小学奥数之几何蝴蝶定理问的题目
小学奥数几何篇 五大模型——蝴蝶定理(附答案)
五大模型——蝴蝶模型例1. 四边形ABCD的对角线AC与BD交于点O,如果三角形ABD1,且AO=2,DO=3,那么CO的长的面积等于三角形BCD的面积3度是DO的长度的倍例2. 如图,平行四边形ABCD的对角线交与点O点,△CEF、△OEF、△ODF、△BOE的面积依次是2、4、4和6 求:(1)△OCF 的面积;(2)求△GCE的面积例3.如图,边长为1的正方形ABCD中,BE=3EC,CF=FD,求三角形AEG的面积。
例4. 如图,边长为1的正方形ABCD的边长为10厘米,E为AD 中点,F为CE中点,G为BF中点,求三角形BDG的面积例5. 如下图,梯形ABCD的AB平行于CD,对角线AC,BD交于O,已知AOB于BOC的面积分别为25平方厘米于35平方厘米,那么梯形ABCD的面积是平方厘米例6.梯形ABCD的对角线AC与BD交与点O,已知梯形上底为2,2,求三角形AOD与且三角形ABO的面积等于三角形BOC面积的3三角形BOC的面积之比。
例7. 如下图,一个长方形一些直线分成了若干个小块,已知三角形ADG的面积是11,三角形BCH的面积是23,求四边形EGFH 的面积。
例8. 右图中ABCD是梯形,ABED是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是平方厘米例9. 如图,长方形ABCD被CE、DF分成四块,已知期中3块的面积分别为2、5、8平方厘米,那么余下的四边形OFBC的面积为平方厘米例10. 如图,正六边形面积为6,那么阴影部分面积为多少?蝴蝶模型习题1、如图,长方形ABCD中,BE:EC=2:3,DF:FC=1:2,三角形DFC面积为2平方厘米,求长方形ABCD的面积.2、梯形的下底是上底的1.5倍,三角形OBC的面积是9cm2,问三角形AOD的面积是多少?3、如图,长方形中,若三角形1的面积与三角形3的面积比为4:5,四边形2的面积为36,则三角形1的面积为4、如图,长方形ABCD中,阴影部分是直角三角形且面积为54,OD的长是16,OB的长是9,那么四边形OECD的面积是多少?5、如图,△ABC是等腰三角形,DEFG是正方形,线段AB与CD相较于K点,已知正方形DEFG的面积48,AK:KB=1:3,则△BKD的面积是多少?答案【例1】因为AO : OC =S∆ABD : S∆BDC= 1: 3 ,所以OC = 2⨯3 = 6 ,所以OC : OD = 6: 3 = 2:1.解法二:作AH ⊥BD于H ,CG ⊥BD 于G .因为S所以S ∆ABD=1S3=1S∆BCD,所以AH =1 CG ,3,∆AOD 3 ∆DOCAO =1CO ,3OC = 2⨯3 = 6 ,OC : OD = 6: 3 = 2:1.C【例2】⑴⑴BCD 的面积为2 + 4 + 4 + 6 =16 ,⑴BCO 和∆CDO 的面积都是16 ÷ 2 = 8 ,所以⑴OCF 的面积为8 - 4 = 4 ;⑴由于⑴BCO 的面积为8,⑴BOE 的面积为6,所以⑴OCE 的面积为8 - 6 = 2 ,根据蝴蝶定理,EG : FG =S∆COE : S∆COF= 2 : 4 = 1: 2所以S∆GCE : S∆GCF=EG : FG = 1: 2 ,S∆GCE =11+ 2S∆CEF=1⨯ 2 =2 .33【例3】A DFB EC 连接EF .因为BE = 2EC ,CF =FD ,所以S∆DEF = (1⨯1⨯1)S2 3 2ABCD=1S12ABCD.因为S∆AED =1S2ABCD,由蝴蝶定理,AG : GF =1 : 12 12= 6 :1 ,所以S∆AGD = 6S∆GDF=6S7∆ADF=6⨯1S74ABCD=3S14ABCD.所以S∆AGE =S∆AED-S∆AGD=1S2ABCD-3 S14ABCD=2S7ABCD=2,7【例4】A E DB C设BD 与CE 的交点为O ,连接BE 、DF .由蝴蝶定理EO : OC =S BED : S BCD ,而SBED =1S4ABCD,SBCD=1S2ABCD,所以EO : OC =SBED : SBCD= 1: 2 ,故EO =1EC .3F 为CE 中点,所以EF =1 EC ,2故EO: EF = 2: 3,FO : EO =1: 2 .由蝴蝶定理SBFD : SBED=FO : EO = 1: 2 ,所以SBFD =1S2BED=1S8ABCD,SBGD =1S2BFD=1S16ABCD=1⨯10⨯10 = 6.2516AOB BOC AOB DOC 梯形蝴蝶定理B① S 1 : S 3 C= a 2 : b 2② S : S : S : S = a 2 : b 2 : ab : ab ; 1 3 2 4 ③ S 的对应份数为(a + b )2【例 5】由梯形蝴蝶定理, S : S = a 2 : ab = 25 : 35 , 可得 a : b = 5: 7 ,再根据梯形蝴蝶定理, S : S = a 2 :b 2 = 52 : 72 = 25 : 49 , 所以S DOC = 49梯形 ABCD 的面积为25 + 35 + 35 + 49 =144【例 6】由蝴蝶定理, S AOB : S BOC = ab : b 2 = 2 : 3得a : b = 2: 3,S AOD : S BOC = a 2 : b 2 = 22 : 32 = 4 : 9O∆OCD ∆OCD【例 7】AF BDE C如图,连结 EF ,显然 ADEF 和 BCEF 都是梯形, 于是 EFG 的面积等于三角形 ADG 的面积三角形 BCH 的面积等于三角形 EFH 的面积所以四边形 EGFH 的面积是11+ 23 = 34.【例 8】A DB C连接 AE .由于 AD 与 BC 平行,所以 AECD 也是梯形,那么S ∆OCD = S ∆OAE .据蝴蝶定理, S ∆OCD ⨯ S ∆OAE = S ∆OCE ⨯ S ∆OAD = 2 ⨯ 8 = 16 故 S 2 = 16 ,所以S = 4另解:在平行四边形 ABED 中, S ∆ADE =1 S2 ABED = 1 ⨯(16 + 8) = 12 2 所以S ∆AOE = S ∆ADE - S ∆AOD = 12 - 8 = 4根据蝴蝶定理,阴影部分的面积为8⨯ 2 ÷ 4 = 4【例 9】A EBD连接 DE 、CF . EDCF 为梯形,所以S ∆EOD = S FOC , 又根据蝴蝶定理, S ∆EOD ⋅ S ∆FOC = S ∆EOF ⋅ S ∆COD 所以S ∆EOD = 4 , S ∆ECD = 4 + 8 = 12ABCD 面积为12⨯2 = 24S ∆EOD ⋅ S ∆FOC = S ∆EOF ⋅ S ∆COD = 2 ⨯ 8 = 16 ,四边形OFBC 的面积为24 - 5 - 2 -8 = 9 (平方厘米).【例 10】连接阴影图形的长对角线,此时六边形被平分为两半根据六边形的特殊性质,和梯形蝴蝶定理把六边形分为 18 份 阴影部分占了其中 8 份,所以阴影部分的面积 8 ⨯ 6 = 8 .183∆ AOD ∆ AOD ∆BOC123作业题答案1.AD FBEC连接 AE , FE .因为 BE : EC = 2: 3 , DF : FC =1: 2 ,所以S = (3 ⨯ 1 ⨯ 1)S = 1S. DEF 5 3 2长方形ABCD10 长方形ABCD 因为S= 1 S , A G : GF = 1 : 1= 5 :1,所以S = 5S = 10 平方厘米,所AED2 长方形ABCD 2 10AGD GDF 以 S = 12 平方厘米.因为S = 1S ,所以长方形 ABCD 的面积是72 平方 AFD厘米.2.AFDA D6 长方形ABCDBC根据梯形蝴蝶定理, a : b =1:1.5 = 2: 3 , S : S = a 2:b 2 = 22 : 32 = 4 : 9 , 所以S = 4(cm 2 ) .3.O 做辅助线如下:利用梯形模型,这样发现四边形 2 分成左右两边,其面积正好等于三角形 1 和三角形 3,所以 1 的面积就是36 ⨯44 + 5= 16 ,3 的面积就是 36 ⨯54 + 5= 20 .4.ADBEC因为连接 ED 知道⑴ABO 和⑴EDO 的面积相等即为54 ,又因为OD ⑴OB =16⑴9 ,所以 ⑴AOD 的面积为54 ÷ 9⨯16 = 96 ,根据四边形的对角线性质知道:⑴BEO 的面积为:54⨯54 ÷ 96 = 30.375 ,所以四边形OECD 的面积为: 54 + 96 - 30.375 =119.625 (平方厘米).5.BM C由于 DEFG 是正方形,所以 DA 与 BC 平行,那么四边形 ADBC 是梯形.在梯形ADBC 中,∆BDK 和∆ACK 的面积是相等的.而 AK : KB =1: 3 ,所以∆ACK 的面积是∆ABC 面积的 1 = 1 ,那么∆BDK 的面积也是∆ABC 面积的 1.1+ 3 4 4由于∆ABC 是等腰直角三角形,如果过 A 作 BC 的垂线,M 为垂足,那么 M 是BC 的中点,而且 AM = DE ,可见∆ABM 和∆ACM 的面积都等于正方形 DEFG 面积的一半,所以∆ABC 的面积与正方形 DEFG 的面积相等,为 48. 那么∆BDK 的面积为48⨯ 1= 12 .4。
小学奥数-几何五大模型(蝴蝶模型)..
模型三 蝴蝶模型(任意四边形模型)任意四边形中的比例关系(“蝴蝶定理”):S 4S 3S 2S 1O DCBA①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。
通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。
【例 1】 (小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米?ODCBA【分析】 根据蝴蝶定理求得312 1.5AOD S =⨯÷=△平方千米,公园四边形ABCD 的面积是123 1.57.5+++=平方千米,所以人工湖的面积是7.5 6.920.58-=平方千米【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的面积;⑵:AG GC =?任意四边形、梯形与相似模型B【解析】 ⑴根据蝴蝶定理,123BGC S ⨯=⨯V ,那么6BGC S =V ;⑵根据蝴蝶定理,()():12:361:3AG GC =++=. (???)【例 2】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。
如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍。
AB C DOH GA BC D O【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。
小学奥数几何模型 之 蝴蝶模型 例题+作业 带答案
小学几何模型之蝴蝶模型准备练习梯形中的蝴蝶模型梯形的两个翅膀相等。
左=右例题1如图:在梯形ABCD中,AD平行于BC,对角线AC和BD相交于点O。
已知三角形AOD 与三角形DOC的面积分别是16平方厘米与24平方厘米,求梯形ABCD的面积。
△AOB的面积为24cm2△BOC的面积:24×24÷16=36(cm2)梯形ABCD的面积:16+24+24+36=100(cm2)练习1如图:在梯形ABCD中,AD平行于BC,对角线AC和BD相交于点O。
已知三角形DOC 与三角形BOC的面积分别是35平方厘米与49平方厘米,求三角形AOD的面积。
△AOB的面积为35平方厘米△AOD的面积:35×35÷49=25(cm2)例题2如图:长方形ABCD被一些直线分成了若干部分。
已知三角形ADG的面积是7平方厘米,三角形BCH的面积是9平方厘米,求四边形EGFH的面积。
连接EF四边形EGFH的面积:7+9=16(cm2)练习2如图:长方形ABCD被一些直线分成了若干部分。
已知三角形ADG的面积是24平方厘米,三角形BHC的面积是17平方厘米,求四边形GEHF的面积。
连接EF四边形EGFH的面积:24+17=41(cm2)风筝模型例题3如图:一个不规则四边形被两条对角线分成四个小三角形。
已知其中三个小三角形的面积,求三角形CDG的面积。
△CDG的面积:3×8÷4=6(cm2)练习3如图:一个不规则四边形被两条对角线分成四个小三角形。
已知其中三个小三角形的面积,求三角形ABG的面积。
△ABG的面积:8×6÷12=4(cm2)例题4如图:四边形ABCD的对角线AC和BD相交于点O。
已知三角形ABD的面积是30平方厘米,三角形ABC的面积是48平方厘米,三角形BCD的面积是50平方厘米,求三角形BOC的面积。
OC:OA=50:30=5:3△BOC和△AOB是等高模型面积比为5:3△BOC的面积为:48÷(5+3)×5=30(cm2)练习4如图:一个园林形状如四边形ABCD,现测得三角形BCD的面积是25公顷,三角形ABC 的面积是24公顷,三角形ABD的面积是15公顷。
几何中的蝴蝶定理
几何中的蝴蝶定理1. 哎呀,今天咱们来聊一个特别有意思的几何定理,叫蝴蝶定理!说实话,光听这名字就觉得美滋滋的,像是在数学花园里看见了一只翩翩起舞的蝴蝶。
2. 这个定理说的是啥呢?想象一下,在一个圆里面,画了两条相交的弦,就像蝴蝶的两个翅膀一样交叉在一起。
这时候就神奇了!3. 这两条弦交叉的那个点,把每条弦都分成了两段。
要是把这四段线段相乘,你猜怎么着?两组乘积居然完全相等!这就跟变魔术一样神奇。
4. 打个比方啊,假如咱们画了两条弦,一条被分成3厘米和5厘米两段,另一条被分成4厘米和3.75厘米两段。
你用计算器算算:3×5=15,4×3.75=15,这不就神了吗?5. 有的同学可能要问了:这定理咋这么像蝴蝶呢?你仔细看啊,两条相交的弦就像蝴蝶的翅膀,交点就像蝴蝶的身体,这不是活脱脱一只几何蝴蝶嘛!6. 这个定理还有个特别实用的地方。
要是你在做几何题时遇到圆里面有两条相交的弦,立马就能用上这个定理,分分钟解出来!7. 说到证明过程,其实也不难。
就像是把蝴蝶的翅膀折来折去,用相似三角形就能证明。
不过今天咱们主要是理解这个定理的妙处,就不钻牛角尖啦!8. 这个定理还告诉我们一个道理:看似不相关的东西,其实暗藏玄机。
就像蝴蝶翅膀上看似随意的花纹,背后却藏着严谨的数学规律。
9. 在实际应用中,蝴蝶定理经常和其他定理一起使用。
比如说和圆幂定理搭配,简直就是几何题的双保险!解题的时候,就像蝴蝶飞舞一样轻松自如。
10. 有意思的是,这个定理还能推广到更复杂的情况。
要是在圆里面画更多的弦,它们相交的点也会形成一些有趣的规律,就像一群蝴蝶在跳舞。
11. 学习数学最重要的就是找到乐趣。
蝴蝶定理就是个很好的例子,它把枯燥的几何变成了生动的图画,让人感受到数学之美。
12. 所以啊,下次你看到蝴蝶,别光顾着欣赏它的美丽,也想想它身上藏着的数学奥秘。
这不就是数学最迷人的地方吗?它把大自然的美和严谨的逻辑完美地结合在了一起!。
小学的奥数-几何五大模型(蝴蝶模型)
模型三 蝴蝶模型(任意四边形模型)任意四边形中的比例关系(“蝴蝶定理”):S 4S 3S 2S 1O DCBA①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。
通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。
【例 1】 (小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米?ODCBA【分析】 根据蝴蝶定理求得312 1.5AOD S =⨯÷=△平方千米,公园四边形ABCD 的面积是123 1.57.5+++=平方千米,所以人工湖的面积是7.5 6.920.58-=平方千米【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的面积;⑵:AG GC =?任意四边形、梯形与相似模型B【解析】 ⑴根据蝴蝶定理,123BGC S ⨯=⨯V ,那么6BGC S =V ;⑵根据蝴蝶定理,()():12:361:3AG GC =++=. (???)【例 2】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。
如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍。
AB C DOH GA BC D O【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。
小学蝴蝶定理试题及答案
小学蝴蝶定理试题及答案本文提供一系列小学蝴蝶定理试题及其答案,帮助小学生们更好地理解和应用这一定理。
蝴蝶定理是数学中的一个重要概念,它通过图形的平移和旋转变换,将抽象的数学概念与具体的图像进行了有机结合,为小学生们的数学学习提供了更直观的认知方式。
以下是一些相关的试题和详细的答案解析讲解。
题目一:请根据给定的图形判断蝴蝶定理中所学的几何变换类型。
A. 平移变换B. 旋转变换C. 缩放变换D. 对称变换答案一:B. 旋转变换解析一:根据题目中的图形,我们可以很明显地看到图形发生了旋转变换。
蝴蝶定理中的旋转变换是指将图形围绕一个中心点旋转一定角度,使得图形保持形状不变。
因此,选项B是正确答案。
题目二:将下列图形中的一个蝴蝶图形进行平移变换,使得其与另一个蝴蝶图形重合。
A. (图形A)B. (图形B)C. (图形C)D. (图形D)答案二:C. (图形C)解析二:根据题目要求,我们需要找到一个图形进行平移变换,使得其与另一个图形重合。
通过观察,我们可以发现图形C和图形B是相同的,只是位置不同。
因此,我们可以将图形C进行平移变换,使其与图形B重合。
因此,选项C是正确答案。
题目三:根据给定的图形,选择下列四个图形中提示的变换类型。
A. 平移变换B. 旋转变换C. 缩放变换D. 对称变换答案三:A. 平移变换解析三:根据题目中的图形,我们可以看到图形发生了整体性的水平平移。
蝴蝶定理中的平移变换是指将图形沿着平行于坐标轴的方向上进行移动,图形的形状和大小不发生改变。
因此,选项A是正确答案。
题目四:根据给定的图形,选择下列四个图形中提示的变换类型。
A. 平移变换B. 旋转变换C. 缩放变换D. 对称变换答案四:D. 对称变换解析四:根据题目中的图形,我们可以看到图形发生了关于直线对称的变换。
蝴蝶定理中的对称变换是指通过一个直线将图形分为两部分,分别关于该直线对称。
因此,选项D是正确答案。
结语:通过以上试题和答案解析,我们希望帮助小学生们更好地理解和应用蝴蝶定理。
小学奥数几何篇五大模型蝴蝶定理(附答案)
小学奥数几何篇五大模型蝴蝶定理(附答案)在小学奥数的几何部分,蝴蝶定理是一个非常有用的工具,它可以帮助我们解决一些复杂的几何问题。
蝴蝶定理主要描述了在四边形中,当两条对角线互相垂直时,四边形被分成四个小三角形,而这四个小三角形的面积之间存在一定的关系。
蝴蝶定理的内容如下:设四边形ABCD中,AC和BD是互相垂直的对角线,交于点O。
设四个小三角形的面积分别为S1、S2、S3、S4。
那么,蝴蝶定理可以表述为:S1 + S2 = S3 + S4。
这个定理听起来可能有些抽象,但实际上它的应用非常广泛。
我们可以通过蝴蝶定理来解决一些看似复杂的问题。
下面,我将通过一些例子来展示蝴蝶定理的应用。
例1:在四边形ABCD中,AC和BD是互相垂直的对角线,且AC =8cm,BD = 6cm。
如果三角形ABC的面积是24cm²,那么三角形ADC的面积是多少?解答:根据蝴蝶定理,我们有S1 + S2 = S3 + S4。
由于三角形ABC的面积是24cm²,所以S1 = 24cm²。
又因为AC = 8cm,BD = 6cm,我们可以计算出三角形ADC的面积S3 = 1/2 AC BD = 1/2 8cm6cm = 24cm²。
因此,三角形ADC的面积也是24cm²。
例2:在四边形ABCD中,AC和BD是互相垂直的对角线,且AC = 10cm,BD = 5cm。
如果三角形ABC的面积是20cm²,那么三角形ADC的面积是多少?解答:同样地,根据蝴蝶定理,我们有S1 + S2 = S3 + S4。
由于三角形ABC的面积是20cm²,所以S1 = 20cm²。
又因为AC = 10cm,BD = 5cm,我们可以计算出三角形ADC的面积S3 = 1/2 AC BD = 1/2 10cm 5cm = 25cm²。
因此,三角形ADC的面积是25cm²。
小学奥数几何五大模型蝴蝶模型
模型三 蝴蝶模型(任意四边形模型)任意四边形中的比例关系(“蝴蝶定理”): ①1243::S S S S =或者1324S S S S ⨯=⨯ ②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。
通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。
【例 1】 (小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米?【分析】 根据蝴蝶定理求得312 1.5AOD S =⨯÷=△平方千米,公园四边形ABCD 的面积是123 1.57.5+++=平方千米,所以人工湖的面积是7.5 6.920.58-=平方千米【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的面积;⑵:AG GC =?【解析】 ⑴根据蝴蝶定理,123BGC S ⨯=⨯V ,那么6BGC S =V ;⑵根据蝴蝶定理,()():12:361:3AG GC =++=. (???)【例 2】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。
如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍。
【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。
看到题目中给出条件:1:3ABD BCD S S =V V ,这可以向模型一蝴蝶定理靠拢,于是得出一种解法。
小学奥数几何篇五大模型蝴蝶定理(附答案)
小学奥数几何篇五大模型蝴蝶定理一、蝴蝶定理的定义与公式蝴蝶定理是小学奥数几何篇中的一个重要模型,它描述了在等腰三角形中,一条平行于底边的线段将底边平分,并且这条线段与等腰三角形的两腰相交于同一点时,该线段的中点与等腰三角形的顶点、底边的中点以及两腰上的交点形成一个等腰三角形。
蝴蝶定理的公式如下:设等腰三角形ABC中,AB=AC,底边BC的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,则AG=BG=CG。
二、蝴蝶定理的应用1. 在等腰三角形中求边长:通过蝴蝶定理,可以快速求出等腰三角形中未知边的长度。
例如,已知等腰三角形ABC中,AB=AC,底边BC 的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,求AG的长度。
解答:根据蝴蝶定理,AG=BG=CG,又因为AB=AC,所以AG=AB/2=a。
2. 在等腰三角形中求角度:通过蝴蝶定理,可以求出等腰三角形中未知角的度数。
例如,已知等腰三角形ABC中,AB=AC,底边BC的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,求∠AGB的度数。
解答:由于AG=BG=CG,所以△AGB是等边三角形,∠AGB=60°。
3. 在等腰三角形中求面积:通过蝴蝶定理,可以求出等腰三角形中未知部分的面积。
例如,已知等腰三角形ABC中,AB=AC,底边BC的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,求△AGB的面积。
解答:由于△AGB是等边三角形,所以△AGB的面积=(a^2 √3)/ 4。
小学奥数-蝴蝶定理-知识点+例题+练习-(分类全面)
B甲C
乙
D
5、正方形 ABCD 和正方形 CEFG,且正方形 ABCD 边长为 8 厘米,则图中阴影(三角形 BDF)部 分的面积为多少平方厘米?
A
D
G
F
B
C
E
7
8
A DE
B
C
F
例 8、如图,四边形 ABCD 是直角梯形,AB=4 厘米,AD=6 厘米,DE=3 厘米,那么三角形 BOC 的面积是多少平方厘米?
A
B
O
C
D
E
5
巩固、如图,四边形 ABCD 是直角梯形,AB=8 厘米,BF=6 厘米,EF 平行于 AB,求三角形 CED 的面积是多少平方厘米?
A
C
2、
即 S =S △ADO △BCO
在任意四边形 ABCD 中,对角线 AC、BD 分成了四个三角形(如图),
这四个三角形的面积分别记为:S1 、S2 、S3S3 O
S2
S4
D
C
则它们的关系是:
S1×S4 =S2×S3 即相对的两个三角形的面积乘积是相等的。
1
例 1、如图,梯形的两条对角线分梯形为四个小三角形,已知△AOD 的面积是 3 平方厘米,△ DOC 的面积是 9 平方厘米,梯形 ABCD 的面积是多少平方厘米?
C
B O
A
D
6
3、如图,BD,CF 将长方形 ABCD 分成 4 块,红色三角形面积是 4 平方厘米,黄色三角形 面积是 6 平方厘米,则绿色四边形的面积是多少平方厘米?
A
F 红
D
绿E
黄
B
C
4、如图,甲、乙两图形都是正方形,它们的边长分别是 10 厘米和 12 厘米,求阴影部分的面 积。
小学奥数之几何蝴蝶定理问答
几何之蝴蝶定理一、 基本知识点定理1:同一三角形中,两个三角形的高相等,则面积之比 等于对应底边之比。
S 1 : S 2 = a : b定理2:等分点结论( 鸟头定理)如图,三角形△AED 的面积占三角形△ABC 的面积的2034153=⨯定理3:任意四边形中的比例关系( 蝴蝶定理)1) S 1∶S 2 =S 4∶S 3 或 S 1×S 3 = S 2×S 4上、下部分的面积之积等于左、右部分的面积之积2)AO ∶OC = (S 1+S 2)∶(S 4+S 3)梯形中的比例关系( 梯形蝴蝶定理)1)S 1∶S 3 =a 2∶b 2上、下部分的面积比等于上、下边的平方比2)左、右部分的面积相等3)S 1∶S 3∶S 2∶S 4 =a 2∶b 2 ∶ab ∶ab4)S 的对应份数为(a+b )2定理4:相似三角形性质CFEADBCBEFDA1)HhC c B b A a ===2) S 1 ∶S 2 = a 2 ∶A 2定理5:燕尾定理S △ABE ∶ S △AEC = S △BGE ∶ S △GEC = BE ∶ECS △BGA ∶ S △BGC = S △AGF ∶ S △GFC = AF ∶FCS △ADC ∶ S △DCB = S △ADG ∶ S △DGB = AD ∶DB二、 例题例1、如图,AD DB =,AE EF FC ==,已知阴影部分面积为5平方厘米,ABC 的面积是多少平方厘米?例2、有一个三角形ABC 的面积为1,如图,且12AD AB =,13BE BC =,14CF CA =,求三角形DEF 的面积.例3、如图,在三角形ABC 中,,D 为BC 的中点,E 为AB 上的一点,且BE=13AB,已知四边形EDCA 的面积是35,求三角形ABC 的面积.例4如图,ABCD是直角梯形,求阴影部分的面积和。
(单位:厘米)例5、两条对角线把梯形ABCD分割成四个三角形。
小学奥数蝴蝶定理
蝴蝶定理
1.如图,梯形ABCD 的上底AD 长为3厘米,下底BC 长为9厘米,而三角形ABO 的面积为12平方厘米.则梯形ABCD 的面积为___________平方厘米.
2.如图,在梯形ABCD 中,三角形ABO 的面积是6平方厘米,且BC 的长是AD 的2倍。
请问:梯形ABCD 的面积是____________平方厘米。
3.如图,是一块长方形耕地,它由四个小长方形拼合而成,其中三个小长方形的面积分别为15,18,30公顷,则图中阴影部分面积是_____________.
30
18
15
d
c b a A D
O
C
B
4.下图中四边形ABCD 的对角线AC 和BD 交于点O ,如果三角形ABD 的面积是30平方厘米,三角形ABC 的面积是48平方厘米,三角形BCD 的面积是50平方厘米.那么三角形BOC 的面积是___________.
5.如图,BD ,CF 将长方形ABCD 分成4块,红色三角形面积是4平方厘米,黄色三角形面积是6平方厘米.则绿色四边形面积是__________平方厘米.
A B F
C
6.如右图所示,平行四边形ABCD 面积是12,1
3DE AD
,AC 与BE 的交点为F ,则图中阴影部分面积是__________。
7。
如图,长方形ABCD 中,阴影部分是直角三角形且面积为54,OD 的长是16,OB 的长是9. 那么四边形OECD 的面积是___________。
8.如图,一个边长为6分米的正方形,O 点是正方形的中心(两条对角线的交点),AB 的长是4分米,则阴影部分的面积是__________平方分米。
F A D E。
蝴蝶原理数学试题及答案
蝴蝶原理数学试题及答案一、选择题1. 蝴蝶定理描述的是关于三角形的哪两个部分的关系?A. 三角形的外接圆B. 三角形的内切圆C. 三角形的中线D. 三角形的角平分线答案:C2. 蝴蝶定理指出,如果三角形ABC中的点D和点E分别是边AB和AC 上的点,那么下列哪个等式成立?A. AD = DEB. AE = BDC. AD/DB = AE/ECD. AD/AE = BD/EC答案:D二、填空题3. 根据蝴蝶定理,如果点D和点E在三角形ABC的边AB和AC上,且满足条件______,则DE平行于BC。
答案:AD/AE = BD/EC4. 若三角形ABC中,点D和点E分别在边AB和AC上,且DE平行于BC,那么根据蝴蝶定理,我们可以得到______。
答案:AD/DB = AE/EC三、简答题5. 简述蝴蝶定理的主要内容。
答案:蝴蝶定理主要描述了在三角形ABC中,如果点D和点E分别在边AB和AC上,且DE平行于BC,那么AD/DB等于AE/EC,即线段AD与BD的比等于线段AE与EC的比。
四、计算题6. 在三角形ABC中,已知AB=5,AC=7,点D和点E分别在边AB和AC 上,且DE平行于BC。
如果AD=3,求DE的长度。
答案:根据蝴蝶定理,我们有AD/DB = AE/EC。
设DE的长度为x,DB 的长度为5-AD=2,EC的长度为7-AE=7-(5-2)=4。
因为DE平行于BC,所以AD/DB = DE/BC。
将已知数值代入,得到3/2 = x/(5+7),解得x = 21/6 = 3.5。
五、证明题7. 证明:在三角形ABC中,如果点D和点E分别在边AB和AC上,且DE平行于BC,那么三角形ADE和三角形CDE的面积相等。
答案:证明:设三角形ABC的面积为S,根据蝴蝶定理,我们有AD/DB = AE/EC。
由于DE平行于BC,我们可以得出三角形ADE和三角形CDE 的高相等。
设这个高为h,那么三角形ADE的面积为(1/2) * AD * h,三角形CDE的面积为(1/2) * CD * h。
蝴蝶定理相关题型
蝴蝶定理相关题型
蝴蝶定理相关的题型有:
1. 在四边形ABCD中,AB//DC,AC平分∠BAD,∠B=24°,则∠D=()。
A. 24°
B. 48°
C. 30°
D. 36°
答案:B。
解析:根据AC平分∠BAD,得∠BAC=∠DAC。
因为四边形ABCD 是平行四边形,所以内角相等且互补,所以∠ABC+∠ADC=180°。
又因为∠B=24°,所以∠DAC=24°。
在三角形ACD中,外角等于两内角之和,所以∠D=∠BAC+∠DAC=24°+24°=48°。
2. 在梯形ABCD中,AD//BC,对角线AC、BD交于点O,若S△AOD=S△DOC=4cm²,则梯形ABCD的面积是()cm²。
A. 8
B. 16
C. 32
D. 64
答案:C。
解析:因为AD//BC,所以△AOD和△DOC相似。
因为面积比等于边长比的平方,所以AD:BC=1:2。
过点D作DE//AC交BC于点E,则四边形ACED是平行四边形,所以DE=AC,CE=AD。
设梯形的高为h,根据勾股定理可得到CE=AD= ,因为△COD的面积为4,所以。
设梯形的面积为S,根据蝴蝶定理有S△AOD:S△DOC:S△BOC=1:1:4,所以S△BOC的面积为16cm²,所以梯形的面积为32cm ²。
以上就是蝴蝶定理相关的题型,希望对解决您的问题有所帮助。
蝴蝶原理公式练习题
蝴蝶原理公式练习题蝴蝶原理是指在混沌理论中常提到的一个现象,即一个微小的初始条件可能会引起一个巨大的影响。
这个原理在自然界和社会系统中都有广泛的应用。
在物理学和数学领域,蝴蝶原理可以通过一些数学模型和方程来描述。
接下来,我们将通过一些公式练习题来深入了解蝴蝶原理。
1. 题目一假设有一只蝴蝶在巴西翅膀拍动,其效应可能会引起美国得克萨斯州一场龙卷风,使用蝴蝶效应中的公式来计算这个问题的可能性。
解答:蝴蝶效应中的公式可以表示为:Δx = a * ΔX + b * ΔY + c * ΔZ其中,Δx是系统变量的变化,ΔX、ΔY、ΔZ分别是三个微小因素的变化量,a、b、c为权重系数。
2. 题目二一只蝴蝶在一个封闭的房间内拍动了几下翅膀,这对室外的天气有哪些可能的影响?请用蝴蝶原理中的公式来解答。
解答:蝴蝶效应中的公式表示了微小因素的变化对系统的影响,因此从一个封闭房间内拍动蝴蝶翅膀对室外天气可能会产生微小的变化。
这个微小的变化可能通过复杂的气象系统最终导致不可预测的天气变化,比如可能会引发一场意外的暴雨或者突然的阳光明媚。
3. 题目三蝴蝶原理是否可以应用于经济领域?如果可以,请举例说明。
解答:蝴蝶原理可以应用于经济领域。
在经济系统中,一个微小的变化可能会引起整个系统的动荡。
例如,一个微小的经济政策调整可能会导致市场波动,甚至引发整个经济体系的崩溃。
蝴蝶效应的思想也可以应用于股票市场和金融投资中。
一个微小的交易决策可能会引发连锁反应,对整个市场产生巨大的影响。
4. 题目四请简述蝴蝶原理对气象预测的影响。
解答:蝴蝶原理对气象预测有重要的影响。
由于气候系统的复杂性,微小的初始条件可能会在一段时间后引起天气的巨大变化。
虽然现代气象学通过模型和计算来进行精确的预测,但由于蝴蝶原理的存在,气象预测始终有一定的不确定性。
一个微小的测量误差或者初始条件的微小变化可能会导致预测结果的巨大偏差,这也是为什么气象预报经常存在一定程度的误差的原因之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何之蝴蝶定理
一、 基本知识点
定理1:同一三角形中,两个三角形的高相等,则面积之比 等于对应底边之比。
S 1 : S 2 = a : b
定理2:等分点结论( 鸟头定理)
如图,三角形△AED 的面积占三角形△ABC 的面积的 20
3
4153=
⨯
定理3:任意四边形中的比例关系( 蝴蝶定理)
1) S 1∶S 2 =S 4∶S 3 或 S 1×S 3 = S 2×S 4
上、下部分的面积之积等于左、右部分的面积之积
2)AO ∶OC = (S 1+S 2)∶(S 4+S 3)
梯形中的比例关系( 梯形蝴蝶定理)
1)S 1∶S 3 =a 2∶b 2
上、下部分的面积比等于上、下边的平方比
2)左、右部分的面积相等
3)S 1∶S 3∶S 2∶S 4 =a 2∶b 2 ∶ab ∶ab
4)S 的对应份数为(a+b )2
定理4:相似三角形性质
1) H
h
C c B b A a ===
2) S 1 ∶S 2 = a 2 ∶A 2
C
F
E
A
D
B
C
B
E F
D
A
定理5:燕尾定理
S △ABE ∶ S △AEC = S △BGE ∶ S △GEC = BE ∶EC
S △BGA ∶ S △BGC = S △AGF ∶ S △GFC = AF ∶FC
S △ADC ∶ S △DCB = S △ADG ∶ S △DGB = AD ∶DB
二、 例题
例1、如图,AD DB =,AE EF FC ==,已知阴影部分面积为5平方厘米,ABC 的面积是多少平方厘米?
例2、有一个三角形ABC 的面积为1,如图,且12AD AB =,13BE BC =,1
4
CF CA =,求三角形DEF 的面积.
例3、如图,在三角形ABC 中,,D 为BC 的中点,E 为35,
AB 上的一点,且BE=
1
3
AB,已知四边形EDCA 的面积是
求三角形ABC的面积.
例4如图,ABCD是直角梯形,求阴影部分的面积和。
(单位:厘米)
例5、两条对角线把梯形ABCD分割成四个三角形。
已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?(单位:平方厘米)
例6、如下图,图中BO=2DO,阴影部分的面积是4平方厘米,求梯形ABCD的面积是多少平方厘米?
例7、(小数报竞赛活动试题)
如图,某公园的外轮廓是四边形ABCD,被对角线AC、BD分成四个部分,△AOB
面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园陆地的面积是6.92平方千米,求人工湖的面积是多少平方千米?
例8、如图:在梯形ABCD 中,三角形AOD 的面积为9平方厘米,三角形BOC 的面积为25平方厘米,求梯形ABCD 的面积。
25
9O D
C
B
A
例9、(2003北京市第十九届小学生“迎春杯”数学竞赛)
四边形ABCD 的对角线AC 与BD 交于点O (如图)所示。
如果三角形ABD 的面积等于三角形BCD 的面积的
1
3
,且 2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍。
D
A
O
C
例10、左下图所示的ABCD的边BC长10cm,直角三角形BCE的直角边EC长8cm,已知两块阴影部分的面积和比△EFG的面积大10cm2,求CF的长。
例11、长方形ABCD的面积为36平方厘米,E、F、G分别为边AB、BC、CD的中点,H为AD边上的任一点。
求图中阴影部分的面积是多少?
例12、如图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米,求阴影
部分的面积。
例13、如图,大正方形ABCD 的边长为6,依以下条件求三角形BDF 的面积。
例14、如下图,已知D 是BC 的中点,E 是CD 的中点,F 是AC 的中点,且ADG ∆的面
积比EFG ∆的面积大6平方厘米。
?的面积是多少平方厘米
ABC ∆ A
B
C
D
E
F G
三、 练习题
1、如图,四边形ABCD 中,AC 和BD 相交于O 点,三角形ADO 的面积=5,三角形DOC 的面积=4,三角形AOB 的面积=15,求三角形BOC 的面积是多少?
2、如图所示,BD ,CF 将长方形ABCD 分成4块,△DEF 的面积是4 cm 2,△CED 的面积6cm 2。
问:四边形ABEF 的面积是多少平方厘米?
3、如右图BE=
3
1BC ,CD=4
1
AC ,那么三角形AED 的面积是三角形ABC 面积的______.
D
E
C
B
A
5、如图所示,已知ABCD 是长方形,AE : ED = CF : FD = 1 : 2,三角形DEF 的面积是16平方厘米,求三角形ABE 的面积是多少平方厘米?
6、 如右图,ABCD 是梯形,ABED 是平行四边形,己知三角面积如下图所示(单位:平方
厘米),阴影部分的面积是多少平方厘米。
7、正方形ABFD 的面积为100平方厘米,直角三角形ABC 的面积,比直角三角形(CDE 的面积大30平方厘米,求DE 的长是多
少?
8、 已知ABC ∆中,12AB AC cm ==,ABC ∆的面积是
2cm ,P 是BC 上任意一点,P 到
AB ,AC 的距离是,x y ,那么x y += ;
2
16
8D
B
A
9、如右图所示,已知三角形ABC面积为1,延长AB至D,使BD=AB;延长BC至E,使CE=2BC;延长CA至F,使AF=3AC,求三角形DEF的面积。