分的面积就等于正方形的面积,即为平方厘米.【题文】图是由大、小两个正方形组成的,小正方形的边长是厘米,求三角形的面积.【答案】8【解析】这道题似乎缺少大正方形的边长这个条件,实际上本题的结果与大正方形的边长没关系.连接(见右上图),可以看出,三角形与三角形的底都等于小正方形的边长,高都等于大正方形的边长,所以面积相等.因为三角形是三角形与三角形的公共部分,所以去掉这个公共部分,根据差不变性质,剩下的两个部分,即三角形与三角形面积仍然相等.根据等量代换,求三角形的面积等于求三角形的面积,等于.【题文】如图,与均为正方形,三角形的面积为6平方厘米,图中阴影部分的面积为多少.【答案】6【解析】如图,连接,比较与,由于,,即与的底与高分别相等,所以与的面积相等,那么阴影部分面积与的面积相等,为6平方厘米.【题文】正方形ABCD和正方形CEFG,且正方形ABCD边长为10厘米,则图中阴影面积为多少平方厘米?【答案】50【解析】方法一:三角形BEF的面积,梯形EFDC的面积三角形BEF的面积,而四边形CEFH是它们的公共部分,所以,三角形DHF的面积三角形BCH的面积,进而可得,阴影面积三角形BDF的面积三角形BCD的面积(平方厘米).方法二:连接CF,那么CF平行BD ,所以,阴影面积三角形BDF的面积三角形BCD的面积(平方厘米).【题文】已知正方形边长为10,正方形边长为6,求阴影部分的面积.【答案】20【解析】如果注意到为一个正方形的对角线(或者说一个等腰直角三角形的斜边),那么容易想到与是平行的.所以可以连接、,如上图.由于与平行,所以的面积与的面积相等.而的面积为,所以的面积也为20.【题文】图中,和是两个正方形,和相交于,已知等于的三分之一,三角形的面积等于6平方厘米,求五边形的面积.【答案】49.5【解析】连接、,由于与平行,可知四边形构成一个梯形.由于面积为6平方厘米,且等于的三分之一,所以等于的,根据梯形蝴蝶定理或相似三角形性质,可知的面积为12平方厘米,的面积为6平方厘米,的面积为3平方厘米.那么正方形的面积为平方厘米,所以其边长为6厘米.又的面积为平方厘米,所以(厘米),即正方形的边长为3厘米.那么,五边形的面积为:(平方厘米).【题文】如下图,、分别是梯形的下底和腰上的点,,并且甲、乙、丙个三角形面积相等.已知梯形的面积是平方厘米.求图中阴影部分的面积.【答案】12.8【解析】因为乙、丙两个三角形面积相等,底.所以到的距离与到的距离相等,即与平行,四边形是平行四边形,阴影部分的面积平行四边形的面积的,所以阴影部分的面积乙的面积.设甲、乙、丙的面积分别为份,则阴影面积为份,梯形的面积为份,从而阴影部分的面积(平方厘米).【题文】如图,已知长方形的面积,三角形的面积是,三角形的面积是,那么三角形的面积是多少?【答案】6.5【解析】方法一:连接对角线.∵是长方形∴∴,∴,∴∴.方法二:连接,由图知,所以,又由,恰好是面积的一半,所以是的中点,因此,所以【题文】如图,在平行四边形中,,.求阴影面积与空白面积的比.【答案】1:2【解析】方法一:因为,,所以,.因为,所以,所以,.同理可得,,.因为,所以空白部分的面积,所以阴影部分的面积是.,所以阴影面积与空白面积的比是.【题文】如图所示,三角形中,是边的中点,是边上的一点,且,为与的交点.若的面积为平方厘米,的面积为平方厘米.且是平方厘米,那么三角形的面积是多少平方厘米.【答案】10【解析】,,所以(平方厘米).所以(平方厘米).【题文】如图,在梯形中,,,且的面积比的面积小10平方厘米.梯形的面积是多少平方厘米?【答案】115【解析】根据题意可知,则,,而平方厘米,所以,则平方厘米.又,所以平方厘米.所以(平方厘米).【题文】如图,是梯形的一条对角线,线段与平行,与相交于点.已知三角形的面积比三角形的面积大平方米,并且.求梯形的面积.【答案】28【解析】连接.根据差不变原理可知三角形的面积比三角形大4平方米,而三角形与三角形面积相等,因此也与三角形面积相等,从而三角形的面积比三角形的大4平方米.但,所以三角形的面积是三角形的,从而三角形的面积是(平方米),梯形的面积为:(平方米).【题文】如右图所示,在长方形内画出一些直线,已知边上有三块面积分别是,,.那么图中阴影部分的面积是多少?【答案】97【解析】三角形的面积三角形的面积长方形面积阴影部分面积;又因为三角形的面积三角形的面积长方形面积,所以可得:阴影部分面积.【题文】图中是一个各条边分别为5厘米、12厘米、13厘米的直角三角形.将它的短直角边对折到斜边上去与斜边相重合,那么图中的阴影部分(即未被盖住的部分)的面积是多少平方厘米?【答案】【解析】如下图,为了方便说明,将某些点标上字母.有为直角,而,所以也为直角.而.与同高,所以面积比为底的比,及===,设的面积为“8”,则的面积为“5”.是由折叠而成,所以有、面积相等,是由、、组成,所以=“8”+“5”+“5”=“18”对应为,所以“1”份对应为,那么△ADE的面积为=平方厘米.即阴影部分的面积为平方厘米.【题文】如图,长方形的面积是2平方厘米,,是的中点.阴影部分的面积是多少平方厘米?【答案】平方厘米【解析】如下图,连接,、的面积相等,设为平方厘米;、的面积相等,设为平方厘米,那么的面积为平方厘米.,.所以有.比较②、①式,②式左边比①式左边多,②式右边比①式右边大0.5,有,即,.而阴影部分面积为平方厘米.【题文】如图,三角形田地中有两条小路和,交叉处为,张大伯常走这两条小路,他知道,且.则两块地和的面积比是多少【答案】1:2【解析】方法一:连接.设的面积为1,的面积,则根据题上说给出的条件,由得,即的面积为、;又有,、,而;得,所以.方法二:连接,设(份),则,设则有,解得,所以方法三:过点作∥交于点,由相似得,又因为,所以,所以两块田地ACF和CFB的面积比【题文】如图,,,被分成个面积相等的小三角形,那么|【答案】24【解析】由题意可知,,所以,;又,所以,同样分析可得,所以.【题文】如图,在角的两边上分别有、、及、、六个点,并且、、、、的面积都等于1,则的面积等于.【答案】【解析】根据题意可知,,所以,.【题文】、分别为直角梯形两边上的点,且、、彼此平行,若,,,.求阴影部分的面积.【答案】25【解析】连接、.由于、、彼此平行,所以四边形是梯形,且与该梯形的两个底平行,那么三角形与、三角形与的面积分别相等,所以三角形的面积与三角形的面积相等.而三角形的面积根据已知条件很容易求出来.由于为直角梯形,且,,,,所以三角形的面积的面积为:.所以三角形的面积为25.【题文】已知为等边三角形,面积为400,、、分别为三边的中点,已知甲、乙、丙面积和为143,求阴影五边形的面积.(丙是三角形)【答案】43【解析】因为、、分别为三边的中点,所以、、是三角形的中位线,也就与对应的边平行,根据面积比例模型,三角形和三角形的面积都等于三角形的一半,即为200.根据图形的容斥关系,有,即,所以.又,所以.【题文】如图,已知,,,,线段将图形分成两部分,左边部分面积是38,右边部分面积是65,求三角形的面积.【答案】40【解析】连接,.根据题意可知,;;所以,,,,,于是:;;可得.故三角形的面积是40.【题文】如图,点、、在线段上,已知厘米,厘米,厘米,厘米,将整个图形分成上下两部分,下边部分面积是平方厘米,上边部分面积是平方厘米,则三角形的面积是多少平方厘米?【答案】128【解析】连接设的面积是,由于所以的面积是、的面积是由于上半部分的面积是平方厘米所以的面积是()平方厘米,因为下半部分的面积是平方厘米所以的面积是()平方厘米,因为是的2倍所以可以列方程为:()解得,的面积为平方厘米.【题文】如图,正方形的边长为10,四边形的面积为5,那么阴影部分的面积是多少【答案】40【解析】如图所示,设上的两个点分别为、.连接.根据面积比例模型,与的面积是相等的,那么与的面积之和,等于与的面积之和,即等于的面积.而的面积为正方形面积的一半,为.又与的面积之和与阴影部分的面积相比较,多了2个四边形的面积,所以阴影部分的面积为:.【题文】如图,正方形的边长为12,阴影部分的面积为60,那么四边形的面积是多少【答案】6【解析】如图所示,设上的两个点分别为、.连接.根据面积比例模型,与的面积是相等的,那么与的面积之和,等于与的面积之和,即等于的面积.而的面积为正方形面积的一半,为.又与的面积之和与阴影部分的面积相比较,多了2个四边形的面积,所以四边形的面积为:.【题文】如图所示,长方形内的阴影部分的面积之和为70,,,四边形的面积为多少?【答案】10【解析】利用图形中的包含关系可以先求出三角形、和四边形的面积之和,以及三角形和的面积之和,进而求出四边形的面积.由于长方形的面积为,所以三角形的面积为,所以三角形和的面积之和为;又三角形、和四边形的面积之和为,所以四边形的面积为.另解:从整体上来看,四边形的面积三角形面积三角形面积白色部分的面积,而三角形面积三角形面积为长方形面积的一半,即60,白色部分的面积等于长方形面积减去阴影部分的面积,即,所以四边形的面积为.【题文】如图所示,矩形的面积为24平方厘米.三角形与三角形的面积之和为平方厘米,则四边形的面积是多少平方厘米?【答案】1.8【解析】因为三角形与三角形的面积之和是矩形的面积的一半,即12平方厘米,又三角形与三角形的面积之和为平方厘米,则三角形与三角形的面积之和是平方厘米,则四边形的面积三角形面积三角形与三角形的面积之和三角形面积(平方厘米).【题文】如图所示,矩形的面积为36平方厘米,四边形的面积是3平方厘米,则阴影部分的面积是多少平方厘米?【答案】12【解析】因为三角形面积为矩形的面积的一半,即18平方厘米,三角形面积为矩形的面积的,即9平方厘米,又四边形的面积为3平方厘米,所以三角形与三角形的面积之和是平方厘米.又三角形与三角形的面积之和是矩形的面积的一半,即18平方厘米,所以阴影部分面积为(平方厘米).【题文】如图,长方形的面积是36,是的三等分点,,则阴影部分的面积为多少?【答案】2.7【解析】如图,连接.根据蝴蝶定理,,所以;,所以.又,,所以阴影部分面积为:.【题文】如图,如果长方形的面积是平方厘米,那么四边形的面积是多少平方厘米?【答案】32.5【解析】如图,过、、、分别作长方形的各边的平行线.易知交成中间的阴影正方形的边长为厘米,面积等于平方厘米.设、、、的面积之和为,四边形的面积等于,则,解得(平方厘米).【题文】如图,阴影部分四边形的外接图形是边长为的正方形,则阴影部分四边形的面积是().【答案】48【解析】如图所示,分别过阴影四边形的四个顶点作正方形各边的平行线,相交得长方形,易知长方形的面积为平方厘米.从图中可以看出,原图中四个空白三角形的面积之和的2倍,等于、、、四个长方形的面积之和,等于正方形的面积加上长方形的面积,为平方厘米,所以四个空白三角形的面积之和为平方厘米,那么阴影四边形的面积为平方厘米.【题文】如图,阴影部分四边形的外接图形是边长为厘米的正方形,则阴影部分四边形的面积是多少平方厘米?【答案】68【解析】如图所示,分别过阴影四边形的四个顶点作正方形各边的平行线,相交得长方形,易知长方形的面积为平方厘米.从图中可以看出,原图中四个空白三角形的面积之和的2倍,等于、、、四个长方形的面积之和,等于正方形的面积加上长方形的面积,为平方厘米,所以四个空白三角形的面积之和为平方厘米,那么阴影四边形的面积为平方厘米.【题文】已知正方形的边长为10,,,则?【答案】53【解析】如图,作于,于.则四边形分为4个直角三角形和中间的一个长方形,其中的4个直角三角形分别与四边形周围的4个三角形相等,所以它们的面积和相等,而中间的小长方形的面积为,所以.【题文】如图,三角形的面积是,、的长度分别为11、3.求长方形的面积.【答案】67【解析】如图,过作∥,过作∥,、交于,连接.则另解:设三角形、、的面积之和为,则正方形的面积为.从图中可以看出,三角形、、的面积之和的2倍,等于正方形的面积与长方形的面积之和,即,得,所以正方形的面积为.【题文】如图,长方形中,,.、分别是边上的两点,.那么,三角形面积的最小值是多少?【答案】717【解析】由于长方形的面积是一定的,要使三角形面积最小,就必须使、、的面积之和最大.由于、、都是直角三角形,可以分别过、作、的平行线,可构成三个矩形、和,如图所示.容易知道这三个矩形的面积之和等于、、的面积之和的2倍,而这三个矩形的面积之和又等于长方形的面积加上长方形的面积.所以为使、、的面积之和最大,只需使长方形的面积最大.长方形的面积等于其长与宽的积,而其长,宽,由题知,根据”两个数的和一定,差越小,积越大”,所以当与的差为0,即与相等时它们的积最大,此时长方形的面积也最大,所以此时三角形面积最小.当与相等时,,此时三角形的面积为:.(也可根据得到三角形的面积)【题文】是边长为12的正方形,如图所示,是内部任意一点,、,那么阴影部分的面积是().【答案】34【解析】(法1)特殊点法.由于是内部任意一点,不妨设点与点重合(如上中图),那么阴影部分就是和.而的面积为,的面积为,所以阴影部分的面积为.(法2)寻找可以利用的条件,连接、、、可得右图所示:则有:同理可得:;而,即;同理:,,;所以:而;;所以阴影部分的面积是:即为:.【题文】如图所示,在四边形中,,,,分别是各边的中点,求阴影部分与四边形的面积之比.【答案】1【解析】(法1)设,,,.连接知,,,;所以;同理.于是;注意到这四个三角形重合的部分是四块阴影小三角形,没算的部分是四边形;因此四块阴影的面积和就等于四边形的面积.(法2)特殊值法(只用于填空题、选择题),将四边形画成正方形,很容易得到结果.【题文】如图,、、、分别是四边形各边的中点,与交于点,、、及分别表示四个小四边形的面积.试比较与的大小.【答案】【解析】如图,连接、、、,则可判断出,每条边与点所构成的三角形都被分为面积相等的两部分,且每个三角形中的两部分都分属于、这两个不同的组合,所以可知.【题文】如图,四边形中,,,,已知四边形的面积等于4,则四边形的面积是多少?【答案】【解析】运用三角形面积与底和高的关系解题.连接、、、,因为,,所以,在中,,在中,,在中,,在中,.因为,所以.又因为,所以.【题文】如图,对于任意四边形,通过各边三等分点的相应连线,得到中间四边形,求四边形的面积是四边形的几分之几?【答案】【解析】分层次来考虑:⑴如下左图,,,所以.又因为,,所以;.⑵如右上图,已知,;所以;所以,即是三等分点;同理,可知、、都是三等分点;所以再次应用⑴的结论,可知,.【题文】有正三角形,在边、、的正中间分别取点、、,在边、、上分别取点、、,使,当和、和、和的相交点分别是、、时,使.这时,三角形的面积是三角形的面积的几分之几?请写出思考过程.【答案】【解析】连接、、,显然,是正三角形将放大至如图⑵.连,由对称性知,.因此,.同理,.所以,.【题文】如图:已知在梯形中,上底是下底的,其中是边上任意一点,三角形、三角形、三角形的面积分别为、、.求三角形的面积.【答案】21【解析】如图,设上底为,下底为,三角形与三角形的高相差为.由于,所以.即.又,所以.【题文】如图,已知是梯形,∥,,,,求的面积.【答案】6【解析】本题是09年六年级试题,初看之下,是梯形这个条件似乎可以用到梯形蝴蝶定理,四边形内似乎也可以用到蝴蝶定理,然而经过试验可以发现这几个模型在这里都用不上,因为、这两个点的位置不明确.再看题目中的条件,,,这两个条件中的前一个可以根据差不变原理转化成与的面积差,则是与的面积差,两者都涉及到、以及有同一条底边的两个三角形,于是想到过、分别作梯形底边的平行线.如右图,分别过、作梯形底边的平行线,假设这两条直线之间的距离为.再过作的垂线.由于,所以,故.根据差不变原理,这个差等于与的面积之差.而与有一条公共的底边,两个三角形边上的高相差为,所以它们的面积差为,故.再看,它的面积等于是与的面积之差,这两个三角形也有一条公共的底边,边上的高也相差,所以这两个三角形的面积之差为,故.由于,所以,则,所以.【题文】如图,是一个四边形,、分别是、的中点.如果、与的面积分别是6、7和8,且图中所有三角形的面积均为整数,则四边形的面积为多少.【解析】连接、、.由于是的中点,所以与的面积相等,而比的面积大1,所以比的面积大1;又由于是的中点,所以的面积与的面积相等,那么的面积比的面积大1,所以的面积为9.假设的面积为,则的面积为.根据几何五大模型中的蝴蝶定理,可知的面积为,的面积为.要使这两个三角形的面积为整数,可以为1,3或7.由于的面积为面积的一半,的面积为面积的一半,所以与的面积之和为四边形面积的一半,所以与的面积之和等于四边形的面积,即:,得.将、3、7分别代入检验,只有时等式成立,所以{{10l连接,,,所以,设份,则份,平方厘米,所以份是平方厘米,份就是平方厘米,的面积是平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.【题文】如图,三角形中,是的5倍,是的3倍,如果三角形的面积等于1,那么三角形的面积是多少?【答案】15连接.∵∴又∵∴,∴.。

小学奥数系列训练题-几何计数|通用版

小学奥数系列训练题-几何计数|通用版

2015年小学奥数计数专题——几何计数1.用3根等长的火柴可以摆成一个等边三角形.如图,用这样的等边三角形拼合成一个更大的等边三角形.如果这个大等边三角形昀每边由20根火柴组成,那么一共要用多少根火柴?2.如图,用长短相同的火柴棍摆成3×1996的方格网,其中每个小方格的边都由一根火柴棍组成,那么一共需用多少根火柴棍?3.图是一个跳棋棋盘,请你计算出棋盘上共有多少个棋孔?4.如图,在桌面上,用6个边长为l的正三角形可以拼成一个边长为1的正六边形.如果在桌面上要拼出一个边长为6的正六边形,那么,需要边长为1的正三角形多少个?5.如图,其中的每条线段都是水平的或竖直的,边界上各条线段的长度依次为5厘米、7厘米、9厘米、2厘米和4厘米、6厘米、5厘米、1厘米.求图中长方形的个数,以及所有长方形面积的和.6.如图,18个边长相等的正方形组成了一个3×6的方格表,其中包含“*”的长方形及正方形共有多少个?7.图是由若干个相同的小正方形组成的.那么,其中共有各种大小的正方形多少个?8.图中共有多少个三角形?9.图是由18个大小相同的小正三角形拼成的四边形,其中某些相邻的小正三角形可以拼成较大的正三角形.那么,图中包含“*”的各种大小的正三角形一共有多少个?10.如图,AB,CD,EF,MN互相平行,则图中梯形个数与三角形个数的差是多少?11.在图中,共有多少个不同的三角形?12.如图,一块木板上有13枚钉子.用橡皮筋套住其中的几枚钉子,可以构成三角形、正方形、梯形等等,如图.那么,一共可以构成多少个不同的正方形?13.如图,用9枚钉子钉成水平和竖直间隔都为1厘米的正方阵.用一根橡皮筋将3枚不共线的钉子连结起来就形成一个三角形.在这样得到的三角形中,面积等于1平方厘米的三角形共有多少个?14.如图,木板上钉着12枚钉子,排成三行四列的长方阵.那么用橡皮筋共可套出多少个不同的三角形?15.如图,正方形ACEG的边界上有A,B,C,D,E,F,G这7个点,其中B,D,F分别在边AC,CE,EG上.以这7个点中的4个点为顶点组成的不同四边形的个数等于多少?16.数一数下列图形中各有多少条线段.17.数出下图中总共有多少个角.18.数一数下图中总共有多少个角?19.如下图中,各个图形内各有多少个三角形?20.如下图中,数一数共有多少条线段?共有多少个三角形?21.如右图中,共有多少个角?22.在图中(单位:厘米):①一共有几个长方形?②所有这些长方形面积的和是多少? 37421812523.由20个边长为1的小正方形拼成一个45 长方形中有一格有“☆”图中含有“☆”的所有长方形(含正方形)共有 个,它们的面积总和是 。

小学奥数专题之几何专题

小学奥数专题之几何专题

小学奥数几何专题1、(★★)如图,已知四边形ABCD 中,AB=13,BC=3,CD=4,DA=12,并且BD 与AD 垂直,则四边形的面积等于多少?[思 路]:显然四边形ABCD 的面积将由三角形ABD 与三角形BCD 的面积求和得到.三角形ABD 是直角三角形,底AD 已知,高BD 是未知的,但可以通过勾股定理求出,进而可以判定三角形BCD 的形状,然后求其面积.这样看来,BD 的长度是求解本题的关键.解:由于BD 垂直于AD ,所以三角形ABD 是直角三角形.而AB=13,DA=12,由勾股定理,BD 2=AB 2-AD 2=132—122=25=52,所以BD=5.三角形BCD 中BD=5,BC=3,CD=4,又32十42=52,故三角形BCD 是以BD 为斜边的直角三角形,BC 与CD 垂直.那么:ABCD S 四边形=ABD S ∆+BCD S∆=12×5÷2+4×3÷2=36.. 即四边形ABCD 的面积是36. 2、(★★)如图四边形土地的总面积是48平方米,三条线把它分成了4个小三角形,其中2个小三角形的面积分别是7平方米和9平方米.那么最大的一个三角形的面积是________平方米;[分析]:剩下两个三角形的面积和是 48-7-9=32 ,是右侧两个三角形面积和的2 倍,故左侧三角形面积是右侧对应三角形面积的2倍,最大三角形面积是 9×2=18。

3.(★★)将下图中的三角形纸片沿虚线折叠得到右图,其中的粗实线图形面积与原三角形面积之比为2:3。

已知右图中3个阴影的三角形面积之和为1,那么重叠部分的面积为多少?[思 路]:小升初中常把分数,百分数,比例问题处理成份数问题,这个思想一定要养成。

解:粗线面积:黄面积=2:3绿色面积是折叠后的重叠部分,减少的部分就是因为重叠才变少的,这样可以设总共3份,后来粗线变2份,减少的绿色部分为1份,所以阴影部分为2-1=1份,7 94、(★★)求下图中阴影部分的面积:【解】如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。

小学五年级奥数几何题

小学五年级奥数几何题

小学五年级奥数几何题1.小学五年级奥数几何题1.一个长方体的无盖水族箱, 长是6m, 宽是60cm, 高是1.5m。

这个水族箱占地面积有多大?需要多少平方米的玻璃?它的体积是多少?2.要砌一道长15m, 厚24cm, 高3m的砖墙。

如果每立方米用砖525块, 一共用砖多少块?3.花园小区为居民新安装了50个休息的凳子, 凳面的长、宽、高分别是100cm, 45cm,4.5cm。

凳腿的长、宽、高分别是45cm, 5cm, 35cm, 做这些凳子至少用了混凝土多少方?4、“六一”儿童节前, 全市的小学生代表用棱长3cm的正方体塑料拼插积木在广场中央搭起了一面长6m, 高2.7m, 厚6cm的奥运心愿墙。

这面墙一共用了多少块积木?5、学校运来7.6立方米的沙子, 铺在一个长5米、宽38米的沙坑里, 可以铺多厚?2.小学五年级奥数几何题1.一个长、宽、高分别为40cm、30cm、20cm的小纸箱, 在所有棱上粘上一圈胶带, 至少需要多长的胶带?2.为迎接“五一”劳动节, 要在俱乐部的四周装上彩灯(地面的四边不装)。

已知俱乐部的长90米, 宽55米, 高20米, 工人叔叔至少需要多长的彩灯线?3.小卖部要做一个长2.2m, 宽40cm, 高80cm的玻璃柜台, 现要在柜台各边都安上角铁, 这个柜台需要多少米角铁?4、一个长方体的饼干盒, 长10cm宽6cm, 高12cm。

如果围着它贴一圈商标纸(上、下面不贴), 这张商标纸的面积至少要多少平方厘米?5、光华街口装了一个新的铁皮邮箱, 长50cm, 宽40cm, 高78cm。

做这个邮箱至少需要多少平方厘米的铁皮?3.小学五年级奥数几何题(1)有一个棱长是4厘米的正方体, 从它的一个顶点处挖去一个棱长是1厘米的正方体后, 剩下的物体的体积和表面积各是多少?(2)一个正方体和一个长方体拼成一个新的长方体, 拼成的长方体的表面积比原来的长方体的表面积增加了50平方米。

四年级几何奥数题

四年级几何奥数题

四年级几何奥数题
一、题目示例
1. 一个等腰三角形的顶角是底角的4倍,求这个等腰三角形的底角和顶角各是多少度?
解析:
因为等腰三角形的两个底角相等,设底角的度数为公式,则顶角的度数为公式。

根据三角形内角和为公式,可列出方程公式。

合并同类项得公式。

解得公式。

那么顶角公式。

所以这个等腰三角形的底角是公式,顶角是公式。

2. 长方形的长是12厘米,宽是8厘米,求这个长方形的对角线长度。

解析:
根据长方形的性质,对角线与长和宽构成直角三角形,长和宽为直角边,对角线为斜边。

由勾股定理公式(其中公式、公式为直角边,公式
为斜边)。

这里公式厘米,公式厘米。

则对角线公式厘米。

3. 一个平行四边形的底是10厘米,高是8厘米,如果底减少3厘米,高不变,那么面积减少多少平方厘米?
解析:
原来平行四边形的面积公式平方厘米。

底减少3厘米后,新的底为公式厘米。

此时平行四边形的面积公式平方厘米。

面积减少的值为公式平方厘米。

小学六年级奥数几何计数问题专项强化训练(高难度)

小学六年级奥数几何计数问题专项强化训练(高难度)

小学六年级奥数几何计数问题专项强化训练(高难度)例题1:某小学六年级有10名男生和8名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。

问共有几种不同的排列方式?解析:首先确定男生和女生的位置,男生和女生的位置可以互换,所以先计算男生和女生的排列方式。

男生和女生分别有10!和8!种排列方式。

但是男生和女生之间是需要相邻的(间隔排列),所以男生和女生的位置可以看作是一个整体,即总共有(10!)(8!)种排列方式。

因此,共有(10!)(8!)种不同的排列方式。

专项练习应用题:1. 某小学六年级有12名男生和10名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。

问共有几种不同的排列方式?2. 某小学六年级有8名男生和6名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。

问共有几种不同的排列方式?3. 某小学六年级有15名男生和12名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。

问共有几种不同的排列方式?4. 某小学六年级有6名男生和8名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。

问共有几种不同的排列方式?5. 某小学六年级有10名男生和9名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。

问共有几种不同的排列方式?6. 某小学六年级有7名男生和7名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。

问共有几种不同的排列方式?7. 某小学六年级有14名男生和15名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。

问共有几种不同的排列方式?8. 某小学六年级有9名男生和10名女生参加了一次班级活动,活动结束时,他们按照男女间隔排成一列,要求男生和女生交替站立。

3 小学奥数——几何图形 试题及解析

3 小学奥数——几何图形 试题及解析

3 小学奥数——几何图形试题及解析小学奥数——几何图形试题及解析一、选择题1. 下列各图形中,几何图形的个数最多的是:A. 正方形B. 矩形C. 三角形D. 长方形解析:该题考察学生对几何图形的辨识和计数能力。

正方形有4条边,矩形也有4条边,三角形有3条边,而长方形同样也有4条边。

因此,答案为D,长方形。

2. 以下哪个几何图形不是多边形?A. 正方形B. 圆形C. 五边形D. 六边形解析:多边形是一个有多个直线边的封闭图形。

正方形有4个边,五边形有5个边,六边形有6个边。

但圆形是一个由无限多个点组成的,边是由连续曲线组成的,因此圆形不是多边形。

答案为B,圆形。

二、填空题1. 三角形的内角和是____度。

解析:三角形的内角和是180度。

2. 矩形的对角线互相垂直且长度相等。

解析:矩形的对角线互相垂直且长度相等。

三、解答题1. 已知一个四边形的两个相邻内角分别是50度和100度,另外两个内角分别是多少度?解析:由四边形的内角和为360度可知两个未知角分别为360度 -50度 - 100度 = 210度。

因此,另外两个内角分别是210度。

2. 一个凸多边形的内角和是1620度,它有几个内角?解析:设凸多边形有n个内角。

由凸多边形的内角和为 (n-2) × 180度,可以得到 n × 180度 = 1620度。

解得 n = 9。

因此,该凸多边形有9个内角。

3. 如图所示,在正方形ABCD中,连接AC和BD两条对角线,交于点O。

若AD的长度为12cm,求AC的长度。

解析:由于正方形的对角线相等且互相垂直,可知AO和OC互相垂直,且AO = OC。

根据勾股定理,可以得到 AD^2 = AO^2 + OD^2,解得AO = OD = (12/√2)cm,而AC = AO + OC = 2AO = 2 × (12/√2)cm = 12√2 cm。

因此,AC的长度为12√2cm。

总结:通过以上的几何图形试题和解析,我们可以看到几何图形的基本概念和性质在小学奥数中起着重要的作用。

经典小学奥数题型(几何图形)

经典小学奥数题型(几何图形)

经典小学奥数题型(几何图形)经典小学奥数题型(几何图形)在小学奥数竞赛中,几何图形是一个常见的考点。

通过熟悉和掌握一些经典的几何题型,学生能够提高解题能力,增强空间想象力,并且培养逻辑思维。

一、平面图形的边、角和面积计算1. 边和角计算设某个多边形的边数为 n,则它的内角和为 (n-2) × 180 度。

如果该多边形是正多边形,则每个内角都相等,即每个内角为 [(n-2) ×180]/n 度。

2. 正多边形的面积计算设正多边形的边长为 a,边数为 n,则正多边形的面积 S = (n ×a^2)/(4 × tan(π/n)) 平方单位。

3. 三角形的面积计算设三角形的底边长为 a,高为 h,则三角形的面积 S = (a × h) /2 平方单位。

二、相似三角形的性质当两个三角形的相应角相等时,我们可以推论他们是相似三角形。

相似三角形之间存在以下几个性质:1. 边长的比例如果两个三角形 ABC 和 XYZ 是相似的,那么对应边长之间的比例应该相等: AB/XY = BC/YZ = AC/XZ。

2. 面积的比例如果两个三角形 ABC 和 XYZ 是相似的,那么对应边长之间的比例的平方等于对应面积之间的比例:(AB/XY)^2 = (BC/YZ)^2 =(AC/XZ)^2 = S(ABC)/S(XYZ)。

三、三角形的周长和面积计算1. 三角形的周长计算将三角形的三条边长相加,即可得到三角形的周长。

2. 海伦公式设三角形的三条边长为 a、b、c,令 p = (a+b+c)/2 为半周长,则三角形的面积S = √( p × (p-a) × (p-b) × (p-c) ) 平方单位。

四、平行四边形和矩形的性质1. 平行四边形的性质平行四边形的对边互相平行且相等,对角线互相等分,并且对角线相交的点将对角线份平分。

2. 矩形的性质矩形是一种特殊的平行四边形,它的对边相等且互相平行,且所有角都是直角。

小学奥数4-1-1几何图形的认识.专项练习

小学奥数4-1-1几何图形的认识.专项练习

知识点拨本讲知识点属于几何模块的第一讲,属于起步内容,难度并不大.要求学生认识各种基本平面图形和立体图形;了解简单的几何图形简拼和立体图形展开;看懂立体图形的示意图,锻炼一定的空间想象能力.几何图形的定义:1、几何图形主要分为点、线、面、体等,他们是构成中最基本的要素.(1)点:用笔在纸上画一个点,可以画大些,也可以画小些.点在纸上占一个位置.(2)线段:沿着直尺把两点用笔连起来,就能画出一条线段.线段有两个端点.(3)射线:从一点出发,沿着直尺画出去,就能画出一条射线.射线有一个端点,另一端延伸的很远很远,没有尽头.(4)直线:沿着直尺用笔可以画出直线.直线没有端点,可以向两边无限延伸(5)两条直线相交:两条直线相交,只有一个交点.(6)两条直线平行:两条直线平行,没有交点,无论延伸多远都不相交.(7)角:角是由从一点引出的两条射线构成的.这点叫角的顶点,射线叫点的边.边顶点(8)角分为锐角、直角和钝角三种:直角的两边互相垂直,三角板有一个角就是这样的直角.教室里天花板上的角都是直角. 锐角比直角小,钝角比直角大.(9)三角形:三角形有三条边,三个角,三个顶点.(10)直角三角形:直角三角形是一种特殊的三角形,它有一个角是直角.它的三条边中有两条叫直角边,一条叫斜边.(11)等腰三角形:等腰三角形也是一种特殊的三角形,它有两条边一样长(相等),相等的两条边叫”腰”,另外的一条边叫”底”.(12)等腰直角三角形:等腰直角三角形既是直角三角形,又是等腰三角形.(13)等边三角形:等边三角形的三条边一样长(相等),三个角也一样大(相等).直角锐角钝角顶角顶角边边角角角顶角边直角边斜边直角边腰腰底直角边直角边斜边腰腰底边边边角角角(14)四边形:四边形有四条边,内部有四个角.(15)长方形:长方形的两组对边分别平行且相等,四个角也都是直角.(16)正方形:正方形的四条边都相等,四个角都是直角.(17)平行四边形:平行四边形的两组对边分别平行而且相等,两组对角分别相等.(18)等腰梯形:等腰梯形是一种特殊的四边形,它的上下两边平行,左右两边相等.平行的两边分别叫上底和下底,相等的两边叫腰.(19)菱形:菱形的四条边都相等,对角分别相等.(20)圆:圆是个很美的图形.圆中心的一点叫圆心,圆心到圆上一点的连线叫圆的半径,过圆心连接圆上两点的连线叫圆的直径.直径把圆分成相等的两部分,每一部分都叫半圆.(21)扇形:腰腰下底上底半径直径半圆直径(22)长方体:长方体有六个面,十二条棱,八个顶点.长方体的面一般是长方形,也可能有两个面是正方形.互相垂直的三条棱分别叫做长方体的长、宽、高.(23)正方体:正方体有六个面,十二条棱,八个顶点.正方体的每个面都是同样大的正方形,所以它的十二条棱长都相等.(24)圆柱:圆柱的两个底面是完全相同的圆.(25)圆锥:圆锥的底面是圆.(26)棱柱:这个棱柱的上下底面是三角形.它有三条互相平行的棱,叫三棱柱.(27)棱锥:这个棱锥的底面是四边形.它有四条棱斜着立起来,所以叫四棱锥.(28)三棱锥:因为三棱锥有四个面,所以通常又叫”四面体”.三棱锥的每一个面都是三角形.弧半径半径高宽长底面底面底面(29)球体,简称球:球有球心,球心到球面上一点的连线叫球的半径.例题精讲模块一、几何图形的认识【例1】请看下图,共有个圆圈。

小学奥数几何专地题目

小学奥数几何专地题目

⼩学奥数⼏何专地题⽬⼩学⼏何⾯积问题⼀姓名引理:如图1ABCD 中。

P 是AD 上⼀点,连接PB,PC 则S △PBC =S △ABP+S △pcD =21S ABCD1.已知:四边形ABCD 为平⾏四边形,图中的阴影部份⾯积占平⾏四边形ABCD 的⾯积的⼏分之⼏2. 已知:的⾯积为18,E 是PCS △ABP =4,求:平⾏四边形ABCD 的⾯积4..四边形ABCD 中,BF=EF=ED,(如图)(1) 若S 四边形ABCD =15则S 阴 = (2)若S △AEF + S △BFC =15 则S 四边形ABCD =(第⼀题图)(3)若S △AEF= 3 S △BFC =2 则S 四边形ABCD =5. 四边形ABCD 的对⾓线BD 被E,F ,G 三点四等份,(如图)若四边形AECG=15 则S 四边形ABCD =E P 图1ADCB (适应长⽅形、正⽅形)BGBFC AED6.四边形ABCD 的对⾓线BD 被E,F ,G 三点四等份,(如图)若阴影部份⾯积为15 则S 四边形ABCD =7.若ABCD 为正⽅形,F 是DC 的中点,已知:S △BFC = 1 (1)则S 四边形ADFB =(2) S △DFE =⼩学⼏何⾯积问题⼆姓名 1.如图S △AEF= 2, AB=3AE CF=3EF 则S △ABC=2. 如图S △BDE=30 ,AB=2AE , DC=4AC 则S △ABC=3.正⽅形ABCD 中,E,F,G 为BC 边上四等份点, M,N,P 为对⾓线AC 上的四等份点(如图)若S 正⽅形ABCD=32 则S △NGP=4.已知:S △ABC=30 D 是BC 的中点 AE=2ED 则S △BDE=BD第1题第2题B5. 已知:AD=DB DE=3EC AF=3FE若S△ABC=160求S△EFC=6.已知:在△ABC中,FC=3AF EC=2BE BD=DF 若S△DFE=3则S△ABC=为平⾏四边形,AG=GC,BE=EF=FC,若S△GEF=2,则ABCD =是梯形,AD ABCD 是梯形,AD如图BD=DE, EC=3EF若△DFE的⾯积等于1 则△ABC的⾯积为(第11题)⼩学⼏何⾯积问题三姓名1.在梯形ABCD中,AD 在梯形ABCD中,AD梯形ABCDA若直线L1图(⼆)△ACM的AC边上的⾼H1是△NCB的CB边上的⾼H2的⼀半,且AC=CB,若S△NBC=100 则S△ACM=A CBC3.把下⾯的三⾓形分成三个⼩三⾓形,使它们的⾯积的⽐为1:2:34.△ABC 是等边三⾓形,AD 是BC 边上的⾼,若S △ABC =2,则S △ADC =5. △ABC 是等边三⾓形,D 是AB 的中点,且DH 垂直于BC ,H 为垂⾜. 若S △BDH =2,则S △ABC =CB CEAF⼩学⼏何⾯积问题四姓名1.在△ABC 中,AE=BE,BD=2DC,FC=3AF 若△ABC 的⾯积为1,则S △EFD =2.△ABC 中,三边BC,CA,AB 上分别有点D,E,F,且BC=3CD AB=2BE AC=4AF 若△ABC 的⾯积为240平⽅厘⽶,则S △DEF 平⽅厘⽶.3.. 如图BD=DE, EC=3EF AF=2FD若△DFE 的⾯积等于1 则△ABC 的⾯积为4.两个正⽅形拼成如图,则阴影部分的⾯积为______。

几何奥数题含答案

几何奥数题含答案

1、在正方形ABCD中(如图所示),E,F分别是所在边的中点,四边形AGCD的面积占正方形面积的几分之几?2、如图所示,直角梯形ABCD的上与高相等,正方形DEFH的边长等于6厘米,阴影部分的面积是________平方厘米。

3、如图,四边形ABCD是长方形,E、F分别是AB、DA的中点,G是BF和DE的交点,四边形BCDG的面积是40平方厘米,那么四边形ABCD的面积是________平方厘米。

4、将正面是红色,背面是白色的纸剪成一个直角三角形ABC(如下图所示),盖在桌面上,然后折叠使A与C重合。

这是红色部分的面积为5.25平方分米,盖住桌面的面积比原来减少了9.375平方分米,BD=4.8分米,折痕的长度是_____分米。

1、解:连接AC。

可以知道G是三角形ABC的3条中线的相交点,就是重心。

所以:S△ACG=S△ABG=S△BCG=1/3*S三角形ABC=1/6*S正方形ABCD。

S四边形AGCD=S△ACG+S△ACD=(1/2+1/6)S正方形ABCD=2/3*正方形ABCD 四边形AGCD的面积占正方形ABCD面积2/3。

2、3、解:设长方形ABCD面积为S。

因为F、E是AD和AB的中点,所以S△ABF=S△ADE=S/4连接AG,同样F、E是AD和AB的中点,所以S△BEG=S△AEG=S△AFG=S△DFG=S△ABF/3=S/12 S四边形BCDG=S-S△ABF-S△DFG=S - S/4- S/12=2 S/3 S=3 四边形BCDG/2=60平方厘米4、解:三角形ABC面积=9.375×2+5.25=24平方厘米AB=24×2÷4.8=10厘米假设折痕和AB交于点E,和AC交于点F ,AE=1/2×10=5厘米EF=9.375×2÷5=3.75。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学几何面积问题一 姓名引理:如图1 ABCD 中。

P 是AD 上一点,连接PB,PC 则S △PBC =S △ABP +S △pcD =21S ABCD 1E 是PC E S △PDE =1, S △ABP =4,求:平行四边形ABCD 4..四边形ABCD 中,BF=EF=ED,(如图) (1) 若S 四边形ABCD 则S 阴 = (2)若S △AEF + S △BFC =15则S 四边形ABCD =(3)若S △AEF= 3 S △BFC =2 则S 四边形ABCD= 5. 四边形ABCD 的对角线BD 被E,F ,G 三点四等份,(如图)若四边形AECG=15则S 四边形ABCD =6.四边形ABCD 的对角线BD 被E,F ,G 三点四等份, 则S 四边形ABCD =7.若ABCD 为正方形,F 是DC 的中点,已知:S △BFC = (1)则S 四边形ADFB =(2) S △DFE =(3) S △AEB =8.直角梯形ABCD 中.AE=ED,BC=18,AD=8,CD=6,且BF=2FC,S △GED =S △GFC .求S 阴=小学几何面积问题二姓名1.如图S △AEF= 2, AB=3AE CF=3EF 则S △ABC=2. 如图S △BDE=30 ,AB=2AE , DC=4AC 则S △ABC=P A B (适应长方形、正方形)B3.正方形ABCD中,E,F,G为BC边上四等份点,M,N,P为对角线AC上的四等份点(如图)若S正方形ABCD=32 则S△NGP=4.已知:S△ABC=30 D是BC的中点AE=2ED 则S△BDE=5. 已知:AD=DB DE=3EC AF=3FE若S△ABC=160求S△EFC=6.已知:在△ABC中,FC=3AF EC=2BE BD=DF 若S△DFE=3则S△ABC=为平行四边形,AG=GC,BE=EF=FC,若S△GEF=2,则 S ABCD =是梯形,AD ABCD 是梯形,AD如图若△DFE的面积等于1 则△ABC的面积为(第11题)小学几何面积问题三姓名1.在梯形ABCD中,AD 在梯形ABCD中,AD梯形ABCD中,A若直线L1图(二)△ACM的AC边上的高H1是△NCBA CBCCC的CB边上的高H2的一半,且AC=CB,若S△NBC =100 则S△ACM=3.把下面的三角形分成三个小三角形,使它们的面积的比为1:2:34.△ABC是等边三角形,AD是BC边上的高,若S△ABC =2,则S△ADC=5. △ABC是等边三角形,D是AB的中点,且DH垂直于BC,H为垂足.若S△BDH =2,则S△ABC=CEAFC DBj F小学几何面积问题四 姓名1.在△ABC 中,AE=BE,BD=2DC,FC=3AF 若△ABC 的面积为1,则S △EFD =2.△ABC 中,三边BC,CA,AB 上分别有点D,E,F,且BC=3CD AB=2BE AC=4AF 若△ABC 的面积为240平方厘米,则S △DEF 平方厘米.3.. 如图BD=DE, EC=3EF AF=2FD若△DFE 的面积等于1 则△ABC4.5.6.7.如图ABCD 是矩形,EF ∥AB如果S 矩形ABCD =24 则S 阴= 8.在平行四边形ABCD 中,EF ∥AC,若 △AED 是平行四边形.直线CF 与AB 交于E,与DA 积等于4cm 2,那么三角形EDA (阴影部分)的面积是 cm 小学几何面积问题五姓名1.有两种自然放法,将正方形内接于等腰直角三角形.如果按左图的放法,那么可求得这个正方形面积为441. 如果按右图的放法,那么可求得这个正方形面积应为2.下图是一块长方形的草地,长方形的长是18米.宽是10米.中间有两条宽2米的路,一条是长方形,另一条是平行四边形,那么草地的面积是 平方米.(第2题图)3.如图大正方形的边长是20厘米.E,F,G,H 分别是各边中点,问:中间小正方形的面积是 平方厘米.4.“十字架”由五个边长相等的正方形拼成,若AB=20厘米. 求:这个“十字架”的面积是 平方厘米.5.一个边长为21厘米的正方形,被分成了四个长方形(如图)它们的面积分别是这个正方形面积的101,51,103,52在占52的这一块长方形里有一个小正方形是阴影部分.求这个阴影部分的面积为 平方厘米.44 5D1厘米6.一个面积小于100的整数的长方形中,它的内部有三个小正方形,边长都是整数.已知正方形(二)的边长是长方形长的2/5,正方形(一)的边长是长方形宽的1/8。

那么图中阴影部分的面积为 (平方单位) 7. 如图所示ABCD 为正方形,且AB 、 8.在长方形ABCD 中,长是宽的4倍,对角线BD=17厘米,求该长方形的面积是 .小学几何面积问题六姓名 1.一个长方形ABCD ,向它的形外分别作正方形(如图)若所作的四边形的周长之和为264厘米,面积之和是平方厘米,求原来的长方形的面积是 平方厘米.2. 两个长方形叠放如图,小长方形宽是2厘米,A 是大长方形一边的中点,△ABC 是等腰直角三角形,图中阴影部分的面积和为 平方厘米.3.在边长为10的正方形的四边上分别取E,F,G,H.已知E 与G 的水平距离是5厘米,H 与F 的水平距离是4厘米,求四边形EFGH 的面积为 平方厘米.4.长方形ABCD 的长DC 是8厘米,宽AD 长方形,它的面积是多少平方厘米?答:5.如图在直角梯形中,AB=10直角梯形面积的一半.厘米6.已知:ABCD 是平行四边形,P 在AD 厘米,CP=6平方厘米.7. 梯形ABCD 与梯形A /B /C /D /大小相同,若EC=4厘米,D /C /=24厘米,高EF=5求阴影部分的面积是 平方厘米. 8.在一个梯形内,有两个三角形的面积分别是6平方厘米和8平方厘米,梯形的下底长是上底长的2方厘米.C7厘米E小学几何面积问题七 姓名1.求图中阴影部分的面积2. 求图中阴影部分的面积3.已知:EF 是梯形ABCD4.求梯形的面积5.求下图四边形的面积6.在下图中,长方形内有一个钝角三角形,按照图示的数,求这个三角形的面积. 7.三个边长为10厘米、12厘米、8厘米的正方形拼放在一起,直线BC 整个图形面积平分,求线段AB 的长.8. 如图有两个边长都是10厘米的正方形ABCD 和A /B /C /D /,且正方形A /B /C /D /的顶点A /恰好是正方形ABCD 的中心,那么:阴影部分的面积是 平方厘米.小学几何面积问题八 姓名 1. 平行四边形ABCD 的面积是32厘米,AD=8∠B=45○,求阴影部分的面积是平方厘米.2.如图所示平行四边形ABCD 中,果阴影部分的面积为7四边形的面积是 平方厘米.3.平行四边形ABCD 已知:三角形AHB 是8平方厘米,三角形DFC 的面积是6平求阴影部分的面积是 平方厘4. 平行四边形ABCD 中有一点E ,已知,三角形ABE 的面积是73平方厘米,三角形BEC 的面积是10平方厘米。

求阴影部分三角形BED 的面积是 平方厘米.5.一个45度的直角三角板.最长边为12厘米,那么,它的面积为 平方厘米.6.如图长方形内画了一些直线,已知边上有三块面积分别为13平方厘米,35平方厘米,497.在长方形ABCD 中,DE,DF 份,即三角形ADE 的面积等于三角形DFC 形BEDF 的面积.如果这个长方形的面积是54米,那么三角形BEF 的面积是8.如图三角形ABC 是等腰直角三角形.形叠放在一起。

已知AE,EF,FB,三条线段相等.形EFD (阴影部分)面积是15平方厘米,求:S 小学几何面积问题九姓名1..已知平行四边形ABCD 的面积是18角形DEF 的面积(阴影部分)是2.在直角梯形ABCD 中AD=8厘米,DC=6厘米,BC=10厘米,且S △ADE =S △AFB =S 四AFCE 求三角形EFC 的面积为 平方厘米.DCC3.已知P 是长方形ABCD 的对角线上一点,M 为线段PC 的中点,如果三角形APB 的面积是2平方厘米,那么三角形BMC 的面积是 平方厘米.4.长方形ABCD 的面积是48平方厘米。

S △ABE =8cm 2 S △AFD =6cm 2求三角形EFC 的 面积是 平方厘米.5. 如图长方形ABCD 中,宽AD=6厘米,长DC=8厘米。

E 在DC 的延长线上,AE 交BC 于F 点,如果三角形BFE 的面积是8平方厘米。

求:阴影部分的面积是 平方厘米.6.把四边形ABCD 的各边延长一倍,得到一个大四边形A /B /C /D /,如果四边形ABCD 的面积是3平方厘米,那么大四边形A /B /C /D /的面积是 平方厘米.7.四边形ABCD 两条对角线交于E ,延长CA 到F ,使AF=AE; 延长DB 到E,使BE=DE.如果四边形ABCD 的面积是3平方厘米. 求三角形EFG 的面积为 平方厘米.8.如图△ABC 中BD=2DC,AE=2ED,如果FC=12厘米. 那么:AF= 厘米.9.如图△ABC 中,△AEF,△ABE,△EBD 的面积分别是5cm 2,10cm 2,8cm 2 求四边形EDCF 的面积是 平方厘米.小学几何面积问题十 姓名1.如图长方形ABCD 中,AB=15厘米,BC=8厘米,三角形AFD 的面积比三角形FEC 的面积大30平方厘米,求CE 的长是 厘米.2. 如图正方形ABCD 中,边长为6厘米,三角形AFD 角形FEC 的面积小6平方厘米,求CE 的长是3.如图ABCD 是长方形,AD=4厘米,AB=9厘米,阴影部分(△DEF )的面积是6平方厘米,求梯形ABED 的面积是 平方厘米. 4.如图,已知阴影部分的面积是120平方厘米,E,F 分别是AB,BC 的中点,长方形宽AB 为16厘米,那么,长方形的长AD 为 厘米.5.如图,ABCD 是梯形,BECE,AD=9厘米, BE ⊥EC ,BE=8米,EC=6厘米.求这个梯形的面积是 平方厘米. 6.长方形ABCD 中,E 为BC 的中点, 阴影部分△AFD 的面积是4平方厘米.积是 平方厘米.7.正方形ABCD 中,E 为BC 的中点,F 为DC 已知正方形边长是5厘米.则阴影部分△AGD 的面积是 平方厘米.8. 正方形ABCD 中,E 为BC 上的四等份点,F 为DC 的中点已知正方形边长是4厘米.则阴影部分△AGB 的面积是 平方厘米.。

相关文档
最新文档