浙江省杭州市2016-2017学年高二下学期期末教学质量检测数学试题
中学2016-2017学年高二下期末考试数学试卷含解析
![中学2016-2017学年高二下期末考试数学试卷含解析](https://img.taocdn.com/s3/m/55a14cce28ea81c758f57844.png)
2016学年第二学期高二数学期末考试一、填空题(本大题满分54分)本大题共有12题,其中第1题至第6题每小题4分,第7题至第12题每小题5分,考生应在答题纸上相应编号的空格内直接填写结果,否则一律得零分.1. 的展开式中项的系数为______.【答案】【解析】的展开式的通项公式为,令,求得,可得展开式中项的系数为,故答案为10.2. 已知直线经过点且方向向量为,则原点到直线的距离为______.【答案】1【解析】直线的方向向量为,所以直线的斜率为,直线方程为,由点到直线的距离可知,故答案为1.3. 已知全集,集合,,若,则实数的值为___________.【答案】2【解析】试题分析:由题意,则,由得,解得.考点:集合的运算.4. 若变量满足约束条件则的最小值为_________.【答案】【解析】由约束条件作出可行域如图,联立,解得,化目标函数,得,由图可知,当直线过点时,直线在y轴上的截距最小,有最小值为,故答案为. 点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5. 直线上与点的距离等于的点的坐标是_____________.【答案】或.【解析】解:因为直线上与点的距离等于的点的坐标是和6. 某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则这名学生在上学路上到第二个路口时第一次遇到红灯的概率是_______.【答案】【解析】设“这名学生在上学路上到第二个路口首次遇到红灯”为事件,则所求概率为,故答案为.7. 某学校随机抽取名学生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是,样本数据分组为,,,,.则该校学生上学所需时间的均值估计为______________.(精确到分钟).【答案】34................点睛:本题考查频率分布直方图,解题的关键是理解直方图中各个小矩形的面积的意义及各个小矩形的面积和为1,本题考查了识图的能力;根据直方图求平均值的公式,各个小矩形的面积乘以相应组距的中点的值,将它们相加即可得到平均值.8. 一个口袋内有4个不同的红球,6个不同的白球,若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种________.【答案】186【解析】试题分析:设取红球个,白球个,则考点:古典概型.9. 如图,三棱锥满足:,,,,则该三棱锥的体积V的取值范围是______.【答案】【解析】由于平面,,在中,,要使面积最大,只需,的最大值为,的最大值为,该三棱锥的体积V的取值范围是.10. 是双曲线的右支上一点,分别是圆和上的点,则的最大值等于_________.【答案】9【解析】试题分析:两个圆心正好是双曲线的焦点,,,再根据双曲线的定义得的最大值为.考点:双曲线的定义,距离的最值问题.11. 棱长为1的正方体及其内部一动点,集合,则集合构成的几何体表面积为___________.【答案】【解析】试题分析:.考点:几何体的表面积.12. 在直角坐标平面中,已知两定点与位于动直线的同侧,设集合点与点到直线的距离之差等于,,记,.则由中的所有点所组成的图形的面积是_______________.【答案】【解析】过与分别作直线的垂线,垂足分别为,,则由题意值,即,∴三角形为正三角形,边长为,正三角形的高为,且,∴集合对应的轨迹为线段的上方部分,对应的区域为半径为1的单位圆内部,根据的定义可知,中的所有点所组成的图形为图形阴影部分.∴阴影部分的面积为,故答案为.二、选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13. 已知为实数,若复数是纯虚数,则的虚部为()A. 2B. 0C. -2D. -2【答案】C【解析】∵复数是纯虚数,∴,化为,解得,∴,∴,∴的虚部为,故选C.14. 已知条件:“直线在两条坐标轴上的截距相等”,条件:“直线的斜率等于”,则是的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】B【解析】当直线过原点时,直线在两条坐标轴上的截距相等,斜率可以为任意数,故不成立;当直线的斜率等于,可设直线方程为,故其在两坐标轴上的截距均为,故可得成立,则是的必要非充分条件,故选B.15. 如图,在空间直角坐标系中,已知直三棱柱的顶点在轴上,平行于轴,侧棱平行于轴.当顶点在轴正半轴上运动时,以下关于此直三棱柱三视图的表述正确的是()A. 该三棱柱主视图的投影不发生变化;B. 该三棱柱左视图的投影不发生变化;C. 该三棱柱俯视图的投影不发生变化;D. 该三棱柱三个视图的投影都不发生变化.【答案】B【解析】A、该三棱柱主视图的长度是或者在轴上的投影,随点得运动发生变化,故错误;B、设是z轴上一点,且,则该三棱柱左视图就是矩形,图形不变.故正确;C、该三棱柱俯视图就是,随点得运动发生变化,故错误.D、与矛盾.故错误;故选B.点睛:本题考查几何体的三视图,借助于空间直角坐标系.本题是一个比较好的题目,考查的知识点比较全,但是又是最基础的知识点;从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,根据图中C点对三棱柱的结构影响进一步判断.16. 如图,两个椭圆,内部重叠区域的边界记为曲线,是曲线上任意一点,给出下列三个判断:①到、、、四点的距离之和为定值;②曲线关于直线、均对称;③曲线所围区域面积必小于.上述判断中正确命题的个数为()A. 0个B. 1个C. 2个D. 3个【答案】C【解析】对于①,若点在椭圆上,到、两点的距离之和为定值、到、两点的距离之和不为定值,故错;对于②,两个椭圆,关于直线、均对称,曲线关于直线、均对称,故正确;对于③,曲线所围区域在边长为6的正方形内部,所以面积必小于36,故正确;故选C.三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17. 已知复数满足,(其中是虚数单位),若,求的取值范围.【答案】或【解析】试题分析:化简复数为分式的形式,利用复数同乘分母的共轭复数,化简为的形式即可得到,根据模长之间的关系,得到关于的不等式,解出的范围.试题解析:,,即,解得或18. 如图,直四棱柱底面直角梯形,,,是棱上一点,,,,,.(1)求异面直线与所成的角;(2)求证:平面.【答案】(1)(2)见解析【解析】试题分析:(1)本题中由于有两两垂直,因此在求异面直线所成角时,可以通过建立空间直角坐标系,利用向量的夹角求出所求角;(2)同(1)我们可以用向量法证明线线垂直,以证明线面垂直,,,,易得当然我们也可直线用几何法证明线面垂直,首先,这由已知可直接得到,而证明可在直角梯形通过计算利用勾股定理证明,,,因此,得证.(1)以原点,、、分别为轴、轴、轴建立空间直角坐标系.则,,,. 3分于是,,,异面直线与所成的角的大小等于. 6分(2)过作交于,在中,,,则,,,,10分,.又,平面. 12分考点:(1)异面直线所成的角;(2)线面垂直.19. 如图,圆锥的顶点为,底面圆心为,线段和线段都是底面圆的直径,且直线与直线的夹角为,已知,.(1)求该圆锥的体积;(2)求证:直线平行于平面,并求直线到平面的距离.【答案】(1)(2)【解析】试题分析:(1)利用圆锥的体积公式求该圆锥的体积;(2)由对称性得,即可证明直线平行于平面,到平面的距离即直线到平面的距离,由,求出直线到平面的距离.试题解析:(1)设圆锥的高为,底面半径为,则,,∴圆锥的体积;(2)证明:由对称性得,∵不在平面,平面,∴平面,∴C到平面的距离即直线到平面的距离,设到平面的距离为,则由,得,可得,∴,∴直线到平面的距离为.20. 阅读:已知,,求的最小值.解法如下:,当且仅当,即时取到等号,则的最小值为.应用上述解法,求解下列问题:(1)已知,,求的最小值;(2)已知,求函数的最小值;(3)已知正数,,求证:.【答案】(1)9(2)18(3)见解析【解析】试题分析:本题关键是阅读给定的材料,弄懂弄清给定材料提供的方法(“1”的代换),并加以运用.主要就是,展开后就可应用基本不等式求得最值.(1);(2)虽然没有已知的“1”,但观察求值式子的分母,可以凑配出“1”:,因此有,展开后即可应用基本不等式;(3)观察求证式的分母,结合已知有,因此有此式中关键是凑配出基本不等式所需要的两项,如与合并相加利用基本不等式有,从而最终得出.(1),2分而,当且仅当时取到等号,则,即的最小值为. 5分(2),7分而,,当且仅当,即时取到等号,则,所以函数的最小值为. 10分(3)当且仅当时取到等号,则. 16分考点:阅读材料问题,“1”的代换,基本不等式.21. 设椭圆的长半轴长为、短半轴长为,椭圆的长半轴长为、短半轴长为,若,则我们称椭圆与椭圆是相似椭圆.已知椭圆,其左顶点为、右顶点为.(1)设椭圆与椭圆是“相似椭圆”,求常数的值;(2)设椭圆,过作斜率为的直线与椭圆仅有一个公共点,过椭圆的上顶点为作斜率为的直线与椭圆仅有一个公共点,当为何值时取得最小值,并求其最小值;(3)已知椭圆与椭圆是相似椭圆.椭圆上异于的任意一点,求证:的垂心在椭圆上.【答案】(1)或;(2)当时,取得最小值.(3)见解析【解析】试题分析:(1)运用“相似椭圆”的定义,列出等式,解方程可得s;(2)求得的坐标,可得直线与直线的方程,代入椭圆的方程,运用判别式为,求得,再由基本不等式即可得到所求最小值;(3)求得椭圆的方程,设出椭圆上的任意一点,代入椭圆的方程;设的垂心的坐标为,运用垂心的定义,结合两直线垂直的条件:斜率之积为,化简整理,可得的坐标,代入椭圆的方程即可得证.试题解析:(1)由题意得或,分别解得或.(2)由题意知:,,直线,直线,联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ①联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ②由①②得:.所以,此时,即.(3)由题意知:,所以,且.设垂心,则,即. 又点在上,有,. 则,所以的垂心在椭圆上.。
二项式定理(1)
![二项式定理(1)](https://img.taocdn.com/s3/m/cfc622cd453610661fd9f4cd.png)
x 二项式定理1.【来源】浙江省 2017 届高三“超级全能生”3 月联考数学试题 在二项式(2x - 1)6的展开式中,常数项是( C )xA .-240B .240C .-160D .160答案及解析:2.【来源】安徽省黄山市 2019 届高三第一次质量检测(一模)数学(理)试题在(1+x )6(1-2x )展开式中,含 x 5 的项的系数是( D ) A. 36B. 24C. -36D. -243.【来源】新疆维吾尔自治区 2018 届高三第二次适应性(模拟)检测数学(理)试题若⎛ 2 1 ⎫n- x ⎪ 展开式中含 x 项的系数为-80,则 n 等于( A )⎝ ⎭A .5B .6 C.7 D .84.【来源】浙江省金丽衢十二校联考 2017 届高考二模数学试题在(1+x 3)(1﹣x )8 的展开式中,x 5 的系数是( A ) A .﹣28B .﹣84C .28D .84答案及解析:【考点】二项式定理的应用.【分析】利用二项式定理的通项公式求解即可.【解答】解:由(1+x 3)展开可知含有 x 3 与(1﹣x )8 展开的 x 2 可得 x 5 的系数; 由(1+x 3)展开可知常数项与(1﹣x )8 展开的 x 5,同样可得 x 5 的系数; ∴含 x 5 的项+=28x 5﹣56x 5=﹣28x 5;∴x 5 的系数为﹣28, 故选 A【点评】本题主要考查二项式定理的应用,求展开式的系数把含有 x 5 的项找到.从而可以利用通项求解.属于中档题5.【来源】北京东城景山学校 2016-2017 学年高二下学期期中考试数学(理)试题设(3x -1)4 = a + a x + a x 2 + a x 3 + a x 4 ,则 a + a + a + a的值为( A ).12341234A .15B .16C .1D .-15答案及解析: 在(3x -1)4= a + a x + a x 2 + a x 3 + a x 4 中,令 x = 0 ,可得 a = 1 ,1234再令 x = 1可得 a 0 + a 1 + a 2 + a 3 + a 4 = 16 , 所以 a 1 + a 2 + a 3 + a 4 = 15 .n 7 7 7 故选 A .6.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题在(x + y )n的展开式中,若第七项系数最大,则 n 的值可能等于( D ).A .13,14B .14,15C .12,13D .11,12,13答案及解析:(x + y )n 的展开式第七项系数为 C 6 ,且最大,可知此为展开式中间项,当展开式为奇数项时: n= 6 , n = 12 ,2当有偶数项时 n + 1= 6 , n = 11, 2 或 n + 1 = 7 , n = 13 ,2故 n = 11,12 ,13 . 选 D .7.【来源】广东省广州市海珠区 2018 届高三综合测试(一)数学(理)试题(x + y )(2x - y )6 的展开式中 x 4 y 3 的系数为( D )A .-80B .-40C. 40D .808.【来源】广东省潮州市 2017 届高三数学二模试卷数学(理)试题 在(1﹣2x )7(1+x )的展开式中,含 x 2 项的系数为( B ) A .71 B .70 C .21 D .49答案及解析:【分析】先将问题转化为二项式(1﹣2x )7 的系数问题,利用二项展开式的通项公式求出展开式的第 r+1 项,令 x 的指数分别等于 1,2 求出特定项的系数【解答】解:(1﹣2x )7(1+x )的展开式中 x 2 的系数等于(1﹣2x )7 展开式的 x 的系数+(1﹣2x )7 展开式的 x 2 的系数,(x+1)7 展开式的通项为 T r+1=(﹣2)r C r x r ,故展开式中 x 2 的系数是(﹣2)2C 2+(﹣2)•C 1=84﹣14=60,故选:B .9.【来源】浙江省新高考研究联盟 2017 届第四次联考数学试题 在二项式(x 2- 1)5 的展开式中,含 x 7的项的系数是( C )xA . -10B. 10C. -5D. 510.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题 已知(1 + x )n的展开式中只有第 6 项的二项式系数最大,则展开式奇数项的二项式系数和为( D ) A .212B .211C.210D .2911.【来源】上海市浦东新区 2018 届高三上学期期中考试数学试卷展开式中的常数项为( C )x -A.-1320B.1320C.-220D.22012.【来源】浙江省绍兴一中2017 届高三上学期期末数学试题在(x﹣y)10 的展开式中,系数最小的项是(C )A.第4 项B.第5 项C.第6 项D.第7 项答案及解析:【考点】二项式定理的应用.【分析】由二项展开式可得出系数最小的项系数一定为负,再结合组合数的性质即可判断出系数最小的项.【解答】解:展开式共有11 项,奇数项为正,偶数项为负,且第6 项的二项式系数最大,则展开式中系数最小的项第 6项.故选C.13.【来源】浙江省金华十校联考2017 届高三上学期期末数学试题在(1﹣x)n=a0+a1x+a2x2+a3x3+…+a n x n中,若2a2+a n﹣5=0,则自然数n的值是(B)A.7 B.8 C.9 D.10答案及解析:【考点】二项式定理的应用.【分析】由二项展开式的通项公式T r+1=•(﹣1)r x r可得a r=(﹣1)r•,于是有2(﹣1)2+(﹣1)n﹣5=0,由此可解得自然数n 的值.【解答】解:由题意得,该二项展开式的通项公式•(﹣1)r x r,∴该项的系数,∵2a2+a n﹣5=0,∴2(﹣1)2+(﹣1)n﹣5=0,即+(﹣1)n﹣5•=0,∴n﹣5 为奇数,∴2==,∴2×=,∴(n﹣2)(n﹣3)(n﹣4)=120.∴n=8.故答案为:8.14.【来源】浙江省重点中学2019 届高三上学期期末热身联考数学试题⎛ 2 ⎫5 1⎪1展开式中,x2的系数是( B )⎝⎭A、80B、-80C、40D、-4015.【来源】山东省德州市2016-2017 学年高二下学期期末考试数学(理)试题a 2 4如果x + x - 的展开式中各项系数之和为2,则展开式中x 的系数是( C ) x xA.8 B.-8 C.16 D.-1616.【来源】云南省昆明市第一中学2018 届高三第八次月考数学(理)试题x x2 ⎪ ⎛1- 1 ⎫ (1+ x )6x 3⎝ ⎭ 展开式中 x 的系数为(B )A .-14B .14C. 15D .3017.【来源】安徽省安庆一中、山西省太原五中等五省六校(K12 联盟)2018 届高三上学期期末联考数学(理)试题在二项式(x - 1)n 的展开式中恰好第 5 项的二项式系数最大,则展开式中含有 x 2项的系数是( C )xA .35B .-35C .-56D .56答案及解析:第五项的二项式系数最大,则,通项,令,故系数.18.【来源】辽宁省实验中学、沈阳市东北育才学校等五校 2016-2017 学年高二下学期期末联考数学(理)试题 在( - 2)n 的展开式中,各项的二项式系数之和为 64,则展开式中常数项为( A )xA .60B .45C . 30D .1519.【来源】湖北省武汉市 2018 届高三四月调研测试数学理试题 在(x + 1-1)6 的展开式中,含 x 5项的系数为( B )xA .6B .-6C .24D .-24答案及解析:的展开式的通项 .的展开式的通项=. 由 6﹣r ﹣2s=5,得 r+2s=1,∵r ,s ∈N ,∴r=1,s=0. ∴的展开式中,含 x 5 项的系数为 . 故选:B .20.【来源】辽宁省抚顺市 2018 届高三 3 月高考模拟考试数学(理)试题在(2 -1)6 的展开式中,含 1项的系数为( C )xA. -60B. 160C. 60D. 6421.【来源】2018 年高考真题——数学理(全国卷Ⅲ)(x 2+ 2)5 的展开式中 x 4 的系数为( C )xA .10B .20C .40D .80答案及解析:由题可得 令 ,则所以x2× 4x9 n故选 C.22.【来源】浙江省金华市十校联考 2016-2017 学年高二下学期期末数学试卷在(x 2﹣4)5 的展开式中,含 x 6 的项的系数为( D ) A .20 B .40 C .80 D .160答案及解析:【分析】=(﹣4)r,令 10﹣2r=6,解得 r=2,由此能求出含 x 6 的项的系数.【解答】解:∵(x 2﹣4)5, ∴T r+1==(﹣4)r,令 10﹣2r=6,解得 r=2, ∴含 x 6 的项的系数为=160. 故选:D .23.【来源】浙江省诸暨市牌头中学 2018 届高三 1 月月考数学试题 在⎛x 2 - ⎝2 ⎫6的展开式中,常数项为( D )⎪⎭ A .-240 B .-60 C .60 D .24024.【来源】浙江省湖州市 2017 届高三上学期期末数学试题在(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 的展开式中,含 x 3 的项的系数是( D ) A .121 B .﹣74C .74D .﹣121答案及解析:【考点】二项式定理的应用.【分析】利用等比数列的前 n 项公式化简代数式;利用二项展开式的通项公式求出含 x 4 的项的系数,即是代数式的含 x 3 的项的系数.【解答】解:(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 ==,(1﹣x )5 中 x 4 的系数 ,﹣(1﹣x )9 中 x 4 的系数为﹣C 4=﹣126,﹣126+5=﹣121. 故选:D25.【来源】甘肃省兰州市第一中学 2018 届高三上学期期中考试数学(理)试题在(x 2-1)(x +1)4 的展开式中,x 3 的系数是( A ) A .0B .10C .-10D .20答案及解析:(x +1)4 的展开式的通项, 因此在(x 2-1)(x +1)4 的展开式中,x 3 的系数是26.【来源】山西重点中学协作体 2017 届高三暑期联考数学(理)试题在二项式 + 1的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互 x xx 1 ⎝ ⎭不相邻的概率为( D ) A . 16B . 14C. 1 3D . 51227.【来源】湖北省孝感市八校 2017-2018 学年高二上学期期末考试数学(理)试题已知C 0- 4C 1+ 42C 2- 43C 3+ + (-1)n 4nC n= 729 ,则C 1+ C 2+ + C n的值等于( C )nnnnnA .64B .32 C.63 D .31答案及解析:nnn因为 ,所因,选 C. 28.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题若òn(2x -1)dx = 6 ,则二项式(1 - 2x )n的展开式各项系数和为( A ) A .-1 B .26 C .1 D . 2n29.【来源】浙江省金华十校 2017 届高三数学模拟试卷(4 月份)数学试题若(x -1)8=1+a 1x +a 2x 2+…+a 8x 8,则 a 5=( B ) A .56B .﹣56C .35D .﹣35答案及解析:利用通项公式即可得出. 解:通项公式 T r+1=(﹣1)8﹣r x r ,令 r=5,则(﹣1)3=﹣56.故选:B .30.【来源】广东省茂名市五大联盟学校 2018 届高三 3 月联考数学(理)试题6⎛ 1 ⎫ x 4在( + x ) 1+ y ⎪ 的展开式中, y 2 项的系数为( C )A .200B .180 C. 150 D .120答案及解析:展开式的通项公式,令可得:,,展开式的通项公式 ,令可得,据此可得: 项的系数为 .本题选择 C 选项.31.【来源】吉林省长春外国语学校 2019 届高三上学期期末考试数学(理)试题 (2-x )(1+2x )5 展开式中,含 x 2 项的系数为( B )x x 0 1 2 2017 3n nx A . 30 B . 70 C .90 D .-15032.【来源】浙江省新高考研究联盟 2017 届第三次联考数学试题若(1 + x )3 + (1 + x )4 + (1 + x )5 + + (1 + x )2017 = a + a x + a x 2 + + a x 2017 ,则 a 的值为( D )3 2017 32018 420174201833.【来源】广东省肇庆市 2017 届高考二模数学(理)试题若(x 6+ 1 )n的展开式中含有常数项,则 n 的最小值等于( C )A .3B .4C .5D .6答案及解析:【分析】二项式的通项公式 T r+1=C )r ,对其进行整理,令 x 的指数为 0,建立方程求出 n 的最小值.【解答】解:由题意 )n 的展开式的项为)r =C n r=C r令r=0,得 r ,当 r=4 时,n 取到最小值 5故选:C .【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条 件转化成指数为 0,得到 n 的表达式,推测出它的值.34.【来源】上海市金山中学 2017-2018 学年高二下学期期中考试数学试题 设(3x -1)6= a x 6+ a x 5+ + a x + a ,则| a | + | a | + | a | + + | a| 的值为…( B )651126(A) 26(B) 46(C) 56(D) 26+ 4635.【来源】浙江省台州市 2016-2017 学年高二下学期期末数学试题x -已知在( 2 1 )n的展开式中,第 6 项为常数项,则 n =( D )A .9B .8C .7D .6答案及解析:【考点】二项式系数的性质. 【分析】利用通项公式即可得出. 【解答】解:∵第 6 项为常数项,由 =﹣ •x n ﹣6,可得 n ﹣6=0.解得 n=6. 故选:D .36.【来源】山东省潍坊寿光市 2016-2017 学年高二下学期期末考试数学(理)试题⎛ 1 ⎫6+ 2x ⎪ ⎝ ⎭的展开式中常数项为( B ) A .120B .160C. 200D .24037.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题 (2x + 3)4 = a + a x + a x 2 + a x 3 + a x 4(a + a + a )2 - (a + a )2若0 1 2 3 4,则 0 2 41 3 的值为( A ). 5 x A . C B . C C . C D . Cx x A .1 B .-1 C .0 D .2答案及解析:令 x = 1, a + a + + a = (2 + 3)4 ,1 4令 x = -1, a - a + a - a + a= (-2 + 3)4 ,1234而 (a + a + a )2 - (a + a )22413= (a 0 + a 2 + a 4 + a 1 + a 3 )(a 0 - a 1 + a 2 - a 3 + a 4 )= (2 + 选 A .3)4 (-2 + 3)4 = (3 - 4)4 = 1. 38.【来源】云南省曲靖市第一中学 2018 届高三 4 月高考复习质量监测卷(七)数学(理)试题设 i 是虚数单位,a 是(x + i )6的展开式的各项系数和,则 a 的共轭复数 a 的值是( B ) A . -8iB . 8iC . 8D .-8答案及解析:由题意,不妨令 ,则,将转化为三角函数形式,,由复数三角形式的乘方法则,,则,故正确答案为 B.39.【来源】福建省三明市 2016-2017 学年高二下学期普通高中期末数学(理)试题 a 2 52x + x - 的展开式中各项系数的和为-1,则该展开式中常数项为( A ) x xA .-200B .-120 C.120 D .20040.【来源】甘肃省天水一中 2018 届高三上学期第四次阶段(期末)数学(理)试题已知(1+ax )(1+x )5 的展开式中 x 2 的系数为 5,则 a =( D )A.-4B.-3C.-2D.-141.【来源】广东省深圳市宝安区 2018 届高三 9 月调研测数学(理)试题(1 + 1)(1 + x )5 展开式中 x 2 的系数为 ( A )xA .20B .15C .6D .142.【来源】甘肃省民乐一中、张掖二中 2019 届高三上学期第一次调研考试(12 月)数学(理)试题⎛ a ⎫ ⎛1 ⎫5x + ⎪ 2x - ⎪ ⎝ ⎭ ⎝⎭ 的展开式中各项系数的和为 2,则该展开式中常数项为( D )A .-40B .-20C .20D .4043.【来源】浙江省名校协作体 2018 届高三上学期考试数学试题⎛ 1+ 2⎫(1- x )4 展开式中 x 2 的系数为( C ) x ⎪ ⎝ ⎭A .16B .12C .8D .444.【来源】山西省太原市 2018 届高三第三次模拟考试数学(理)试题已知(x -1)(ax +1)6展开式中 x 2 的系数为 0,则正实数a = ( B ) 22 A .1B .C.53D . 2x 4 5 5 答案及解析:的展开式的通项公式为.令 得 ;令得.展开式 为. 由题意知,解得(舍).故选 B. 45.【来源】吉林省松原市实验高级中学、长春市第十一高中、东北师范大学附属中学 2016 届高三下学期三校联合模拟考试数学(理)试题(x +1)2 (x - 2)4的展开式中含 x 3 项的系数为( D )A .16B .40 C.-40 D .846.【来源】海南省天一大联考 2018 届高三毕业班阶段性测试(三)数学(理)试题若(2x - 3)2018= a + a x + a x 2 + L + ax 2018 ,则 a + 2a + 3a + L + 2018a= ( D )122018A .4036B .2018C .-2018D .-4036123201847.【来源】湖北省天门、仙桃、潜江 2018 届高三上学期期末联考数学(理)试题(1 + x )8 (1 + y )4 的展开式中 x 2y 2 的系数是 ( D )A .56B .84C .112D .168答案及解析:因的展开式 的系数 ,的展开式 的系数 ,所的系数.故选 D.48.【来源】北京西城八中 2016-2017 学年高一下学期期末考试数学试题 ⎛ x 2 - 在二项式⎝ 1 ⎫5⎪⎭ 的展开式中,含 x 的项的系数是( C ). A .-10B .-5C .10D .5答案及解析:解: ⎛ x 2 - 1 ⎫5⎪ 的展开项T = C k (x 2 )k (-x -1 )5-k = (-1)5-k C k x 3k -5 ,令3k - 5 = 4 ,可得 k = 3, ⎝x ⎭ k +1 5 5∴ (-1)5-k C k = (-1)5-3 C 3= 10 . 故选 C .49.【来源】广东省化州市 2019 届高三上学期第二次模拟考生数学(理)试题 已知(x +1)(ax - 1)5的展开式中常数项为-40,则 a 的值为( C )xA. 2B. -2C. ±2D. 450.【来源】福建省“华安一中、长泰一中、南靖一中、平和一中”四校联考 2017-2018 学年高二下学期第二次联考试题(5 月)数学(理)试题若(1 - 2 x )n(n ∈ N *) 的展开式中 x 4的系数为 80,则(1 - 2 x )n的展开式中各项系数的绝对值之和为( C ) A .32B .81C .243D .256。
浙江省名校协作体2016_2017学年高二数学下学期考试试题
![浙江省名校协作体2016_2017学年高二数学下学期考试试题](https://img.taocdn.com/s3/m/65b2fc2d844769eae009ed86.png)
教学课件2016学年第二学期浙江省名校协作体试题高二年级数学学科考生须知:1. 本卷满分150分,考试时间120分钟;2. 答题前,在答题卷指定区域填写学校、班级、姓名、试场号、座位号及准考证号并填涂相应数字; 3. 所有答案必须写在答题卷上,写在试题卷无效; 4. 考试结束后,只需上交答题卷.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填写在答题卷的相应位置上. 1.已知直线1l :07=++my x 和2l :()2320m x y m -++=互相平行,则实数m = ( ▲ ) A.1m =-或3 B.1m =- C.3m =- D.1m =或3m =-2.若βα,表示两个不同的平面,直线m α⊂,则“αβ⊥”是“m β⊥”的 ( ▲ ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 3.三棱锥的三条侧棱两两垂直,其长分别为1,2,3,则该三棱锥的外接球的表面积( ▲ )A. π24B.π18C. π10D. π6 4.正方体1111D C B A ABCD -棱长为4,N M ,,P 分别是棱A A D A 111,,11C D 的中点,则过P N M ,,三点的平面截正方体所得截面的面积为( ▲ ) A .23 B .43 C .63 D . 1235. 定义点),(00y x P 到直线)0(0:22≠+=++b a c by ax l 的有向距离....为:2200ba c by ax d +++=.已知点1P 、2P 到直线l 的有向距离分别是1d 、2d .以下命题正确的是 ( ▲ ) A.若121d d ==,则直线1P 2P 与直线l 平行 B.若121,1d d ==-,则直线1P 2P 与直线l 垂直C.若120d d +=,则直线1P 2P 与直线l 垂直D.若120d d ⋅≤,则直线1P 2P 与直线l 相交D A 1B 11D MNP第4题6.实数,x y 满足约束条件02200x y x y mx y +≥⎧⎪-+≥⎨⎪-≤⎩,若2z x y =-的最大值为2,则实数m 等于( ▲ ) A .2- B .1- C .1 D .27.在所有棱长都相等的三棱锥BCD A -中,Q P 、分别是BC AD 、的中点,点R 在平面ABC 内运动,若直线PQ 与直线DR 成030角,则R 在平面ABC 内的轨迹是 ( ▲ ) A .双曲线B .椭圆C .圆D .直线8.设双曲线C :)0,0(12222>>=-b a by a x 的左右焦点分别为21,F F ,若在曲线C 的右支上存在点P ,使得21F PF ∆的内切圆半径为a ,圆心记为M , 又21F PF ∆的重心为G ,满足21//F F MG ,则双曲线C 的离心率为( ▲ )A .2B .3C .2D . 5二、 填空题: 本大题共7小题, 多空题每题6分,单空题每题4分,共36分.把答案填写在答题卷的相应位置上.9.双曲线191622=-y x 的离心率为 ▲ ,焦点到渐近线的距离为 ▲ .10.已知点()1,0A ,直线1l :,01=--y x 直线2l :022=+-y x ,则点A 关于直线1l 的对称点B 的坐标为 ▲ ,直线2l 关于直线1l 的对称直线方程是 ▲ .11.已知一个四棱锥的底面为正方形,其三视图如右图所示,则这个四棱锥的体积是 ▲ ,表面积是 ▲ .12.如图,三棱锥ABC S -中,若32=AC ,4=====BC AB SC SB SA ,E 为棱SC 的中点,则直线AC 与BE 所成角的余弦值为 ▲ ,直线AC 与平面SAB 所成的角为 ▲ .A BC第12题SE俯视图第9题图13.在正方体1111ABCD A BC D -中(如图),已知点P 在直线1BC 上运动,则下列四个命题: ①三棱锥PC D A 1-的体积不变;②直线AP 与平面1ACD 所成的角的大小不变; ③二面角C AD P --1的大小不变;④M 是平面1111D C B A 上到点D 和1C 距离相等的点,则M 点的轨迹是直线11D A . 其中真命题的编号是 ▲ (写出所有真命题的编号)14. 两定点)0,2(),0,2(B A -及定直线310:=x l ,点P 是l 上一个动点,过B 作BP 的垂线与AP 交于点Q ,则点Q 的轨迹方程为 ▲ .15.在三棱锥ABC P -中,BC AB ⊥,6AB =,BC =O 为AC 的中点,过C 作BO 的垂线,交AB BO 、分别于D R 、.若DPR CPR ∠=∠,则三棱锥ABC P -体积的最大值为 ▲ . 三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 16.已知直线1:10l x y --=,直线2:30l x y +-= (I )求直线1l 与直线2l 的交点P 的坐标;(II )过点P 的直线与x 轴的非负半轴....交于点A ,与y 轴交于点B ,且4AOB S ∆=(O 为坐标原点),求直线AB 的斜率k .A BC D 1A 1B 1C 1D 第13题ABCPDOR第15题17.如右图, 在三棱柱111C B A ABC -中,侧棱⊥A A 1平面ABC ,BC AC ⊥,1AC =,2BC =,11A A =,点D 是AB 的中点.(I )证明:1AC ∥平面1CDB ;(Ⅱ)在线段AB 上找一点P ,使得直线1AC 与CP 所成角的为60,求AP AB的值.18.已知圆4:22=+y x O 及一点)0,1(-P ,Q 在圆O 上运动一周,PQ 的中点M 形成轨迹C .(I )求轨迹C 的方程;(II )若直线PQ 的斜率为1,该直线与轨迹C 交于异于M 的一点N ,求CMN ∆的面积.19.如图,四棱锥A OBCD -中 ,已知平面AOC ⊥面OBCD ,2,4,AO OB BC CD ====0120OBC BCD ∠=∠=.(I )求证:平面ACD ⊥平面AOC ; (II )直线AO 与平面OBCD 所成角为60, 求二面角A BC D --的平面角的正切值.20.椭圆)0(1:2222>>=+b a by a x C 的左、右焦点分别为12,F F ,M 在椭圆上,△12MF F 的周长为452+,面积的最大值为2.(I )求椭圆C 的方程;(II )直线)0(>=k kx y 与椭圆C 交于B A ,,连接22,AF BF 并延长交椭圆C 于E D ,,连接DE .探索AB 与DE 的斜率之比是 否为定值并说明理由.第18题ABCD1A 1B 1C 第17题第20题第19题AC DO2016学年第二学期浙江省名校协作体高二年级数学参考答案一、选择题:本大题共8小题,每小题5分,共40分.二、 填空题: 本大题共7小题, 多空题每题6分,单空题每题4分,共36分.9.45, 3 10. ()12-, , 052=--y x 11.2 , 22232++ 12. 41, 06013. ①③④ (多选或错选或不选不给分,少选均给一半,)14. 2214x y += 15. 三.解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 16、解:(1)联立两条直线方程:1030x y x y --=⎧⎨+-=⎩,解得21x y =⎧⎨=⎩, 所以直线1l 与直线2l 的交点P 的坐标为(2,1). 5 (2)设直线方程为:1(2)y k x -=-令0x = 得12y k =-,因此(0,12)B k -; 令0y =得12x k =-,因此1(2,0)A k -.211002k k ork k -≥⇒≥< 8 11(12)(2)42AOBS k k∆∴=--=, 10解得12k =-或32k =+. 1417 (Ⅰ)证明:设1CB 与B C 1相交于E ,连结DE , ………….2分D 是AB 的中点,E 是1BC 的中点, ∴DE ∥1AC , ………….6分⊂DE 平面1CDB ,⊄1AC 平面1CDB ,∴1AC ∥平面1CDB .………….7分(Ⅱ)建立空间直角坐标系,1CC 为z 轴,CA 为x 轴,CB 为y 轴,……….9分设(01)AP AB λλ=<<()1,2,0CP CA AB λλλ=+=- ,()11,0,1AC =-所以11cos ,2AC CP = 13λ⇒= 15(向量写出,夹角公式写出,计算答案错误至少给2分)非向量做法:指出角给2分,其他视情况相应给分18、(1)设),(),,(11y x Q y x M ,则y y x x 2,1211=+=, 2把),(11y x 代入422=+y x 得1)21(:22=++y x C 。
2016-2017 学年第二学期高等数学AII 期末试卷(试卷+A3排版+解析)
![2016-2017 学年第二学期高等数学AII 期末试卷(试卷+A3排版+解析)](https://img.taocdn.com/s3/m/9d72c120f121dd36a32d82f0.png)
¨D
¨D
(C) [f (x) + g(y)] d x d y = 0
13.
设由方程组
y + xyz
z+x =1
=
0
确定的隐函数
y
=
y(x)
及
z
=
z(x),求
dy dx ,
dz dx
.
14.
设连续函数
f (x)
满足方程
f (x)
=
ˆ
3x
f
() t d t + e2x,
求
f (x).
¨(
0
3
)
(
)
15. 计算曲面积分 I = x2 − yz d y d z + y2 − zx d z d x + 2z d x d y, 其中 Σ
xOy ydx
平面上一条简单光滑的正向闭曲线,原点在其所围闭区域之外,则
=
【】
C x2 + 4y2
(A) 4π
(B) 0
(C) 2π
(D) π
6. 微分方程 xy′′ − y′ = 0 满足条件 y′(1) = 1, y(1) = 0.5 的解为
【】
(A) y = x2 + 1 44
(B) y = x2 2
1,
√ − ¨x
⩽
y
⩽
√x},则正确的选x 项为
¨
【】
(A) f (y)g(x) d x d y = 0
(B) f (x)g(y) d x d y = 0
¨D
¨D
(C) [f (x) + g(y)] d x d y = 0
2016-2017第一学期九年级数学期末试卷(含答案)
![2016-2017第一学期九年级数学期末试卷(含答案)](https://img.taocdn.com/s3/m/63f0c7eb700abb68a882fb0f.png)
2016-2017学年度第一学期九年级数学期末检测试卷一、选择题(本大题8小题,每小题3分,共24分,请将下列各题中唯一正确的答案代号A 、B 、C 、D 填到本题后括号内)1. 民族图案是数学文化中的一块瑰宝,下列图案中,既不是中心对称图形也不是轴对称图形的是( )2.一元二次方程240+=x x 的解为( )A .4=xB .4=-xC .121,3=-=x xD .120,4==-x x 3.如果关于x 的一元二次方程ax 2+x ﹣1=0有实数根,则a 的取值范围是( ) A .14a >-B .14a ≥- C .14a ≥-且a ≠0 D .14a >且a ≠0 4.抛物线262y x x =-+的顶点坐标是( )A .(-3,7)B .(3,2)C .(3,-7)D .(6,2)5.如图,AB 是⊙O 的直径,C ,D 是⊙O 上一点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 的度数为( ) A .20° B .30° C .40° D . 50°6. 一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A .49B .13C .16D .197.若反比例函数1232)12(---=k kx k y 的图象位于第二、四象限,则k 的值是( )A . 0B . 0或23 C . 0或23- D . 4 8. 已知面积为2的三角形ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示正确的是( )9.如图,Rt △ABC 的斜边AB 与量角器的直径恰好重合,B 点与0刻度线的一端重合,∠ABC=40°,射线CD 绕点C 转动,与量角器外沿交于点D ,若射线CD 将△ABC 分割出以BC 为边的等腰三角形,则点D 在量角器上对应的度数是( )A .40°B .80°或140°C .70°D .70°或80° 10.如图,已知△ABC 为等边三角形,AB =2,点D 为边AB 上一点,过点D 作DE∥AC,交BC 于点E ;过点E 作EF⊥DE,交AB 的延长线于点F.设AD =x ,△DEF 的面积为y ,则能大致反映y 与x函数关学校 班级 姓名 座位号系的图象是( )二、填空题(本题共4小题,每小题4分,共16分)11.某药品2013年的销售价为50元/盒,2015年降价为42元/盒,若平均每年降价百分率是x ,则可以列方程 ; 12.如图,在平面直角坐标系中,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积为__________;13.如图,在平面直角坐标系xOy 中,直线AB 经过点A(6,0)、B(0,6),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为= ;14. 如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是 .三、解答题(本大题2小题,每小题8分,共16分)15. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?16.设点A 的坐标为(x ,y ),其中横坐标x 可取﹣1、2,纵坐标y 可取﹣1、1、2. (1)求出点A 的坐标的所有等可能结果(用树状图或列表法求解); (2)试求点A 与点B (1,﹣1)关于原点对称的概率.四、(本大题2小题,每小题8分,共16分)17. 如图,正比例函数12y x =-与反比例函数2y 相交于点E (m ,2). (1)求反比例函数2y 的解析式.(2)观察图象直接写出当120y y >>时,x 的取值范围.18.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形.求点C 的坐标.五、(本大题2小题,每小题10分,共20分)19.如图所示,已知△ABC 的三个顶点的坐标分别为A (﹣2,3),B (﹣6,0),C (﹣1,0). (1)点A 关于原点O 对称的点的坐标为 ;(2)将△ABC 绕坐标原点O 逆时针旋转90°,画出图形并求A 点经过的路径长; (3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.20. 实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数2200400y x x =-+;1.5小时后(含1.5小时)y 与x 可近似地用反比例函数(0ky k x=>)刻画,如图.(1)喝酒后血液中酒精含量达到最大值?最大值是多少? (2)当x=5时,y=45,求k 的值;(3)按照国家规定,驾驶员血液中酒精含量大于或等于20毫克/百毫升时,属于“酒后驾驶”,不能驾车,假设某驾驶员晚上20:00在家喝了半斤低度白酒,第二天早上7:00能否驾车去上班?说明理由.六、本题12分21. 如图,△ABC 中,BE 是它的角平分线,∠C =90°,D 在AB 边上,以DB 为直径的半圆O 经过点E ,交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若∠A =30°,连接EF ,求证:EF ∥AB ;(3)在(2)的条件下,若AE =2,求图中阴影部分的面积.七、本题12分22. 操作:在△ABC 中,AC=BC=2,∠C =90°,将一块等腰三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线AC 、CB 于D 、E 两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:y (毫克/百毫升)455x (时)(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.八、本题14分23.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?2016-2017九年级数学参考答案一、选择题: 1-10:C D CCD D A C B A二、填空题11、250(1)42x -=; 12、4; 13、 14; 14、513三、解答题:15、解:设每件衬衫应降价x 元,可使商场每天盈利2100元.根据题意得(45﹣x )(20+4x )=2100, 化简得:2403000x x -+=…………………………..5分 解得x 1=10,x 2=30.因尽快减少库存,故x=30.(未作讨论的酌情扣1-2分) 答:每件衬衫应降价30元.…………………………..10分16、(1)列举所有等可能结果,画出树状图如下由上图可知,点A 的坐标的所有等可能结果为:(﹣1,﹣1)、(﹣1,1)、(﹣1,2)、(2,﹣1)、 (2,1)、(2,2),共有6种,…………………………6分 (2)点B (1,﹣1)关于原点对称点的坐标为(-1,1). ∴P (点A 与点B 关于原点对称)=16…………………………10分 四、17、解:(1)设反比例函数解析式为xky =2………………1分 ∵x y 21-=过点)2,(m E ∴122-==-m m ∴)2,1(-E …………4分∵xky =2过)2,1(-E ∴2-=k ∴反比例函数解析式为xy 22-=……………7分 (2)当x <-1时,120y y >>.………………………10分18. 解:过点M 作MF ⊥CD 于点F ,过点C 作CE ⊥x 轴于点E ,连接CM. 在Rt △CMF 中,CF =12CD =12OB =4,CM =12OA =5,∴MF =CM 2-CF 2=3.∴CE =MF =3.又EM =CF =4,OM =12OA =5,∴OE =OM -EM =1. ∴C(1,3).五、19、解:(1)点A 关于原点O 对称的点的坐标为(2,﹣3);…………………………..1分(2)△ABC 旋转后的△A ′B ′C ′如图所示,…………………………..4分 点A ′的对应点的坐标为(﹣3,﹣2); OA ′,即点A;…………..7分(3)若AB 是对角线,则点D (﹣7,3), 若BC 是对角线,则点D (﹣5,﹣3), 若AC 是对角线,则点D (3,3).…………………………..10分 20.解:(1)证明:连接OE.∵OB =OE ,∴∠BEO =∠EBO.∵BE 平分∠CBO ,∴∠EBO =∠CBE. ∴∠BEO =∠CBE.∴EO ∥BC.∵∠C =90°,∴∠AEO =∠C =90°. ∴AC 是⊙O 的切线.(2)证明:∵∠A =30°,∴∠ABC =60°. ∴∠OBE =∠FBE =30°.∴∠BEC =90°-∠FBE =60°. ∵∠CEF =∠FBE =30°,∴∠BEF =∠BEC -∠CEF =60°-30°=30°. ∴∠BEF =∠OBE.∴EF ∥AB. (3)连接OF.∵EF ∥AB ,BF ∥OE ,OB =OE ,∴四边形OBFE 是菱形. ∴S △EFB =S △EOF. ∴S 阴影=S 扇EOF.设圆的半径为r ,在Rt △AEO 中,AE =2,∠A =30°,∴r =OE =233.∴S 阴影=S 扇EOF =60π×(233)2360=2π9.六、21、解:(1)22200400200(1)200y x x x =-+=--+,∴饮酒后1小时血液中酒精含量达到最大值,最大值为200(毫克/百毫升)(2)k=225(3)不能驾车上班,理由:晚上20:00到第二天早上7:00共计11小时,把x=11代入22522511y y x ==得,>20,所以不能.七、22、解:(1)由图①可猜想PD=PE ,再在图②中构造全等三角形来说明.即PD=PE .y (毫克/百毫升)455x (时)理由如下:连接PC,因为△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=12∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE,∴∠DPC=∠BPE.∴△PCD≌△PBE.∴PD=PE.(2)△PBE是等腰三角形,①当PE=PB时,此时点C与点E重合,CE=0;②当BP=BE时,E在线段BC上,;E在CB的延长线上,;③当EP=EB时,CE=1.八、23、解(1)由图象可知,300=a×302,解得a=,n=700,b×(30﹣90)2+700=300,解得b=﹣,∴y=,(2)由题意﹣(x﹣90)2+700=684,解得x=78,∴=15,∴15+30+(90﹣78)=57分钟所以,馆外游客最多等待57分钟.。
2016-2017年浙江省杭州市余杭区八年级下学期期末数学试卷和参考答案
![2016-2017年浙江省杭州市余杭区八年级下学期期末数学试卷和参考答案](https://img.taocdn.com/s3/m/7f6b261af5335a8102d220c5.png)
2016-2017学年浙江省杭州市余杭区八年级下学期期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)=()A.1B.2C.3D.42.(3分)下列函数中不是反比例函数的是()A.y=B.y=C.y=4x﹣1D.y=﹣3.(3分)学校食堂午餐供应6元、8元和10元三种价格的盒饭,如图是食堂某月销售三种午餐盒饭数量的统计图,则该月食堂销售午餐盒饭的平均价格为()A.7.9元B.8元C.8.9元D.9.2元4.(3分)如果一个多边形的内角和等于外角和的3倍,那么这个多边形的边数为()A.6B.7C.8D.95.(3分)如图,已知菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD 边上的中点,连接EF.若EF=2,BD=4,则菱形ABCD的面积为()A.2B.4C.8D.166.(3分)在一幅长90cm,宽40cm的风景画的四周的外边镶宽度相同的金色纸边,制成一幅挂图,使风景画的面积是整个挂图面积的58%,设金色纸边的宽度为xcm,则可列方程为()A.(90+x)(40+x)×58%=90×40B.(90+x)(40+2x)×58%=90×40C.(90+2x)(40+x)×58%=90×40D.(90+2x)(40+2x)×58%=90×407.(3分)已知一次函数y=﹣x+4与反比例函数y=在同一平面直角坐标系中的图象有两个公共点,则k的取值范围为()A.k<4B.k≤4C.k≤4且k≠0D.k<4且k≠0 8.(3分)小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD 为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④9.(3分)如图,反比例函数y=(x>0)的图象上有四个点P1,P2,P3,P4,它们的横坐标分别为1,2,3,4,分别向x轴,y轴作垂线,图中所构成的阴影部分面积分别为S1,S2,S3,则S1+S3﹣S2的值为()A.k B.k C.k D.k10.(3分)如图,矩形纸片ABCD中,AB=6,AD=10,折叠纸片,使点A落在BC 边上的点A1处,折痕为PQ,当点A1在BC边上移动时,折痕的端点P、Q分别在AB、AD边上移动,则点A1在BC边上可移动的最大距离为()A.3B.4C.5D.6二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)二次根式中字母x的取值范围是.12.(4分)甲、乙两人进行射击比赛,在相同条件下射击20次,已知他们的平均环数相同,方差分别是S甲2=1.6,S乙2=2.1,那么甲、乙两人中成绩较为稳定的是(填“甲”或“乙”)13.(4分)用反证法证明命题:四边形中至少有一个角是钝角或直角,则应假设:.14.(4分)已知直角三角形的两条边长恰好是方程x2﹣7x+10=0的两个根,则此直角三角形的斜边长是.15.(4分)如图,已知Rt△ABC,∠ACB=90°,以AB为斜边向外作等腰直角三角形ABO,连结OC,已知AC=4,OC=6,则另一直角边BC的长为.16.(4分)如图,分别过反比例函数y=(x>0)图象上的点P1(1,y1),P2(2,y2)…P n(n,y n)作x轴的垂线,垂足分别为A1,A2,…A n,连结A1P2,A2P3,…A nP n,再以A1P1,A1P2为一组邻边作平行四边形A1P1B1P2,以A2P2,A2P3为邻边﹣1作平行四边形A2P2B2P3,以此类推,则B1的纵坐标为,B n的纵坐标为(用含n的代数式表示)三、解答题17.(6分)计算:(1)+×(2)已知a=+,b=﹣,求a2+ab+b2的值.18.(8分)解方程:(1)(2x﹣1)2=(x+3)2(2)x2﹣2x﹣=0.19.(8分)为了了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查,已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:身高情况分组表(单位:cm)组别身高A x<160B160≤x<165C165≤x<170D170≤x<175E x≥175根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在组,中位数在组;(2)样本中,女生身高在E组的人数有人;(3)已知该校共有男生600人,女生480人,请估计身高在165≤x<175之间的学生约有多少人?20.(10分)已知一次函数与反比例函数的图象交于点P(﹣3,M),Q(2,﹣3).(1)求这两个函数的关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)结合图象,直接写出当x为何值时,一次函数的值大于反比例函数的值?21.(10分)已知关于x的一元二次方程x2﹣(2k﹣4)x+k2﹣4k=0(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为6,当△ABC是等腰三角形时,求k的值.22.(12分)在四边形ABCD中,AB,BC,CD,DA的中点分别为P,Q,M,N.(1)如图1,试判断四边形PQMN是什么特殊四边形,并证明你的结论.(2)若在AB边上存在一点E,连接DE,CE,恰好△ADE和△BCE都是等边三角形(图2);①判断此时四边形PQMN的形状,并证明你的结论;②当AE=5,BE=4时,求此时四边形PQMN的周长(结果保留根号)23.(12分)在正方形ABCD中,AB=2,.(1)如图1,点P是对角线AC上任一点,若M是AB中点,求PM+PB的最小值;(2)如图2,点P是对角线AC上任一点,若M,N分别是边AB,BC上的点,且AM=AB,CN=BC,求PM+PN的最小值.(3)如图3,若M1,M2是AB边三等分点,P1,P2是对角线AC上任意两点,求(P1B+P1M1)2+(P2M1+P2M2)2的最小值.2016-2017学年浙江省杭州市余杭区八年级下学期期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.【考点】22:算术平方根.【解答】解:=2,故选:B.【点评】本题考查了算术平方根的应用,主要考查学生的计算能力.2.【考点】G1:反比例函数的定义.【解答】解:A、该函数是正比例函数,故本选项正确;B、该函数是反比例函数,故本选项错误;C、该函数是反比例函数,故本选项错误;D、该函数是反比例函数,故本选项错误.故选:A.【点评】本题考查的是反比例函数的定义,熟知判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断是解答此题的关键.3.【考点】W2:加权平均数.【解答】解:10×60%+8×25%+6×15%=6+2+0.9=8.9(元).故该月食堂销售午餐盒饭的平均价格为8.9元.故选:C.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求6,8,10这三个数的平均数,对平均数的理解不正确.同时考查了扇形统计图,扇形统计图直接反映部分占总体的百分比大小.4.【考点】L3:多边形内角与外角.【解答】解:设多边形的边数为n,依题意,得(n﹣2)•180°=3×360°,解得n=8,故选:C.【点评】此题考查根据多边形的内角和计算公式,多边形的外角和.关键是利用不变的数量多边形的外角和360°.5.【考点】KX:三角形中位线定理;L8:菱形的性质.【解答】解:∵E、F分别是AD,CD边上的中点,即EF是△ACD的中位线,∴AC=2EF=4,则S菱形ABCD=AC•BD=×4×4=8.故选:C.【点评】本题考查了三角形的中位线定理和菱形的面积公式,理解中位线定理求的AC 的长是关键.6.【考点】AC:由实际问题抽象出一元二次方程.【解答】解:依题意,设金色纸边的宽为xcm,(90+2x)(40+2x)×58%=90×40,故选:D.【点评】此题主要考查了由实际问题抽象出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据题意列出方程是解题关键.7.【考点】G8:反比例函数与一次函数的交点问题.【解答】解:联立两解析式得:,消去y得:x2﹣4x+k=0,∵两个函数在同一直角坐标系中的图象有两个公共点,∴△=b2﹣4ac=16﹣4k>0,即k<4,则当k满足k<4且k≠0时,这两个函数在同一直角坐标系中的图象有两个公共点.故选:D.【点评】此题考查了一次函数与反比例函数的交点问题,以及反比例函数的图象与性质,熟练掌握反比例函数的图象与性质是解本题的关键.8.【考点】LF:正方形的判定.【解答】解:A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选:B.【点评】此题主要考查了正方形的判定以及矩形、菱形的判定方法,正确掌握正方形的判定方法是解题关键.9.【考点】G5:反比例函数系数k的几何意义;G6:反比例函数图象上点的坐标特征.【解答】解:∵反比例函数y=(x>0)的图象上有四个点P1,P2,P3,P4,它们的横坐标分别为1,2,3,4,∴P1(1,k),P2(2,),P3(3,),P4(4,),∴S1+S3﹣S2=1•(k﹣)+1•(﹣)﹣1•(﹣)=+﹣=k.故选:A.【点评】本题考查的是反比例函数图象上点的坐标特征,矩形的面积公式,根据题意得出P1、P2、P3、P4的坐标是解答此题的关键.10.【考点】LB:矩形的性质;PB:翻折变换(折叠问题).【解答】解:①当p与B重合时,BA1=BA=6,CA1=BC﹣BA1=10﹣6=4,②当Q与D重合时,由勾股定理,得CA1==8,CA1最远是8,CA1最近是4,点A1在BC边上可移动的最大距离为8﹣4=4,故选:B.【点评】本题考查了翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.二、填空题(本大题共6小题,每小题4分,共24分)11.【考点】72:二次根式有意义的条件.【解答】解:由题意得:4﹣x≥0,解得:x≤4,故答案为:x≤4.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.12.【考点】W7:方差.【解答】解:∵1.6<2.1,∴S甲2<S乙2,∴甲、乙两人中成绩较为稳定的是甲.故答案为:甲.【点评】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.13.【考点】O3:反证法.【解答】解:反证法证明命题:四边形中至少有一个角是钝角或直角,则应假设:四边形中四个角都小于90度.故答案为:四边形中四个角都小于90度.【点评】本题考查的是反证法的应用,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.14.【考点】A8:解一元二次方程﹣因式分解法;KQ:勾股定理.【解答】解:∵x2﹣7x+10=(x﹣2)(x﹣5)=0,解得:x1=2,x2=5.当方程的一根为斜边长时,此直角三角形的斜边长为5;当方程的两根为直角边长时,此直角三角形的斜边长为=.故答案为:5或.【点评】本题考查了分解因式法解一元二次方程以及勾股定理,分方程两根有斜边长与方程两根均为直角边长两种情况考虑是解题的关键.15.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【解答】解:∵∠ACB=90°,∠AOC=90°,∴A,C,B,O四点共圆,如图,过点A作AE⊥OC于点E,∴∠ACO=∠ABO=45°,∵AC=4,∴AE=CE=,∵OC=,∴OE=OC﹣CE=,∴AO2=AE2+OE2=40,∴BO2=AO2=40,由勾股定理可得,AB2=BO2+AO2=80,BC==8,故答案为8.【点评】此题主要考查四点共圆和解直角三角形,能分析出四点共圆并合理运用圆的知识和直角三角形的知识进行解决是此题的关键.16.【考点】G6:反比例函数图象上点的坐标特征;L5:平行四边形的性质.【解答】解:∵点P1(1,y1),P2(2,y2)在反比例函数y=的图象上,∴y1=3,y2=,∴P1A1=y1=3,又∵四边形A1P1B1P2,是平行四边形,∴P1A1=B1P2=3,P1A1∥B1P2 ,∴点B1的纵坐标是:y2+y1=+3=;同理求得,点B2的纵坐标是:y3+y2=1+=;点B3的纵坐标是:y4+y3=+1=;…∴点B n的纵坐标是:y n+1+y n=+=.故答案是:,.【点评】本题考查了平行四边形的性质、反比例函数图象上点的坐标特征、反比例函数的图象的综合应用.解答此题的关键是根据平行四边形的对边平行且相等,求得点B n 的纵坐标为y n+1+y n.三、解答题17.【考点】76:分母有理化;7A:二次根式的化简求值.【解答】解:(1)原式=+2×2=+4=5;(2)∵a=+,b=﹣,∴a+b=++﹣=2,ab=(+)(﹣)=3﹣2=1,∴a2+ab+b2=(a+b)2﹣ab=(2)2﹣1=12﹣1=11.【点评】本题考查了二次根式的化简求值,分母有理化.解答(2)题时,不要盲目代入求值,观察所求代数式的特点,然后做变形处理,再代入求值,减少繁琐的计算.18.【考点】A8:解一元二次方程﹣因式分解法.【解答】解:(1)2x﹣1=±(x+3),所以x1=4,x2=﹣;(2)3x2﹣8x﹣9=10,(3x+1)(x﹣3)=0,3x+1=0或x﹣3=0,所以x1=﹣,x2=3.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.19.【考点】V5:用样本估计总体;V7:频数(率)分布表;V8:频数(率)分布直方图;VB:扇形统计图;W4:中位数;W5:众数.【解答】解:(1)∵直方图中,B组的人数为12,最多,∴男生的身高的众数在B组,男生总人数为:4+12+10+8+6=40,按照从低到高的顺序,第20、21两人都在C组,∴男生的身高的中位数在C组,故答案为:B,C;(2)女生身高在E组的百分比为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,∵抽取的样本中,男生、女生的人数相同,∴样本中,女生身高在E组的人数有:40×5%=2(人),故答案为:2;(3)600×+480×(25%+15%)=270+192=462(人).答:该校身高在165≤x<175之间的学生约有462人.【点评】本题考查的是频数分布直方图以及扇形统计图的应用,掌握用样本估计总体的方法、正确读懂扇形图的信息、理解中位数和众数的概念是解题的关键.20.【考点】G8:反比例函数与一次函数的交点问题.【解答】解:(1)设反比例函数解析式为y=(k≠0),把Q(2,﹣3)代入得k=2×(﹣3)=﹣6,∴反比例函数解析式为y=﹣;把P(﹣3,m)代入y=﹣得﹣3m=﹣6,解得m=2,∴P点坐标为(﹣3,2),设一次函数解析式为y=ax+b(a≠0),把P(﹣3,2)和Q(2,﹣3)代入y=ax+b得,解得,∴一次函数的解析式为y=﹣x﹣1;(2)如图,(3)当x<﹣3或0<x<2时,一次函数的值大于反比例函数的值.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.21.【考点】AA:根的判别式;AB:根与系数的关系;K6:三角形三边关系;KH:等腰三角形的性质.【解答】(1)证明:△=(2k﹣4)2﹣4(k2﹣4k)=16>0,所以方程有两个不相等的实数根;(2)解:由于AB与AC不相等,则AB=BC=6或AC=BC=6,把x=6代入方程得36﹣6(2k﹣4)+k2﹣4k=0,整理得k2﹣16k+60=0,解得k1=10,k2=6,当k=10时,方程化为x2﹣8x+60=0,方程的另一个根为10;当k=6时,方程化为x2﹣8x+12=0,方程的另一个根为2;所以k的值为10或6.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式和三角形三边的关系.22.【考点】LO:四边形综合题.【解答】解:(1)如图1,连结AC、BD.∵AB,BC的中点分别为P,Q,∴PQ为△ABC的中位线,∴PQ∥AC,PQ=AC,同理MN∥AC.MN=AC.∴MN=PQ,MN∥PQ,∴四边形PQMN为平行四边形,(2)①四边形PQMN是菱形;如图2,连接AC,BD,∵△ADE和△BCE都是等边三角形,∴AE=DE,CE=BE,∠AED=∠BEC=60°,∴∠AEC=∠DEB,∴△AEC≌△DEB,∴AC=BD,∵点M,N是AD,CD的中点,∴MN是△ADC的中位线,∴MN=AC,同理:PN=BD,∴MN=PN,由(1)知,四边形MNPQ是平行四边形,∴平行四边形MNPQ是菱形;②如图3,连接BD,过点D作DF⊥AB于F,∵△ADE是等边三角形,且AE=5,∴EF=AE=,∵DF=EF=,∵BE=4,∴BF=EF+BE=在Rt△BFD中,根据勾股定理得,BD==,由①知,PN=BD=,由①知,四边形PQMN是菱形,∴四边形PQMN的周长=4PN=2.【点评】此题是四边形的综合题,主要考查了三角形的中位线定理,平行四边形的判定,菱形的判定,全等三角形的判定和性质,勾股定理,解(1)的关键是判断出PQ∥AC,PQ=AC,解(2)的关键是判断出△AEC≌△DEB,以及构造直角三角形,是一道中等难度的中考常考题.23.【考点】LO:四边形综合题.【解答】解:(1)如图1中,连接PD、DM.∵四边形ABCD是正方形,∴AB=CB=CD=AD=2,∠BAD=90°,在Rt△ADM中,DM===,∵B、D关于AC对称,∴PB=PD,∴PB+PM=PD+PM,在△PDM中,易知PD+PM≤DM,∴PM+PB≥,∴PM+PB的最小值为.(2)如图2中,取AD的中点F,连接PF、FN,作NH⊥AD于H.易知四边形NHDC是矩形,∵CN=DH=,DF=1,∴FH=DF﹣DH=1﹣=,在Rt△FNH中,FN==,∵AM=BM,AF=FD,∴M、F关于AC对称,∴PM=PF,∴PM+PN=PF+PN,在△PFN中,PF+PN≥FN,∴PM+PN≥,∴PM+PN的最小值为.(3)如图3中,在AD上取一点N,使得AN=AM2,连接NM1、NP2、DM1、DP1.在Rt△ANM1中,NM1==,在Rt△ADM1中,DM1==,∵N、M2关于AC对称,∴P2N=P2M2,∴P2M+P2M1=P2N+P2M1≥NM1,∴P2M+P2M1的最小值为,同理,P1B+P1M1═P1D+P1M1≥DM1,∴P1B+P1M1的最小值为,∴(P1B+P1M1)2+(P2M1+P2M2)2的最小值=+=8.【点评】本题考查正方形的性质、两点之间线段最短、勾股定理、轴对称等知识,解题的关键是灵活运用轴对称解决最值问题,属于中考常考题型.。
2021-2022学年浙江省杭州市高二下学期开学测试数学试题(解析版)
![2021-2022学年浙江省杭州市高二下学期开学测试数学试题(解析版)](https://img.taocdn.com/s3/m/628c4878a88271fe910ef12d2af90242a895abc6.png)
2021-2022学年浙江省杭州市高二下学期开学测试数学试题一、单选题1.直线210x y -+=的一个方向向量是( ) A .()2,1 B .()1,2 C .()2,1- D .()1,2-【答案】A【分析】在直线上任取两个不重合的点,可得出直线的一个方向向量. 【详解】在直线210x y -+=上取点()1,0A -、()1,1B , 故直线210x y -+=的一个方向向量为()2,1AB =. 故选:A.2.双曲线2212x y -=的离心率是( )ABC .32D【答案】B【分析】根据方程求出基本量后可求离心率. 【详解】由题设可得a c ===e ==故选:B3.在等比数列{an }(an ∈R )中,若a 3a 5a 7a 9a 11=243,则2911a a 的值为( )A .9B .1C .2D .3【答案】D【分析】根据等比数列的性质,先求得7a ,再转化目标式,即可求得结果.【详解】因为{}n a 是等比数列,a 3a 5a 7a 9a 1157243a ==,故可得73a =;又29711a a a =⨯,故297113a a a ==. 故选:D .4.设平面α与平面β相交于直线l ,直线a 在平面α内,直线b 在平面β内,且b ⊥l ,则“α⊥β”是“a ⊥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【分析】利用线面位置关系的判定定理和性质定理,结合充分条件、必要条件的判定方法,即可求解.【详解】由题意,若,,b b l αββ⊥⊂⊥且l αβ=,根据面面垂直的性质定理,可得b α⊥,又由a α⊂,所以a b ⊥,即充分性成立;反之:若a α⊂且//a l ,因为b l ⊥,所以此时a b ⊥,但平面α与平面β不一定垂直, 所以必要性不成立,所以αβ⊥是a b ⊥的充分不必要条件. 故选:A.5.已知向量(2,0,1)n =为平面α的法向量,点(1,2,1)A -在α内,则点(1,2,2)P 到平面α的距离为( )A B C .D 【答案】B【分析】直接利用点到面的距离的向量求法求解即可 【详解】因为(1,2,1)A -,(1,2,2)P 所以(2,0,1)PA =--,因为平面α的法向量(2,0,1)n =,所以点P 到平面α的距离|||4||PA n d n ⋅-===故选:B【点睛】此题考查利用向量求点到面的距离,属于基础题6.已知AB 是椭圆22194x y +=一条弦,且弦AB 与直线l :230x y +-=垂直,P 是AB 的中点,O 为椭圆的中心,则直线OP 的斜率是( ) A .49B .49-C .29D .29-【答案】D【分析】根据给定条件设出直线AB 方程,再与椭圆方程联立求出点P 的坐标即可计算作答.【详解】依题意,弦AB 不过点O ,而弦AB 与直线l :230x y +-=垂直,则设直线AB :2y x m =+ (0)m ≠,由2224936y x m x y =+⎧⎨+=⎩消去y 得:2240369360x mx m ++-=, 2222Δ363640(4)144(40)0m m m =-⨯-=-->,即210210m -<<,且0m ≠,设点1122(,),(,)A x y B x y ,则12910m x x +=-,于是得弦AB 中点9(,)2010m mP -, 所以直线OP 的斜率是2109920mk m ==--.故选:D7.通项公式为an =an 2+n 的数列{an },若满足a 1<a 2<a 3<a 4<a 5,且an >an +1对n ≥8恒成立,则实数a 的取值范围是( ) A .11,917⎛⎫-- ⎪⎝⎭B .11,916⎛⎫-- ⎪⎝⎭C .11,1016⎛⎫-- ⎪⎝⎭D .11,1017⎛⎫-- ⎪⎝⎭【答案】A【分析】根据题设条件判断出0a <,再结合对称轴可得实数a 的取值范围. 【详解】因为12345a a a a a <<<<,则14293164255a a a a a +<+<+<+<+, 故19a >-,而1n n a a +>对任意的8n ≥恒成立,故0a <且18922a +-<, 即117a <-, 故选:A.8.如图,设正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 是正方体ABCD -A 1B 1C 1D 1的侧面ADD 1A 1上的一个动点(含边界),M 是棱CC 1的中点.若2PM =,则点P 在侧面ADD 1A 1上运动路径的长度是( )A .π6B .π4C .π3D .π2【答案】C【分析】N 为1DD 中点,连接MN ,NP ,得到P 的轨迹为以N 为圆心,半径为1的一段圆弧,计算得到答案.【详解】如图1所示:N 为1DD 中点,连接MN ,NP ,易知MN NP ⊥,1MN =,2PM =,故1NP =,故P 的轨迹为以N 为圆心,半径为1的一段圆弧,如图2所示:121EN D N ==,故1π3D NE ∠=,同理π3DNF ∠=,故π3ENF ∠=,运动路径长度为ππ133⨯=.故选:C.二、多选题9.已知直线()2:110l a a x y ++-+=,其中a R ∈,下列说法正确的是( )A .当1a =-时,直线l 与直线0x y +=垂直B .若直线l 与直线0x y -=平行,则0a =C .直线l 的倾斜角一定大于30D .当0a =时,直线l 在两坐标轴上的截距相等 【答案】AC【分析】根据两直线平行、垂直的性质,结合倾斜角的定义、截距的定义逐一判断即可. 【详解】A :当1a =-时,直线l 的方程为10x y -+=,可化为:1y x =+,所以该直线的斜率为1,直线0x y +=的斜率为1-,因为111-⨯=-,所以这两条直线互相垂直,因此本选项说法正确;B :由直线l 与直线0x y -=平行,可得2(1)(1)110a a a ++⋅-=-⨯⇒=或1a =-,因此本选项说法不正确;C :直线l 方程可化为:()211y a a x =++-,设直线l 的倾斜角为θ,所以22133tan 1()244a a a θ=++=++≥,所以本选项说法正确; D :当0a =时,直线l 的方程为10x y -+=,当0x =时,1y =;当0y =时,1x =-, 因为11≠-,所以直线l 在两坐标轴上的截距不相等,因此本选项说法不正确, 故选:AC10.已知圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2+2x -4y =0相交于A ,B 两点,则有( ) A .公共弦AB 所在的直线方程为x -y =0B .公共弦ABC .圆O 2上到直线AB 距离等于1的点有且只有2个D .P 为圆1O 上的一个动点,则P 到直线AB 1 【答案】ACD【分析】根据两圆相交时公共弦所在直线方程的求解方法,弦长的计算公式,以及圆上一点到直线距离的最值,结合圆的性质,对每个选项进行逐一分析,即可判断和选择. 【详解】圆O 1:x 2+y 2-2x =0的圆心为()111,0,1O r =;圆O 2:x 2+y 2+2x -4y =0的圆心为()221,2,O r -=对A :两圆相交且交于,A B 两点,故AB 所在直线方程为:x 2+y 2-2x ()22240x y x y -++-=,整理得:0x y -=,故A 正确;对B :圆心()11,0O 到直线0x y -=的距离1d =,故AB =故B 错误;对C :因为2O 到直线0x y -=的距离2d =,而221r d -=<, 则圆O 2上到直线AB 距离等于1的点有且只有2个,故C 正确;对D :因为圆心()11,0O 到直线0x y -=的距离1d ==,故圆1O 上的动点P 到直线0x y -=的最大值为11d r +=,故D 正确. 故选:ACD .11.设数列{an }的前n 项和为Sn ,且满足a 1=1,12,1,n n n a n a n a +⎧⎪=⎨⎪⎩是奇数是偶数,则下列说法中正确的有( ) A .a 4=2 B .{an }是周期数列 C .a 2022=2 D .S 18=21【答案】BCD【分析】根据题意,分别求得12345,,,,,a a a a a ,得到数列{}n a 构成以11,2,,12为周期的周期数列,逐项判定,即可求解.【详解】由题意,数列{}n a 满足112,1,1,n n n a n a a n a +⎧⎪==⎨⎪⎩为奇数为偶数,当1n =时,2122a a ==;当2n =时,32112a a ==;当3n =时,4321a a ==; 当4n =时,5411a a ==;当5n =时,6522a a ==;当6n =时,76112a a ==;,归纳可得数列{}n a 构成以11,2,,12为周期的周期数列,所以A 不正确,B 正确;又由20225054222a a a ⨯+===,所以C 正确;因为12341921122a a a a +++=+++=,所以189412212S =⨯++=,所以D 正确.故选:BCD.12.知圆O 的半径为1,点A 是圆O 所在平面上的任意一点,点P 是圆O 上的任意一点,线段AP 的垂直平分线交半径OP 所在的直线于点M .当点P 在圆上运动时,则下列说法中正确的是( )A .当点A 与点O 重合时,动点M 的轨迹是一个圆B .当点A 在圆内且不同于点O 时,动点M 的轨迹是椭圆,且该椭圆的离心率e 随着OA 的增大而增大C .当点A 在圆上且不同于点P 时,动点M 的轨迹不存在D .当点A 在圆外时,动点M 的轨迹是双曲线,且该双曲线的离心率e 随着OA 的增大而增大 【答案】ABD【分析】根据题意,分点O 与A 重合、点A 为O 内一定点时且O 与A 不重合,点A 在O 上和点A 为O 外一定点,四种情况讨论,结合圆、椭圆、双曲线的定义和离心率的定义,逐项判定,即可求解.【详解】①当O 与A 重合时,可得12MO =,根据圆的定义可得点M 的轨迹是以O 为圆心,半径为12的圆,所以A 正确;②当点A 为O 内一定点时,点P 为O 上一动点, 线段AP 的垂直平分线交半径OP 于点M ,可得MA MP =,则1MA MO MP MO OP +=+==, 即动点M 到两定点,O A 的距离之和为定值,当O 与A 不重合时,根据椭圆的定义,可得点M 的轨迹是以,O A 为焦点的椭圆, 其中21,2a c OA ==,即1,22OA a c ==,则离心率c e OA a ==,所以该椭圆的离心率e 随着OA 的增大而增大,所以B 正确; ③当点A 为圆上一点时,此时点M 的轨迹为圆心O ,所以C 不正确; ④当点A 为O 外一定点时,点P 为O 上一动点, 线段AP 的垂直平分线交半径OP 于点M ,可得MA MP =,则1MA MO MP MO OP -=-==, 即即动点M 到两定点,O A 的距离之差为定值,根据双曲线的定义知,点M 的轨迹是以,O A 为焦点,OA 为实轴长的双曲线, 其中21,2a c OA ==,即1,22OA a c ==,则离心率c e OA a ==,所以该双曲线的离心率e 随着OA 的增大而增大,所以D 正确. 故选:ABD. 三、填空题13.已知双曲线22221x y a b -=(a >0,b >0)的离心率为2,则该双曲线的渐近线方程为__________.【答案】y =【分析】根据离心率求得ba,即可求得渐近线方程.【详解】因为双曲线22221x y a b -=的离心率为2,则2=,解得b a =故双曲线的渐近线方程为y =.故答案为:y =.14.斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________. 【答案】163【分析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果.【详解】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F , 又∵直线AB 过焦点F 且斜率为3,∴直线AB 的方程为:3(1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=, 解法一:解得121,33x x ==所以212116||1||13|3|33AB k x x =+-=+⋅-=解法二:10036640∆=-=> 设1122(,),(,)A x y B x y ,则12103x x +=, 过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示. 12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:163【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题.15.在数列{an }中,Sn 为它前n 项和,已知a 2=1,a 3=6,且数列{an+n }是等比数列,则Sn =__________.【答案】23122n n n ++-【分析】根据题意,利用等比数列的基本量求得n a ,利用分组求和法即可求得结果. 【详解】令n n b a n =+,由题可知:223323,39b a b a =+==+=,又{}n b 为等比数列,设其公比为q , 故323b q b ==,211bb q==,故13n n n b a n -==+,解得13n n a n -=-+; 则()()()()211123333n n S n -=-++-++-+++-+()()211231333n n -=-+++++++++()113213n n n +-=-+=-23122n n n ++-. 故答案为:23122n n n ++-. 16.如图,在四棱台ABCD A B C D ''''-中,3AA '=,60BAD BAA DAA ''∠=∠=∠=︒,则()(),AC xAB y ADx y R '-+∈的最小值是__________.【答案】6【分析】先判断出()(),AC xAB y ADx y R '-+∈的最小值为四棱台的高,添加如图所示的辅助线后可求四棱台的高,从而可得所求的最小值.【详解】如图,设xAB y AD AE +=,则E ∈平面ABCD ,故()AC xAB y AD AC AE EC '''-+=-=, EC '的最小值即为四棱台的高.如下图,过A '作A G AD '⊥,垂足为G ,过A '作A H AB '⊥,垂足为H ,过A '作AO '⊥平面ABCD ,垂足为O ,连接,OG OH ,则332A G A H ''==,32AG AH ==,因为90GOA HOA ''∠=∠=︒,A O A O ''=,故A GO A HO ''≅,故OG OH =,而AO AO =,故AOG AOH ≅,所以30GAO HAO ∠=∠=︒, 因为AH ⊂平面ABCD ,故A O AH '⊥,而A OA H A '''=,故AB ⊥平面A HO ',因OH ⊂平面A HO ',故AB OH ⊥,故32332AO ==,故6A O '=即EC '的最小值为6,故答案为:6.【点睛】思路点睛:在空间向量中,对于含参数的向量的模的最值问题,应该根据几何体的特征合理转化向量,从而把最值问题归结为距离问题. 四、解答题17.如图,在四面体OABC 中,M 是棱OA 上靠近A 的三等分点,N 是棱BC 的中点,P 是线段MN 的中点.设OA a =,OB b =,OC c =.(1)用a ,b ,c 表示向量OP ;(2)若1a b c ===,且满足 (从下列三个条件中任选一个,填上序号:①,,,3π===a b b c c a ;②,,,,32ππ===a b c a b c ;③2,,,,23a b c a b c ππ===,则可求出OP 的值;并求出OP 的大小.【答案】(1)111344OP a b c =++(2)①67||12OP ⇒=②58||12OP ⇒=③5||12OP ⇒=【分析】(1)连接ON 由 ()121232⎡⎤=++⎢⎥⎣⎦O OA OB P OC 可得答案;(2)选①,对111344=++a b P c O 两边平方代入已知再开方可得答案;选②,对111344=++a b P c O 两边平方代入已知再开方可得答案;③对111344=++a b P c O 两边平代入已知再开方可得答案.【详解】(1)连接ON ,因为N 是棱BC 的中点,所以()12=+OM ON OP ,因为 M 是棱OA 上靠近A 的三等分点,所以 ()()121121111232232344⎡⎤⎡⎤=++=++=++⎢⎥⎢⎥⎣⎦⎣⎦OA OC OB a c b O a P b c . (2)选①,,,3π===a b b c c a ,因为1a b c ===,111344=++a b P c O ,所以()()22222111111111344944668⎛⎫⎛⎫⎛⎫=++=+++⋅+⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭O a b c a b c a b a c P c b111111116798626282144=++⨯+⨯+⨯=,所以6712=OP ; 选②,,,,32ππ===a b c a b c ,因为1a b c ===,111344=++a b P c O ,所以()()22222111111111344944668⎛⎫⎛⎫⎛⎫=++=+++⋅+⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭O a b c a b c a b a c P c b1111112998626272=++⨯+⨯=,所以5812=OP ; ③2,,,,23ππ===a b c a b c ,因为1a b c ===,111344=++a b P c O ,所以()()22222111111111344944668⎛⎫⎛⎫⎛⎫=++=+++⋅+⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭O a b c a b c a b a c P c b1111259882144=+-⨯=,所以512=OP . 18.设O 为坐标原点,曲线222610x y x y ++-+=上有两点P Q 、,满足关于直线40x my ++=对称,又满足0OP OQ ⋅= .(1)求m 的值; (2)求直线PQ 的方程. 【答案】(1)-1;(2)1y x =-+.【分析】(1)曲线222610x y x y ++-+=上有两点P Q ,,满足关于直线1340m -++=对称,因为曲线是圆,可得直线过圆心,可求m 的值;(2) 设()()1122,,P x y Q x y 、,PQ 方程为y x b =-+,直线方程与圆的方程联立,结合韦达定理,以及0OP OQ ⋅=,可得2210b b -+=,解方程,可求直线PQ 的方程.【详解】(1)()()22222610139x y x y x y ++-+=⇔++-=, 所以曲线为以()1,3-为圆心,3为半径的圆, 由已知,直线过圆心,所以1340m -++=, 解之得1m =-.(2)设:PQ y x b =-+,联立方程组222610x y x y y x b ⎧++-+=⎨=-+⎩, 得()22224610x b x b b +-+-+=,设()()1122,,P x y Q x y 、,则有21212614,2b b x x b x x -++=-=, 又0OP OQ ⋅=,所以12120x x y y +=,即()2121220x x b x x b -++=,将21212614,2b b x x b x x -++=-=代入上式得2210b b -+=,所以1b =,所以直线PQ 的方程为:1y x =-+.【点睛】本题主要考查直线与圆锥曲线的位置关系的相关问题,意在考查学生理解力、分析判断能力以及综合利用所学知识解决问题能力和较强的运算求解能力,其常规思路是先把直线方程与圆锥曲线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单. 19.已知正项数列{an }的前n 项和为Sn ,且2a 1Sn =an 2+an . (1)求数列{an }的通项公式;(2)若13nn n b a ⎛⎫=⋅ ⎪⎝⎭,求数列{bn }的前n 项和Tn .【答案】(1)an =n (2)323443n nn T +=-⋅ 【分析】(1)由n S 与n a 的关系结合等差数列的定义得出数列{an }的通项公式; (2)利用错位相减法得出数列{bn }的前n 项和Tn .【详解】(1)由题意得,当n =1时,2a 12=a 12+a 1,又an >0,∴a 1=1, 当n ≥2时,由2Sn =an 2+an 得2Sn -1=an -12+an -1两式相减得2an =an 2-an -12+an -an -1,即(an +an -1)(an -an -1-1)=0, 又an >0,∴an -an -1=1,∴数列{an }是以1为首项,1为公差的等差数列,∴an =n ;(2)由(1)得13nn b n ⎛⎫=⋅ ⎪⎝⎭1211112333nn T n ⎛⎫⎛⎫⎛⎫∴=⨯+⨯++⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭则2311111112(1)33333nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯++-⋅+⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭两式相减可得121111133211111133333313nn n n n T n n ++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎣⎦=+++-⋅-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-= 323443n nn T +∴=-⋅ 20.已知抛物线C :y 2=2px 过点P (1,1).过点10,2⎛⎫⎪⎝⎭作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点. (1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.【答案】(1)抛物线C 的焦点坐标为104⎛⎫⎪⎝⎭, ,准线方程为x =-14;(2)见解析.【详解】试题分析:(Ⅰ)代入点P 求得抛物线的方程,根据方程表示焦点坐标和准线方程;(Ⅱ)设直线l 的方程为12y kx =+(0k ≠),与抛物线方程联立,再由根与系数的关系,及直线ON 的方程为22y y x x =,联立求得点B 的坐标为2112(,)y x x x ,再证明1211220x y y x x +-=. 试题解析:(Ⅰ)由抛物线C :22y px =过点P (1,1),得12p =. 所以抛物线C 的方程为2y x =.抛物线C 的焦点坐标为(14,0),准线方程为14x =-.(Ⅱ)由题意,设直线l 的方程为12y kx =+(0k ≠),l 与抛物线C 的交点为()11,M x y ,()22,N x y .由212y kx y x⎧=+⎪⎨⎪=⎩,得()2244410k x k x +-+=. 则1221k x x k -+=,12214x x k=.因为点P 的坐标为(1,1),所以直线OP 的方程为y x =,点A 的坐标为()11,x y .直线ON 的方程为22y y x x =,点B 的坐标为2112,y y x x ⎛⎫ ⎪⎝⎭. 因为 21122112112222y y y y y y x x y x x x +-+-= 122112211222kx x kx x x x x ⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭= ()()122121222k x x x x x -++=()222112242k k k k x --⨯+=0=,所以211122y y y x x +=. 故A 为线段BM 的中点.【名师点睛】本题考查了直线与抛物线的位置关系,考查了转化与化归能力,当看到题目中出现直线与圆锥曲线时,不需要特殊技巧,只要联立直线与圆锥曲线的方程,借助根与系数的关系,找准题设条件中突显的或隐含的等量关系,把这种关系“翻译”出来即可,有时不一定要把结果及时求出来,可能需要整体代换到后面的计算中去,从而减少计算量.21.如图,在梯形ABCD 中//AB CD ,2AD CD CB ===,60ABC ∠=︒,矩形ACFE 中,2AE =,又有22BF =.(1)求证:BC ⊥平面ACFE ;(2)求直线BD 与平面BEF 所成角的正弦值. 【答案】(1)证明见解析;(26【分析】(1)在梯形ABCD 中,通过计算得出AC BC ⊥,由勾股定理逆定理得CB CF ⊥,从而 证线面平行;(2)以C 为坐标原点,以CA 所在直线为x 轴,以CB 所在直线为y 轴建立空间直角坐标系,用空间向量法求线面角.【详解】证明:(1)在梯形ABCD 中//AB CD ,2AD CD CB ===,60ABC ∠=︒, ∴四边形ABCD 是等腰梯形,120ADC =∠︒ ∴30DCA DAC ∠=∠=︒,120DCB ∠=︒, ∴90ACB DCB DCA ∠=∠-∠=︒,∴AC BC ⊥又∵矩形ACFE 中,2CF AE ==,又有22BF =,2CB =,∴CB CF ⊥, 又∵AC CF C ⋂=∴BC ⊥平面ACFE ,(2)以C 为坐标原点,以CA 所在直线为x 轴,以CB 所在直线为y 轴建立空间直角坐标系:()0,0,0C ,()0,2,0B ,()0,0,2F ,)3,1,0D-,()23,0,2E .所以()23,0,0EF =-,()0,2,2BF =-,…设平面BEF 的法向量为(),,n x y z =,所以00n EF n BF ⎧⋅=⎨⋅=⎩∴230220n EF x n BF y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,令1y =,则0x =,1z =,∴()0,1,1n =,()3,3,0BD =-,6cos ,||4BD n BD n BD n⋅<>==⋅ ∴直线BD 与平面BEF 6 【点睛】本题考查证明线面垂直,考查用空间向量法求直线与平面所成的角.掌握线面垂直的判定定理是解题基础,建立空间直角坐标系,把几何问题转化为计算问题. 22.已知椭圆C 的中心在原点,一个焦点(2F 2. (1)求椭圆C 的方程;(2)若椭圆C 在第一象限的一点P 的横坐标为1,过点P 作倾斜角互补的两条不同的直线P A ,PB 分别交椭圆C 于另外两点A ,B ,求证:直线AB 的斜率为定值; (3)在(2)的条件下,求△P AB 面积的最大值.【答案】(1)22142y x +=(2)证明见解析【分析】(1)求出,,a b c 后可得椭圆方程.(2)设PB 的斜率为k ,联立直线方程和椭圆方程,利用韦达定理用k 表示,A B 的坐标,从而可证斜率为定值.(3)结合(2)可设直线AB的直线方程为y m =+,联立直线方程和椭圆方程,利用弦长公式可求AB ,利用距离公式和面积公式可得面积的表达式,利用基本不等式可求面积的最大值.【详解】(1)设椭圆C 的方程为22221(0)y x a b a b+=>>由题意222:a b c a b c ⎧=+⎪⎪=⎨⎪=⎪⎩ 解得a 2=4,b 2=2.所以椭圆C 的方程为22142y x +=.(2)由(1)可得点(P由题意知,两直线P A ,PB 的斜率必存在,设PB 的斜率为k , 则PB的直线方程为()1y k x =-.由()22124y k x y x ⎧-⎪⎨+=⎪⎩得,()))2222240k x k k x k+++-=.设A (xA ,yA ),B (xB ,yB ),则1B x ⨯=B x =同理可得A x =.则A B x x -=,()()28112A B A Bk y y k x k x k -=----=+, 所以直线AB的斜率A BABA By y k x x -==- (3)设AB的直线方程为y m =+ ,根据点到直线的距离公式可得P 到直线AB的距离为d =,由2224y m y x ⎧=+⎪⎨+=⎪⎩可得22440x m ++-=, 由26480m ∆=->可得m -<<又AB =故221412224PAB m mS+-===当且仅当24m =即2m =±时等号成立, 所以△P AB。
数学2016-2017学年度第一学期期末考试试题
![数学2016-2017学年度第一学期期末考试试题](https://img.taocdn.com/s3/m/0f0eb8820029bd64783e2cf9.png)
2016-2017学年度第一学期期末考试试题一、细心选一选.(每小题3分,共30分)1.在下列各式的计算中,正确的是 ( ).A .5x 3·(-2x 2)=-10x 5B .4m 2n-5mn 2 = -m 2nC .(-a)3÷(-a) =-a 2D .3a+2b=5ab2.点M 1(a-1,5)和M 2(2,b-1)关于x 轴对称,则a,b 的值分别为( ).A .3,-2B .-3,2C .4,-3D .3,-4 3.下列图案是轴对称图形的有 ( ).A. 1个 B .2个 C .3个 D .4个4.下列说法正确的是( ).A .等腰三角形任意一边的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形的一边不可以是另一边的两倍D .等腰三角形的两底角相等5.如图所示,下列图中具有稳定性的是( ).6.下列各组线段中,能组成三角形的是( ).A . a=2,b=3,c=8B .a=7,b=6,c=13C . a=12,b=14,c=18D .a=4,b=5,c=67.下列多项式中,能直接用完全平方公式因式分解的是( ).A. x 2+2xy- y 2B. -x 2+2xy+ y 2C. x 2+xy+ y 2D. 42x -xy+y 28.在△ABC 和△DEF 中,给出下列四组条件:(1) AB=DE, BC=EF, AC=DF(2) AB=DE, ∠B=∠E, BC=EF (3)∠B=∠E , BC=EF, ∠C=∠FDC B A(4) AB=DE, AC=DF, ∠B=∠E 其中能使△ABC ≌△DEF 的条件共有 ( ).A.1组B.2组C.3组D.4组9.已知 a=833, b=1625, c=3219, 则有( ).A .a <b <cB .c <b <aC .c <a <bD .a <c <b10.如图,在直角△ABC 中,∠ACB=90°,∠A 的平分线交BC 于D .过C 点作CG ⊥AB 于G, 交AD 于E, 过D 点作DF ⊥AB 于F.下列结论:(1)∠CED=∠CDE (2)∠ADF=2∠FDB (3)CE=DF (4)△AEC 的面积与△AEG 的面积比等于AC:AG其中正确的结论是( ).A .(1)(3)(4)B .(2)(3)C .(2) (3)(4)D .(1)(2)(3)(4)二、耐心填一填.(每小题3分,共30分)11.实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为0.00000156m ,这个数用科学记数法表示为__________ m. 12. 如果把分式yx x+2中的x 和y 都扩大5倍,那么分式的值 . 13.已知ab=1,m =a +11+b+11 ,则m 2016的值是 . 14.如果一个多边形的边数增加一条,其内角和变为1260°,那么这个多 边形为 边形.15.如图,若△ACD 的周长为19cm , DE为AB 边的垂直平分线,则 AC+BC= cm.16.若(x-1)0-2(3x-6)-2有意义,则x 的取值范围是 .17.如图,在直角△ABC 中,∠BAC=90°,AD ⊥BC 于D ,将AB 边沿AD 折叠, 发现B 的对应点E 正好在AC 的垂 直平分线上,则∠C= .18.如图,在△ABC 中,∠A=50°,点D 、E 分别在AB ,AC 上,EF 平分∠CED ,DF 平分∠BDE ,则 ∠F = .19.已知等腰△ABC ,AB=AC,现将△ABC 折叠,使A 、B 两点重合,折痕所在的直 线与直线AC 的夹角为40°,则∠B 的 度数为 .E DCBAGFEDCBAF EDC BA EDCBA20.如图,在△ABC 中,AB=AC,点D 在AB 上,过点D 作DE ⊥AC 于E ,在BC 上取一点F , 且点F 在DE 的垂直平分线上,连接DF , 若∠C=2∠BFD ,BD=5,CE=11,则BC 的 长为 . 三、用心答一答.(60分) 21.(9分)(1) 分解因式: 8xy+ (2x-y)2(2)先化简,再求值:(a+b)2- b(2a+b)- 4b ,其中a=-2, b=-43;(3)先化简,再求值:(4482+-+x x x -x -21)÷xx x 232-+,其中 x=-222.(6分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长为1,点A 、点B 和点C 在小正方形的顶点上, 请在图1、图2中各画一个四边形,满足以下要求:(1)在图1中画出以A 、B 、C 和D 为顶点的四边形,此四边形为轴 对称图形,并画出一条直线将此四边形分割为两个等腰三角形;(2)在图2中画出以A 、B 、C 和E 为顶点的四边形,此四边形为 轴对称图形,并画出此四边形的对称轴; (3)两个轴对称图形不全等.FEDCB A图1图223.(9分)已知关于x 的方程21++x x - 1-x x = )(+1-)2(x x a的解是正数, 求a 的取值范围.24.(6分) 如图,△ABC 与△ABD 都是等边三角形,点E 、F 分别在BC ,AC 上,BE=CF,AE 与BF 交于点G.(1)求∠AGB 的度数;(2)连接DG,求证:DG=AG+BG.25.(10分)百姓果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完;由于水果畅销,第二次购买时,每千克进价比第一次提高10%,用1452元所购买的数量比第一次多20kg ,以每千克9元出售100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果. (1)求第一次水果的进价是每千克多少元?(2)该果品店在这次销售中,总体是盈利还是亏损?盈利或亏损了多少元?G F E DC B A26.(10分)(1)已知3x =4y =5z ,求yx y z 5332+-的值.(2)已知6122---x x x =2+x A +3-x B,其中A 、B 为常数, 求2A+5B 的值.(3)已知 x+y+z ≠0,a 、b 、c 均不为0,且zy x+=a, x z y +=b , yx z +=c 求证:a a +1+b b +1+cc +1=127.(10分)如图1,AD//BC,AB ⊥BC 于B ,∠DCB=75°,以CD 为边的等边△DCE 的另一顶点E在线段AB 上.(1)求∠ADE 的度数; (2)求证:AB=BC ;(3)如图2,若F 为线段CD 上一点,∠FBC=30°,求DF:FC 的值.D图1E CBA D图2FE CBA。
浙江省杭州市2022-2023学年高二下学期期末数学试题(解析版)
![浙江省杭州市2022-2023学年高二下学期期末数学试题(解析版)](https://img.taocdn.com/s3/m/f0aa032e2379168884868762caaedd3383c4b5fa.png)
2022学年第二学期杭州市高二年级教学质量检测数学试题卷考生须知:1.本试卷分试题卷和答题卷两部分.满分150分,考试时间120分钟.2.请用黑色字迹的钢笔或签字笔在答题卡指定的区域(黑色边框)内作答,超出答题区域的作答无效!3.考试结束,只需上交答题卡.选择题部分(共60分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,有一项是符合题目要求的.1. 直线3210x y +−=的一个方向向量是( ) A. ()2,3− B. ()2,3C. ()3,2−D. ()3,2【答案】A 【解析】 【分析】根据直线的斜率先得到直线的一个方向向量,然后根据方向向量均共线,求解出结果.【详解】因为直线3210x y +−=的斜率为32−,所以直线的一个方向向量为31,2−,又因为()2,3−与31,2−共线,所以3210x y +−=的一个方向向量可以是()2,3−, 故选:A.2. 若{},,a b c是空间的一个基底,则也可以作为该空间基底的是( )A. ,,b c b b c +−−B. a ,a b + ,a b −C. a b + ,a b − ,cD. ,,a b a b c c +++【答案】C 【解析】【分析】根据空间基底的概念逐项判断,可得出合适的选项.【详解】对选项A :()b c b c −−=−+,因此向量,,b c b b c +−−共面,故不能构成基底,错误;对选项B :()()12a a b a b =++−,因此向量a ,a b + ,a b −共面,故不能构成基底,错误; 对选项C :假设()()c a b a b λµ=++− ,即()()c a b λµλµ=++− ,这与题设矛盾,假设不成立,可以构成基底,正确;对于选项D :()a b c a b c ++=++,因此向量,,a b a b c c +++共面,故不能构成基底,错误; 故选:C3. “巴赫十二平均律”是世界上通用的音乐律制,它与五度相生律、纯律并称三大律制.“十二平均律”将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.而早在16世纪,明代朱载最早用精湛的数学方法近似计算出这个比例,为这个理论的发展做出了重要贡献.若第一个单音的频率为f ,则第四个单音的频率为( ) A. 5f B. 142fC. 4fD. 132f【答案】B 【解析】【分析】先将所要解决的问题转化为:求首项为f ,公比为的等比数列的第4项,再利用等比数列的通项公式求得结果即可.【详解】由题设可得:依次得到的十三个单音构成首项为f ,公比为的等比数列{}n a , 第四个单音的频率为31442a f f =×=. 故选:B.4. “点(),a b 在圆221x y +=外”是“直线20ax by ++=与圆221x y +=相交”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B 【解析】【分析】求出给定的两个命题的充要条件,再分析即可判断得解. 【详解】命题p :点(),a b 在圆221x y +=外等价于221a b +>,命题q :直线20ax by ++=与圆221x y +=2214a b <⇔+>,从而有,p q q p ⇒ ,所以p 是q 必要不充分条件. 故选:B5. 第19届亚运会将于2023年9月23日在杭州开幕,因工作需要,还需招募少量志愿者.甲、乙等4人报名参加了“莲花”、“泳镜”、“玉琮”三个场馆的各一个项目的志愿者工作,每个项目仅需1名志愿者,每人至多参加一个项目.若甲不能参加“莲花”场馆的项目,则不同的选择方案共有( ) A. 6种 B. 12种 C. 18种 D. 24种【答案】C 【解析】【分析】先从除甲外的3人中选1人参加“莲花”场馆的项目,再安排另外两个项目,利用排列、组合知识计算求解.【详解】先从除甲外的3人中选1人参加“莲花”场馆的项目,再安排另外两个项目, 若甲不能参加“莲花”场馆的项目,则不同的选择方案共有122332C C A 18=种. 故选:C.6. A ,B 两个学科兴趣小组在实验室研究某粒子的运动轨迹,共同记录到粒子的一组坐标信息(),i i x y .A小组根据表中数据,直接对(),x y 作线性回归分析,得到:回归方程ˆ0.46990.235yx +,决定系数20.8732R =.B 小组先将数据按照变换2u x =,2v y =进行整理,再对u ,v 作线性回归分析,得到:回归方程ˆ0.50060.4922v u =−+,决定系数20.9375R =.根据统计学知识,下列方程中,最有可能是该粒子运动轨迹方程的是( )A. 0.46990.2350x y −+=B. 0.50060.49220x y +−=C. 220.500610.49220.4922x y +=D. 220.500610.49220.4922x y +=【答案】C 【解析】【分析】由统计学知识可知,2R 越大,拟合效果越好,由此可得回归方程,整理得结论. 【详解】由统计学知识可知,2R 越大,拟合效果越好,又A 小组的决定系数20.8732R =,B 小组的决定系数20.9375R =,B ∴小组的拟合效果好,则回归方程为ˆ0.50060.4922vu =−+, 的又2222,,0.50060.4922u x v y y x ==∴=−+,即220.500610.49220.4922x y +=.故选:C .7. 设A ,B ,C ,D 是半径为1的球O 的球面上的四个点.设0OA OB OC ++=,则AD BD CD ++不可能等于( )A. 3B.72C. 4D. 【答案】A 【解析】【分析】根据条件,得到3AD BD CD ++=,利用AD BD CD AD BD CD AD BD CD →→→→→→++≤++=++判断等号成立条件,确定AD BD CD ++不可能取的值.【详解】因为()()()3()3AD BD CD OD OA OD OB OD OC OD OA OB OC OD →→→→→→→→→→→→→→++=−+−+−=−++=,且1OD =,所以3AD BD CD ++=, 而AD BD CD AD BD CD AD BD CD →→→→→→++≤+=++,当且仅当,,AD BD CD →→→同向时,等号成立,而A ,B ,C ,D 在球面上,不可能共线,即,,AD BD CD →→→不同向,所以3AD BD CD AD BD CD ++>++=且,,AD BD CD 均小于直径长2,即6AD BD CD ++<, 综上,36AD BD CD <++<. 根据选项可知A 不符合. 故选:A8. 设椭圆2222:1(0)x y C a b a b +=>>的左右焦点分别为1F ,2F ,P 是椭圆上不与顶点重合的一点,记I 为12PF F △的内心.直线PI 交x 轴于A 点,14OA c =,且212116PF PF a ⋅= ,则椭圆C 的离心率为( )A.12B.C.34D.【答案】B 【解析】【分析】先利用角平分线性质得到112253PF F A PF AF ==,设15PF t =,则23PF t =,根据椭圆定义得到4at =,然后利用平面向量的数量积和余弦定理即可求解. 【详解】不妨设点P 位于第一象限,如图所示,因为I 为12PF F △的内心,所以PA 为12F PF ∠的角平分线,所以1122PF F APF AF =,因为14OA c = ,所以112253PF F A PF AF ==, 设15PF t =,则23PF t =,由椭圆的定义可知,1282PF PF t a +==, 可得4at =,所以154a PF =,234a PF =,又因为11221122253cos c 41o 1s 46F P P a F PF PF PF F a F a F P ∠=×⋅∠=⋅=⋅ ,所以121cos 15F PF ∠=,在12PF F △中,由余弦定理可得, 222212121221217418cos 152158a c PF PF F F PF F a PF PF −+−∠===, 所以222a c =,则e =, 故选:B.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 若函数()f x 导函数的部分图像如图所示,则( )A. 1x 是()f x 的一个极大值点B. 2x 是()f x 的一个极小值点C. 3x 是()f x 的一个极大值点D. 4x 是()f x 的一个极小值点 【答案】AB 【解析】【分析】根据导函数值正负,与原函数单调性之间的关系,进行逐一判断.【详解】对于A 选项,由图可知,在1x 左右两侧,函数()f x 左增右减,1x 是()f x 的一个极大值点,A 正确.对于B 选项,由图可知,在2x 左右两侧,函数()f x 左减右增,2x 是()f x 的一个极小值点,B 正确. 对于C 选项,由图可知,在3x 左右两侧,函数()f x 单调递增,3x 不是()f x 的一个极值点,C 错误. 对于D 选项,由图可知,在4x 左右两侧,函数()f x 左增右减,4x 是()f x 的一个极大值点,D 错误. 故选:AB.10. 抛掷一枚质地均匀的骰子(六个面上的数字是1、2、3、4、5、6),抛掷两次.设事件:A “两次向上的点数之和大于7”,事件:B “两次向上的点数之积大于20”,事件:C “两次向上的点数之和小于10”,则( )A. 事件B 与事件C 互斥B. ()572P AB =C. ()25P B A = D. 事件A 与事件C 相互独立【答案】AC 【解析】【分析】列举出事件A 、B 、C 所包含的基本事件,利用互斥事件的定义可判断A 选项;利用古典概型的概率公式可判断B 选项;利用条件概率公式可判断C 选项;利用独立事件的定义可判断D 选项.【详解】抛掷一枚质地均匀的骰子(六个面上的数字是1、2、3、4、5、6),抛掷两次, 设第一次、第二次抛掷骰子正面朝上的点数分别为m 、n , 以(),m n 为一个基本事件,则基本事件的总数为2636=,事件A 包含的基本事件有:()2,6、()3,5、()3,6、()4,4、()4,5、()4,6、()5,3、()5,4、()5,5、()5,6、()6,2、()6,3、()6,4、()6,5、()6,6,共15种,事件B 包含的基本事件有:()4,6、()5,5、()5,6、()6,4、()6,5、()6,6,共6种, 事件C 包含的基本事件有:()1,1、()1,2、()1,3、()1,4、()1,5、()1,6、()2,1、()2,2、()2,3、()2,4、()2,5、()2,6、()3,1、()3,2、()3,3、()3,4、()3,5、 ()3,6、()4,1、()4,2、()4,3、()4,4、()4,5、()5,1、()5,2、()5,3、()5,4、()6,1、()6,2、()6,3,共30种,对于A 选项,事件B 与事件C 互斥,A 对;对于B 选项,事件AB 包含的基本事件有:()4,6、()5,5、()5,6、()6,4、()6,5、()6,6,共6种,所以,()61366P AB ==,B 错;对于C 选项,()()()25n AB P B An A ==,C 对; 对于D 选项,()1553612P A ==,()305366P C ==,事件AC 包含的基本事件有:()2,6、()3,5、()3,6、()4,4、()4,5、()5,3、()5,4、()6,2、()6,3,共9种,所以,()()()91364P AC P A P C ==≠⋅,D 错. 故选:AC.11. 设双曲线222:1(0)4x y C a a a a −=>−+,直线l 与双曲线C 的右支交于点A ,B ,则下列说法中正确的是( )A. 双曲线C 离心率的最小值为4B. 离心率最小时双曲线C 0y ±=C. 若直线l 同时与两条渐近线交于点C ,D ,则AC BD =D. 若1a =,点A 处的切线与两条渐近线交于点E ,F ,则EOF S △为定值 【答案】BCD 【解析】【分析】由离心率公式,结合基本不等式可判断A ;根据2a =可得双曲线方程,然后可得渐近线方程,可判断B ;将问题转化为AB 的中点与CD 的中点是否重合的问题,设直线方程,联立渐近线方程求C ,D 坐标,再由点差法求AB 的中点坐标,然后可判断C ;结合图形可知EOFOEP OFQ EFQP S S S S =−− 梯形,利用导数求切线方程,联立渐近线方程求E ,F 的横坐标,代入化简可判断D.【详解】由题知,22444a a a e a a a+−+==+≥,当且仅当2a =时等号成立,所以2e 的最小值为4,e的最小值为2,故A 错误;当2a =时,双曲线方程为22126x y −=,此时渐近线方程为y x =0y ±=,B 正确; 若直线l 的斜率不存在,由对称性可知AC BD =;当斜率存在时,设直线方程为y kx m =+,1122(,),(,)A x y B x y ,AB 的中点为00(,)M x y ,CD 的中点为33(,)N x y则22112222221414x y a a a x y a a a −= −+ −=−+,由点差法可得2004y a a k x a −+⋅=,所以2004kx m a a k x a +−+⋅=, 所以0224amkx a a ak=−+−,又双曲线渐近线方程为y =,联立y kx m =+分别求解可得CD x x ,所以3022124amk x x a a ak =+==−+−, 所以M ,N 重合,则AC MC MA MD MB BD =−=−=,或AC MC MA MD MB BD =+=+=,故C 正确;若1a =,则双曲线方程为2214y x −=,渐近线方程为2y x =±,不妨设点A在第一象限,双曲线在第一象限的方程为y ,y ′=1)y x x −−,设点E ,F 坐标分别为(,),(,)E E F F x y x y ,分别作,EP FQ 垂直于y 轴,垂足分别为P ,Q ,E 在第一象限,F 在第四象限,则EOFOEP OFQ EFQP S S S S =−− 梯形 1111()()()2222E F E F E E F F F E E F x x y y x y x y x y x y =+−−+=− 又2,2E E F F y x y x ==−,所以1(22)22EOF F E E F E F S x x x x x x =+= ,联立渐近线方程和切线方程可解得112)2)E EF F x x x x x x −−−−− ,整理得(2(2E F x x −=−=,两式相乘得22112211(4)411E F x x x x x x −−=−−−,所以1E F x x =, 所以22EOFE F S x x == ,D 正确 故选:BCD【点睛】本题考察圆锥曲线的综合运用,C 选项需要灵活处理,将问题转化为AB 的中点与CD 的中点是否重合的问题,利用点差法和直接计算可解;D 选项需结合图象将面积灵活转化,在求解E F x x 时,要结合式子的结构特征灵活处理. 12. 已知曲线()exx f x =,()ln xg x x =,及直线y a =,下列说法中正确的是( ) A. 曲线()f x 在0x =处的切线与曲线()g x 在1x =处的切线平行 B. 若直线y a =与曲线()f x 仅有一个公共点,则1ea = C. 曲线()f x 与()g x 有且仅有一个公共点D. 若直线y a =与曲线()f x 交于点()11,A x y ,()22,B x y ,与曲线()g x 交于点()22,B x y ,()33,C x y ,则2132x x x =【答案】ACD 【解析】【分析】对与A 选项,分别求出()f x 在0x =处的切线与()g x 在1x =处的切线即可判断; 对于B 选项,求出()f x ′,即可判断出曲线()f x 的单调性,画出草图则可判断; 对于C 选项,画出曲线()f x 与()g x 的草图,即可判断;对于D 选项,借助图像可知直线y a =过曲线()f x 与()g x 的交点B ,由此即可得出12312223ln ln x x x x x x e e x x ===,则可得12ln x x =,23e x x =,2222ln e ⋅=x x x ,则可得出2132x x x =..【详解】对于A 选项:()0=0f ,()()2(e e 1e )e ′⋅−′⋅==′−x x x x x x xf x ,()01f ′=, 所以曲线()f x 在0x =处的切线为:y x =; 同理()10g =,()21ln xg x x−′=,()11g ′=,曲线()g x 在1x =处的切线为1y x =−, 即曲线()f x 在0x =处的切线与曲线()g x 在1x =处的切线平行,正确; 对于B 选项:()1ex xf x −′=,令()0f x ′=,解得1x =, 所以曲线()f x 在(,1)−∞上单调递增,在(1,)+∞上单调递减,()11=ef , 又当x →−∞时()f x →−∞,当x →+∞时()0f x →, 若直线y a =与曲线()f x 仅有一个公共点,则1ea =或0a ≤,错误; 对于C 选项:曲线()g x 的定义域为:(0,)+∞,()21ln xg x x−′=, 令()0g x ′=,解得e x =,所以()g x 在(0,e)上单调递增,在(e,)+∞上单调递减,且()110,(e)e==g g , 所以曲线()f x 与曲线()g x 的大致图像为:易知当(0,1)x ∈时,()0f x >,()0g x <,即曲线()f x 与曲线()g x 在区间(0,1)上无交点;当[1,e]x ∈时,()f x 单调递减,()g x 单调递增,且1(1)(1)0e=>=f g , 1e 1(e)e ()e −−=<=f g e ,即曲线()f x 与曲线()g x 在区间(1,e)上有一个交点;当(e,)x ∈+∞时,记()ln h x x x =−,1()1h x x′=−,当e x >时()0h x ′>恒成立, 即()h x 在(e,)+∞上单调递增,即()(e)e 10>=−>h x h ,即ln 1>>xx ,又曲线()f x 在(1,)+∞上单调递减,所以()(ln )<f x f x ,即ln ln ln e e <=x x x x x x, 即()()f x g x <恒成立,即曲线()f x 与曲线()g x 在区间(e,)+∞上没有交点; 所以曲线()f x 与()g x 有且仅有一个公共点,正确;对于D 选项:当直线y a =经过曲线()f x 与()g x 的交点时,恰好有3个公共点,且12301e x x x <<<<<,12312223ln ln x x x xx x ee x x ===, 由122()()(ln )==f x f x f x ,所以12ln x x =,由223()()(e )==xgx g x g ,所以23e xx =, 即221322ln e ⋅=⋅=xx x x x ,正确. 故选:ACD【点睛】方法点睛:判断两个函数的交点个数常用的方法:(1)直接法:直接求解方程得到方程的根,根的个数即为交点个数;(2)数形结合法:在同一平面直角坐标系中画出两个函数的图象,直接得出答案.三、填空题:本大题共4小题,每小题5分,共20分.13. ()8()x y x y −+的展开式中36x y 的系数为________.【答案】28− 【解析】【分析】利用8()x y +的展开式通项公式求3526,x y x y 项,然后可得()8()x y x y −+的展开式中36x y 项,可得答案.【详解】8()x y +的展开式通项公式818C r rr r T xy −+=,令5,6r =得5356266878C ,C T x y T x y ==, 所以()8()x y x y −+的展开式中36x y 项为()5356263688C C 28x y y x y x x y ⋅−+⋅=−,所以36x y 的系数为28−. 故答案为:28−14. 曲率是衡量曲线弯曲程度的重要指标.定义:若()f x ′是()f x 的导函数,()f x ′′是()f x ′的导函数,则曲线()y f x =在点()(),x f x 处的曲率()()()3221f x K f x =+ ′′′.已知()()cos 1ln f x x x =−−,则曲线()y f x =在点()()1,1f 处的曲率为________.【答案】0 【解析】【分析】求出原函数的导函数()f x ′与导函数的导函数()f x ′′,然后代入题中公式即可求出答案.【详解】因为()()cos 1ln f x x x =−−, 所以()()1sin 1f x x x ′=−−−,()()21cos 1f x x x′′=−−, 则()11sin011f ′=−−=−,()11cos001f ′′=−=, 所以曲线()y f x =在点()()1,1f 处的曲率为()()()()()()3322221001111f Kf ′′===+−′+.故答案为:0.15. 已知数列{}n a 满足28a =,()()1*122,nn n a n a n n −− =+≥∈ N ,数列{}n b 的前n 项和为n S ,且()()222212221log log n n n n n b a a a a +−+=⋅−⋅,则满足50n S −>的正整数n 的最小值为________.【答案】63 【解析】【分析】根据对数运算和递推公式可得数列{}n b 的通项公式,然后对数运算结合累乘法可得n S ,解不等式可得答案.【详解】因为()()1*122,nn n a n a n n −− =+≥∈ N ,280a =>, 所以()110,2n nn n a a n a −−>=+, 所以()()222212221log log n n n n n b a a a a +−+=⋅−⋅ 22212222222212121log log log n n n n n n n n a a a a a a a a +−+++−⋅=−⋅()()()()2221122log 222log 22n nn n +−−++−+()()22log 24log 22n n +−+所以()()222222224log 6log 4log 8log 6log 24log 22log 4n n S n n +=−+−+⋅⋅⋅++−+=, 因为50n S −>,所以2224log 5log 324n +>=,即2322n +>,解得62n >, 因为*n ∈N ,所以正整数n 的最小值为63. 故答案为:63 16. 设函数()2π2cos 2x f x x +=+,则使得()()12f x f x +>成立的x 的取值范围是________.【答案】5,13−【解析】【分析】利用函数的平移变换及偶函数的性质的应用,再利用导函数的正负与函数单调性的关系及绝对值不等式的解法即可求解. 【详解】由()2π2cos 2x f x x + =+ 向右平移2个单位,得()ππ2cos π2cos 22x xg x x x =+−=−为偶函数,所以()g x 关于y 轴对称, 所以()f x 关于2x =−对称, 当0x ≥时,()n ln ππ2si 222x g x x ′+=, 当[]0,2x ∈时,因为πsin 02x≥,所以()0g x ′>, 当()2,x ∈+∞时,()20ln π222g x ′>>−, 所以()g x 在上单调[)0,∞+递增,在(),0∞−上单调递减, 所以()f x 在(),2−∞−上单调递减,在()2,−+∞上单调递增,由()()12f x f x +>得1222x x ++>+,即()()22322x x +>+,解得531x <−<,所以使得()()12f x f x +>成立x 的取值范围是5,13 −.的故答案为:5,13 −.【点睛】关键点睛:解决本题的关键是利用函数的平移变换及偶函数的性质应用,再利用导数法求出函数的单调性及绝对值的解法即可.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 如图,在四面体ABCD 中,AE AB λ= ,AH AD λ= ,()1CF CB λ=−,()1CG CD λ=− ,()0,1λ∈.(1)求证:E 、F 、G 、H 四点共面. (2)若13λ=,设M 是EG 和FH 的交点,O 是空间任意一点,用OA 、OB 、OC 、OD 表示OM . 【答案】(1)证明见解析(2)42129999OM OA OB OC OD =+++【解析】【分析】(1)证明出//EH FG,即可证得结论成立;(2)由(1)可得出12EH FG = ,可得出//EH FG ,则12EM EH MG FG ==,由此可得出12EM MG = ,再结合空间向量的线性运算可得出OM 关于OA 、OB、OC 、OD 的表达式.【小问1详解】证明:因为EH AH AE AD AB BD λλλ=−=−=,()()()111FG CG CF CD CB BD λλλ=−=−−−=− ,所以1EH FG λλ=−,则//EH FG ,因此E 、F 、G 、H 四点共面. 【小问2详解】解:当13λ=时,13AE AB = ,即()13OE OAOB OA −=− ,可得2133OE OA OB =+ , 因为23CG CD =,即()23OG OC OD OC −=− ,可得1233OG OC OD =+ ,由(1)知,13EH BD = ,23FG BD =,因此12EH FG = ,又因为EH 、FG 不在同一条直线上,所以,//EH FG ,则12EM EH MG FG ==,则12EM MG = ,即()12OM OE OG OM −=− , 所以,2122111233333333OM OE OG OA OB OC OD=+=+++42129999OA OB OC OD =+++. 18. 已知等差数列{}n a 的前n 项和为n S ,且424S S =,()*221N n n a a n =+∈.(1)求数列{}n a 的通项公式.(2)若{}n a 中的部分项n b a 组成的数列{}1n b a +是以11a +为首项,2为公比的等比数列,求数列{}n b 的前n 项和n T .【答案】(1)()*21Nn a n n =−∈(2)21nnT =− 【解析】【分析】(1)利用等差数列的前n 项和及通项公式基本量计算即可;(2)利用等比数列概念及通项公式求出{}n b 的通项公式,再利用等比数列求和公式求解即可. 【小问1详解】设差数列{}n a 公差为d ,则由424S S =,()*221Nn n a a n =+∈可得()()11114684212211a d a d a n d a n d +=+ +−=+−+ ,解得112a d = = ,因此()*21N n a n n =−∈.【小问2详解】由21na n =−,得21nb n a b =−, 又由{}1n b a +是以11a +为首项,2为公比的等比数列,得12n nb a +=,因此22n n b =, 所以12n n b −=,所以122112nn nT −==−−. 19. 如图,在三棱柱111ABC A B C 中,所有棱长均为2,160A AC ∠=,1A B =.的(1)证明:平面11A ACC ⊥平面ABC .(2)求平面11BA B 与平面111A B C 的夹角的正弦值. 【答案】(1)证明见解析;(2. 【解析】【分析】(1)取AC 中点M ,证明1A M BM ⊥,再利用线面垂直、面面垂直的判定推理作答. (2)利用(1)中信息作出平面11BA B 与平面ABC 所成二面角的平面角,再借助直角三角形求解作答. 【小问1详解】三棱柱111ABC A B C -的所有棱长均为2,取AC 中点M ,连接1A M ,BM ,则BM AC ⊥,由1AA AC =,160A AC ∠=,得1A AC △为等边三角形,则1A M AC ⊥,显然1A MBM ==1A B =,则22211A M BM A B +=,有1A M BM ⊥, 又AC BM M = ,,AC BM ⊂平面ABC ,于是1A M ⊥平面ABC ,而1A M ⊂平面11A ACC , 所以平面11A ACC ⊥平面ABC .【小问2详解】在三棱柱111ABC A B C -中,平面111//A B C 平面ABC ,因此平面11BA B 与平面111A B C 的夹角的正弦值与平面11BA B 与平面ABC 的夹角的正弦值相等, 由(1)知1A M ⊥平面ABC ,AB ⊂平面ABC ,则1A M AB ⊥,过M 作MN AB ⊥于点N ,连接1A N ,有1A M MN ⊥,11,,MN A M M MN A M =⊂ 平面1A MN ,于是AB ⊥平面1A MN ,而1A N ⊂平面1A MN ,则1A N AB ⊥,因此1A NM ∠为平面11BA B 与平面ABC 所成二面角的平面角, 显然sin 60MN AM =⋅ ,而1A M =,则1A N ===,从而111sin A M A NM A N∠=所以平面11BA B 与平面111A B C. 20. 第19届亚运会将于2023年9月23日在杭州拉开帷幕,为了更好地迎接亚运会,杭州市政府大举加强了城市交通基础设施的建设.至2023年地铁运行的里程数达到516公里,排位全国第六.同时,一张总长464公里、“四纵五横”为骨架、通达“东西南北中”十城区的快速路网也顺利完工准备接待世界各地的来宾.现杭州公共出行的主流方式为地铁、公交、打车、共享单车这四种,基本可以覆盖大众的出行需求. (1)一个兴趣小组发现,来自不同的城市的游客选择出行的习惯会有很大差异,为了验证这一猜想该小组进行了研究.请完成下列22×列联表,并根据小概率值0.010α=的独立性检验,分析城市规模是否与出行偏好地铁有关?(精确到0.001) 单位:人(2)国际友人David 来杭游玩,每日的行程分成()*M M ∈N段,为了更好的体验文化,相邻两段的出行方式不能相同,且选择地铁、公交、打车、共享单车的概率是等可能的.已知他每日从酒店出行的方式一定是从地铁开始,记第n 段行程上David 坐地铁的概率为n p ,易知11p =,20p = ①试证明14n p−为等比数列;②设第n 次David 选择共享单车的概率为n q ,比较5p 与5q 的大小.附:()()()()22()n ad bc a b c d a c b d χ−=++++,n a b c d =+++.α 0.050 0.010 0.001x α 3.841 6.635 10.828【答案】(1)表格见解析,有关系 (2)①证明见解析;②55p q >. 【解析】【分析】(1)根据题意即可完成列联表,再根据公式求出2χ,再对照临界值表即可得出结论; (2)①根据全概率公式结合等比数列的定义即可得出结论; ②先求出n p 的表达式,进而可求出55,p q ,即可得解. 【小问1详解】 列联表如下:零假设为0H :城市规模与出行偏好地铁无关,()22200804020609.524 6.63510010014060χ×−×≈>×××,根据小概率值0.010α=的独立性检验,我们推断0H 不成立,即认为城市规模与出行偏好地铁有关,此推断犯错误的概率不大于0.010; 【小问2详解】①证明:第n 段行程上David 坐地铁的概率为n p ,则当2n ≥时,第1n −段行程上David 坐地铁的概率为1n p −,不坐地铁的概率为11n p −−,则()11111101333n n n n p p p p −−−=⋅+−⋅=−+, 从而1111434n n p p −−=−−, 又11344p −=,所以14n p−是首项为34,公比为13−的等比数列;②由①可知1311434n n p −=−+, 则4531114344p =−+> ,又()5511134q p =−<,故55p q >. 21. 设抛物线2:2(0)C y py p =>,过焦点F 的直线与抛物线C 交于点()11,A x y ,()22,B x y .当直线AB 垂直于x 轴时,2AB =.(1)求抛物线C 的标准方程.(2)已知点()1,0P ,直线AP ,BP 分别与抛物线C 交于点C ,D . ①求证:直线CD 过定点;②求PAB 与PCD 面积之和的最小值. 【答案】(1)2:2C y x = (2)①证明见解析;②52. 【解析】【分析】(1)利用弦长求解p ,即可求解抛物线方程;(2)(i )设直线方程,与抛物线联立,韦达定理找到坐标关系,表示出直线方程,即可求出定点; (ii )利用面积分割法求出两个三角形面积表达式,然后利用二次函数求最值即可. 【小问1详解】由题意,当直线AB 垂直于x 轴时,12p x =,代入抛物线方程得1y p =±,则2AB p =,所以22p =,即1p =,所以抛物线2:2C y x =.【小问2详解】 (i )设()33,C x y ,()44,D x y ,直线1:2AB x my =+, 与抛物线2:2C y x =联立,得2210y my −−=,因此122y y m +=,121y y =−. 设直线:1AC x ny =+,与抛物线2:2C y x =联立,得2220y ny −−=,因此132y y n +=,132y y =−,则312y y −=.同理可得422y y −=. 所以34341222343434121222122222CD y y y y y y k y y x x y y y y m y y −−=====−=−−−+++−. 因此直线()33:2CD xm y y x =−+,由对称性知,定点在x 轴上, 令0y =得,223333211112124222222y m x my x my m y y y y −−=−+=−+=−+=+ ()1221222211111212122222y y y y y y y y y y + +=+=++=+⋅=, 所以直线CD 过定点()2,0Q .(ii )因为12121124PAB S PF y y y y =⋅−=− , 12341212121211221122PCD y y S PQ y y y y y y y y y y −−−=⋅−=−=−==− ,所以125542PAB PCDS S y y +=−=≥ , 当且仅当0m =时取到最小值52. 22. 设函数()2(1)e xf x x ax =−−,若曲线()f x 在0x =处的切线方程为2y x b =−+. (1)求实数,a b 的值.(2)证明:函数()f x 有两个零点.(3)记()f x ′是函数()f x 的导数,1x ,2x 为()f x 的两个零点,证明:122x x f a + >−′. 【答案】(1)11a b = =(2)证明见解析 (3)证明见解析【解析】【分析】(1)利用导数的几何意义代入()02f ′=−即可得,a b 的值; (2)根据导函数判断出函数单调性,由零点存在性定理即可证明结论; (3)利用(1)(2)中的结论,结合()f x 单调性并构造函数并求其单调性,即可实现不等式证明.【小问1详解】由题意可得()()21e x f x x a ′=−−, 由切线方程可知其斜率为2−,所以()()02,0,f f b =−=′,解得11a b = = . 【小问2详解】由()0f x =可得2(1)e 0x x x −−=,所以2(1)0e xx x −−=; 函数()f x 有两个零点即函数()2(1)ex x g x x =−−有两个零点. ()()112e x g x x =−+′, 当1x <时,()0g x ′<,()g x 单调递减;当1x >时,()0g x ′>,()g x 单调递增.又()010g =>,()110e g =−<,()22210e g =−>, 所以()()010g g <,()()120g g <,由零点存在定理可得()10,1x ∃∈使得()10g x =,()21,2x ∃∈使得()20g x =,所以函数()f x 有两个零点.【小问3详解】由(1)(2)知2()(1)e x f x x x =−−,可得()()21e 1x f x x ′=−−且12012x x <<<<. 要证明122x x f a + >− ′,即证明1221221e 112x x x x + + −−>−, 即证明122x x +>.令()()()2(01)h xg x g x x =−−<<,则 ()()()()()()()2221e e 11212120e e e x x x x x h x g x g x x x −−−− =+−=−++−′+=< ′′ ,因此()h x 单调递减,则()()10h x h >=.因此()10h x >, 即()()112g x g x >−,又12012x x <<<<,所以()()21g x g x >; 即()()212g x g x >−,又2x ,()121,2x −∈,且()g x ()1,2上单调递增, 因此212x x >−,即122x x +>.命题得证.【点睛】关键点点睛:本题第(3)问证明的关键在于将不等式122x x f a + >− ′转化成求证122x x +>,然后再利用构造函数利用函数单调性证明.在。
浙江省杭州市2022-2023学年高一下学期期末数学试题(解析版)
![浙江省杭州市2022-2023学年高一下学期期末数学试题(解析版)](https://img.taocdn.com/s3/m/b790fdb18662caaedd3383c4bb4cf7ec4afeb601.png)
2022学年第二学期杭州市高一年级教学质量检测数学试题卷考生须知:1.本试卷分试题卷和答题卡两部分.满分150分,考试时间120分钟.2.答题前,必须在答题卡指定位置上用黑笔填写学校名、姓名、试场号、座位号、准考证号,并用2B 铅笔将准考证号所对应的数字涂黑.3.答案必须写在答题卡相应的位置上,写在其他地方无效.一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的.)1. 设集合{}{}21,2,3,4,230AB xx x ==−−≤∣,则A B = ( )A. {}1,2,3,4B. {}1,2,3C. {}1,2D. {}1【答案】B 【解析】【分析】先求出集合B ,再求两集合的交集.【详解】由2230x x −−≤,得(1)(3)0x x +−≤,解得13x −≤≤, 所以{}13B x x =−≤≤,因为{}1,2,3,4A =,所以A B = {}1,2,3, 故选:B2. 若i 23i z ⋅=+(i 是虚数单位),则z =( )A. 2B. 3C.D. 【答案】C 【解析】【分析】先求得32i z =−,再根据模长公式即可求解. 【详解】因为()()()23i i 23i32i ii i z +−+===−−,所以z =.故选:C3. 军事上角的度量常用密位制,密位制的单位是“密位”1密位就是圆周的16000所对的圆心角的大小,.若角1000α=密位,则α=( ) A.π6B.π4C.π3D.5π12【答案】C 【解析】【分析】由密位制与弧度的换算公式可得,10002π6000α=×,从而可得解. 【详解】因为1密位等于圆周角的16000, 所以角1000α=密位时,1000π2π60003α=×=, 故选:C .4. 已知平面α⊥平面β,直线l α⊄,则“l β⊥”是“//l α”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】根据充分条件和必要条件的定义结合面面垂直的性质分析判断. 【详解】设m αβ= ,在平面α内作a m ⊥, 因为平面α⊥平面β,所以a β⊥, 因为l β⊥,所以a ∥l , 因为l α⊄,a α⊂, 所以//l α,而当平面α⊥平面β,直线l α⊄,//l α时,l 与平面β可能垂直,可能平行,可能相交不垂直, 所以“l β⊥”是“//l α”的充分而不必要条件, 故选:A5. 杭州亚运会火炬如图(1)所示,小红在数学建模活动时将其抽象为图(2)所示的几何体.假设火炬装满燃料,燃烧时燃料以均匀的速度消耗,记剩余燃料的高度为h ,则h 关于时间t 的函数的大致图象可能是( )A. B.C. D.【答案】A 【解析】【分析】根据火炬的形状:中间细、上下粗来分析剩余燃料的高度h 随时间t 变化的下降速度. 【详解】由图可知,该火炬中间细,上下粗,燃烧时燃料以均匀的速度消耗, 燃料在燃烧时,燃料的高度一直在下降,刚开始时下降的速度越来越快, 燃料液面到达火炬最细处后,燃料的高度下降得越来越慢, 结合所得的函数图象,A 选项较为合适. 故选:A.6. 雷峰塔位于杭州市西湖景区,主体为平面八角形体仿唐宋楼阁式塔,总占地面积3133平方米,项目学习小组为了测量雷峰塔的高度,如图选取了与底部水平的直线BC ,测得ABC ∠、ADC ∠的度数分别为α、β,以及D 、B 两点间的距离d ,则塔高AC =( )A. ()sin sin sin d αββα−B. ()sin sin cos d αββα−C.()tan tan tan d αββα−D.()sin cos sin d αββα−【答案】A 【解析】【分析】利用正弦定理可求得AD ,进而可得出sin AC AD β=,即为所求. 【详解】在ABD △中,BAD ADC ABC βα∠=∠−∠=−,由正弦定理可得sin sin BD AD BAD ABC=∠∠,即()sin sin d AD βαα=−,得()sin sin d AD αβα=−, 由题意可知,AC BC ⊥,所以,()sin sin sin sin d AC AD ADC αββα=∠=−.故选:A.7. 已知函数()()πe π,e xf x xg x =+=(e 为自然对数的底数),则( ) A. ()()()0,,x f x g x ∞∀∈+> B. 0e ,e ππx∃∈,当0x x =时,()()f x g x = C. ()()e ,e π,πx f x g x∀∈<D. ()2π0e ,x ∞∃∈+,当0x x >时,()()f x g x <【答案】D 【解析】【分析】观察到()(),f x g x 分别为一次函数和指数函数,则数形结合,依次判定即可.【详解】由题,假设当1x x =时,()()f x g x =,作出示意图如图所示:则1(0,)x x ∈时,()()f x g x >, 当1(,)x x ∈+∞时,()()f x g x <,则A 选项错误;因为e 1e π9π<<<,()()π1e π,1e f g =+=,()()11f g >,故C 选项错误,且()()()()()39393π99e π10e,9 1.299128,e .2f g f g=+>=<><<=,则结合图像可知,当ee ππx <<时,()()f x g x >恒成立,故B 选项错误; 对于D 选项,x →+∞时,由图可知()()f x g x <,则D 选项正确.故选:D.8. 设函数()()ππ3πsin 0,,0,1288f x x f f ωϕωϕ=+><−==,且()f x 在区间π,1224π− 上单调,则ω的最大值为( ) A. 1 B. 3C. 5D. 7【答案】B 【解析】【分析】根据π08f−= 与3π18f =可得()()211221,k k k k ω=−+∈Z ,再根据单调性可得8ω≤,验证7ω=, 5ω=与3ω=即可.【详解】由π08f−=,得()11ππ8k k ωϕ−+=∈Z , 由3π18f =,得()223πππ82k k ωϕ+=+∈Z , 两式作差,得()()211221,k k k k ω=−+∈Z ,因为()f x 在区间π,1224π−上单调,所以π12π2412π2ω+≤⋅,得8ω≤.当7ω=时,()117ππ8k k ϕ−+=∈Z ,因为π2ϕ<,所以π8ϕ=−, 所以()πsin 78f x x=−. 24ππ,12x∈−,π17π7π,8246x −∈− ,因为17ππ242−<−,所以()f x 在区间π,1224π−上不单调,不符合题意; 当5ω=时,()115ππ8k k ϕ−+=∈Z ,因π2ϕ<,所以3π8ϕ=−, 所以()3πsin 58f x x=−. 24ππ,12x∈−,3π19π5π,8246x −∈−− ,因为19ππ242−<−,所以()f x 在区间π,1224π−上不单调,不符合题意; 当3ω=时,()113ππ8k k ϕ−+=∈Z ,因为π2ϕ<,所以3π8ϕ=,所以()3πsin 38f x x=+. 24ππ,12x∈−,3πππ3,882x +∈ ,所以()f x 在区间π,1224π−上单调,符合题意,所以ω的最大值是3.故选:B.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,有选错的得0分,部分选对的得2分.) 9. 已知函数()2121x x f x −=+,则( )为A. 函数()f x 的图象关于原点对称B. 函数()f x 的图象关于y 轴对称C. 函数()f x 的值域为()1,1−D. 函数()f x 是减函数【答案】AC 【解析】【分析】求函数()f x 的奇偶性可判断AB ;分离参数可得()2121x f x =−+,根据指数函数的值域可判断C ;根据单调性的定义可判断D.【详解】()f x 的定义域为R ,()2121x x f x −=+,则()()21212121x x x x f x f x −−−−−==−=−++,所以()f x 为奇函数,()f x 的图象关于原点对称,A 正确,B 错误;()21212121x x x f x −==−++,因为211x +>,所以10121x<<+,20221x <<+, 所以211121x −<−<+,故()f x 的值域为()1,1−,C 正确; 设21x x >,则()()212122112121x x f x f x−=−−− ++()()()2112122222221212121x x x x x x −−=++++, 因为21x x >,所以2112220,210,210x x x x −>+>+>, 所以()()210f x f x −>,即()()21f x f x >, 所以函数()f x 是增函数,故D 错误, 故选:AC.10. 如图,O 是正六边形ABCDEF 的中心,则( )A. AB AF AO −=B. 3AC AE AD +=C. OA OC OB OD ⋅=⋅D. AD 在AB上的投影向量为AB【答案】CD 【解析】【分析】根据向量的线性运算法则,可判定A 、B 不正确,结合向量的数量积的定义域运算,可判定C 正确,结合向量的投影的定义与运算,可判定D 正确. 【详解】根据题意,结合平面向量的线性运算法则,可得:对于A 中,由B F AO FB A A =−≠,所以A 不正确;对于B 中,由232AO OC AO OE A AC AE O OC OE AO O A D O =+++=+=+++,所以B 不正确;对于C 中,设正六边形的边长为a ,可得111cos1202OA OC ⋅=××=−,111cos1202OB OD ⋅=××=− ,所以OA OC OB OD ⋅=⋅ ,所以C 正确;对于D 中,如图所示,连接BD ,可得BD AB ⊥,可得cos AD DAB AB ∠=,所以AD 在向量AB 上的投影向量为AB AB AB AB⋅= ,所以D 正确. 故选:CD.11. 如图,质点A 和B 在单位圆O 上逆时针作匀速圆周运动.若A 和B 同时出发,A 的角速度为1rad /s ,起点位置坐标为12 ,B 的角速度为2rad /s ,起点位置坐标为()1,0,则( )A. 在1s 末,点B 的坐标为()sin2,cos2B. 在1s 末,扇形AOB 的弧长为π13− C. 在7πs 3末,点,A B 在单位圆上第二次重合 D. AOB 面积的最大值为12 【答案】BCD 【解析】【分析】求出1s 末点A 和B 的坐标可判断选项AB;求出7πs 3末点A 和B 的坐标,结合诱导公式可判断C ;根据三角形面积公式可判断D.【详解】在1s 末,点B 的坐标为()sin2,cos2,点A 的坐标为ππcos 1,sin 133 ++;π13AOB ∠=−,扇形AOB 的弧长为π13−;设在s t 末,点,A B 在单位圆上第二次重合, 则π7π22π33t t t −==+=,故在7πs 3末,点,A B 在单位圆上第二次重合; 1sin 2AOBS AOB =∠△,经过5π6s 后,可得π2AOB ∠=,AOB 面积的可取得最大值12. 故选:BCD.12. 圆锥内半径最大的球称为该圆锥的内切球,若圆锥的顶点和底面的圆周都在同一个球面上,则称该球为圆锥的外接球.如图,圆锥PO 的内切球和外接球的球心重合,且圆锥PO 的底面直径为2a ,则( )A. 设内切球的半径为1r ,外接球的半径为2r ,则212r r =B. 设内切球的表面积1S ,外接球的表面积为2S ,则124S S =C. 设圆锥的体积为1V ,内切球的体积为2V ,则1294V V =D. 设S 、T 是圆锥底面圆上的两点,且ST a =,则平面PST 截内切球所得截面的面积为2π15a【答案】ACD 【解析】【分析】作出圆锥的轴截面,依题意可得PAB 为等边三角形,设球心为G (即为PAB 的重心),即可求出PAB 的外接圆和内切圆的半径,即可为圆锥的外接球、内切球的半径,即可判断A 、B ,由圆锥及球的体积公式判断C , ST所对的圆心角为π3(在圆O 上),设ST 的中点为D ,即可求出OD ,不妨设D 为OB 上的点,连接PD ,过点G 作GE PD ⊥交PD 于点E ,利用三角形相似求出GE ,即可求出截面圆的半径,从而判断D.【详解】作出圆锥的轴截面如下:因为圆锥PO 的内切球和外接球的球心重合,所以PAB 为等边三角形, 又2PB a =,所以OP ,设球心为G (即为PAB 的重心),所以23PGPO ==,13OG PO ==,即内切球的半径为1r OG ==,外接球的半径为2r PG ==,所以212r r =,故A 正确;设内切球表面积1S ,外接球的表面积为2S ,则214S S =,故B 错误; 设圆锥的体积为1V,则3121ππ3V a a , 内切球的体积为2V,则3324π3V a ==,所以1249V V =,故C 正确; 设S 、T 是圆锥底面圆上的两点,且ST a =,则 ST所对的圆心角为π3(在圆O 上),的设ST的中点为D,则πsin3OD a==,不妨设D为OB上的点,连接PD,则PD过点G作GE PD⊥交PD于点E,则PEG POD∽,所以GE PGOD PD=,=,解得GE=,所以平面PST截内切球截面圆的半径r所以截面圆的面积为22π15πar=,故D正确;故选:ACD【点睛】关键点睛:本题解答的关键是由题意得到圆锥的轴截面三角形为等边三角形,从而确定外接球、内切球的半径.二、填空题(本大题共4小题,每小题5分,共20分.)13. 设函数()12,01,02xx xf xx>=<,若()12f a=,则=a__________.【答案】14##0.25【解析】【分析】分段求解方程和指数方程,则问题得解.【详解】当0a>时,1212a=,14a∴=,当a<0时,1122a=,1a∴=(舍).14a∴=.故答案为:14. 14. 将曲线sin y x =上所有点向左平移(0)ϕϕ>个单位,得到函数sin y x =−的图象,则ϕ的最小值为__________. 【答案】π 【解析】【分析】先利用三角函数图象变换规律求出平移后的解析,再由两函数图象相同列方程可求得结果.【详解】将曲线sin y x =上所有点向左平移(0)ϕϕ>个单位,可得sin()y x ϕ=+, 因为sin()y x ϕ=+与sin y x =−的图象相同, 所以π2π,k k ϕ=+∈Z , 因为0ϕ>,所以ϕ的最小值为π, 故答案为:π15. 已知正三棱柱111ABC A B C 的各条棱长都是2,则直线1CB 与平面11AA B B 所成角的正切值为__________;直线1CB 与直线1A B 所成角的余弦值为__________. 【答案】 ①. ②. 14##0.25【解析】【分析】空1:取AB 中点D ,连接1,CD B D ,则可得1CB D ∠为直线1CB 与平面11AA B B 所成角,然后在1CB D 中求解即可;空2:分别取111,,BC BB A B 的中点,,E F G ,连接,,EF FG EG ,则可得EFG ∠(或其补角)为直线1CB 与直线1A B 所成角,然后在EFG 中求解即可. 【详解】空1:取AB 的中点D ,连接1,CD B D , 因为ABC 为等边三角形,所以CD AB ⊥, 因为1BB ⊥平面ABC ,CD ⊂平面ABC , 所以1BB CD ⊥,因为1BB AB B ∩=,1,BB AB ⊂平面11AA B B , 所以CD ⊥平面11AA B B ,的所以1CB D ∠直线1CB 与平面11AA B B 所成角, 因为正三棱柱111ABC A B C 的各条棱长都是2,所以12CD DB ===所以11tan CD CB D DB ∠=所以直线1CB 与平面11AA B B空2:分别取111,,BC BB A B 的中点,,E F G ,连接,,EF FG EG ,则EF ∥1B C,11122EF B C ==×, FG ∥1A B,11122FG A B ==×,所以EFG ∠(或其补角)为直线1CB 与直线1A B 所成角, 连接,DG DE,则EG =,在EFG 中,由余弦定理得2221cos 24EF FG EG EFG EF FG +−∠==−⋅, 因为异面直线所成的角的范围为0,2π,所以直线1CB 与直线1A B 所成角的余弦值为14,14.为16. 对于函数()()yf x x I ∈,若存在0x I ∈,使得()00f x x =,则称0x 为函数()y f x =的“不动点”.若存在0x I ∈,使得()()0ff x x=,则称0x 为函数()y f x =的“稳定点”.记函数()y f x =的“不动点”和“稳定点”的集合分别为A 和B ,即(){}()(){}|,|A x f x x B x f f x x ====.经研究发现:若函数()f x 为增函数,则A B =.设函数())R f x a ∈,若存在[]0,1b ∈使()()f f b b =成立,则a 的取值范围是__________. 【答案】10,4【解析】【分析】先判断())R f x a ∈是增函数,再根据题意可得()f b b =,代入可得2a b b =−,再结合二次函数的性质即可求解a 的取值范围.【详解】因为())R f x a ∈是增函数,所以()()ff b b =等价于()f b b =b =,所以2a b b =−,而2a b b =−在10,2上单调递增,在1,12上单调递减, 所以max 14a =,而当0b =时,0a =;当1b =时,0a =,即min 0a =, 所以a 的取值范围为10,4.故答案为:10,4三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在平面直角坐标系中,已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点34,55P−. (1)求sin α的值;(2)若角β满足()sin αβ+,求cos β的值.【答案】(1)45−(2【解析】【分析】(1)根据某个角正弦的定义,直接求解即可;(2)首先由同角的三角函数的平方关系求出()cos αβ+,根据()cos cos βαβα =+− 及两角差的余弦公式,代入计算即可. 【小问1详解】由角α的终边过点34,55P −,得4sin 5y r α===−.【小问2详解】由角α的终边过点34,55P − ,得3cos 5x r α==, 由()sin αβ+()1cos 2αβ+=±, ()()()cos cos cos cos sin sin βαβααβααβα =+−=+++ ,当()1cos 2αβ+=时,134cos 255β =×+−=当()1cos 2αβ+=−时,134cos 255β =−×+−综上所述,cos β=.18. 某工厂产生的废气经过滤后排放,过滤过程中废气的污染物数量mg /L P 与时间h t 间的关系为0e kt P P −=(其中0,P k 是正常数).已知在前5个小时消除了10%的污染物.(1)求k 的值(精称到0.01); (2)求污染物减少50%需要花的时间(精确到0.1h )?参考数据:ln20.693,ln3 1.099,ln5 1.609===. 【答案】(1)0.02 (2)34.7【解析】【分析】(1)由题意可得5000.9e kP P −=,求解即可;(2)由题意可得0.02000.5e tP P −=,求解即可.【小问1详解】 由0ektP P −=知,当0=t 时,0P P =;当5t =时,()0110%PP =−;即5000.9ekP P −=,所以1ln0.95k =−,即()()1911ln 2ln3ln102ln3ln2ln50.0251055k =−=−×−=−×−−≈; 【小问2详解】当00.5P P =时,0.02000.5e tP P −=,即0.020.5e t −=,则50ln234.7t≈.故污染物减少50%需要花的时间约为34.7h .19. 我们把由平面内夹角成60°的两条数轴,Ox Oy 构成的坐标系,称为“@未来坐标系”.如图所示,21,e e分别为,Ox Oy 正方向上的单位向量.若向量12OP xe ye =+ ,则把实数对(),x y 叫做向量OP的“@未来坐标”,记{,}OP x y =.已知{}{}1122,,,x y x y 分别为向是,a b的@未来坐标.(1)证明:{}{}{}11221212,,,x y x y x x y y +=++;(2)若向量,a b 的“@未来坐标”分别为{}1,2,{}2,1,求向量,a b的夹角的余弦值.【答案】(1)证明见解析 (2)1314【解析】【分析】(1)因为{}{}111122122122,,,x y a x y x y b e e e y e x ==+==+,则{}{}()()111221122221,,x y e y x x y e x y e e +=+++计算即可证明;(2)由题意可得12122,2b e a e e e =+=+,根据向量夹角公式即可求解.因为{}{}111122122122,,,x y a x y x y b e e e y e x ==+==+, 所以{}{}()()111221122221,,x y e y x x y e x y e e +=+++()()211122x x y y e e =+++{}1212,x x y y =++【小问2详解】12122,2b e a e e e =+=+ ,()()221212121213222252a b e e e e e e e e ⋅+⋅+++⋅ ,122a e e =+=== ,212b e e =+===,所以13cos ,14a b a ba b⋅==. 20. 在四边形ABCD 中,//,sin 2sin AB CD AD ADC CD ABC ∠∠⋅=⋅.(1)求证:2BC CD =.(2)若33AB CD ==,且sin sin60AD ADB AB ∠°⋅=⋅,求四边形ABCD 的面积. 【答案】(1)证明见解析(2)若60ABD ∠= ,则四边形ABCD, 若120ABD ∠= ,则四边形ABCD【解析】【分析】(1)由条件结合正弦定理证明sin sin AD ADC BC ABC ⋅∠=⋅∠,由此证明结论; (2)由条件结合正弦定理求ABD ∠,由余弦定理求BD ,结合三角形面积公式求结论.在ACD 中,由正弦定理得sin sin AD ADC AC ACD ∠⋅∠⋅,因为AB CD ,所以ACD CAB ∠=∠, 所以sin sin AD ADC AC CAB ∠⋅∠⋅, ABC 中,由正弦定理得,即sin sin AC CAB BC ABC ∠⋅=⋅∠, 所以sin sin AD ADC BC ABC ⋅∠=⋅∠. 又sin 2sin AD ADC CD ABC ⋅∠=⋅∠, 所以sin 2sin BC ABC CD ABC ⋅∠=⋅∠, 所以2BC CD =.【小问2详解】在ABD △中,由正弦定理得sin sin sin60AD ADB AB ABD AB ∠∠⋅=⋅=⋅ , 所以sin sin60ABD ∠= , 所以60ABD ∠= 或120 ,①当60ABD ∠= 时,则60BDC ∠= ,在BCD △中,由余弦定理得,230BD BD −−=,又0BD >,解得BD =此时四边形ABCD 的面积()1S sin602AB CD BD =+××= ②当120ABD ∠= 时,则120BDC ∠= , 在BCD △中,由余弦定理得,230BD BD +−=,解得BD =,在此时四边形ABCD 的面积()1sin1202S AB CD BD =+××=21. 生活中为了美观起见,售货员用彩绳对长方体礼品盆进行捆扎.有以下两种捆扎方案:方案(1)为十字捆扎(如图(1)),方案(2)为对角捆扎(如图(2)).设礼品盒的长AB ,宽BC ,高1AA 分别为30cm,20cm,10cm .(1)在方案(2)中,若111110cm LA A E IC C H FB BG ======,设平面LEF 与平面GHI 的交线为l ,求证://l 平面ABCD ;(2)不考虑花结用绳,对于以上两种捆扎方式,你认为哪一种方式所用彩绳最少,最短绳长为多少cm ? 【答案】(1)证明见解析 (2)方案(2),最短绳长为100cm 【解析】【分析】(1)先证明LE IH ∥,从而可证LE 平面IHG ,进而得LE l ∥,从而可证l 平面1111D C B A ,从而可证//l 平面ABCD ;(2)方案1中,绳长为()()3010220102140cm +×++×=;方案2中,将长方体盒子展开在一个平面上,在平面展开图中彩绳是一条由F 到F ′的折线,从而可计算最短绳长. 【小问1详解】连接,LI EH ,在长方体中,111110cm LA A E IC C H FB BG ======, 则111110cm,20cm B LD B E ID H ====,所以LE IHLI EH ==,所以LE IH =,LI EH =,所以四边形LEHI 是平行四边形,LE IH ∴∥,又LE ⊄ 平面,IHG LE ⊂平面LEF LE ∴ 平面IHG ; 又LE ⊂ 平面LEF ,平面LEF ∩平面,GHI l LE l =∴∥; 又l ⊄ 平面1111,A B C D LE ⊂平面1111,A B C D l ∴ 平面1111D C B A , 又l ⊄ 平面,ABCD l ∴ 平面ABCD ; 【小问2详解】方案1中,绳长为()()3010220102140cm +×++×=; 方案2中,将长方体盒子展开在一个平面上,在平面展开图中彩绳是一条由F 到F ′的折线,如图所示,在扎紧的情况下,彩绳长度的最小值为FF ′长度,因为FB F B =′′′,所以100cm FF BB ′′′===,所以彩绳的最短长度为100cm .22. 已知函数()()1(0),(0)f x x x g x x x x=+>=>. (1)直接写出()()()()1f x g x g x f x −<−+的解集;(2)若()()()123f x f x g x ==,其中12x x <,求()()123f x x g x ++的取值范围;(3)已知x 为正整数,求()()()()22121h x m x m x m ∗=+−+∈N的最小值(用m 表示).【答案】(1)()2,+∞; (2)()()12392f x xg x ++>;(3)()min 322,1,8,2,()24,333,3m m h x m m m m m m ∗−= −= ∈ −=−+−+> N . 【解析】【分析】(1)转化为求解()1110x x x<−>,分01x <≤与1x >讨论即可求解; (2)根据韦达定理得()122t x x t +=>,再根据对勾函数的性质即可求解; (3)根据二次函数的性质分类讨论即可求解.【小问1详解】∵()()1(0),(0)f x x x g x x x x=+>=>, ∴()()()()1f x g x g x f x −<−+即为()1110x x x <−>, 当01x <≤时,110x −≤,故()1110x x x<−>,显然不成立; 当1x >时,110x −>,故()1110x x x <−>,即()210x x<>,解得2x >. 综上所述,()()()()1f x g x g x f x −<−+的解集为()2,+∞.【小问2详解】设()()()123f x f x g x t ===,则3x t =, 令1x t x+=,整理得:210x tx −+=, 故12x x t +=,且2Δ40t =−>,得2t >. ∴()()12312f x x g x t t ++=+在2+)∞(, 上单调递增, 所以11922222t t +>×+=, 即()()12392f x xg x ++>. 【小问3详解】 ()()()()()222222111211,11m mh x m x m x m x m m + +=+−+=+−− ++2121,11m m m m +=−+++ ()2,111m m m ∗∗∈∴−∈≤+N N ,, ①1m =时,()min 211,()121m h x h m −+=∴==−+; ②2m =时,()min 251,()2813m h x h m −+=∴==−+; ③3m =时,()()min 251,()232412m h x h h m −+=∴===−+; ④3m >时,2121,1111212m m m m m <−<−+<−+++, ∴()32min ()133h x h m m m m =−=−+−+. 综上所述,()min 322,1,8,2,()24,333,3m m h x m m m m m m ∗−= −= =∈ −=−+−+> N。
浙江省杭州市2024届高三下学期4月教学质量检测数学试题含答案
![浙江省杭州市2024届高三下学期4月教学质量检测数学试题含答案](https://img.taocdn.com/s3/m/6f25595003020740be1e650e52ea551810a6c909.png)
2023学年第二学期杭州市高三年级教学质量检测数学试题卷(答案在最后)考生须知:1.本试卷分试题卷和答题卷两部分.满分150分,考试时间120分钟.2.请用黑色字迹的钢笔或签字笔在答题卡指定的区域(黑色边框)内作答,超出答题区域的作答无效!3.考试结束,只需上交答题卡.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数()sin f x x=的最小正周期是A.4πB.2πC.πD.2π【答案】C 【解析】【详解】sin x 的图象是将sin x 的图象在x 轴下方的部分对称翻折上来所得,所以周期是sin x 周期的一半,即周期为π.2.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是A.若//,//,m n αα则//m n B.若m α⊥,n α⊂,则m n ⊥C.若m α⊥,m n ⊥,则//n α D.若//m α,m n ⊥,则n α⊥【答案】B 【解析】【详解】试题分析:线面垂直,则有该直线和平面内所有的直线都垂直,故B 正确.考点:空间点线面位置关系.3.已知,a b 是两个单位向量,若向量a 在向量b 上的投影向量为12b,则向量a 与向量a b - 的夹角为()A.30°B.60°C.90°D.120°【答案】B【解析】【分析】由条件结合投影向量的定义可求,a b,再根据向量夹角余弦公式求结论.【详解】因为向量a 在向量b 上的投影向量为12b ,,a b是两个单位向量,所以1cos ,2a a b b b ⋅= ,所以1cos ,2a b = ,又[],0,πa b ∈ ,所以π,3a b = ,所以()21111122a ab a a b ⋅-=-⋅=-⨯⨯=,又11a a b =-=== ,,所以()1cos ,2a ab a a b a a b ⋅--==⋅- ,又[],0,πa a b -∈ ,所以向量a 与向量a b - 的夹角为π3,即60 .故选:B.4.设甲:“函数()2sin f x x ω=在ππ,34⎡⎤-⎢⎣⎦单调递增”,乙:“02ω<≤”,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据函数单调性求出ω的范围,即可判断答案.【详解】若“函数()2sin f x x ω=在ππ,34⎡⎤-⎢⎥⎣⎦单调递增”,则0ω>,由ππ22x ω-≤≤得ππ22x ωω-≤≤,则ππ23ππ24ωω⎧-≤-⎪⎪⎨⎪≥⎪⎩,解得302ω<≤,所以,甲是乙的充分不必要条件.故选:A5.设数列{}{},n n a b 满足11111,2,2nn n n n a b a b n a b ++==+=+=.设n S 为数列{}n n a b +的前n 项的和,则7S =()A.110B.120C.288D.306【答案】A 【解析】【分析】利用分组求和法,结合已知,可得答案.【详解】711223344556677S a b a b a b a b a b a b a b =+++++++++++++()()()()()()11232345456767a b a b b a a b b a a b b a =+++++++++++++246112222422622448161264110=++⨯++⨯++⨯+=++++++=.故选:A.6.将5名志愿者分配到三个社区协助开展活动,每个志愿者至少去一个社区,每个社区至少1名,则不同的分配方法数是()A.300B.240C.150D.50【答案】C 【解析】【分析】先分组,人员构成可能为1、1、3或1、2、2,再将3组全排列即可得.【详解】先将5名志愿者分成3组,若这三组的人员构成为1、1、3,则共有35C 种分组方案,若这三组的人员构成为1、2、2,则共有225322C C A 种分组方案,再将这3组志愿者随机分配到三个社区,共有33A 种分配方案,故共有2233535322C C 103C +A 106150A 2⎛⎫⨯⎛⎫⋅=+⨯= ⎪ ⎪⎝⎭⎝⎭种分配方法.故选:C.7.设集合{1,1}M =-,{|0N x x =>且1}x ≠,函数()xxf x a a λ-=+(0a >且1a ≠),则()A.(),,M a f x λ∀∈∃∈N 为增函数B.(),,M a f x λ∃∈∀∈N 为减函数C.(),,M a f x λ∀∈∃∈N 为奇函数D.(),,M a f x λ∃∈∀∈N 为偶函数【答案】D 【解析】【分析】结合指数函数的单调性与奇偶性检验各选项即可.【详解】当1λ=时,()x xf x a a -=+,1a >时,()f x 在(,0)-∞上不是增函数,故A 不正确;当1λ=-时,()xxf x a a-=-,1a >时,()f x 在(0,)+∞上为增函数,B 不正确;当1λ=时,()x xf x a a -=+,()()x x f x a a f x --=+=,()f x 为偶函数,故C 不正确;当1λ=时,()x xf x a a -=+,()()x x f x a a f x --=+=,()f x 为偶函数,故D 正确;故选:D.8.在ABC 中,已知sin cos sin ,cos sin cos A A n C n C B B ==.若πtan 34A ⎛⎫+=- ⎪⎝⎭,则n =()A.无解B.2C.3D.4【答案】A 【解析】【分析】由πtan 34A ⎛⎫+=- ⎪⎝⎭可得tan 2A =,进而得到tan tan tan 2A B C =⋅=,借助三角形内角和与两角和的正切公式可得tan tan 2B C +=,设tan B t =,有2220t t -+=,可得该方程无解,故不存在这样的n .【详解】由π1tan tan 341tan AA A+⎛⎫+==- ⎪-⎝⎭,即tan 2A =,则cos 0A ≠,由sin cos sin ,cos sin cos A An C n C B B ==,知cos 0C ≠,则tan tan tan AC B=,则tan tan tan 2A B C =⋅=,又()()tan tan tan tan πtan tan tan 1tan tan B CA B C B C B C B C+=--=-+=-=+-⋅,故tan tan 2B C +=,设tan B t =,则tan 2C t =-,有()22t t -=,即2220t t -+=,4840∆=-=-<,即该方程无解,故不存在这样三角形,即n 无解.故选:A.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,有选错的得0分.9.已知关于x 的方程210(22)x tx t ++=-<<的两根为1z 和2z ,则()A.12z z =B.121z z ⋅=C.12=z zD.1122z z z z ⎛⎫= ⎪⎝⎭【答案】ABC 【解析】【分析】求出方程的两根,即可判断A ,利用韦达定理判断B ,计算出两根的模,即可判断C ,利用复数代数形式的除法运算及B 项的结论化简12z z ,即可判断D.【详解】关于x 的方程210(22)x tx t ++=-<<,则240t ∆=-<,4i 2t x -±∴=,不妨设1422t z =-+,24i 22t z =--,12z z ∴=,故A 正确;由韦达定理可得121z z =,故B正确;121z z ==,故C 正确;121z z = ,∴2222111212222z z t t z z z z ⎛⎫-===-+=- ⎪ ⎪⎝⎭,则21222z t z ⎛⎫-=+ ⎪⎝⎭,当0t ≠时,12R z z ∉,此时1122z z z z ⎛⎫≠ ⎪⎝⎭,故D 错误.故选:ABC .10.已知函数()f x 对任意实数x 均满足()()2211f x f x +-=,则()A.()()f x f x -=B.1f=C.()113f -=D.函数()f x在区间上不单调【答案】ACD 【解析】【分析】令x 等价于x -,则()()2211f x f x -+-=,可推导出()()f x f x -=,进而可判断A ,利用赋值法可判断B ,C ;先算出满足21x x =-的x 值,由此可得1123f f ⎛⎫+==⎪⎪⎝⎭,即可判断D .【详解】对于A ,令x 等价于x -,则()()2211f x f x -+-=,所以()()()2112f x f x f x ---==,故A 正确;对于B ,令1x =,则()()2101f f +=,令0x =,则()()2011f f +=,解得:()()1013f f ==,令x =,()211ff +=,则13f =,故B 错误;对于C ,由A 知,()()f x f x -=,所以()()1113f f -==,故C 正确;对于D ,令21x x =-,所以210x x --=,解得:12x ±=,令12x =,则112122ff ⎛⎫⎛+++= ⎪ ⎪ ⎝⎭⎝⎭,所以15123f ⎛⎫+= ⎪ ⎪⎝⎭,因为152+∈,15123f f⎛⎫==⎪ ⎪⎝⎭,所以函数()f x 在区间上不单调,故D 正确.故选:ACD .11.过点()2,0P 的直线与抛物线C :24y x =交于,A B 两点.抛物线C 在点A 处的切线与直线2x =-交于点N ,作NM AP ⊥交AB 于点M ,则()A.直线NB 与抛物线C 有2个公共点B.直线MN 恒过定点C.点M 的轨迹方程是()()22110x y x -+=≠D.3MNAB的最小值为【答案】BCD 【解析】【分析】设出直线AB 的方程为2x ty =+,代入24y x =,然后写出切线方程,结合韦达定理可判断AB ;根据B 可得M 的轨迹方程,从而判断C ;利用弦长公式及点到直线的距离公式表示出3MN AB,然后利用导数的知识求出最值进而判断D.【详解】设直线AB 的方程为2x ty =+,221212,,,44y y A y B y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭联立224x ty y x=+⎧⎨=⎩,消去x 得2480y ty --=,则12124,8y y t y y +==-,对于A :抛物线C 在点A 处的切线为21124y y y x ⎛⎫=+ ⎪⎝⎭,当2x =-时得12112144282222y y y y y yty -=-=+=-=,即()2,2N t -,所以直线NB 的方程为1221222242424y y y y y y x y --⎛⎫-=- ⎪⎝⎭--,整理得1144y y x y =--,联立112444y y x y y x ⎧=--⎪⎨⎪=⎩,消去x 的122116604y y y y ++=,解得18y y =-,即直线NB 与抛物线C 相切,A 错误;对于B :直线MN 的方程为()122x y t t +=--,整理得y x t=-,此时直线MN 恒过定点()0,0,B 正确;对于C :又选项B 可得点M 在以线段OP 为直径的圆上,点O 除外,故点M 的轨迹方程是()()22110x y x -+=≠,C 正确;对于D:222t MN +==,AB ===则()()3253222222221t t MN AB t ⎛⎫++==+,,m m =≥则()352221MN m ABm =-,设()()5222,1m f m m m=≥-则()()()()()()()2426242244221018121511m m m m m m mf m m m -----'==--,当>m 时,()0f m '>,()f mm <<时,()0f m '<,()f m 单调递减,所以()()2min 25255851f m f ===-,D 错误.故选:BC.【点睛】方法点睛:直线与抛物线联立问题第一步:设直线方程:有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,都可由点斜式设出直线方程.第二步:联立方程:把所设直线方程与抛物线方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式Δ:计算一元二次方程根的判别式Δ>0.第四步:写出根之间的关系,由根与系数的关系可写出.第五步:根据题设条件求解问题中的结论.三、填空题:本题共3小题,每小题5分,共15分.12.写出与圆221x y +=相切且方向向量为(的一条直线的方程______.【答案】2y =+或2y =-(写出一个即可)【解析】【分析】由条件可设直线方程为y b =+,结合条件列方程求b 即可得结论.【详解】因为切线的方向向量为(,故可设切线方程为y b =+,因为直线y b =+与圆221x y +=相切,又圆221x y +=的圆心坐标为()0,0,半径为1,圆心()0,0到直线y b =+2b =,所以12b =,所以2b =或2b =-,所以与圆221x y +=相切且方向向量为(的直线为2y =+或2y =-,故答案为:2y =+或2y =-(写出一个即可).13.函数()2f x=______.【答案】【解析】【分析】借助换元法令t =,可得()()325f x h t t t t==-+-,借助导数求取函数()h t 的单调性后,即可得解.【详解】令0t =>,则21x t =-,故()()()2223321125f tt t x t t t-++==-+---,令()()3250h t t t t t=-+->,则()()(242222231235235t t t t t t th t t t '++--++=-++==-,当(t ∈时,()0h t '>,当)t ∈+∞时,()0h t '<,则()h t在(上单调递增,在)+∞时单调递减,故()35h t h≤=-+⨯即函数()2f x =.故答案为:.14.机场为旅客提供的圆锥形纸杯如图所示,该纸杯母线长为12cm ,开口直径为8cm .旅客使用纸杯喝水时,当水面与纸杯内壁所形成的椭圆经过母线中点时,椭圆的离心率等于______.【答案】17【解析】【分析】依题意,利用等腰三角形ABC 求得cos α,再由余弦定理求出椭圆长轴长,作出圆锥的轴截面交椭圆于点,P Q ,建立坐标系,利用三角形重心性质和相似三角形求出点P 坐标,代入椭圆方程即可求得半短轴长,利用离心率定义计算即得.【详解】如图,设BCD α∠=,因12,8AB AC BC ===,故41cos 123α==,又6CD =,由余弦定理,22212cos 3664268683BD CD BC CD BC α=+-⋅=+-⨯⨯⨯=,即BD =,设椭圆中心为O ,作圆锥的轴截面AMN ,与底面直径BC 交于E ,与椭圆交于,P Q ,连AE 交BD 于G ,以点O 为原点,DB 为x 轴,建立直角坐标系.则23AG AE =,又由APQ AMN 得216,33PQ MN ==133DG DB ==,从而33OG =-=则得8(,)33P -,不妨设椭圆方程为22221x y a b+=,把a =和点P坐标代入方程,解得b =,则3c ==,故.17c e a ===故答案为:31717.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知等差数列{}n a 的前n 项和为n S ,且()*4224,21n n S S a a n ==+∈N .(1)求数列{}n a 的通项公式;(2)数列{}n b 满足13b =,令21n n n n a b a b ++⋅=⋅,求证:192nk k b =<∑.【答案】(1)()21n a n n *=-∈N (2)证明见解析【解析】【分析】(1)设等差数列{}n a 的首项为1a ,公差为d ,由题意可得()()11114684212211a d a da n d a n d +=+⎧⎨+-=+-+⎩,解方程求出1,a d ,即可求出数列{}n a 的通项公式;(2)由(1)可得12123n n b n b n +-=+,由累乘法可求出{}n b 的通项公式,再由裂项相消法求解即可.【小问1详解】设等差数列{}n a 的首项为1a ,公差为d .由4224,21n n S S a a ==+,得()()11114684212211a d a da n d a n d +=+⎧⎨+-=+-+⎩,解得:1a 1,d 2==,所以()()12121n a n n n *=+-=-∈N .【小问2详解】由(1)知,()()12123n n n b n b +-=+,即12123n n b n b n +-=+,12321n n b n b n --=+,122521n n b n b n ---=-,……,322151,75b b b b ==,利用累乘法可得:1211212325313212175n n n n n b b b n n b b b b b n n -----=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅+-,12311nkn nk bb b b b b -==+++++∑ ()()9911212122121n n n n ⎛⎫==- ⎪-+-+⎝⎭9111111112335572121n n ⎡⎤⎛⎫=-+-+-++- ⎪⎢⎥-+⎝⎭⎣⎦ 911221n ⎛⎫=- ⎪+⎝⎭所以191912212nk k b n =⎛⎫=-< ⎪+⎝⎭∑.16.已知函数()()()21ln 22f x a x x a =+-∈R .(1)讨论函数()f x 的单调性;(2)若函数()f x 有两个极值点,(ⅰ)求实数a 的取值范围;(ⅱ)证明:函数()f x 有且只有一个零点.【答案】(1)答案见解析;(2)(ⅰ)10a -<<;(ⅱ)证明见解析【解析】【分析】(1)求出函数的导函数,再分1a ≤-、10a -<<、0a ≥三种情况,分别求出函数的单调区间;(2)(ⅰ)由(1)直接解得;(ⅱ)结合函数的最值与零点存在性定理证明即可.【小问1详解】函数()()()21ln 22f x a x x a =+-∈R 的定义域为()2,-+∞,且()()21122x a a f x x x x -+++='=-++,当1a ≤-时,()0f x '≤恒成立,所以()f x 在()2,-+∞单调递减;当10a -<<时,令()0f x '=,即()2110x a -+++=,解得11x =,21x =,因为10a -<<,所以011a <+<,则211-<<-,所以当()2,1x ∈-时()0f x '<,当()1x ∈时()0f x ¢>,当)1,x ∈+∞时()0f x '<,所以()f x 在()2,1--上单调递减,在()1上单调递增,在)1,-+∞上单调递减;当0a ≥时,此时12≤-,所以()1x ∈-时()0f x ¢>,当)1,x ∈+∞时()0f x '<,所以()f x 在()1--上单调递增,在)1,-+∞上单调递减.综上可得:当1a ≤-时()f x 在()2,-+∞单调递减;当10a -<<时()f x 在()2,1-上单调递减,在()1-上单调递增,在)1,-+∞上单调递减;当0a ≥时()f x 在()1--上单调递增,在)1,-+∞上单调递减.【小问2详解】(ⅰ)由(1)可知10a -<<.(ⅱ)由(1)()f x 在()2,1-上单调递减,在()1-上单调递增,在)1,-+∞上单调递减,所以()f x 在1x =-处取得极大值,在1x =-处取得极小值,又10a -<<,所以011a <+<,则112<<,又())))211ln1102f x fa =-=+-<极大值,又())110f f<<,所以()f x 在()1,+∞上没有零点,又10a -<<,则44a<-,则440e e a -<<,442e 2e 2a --<-<-,则240e 24a ⎛⎫<-< ⎪⎝⎭,所以2441e 24e 202a af ⎛⎫⎛⎫-=--> ⎪ ⎪⎝⎭⎝⎭,所以()f x 在()2,1--上存在一个零点,综上可得函数()f x 有且只有一个零点.17.如图,在多面体ABCDPQ 中,底面ABCD 是平行四边形,60,244,DAB BC PQ AB M ∠=︒===为BC 的中点,,,PQ BC PD DC QB MD ⊥⊥∥.(1)证明:90ABQ ∠=︒;(2)若多面体ABCDPQ 的体积为152,求平面PCD 与平面QAB 夹角的余弦值.【答案】(1)证明见解析;(2)10.【解析】【分析】(1)根据余弦定理求解DM =,即可求证DM DC ⊥,进而根据线线垂直可证明线面垂直,即可得线线垂直,(2)根据体积公式,结合棱柱与棱锥的体积关系,结合等体积法可得PM h ==坐标系,求解法向量求解.【小问1详解】在DCM △中,由余弦定理可得DM =,所以222DM DC CM +=,所以90MDC ∠=︒,所以DMDC ⊥.又因为DC PD ⊥,,,DM PD D DM DP ⋂=⊂平面PDM ,所以DC ⊥平面PDM ,PM ⊂平面PDM .所以DC PM ⊥.由于//,2PQ BM PQ BM ==,所以四边形PQBM 为平行四边形,所以PM QB ∥.又AB DC ,所以AB BQ ⊥,所以90ABQ ∠=︒.【小问2详解】因为QB MD ⊥,所以PM MD ⊥,又PM CD ⊥,,,DC MD D DC MD ⋂=⊂平面ABCD ,所以PM ⊥平面ABCD .取AD 中点E ,连接PE ,设PM h =.设多面体ABCDPQ 的体积为V ,则33P CDEM A PEM P CDEM P AEM P CDEM ABQ PEM V V V V V V V ------=+=+=+三棱柱四棱锥四棱锥四棱锥112π152212551sin 333323AEM AEM AEM AEM CDEM S h S h S h S h S h h =⨯+⨯=⨯+⨯=⨯=⨯⨯⨯⨯=△△△△四边形.解得PM h ==建立如图所示的空间直角坐标系,则()())2,0,,1,0A B C-,)(((),,,0,0,0DP Q M .则平面QAB 的一个法向量()1,0,0n =.所以()0,1,0,CD PD ==-,设平面PCD 的一个法向量(),,m x y z =,则0,0,m CD n PD ⎧⋅=⎪⎨⋅=⎪⎩即0,0,y =⎧⎪-=取()3,0,1m = .所以cos 10m n m n θ⋅==⋅ .所以平面PAD 与平面PMD夹角的余弦值为10.18.已知,A B 是椭圆22:14xE y +=的左,右顶点,点()(),00M m m >与椭圆上的点的距离的最小值为1.(1)求点M 的坐标.(2)过点M 作直线l 交椭圆E 于,C D 两点(与,A B 不重合),连接AC ,BD 交于点G .(ⅰ)证明:点G 在定直线上;(ⅱ)是否存在点G 使得CG DG ⊥,若存在,求出直线l 的斜率;若不存在,请说明理由.【答案】(1)()3,0;(2)(ⅰ)证明见解析;(ⅱ)存在,4525±【解析】【分析】(1)设()00,P x y,利用两点距离距离得PM =,然后根据330,22m m ≤分类讨论求解即可;(2)(ⅰ)设直线()()1122:3,,,,l x ty C x y D x y =+,与椭圆方程联立方程,结合韦达定理得121265y y ty y +=-,写出直线AC ,BD 的方程,进而求解即可;(ⅱ)由题意点G 在以AB为直径的圆上,代入圆的方程求得4,33G ⎛⎫± ⎪ ⎪⎝⎭,写出直线AC 的方程,与椭圆联立,求得点C 的坐标,进而可得答案.【小问1详解】设()00,P x y 是椭圆上一点,则220044x y +=,因为()022PM x ==-≤≤,①若min30,12m PM <≤==,解得0m =(舍去),②若min3,12m PM >==,解得1m =(舍去)或3m =,所以M 点的坐标位()3,0.【小问2详解】(ⅰ)设直线()()1122:3,,,,l x ty C x y D x y =+,由22314x ty x y =+⎧⎪⎨+=⎪⎩,得()224650t y ty +++=,所以12122265,44t y y y y t t +=-=++,所以121265y y ty y +=-,①由216800t ∆=->,得t>或t <,易知直线AC 的方程为()1122y y x x =++,②直线BD 的方程为()2222y y x x =+-,③联立②③,消去y ,得()()()()121212221211212552221x y ty y ty y y x x x y ty y ty y y ++++===--++,④联立①④,消去12ty y ,则()()12212155265526y y y x x y y y-+++==---++,解得43x =,即点G 在直线43x =上;(ⅱ)由图可知,CG DG ⊥,即AG BG ⊥,所以点G 在以AB 为直径的圆上,设4,3G n ⎛⎫ ⎪⎝⎭,则22443n ⎛⎫+= ⎪⎝⎭,所以253n =±,即425,33G ⎛⎫± ⎪ ⎪⎝⎭.故直线AC 的方程为()25y x =±+,直线AC 的方程与椭圆方程联立,得291640x x +-=,解得2A x =-,所以412929C x =-⋅-=,所以9C y =±,故25l MC k k ==±.19.在概率统计中,常常用频率估计概率.已知袋中有若干个红球和白球,有放回地随机摸球n 次,红球出现m 次.假设每次摸出红球的概率为p ,根据频率估计概率的思想,则每次摸出红球的概率p 的估计值为p m n=.(1)若袋中这两种颜色球的个数之比为1:3,不知道哪种颜色的球多.有放回地随机摸取3个球,设摸出的球为红球的次数为Y ,则()3,Y B p ~.注:()p P Y k =表示当每次摸出红球的概率为p 时,摸出红球次数为k 的概率)(ⅰ)完成下表;k0123()14P Y k =2764164()34P Y k =9642764(ⅱ)在统计理论中,把使得..()p P Y k =的取值达到最大时的........p ,作为p 的估计值,记为 p ,请写出 p 的值.(2)把(1)中“使得()p P Y k =的取值达到最大时的p 作为p 的估计值 p ”的思想称为最大似然原理.基于最大似然原理的最大似然参数估计方法称为最大似然估计.具体步骤:先对参数θ构建对数似然函数()l θ,再对其关于参数θ求导,得到似然方程()0l θ'=,最后求解参数θ的估计值.已知(),Y B n p ~的参数p 的对数似然函数为()11()ln 1ln(1)nnii i i l p Xp X p ===+--∑∑,其中0,1,i i X i ⎧=⎨⎩第次摸出白球第次摸出红球.求参数p 的估计值,并且说明频率估计概率的合理性.【答案】(1)(ⅰ)表格见解析;(ⅱ)1,0,143,2,3ˆ4y p y ⎧=⎪⎪=⎨⎪=⎪⎩;(2)11ni i X n =∑,答案见解析【解析】【分析】(1)(ⅰ)分14p =与34p =计算即可得;(ⅱ)结合题意与所得表格即可得解;(2)求取函数()11()ln 1ln(1)nnii i i l p Xp X p ===+--∑∑的导数,借助导数得到函数的最大值点,即可得解.【小问1详解】因为袋中这两种颜色球的个数之比为1:3,且()3,Y B p ~,所以p 的值为14或34;(ⅰ)当14p =时,()()211134271C 164P Y p p ==-=,()()2213492C 164P Y p p ==-=,当34p =时,()()30033410C 164P Y p p ==-=,()()22334272C 164P Y p p ==-=,表格如下k0123()14P Y k =27642764964164()34P Y k =16496427642764(ⅱ)由上表可知()()33C 1kk kp P Y k p p -==-.当0y =或1时,参数14p =的概率最大;当2y =或3时,参数34p =的概率最大.所以1,0,143,2,3ˆ4y p y ⎧=⎪⎪=⎨⎪=⎪⎩;【小问2详解】由()11()ln 1ln(1)nnii i i l p Xp X p ===+--∑∑,则()()111111n ni i i i l p X X p p =='=---∑∑,令()1111101n n i i i i X X p p ==--=-∑∑,即()11111111nniii i nnniiii i i X n X pnpXXX=====---===-∑∑∑∑∑,故11n i i p X n ==∑,即当110,n i i X n p =⎛⎫∈ ⎪⎝⎭∑时,()0l p '>,当11,1n i i p X n =⎛⎫∈ ⎪⎝⎭∑时,()0l p '<,故()l p 在110,n i i X n =⎛⎫ ⎪⎝⎭∑上单调递增,在11,1n i i X n =⎛⎫⎪⎝⎭∑上单调递减,即当11n i i p X n ==∑时,()l p 取最大值,故11ˆni i pX n ==∑,因此,用最大似然估计的参数 p 与频率估计概率的 p 是一致的,故用频率估计概率是合理的.【点睛】关键点点睛:本题关键点在于借助导数求取函数()l p 取最大值时的p ,得到11ˆni i pX n ==∑.。
2016--2017学年度上学期期末九年级数学试题及答案
![2016--2017学年度上学期期末九年级数学试题及答案](https://img.taocdn.com/s3/m/5f3b03b00129bd64783e0912a216147917117eaa.png)
2016--2017学年度上学期期末九年级数学试题及答案2016-2017学年度上学期期末考试九年级数学试题 2017.01注意事项:1.答题前,请先将⾃⼰的姓名、考场、考号在卷⾸的相应位置填写清楚;2.选择题答案涂在答题卡上,⾮选择题⽤蓝⾊、⿊⾊钢笔或圆珠笔直接写在试卷上.第Ⅰ卷(选择题共42分)⼀、选择题(本⼤题共14⼩题,每⼩题3分,共42分)在每⼩题所给出的四个选项中,只有⼀项是符合题⽬要求的. 1.⽅程x x 22=的根是 A .2 B .0C .2或0D .⽆解 2.若反⽐例函数的图象过点(2,1),则这个函数的图象⼀定过点A .(-2,-1)B .(1,-2)C .(-2,1)D .(2,-1)3. 如图,点A 为α∠边上任意⼀点,作BC AC ⊥于点C ,AB CD ⊥于点D ,下列⽤线段⽐表⽰αsin 的值,错误..的是 A. BCCDB.AB AC C.AC AD D. ACCD4. 如图,AD ∥BE ∥CF ,直线a ,b 与这三条平⾏线分别交于点A ,B ,C 和点D ,E ,F ,若AB=2,AC =6,DE =1.5,则DF 的长为 A .7.5B .6C .4.5D .35.如图,四边形 A BCD 是⊙O 的内接四边形,若∠BOD =88°,则∠BCD 的度数是 A .88°B .92°C .106°D .136°6. 在Rt △ABC 中,∠C =90°,34tan =A ,若AC =6cm ,则BC 的长度为 A .8cmB .7cmC .6cmD .5cm7. 已知⼆次函数)0()3(2≠-+=a b x a y 有最⼤值1,则该函数图象的顶点坐标为 A.)1,3(--B.)(1,3-C.)1,3(D.)1,3(-8. 从n 个苹果和4个雪梨中,任选1个,若选中苹果的概率是53,则n 的值是 A .8B .6C .4D .2(第3题图)(第4题图)(第5题图)9. 已知反⽐例函数xy 5-=,则下列结论不正确...的是 A .图象必经过点)5,1(-, B .图象的两个分⽀分布在第⼆、四象限 C .y 随x 的增⼤⽽增⼤D .若x >1,则5-<y <010. 直⾓三⾓形纸⽚的两直⾓边长分别为6,8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则cos ∠CBE 的值是A .724B .37C .247 D .252411. 如图,已知⼀块圆⼼⾓为270°的扇形铁⽪,⽤它作⼀个圆锥形的烟囱帽(接缝忽略不计),圆锥底⾯圆的直径是60cm ,则这块扇形铁⽪的半径是 A .40cm B .50cm C .60cm D .80cm12.如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,AE =6,则tan ∠BDE 的值是 A .34B .43C .21D .1:213.如图,△ABC 中,AD 是中线,BC =4,∠B =∠DAC ,则线段AC 的长为 A .22B .2C .3D .3214. 如图所⽰,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (2-,0)、B (1,0),直线x =21-与此抛物线交于点C ,与x 轴交于点M ,在直线上取点D ,使MD =MC ,连接AC ,BC ,AD ,BD ,某同学根据图象写出下列结论:①0=-b a ;②当x <21-时,y 随x 增⼤⽽增⼤;③四边形ACBD 是菱形;④c b a +-39>0.你认为其中正确的是 A .②③④B .①②③C .①③④D .①②③④(第13题图)(第14题图)第II 卷⾮选择题(共78分)15.若两个相似三⾓形的⾯积⽐为1∶4,则这两个相似三⾓形的周长⽐是. 16. 若n(其中0≠n)是关于x 的⽅程022=++n mx x 的根,则m +n 的值为 . 17.如图,⼤圆半径为6,⼩圆半径为3,在如图所⽰的圆形区域中,随机撒⼀把⾖⼦,多次重复这个实验,若把“⾖⼦落在⼩圆区域A中”记作事件W ,请估计事件W 的概率 P (W )的值.19. 如图,在直⾓坐标系中,直线221-=x y 与坐标轴交于A ,B 两点,与双曲线)0(2>=x xky 交于点C ,过点C 作CD ⊥x 轴,垂⾜为D ,且OA =AD ,则以下结论:①当x >0时,1y 随x 的增⼤⽽增⼤,2y 随x 的增⼤⽽减⼩;②4=k ;③当0<x <2时,y 1<y 2;④如图,当x=4时,EF =5.其中结论正确的有____________.(填序号)三、解答题(本⼤题共7⼩题,共63分) 20.(本题满分5分)计算:2cos30sin 45tan 601cos 60?+?--?.21.(本题满分8分)解⽅程:(1))1(212+=-x x ;(2)05422=--x x .22. (本题满分8分)如图,⼀楼房AB 后有⼀假⼭,⼭坡斜⾯CD 与⽔平⾯夹⾓为30°,坡⾯上点E 处有⼀亭⼦,测得假⼭坡脚C 与楼房⽔平距离BC =10⽶,与亭⼦距离CE =20⽶,⼩丽从楼房顶测得点E 的俯⾓为45°.求楼房AB 的⾼(结果保留根号).(第22题图)30°如图,AB 是⊙O 的直径,CD 与⊙O相切于点C ,与AB 的延长线交于点D ,DE ⊥AD 且与AC 的延长线交于点E .(1)求证:DC =DE ;(2)若tan ∠CAB =21,AB =3,求BD 的长.(第23题图)如图,在平⾯直⾓坐标系中,⼀次函数的图象与反⽐例函数的图象交于第⼆、四象限内的A ,B 两点,与x 轴交于点C ,与y 轴交于点D ,点B 的坐标是(m ,﹣4),连接AO ,AO =5,sin ∠AOC =35.(1)求反⽐例函数的解析式;(2)连接OB ,求△AOB 的⾯积.(第24题图)25.(本题满分11分)如图,已知抛物线c bx x y ++=2经过A (1-,0)、B (3,0)两点,点C 是抛物线与y 轴的交点.(1)求抛物线的解析式和顶点坐标;(2)当0<x <3时,求y 的取值范围;(3)在抛物线的对称轴上是否存在点M ,使△BCM 是等腰三⾓形,若存在请直接写出点M 坐标,若不存在请说明理由.(第25题图)26.(本题满分12分)如图1,将两个完全相同的三⾓形纸⽚ABC 和DEC 重合放置,其中∠C =90°,∠B =∠E =30°.(1)操作发现如图2,固定△ABC ,使△DE C 绕点C 旋转,当点D 恰好落在AB 边上时,填空:①线段DE 与AC 的位置..关系是_________;②设△BDC 的⾯积为1S ,△AEC 的⾯积为2S ,则1S 与2S 的数量关系是____________.(2)猜想论证当△DEC 绕点C 旋转到图3所⽰的位置时,⼩明猜想(1)中S 1与S 2的数量关系仍然成⽴,并尝试分别作出了△BDC 和△AEC 中BC 、CE 边上的⾼,请你证明⼩明的猜想.(3)拓展探究已知∠ABC =60°,点D 是其⾓平分线上⼀点,BD =CD =4,DE //AB 交BC 于点E (如图4).若在射线BA 上存在点F ,使BD E DCF S S ??=,请直接写出相应的BF 的长.A (D )B (E )C 图1 图2图42016-2017学年度上学期期末考试九年级数学参考答案 2017-1注意:解答题只给出⼀种解法,考⽣若有其他正确解法应参照本标准给分. ⼀、选择题(每⼩题3分,共42分)1-~5 CADCD 6~10BABCD 11~14 ACAB ⼆、填空题(每⼩题3分共15分) 15.2:1 16. 2- 17.4118. 8 19.①②③④三、解答题(本⼤题共7⼩题,共63分)20. 解:原式=21(1)()222÷-+2分 124分 =12……5分21. (8分)解:(1)将原⽅程变形为:0)1(2)1)(1(=+--+x x x ……………….1分∴0)21)(1(=--+x x ∴x +1=0或x ﹣3=0,……………………….3分∴x 1=﹣1,x 2=3;……………………………………………………….4分(2)∵2x 2﹣4x ﹣5=0,∴a =2,b =﹣4,c =﹣5,∴b 2﹣4ac =16+40=56,∴4564242±=-±-=a ac b b x ,…………………….3分∴2141,214121-=+=x x .…………………………………..4分 22.(8分)解:过点E 作EF ⊥BC 于点F .在Rt △CEF 中,CE =20,∠ECF =30°∴EF =10 …………2分 CF =3 EF =103(⽶) ………4分过点E 作EH ⊥AB 于点H .则HE =BF ,BH=EF .在Rt △AHE 中,∠HAE =45°,∴AH =HE ,⼜∵BC =10⽶,∴HE =(10+103)⽶, ………6分∴AB =AH +BH =10+103+10=20+103(⽶) ………………………7分答:楼房AB 的⾼为(20+103)⽶.………………………8分23. (9分)(1)证明:如图,连接OC .…………………1分∵CD 与⊙O 相切于点C ,∴∠OCD =90°. ………………………2分∴∠1+∠2=90°.∵ED ⊥AD ,∴∠EDA =90°,∴∠A +∠E =90°. …………………3分∵OC =OA ,∴∠A =∠2.(2)解:设BD =x ,则AD =AB +BD =3+x ,OD =OB +BD =1.5+x . ………5分在Rt △AED 中,∵tan ∠CAB =21=AD DE ,∴DE =21AD =21(3+x ). ………6分由(1)得DC =DE =21(3+x ). ……………7分在Rt △OCD 中,222OD CD OC =+,∴222)5.1()3(215.1x x +=??++. …………8分解得11=x ,32-=x (不合题意,舍去). ∴BD =1. ……………9分24.(10分)解:(1)过点A 作AE ⊥x 轴于点E ,如图所⽰.∵AE ⊥x 轴,∴∠AEO =90°.在Rt △AEO 中,AO =5,sin ∠AOC =35,∴AE =AO ?sin ∠AOC =3,OE ,………2分∴点A 的坐标为(﹣4,3). ……………………3分设反⽐例函数解析式为k y x =.∵点A (﹣4,3)在反⽐例函数ky x=的图象上,∴3=4k -,解得k =﹣12.∴反⽐例函数解析式为y =﹣12x. …………………5分(2)∵点B (m ,﹣4)在反⽐例函数y =﹣12x的图象上,∴﹣4=﹣12m,解得m =3,∴点B 的坐标为(3,﹣4).…………………………6分设直线AB 的解析式为y =ax +b ,将点A (﹣4,3)、点B (3,﹣4)代⼊y =ax +b 中,得34,43,a b a b =-+??-=+? 解得1,1.a b =-??=-? ∴⼀次函数解析式为y =﹣x ﹣1.…………8分令⼀次函数y =﹣x ﹣1中y =0,则0=﹣x ﹣1,解得x =﹣1,即点C 的坐标为(﹣1,0). S △AOB =12OC ?(y A ﹣y B )=12×1×[3﹣(﹣4)]=72. ……………10分25.(10分)解:(1)把A (﹣1,0)、B (3,0)分别代⼊y =x 2+bx +c 中,得:=++=+-03901c b c b ,解得:-=-=32c b ,∴抛物线的解析式为y =x 2﹣2x ﹣3. (3)分∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴顶点坐标为(1,﹣4).…………………4分(2)由图可得当0<x <3时,﹣4≤y <0;…………….5分(3)存在……………….6分①当BC BM =时,141=m ,142-=m ;②当CM =CB 时,1733+-=m ,1734--=m ;③当BM =CM 时,(1,1-).所以点M 的坐标为(1,14)或(1,14-)或(1,173+-)或(1,173--)或(1,1-).………………….11分26.(12分)解:(1)①DE ∥AC ;………………2分②S 1=S 2;………………4分(2)如图,∵△DEC 是由△ABC 绕点C 旋转得到,∴BC =CE ,AC =CD ,∵∠ACN +∠BCN =90°,∠DCM +∠BCN =180°-90°=90°,∴∠ACN =∠DCM ,在△AC N 和△DCM 中,??=?=∠=∠∠=∠CD AC N CMD DCN ACN 90∴△ACN ≌△DCM (AAS),…………………6分∴AN =DM ,∴△BD C 的⾯积和△AEC 的⾯积相等(等底等⾼的三⾓形的⾯积相等),即S 1=S 2;…………………7分如图,过点D 作1DF ∥BE ,易求四边形1BEDF 是菱形,所以BE =1DF ,且BE 、1DF 上的⾼相等,此时 BDE D CF S S ??=1…………………8分过点D 作BD DF ⊥2,∵∠ABC =60°,1DF ∥BE ,∴?=∠6021F DF ,=∠=∠=∠30211ABC DBE DB F ,∴?=∠6021DF F ,∴21F DF ?是等边三⾓形,∴1DF =2DF ,∵BD =CD ,∠ABC =60°,点D 是⾓平分线上⼀点,∴∠CDF 1=180°-30°=150°,∠CDF 2=360°-150°-60°=150°,∴∠CDF 1=∠CDF 2,在△CDF 1和△CDF 2中,=∠=∠=CD CD CDF CDF DF DF 2121,∴△CDF 1≌△CDF 2(SAS),∴点F 2也是所求的点,……………10分∵∠ABC =60°,点D 是⾓平分线上⼀点,DE ∥AB ,DF 1∥BE ,易证1BEDF 是菱形,连接EF 1,则BD EF ⊥1,垂⾜为O ,在1BOF Rt ?中,BO =21BD =2,?=∠301BO F ,∴=30cos 1BF BO,∴33423230cos 1==?=BO BF ………………11分. 在Rt BD F 2中,=30cos 2BF BD ,∴33823430cos 2==?=BD BF ,故BF 的长为334或338.…………………12分。
江苏省泰州2016-2017学年高二下学期期末数学试题(理)含答案
![江苏省泰州2016-2017学年高二下学期期末数学试题(理)含答案](https://img.taocdn.com/s3/m/1e51b1541fd9ad51f01dc281e53a580216fc50c8.png)
江苏省泰州2016-2017学年高二下学期期末数学试题(理)含答案2016-2017学年度第二学期期末考试高二数学(理科)试题一、填空题:共14小题,每小题5分,共70分1.4!的值为 24.2.椭圆的参数方程为{x=2cosθ。
y=sinθ}(θ为参数),则该椭圆的普通方程为 x^2/4+y^2=1.3.已知a=(2,4,-1)。
b=(m,1,0),若a⊥b,则m=-2.4.在[-2,1]上随机取一个数x,使得x<1的概率为3/4.5.某高级中学共有2000名学生,为了了解不同年级学生的眼睛的近视情况,现用分层抽样的方法抽取一个容量为100的样本,高三年级抽取的学生人数为35人,则高三年级学生人数为 175人.6.右图是一个算法的流程图,则输出的k的值是 4.7.极坐标系中,点(1,0)到直线θ=π/4的距离是1/√2.8.一颗质地均匀的正方体骰子,其六个面上的点数分别为1,2,3,4,5,6,将这颗骰子连续抛掷两次,观察向上的点数,则两点数之和不为5的概率为 11/18.9.如图是甲、乙两名篮球运动员在五场比赛中所得分数的茎叶图,则在这五场比赛中得分较为稳定(方差较小)的那名运动员的得分的方差为 20.10.现将5张连号的电影票分给5个人(5人中含甲乙两人),每人一张,且甲、乙两人分得的电影票连号,则共有不同的分法的种数为 12.11.若Cx(x+3)-Cx+2=28,则x的值为 3.12.若点P(ρ,θ)到直线θ=π/3的距离为3,则ρ=3/√3=√3.13.以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,且在两种坐标系中取相同的长度单位,已知平面直角坐标系中,直线l的参数方程为 {x=-1+2t。
y=2+t}(t为参数)在极坐标系中,圆C的圆心的极坐标为C(1,π/4),半径为1.1)求圆C的直角坐标方程;圆C的极坐标方程为ρ=1,θ=π/4,所以C的直角坐标为(√2/2.√2/2).2)判断直线l与圆C的位置关系。
浙江省杭州市2024-2025学年高一上学期10月教学质量检测数学试题含答案
![浙江省杭州市2024-2025学年高一上学期10月教学质量检测数学试题含答案](https://img.taocdn.com/s3/m/4e47d58e85254b35eefdc8d376eeaeaad1f316f9.png)
杭州联谊学校2024年10月教学质量检测高一数学试题(答案在最后)一、单选题(每小题4分,共计32分)1.已知集合,则()A. B. C. D.【答案】B【解析】【分析】根据交集的定义求解即可.【详解】因为,则.故选:B.2.命题“,”的否定是()A.,B.,C.,D.,【答案】C【解析】【分析】利用全称命题的否定可得出结论.【详解】由全称命题的否定可知,命题“,”的否定是“,”.故选:C.3.已知函数的对应关系如下表,函数的图象如图,则的值为()123230A.3B.0C.1D.2【答案】B【解析】【分析】根据的图像可知,,根据表格即可求得.【详解】根据的图像可知,,根据表格可知,.故选:B4.若,则下列命题正确的是()A.若,则B.若,则C.若,则D.若,则【答案】D【解析】【分析】根据的取值情况判断各个选项的对错即可得到答案.【详解】选项A,若,则结论错误,故选项A错误;选项B,根据糖水不等式可知,,故选项B错误;选项C,当时,,故选项C错误;选项D,可知,,故选项D正确.故选:D5.若不等式对一切实数都成立,则实数的取值范围为()A. B.C. D.【答案】D【解析】【分析】分和两种情况,结合不等式恒成立求参数的取值范围.【详解】当时,不等式为对一切实数都成立,符合题意,当时,要使得不等式对一切实数都成立,则,解得,综上所述,的取值范围为.故选:D.6.若函数的定义域为,值域为,则的取值范围为().A. B. C. D.【答案】C【解析】【分析】根据二次函数的性质结合条件即得.【详解】∵,∴对称轴为直线,当时,.∵时,,由二次函数的对称性可知另一个的对应的值为,∴的取值范围是.故选:.7.已知,其中,若,则正实数t取值范围()A.或B.或C.或D.或【答案】A【解析】【分析】根据给定条件,分段求解不等式即可.【详解】令,解得,当时,,,即,且,解得;当时,,,即,且,解得,当时,,,而为正实数,则此种情况无解,所以正实数的取值范围为或.故选:A8.已知函数,若,对均有成立,则实数的取值范围为()A. B. C. D.【答案】B【解析】【分析】将问题转化为对都恒成立,结合二次函数以及一次的性质即可求解.【详解】,对均有成立,在上单调递增,,依题意有对均有成立,即在时恒成立,∴,解得,∴实数的取值范围是.故选:B.二、多选题(每小题6分,共计18分)9.若是的必要不充分条件,则实数的值可以为()A. B. C. D.【答案】BC【解析】【分析】解方程,根据题意可得出关于实数的等式,即可解得实数的值.【详解】由,可得或.对于方程,当时,方程无解,符合题意;当时,解方程,可得.由题意知,,此时应有或,解得或.综上可得,或.故选:BC.10.若正实数满足,则下列说法正确的是()A.有最大值为B.有最小值为C.有最小值为D.有最大值为【答案】ABC【解析】【分析】直接利用不等式即可求解AC,利用乘“1”法即可求解B,利用不等式成立的条件即可求解D.【详解】对于A:因为,则,当且仅当,即时取等号,故A正确,对于B,,当且仅当,即时取等号,故B正确,对于C:因为,则,当且仅当,即时取等号,故C正确,对于D:因为,当且仅当,即,时取等号,这与均为正实数矛盾,故D错误,故选:ABC.11.下列说法正确的是()A.若的定义域为,则的定义域为B.和表示同一个函数C.函数的值域为D.函数满足,则【答案】AD【解析】【分析】根据抽象函数的定义域的求法求解可判断A;利用同一函数得定义判断B;利用换元法,结合二次函数的性质求得其值域,判断C;利用方程组法求解函数解析式判断D.【详解】对于A,因为的定义域为,对于函数,则,解得,即的定义域为,故A正确;对于B,定义域为,定义域为,所以和不是同一个函数,故B错误;对于C,令,则,所以,因为,所以在上单调递减,所以,所以函数的值域为,故C错误;对于D,因为,所以,两边同乘以2得,两式相加得,解得,故D正确.故选:AD.三、填空题(每小题4分,共计12分)12.若,则______.【答案】2【解析】【分析】根据元素与集合的关系,集合元素的互异性求得正确答案.【详解】依题意,当时,,此时,不符合题意.当时,(舍去)或,当时,,符合题意.综上所述,的值为.故答案为:13.已知,,则的取值范围是__________.【答案】【解析】【分析】根据同向不等式相加不等号方向不变的性质求解即可.【详解】因为,所以,又,由不等式的可加性得,所以的取值范围是.故答案为:.14.已知关于的一元二次不等式的解中有且仅有3个正整数解,则实数的取值范围是__________.【答案】【解析】【分析】将化为,分,,三种情况讨论即可求.【详解】由可得,当时,不等式的解集为,不符合题意,舍,当时,不等式的解集为,其正整数解至多有1个,不符合题意,舍,当时,不等式的解集为,因为有且仅有3个正整数解,故整数解为,所以,.综上,实数的取值范围是.故答案:四、解答题(共计58分)15.已知集合,集合.(1)当时,求;(2)若,求实数a的取值范围.【答案】(1);(2).【解析】【分析】(1)由,求得集合B,再与A,利用并集运算求解.(2)将,转化为B A,再分和两种情况讨论求解.,详解】(1)当时,集合,又集合,所以;(2)因为,所以B A,当时,,解得,当时,,解得,综上:实数a取值范围【点睛】本题主要考查集合的运算以及集合的关系的应用,还考查了运算求解的能力,属于基础题.16.(1)已知,求函数的最大值;(2)已知,且,求的最小值.【答案】(1);(2)【解析】【分析】(1)易知,由基本不等式计算可得的最小值为6,即可得解;(2)依题意,利用基本不等式中“1”妙用计算可得答案.详解】(1)由可得,所以,当且仅当即时取等号;所以函数的最大值为.(2)根据题意,且,则,当且仅当,时取等号,所以的最小值为.17.某公司带来了高端智能家属产品参展,供购商洽谈采购,并决定大量投放中国市场已知该产品年固定研发成本50万元,每生产一台需另投入60元.设该公司一年内生产该产品x万台且全部售完,每万合的销售收入为G(x)万元,.(1)求年利润s(万元)关于年产量x(万台)的函数解析式;(利润=销售收入-成本)(2)当年产量为多少万台时,该公司获得的利润最大?并求出最大利润.【答案】(1);(2)当年产量为29万台时,该公司获得的最大利润万元.【解析】【分析】(1)根据题意,每万台的销售收入是一个分段函数,分和两种情况讨论,根据生产产品的数量求出对应的解析式即可求解;(2)分段讨论函数的最值,最后比较大小得出结果.【小问1详解】当时,;当时,,所以函数解析式为.【小问2详解】当时,因为,又因为函数在上单调递增,所以当时,取最大值,;当时,(当且仅当,即时等号成立)因为,所以时,的最大值为万元.所以当年产量为29万台时,该公司获得的最大利润万元.18.已知函数.(1)若f(x)<k的解集为{x|﹣3<x<﹣2},求实数k的值;(2)若∀x1∈[2,4],都∃x2∈[2,4],使f(x1)≥g(x2)成立,求实数m的取值范围.【答案】(1);(2)【解析】【分析】(1)由f(x)<k,整理得:kx2﹣x+6k>0,然后,利用韦达定理进行求解(2)把题目的成立条件转化为f(x)最小值≥g(x)最小值,进而分别求出,函数f(x)在区间[2,4]上的最小值和函数g(x)在区间[2,4]上的最小值即可【详解】(1)证明:由f(x)<k得:k,整理得:kx2﹣x+6k>0,因为解集为{x|﹣3<x<﹣2},所以k<0,所以方程kx2﹣x+6k=0的根是﹣3,﹣2,∴2+(﹣3),∴k;所以实数k的值是;(2)由题意可得,f(x)最小值≥g(x)最小值,∀x1∈[2,4],f(x)在区间[2,]为增函数,[,4]为减函数,f(2),f(4),所以函数f(x)在区间[2,4]上的最小值是f(4);函数g(x)开口向上,且对称轴x=﹣m,①当﹣m≤2,即m≥﹣2,g(x)最小值=g(2)=4+4m⇒m,解得:﹣2;②当2<﹣m<4,即﹣4<m<﹣2,g(x)最小值=g(﹣m)=m2﹣2m2⇒m≤﹣1或m≥1,所以﹣4<m<﹣2;③﹣m≥4,即m≤﹣4,g(x)最小值=g(4)=16+8m,解得:m,所以m≤﹣4;综上所述,m的取值范围:(﹣∞,].【点睛】关键点睛:本题解题的关键有两点:分别在于:1.把题目的成立条件转化为f(x)最小值≥g(x)最小值,2.通过对进行分类讨论,求出函数g(x)在区间[2,4]上的最小值19.已知二次函数的图象过点(1,13),且函数对称轴方程为.(1)求函数的解析式;(2)设函数,求在区间上的最小值【答案】(1),(2)【解析】【分析】(1)由f(x)的对称轴方程以及图象过点(1,13),求出b、c的值,从而写出f(x)的解析式;(2)化函数g(x)为分段函数,画出函数的图象,结合图象,求出g(x)在区间[t,2]上的最小值H (t).【详解】(1)∵f(x)=x2+bx+c的对称轴方程为,∴b=1;又f(x)=x2+bx+c的图象过点(1,13),∴1+b+c=13,∴c=11;∴f(x)的解析式为f(x)=x2+x+11.(2)∵函数g(x)=[f(x)﹣x2﹣13]•|x|=[(x2+x+11)﹣x2﹣13]•|x|=(x﹣2)•|x|,画出函数图象,如图:令,解得或(舍)∴当1≤t<2时,g(x)min=t2﹣2t;当时,g(x)min=﹣1;当时,.∴综上,H(t).【点睛】本题考查了求函数的解析式以及求函数在某一区间上的最值情况,解题时应结合函数的图象与性质来解答,是易错题.。
2024届杭州市重点中学高三下学期期末质量监测数学试题
![2024届杭州市重点中学高三下学期期末质量监测数学试题](https://img.taocdn.com/s3/m/c3dab5f19fc3d5bbfd0a79563c1ec5da51e2d647.png)
2024届杭州市重点中学高三下学期期末质量监测数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.抛物线24y x =的焦点为F ,点(,)P x y 为该抛物线上的动点,若点(1,0)A -,则PFPA的最小值为( ) A .12B.2CD.32.若实数x ,y 满足条件25024001x y x y x y +-≤⎧⎪+-≤⎪⎨≥⎪⎪≥⎩,目标函数2z x y =-,则z 的最大值为( )A .52B .1C .2D .03.二项式732x x ⎛⎫- ⎪⎝⎭展开式中,1x 项的系数为( )A .94516-B .18932-C .2164-D .283584.设点P 是椭圆2221(2)4x y a a +=>上的一点,12F F ,是椭圆的两个焦点,若12F F =则12PF PF +=( ) A .4B .8C.D.5.将3个黑球3个白球和1个红球排成一排,各小球除了颜色以外其他属性均相同,则相同颜色的小球不相邻的排法共有( ) A .14种B .15种C .16种D .18种6.已知等差数列{}n a 的前n 项和为n S ,若1512,90a S ==,则等差数列{}n a 公差d =( ) A .2B .32C .3D .47.已知等差数列{}n a 的前13项和为52,则68(2)a a +-=( )A .256B .-256C .32D .-328.国家统计局服务业调查中心和中国物流与采购联合会发布的2018年10月份至2019年9月份共12个月的中国制造业采购经理指数(PMI)如下图所示.则下列结论中错误的是( )A .12个月的PMI 值不低于50%的频率为13B .12个月的PMI 值的平均值低于50%C .12个月的PMI 值的众数为49.4%D .12个月的PMI 值的中位数为50.3%9.已知直线,m n 和平面α,若m α⊥,则“m n ⊥”是“//n α”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .不充分不必要10.已知函数()sin(2019)cos(2019)44f x x x ππ=++-的最大值为M ,若存在实数,m n ,使得对任意实数x 总有()()()f m f x f n ≤≤成立,则M m n ⋅-的最小值为( )A .2019πB .22019π C .42019πD .4038π11.函数()1ln1xf x x-=+的大致图像为( ) A . B .C .D .12.已知椭圆2222:1x y C a b+=的短轴长为2,焦距为1223F F ,、分别是椭圆的左、右焦点,若点P 为C 上的任意一点,则1211PF PF +的取值范围为( ) A .[]1,2B .2,3⎡⎤⎣⎦C .2,4⎡⎤⎣⎦D .[]1,4二、填空题:本题共4小题,每小题5分,共20分。
2016-2017学年度第二学期六年级数学期末质量检测试题
![2016-2017学年度第二学期六年级数学期末质量检测试题](https://img.taocdn.com/s3/m/b500365449d7c1c708a1284ac850ad02de8007c6.png)
2016-2017学年度第二学期六年级数学期末质量检测试题2016-2017学年第二学期,六年级数学期末质量检测卷3.钟表在下午3点半时,时针和分针所成的角度是90度。
()2.甲乙两桶水,甲用去四分之一,乙用去一半,剩下的水一样多。
甲乙原来水的比是4:3.()一、填空题。
1.地球上陆地面积约为1亿4千8百9十9万5千平方千米,写作()平方千米。
省略万位后面的尾数约为()万平方千米。
2.分数单位为1/7的最大真分数是()。
至少再加上()个分数单位,就变成了最小的质数。
3.3时15分=()时50分。
1平方米=()公顷。
4.7千克比()少1/2千克;20吨增加()%后是25吨。
5.一根圆柱形木料长4米,把它锯成3段,表面积增加了12平方分米。
这根木料的体积是()。
如果将它锯成6段,需要()分钟。
6.在a÷b=5……3中,将a、b同时扩大10倍,商是(),余数是()。
7.用5厘米的线段表示实际距离3000千米,这幅地图的比例尺是()。
在这幅地图上量得甲、乙两地相距4厘米,甲、乙两地实际相距()。
8.5/4:5/6的比值是()。
写成最简整数比是()。
9.已知A=2×3×5,B=3×3×5.那么A和B的最大公约数是(),最小公倍数是()。
10.一个周长为46厘米的长方形,如果长和宽都增加10厘米,那么面积增加()平方厘米。
11.一只长方体油箱的容量为27升,里面高为6厘米,底面积为()平方厘米。
12.如下左图,一长方形被一条直线分成两个长方形,这两个长方形的宽的比为1∶3.若阴影三角形面积为1平方厘米,则原长方形面积为()平方厘米。
二、判断。
1.工作总量一定,工作效率和工作时间成反比例。
(×)2.圆锥的侧面展开后是一个等腰三角形。
(×)5.一个长方体,它的长、宽、高都扩大2倍,它的体积扩大6倍。
(√)三、选择题。
1.一列分数的前5个是1/2、2/5、3/10、4/17、5/26.根据这5个分数的规律可知,第8个分数是(C)。
2016-2017学年高二数学人教B版必修4学案1.3.3《已知三角函数值求角》
![2016-2017学年高二数学人教B版必修4学案1.3.3《已知三角函数值求角》](https://img.taocdn.com/s3/m/8d4e3e0b5727a5e9856a6133.png)
1.3.3 已知三角函数值求角明目标、知重点 1.掌握已知三角函数值求角的步骤和方法.2.了解符号arcsin x ,arccos x ,arctan x 的含义,并能用这些符号表示非特殊角.已知三角函数值时角的表示探究点一 已知正弦值,求角思考1 阅读教材58页下半页,谈谈对arcsin a 表示的意义. 答 (1)当|a |≤1时,arcsin a 表示一个角;(2)这个角在区间⎣⎡⎦⎤-π2,π2内取值,即arcsin a ∈⎣⎡⎦⎤-π2,π2; (3)这个角的正弦值等于a ,即sin(arcsin a )=a . 因此,a 的范围必是|a |≤1.思考2 请你根据符号arcsin a 的含义写出下列式子的结果: arcsin 12=π6;arcsin ⎝⎛⎭⎫-12=-π6; arcsin22=π4;arcsin ⎝⎛⎭⎫-32=-π3; arcsin0=0;arcsin(-1)=-π2;arcsin ⎝⎛⎭⎫sin π2=π2;arcsin ⎝⎛⎭⎫sin 34π=π4. 例1 已知sin x =32. (1)当x ∈⎣⎡⎦⎤-π2,π2时,求x 的取值集合;(2)当x ∈[0,2π]时,求x 的取值集合; (3)当x ∈R 时,求x 的取值集合.解 (1)∵y =sin x 在⎣⎡⎦⎤-π2,π2上是增函数, 且知sin π3=32.∴满足条件的角只有x =π3.∴x 的取值集合为⎩⎨⎧⎭⎬⎫π3.(2)∵sin x =32>0,∴x 为第一或第二象限角 且sin π3=sin ⎝⎛⎭⎫π-π3=32. ∵在[0,2π]上符合条件的角x =π3或x =2π3,∴x 的取值集合为⎩⎨⎧⎭⎬⎫π3,2π3.(3)当x ∈R 时,x 的取值集合为 {x |x =2k π+π3或x =2k π+2π3,k ∈Z }.反思与感悟 方程y =sin x =a ,|a |≤1的解集可写为{x |x =2k π+arcsin a ,或(2k +1)π-arcsin a ,k ∈Z }.也可化简为{x |x =k π+(-1)k arcsin a ,k ∈Z }.跟踪训练1 若sin α=13,试根据下列范围,利用符号arcsin x 表示角α.(1)若α为锐角,则α=________________; (2)若α为三角形内角,则α=________________; (3)若α∈[0,2π],则α=________________; (4)若α∈R ,则α=________________. 答案 (1)arcsin 13 (2)arcsin 13或π-arcsin 13(3)arcsin 13或π-arcsin 13(4)k π+(-1)k arcsin 13,k ∈Z探究点二 已知余弦值,求角思考1 阅读教材59页下半页,说出arccos a 的含义. 答 (1)当|a |≤1时,arccos a 表示一个角;(2)这个角在区间[0,π]内取值,即arccos a ∈[0,π]; (3)这个角的余弦值等于a ,即cos(arccos a )=a . 因此,a 的范围也必须是|a |≤1.思考2 请你根据符号arccos a 的含义写出下列式子的结果: arccos 12=π3;arccos ⎝⎛⎭⎫-12=23π; arccos22=π4;arccos ⎝⎛⎭⎫-22=34π; arccos1=0;arccos(-1)=π; arccos ⎝⎛⎭⎫-32=56π;arccos0=π2.例2 已知cos x =-13.(1)当x ∈[0,π]时,求x ; (2)当x ∈[0,2π]时,求x ; (3)当x ∈R 时,求x 的取值集合. 解 (1)∵cos x =-13,且x ∈[0,π],∴x =arccos ⎝⎛⎭⎫-13=π-arccos 13. (2)∵x ∈[0,2π]且cos x =-13<0.∴x 为第二象限角或第三象限角. ∴x =π-arccos 13或π+arccos 13.(3)当x ∈R 时,x 与π-arccos 13终边相同或者与π+arccos 13终边相同.∴x =2k π+π-arccos 13或x =2k π+π+arccos 13(k ∈Z ).∴x 的取值集合是⎩⎨⎧⎭⎬⎫x |x =(2k +1)π±arccos 13,k ∈Z .反思与感悟 方程cos x =a ,|a |≤1的解集可写成{x |x =2k π±arccos a ,k ∈Z }.跟踪训练2 已知cos α=12,若α∈[0,2π],则α的集合是________;若α∈R ,则α的集合是________.答案 ⎩⎨⎧⎭⎬⎫π3,53π⎩⎨⎧⎭⎬⎫α|α=2k π±π3,k ∈Z探究点三 已知正切值,求角思考1 对arctan a 的含义你是如何理解的? 答 (1)arctan a 表示一个角;(2)这个角在区间⎝⎛⎭⎫-π2,π2内,即arctan a ∈⎝⎛⎭⎫-π2,π2; (3)这个角的正切值是a ,根据正切函数的值域是R ,可知a ∈R ,即tan(arctan a )=a . 思考2 请你根据符号arctan a 的含义写出下列式子的结果: arctan1=π4;arctan(-1)=-π4;arctan 3=π3;arctan(-3)=-π3;arctan33=π6;arctan ⎝⎛⎭⎫-33=-π6; arctan0=0;tan(arctan 2)= 2.例3 (1)已知tan α=-2,且α∈⎝⎛⎭⎫-π2,π2,求α; (2)已知tan α=-2,且α∈[0,2π],求α; (3)已知tan α=-2,α∈R ,求α.解 (1)由正切函数在开区间⎝⎛⎭⎫-π2,π2上是增函数可知,符合条件tan α=-2的角只有一个,故α=arctan(-2).(2)∵tan α=-2<0,∴α是第二或第四象限角.又∵α∈[0,2π],由正切函数在区间⎝⎛⎦⎤π2,π、⎝⎛⎦⎤3π2,2π上是增函数,知符合tan α=-2的角有两个.∵tan(π+α)=tan(2π+α)=tan α=-2, 且arctan(-2)∈⎝⎛⎭⎫-π2,0, ∴α=π+arctan(-2)或α=2π+arctan(-2). (3)α∈R ,则α=k π+arctan(-2) (k ∈Z ).反思与感悟 方程tan x =a ,a ∈R 的解集为{x |x =k π+arctan a ,k ∈Z }.跟踪训练3 已知tan α=2,且α∈R ,则角α的集合是________.(用反正切表示) 答案 {}α|α=k π+arctan2,k ∈Z1.已知α是三角形的内角,cos α=12,则角α等于( )A.π6B.π3C.5π6或π6D.2π3或π3答案 B2.若sin x =14,x ∈⎝⎛⎭⎫π2,π,则x 等于( ) A.arcsin 14B.π-arcsin 14C.π2+arcsin 14D.-arcsin 14答案 B3.若cos x =13,x ∈⎝⎛⎭⎫-π2,0,则x =________. 答案 -arccos 134.arcsin(-1)+arctan 33=________. 答案 -π3[呈重点、现规律]1.理解符号arcsin x 、arccos x 、arctan x 的含义每个符号都要从以下三个方面去理解,以arcsin x 为例来说明. (1)arcsin x 表示一个角; (2)这个角的范围是⎣⎡⎦⎤-π2,π2; (3)这个角的正弦值是x ,所以|x |≤1. 例如:arcsin2,arcsin 3都是无意义的. 2.已知三角函数值求角的大致步骤 (1)由三角函数值的符号确定角的象限; (2)求出[0,2π)上的角;(3)根据终边相同的角写出所有的角.一、基础过关1.下列叙述错误的是( ) A.arctan y 表示一个⎝⎛⎭⎫-π2,π2内的角 B.若x =arcsin y ,|y |≤1,则sin x =y C.若tan x2=y ,则x =2arctan yD.arcsin y 、arccos y 中的y ∈[-1,1]答案 C2.若α是三角形内角,且sin α=12,则α等于( )A.30°B.30°或150°C.60°D.120°或60°答案 B解析 ∵sin30°=12,sin(180°-30°)=sin30°=12,∴α=30°或150°. 3.已知cos x =-32,π<x <2π,则x 等于( ) A.7π6 B.4π3 C.11π6 D.5π6 答案 A解析 符合条件cos x 0=32的锐角x 0=π6, 而cos ⎝⎛⎭⎫π+π6=-cos π6=-32,∴x =π+π6=7π6. 4.若tan x =-3,0<x <2π,则角x 等于( ) A.π3或2π3 B.2π3或4π3 C.4π3或5π3 D.2π3或5π3答案 D解析 ∵tan x =-3<0,∴x 为第二或第四象限角. 符合条件tan x 0=3的锐角x 0=π3.而tan ⎝⎛⎭⎫π-π3=-tan π3=-3, tan ⎝⎛⎭⎫2π-π3=-tan π3=-3, ∴x =π-π3=2π3或x =2π-π3=5π3.5.arcsin ⎝⎛⎭⎫sin 23π=________. 答案 π3解析 arcsin ⎝⎛⎭⎫sin 23π=arcsin 32=π3.6.直线2x +y -1=0的倾斜角是________(用反正切表示). 答案 π+arctan(-2)解析 ∵2x +y -1=0,∴y =-2x +1.设直线y =-2x +1的倾斜角为θ,则tan θ=-2, ∴θ为钝角,θ∈⎝⎛⎭⎫π2,π. ∵arctan(-2)∈⎝⎛⎭⎫-π2,0, ∴θ=π+arctan(-2).7.求值:arcsin 32-arccos ⎝⎛⎭⎫-12arctan (-3).解 arcsin32=π3,arccos ⎝⎛⎭⎫-12=2π3, arctan(-3)=-π3,∴原式=π3-2π3-π3=1.二、能力提升8.使得等式2cos x2=1成立的x 的集合是( )A.⎩⎨⎧⎭⎬⎫x |x =4k π+π3,k ∈ZB.⎩⎨⎧⎭⎬⎫x |x =4k π+π6,k ∈ZC.⎩⎨⎧⎭⎬⎫x |x =4k π±23π,k ∈ZD.⎩⎨⎧⎭⎬⎫x |x =2k π+π6,k ∈Z答案 C解析 cos x 2=12>0,x2为第一象限角或第四象限角.∴x 2与π3或-π3终边相同. ∴x 2=2k π±π3,k ∈Z , ∴x =4k π±23π,k ∈Z .9.直线x +2y +1=0的倾斜角为( ) A.arctan ⎝⎛⎭⎫-12 B.-arctan 12C.arcsin ⎝⎛⎭⎫-55 D.arccos ⎝⎛⎭⎫-255答案 D解析 A ,B ,C 均表示负锐角,只有D 选项中 arccos ⎝⎛⎭⎫-255表示钝角.故选D. 10.已知sin α=13,若π2<α<π,用反正弦符号表示α为________________.答案 π-arcsin 13解析 满足sin α=13的锐角为α0=arcsin 13.∵α∈⎝⎛⎭⎫π2,π且sin(π-α0)=sin α0=13, ∴α=π-α0=π-arcsin 13.11.用反三角函数的形式把下列各式中的x 表示出来. (1)cos x =-45 (π2<x <π);(2)sin x =-14 (-π2<x <π2);(3)3tan x +1=0 (0<x <π); (4)sin x =-14 (π<x <3π2).解 (1)arccos ⎝⎛⎭⎫-45 (2)arcsin ⎝⎛⎭⎫-14 (3)π-arctan 13 (4)π+arcsin 1412.利用反正切表示直线ax +by +c =0 (ab >0)的倾斜角.(结果含a 、b ) 解 ∵ab >0,ax +by +c =0. ∴y =-a b x -c b ,k =-ab .∵k =-ab<0,∴直线ax +by +c =0的倾斜角为钝角π-arctan ab .三、探究与拓展13.已知sin α2=-32,且α是第二象限的角,求角α.解 ∵α是第二象限的角,∴α2是第一或第三象限的角. ∵sin α2=-32<0,∴α2是第三象限的角, 在[0,2π]内找到满足条件的α2,∵sin π3=32,∴在[0,2π]内满足条件的角α2=π+π3=4π3.∴所有满足条件的α2=2k π+4π3 (k ∈Z ),即α=4k π+8π3 (k ∈Z ).。
浙江省杭州市2023-2024学年高二下学期6月期末考试数学试题+答案
![浙江省杭州市2023-2024学年高二下学期6月期末考试数学试题+答案](https://img.taocdn.com/s3/m/8366507e2e60ddccda38376baf1ffc4ffe47e2c5.png)
2023学年第二学期杭州市高二年级教学质量检测数学试题卷考生须知:1.本试卷分试题卷和答题卡两部分。
满分150分,考试时间120分钟。
2.答题前,必须在答题卡指定位置上用黑笔填写学校名、姓名、试场号、座位号、准考证号,并用2B 铅笔将准考证号所对应的数字涂黑。
3.答案必须写在答题卡相应的位置上,写在其他地方无效。
一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中只有一项是符合题目要求的。
1.已知复数11i =+z ,22i =-z (i 为虚数单位,2i 1=-),则复数21=-z z z 对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限2.命题“0∃>x ,23100-->x x ”的否定是()A .0∀>x ,23100-->x x B .0∃>x ,23100--≤x x C .0∀≤x ,23100--≤x x D .0∀>x ,23100--≤x x 3.下列函数中,以π为最小正周期的奇函数是()A .sin 2=y xB .cos =y xC .2sin =y xD .2cos =y x 4.若甲、乙、丙三人排成一行拍照,则甲不在中间的概率是()A .14B .13C .23D .345.在正方体1111-ABCD A B C D 中,P ,Q 分别是棱1AA 和1CC 上的点,113=PA AA ,113=BQ BB ,那么正方体中过点D ,P ,Q 的截面形状为()A .三角形B .四边形C .五边形D .六边形6.在同一个坐标系中,函数()log =a f x x ,()=-g x a x ,()=ah x x 的图象可能..是()A .B .C .D .7.已知()sin 23sin 2γβα=+,则tan()tan()αβγαβγ++=-+()A .2-B .14C .32D .12-8.已知经过圆锥SO 的轴的截面是顶角为θ的等腰三角形,用平行于底面的截面将圆锥SO 分成两部分,若这两部分几何体都存在内切球(与各面均相切),且上、下两部分几何体的体积之比是1:7,则cos θ=()A .13B .2C .79D .9二、多项选择题:本大题共3小题,每小题6分,共18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年浙江省杭州市高二(下)期末考试数学试卷一、选择题:本大题共18小题,每小题3分,共54分.在每小题给出的四个选项中,只有一个是符合题目要求的.1. 设集合A={x|x≤3,x∈N*},B={﹣2,0,2,3},则A∩B=()A. {3}B. {2,3}C. {0,2,3}D. {﹣2,0,2}【答案】B【解析】,选B点睛:集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图.2. 设d为点P(1,0)到直线x﹣2y+1=0的距离,则d=()A. B. C. D.【答案】B【解析】选B3. 设向量 =(﹣1,﹣1,1),=(﹣1,0,1),则cos<,>=()A. B. C. D.【答案】D【解析】选D4. 下列四个图形中,不是以x为自变量的函数的图象是()A. B. C.D.【答案】C【解析】图A,B,D中,对任意的x只有唯一的y与其对应,而在图C中,当x>0时,由两个y值与其对应,故选C5. sin15°cos15°=()A. B. C. D.【答案】A【解析】,选A6. 函数f(x)=ln(x2﹣x)的定义域为()A. (0,1)B. [0,1]C. (﹣∞,0)∪(1,+∞)D. (﹣∞,0]∪[1,+∞)【答案】C【解析】,则定义域为,选C7. 若l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A. 若l∥α,m∥α,则l∥mB. 若l⊥m,m⊂α,则l⊥αC. 若l∥α,m⊂α,则l∥mD. 若l⊥α,l∥m,则m⊥α【答案】D【解析】选项A错误,两直线可能相交;选项B错误,直线可能在平面内;选项C 错误,只有当直线在同一平面内时有选项D正确,故选D8. 若x∈R,则“x>1”是“”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件【答案】A【解析】当x>1时,有;当时,有x>1或x<0,故“x>1”是“”的充分非必要条件,故选A点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.9. 下列函数是奇函数的是()A. f(x)=x2+2|x|B. f(x)=x•sinxC. f(x)=2x+2﹣xD.【答案】D【解析】选项A:,是偶函数;选项B:,偶函数;选项C:,偶函数;选项D:,奇函数,故选D10. 圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为()A. 内切B. 相交C. 外切D. 相离【答案】B【解析】试题分析:由题两圆的圆心分别为,,圆心距为,两圆的半径分别为2,3,由于,所以两圆相交。
考点:圆与圆的位置关系。
11. 若实数x,y满足不等式组,则z=2x﹣y的最小值等于()A. ﹣1B. 1C. 2D. ﹣2【答案】D【解析】由图可知直线经过点(0,2)时z最小,,选D点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.12. 在正方体ABCD﹣A1B1C1D1中,O、O1分别为底面ABCD和A1B1C1D1的中心,以OO1所在直线为轴旋转线段BC1形成的几何体的正视图为()A. B. C. D.【答案】C【解析】设正方体边为,则旋转所得几何体是杠铃状几何体,其上下表面半径为,中心半径为,其余部分半径圆滑变化,故选C13. 设函数f(x)=x2+bx+c(b,c∈R),若0≤f(1)=f(2)≤10,则()A. 0≤c≤2B. 0≤c≤10C. 2≤c≤12D. 10≤c≤12【答案】C,故选C14. 已知平行四边形ABCD的对角线相交于点O,点P在△COD的内部(不含边界).若,则实数对(x,y)可以是()A. B. C. D.【答案】D【解析】在三角形ABD中,设点Q在直线BD上,,则而且点P不在三角形OCD边界上,则当时点P必定不在三角形OCD内,选项A,B,C舍去,故选D15. 设A,B是函数f(x)=sin|ωx|与y=﹣1的图象的相邻两个交点,若|AB|min=2π,则正实数ω=()A. B. 1 C. D. 2【答案】C【解析】由题意得选B16. 设函数f(x)=2017x+sin2017x,g(x)=log2017x+2017x,则()A. 对于任意正实数x恒有f(x)≥g(x)B. 存在实数x0,当x>x0时,恒有f(x)>g(x)C. 对于任意正实数x恒有f(x)≤g(x)D. 存在实数x0,当x>x0时,恒有f(x)<g(x)【答案】D【解析】当,当,故选项A,C错误令,选D17. 设F为双曲线(a>b>0)的右焦点,过点F的直线分别交两条渐近线于A,B 两点,OA⊥AB,若2|AB|=|OA|+|OB|,则该双曲线的离心率为()A. B. 2 C. D.【答案】C【解析】OA:,由得,又AB过点F,则解得解得由得,选C点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等. 18. 设点P在△ABC的BC边所在的直线上从左到右运动,设△ABP与△ACP的外接圆面积之比为λ,当点P不与B,C重合时,()A. λ先变小再变大B. 当M为线段BC中点时,λ最大C. λ先变大再变小D. λ是一个定值【答案】D【解析】由正弦定理得,设△ABP与△ACP的外接圆半径分别为在△ABP中,;在△ACP中,为定值,选D点睛:1.选用正弦定理或余弦定理的原则在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息.2.(1)运用余弦定理时,要注意整体思想的运用.(2)在已知三角形两边及其中一边的对角,求该三角形的其它边角的问题时,首先必须判断是否有解,如果有解,是一解还是两解,注意“大边对大角”在判定中的应用.二、填空题:本大题共4小题,每小题3分,共15分).19. 设抛物线x2=4y,则其焦点坐标为_____,准线方程为_____.【答案】(1). (2).【解析】,焦点坐标,即准线方程:20. 在平行四边形ABCD中,AD=,AB=2,若,则 =_____.【答案】【解析】由知点F 为BC中点21. 设数列{a n}的前n项和为S n.若S n=2a n﹣n,则 =_____.【答案】【解析】令当,点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如 (其中是各项均不为零的等差数列,c为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如或.22. 在△ABC中,∠ABC=,边BC在平面α内,顶点A在平面α外,直线AB与平面α所成角为θ.若平面ABC与平面α所成的二面角为,则sinθ=_____.【答案】【解析】过A作AO垂直平面α于O,过O作OD垂直BC于D,则设则三、解答题:本大题共3小题,共31分.解答写出文字说明、证明过程或演算过程.23. 设A是单位圆O和x轴正半轴的交点,P,Q是圆O上两点,O为坐标原点,∠AOP=,∠AOQ=α,α∈[0, ].(1)若Q,求cos(α﹣)的值;(2)设函数f(α)=sinα•(),求f(α)的值域.【答案】(1)(2)............试题解析:(1)由已知得(2)点睛:向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.对于此类问题的解决方法就是利用向量的知识将条件转化为三角函数中的“数量关系”,或转化为三角形中的“数量关系”,再利用解三角形的有关知识进行求解.24. 如图,P是直线x=4上一动点,以P为圆心的圆Γ经定点B(1,0),直线l是圆Γ在点B处的切线,过A(﹣1,0)作圆Γ的两条切线分别与l交于E,F两点.(1)求证:|EA|+|EB|为定值;(2)设直线l交直线x=4于点Q,证明:|EB|•|FQ|=|BF•|EQ|.【答案】(1)见解析(2)见解析【解析】试题分析:(1)由切割线定理得EM=EB,其中AE切圆于M,再根据切线长公式得|EA|+|EB|为定值4(2)由椭圆定义可得E,F 均在椭圆上,由弦长公式化简|EB|•|FQ|=|BF|•|EQ|得,设直线EF方程与椭圆方程联立,结合韦达定理得,即证成立试题解析:(1)设AE切圆于M,直线x=4与x轴交于N,则EM=EB所以(2)同理FA+FB=4,所以E,F 均在椭圆上,设EF: ,则与椭圆方程联立得,结论成立点睛:解析几何证明问题,一般解决方法为以算代证,即设参数,运用推理,将该问题涉及的几何式转化为代数式或三角问题,然后直接推理、计算,并在计算推理的过程中消去变量,从而得到证明.其中直线和圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用韦达定理或求根公式进行转化.25. 设函数f(x)=,g(x)=a(x+b)(0<a≤1,b≤0).(1)讨论函数y=f(x)•g(x)的奇偶性;(2)当b=0时,判断函数y=在(﹣1,1)上的单调性,并说明理由;(3)设h(x)=|af2(x)﹣ |,若h(x)的最大值为2,求a+b的取值范围.【答案】(1)见解析(2)单调递增(3)【解析】试题分析:(1)当时,由奇函数定义可得函数为奇函数;当时,举一个反例可得函数为非奇非偶函数(2)利用单调性定义进行证明:作差后进行分子因式分解,根据因子符号判定差的符号,最后根据单调性定义进行判断(3)绝对值内为二次函数,讨论标准为对称轴与定义区间位置关系,根据离开对称轴的远近及图像确定函数最值,根据函数关系式求对应值域,最后求各个值域的并集试题解析:(1)当时,,为奇函数;当时,为非奇非偶函数(2)任取,则,即为单调递增函数(3)当时当时综上。