平面向量常考题型
平面向量部分常见的考试题型
平面向量部分常见的题型练习类型(一):向量的夹角问题1.平面向量,4==且满足2.=,则与的夹角为 2.已知非零向量,(2-⊥=,则与的夹角为类型(二):向量共线问题1. 已知平面向量),(x 32=,平面向量),,(182--=b 若a ∥b ,则实数x2. 设向量),(,(3212==若向量b a +λ与向量)74(--=,共线,则=λ3.已知向量),(,(x 211==若24-+与平行,则实数x 的值是( ) A .-2 B .0C .1D .2类型(三): 向量的垂直问题1.已知向量b a b x a ⊥==且),()6,3(,1,则实数x 的值为2.已知向量=--==b b a n b n a 与),若,(),,(2113.已知=(1,2),=(-3,2)若k +2与2-4垂直,求实数k 的值4.42==,且b a 与的夹角为3π,若的值垂直,求与k b a k b a k 22-+。
类型(四)投影问题1.,45==,与的夹角32πθ=,则向量在向量上的投影为2. 在Rt △ABC 中,===∠AC C .,4,2则π类型(四)求向量的模的问题1.已知零向量====b a a ,则),(2510.,122. 已知向量,====2213. 已知向量a )3,1(=,=+-=)0,2(4. 设向量,1==及34=-,求3+的值类型(五)平面向量基本定理的应用问题1.若=(1,1),=(1,-1),=(-1,-2),则等于 ( )(A) 2321+- (B)2321-- (C)b a 2123- (D)b a 2123+-2.下列各组向量中,可以作为基底的是( ) (A))2,1(),0,0(21-==e e(B))7,5(),2,1(21=-=e e(C) )10,6(),5,3(21==e e(D))43,21(),3,2(21-=-=3. ()),则,(,(,(==-==241111 (A)+3 (B) -3 (C) 3+- (D) 3+类型(六)平面向量与三角函数结合题1.已知向量(2sin ,cos )42x x m =,(cos 4xn =,设函数()f x m n =⋅⑴求函数()f x 的解析式 (2)求()f x 的最小正周期;(3)若0x ≤≤π,求()f x 的最大值和最小值.2. 已知322ππα<<,A 、B 、C 在同一个平面直角坐标系中的坐标分别为(3,0)A 、(0,3)B 、(cos ,sin )C αα。
平面向量常考方法总结
平面向量中的基本方法一、向量基本不等式向量基本不等式:b a b a ⋅≥+222,()42b a b a +≤⋅当且仅当b a =时取等【例1】已知平面向量a 、b 满足1422=+⋅+b b a a,则a +2的最大值是.【练习1】已知平面向量a 、b 满足12922=+⋅+b b a a,则a +3的最大值是.【例2】已知平面向量a 、b满足32≤a ,则b a ⋅的最小值是.【练习2】已知平面向量a 、b满足323≤-a ,则b a ⋅的最小值是.向量三角不等式:+≤±≤-,当向量a 、b 共线时,取等推论:y x y x y x +≤±≤-,Ry x ∈,{}y x y x y x -+=+,max ,{}y x y x y x -+=-,min【例3】已知平面向量a 、b 是非零向量,且12=-a ,2=-,则-的最大值是.【练习3】已知平面向量a 、b 是非零向量,且22=+a ,310=-,则的最大值是.【例4】已知平面向量a 、b 1=2=,若对任意单位向量e ,6≤+,ba ⋅的取值范围是.【练习4】已知平面向量a 、b 1=21=,若对任意单位向量e 26≤+,b a ⋅的取值范围是.向量回路恒等式:CBAD CD AB +=+【例5】在平面凸四边形ABCD 中,已知2=AB ,N M ,分别是边BC AD ,的中点,且23=MN .若()1=-⋅BC AD MN ,则=⋅CD AB .【练习5】在平面四边形ABCD 中,设3=AC ,2=BD ,则()()=++AD BC CD AB .四、向量对角线定理向量对角线定理:记D C B A 、、、是空间中的任意四点,则有⎪⎭⎫--+=⋅21BD AC 【例6】在四边形ABCD 中,已知F E ,分别是边BC AD ,的中点,且m BC AD =⋅,n BD AC =⋅,2=AB ,1=EF ,3=CD ,则=-n m .五、互换系数恒等式若向量a ,b =,则有a a μλ+=+【例7】已知a ,b ,c 是平面内的三个单位向量,且b a ⊥,b a +++23的最小值为.【练习7】已知a ,b ,c o60=,的最小值为.六、极化恒等式极化恒等式的代数形式:()()⎥⎦⎤⎢⎣⎡-++=⋅2241b a b a b a 极化恒等式的对偶形式:()()22222b a b a b a -++=⎪⎭⎫ ⎝⎛+【例8】已知a ,b 是满足31≤≤,31≤≤,31≤≤,的取值范围是.【练习8】已知a ,b 是满足31≤≤,31≤≤3≤+,的取值范围是.【例9】已知a ,b 是满足31≤≤,31≤≤,31≤≤,则b a ⋅的取值范围是.【例10】在四边形ABCD 中,已知O 分别是边BD 的中点,且7-=⋅AD AB ,3=OA ,5=OC ,则=⋅DC BC .【练习9】在ABC ∆中,已知D 分别是边BC 的中点,F E ,分别是边AD 的两个三等份点,且4=⋅CA BA ,1-=⋅CF BF ,则=⋅CE BE .【练习10】如图,在同一平面内,点A 位于两直线n m ,同侧,且A 到于两直线n m ,的距离分别为3,1点C B ,分别在n m ,5=+,则AC AB ⋅最大值为.【例11】在ABC ∆中,F E ,分别是边AC AB ,的中点,P 在EF 的上,若ABC ∆的面积为2,则2BC PC PB +⋅最小值为.【练习11】已知AB 中为圆O 的直径,M 为弦CD 的一点,8=AB ,6=CD ,则MB MA ⋅的取值范围是.七、矩形大法点O 矩形ABCD 所在平面内任意一点,则有:2222OD OB OC OA +=+【例12】在直角ABC ∆中,D 为斜边AB 的中点,P 为CD=.【练习12】在平面内,若21AB AB ⊥1==,21AB AB AP +=21<的取值范围是.。
专题06 平面向量 (解析版)
专题06 平面向量【真题感悟】1.(2018年浙江卷)已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是()A.B.C.2 D.【答案】A【解析】设,则由得,由得因此的最小值为圆心到直线的距离减去半径1,为选A.2.(2017年浙江卷)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记,,,则A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3【答案】C【解析】因为,,,所以,故选C.3.(2019年浙江卷)已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______.【答案】(1)0 (2)【解析】()()12345613562456AB BC CD DA AC BD AB AD λ+λ+λ+λ+λ+λ=λ-λ+λ-λ+λ-λ+λ+λ要使123456AB BC CD DA AC BD λ+λ+λ+λ+λ+λ的最小,只需要135562460λ-λ+λ-λ=λ-λ+λ+λ=,此时只需要取1234561,1,1,1,1,1λ=λ=-λ=λ=λ=λ=此时123456min 0AB BC CD DA AC BD λ+λ+λ+λ+λ+λ=等号成立当且仅当1356,,λ-λλ-λ均非负或者均非正,并且2456,,λ-λλ+λ均非负或者均非正. 比如1234561,1,,1,1,11λλλ=-λλ=-=λ===则123456max AB BC CD DA AC BD λ+λ+λ+λ+λ+λ==4.(2017年浙江卷)已知向量a,b 满足1,2a b ==,则a b a b ++-的最小值是___________,最大值是______.【答案】 4【解析】设向量,a b 的夹角为θ,由余弦定理有: 212a b -=+=212212cos 4cos a b θ+=+-⨯⨯⨯=,则:54cos a b a b ++-=+令y =[]21016,20y =+,据此可得:()()maxmin2025,164a b a b a b a b++-==++-==,即a b a b ++-的最小值是4,最大值是25.5.(2016年浙江文)已知平面向量a ,b ,|a|=1,|b|=2,a·b=1.若e 为平面单位向量,则|a·e|+|b·e|的最大值是______.【解析】由已知得,60<>=︒a b ,不妨取(1,0)=a ,=b ,设(cos ,sin )αα=e ,则cos cos ααα⋅+⋅=++a e b e 2cos αα,取等号时cos α与sin α同号.所以2cos 2cos αααα=αα=)αθ=+(其中sinθθ==θ为锐角).)αθ+≤ 易知当2αθπ+=时,sin()αθ+取最大值1,此时α为锐角,sin ,cos αα同为正,因此上述不等式中等.6.(2016年浙江理)已知向量a ,b ,|a | =1,|b |=2,若对任意单位向量e ,均有 |a·e |+|b·e |≤,则a·b 的最大值是 .【答案】12【解析】()221||||262a b e a e b e a b a b a b a b +⋅≤⋅+⋅≤+≤⇒++⋅≤⇒⋅≤,即最大值为12. 7.(2015年浙江文)已知1e , 2e 是平面单位向量,且1212e e ⋅=.若平面向量b 满足121b e b e ⋅=⋅=,则b = .【解析】由题可知,不妨()11,0e =,212e ⎛=⎝⎭,设(),b x y =,则11b e x ⋅==,2112b e x y ⋅=+=,所以31,3b ⎛⎫= ⎪ ⎝⎭,所以113b =+=.8.(2015年浙江理)已知12,e e 是空间单位向量,1212e e ⋅=,若空间向量b 满足1252,2b e b e ⋅=⋅=,且对于任意,x y R ∈,12010200()()1(,)b xe ye b x e y e x y R -+≥-+=∈,则0x = ,0y = ,b = .【答案】1,2,22.【解析】问题等价于12()b xe ye -+当且仅当0x x =,0y y =时取到最小值1,两边平方即xy y x y x |+--++5422在0x x =,0y y =时,取到最小值1,2245|b |x y x y xy ++--+ 22(4)5||x y x y b =+--+22243()(2)7||24y x y b -=++--+,∴⎪⎩⎪⎨⎧===⇒⎪⎪⎩⎪⎪⎨⎧=+-=-=-+22||211||702024002000y x y y x . 【考纲要求】1.理解平面向量及几何意义,理解零向量、向量的模、单位向量、向量相等、平行向量、向量夹角的概念. 2.掌握向量加法、减法、数乘的概念,并理解其几何意义.3.理解平面向量的基本定理及其意义,会用平面向量基本定理解决简单问题. 4.掌握平面向量的正交分解及其坐标表示. 5.掌握平面向量的加法、减法与数乘的坐标运算.6.理解平面向量数量积的概念及其意义,了解平面向量的数量积与向量投影的关系. 7.掌握平面向量数量积的坐标运算,掌握数量积与两个向量的夹角之间的关系.8.会用坐标表示平面向量的平行与垂直.9.会用向量方法解决某些简单的平面几何问题.【考向分析】1.平面向量的线性运算2.平面向量的坐标运算3.平面向量的数量积、模、夹角.【高考预测】平面向量的数量积、模、夹角是高考考查的重点、热点,往往以选择题或填空题的形式出现.常常以平面图形为载体,考查数量积、夹角、垂直的条件等问题;也易同三角函数、解析几何、不等式等知识相结合,以工具的形式出现.近几年浙江卷主要考查平面向量的坐标运算、模的最值等问题,与三角函数、解析几何密切相连,难度为中等或中等偏难.【迎考策略】1.向量线性运算的解题策略(1)常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连向量的和用三角形法则.(2)找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解.(3)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.2. 准确理解共线向量定理(1)a∥b等价于存在不全为零的实数λ1,λ2,使λ1a+λ2b=0成立.对于向量a(a≠0),b,若存在实数λ,使得b=λa,则向量a,b共线;若向量a=(x1,y1),b=(x2,y2),则x1y2-x2y1=0⇔a∥b;(2)共线向量定理是解决三点共线问题的有利工具:解题过程中常用到结论:“P,A,B三点共线”等价于“对直线AB 外任意一点O ,总存在非零实数λ,使()1OP O OB A λλu u u r u u u u r u r=+-成立”.3. 基底的“唯一”与“不唯一”“不唯一”:只要同一平面内两个向量不共线,就可以作为表示平面内所有向量的一组基底,对基底的选取不唯一;“唯一”:平面内任意向量a 都可被这个平面内的一组基底e1,e2线性表示,且在基底确定后,这样的表示是唯一的.4.平面向量数量积的计算方法①定义法求平面向量的数量积:已知向量a ,b 的模及夹角θ,利用公式a·b =|a ||b|cos θ求解; ②坐标法求平面向量的数量积: (a)已知或可求两个向量的坐标;(b)已知条件中有(或隐含)正交基底,优先考虑建立平面直角坐标系,使用坐标法求数量积.③基底法求平面向量的数量积:选取合适的一组基底,利用平面向量基本定理将待求数量积的两个向量分别表示出来,进而根据数量积的运算律和定义求解.(2)对于向量数量积与线性运算的综合运算问题,可先利用数量积的运算律化简,再进行运算. 5.向量数量积的性质(1)如果e 是单位向量,则a ·e =e ·a . (2)a ⊥b ⇔a ·b =0.(3)a ·a =|a |2,|a (4)cos θ=||||⋅a ba b .(θ为a 与b 的夹角)(5)|a ·b |≤|a ||b |.6.利用向量夹角公式、模公式,可将有关角度问题、线段长问题转化为向量的数量积来解决.同时应注意: (1)两向量的夹角是指当两向量的起点相同时,表示两向量的有向线段所形成的角,若起点不同,应通过移动,使其起点相同,再观察夹角.(2)两向量夹角的范围为[0,π],特别当两向量共线且同向时,其夹角为0,共线且反向时,其夹角为π. (3)在利用向量的数量积求两向量的夹角时,一定要注意两向量夹角的范围. 7.巧建坐标系系,妙解向量题:坐标是向量代数化的媒介,若能建立适当的直角坐标系,往往能很快实现问题的转化.常见的建系方法如下:(1)利用图形中现成的垂直关系若图形中有明显互相垂直且相交于一点的两条直线(如矩形、直角梯形等),可以利用这两条直线建立坐标系. (2)利用图形中的对称关系图形中虽没有明显互相垂直交于一点的两条直线,但有一定对称关系(如:等腰三角形、等腰梯形等),可利用自身对称性建系.建立平面直角坐标系的基本原则是尽可能地使顶点在坐标轴上,或在同一象限. (3)三角形中有唯一一个特殊角(30°、45°、60°等)时,有以下两种建系方法(4)圆(或半圆、扇形)与其他图形的综合图形通常以圆心为坐标原点建系.(5)所给向量中任意两向量之间的夹角为特殊角,将所给向量平移为共起点,以该起点为坐标原点建系.【强化演练】1.(2019年高考北京卷理)设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C【解析】AB 与AC 的夹角为锐角,所以2222||||2||||2AB AC AB AC AB AC AB AC ++⋅>+-⋅,即22||||AB AC AC AB +>-,因为AC AB BC -=,所以|AB +AC |>|BC |;当|AB +AC |>|BC |成立时,|AB +AC |2>|AB -AC |2AB ⇒•AC >0,又因为点A ,B ,C 不共线,所以AB 与AC 的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C .2.(2019届北京市通州区三模)设a ,b 均为单位向量,则“a 与b 夹角为2π3”是“||+=a b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】D【解析】因为a ,b 均为单位向量, 若a 与b 夹角为2π3,则||1+=a b , 因此,由“a 与b 夹角为2π3”不能推出“||+=a b ”;若||+=a b||+=a b 解得1cos ,2=a b ,即a 与b 夹角为π3, 所以,由“||+=a b 不能推出“a 与b 夹角为2π3” 因此,“a 与b 夹角为2π3”是“||+=a b ”的既不充分也不必要条件. 故选D3.(浙江省温州市2019届高三2月高考适应)在平面上,,是方向相反的单位向量,||=2 ,(-) •(-) =0 ,则|-|的最大值为( ) A .1 B .2C .2D .3【答案】D【解析】由题意(-) •(-) =0,即-(=0,又,是方向相反的单位向量,所以有,即||=1,记,则A,B两点的轨迹分别是以原点为圆心,以2和1为半径的圆上,当反向共线时,如图:|-|的最大值为1+2=3,故选D.4.(浙江省金华十校2019届高三上期末)已知向量,满足:,,,且,则的最小值为A.B.4 C.D.【答案】A【解析】由题意可知,把看作,,,则可表示为,点B在直线上,设,,,,,,,则的最小值可转化为在直线取一点B,使得最小,作点C关于的对称点,则最小值即可求出,设,由,解得,,则,故的最小值为.故选:A.5.(浙江省嘉兴市2019届高三上期末)已知向量,满足,,则的取值范围是( )A.B.C.[D.[【答案】D【解析】设点M为平面中任意一点,点是关于原点对称的两个点,设,根据题意,根据椭圆的定义得到点M的轨迹是以为焦点的椭圆,方程为.,即.故答案为:D.6.(浙北四校2019届高三12月模拟)已知向量,满足,,则的最小值是( ) A.1 B.2 C.3 D.4【答案】A【解析】因为,,由绝对值向量三角不等式得:===1,故选A.7.(浙江省2019届高考模拟卷(一))如图,在中,,,为上一点,且满足,若的面积为,则的最小值为( )A.B.C.3 D.【答案】D【解析】,得到,所以,结合的面积为,得到,得到,所以,故选D.8.(浙江省温州九校2019届高三第一次联考)已知是不共线的两个向量,的最小值为,若对任意m,n,的最小值为1, 的最小值为2,则的最小值为()A.2 B.4 C.D.【答案】B【解析】设的夹角为,则,则由的最小值为,的最小值为,可得,两式相乘可得(*)而,结合(*)可得,解得则故选B.9.(浙江省“七彩阳光”联盟2019届高三期初联考)均为单位向量,且它们的夹角为,设满足,则的最小值为()A.B.C.D.【答案】C【解析】设,以所在直线为轴,垂直于所在直线为轴,建立平面直角坐标系则,,则满足,故,如图其轨迹图象则其最小值为故选.10.(天津市和平区2019届高三下学期第三次质量调查)已知菱形ABCD 的边长为2,120BAD ∠=︒,点E ,F 分别在边BC ,DC 上,3BC BE =,DC DF λ=,若1AE AF ⋅=,则λ的值为( ) A .3 B .2C .23D .52【答案】B【解析】由题意可得:()()113AE AF AB BE AD DF AB BC BC AB λ⎛⎫⎛⎫⋅=+⋅+=+⋅+ ⎪ ⎪⎝⎭⎝⎭22111133AB BC AB BC λλ⎛⎫=+++⋅ ⎪⎝⎭, 且:224,22cos1202AB BC AB BC ==⋅=⨯⨯=-, 故()44112133λλ⎛⎫+++⨯-= ⎪⎝⎭,解得:2λ=.故选:B.11.(湖北省黄冈中学2019届高三三模)已知m ,n 是两个非零向量,且||2m =,|2|4m n +=,则||||m n n ++的最大值为______.【答案】【解析】设m 的起点为坐标原点,因为||2m =,所以设m 的终点坐标为(2,0),即(2,0)m =,设(,)n x y =,因为|2|4m n +=,所以2222(22)(2)16(1)4x y x y ++=⇒++=,21x -≤≤,||||(m n n x ++=+,而2222(1)423x y x x y ++=⇒++=,所以有||||72m n n ++=+≤==1x =-时,取等号,即||||m n n ++的最大值为12.(浙江省七彩联盟2019届高三11月期中】已知向量,满足,,若对任意实数x 都有,则的最小值为______【答案】【解析】如图,由,知在上的投影为2,即,,对任意实数x 都有,.由摄影定理可得,.设,取,可得P在直线BC上,线段OP的最小值为O到直线BC的距离,当时,.故答案为:.13.(浙江省浙南名校联盟2019届高三上期末)若向量满足,且,则的最小值是_ _.【答案】【解析】设,,,由可知,所以点C在以AB为直径的圆上;设,,则,而表示点O到以AB为直径的圆上任一点的距离,所以最大值即是点O到圆心E的距离加半径,即,所以,即最小值为2.故答案为2.14.(浙江省台州市2019届高三上期末)设圆,圆半径都为1,且相外切,其切点为.点,分别在圆,圆上,则的最大值为__ __.【答案】【解析】以为原点,两圆圆心所在的直线为轴建立如图所示的直角坐标系.则,,令,,所以所以,令,则,所以当时,有最大值,填.15.(2019年高考天津卷理数】在四边形ABCD 中,,5,30AD BC AB AD A ==∠=︒∥,点E在线段CB 的延长线上,且AE BE =,则BD AE ⋅=_____________. 【答案】1-【解析】建立如图所示的直角坐标系,∠DAB =30°,5,AB AD ==则B ,5)2D . 因为AD ∥BC ,30BAD ∠=︒,所以30ABE ∠=︒, 因为AE BE =,所以30BAE ∠=︒,所以直线BEy x =-, 直线AE的斜率为3-,其方程为3y x =-.由y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x 1y =-,所以1)E -. 所以35(,)(3,1)12BD AE =-=-.16. (2019年高考江苏卷)如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE交于点O .若6ABAC AO EC ⋅=⋅,则ABAC的值是_____.【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-,()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故ABAC=。
高考数学真题汇编---平面向量(有解析)
高考数学真题汇编---平面向量学校:___________姓名:___________班级:___________考号:___________一.选择题(共10小题)1.(2017•新课标Ⅱ)设非零向量,满足|+|=|﹣|则()A.⊥B.||=||C.∥D.||>||2.(2017•新课标Ⅲ)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3 B.2C.D.23.(2017•新课标Ⅱ)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣C.﹣D.﹣14.(2017•浙江)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则()A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I35.(2016•新课标Ⅲ)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°6.(2016•新课标Ⅱ)已知向量=(1,m),=(3,﹣2),且(+)⊥,则m=()A.﹣8 B.﹣6 C .6 D.87.(2016•天津)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.8.(2016•山东)已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为()A.4 B.﹣4 C.D.﹣9.(2016•四川)在平面内,定点A,B,C,D满足==,•=•=•=﹣2,动点P,M满足=1,=,则||2的最大值是()A.B.C.D.10.(2016•四川)已知正三角形ABC的边长为2,平面ABC内的动点P,M 满足||=1,=,则||2的最大值是()A.B.C.D.二.填空题(共20小题)11.(2017•山东)已知向量=(2,6),=(﹣1,λ),若,则λ=.12.(2017•新课标Ⅲ)已知向量=(﹣2,3),=(3,m),且,则m=.13.(2017•新课标Ⅰ)已知向量=(﹣1,2),=(m,1),若向量+与垂直,则m=.14.(2017•新课标Ⅰ)已知向量,的夹角为60°,||=2,||=1,则|+2|=.15.(2017•山东)已知,是互相垂直的单位向量,若﹣与+λ的夹角为60°,则实数λ的值是.16.(2017•江苏)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是.17.(2017•北京)已知点P在圆x2+y2=1上,点A的坐标为(﹣2,0),O为原点,则•的最大值为.18.(2017•江苏)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n=.19.(2017•天津)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ﹣(λ∈R),且=﹣4,则λ的值为.20.(2016•新课标Ⅱ)已知向量=(m,4),=(3,﹣2),且∥,则m=.21.(2016•上海)在平面直角坐标系中,已知A(1,0),B(0,﹣1),P是曲线y=上一个动点,则•的取值范围是.22.(2016•新课标Ⅰ)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.23.(2016•山东)已知向量=(1,﹣1),=(6,﹣4),若⊥(t+),则实数t的值为.24.(2016•新课标Ⅰ)设向量=(x,x+1),=(1,2),且⊥,则x=.25.(2016•浙江)已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是.26.(2016•上海)如图,已知点O(0,0),A(1,0),B(0,﹣1),P是曲线y=上一个动点,则•的取值范围是.27.(2016•江苏)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.28.(2016•北京)已知向量=(1,),=(,1),则与夹角的大小为.29.(2016•上海)如图,在平面直角坐标系xOy中,O为正八边形A1A2…A8的中心,A1(1,0)任取不同的两点A i,A j,点P满足++=,则点P落在第一象限的概率是.30.(2016•浙江)已知向量,,||=1,||=2,若对任意单位向量,均有|•|+|•|≤,则•的最大值是.三.解答题(共1小题)31.(2017•山东)在△ABC中,角A,B,C的对边分别为a,b,c,已知b=3,= =3,求A和a.﹣6,S△ABC高考数学真题汇编---平面向量参考答案与试题解析一.选择题(共10小题)1.【分析】由已知得,从而=0,由此得到.【解答】解:∵非零向量,满足|+|=|﹣|,∴,解得=0,∴.故选:A.2.【分析】如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,先求出圆的标准方程,再设点P的坐标为(cosθ+1,sinθ+2),根据=λ+μ,求出λ,μ,根据三角函数的性质即可求出最值.【解答】解:如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,则A(0,0),B(1,0),D(0,2),C(1,2),∵动点P在以点C为圆心且与BD相切的圆上,设圆的半径为r,∵BC=2,CD=1,∴BD==∴BC•CD=BD•r,∴r=,∴圆的方程为(x﹣1)2+(y﹣2)2=,设点P的坐标为(cosθ+1,sinθ+2),∵=λ+μ,∴(cosθ+1,sinθ+2)=λ(1,0)+μ(0,2)=(λ,2μ),∴cosθ+1=λ,sinθ+2=2μ,∴λ+μ=cosθ+sinθ+2=sin(θ+φ)+2,其中tanφ=2,∵﹣1≤sin(θ+φ)≤1,∴1≤λ+μ≤3,故λ+μ的最大值为3,故选:A.3.【分析】根据条件建立坐标系,求出点的坐标,利用坐标法结合向量数量积的公式进行计算即可.【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P(x,y),则=(﹣x,﹣y),=(﹣1﹣x,﹣y),=(1﹣x,﹣y),则•(+)=2x2﹣2y+2y2=2[x2+(y﹣)2﹣]∴当x=0,y=时,取得最小值2×(﹣)=﹣,故选:B.4.【分析】根据向量数量积的定义结合图象边角关系进行判断即可.【解答】解:∵AB⊥BC,AB=BC=AD=2,CD=3,∴AC=2,∴∠AOB=∠COD>90°,由图象知OA<OC,OB<OD,∴0>•>•,•>0,即I3<I1<I2,故选:C.5.【分析】根据向量的坐标便可求出,及的值,从而根据向量夹角余弦公式即可求出cos∠ABC的值,根据∠ABC的范围便可得出∠ABC 的值.【解答】解:,;∴;又0°≤∠ABC≤180°;∴∠ABC=30°.故选:A.【分析】求出向量+的坐标,根据向量垂直的充要条件,构造关于m的方程,解得答案.【解答】解:∵向量=(1,m),=(3,﹣2),∴+=(4,m﹣2),又∵(+)⊥,∴12﹣2(m﹣2)=0,解得:m=8,故选:D.7.【分析】由题意画出图形,把、都用表示,然后代入数量积公式得答案.【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========.故选:C.【分析】若⊥(t+),则•(t+)=0,进而可得实数t的值.【解答】解:∵4||=3||,cos<,>=,⊥(t+),∴•(t+)=t•+2=t||•||•+||2=()||2=0,解得:t=﹣4,故选:B.9.【分析】由==,可得D为△ABC的外心,又•=•=•,可得可得D为△ABC的垂心,则D为△ABC的中心,即△ABC为正三角形.运用向量的数量积定义可得△ABC的边长,以A为坐标原点,AD所在直线为x轴建立直角坐标系xOy,求得B,C的坐标,再设P(cosθ,sinθ),(0≤θ<2π),由中点坐标公式可得M的坐标,运用两点的距离公式可得BM的长,运用三角函数的恒等变换公式,结合正弦函数的值域,即可得到最大值.【解答】解:由==,可得D为△ABC的外心,又•=•=•,可得•(﹣)=0,•(﹣)=0,即•=•=0,即有⊥,⊥,可得D为△ABC的垂心,则D为△ABC的中心,即△ABC为正三角形.由•=﹣2,即有||•||cos120°=﹣2,解得||=2,△ABC的边长为4cos30°=2,以A为坐标原点,AD所在直线为x轴建立直角坐标系xOy,可得B(3,﹣),C(3,),D(2,0),由=1,可设P(cosθ,sinθ),(0≤θ<2π),由=,可得M为PC的中点,即有M(,),则||2=(3﹣)2+(+)2=+==,当sin(θ﹣)=1,即θ=时,取得最大值,且为.故选:B.10.【分析】如图所示,建立直角坐标系.B(0,0),C.A.点P的轨迹方程为:=1,令x=+cosθ,y=3+sinθ,θ∈[0,2π).又=,可得M,代入||2=+3sin,即可得出.【解答】解:如图所示,建立直角坐标系.B(0,0),C.A.∵M满足||=1,∴点P的轨迹方程为:=1,令x=+cosθ,y=3+sinθ,θ∈[0,2π).又=,则M,∴||2=+=+3sin≤.∴||2的最大值是.也可以以点A为坐标原点建立坐标系.解法二:取AC中点N,MN=,从而M轨迹为以N为圆心,为半径的圆,B,N,M三点共线时,BM为最大值.所以BM最大值为3+=.故选:B.二.填空题(共20小题)11.【分析】利用向量共线定理即可得出.【解答】解:∵,∴﹣6﹣2λ=0,解得λ=﹣3.故答案为:﹣3.12.【分析】利用平面向量数量积坐标运算法则和向量垂直的性质求解.【解答】解:∵向量=(﹣2,3),=(3,m),且,∴=﹣6+3m=0,解得m=2.故答案为:2.13.【分析】利用平面向量坐标运算法则先求出,再由向量+与垂直,利用向量垂直的条件能求出m的值.【解答】解:∵向量=(﹣1,2),=(m,1),∴=(﹣1+m,3),∵向量+与垂直,∴()•=(﹣1+m)×(﹣1)+3×2=0,解得m=7.故答案为:7.14.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.15.【分析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【解答】解:【方法一】由题意,设=(1,0),=(0,1),则﹣=(,﹣1),+λ=(1,λ);又夹角为60°,∴(﹣)•(+λ)=﹣λ=2××cos60°,即﹣λ=,解得λ=.【方法二】,是互相垂直的单位向量,∴||=||=1,且•=0;又﹣与+λ的夹角为60°,∴(﹣)•(+λ)=|﹣|×|+λ|×cos60°,即+(﹣1)•﹣λ=××,化简得﹣λ=××,即﹣λ=,解得λ=.故答案为:.16.【分析】根据题意,设P(x0,y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.【解答】解:根据题意,设P(x0,y0),则有x02+y02=50,=(﹣12﹣x0,﹣y0)•(﹣x0,6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0﹣6y0+30≤0,即2x0﹣y0+5≤0,表示直线2x﹣y+5=0以及直线上方的区域,联立,解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5,1],故答案为:[﹣5,1].17.【分析】设P(cosα,sinα).可得=(2,0),=(cosα+2,sinα).利用数量积运算性质、三角函数的单调性与值域即可得出.【解答】解:设P(cosα,sinα).=(2,0),=(cosα+2,sinα).则•=2(cosα+2)≤6,当且仅当cosα=1时取等号.故答案为:6.18.【分析】如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.可得cosα=,sinα=.C.可得cos(α+45°)=.sin(α+45°)=.B.利用=m+n(m,n∈R),即可得出.【解答】解:如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.∴cosα=,sinα=.∴C.cos(α+45°)=(cosα﹣sinα)=.sin(α+45°)=(sinα+cosα)=.∴B.∵=m+n(m,n∈R),∴=m﹣n,=0+n,解得n=,m=.则m+n=3.故答案为:3.19.【分析】根据题意画出图形,结合图形,利用、表示出,再根据平面向量的数量积列出方程求出λ的值.【解答】解:如图所示,△ABC中,∠A=60°,AB=3,AC=2,=2,∴=+=+=+(﹣)=+,又=λ﹣(λ∈R),∴=(+)•(λ﹣)=(λ﹣)•﹣+λ=(λ﹣)×3×2×cos60°﹣×32+λ×22=﹣4,∴λ=1,解得λ=.故答案为:.20.【分析】直接利用向量共线的充要条件列出方程求解即可.【解答】解:向量=(m,4),=(3,﹣2),且∥,可得12=﹣2m,解得m=﹣6.故答案为:﹣6.21.【分析】设P(cosα,sinα),α∈[0,π],则=(1,1),=(cosα,sinα+1),由此能求出•的取值范围.【解答】解:∵在平面直角坐标系中,A(1,0),B(0,﹣1),P是曲线y=上一个动点,∴设P(cosα,sinα),α∈[0,π],∴=(1,1),=(cosα,sinα+1),=cosα+sinα+1=,∴•的取值范围是[0,1+].故答案为:[0,1+].22.【分析】利用已知条件,通过数量积判断两个向量垂直,然后列出方程求解即可.【解答】解:|+|2=||2+||2,可得•=0.向量=(m,1),=(1,2),可得m+2=0,解得m=﹣2.故答案为:﹣2.23.【分析】根据向量的坐标运算和向量的数量积计算即可.【解答】解:∵向量=(1,﹣1),=(6,﹣4),∴t+=(t+6,﹣t﹣4),∵⊥(t+),∴•(t+)=t+6+t+4=0,解得t=﹣5,故答案为:﹣5.24.【分析】根据向量垂直的充要条件便可得出,进行向量数量积的坐标运算即可得出关于x的方程,解方程便可得出x的值.【解答】解:∵;∴;即x+2(x+1)=0;∴.故答案为:.25.【分析】由题意可知,||+||为在上的投影的绝对值与在上投影的绝对值的和,由此可知,当与共线时,||+||取得最大值,即.【解答】解:||+||=,其几何意义为在上的投影的绝对值与在上投影的绝对值的和,当与共线时,取得最大值.∴=.故答案为:.26.【分析】设出=(x,y),得到•=x+,令x=cosθ,根据三角函数的性质得到•=sinθ+cosθ=sin(θ+),从而求出•的范围即可.【解答】解:设=(x,y),则=(x,),由A(1,0),B(0,﹣1),得:=(1,1),∴•=x+,令x=cosθ,θ∈[0,π],则•=sinθ+cosθ=sin(θ+),θ∈[0,π],故•的范围是[﹣,1,],故答案为:[﹣1,].27.【分析】由已知可得=+,=﹣+,=+3,=﹣+3,=+2,=﹣+2,结合已知求出2=,2=,可得答案.【解答】解:∵D是BC的中点,E,F是AD上的两个三等分点,∴=+,=﹣+,=+3,=﹣+3,∴•=2﹣2=﹣1,•=92﹣2=4,∴2=,2=,又∵=+2,=﹣+2,∴•=42﹣2=,故答案为:28.【分析】根据已知中向量的坐标,代入向量夹角公式,可得答案.【解答】解:∵向量=(1,),=(,1),∴与夹角θ满足:cosθ===,又∵θ∈[0,π],∴θ=,故答案为:.29.【分析】利用组合数公式求出从正八边形A1A2…A8的八个顶点中任取两个的事件总数,满足++=,且点P落在第一象限,则需向量+的终点落在第三象限,列出事件数,再利用古典概型概率计算公式求得答案.【解答】解:从正八边形A1A2…A8的八个顶点中任取两个,基本事件总数为.满足++=,且点P落在第一象限,对应的A i,A j,为:(A4,A7),(A5,A8),(A5,A6),(A6,A7),(A5,A7)共5种取法.∴点P落在第一象限的概率是,故答案为:.30.【分析】根据向量三角形不等式的关系以及向量数量积的应用进行计算即可得到结论.【解答】解:由绝对值不等式得≥|•|+|•|≥|•+•|=|(+)•|,于是对任意的单位向量,均有|(+)•|≤,∵|(+)|2=||2+||2+2•=5+2•,∴|(+)|=,因此|(+)•|的最大值≤,则•≤,下面证明:•可以取得,(1)若|•|+|•|=|•+•|,则显然满足条件.(2)若|•|+|•|=|•﹣•|,此时|﹣|2=||2+||2﹣2•=5﹣1=4,此时|﹣|=2于是|•|+|•|=|•﹣•|≤2,符合题意,综上•的最大值是,法2:由于任意单位向量,可设=,则|•|+|•|=||+||≥||+|=||=|+|,∵|•|+|•|≤,∴|+|≤,即(+)2≤6,即||2+||2+2•≤6,∵||=1,||=2,∴•≤,即•的最大值是.法三:设=,=,=,则=+,=﹣,|•|+|•|=||+||=||≤||,由题设当且仅当与同向时,等号成立,此时(+)2取得最大值6,第21页(共22页)由于|+|2+|﹣|)2=2(||2+||2)=10,于是(﹣)2取得最小值4,则•=,•的最大值是.故答案为:.三.解答题(共1小题)31.【分析】根据向量的数量积和三角形的面积公式可得tanA=﹣1,求出A和c的值,再根据余弦定理即可求出a.【解答】解:由=﹣6可得bccosA=﹣6,①,由三角形的面积公式可得S△ABC=bcsinA=3,②∴tanA=﹣1,∵0<A<180°,∴A=135°,∴c==2,由余弦定理可得a2=b2+c2﹣2bccosA=9+8+12=29∴a=第22页(共22页)。
第01讲 平面向量的概念及线性运算(六大题型)(课件)高考数学一轮复习(新教材新高考)
题型突破·考法探究
题型二:平面向量的线性运算及求参数问题
【典例2-1】若 = 7, = 4 ,则 的取值范围是( )
A.[3,7]
B. 3,7
C. 3,11
D.(3,11)
【答案】C
【解析】由题意知 = 7, = 4,且 = | − |,
当, 同向时, 取得最小值, = | − | = ||| − ||| = |4 − 7| = 3;
【答案】C
【解析】对于A,向量的模为非负数,它们可以比较大小,但向量不可以比较大小,故
A错误.
对于B,两个向量的模相等,但方向可以不同,故B错误.
对于C,若Ԧ = ,则,
,故C成立.
Ԧ 必定共线,故//
Ԧ
对于D,当Ԧ ≠ 时,它们可以模长不相等,但可以同向或反向,
故与
Ԧ 可以为共线向量,故D错误.故选:C
后一个向量终点的向量.
即 + + ⋯ + − = .
(2)||| − ||| ≤ | ± | ≤ || + ||,当且仅当, 至少有一个为时,向量不等式的等号成
立.
(3)特别地:||| − ||| ≤ | ± |或| ± | ≤ || + ||当且仅当, 至少有一个为时或者
与向量长度无关,两个向量方向相同
且长度相等,就是相等向量.
题型突破·考法探究
题型一:平面向量的基本概念
【变式1-1】下列说法中,正确的是(
)
A.若||
Ԧ > ||,则Ԧ >
C.若Ԧ = ,则//
Ԧ
B.若||
Ԧ = ||,则Ԧ =
D.若Ԧ ≠ ,则与
(常考题)北师大版高中数学必修四第二章《平面向量》检测题(包含答案解析)(2)
一、选择题1.已知向量a 、b 满足||||2a b a b ==⋅=,若,,1x y R x y ∈+=,则1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值为( )A .1B .3C .7D .32.已知ABC 为等边三角形,2AB =,ABC 所在平面内的点P 满足1AP AB AC --=,AP 的最小值为( )A .31-B .221-C .231-D .71-3.设向量a ,b ,c 满足||||1a b ==,12a b ⋅=,()()0a c b c -⋅-=,则||c 的最小值是( ) A .31+ B .31- C .3 D .14.若平面向量与的夹角为,,,则向量的模为( ) A .B .C .D .5.如下图,四边形OABC 是边长为1的正方形,点D 在OA 的延长线上,且2OD =,点P 为BCD 内(含边界)的动点,设(,)OP OC OD R αβαβ=+∈,则αβ+的最大值等于( )A .3B .2C .52D .326.已知,M N 为单位圆22:1O x y +=上的两个动点,且满足1MN =,()3,4P ,则2PM PN -的最大值为( )A .53+B .53-C .523+D .57.已知向量(3,0)a =,(0,1)b =-,(,3)c k =,若(2)a b c -⊥,则k =( ) A .2B .2-C .32D .32-8.在ABC 中,D 为AB 的中点,60A ∠=︒且2AB AC AB CD ⋅=⋅,若ABC 的面积为43AC 的长为( )A.43B.433C.3 D.239.在ABC∆中,D为BC边上一点,且AD BC⊥,向量AB AC+与向量AD共线,若10AC =,2BC=,0GA GB GC++=,则ABCG=()A.3 B.5C.2 D.10210.如图,一条河的两岸平行,河的宽度d=0.6 km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1 km,水的流速为2 km/h,若客船从码头A驶到码头B所用的时间为6 min,则客船在静水中的速度为()A.62km/h B.8 km/hC.234km/h D.10 km/h11.如图所示,在ABC中,点D在线段BC上,且3BD DC=,若AD AB ACλμ=+,则λμ=()A.12B.13C.2 D.2312.设非零向量a与b的夹角是23π,且a a b=+,则22a tbb+的最小值为()A.33B.32C.12D.1二、填空题13.如图,已知四边形ABCD,AD CD⊥,AC BC⊥,E是AB的中点,1CE=,若//AD CE,则AC BD⋅的最小值为___________.14.设123,,e e e 为单位向量,且()312102e e ke k =+>,若以向量12,e e 为邻边的三角形的面积为12,则k 的值为__________. 15.已知向量(1,1,0)a →=,(1,0,2)b →=-,(,1,2)c x →=-,若,,a b c →→→是共面向量,则x =__________.16.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,)OC mOA nOB m n R =+∈,则mn等于 . 17.如图,在△ABC 中,13AN NC =,P 是BN 上的一点,若AP =m 211AB AC +,则实数m 的值为_____.18.设向量a ,b ,c ,满足1a b ==,12a b ⋅=-,a c -与b c -的夹角为60︒,则c 的最大值等于________19.在ABC 中,22AB =26AC =G 为ABC 的重心,则AG BC ⋅=________.20.在ABC 中,22AC AB ==,120BAC ∠=,O 是BC 的中点,M 是AO 上一点,且3AO MO =,则MB MC ⋅的值是______.三、解答题21.在ABCD 中,2AB =,23AC =AB 与AD 的夹角为3π. (Ⅰ)求AD ;(Ⅱ)求AC 和BD 夹角的余弦值.22.如图,在梯形ABCD 中,E 为DC 的中点,//,,2AD BC BAD π∠=,3BDA BC BD π∠==.(1)求AE BD ⋅;(2)求AC 与BD 夹角的余弦值. 23.已知向量(1,2)a =-,||25b =. (1)若b a λ=,其中0λ<,求b 的坐标; (2)若a 与b 的夹角为23π,求()(2)a b a b -⋅+的值. 24.已知向量m ,n 不是共线向量,32a m n =+,64b m n =-,c m xn =+ (1)判断,a b 是否共线; (2)若//a c ,求x 的值 25.已知(2,0)a=,||1b =.(1)若a 与b 同向,求b ;(2)若a 与b 的夹角为120,求a b +. 26.已知向量a 与向量b 的夹角为3π,且1a =,()32a a b ⊥-. (1)求b ;(2)若27a mb -=,求m .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用已知条件求出向量a 、b 的夹角,建立直角坐标系把所求问题转化为解析几何问题. 【详解】设a 、b 所成角为θ, 由||||2==a b ,2a b,则1cos 2θ=,因为0θπ≤≤ 所以3πθ=,记a OA =,b OB =,以OA 所在的直线为x 轴,以过O 点垂直于OA 的直线为y 轴, 建立平面直角坐标系,则()2,0A ,(B ,所以()2,0a OA ==,(1,b OB ==,()(1)2x a xb x -+=-,所以((1)2x a xb x -+=-=,表示点()P x 与点()2,0A 两点间的距离, 由,,1x y R x y ∈+=113222ya y b y x ⎛⎫⎛⎛⎫+-=+=-- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 所以1322ya y b x ⎛⎫⎛+-=- ⎪ ⎝⎭,表示点()P x 与点32Q ⎛ ⎝⎭两点间的距离, ∴1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值转化为P 到,A Q 两点的距离和最小,()P x 在直线y =上,()2,0A 关于直线y =的对称点为(R -,PQ PA ∴+的最小值为QR == 故选:C 【点睛】关键点点睛:本题考查了向量模的坐标运算以及模转化为两点之间距离的转化思想,解题的关键是将向量的模转化为点()P x 到()2,0A 、32Q ⎛⎝⎭两点间的距离,考查了运算求解能力.2.C解析:C 【分析】计算出AB AC +的值,利用向量模的三角不等式可求得AP 的最小值. 【详解】2222222cos123AB AC AB AC AB AC AB AC AB AC π+=++⋅=++⋅=,所以,23AB AC += 由平面向量模的三角不等式可得()()231AP AP AB AC AB AC AP AB AC AB AC =--++≥---+=.当且仅当AP AB AC --与AB AC +方向相反时,等号成立.因此,AP 的最小值为1. 故选:C. 【点睛】结论点睛:在求解向量模的最值时,可利用向量模的三角不等式来求解:a b a b a b -≤±≤+. 3.B解析:B 【分析】建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为12⎫⎪⎪⎝⎭,21⎫-⎪⎪⎝⎭,设c 的坐标为(),x y ,由已知可得22124x y ⎛-+= ⎝⎭,表示以2⎛⎫ ⎪ ⎪⎝⎭为圆心,12为半径的圆,求出圆心到原点的距离,再减去半径即为所求 【详解】解:建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为122⎛⎫ ⎪ ⎪⎝⎭,,221⎛⎫-⎪ ⎪⎝⎭,设c 的坐标为(),x y , 因为()()0a c b c -⋅-=,所以11,,02222x y x y ⎛⎫⎛⎫--⋅---= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,化简得22124x y ⎛-+= ⎝⎭,表示以3,0⎛⎫ ⎪⎪⎝⎭为圆心,12为半径的圆, 则||c 的最小值表示圆上的点到原点的距离的最小值, 因为圆到原点的距离为3,所以圆上的点到原点的距离的最小值为312-,故选:B【点睛】此题考查平面向量的数量积运算,解题的关键是写出满足条件的对应的点,考查数学转化思想,考查数形结合的思想,属于中档题4.C解析:C 【解析】,,又,,则,故选5.D解析:D 【分析】以O 为原点,边OA 和OC 所在的直线分别为x 和y 轴建立如图所示的平面直角坐标系,设(),P x y ,易得1,2y x αβ==,则12x y αβ+=+,再将原问题转化为线性规划问题,求目标函数12x y +在可行域BCD 内(含边界)的最大值,即可求出结果. 【详解】以O 为原点,边OA 和OC 所在的直线分别为x 和y 轴建立如图所示的平面直角坐标系, 则()()0,1,2,0C D ,如下图所示:设(),P x y ,∵ (,)OP OC OD R αβαβ=+∈, ∴()()(),0,12,0)2,(x y αββα=+=,∴2,x y βα==,即1,2y x αβ==,∴12x y αβ+=+, 令1,2z x y =+则12y x z =-+,其中z 为直线12y x z =-+在y 轴上的截距,由图可知,当该直线经过点()1,1B 时,其在y 轴上的截距最大为32, ∴αβ+的最大值为32. 故选:D . 【点睛】本题考查平面向量在几何中的应用,建立坐标系后,可将原问题转化为线性规划中的最值问题,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.6.A解析:A 【分析】根据条件可知22PM PN PO OM ON -=+-2PO OM ON ≤+-,即可求出最大值. 【详解】由1MN =可知,OMN 为等边三角形,则1cos602OM ON OM ON ⋅=⋅⋅︒=, 由PM PO OM =+,PN PO ON =+,得22PM PN PO OM ON -=+-2PO OM ON ≤+-,()224413OM ON OM ON -=-⋅+=,又()3,4P ,则5PO =,因此当PO 与2OM ON -同向时,等号成立,此时2PM PN -的最大值为5+故选:A. 【点睛】本题考查向量模的大小关系,属于中档题.7.B解析:B 【分析】求出2a b -)2=,利用向量垂直数量积为零列方程求解即可.【详解】由(3,0)a =,(0,1)b =-,得2a b -)2=,若(2)c a b -⊥,则(2)?0a b c -=,0,2k +=∴=-.故选B. 【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用12210x y x y -=解答;(2)两向量垂直,利用12120x x y y +=解答.8.B解析:B 【分析】设,,AB c AC b ==先化简2AB AC AB CD ⋅=⋅得3c b =,由ABC 的面积为16bc =,即得AC 的长.【详解】设,,AB c AC b ==由题得2AB AC AB CD ⋅=⋅,所以2()AB AC AB AD AC AB AD AB AC ⋅=⋅-=⋅-⋅, 所以3,3cos cos0,332cAB AC AB AD c b c c b π⋅=⋅∴⨯⨯⨯=⨯⨯∴=.因为ABC 的面积为1sin 1623b c bc π⨯⨯⨯=∴=.所以2316,b b =∴=所以3AC =.故选:B 【点睛】本题主要考查平面向量的数量积运算,考查三角形的面积的应用,意在考查学生对这些知识的理解掌握水平.9.B解析:B 【解析】取BC 的中点E ,则2AB AC AE +=与向量AD 共线,所以A 、D 、E 三点共线,即ABC ∆中BC 边上的中线与高线重合,则10AB AC ==.因为0GA GB GC ++=,所以G 为ABC ∆的重心,则2222() 2.32BC GA GE AC ==-=所以22101,112, 5.2AB CE CG CG==+=∴== 本题选择B 选项.10.A解析:A 【解析】设客船在静水中的速度大小为 /v km h 静,水流速度为 v 水,则2/v km h =水,则船实际航行的速度v v v =+静水,60.160t h =,由题意得100.1AB v ≤=. 把船在静水中的速度正交分解为x y v v v 静=+, ∴0.660.1y v ==,在Rt ABC 中,221060.8BC =-=.. ∵80.1x x BCv v v v +=+==水水,∴826x v =-= ∴2262x yv v v 静=+=设v v 静水<,>=θ,则tan 1yxv v θ==,∴2cos 2θ=.此时222272242410102v v v v v v v +=+⋅+=+⨯+=≤静水静静水水= ,满足条件,故选A.11.B解析:B 【分析】由向量的运算法则,化简得1344AD AB AC =+,再由AD AB AC λμ=+,即可求得,λμ 的值,即可求解. 【详解】由向量的运算法则,可得34=+=+AD AB BD AB BC 313()444AB AC AB AB AC =+-=+, 因为AD AB AC λμ=+,所以13,44λμ==,从而求得13λμ=,故选:B . 【点睛】该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,即可求得结果,属于基础题.12.B解析:B 【分析】利用向量a 与b 的夹角是23π,且a a b =+,得出a b a b ==+,进而将22a tb b+化成只含有t 为自变量的二次函数形态,然后利用二次函数的特性来求出最值. 【详解】对于a ,b 和a b +的关系,根据平行四边形法则,如图a BA CD ==,b BC =,a b BD +=,23ABC π∠=,3DCB π∴∠=, a a b =+,CD BD BC ∴==,a b a b ∴==+, 2222222==222a tb a tb a tb bbb+++,a b =,22222222244cos 223=224a t a b t b a tb a tb bbbπ++++=,22222222244cos 4231244a t a b t b a t aa t a t tb aπ++-+==-+当且仅当1t =时,22a tb b+的最小值为2. 故选:B. 【点睛】本题考查平面向量的综合运用,解题的关键点在于把22a tb b+化成只含有t 为自变量的二次函数形态,进而求最值.二、填空题13.【分析】令结合题中已知条件得出通过根据数量积的概念以及二次函数的性质可得结果【详解】令因为所以又因为是的中点所以故可得所以当时取得最小值故答案为:【点睛】关键点点睛:将表示成根据几何关系将所需量用表 解析:1-【分析】令ACD θ∠=,结合题中已知条件得出2CAD πθ∠=-,2CAB πθ∠=-,2sin AC θ=,22sin AD θ=,通过()AC BD AC BA AD ⋅=⋅+,根据数量积的概念以及二次函数的性质可得结果. 【详解】令ACD θ∠=,因为AD CD ⊥,AC BC ⊥,//AD CE , 所以BCE θ∠=,2ACE CAD πθ∠=∠=-,又因为E 是AB 的中点,1CE =,所以2AB =,1CE =,CBA θ∠=,2CAB πθ∠=-,故可得2sin AC θ=,22sin AD θ=,所以()AC BD AC BA AD AC BA AC AD ⋅=⋅+=⋅+⋅2222sin 2cos 2sin 2sin cos 4sin 4sin 22ππθπθθθθθθ⎛⎫⎛⎫=⨯⨯-++⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭2214sin 12θ⎛⎫=-- ⎪⎝⎭,当21sin 2θ=时,AC BD ⋅取得最小值1-, 故答案为:1-. 【点睛】关键点点睛:将BD 表示成BA AD +,根据几何关系将所需量用θ表示,将最后结果表示为关于θ的函数.14.【详解】两端平方得又得即夹角为所以即又所以【详解】 两端平方得222114k ke e =++⋅, 又121122S e e sin θ==, 得1sin θ=,即12,e e 夹角为90︒,所以120e e ⋅=, 即234k =,又 0k >, 所以k =.15.-2【详解】由于不共线且和共面根据平面向量的基本定理有即即解得解析:-2 【详解】由于,a b 不共线,且和c 共面,根据平面向量的基本定理,有c ma nb =+,即()(),1,2,,2x m n m n -=--,即122x m n m n =--⎧⎪-=-⎨⎪=⎩,解得1,112m n x ===--=-.16.【详解】方法一:①又②③将②③代入①得:所以点在内所以方法二:以直线OAOB 分别为轴建立直角坐标系则设又得即解得故答案为:3解析:【详解】 方法一:3cos 2OA OC AOC OAOC⋅∠==⋅, ① 又()2OA OC OA mOA nOB m OA m ⋅=⋅+==, ②22222222||()||||23OC mOA nOB m OA n OB mnOA OB m n =+=++⋅=+, ③将②③代入①得:22323m n=+,所以229m n =,点C 在AOB ∠内, 所以3mn=. 方法二:以直线OA ,OB 分别为,x y 轴建立直角坐标系,则()(10,03A B ,, , 设()31cos30,sin 30=,2OC λλ⎫=︒︒⎪⎪⎝⎭,又()(()1,033OC mOA nOB m n m n =+=+=,得()31,=32m n λ⎫⎪⎪⎝⎭,即 3=132m nλ⎧⎪⎪⎨⎪=⎪⎩, 解得3mn=. 故答案为:3.17.【解析】由得设=n 所以+n=+n()=(1-n)=m 由n=得m=1-n= 解析:311【解析】由13AN NC=,得14AN AC=.设BP=n BN,所以AP AB BP AB=+=+n BN =AB+n(AN AB-)=(1-n)14AB nAC+=m211AB AC+.由14n=211,得m=1-n=311.18.【分析】作向量根据已知条件可得出与的夹角为四点共圆再结合正余弦定理可得出结果【详解】解:如下图作向量与的夹角为即又与的夹角为即与夹角为四点共圆当为直径时最大在中由余弦定理得:的外接圆的直径为四点共圆解析:2【分析】作向量OA a=,OB b=,OC c=,根据已知条件可得出a与b的夹角为120︒,A,O,B,C四点共圆,再结合正余弦定理可得出结果.【详解】解:如下图,作向量OA a=,OB b=,OC c=,∴CA a c=-,CB b c=-,1 a b==,1cos,2 a b a b a b⋅=⋅⋅=-,∴a与b的夹角为120︒,即120AOB∠=︒.∴120AOB∠=︒.又a c-与b c-的夹角为60︒,即CA与CB夹角为60︒,∴A,O,B,C四点共圆.∴当OC为直径时c最大,在AOB中,由余弦定理得:2222cos1203AB OA OB OA OB =+-⋅︒=, ∴3AB =.∴AOB 的外接圆的直径为2sin120AB=︒.∴A ,O ,B ,C 四点共圆的圆的直径为2.∴c 的最大值为2.故答案为:2. 【点睛】本题主要考查向量在几何图形中的应用,考查正余弦定理,考查数形结合的能力,分析问题能力,属于中档题.19.6【分析】根据三角形重心的性质转化为以及再求数量积【详解】如图点是的中点为的重心所以故答案为:6【点睛】本题考查向量数量积重心重点考查转化与化归思想计算能力属于基础题型解析:6 【分析】根据三角形重心的性质转化为()13AG AB AC =+,以及BC AC AB =-,再求数量积. 【详解】如图,点D 是BC 的中点,G 为ABC 的重心,∴()()22113323AG AD AB AC AB AC ==⨯+=+,BC AC AB =-,所以()()()221133AG BC AB AC AC AB AC AB ⋅=+⋅-=- ()126863=-=故答案为:6 【点睛】本题考查向量数量积,重心,重点考查转化与化归思想,计算能力,属于基础题型.20.【分析】用表示向量然后利用平面向量数量积的运算律可求得的值【详解】为的中点故答案为:【点睛】本题考查平面向量数量积的计算解答的关键就是选择合适的基底表示向量考查计算能力属于中等题解析:53-【分析】用AB 、AC 表示向量MB 、MC ,然后利用平面向量数量积的运算律可求得MB MC ⋅的值. 【详解】O 为BC 的中点,()12AO AB AC ∴=+, 3AO MO =,()1136MO AO AB AC ∴==+,()2133AM AO AB AC ==+, ()()11233MB AB AM AB AB AC AB AC ∴=-=-+=-, ()()11233MC AC AM AC AB AC AC AB ∴=-=-+=-, 22AC AB ==,120BAC ∠=,()()()22112252299MB MC AB AC AC AB AB AC AB AC∴⋅=-⋅-=⋅--221155122122923⎡⎤⎛⎫=⨯⨯⨯--⨯-⨯=- ⎪⎢⎥⎝⎭⎣⎦. 故答案为:53-. 【点睛】本题考查平面向量数量积的计算,解答的关键就是选择合适的基底表示向量,考查计算能力,属于中等题.三、解答题21.(Ⅰ)2AD =;(Ⅱ)0. 【分析】(Ⅰ)设AB a =,AD b =,利用平面向量加法的平行四边形法则可得AC a b =+,由23AC =b 的方程,即可解得AD b =;(Ⅱ)计算得出0AC BD ⋅=,可得出AC BD ⊥,进而可得出结果. 【详解】(Ⅰ)设AB a =,AD b =,则AC a b =+,BD AD AB b a =-=-.向量AB 与AD 的夹角为3π,cos 3a b a b b π∴⋅=⋅=. ()22222242AC a b a ba ab b b b ∴=+=+=+⋅+=++=整理得2280b b +-=,0b ≥,解得2b =,即2AD =;(Ⅱ)()()220AC BD a b b a b a ⋅=+⋅-=-=,则AC BD ⊥, 因此,AC 和BD 夹角的余弦值为0. 【点睛】本题考查利用平面向量的数量积求向量的模,同时也考查了平面向量夹角余弦值的计算,考查计算能力,属于中等题.22.(1)0;(2)- 【分析】(1)由BCD △为等边三角形得出2BC AD =,由向量的加法和减法运算得出13,22AE AB AD BD AD AB =+=-,再由向量的数量积公式得出AE BD ⋅的值;(2)设AD a =,则3,2,AB BC BD a AC ====,由数量积公式得出AC BD ⋅,进而得出AC 与BD 夹角的余弦值. 【详解】解:(1)因为//AD BC ,,,23BAD BDA BC BD ππ∠=∠==所以BCD △为等边三角形,23BC AB AD == 又E 为DC 的中点 所以1113()(),2222AE AC AD AB BC AD AB AD BD AD AB =+=++=+=- 则221313()02222AE BD AB AD AD AB AB AB AD AD ⎛⎫⋅=+⋅-=--⋅+= ⎪⎝⎭(2)设AD a =,则3,2,7AB a BC BD a AC a ====222(2)()2AC BD AB AD AD AB AB AD AB AD a ⋅=+⋅-=--⋅+=-设AC 与BD 的夹角为θ,则2cos 2AC BDAC BD θ⋅=== 【点睛】本题主要考查了利用定义求向量的数量积以及夹角,属于中档题.23.(1)(2,4)-;(2)5-. 【分析】(1)由向量模的坐标表示求出λ,可得b 的坐标; (2)根据向量数量积的运算律及数量积的定义计算. 【详解】(1)由题知(,2)b λλ=-,2||(|b λλ=+==2λ=-,故(2,4)b =-;(2)21(a =+= ∴222221()(2)22||||cos105220532a b a b a a b b a a b b π⎛⎫-⋅+=-⋅-=-⋅-=-⋅--=- ⎪⎝⎭. 【点睛】本题考查向量模的坐标表示,考查向量数量积的运算律,掌握数量积的运算律是解题关键.24.(1),a b 不共线;(2)23x = 【分析】(1)根据平面向量共线定理判断. (2)由平面向量共线定理计算. 【详解】解:(1)若a 与b 共线,由题知a 为非零向量, 则有b a λ=,即64(32)m n m n λ-=+,6342λλ=⎧∴⎨-=⎩得到2λ=且2λ=-, λ∴不存在,即a 与b 不平行.(2) ∵//a c ,∴存在实数r ,使得c ra =, 即32m xn rm rn +=+, 即132r x r=⎧⎨=⎩,解得23x =.【点睛】本题考查平面向量共线定理,掌握平面向量共线定理是解题基础.25.(1)(1,0)b =;(2)3(,2a b +=-或33(,2a b +=. 【分析】(1)先设(,)b x y =,再根据向量共线定理即可求解即可;(2)由已知结合向量数量积的定义及数量积的坐标表示即可求解. 【详解】解:(1)设(,)b x y =,由题意可得,存在实数0λ>,使得b a λ=, 即(x ,)(2y λ=,0)(2λ=,0),所以2x λ=,0y =, 由||1b =可得241λ=,即12λ=或12λ=-(舍),所以(1,0)b =, (2)设(,)b x y =,所以1·cos12021()12a b a b =︒=⨯⨯-=-, 又因为()()·2,0,2a b x y x =⋅=, 故21x =-即12x =-,因为||1b =,所以221x y +=,故y =当y =,12x =-时,33(,2a b +=,当y =12x =-时,3(,2a b +=-.【点评】本题主要考查了向量共线定理及向量数量积的定义及性质的简单应用,属于中档试题. 26.(1)3b =;(2)13m =-或1m =. 【分析】(1)本小题先求出32a b ⋅=,再求3b =即可; (2)本小题先求出23210m m --=,再求解m .【详解】解:(1)∵()23232320a a b a a b a b ⋅-=-⋅=-⋅=, ∴32a b ⋅=,∴13cos 322a b a b b π⋅=⋅⋅==, ∴3b =.(2)∵27a mb -=, ∴()222227244469a mba mab m b m m =-=-⋅+=-+,整理得:23210m m --=,解得:13m=-或1m=.【点睛】本题考查利用向量垂直求向量的数量积、向量的数量积公式、利用和与差的向量的模求参数,是中档题.。
平面向量知识点归纳及常考题型分析
平面向量知识点归纳及常考题型分析【知识点回顾】1、实数与向量的积的运算律:设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ) a ;(2)第一分配律:(λ+μ) a =λa +μa ;(3)第二分配律:λ(a +b )=λa +λb2、向量的数量积的运算律:(1) a ·b = b ·a (交换律);(2)(λa )·b = λ(a ·b )=λa ·b =a ·(λb );(3)(a +b )·c = a ·c +b ·c3、平面向量基本定理如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a =λ11e +λ22e .不共线的向量1e 、2e 叫做表示这一平面内所有向量的一组基底.4、向量共线(平行)的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a //b (b ≠0)1221x y x y ⇔-=5、a 与b 的数量积(或内积):a ·b =|a ||b |cos θ6、a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.7、平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++(2)设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --(3)设A 11(,)x y ,B 22(,)x y ,则2121(,AB OB OA x x y y =-=--(4)设a =(,),x y R λ∈,则λa =(,x y λλ (5)设a =11(,)x y ,b =22(,)x y ,则a ·b =1212(x x y y +8、两向量的夹角公式 121cos ||||x a b a b x θ⋅==⋅+a =11(,)x y ,b =22(,)x y )9、平面两点间的距离公式,A B d =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ) 10、向量的平行与垂直 :设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 a ||b ⇔b =λa 1221x y x y ⇔-=a ⊥b (a ≠0)⇔ a ·b =01212x x y y ⇔+=11、线段的定比分公式 :设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+⇔12(1)OP tOP t OP =+-(11t λ=+) 12、三角形的重心坐标公式 △ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,33x x x y y y G ++++ 13、点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,h k 14、“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,P x h y k ++ (2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+ (3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)f x h y k --= (5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,x y15、 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔== (2)O 为ABC ∆的重心0OA OB OC ⇔++=(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅(4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=(5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+【题型归纳】一、向量的概念和基本运算例1、(1)判断下列命题是否正确:①若a b =,则a b =;②两个向量相等的充要条件是它们的起点相同,终点相同;③若AB DC =,则ABCD 是平行四边形;④若ABCD 是平行四边形,则AB DC =;⑤若,a b b c ==,则a c =;⑥若//,//a b b c ,则//a c 。
(常考题)北师大版高中数学必修四第二章《平面向量》测试(包含答案解析)(1)
【分析】
设 , ,设 ,则 ,由 ,得到 , ,再利用 ,得到 ,再设 ,得到 ,根据 ,可解得结果.
【详解】
因为 ,所以可设 , ,
设 ,则 ,
由 ,得 ,所以 ,
由 ,得 ,化简得 ,所以 ,
所以由 ,得 ,
所以 ,
设 ,则 ,所以 ,
所以 ,
由 ,得 ,解得 ,
所以 ,
所以 ,
所以 ,
故答案为: .
15.已知正方形 的边长为4,若 ,则 的值为_________________.
16.已知圆 , 点为圆上第一象限内的一个动点,将 逆时针旋转90°得 ,又 ,则 的取值范围为________.
17.已知平面非零向量 ,满足 且 ,已知 ,则 的取值范围是________
18. 中, , ,且 ,则 ______.
6.C
解析:C
【详解】
由题意可得 ,所以 ,又因为 ,所以 ,选C.
7.B
解析:B
【分析】
根据方程有实根得到 ,利用向量模长关系可求得 ,根据向量夹角所处的范围可求得结果.
【详解】
关于 的方程 有实根
设 与 的夹角为 ,则
又
又
本题正确选项:
【点睛】
本题考查向量夹角的求解问题,关键是能够利用方程有实根得到关于夹角余弦值的取值范围,从而根据向量夹角范围得到结果.
此时,符合条件的点 有 个.
综上所述,满足题中条件的点 的个数为 .
故选:D.
【点睛】
本题考查符合条件的点的个数的求解,考查了平面向量加法法则的应用,属于中等题.
9.B
解析:B
【分析】
由 知, ,根据平面向量的线性运算可推出
历年高三数学高考考点之平面向量的线性问题必会题型及答案
历年高三数学高考考点之<平面向量的线性问题>必会题型及答案体验高考1.设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →答案 A解析 ∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3AD →,∴AD →=-13AB →+43AC →.2.已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m 等于( ) A.-8 B.-6 C.6 D.8 答案 D解析 由题知a +b =(4,m -2),因为(a +b )⊥b ,所以(a +b )·b =0, 即4×3+(-2)×(m -2)=0,解之得m =8,故选D.3.已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m +n ),则实数t 的值为( )A.4B.-4C.94D.-94答案 B解析 ∵n ⊥(t m +n ),∴n ·(t m +n )=0,即t m ·n +|n |2=0, ∴t |m ||n |cos 〈m ,n 〉+|n |2=0, 又4|m |=3|n |,∴t ×34|n |2×13+|n |2=0,解得t =-4,故选B.4.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________. 答案 12 -16解析 MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →,∴x =12,y =-16.高考必会题型题型一 平面向量的线性运算及应用例1 (1)在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫0,13C.⎝ ⎛⎭⎪⎫-12,0D.⎝ ⎛⎭⎪⎫-13,0 (2)已知在△ABC 中,D 是AB 边上的一点,若AD →=2DB →, CD →=13CA →+λCB →,则λ=_____.答案 (1)D (2)23解析 (1)设CO →=yBC →,∵AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →)=-yAB →+(1+y )AC →. ∵BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合), ∴y ∈⎝ ⎛⎭⎪⎫0,13,∵AO →=xAB →+(1-x )AC →,∴x =-y ,∴x ∈⎝ ⎛⎭⎪⎫-13,0. (2)因为AD →=2DB →,CD →=13CA →+λCB →,所以CD →=CA →+AD →=CA →+23AB →=CA →+23(CB →-CA →)=13CA →+23CB →,所以λ=23.点评 平面向量的线性运算应注意三点 (1)三角形法则和平行四边形法则的运用条件.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(3)OA →=λOB →+μOC →(λ,μ为实数),若A ,B ,C 三点共线,则λ+μ=1.变式训练1 (1)如图,两块全等的直角边长为1的等腰直角三角形拼在一起,若AD →=λAB →+kAC →,则λ+k 等于( )A.1+ 2B.2- 2C.2D.2+2(2)在△ABC 中,GA →+GB →+GC →=0,CA →=a ,CB →=b .若CP →=m a ,CQ →=n b ,CG ∩PQ =H ,CG →=2CH →,则1m +1n=________.答案 (1)A (2)6解析 (1)根据向量的基本定理可得, AD →=AC →+CD →=AC →+(ED →-EC →) =AC →+(2AC →-22BC →)=AC →+2AC →-22(AC →-AB →)=⎝ ⎛⎭⎪⎫1+22·AC →+22AB →, 所以λ=22,k =1+22, 所以λ+k =1+ 2.故选A.(2)由GA →+GB →+GC →=0,知点G 为△ABC 的重心,取AB 的中点D (图略),则CH →=12CG →=13CD →=16(CA→+CB →)=16m CP →+16n CQ →,由P ,H ,Q 三点共线,得16m +16n =1,则1m +1n =6.题型二 平面向量的坐标运算例2 (1)已知点A (-3,0),B (0,3),点O 为坐标原点,点C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为________.答案 1解析 由题意知OA →=(-3,0),OB →=(0,3), 则OC →=(-3λ,3),由∠AOC =30°,知∠xOC =150°,∴tan 150°=3-3λ,即-33=-33λ,∴λ=1.(2)平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1),请解答下列问题: ①求满足a =m b +n c 的实数m ,n ; ②若(a +k c )∥(2b -a ),求实数k ;③若d 满足(d -c )∥(a +b ),且|d -c |=5,求d . 解 ①由题意得(3,2)=m (-1,2)+n (4,1),∴⎩⎪⎨⎪⎧-m +4n =3,2m +n =2,得⎩⎪⎨⎪⎧m =59,n =89.②a +k c =(3+4k ,2+k ),2b -a =(-5,2), ∵(a +k c )∥(2b -a ),∴2×(3+4k )-(-5)(2+k )=0,∴k =-1613.③设d =(x ,y ),则d -c =(x -4,y -1),a +b =(2,4),由题意得⎩⎪⎨⎪⎧4x -4-2y -1=0,x -42+y -12=5,解得⎩⎪⎨⎪⎧x =3,y =-1或⎩⎪⎨⎪⎧x =5,y =3.∴d =(3,-1)或d =(5,3).点评 (1)两平面向量共线的充要条件有两种形式:①若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0;②若a ∥b (a ≠0),则b =λa .(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.(3)向量的坐标运算主要是利用加法、减法、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则. 变式训练2 (1)如图所示,在△ABC 中,D 为AB 的中点,F 在线段CD 上,设AB →=a ,AC →=b ,AF →=x a +y b ,则1x +2y的最小值为( )A.8+2 2B.8C.6D.6+2 2(2)已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),若点A 、B 、C 能构成三角形,则实数m 满足的条件是________. 答案 (1)B (2)m ≠12解析 (1)因为点D 为AB 的中点,所以AB →=2AD →,因为AF →=x a +y b ,所以AF →=2xAD →+yAC →.因为点F 在线段CD 上,所以2x +y =1,又x ,y >0,所以1x +2y=(2x +y )⎝ ⎛⎭⎪⎫1x +2y =4+y x +4x y≥4+2y x ·4xy=8, 当且仅当y =2x =12时取等号,所以1x +2y的最小值为8.(2)因为OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),所以AB →=(3,1),BC →=(-m -1,-m ).由于点A 、B 、C 能构成三角形,所以AB →与BC →不共线,而当AB →与BC →共线时,有3-m -1=1-m ,解得m =12,故当点A 、B 、C 能构成三角形时,实数m 满足的条件是m ≠12.高考题型精练1.设a 是非零向量,λ是非零实数,下列结论中正确的是( ) A.a 与λa 的方向相反 B.a 与λ2a 的方向相同 C.|-λa |≥|a | D.|-λa |≥|λ|a答案 B解析 对于A ,当λ>0时,a 与λa 的方向相同,当λ<0时,a 与λa 的方向相反,B 正确;对于C ,|-λa |=|-λ||a |,由于|-λ|的大小不确定,故|-λa |与|a |的大小关系不确定;对于D ,|λ|a 是向量,而|-λa |表示长度,两者不能比较大小.2.设点M 是△ABC 所在平面上的一点,且MB →+32MA →+32MC →=0,点D 是AC 的中点,则|MD →||BM →|的值为( )A.13B.12 C.1 D.2 答案 A解析 ∵D 是AC 的中点,延长MD 至E ,使得DE =MD , ∴四边形MAEC 为平行四边形,∴MD →=12ME →=12(MA →+MC →).∵MB →+32MA →+32MC →=0,∴MB →=-32(MA →+MC →)=-3MD →,∴|MD →||BM →|=|MD →||-3MD →|=13,故选A. 3.已知点A (-3,0),B (0,2),点O 为坐标原点,点C 在∠AOB 内,|OC |=22,且∠AOC =π4,设OC →= λOA →+OB →(λ∈R ),则λ的值为( ) A.1 B.13 C.12 D.23答案 D解析 过点C 作CE ⊥x 轴于点E (图略). 由∠AOC =π4,知|OE |=|CE |=2,所以OC →=OE →+OB →=λOA →+OB →, 即OE →=λOA →,所以(-2,0)=λ(-3,0),故λ=23.4.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,则四边形ABCD 的形状是( ) A.矩形 B.平行四边形 C.梯形 D.以上都不对 答案 C解析 由已知,得AD →=AB →+BC →+CD →=-8a -2b =2(-4a -b )=2BC →,故AD →∥BC →.又因为AB →与CD →不平行,所以四边形ABCD 是梯形.5.设向量a ,b 满足|a |=25,b =(2,1),则“a =(4,2)”是“a ∥b ”成立的( ) A.充要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件 答案 C解析 若a =(4,2),则|a |=25,且a ∥b 都成立; ∵a ∥b ,设a =λb =(2λ,λ),由|a |=25,知4λ2+λ2=20,∴λ2=4,∴λ=±2, ∴a =(4,2)或a =(-4,-2).因此“a =(4,2)”是“a ∥b ”成立的充分不必要条件.6.在四边形ABCD 中,AB ∥CD ,AB =3DC ,点E 为BC 的中点,则AE →等于( )A.23AB →+12AD →B.12AB →+23AD →C.56AB →+13AD →D.13AB →+56AD → 答案 A解析 BC →=BA →+AD →+DC →=-23AB →+AD →,AE →=AB →+BE →=AB →+12BC →=AB →+12⎝ ⎛⎭⎪⎫AD →-23AB →=23AB →+12AD →.7.给出下列命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b ; ⑤若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是( ) A.②③ B.①② C.③④ D.④⑤ 答案 A解析 ①方向不一定相同;④方向可能相反;⑤若b =0,则不对.8.在矩形ABCD 中,O 是对角线的交点,若BC →=5e 1,DC →=3e 2,则OC →=________.(用e 1,e 2表示)答案 12(5e 1+3e 2)解析 在矩形ABCD 中,因为点O 是对角线的交点,所以OC →=12AC →=12(AB →+AD →)=12(DC →+BC →)=12(5e 1+3e 2).9.在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ=________.答案 45解析 依题意得,AM →=AB →+BC →+CM →=AB →+BC →-14AB →=34AB →+BC →,AN →=AB →+BN →=AB →+12BC →.又AB →=λAM →+μAN →,于是有AB →=λ⎝ ⎛⎭⎪⎫34AB →+BC →+μ⎝⎛⎭⎪⎫AB →+12BC →=⎝ ⎛⎭⎪⎫34λ+μAB →+⎝⎛⎭⎪⎫λ+μ2BC →.又AB →与BC →不共线,因此有⎩⎪⎨⎪⎧34λ+μ=1,λ+μ2=0,由此解得λ=-45,μ=-2λ,所以λ+μ=-λ=45.10.已知点G 是△ABC 的外心,GA →,GB →,GC →是三个单位向量,且2GA →+AB →+AC →=0,如图所示,△ABC 的顶点B ,C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,点O 是坐标原点,则|OA →|的最大值为________.答案 2解析 因为点G 是△ABC 的外心,且2GA →+AB →+AC →=0,所以点G 是BC 的中点,△ABC 是直角三角形,且∠BAC 是直角.又GA →,GB →,GC →是三个单位向量,所以BC =2,又△ABC 的顶点B ,C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,所以点G 的轨迹是以原点为圆心、1为半径的圆弧.又|GA →|=1,所以当OA 经过BC 的中点G 时,|OA →|取得最大值,且最大值为2|GA →|=2.11.设e 1,e 2是两个不共线的向量,已知AB →=2e 1-8e 2,CB →=e 1+3e 2,CD →=2e 1-e 2. (1)求证:A ,B ,D 三点共线;(2)若BF →=3e 1-k e 2,且B ,D ,F 三点共线,求k 的值.(1)证明 由已知得BD →=CD →-CB →=(2e 1-e 2)-(e 1+3e 2)=e 1-4e 2, ∵AB →=2e 1-8e 2,∴AB →=2BD →. 又∵AB →与BD →有公共点B , ∴A ,B ,D 三点共线.(2)解 由(1)可知BD →=e 1-4e 2, ∵BF →=3e 1-k e 2,且B ,D ,F 三点共线, ∴BF →=λBD →(λ∈R ), 即3e 1-k e 2=λe 1-4λe 2,得⎩⎪⎨⎪⎧λ=3,-k =-4λ.解得k =12.12.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →. (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点都共线; (3)若t 1=a 2,求当OM →⊥AB →且△ABM 的面积为12时,a 的值. (1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2). 当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0,故所求的充要条件为t 2<0且t 1+2t 2≠0. (2)证明 当t 1=1时, 由(1)知OM →=(4t 2,4t 2+2). ∵AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →, 又∵AM →与AB →有公共点A ,∴不论t 2为何实数,A ,B ,M 三点共线.(3)解 当t 1=a 2时, OM →=(4t 2,4t 2+2a 2).又AB →=(4,4),OM →⊥AB →, ∴4t 2×4+(4t 2+2a 2)×4=0, ∴t 2=-14a 2,故OM →=(-a 2,a 2). |AB →|=42,点M 到直线AB :x -y +2=0的距离d =|-a 2-a 2+2|2=2|a 2-1|.∵S △ABM =12,∴12|AB |·d =12×42×2|a 2-1|=12, 解得a =±2, 故所求a 的值为±2.。
考点30平面向量的概念及线性运算(3种核心题型)(学生版) 2025年高考数学大一轮复习(新高考版)
考点30平面向量的概念及线性运算(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.理解平面向量的意义、几何表示及向量相等的含义.2.掌握向量的加法、减法运算,并理解其几何意义及向量共线的含义.3.了解向量线性运算的性质及其几何意义.【知识点】1.向量的有关概念(1)向量:既有大小又有 的量叫做向量,向量的大小称为向量的.(2)零向量:长度为的向量,记作.(3)单位向量:长度等于 长度的向量.(4)平行向量:方向相同或 的非零向量,也叫做共线向量,规定:零向量与任意向量.(5)相等向量:长度相等且方向 的向量.(6)相反向量:长度相等且方向 的向量.2.向量的线性运算向量运算法则(或几何意义)运算律加法交换律:a +b = ;结合律:(a +b )+c =________减法a -b =a +(-b )数乘|λa |=,当λ>0时,λa 的方向与a 的方向;当λ<0时,λa 的方向与a 的方向 ;当λ=0时,λa =λ(μa )= ;(λ+μ)a = ;λ(a +b )=3.向量共线定理向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使 .常用结论1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即A 1A 2—→ +A 2A 3—→ +A 3A 4—→ +…+A n -1A n ———→ =A 1A n —→,特别地,一个封闭图形,首尾连接而成的向量和为零向量.2.若F 为线段AB 的中点,O 为平面内任意一点,则OF → =12(OA → +OB → ).3.若A ,B ,C 是平面内不共线的三点,则PA → +PB → +PC → =0⇔P 为△ABC 的重心,AP → =13(AB → +AC → ).4.对于任意两个向量a ,b ,都有||a |-|b ||≤|a ±b |≤|a |+|b |.【核心题型】题型一 平面向量的基本概念平行向量有关概念的四个关注点(1)非零向量的平行具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.(4)a|a |是与a 同方向的单位向量.【例题1】(2024·湖南永州·三模)在ABC V 中,120ACB Ð=o,3AC uuu r =,4BC =uuu r,0DC DB ×=uuu r uuu r,则AB AD +uuu r uuu r 的最小值为( )A .2B .4C .1D 2【变式1】(2023·北京大兴·三模)设a r ,b r 是非零向量,“a a bb =r r rr ”是“a b =r r”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【变式2】(2022·江苏·三模)已知向量()6,2a =r ,与a r共线且方向相反的单位向量b =r.【变式3】(2022·上海虹口·二模)已知向量a r ,b r满足2a =r ,1b =r ,a +r ,则a b -=r r.题型二 平面向量的线性运算平面向量线性运算的常见类型及解题策略(1)向量求和用平行四边形法则或三角形法则;求差用向量减法的几何意义.(2)求参数问题可以通过向量的运算将向量表示出来,进行比较,求参数的值.命题点1 向量加、减法的几何意义【例题2】(2024·福建福州·三模)已知线段AB 是圆O 的一条长为2的弦,则AO AB ×=uuu r uuu r( )A .1B .2C .3D .4【变式1】(2024·河南三门峡·模拟预测)在ABC V 中,3,4AN NC BP PN ==uuu r uuu r uuu r uuu r ,则AP =uuu r ( )A .1355AB CA+uuur uuu r B .3455AB CA-uuur uuu r C .3155AB CA-uuur uuu r D .1355AB CA-uuur uuu r 【变式2】(2023·四川乐山·一模)已知正六边形ABCDEF 边长为2,MN 是正六边形ABCDEF 的外接圆的一条动弦,2MN =,P 为正六边形ABCDEF 边上的动点,则PM PN ×uuuu r uuu r的最小值为 .【变式3】(2023·上海金山·二模)已知a r 、b r 、c r 、d ur 都是平面向量,且|||2||5|1a a b a c =-=-=r r r r r ,若,4a d p =r u r ,则||||b dcd -+-r u r r u r的最小值为.命题点2 向量的线性运算【例题3】(2023·河北·模拟预测)在平行四边形ABCD 中,已知24==A D A B ,且4AB BC ×=-uuu r uuu r ,则向量AB uuu r与AC uuu r 的夹角的余弦值为( )A .12-B .0C .12D 【变式1】(2024·安徽·模拟预测)已知O 为等边ABC V 的中心,若3,2OA a AB b ==uuu r uuu r r r,则AC =uuu r.(用,a b r r 表示)【变式2】(2024·黑龙江哈尔滨·二模)已知不共线的三个单位向量,,a b c r r r 满足0,a b c a l ++=r r r r r 与b r 的夹角为π3,则实数l =.【变式3】(2024·江苏扬州·模拟预测)记ABC V 的内角,,A B C 的对边分别为,,a b c ,若()()3a b c a b c +++-=,且ABC V (1)求角C ;(2)若2AD DB =uuu r uuu r,求CD 的最小值.命题点3 根据向量线性运算求参数【例题4】(2024·江苏·二模)已知非零向量π(cos 2,sin())4a a a =+r ,π(sin(4b a =+r ,若//a b r r ,则sin 2a =( )A .1-B C .45D .35【变式1】(2024·浙江杭州·三模)已知不共线的平面向量a r ,b r满足()()2a b a b l l ++∥r r r r ,则正数l =( )A .1B C D .2【变式2】(2024·上海·三模)设平面向量()sin ,1a q =r ,(cos b q =r ,若a r ,b r 不能组成平面上的一个基底,则tan q = .【变式3】(2023·四川南充·一模)在ABC V 中,设角A ,B ,C 的对边分别为a ,b ,c .已知向量),sin m A A =r,()1,1n =-r ,且m n ∥r r.(1)求角A 的大小;(2)若a =sin sin 0a B c A -=,求ABC V 的面积.题型三 共线定理及其应用利用共线向量定理解题的策略(1)a ∥b ⇔a =λb (b ≠0)是判断两个向量共线的主要依据.(2)若a 与b 不共线且λa =μb ,则λ=μ=0.(3)若OA → =λOB → +μOC → (λ,μ为常数),则A ,B ,C 三点共线的充要条件是λ+μ=1.【例题5】(2024·全国·模拟预测)已知平面上点O ,A ,B 满足2OA OB ==uuu r uuu r ,且||OA OB OA +=uuu r uuu r uuu r ,点C 满足OC OB -=uuu r uuu rP 满足()1OP tOA t OC =+-uuu r uuu r uuu r ,则OP uuu r 的最小值为( )A B C .1D .1【变式1】(2024·浙江·模拟预测)已知向量1e u r ,2e u ur 是平面上两个不共线的单位向量,且122AB e e =+u r uuu r u u r ,1232BC e e =-+uuur u r u u r ,1236DA e e =-uuu r u r u u r ,则( )A .、、ABC 三点共线B .A BD 、、三点共线C .A C D 、、三点共线D .B C D 、、三点共线【变式2】(2024·上海松江·二模)已知正三角形ABC 的边长为2,点D 满足CD mCA nCB =+uuu r uuu r uuu r,且0m >,0n >,21m n +=,则||CD uuu r 的取值范围是 .【变式3】(2022·江苏盐城·模拟预测)如图,已知正方形ABCD 的边长为2,过中心O 的直线l 与两边AB ,CD 分别交于点M ,N .(1)若Q 是BC 的中点,求QM QN ×uuuu r uuu r的取值范围;(2)若P 是平面上一点,且满足2(1)OP OB OC l l =+-uuu r uuu r uuu r ,求PM PN ×uuuu r uuu r的最小值.【课后强化】【基础保分练】一、单选题1.(2024·全国·模拟预测)已知平面向量a r ,b r ,则“//a b rr ”是“存在R l Î,使得a b l =r r ”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件2.(2023·贵州黔东南·三模)在△ABC 中,已知4AB =,M 为线段AB 的中点,3CM =,若2CN NM=uuu r uuuu r,则NA NB ×=uuu r uuu r ( )A .92-B .3-C .D .3.(2024·广东深圳·模拟预测)已知点()2,6A ,()2,3B --,()0,1C ,7,62D æöç÷èø,则与向量2AB CD +uuu r uuu r同方向的单位向量为( )A .B .C .D .43,55æö-ç÷èø4.(2024·山西朔州·一模)已知)2,a b ==r r,且a b ^r r ,则2a b -=r r ( )A .B .C .4D .二、多选题5.(2024·辽宁·二模)ABC V 的重心为点G ,点O ,P 是ABC V 所在平面内两个不同的点,满足OP OA OB OC =++uuu r uuu r uuu r uuu r,则( )A .,,O P G 三点共线B .2OP OG =uuu r uuu rC .2OP AP BP CP =++uuu r uuu r uuu r uuu rD .点P 在ABC V 的内部6.(2024·浙江宁波·二模)若平面向量,,a b c r r r 满足1,1,3a b c ===r r r 且a c b c ×=×r r r r ,则( )A .a b c ++r r r的最小值为2B .a b c ++r r r的最大值为5C .a b c -+r r r 的最小值为2D .a b c -+r r r的最大值为三、填空题7.(2023·重庆·一模)在PAB V 中,4,3AB APB p=Ð=,点Q 满足2()QP AQ BQ =+uuu r uuu r uuu r ,则QA QB×uuu r uuu r的最大值为.8.(2023·云南大理·模拟预测)若a b =r r ,8a b +=r r ,6a b -=r r ,则a r 在b r上投影向量的模为.9.(2023·陕西西安·模拟预测)若平面四边形ABCD 满足0AB CD +=uuu r uuu r r,()0AB AD AC -×=uuu r uuu r uuu r ,则该四边形一定是 .四、解答题10.(2024·山西朔州·一模)已知ABC V 的内角,,A B C 的对边分别为,,a b c ,向量()(),,sin sin ,sin sin m a b c n A C A B =+=--r r ,且//m n r r .(1)求B ;(2)求222b a c+的最小值.11.(2024·四川·模拟预测)已知ABC V 的内角,,A B C 的对边分别为,,a b c ,且cos 2cos B a bC c-=.(1)求角C ;(2)若4AB AC +=uuu r uuu r,求ABC V 面积的最大值.【综合提升练】一、单选题1.(2023·四川南充·一模)已知正方形ABCD 的边长为1,则AB BC CA +-=uuu r uuu r uuu r ( )A .0B C .D .42.(2024·全国·模拟预测)已知向量()4,a m =r ,()2,2b m =-r ,则“4m =”是“a r 与b r共线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.(2024·安徽马鞍山·三模)已知平面向量1e u r ,2e u u r 不共线,12(21)2a k e e =-+r u r u u r ,12b e e =-r u r ur ,且//a b r r,则k =( )A .12-B .0C .1D .324.(2024·四川遂宁·模拟预测)在ABC V 中,点F 为线段BC 上任一点(不含端点),若()20,0AF xAB y AC x y =+>>uuu r uuu r uuu r ,则12x y+的最小值为( )A .3B .4C .8D .95.(2023·四川南充·一模)已知正方形ABCD 的边长为1,则AB BC CA +-=uuu r uuu r uuu r ( )A .0B C .2D .6.(23-24高三下·山东菏泽·阶段练习)已知向量a r ,b r,满足a b a b ==-r r r r ,则()·a a b +=r r r ( )A .212a r B .212b rC .()212a b +r r D .()212a b -r r7.(23-24高三上·全国·阶段练习)设平面向量(1,3)a =r ,||2b =r ,且||a b -=rr ,则()()2·a b a b +-r rr r =( )A .1B .14C D8.(2024·上海杨浦·二模)平面上的向量a r 、b r 满足:3a =r,4b =r ,a b ^r r .定义该平面上的向量集合{|||||,}A x x a x b x a x b =+<+×>×r rr r r r r r r .给出如下两个结论:①对任意c A Îr ,存在该平面的向量d A Îu r ,满足0.5c d -=rr ②对任意c A Îr ,存在该平面向量d A Ïu r ,满足0.5c d -=rr 则下面判断正确的为( )A .①正确,②错误B .①错误,②正确C .①正确,②正确D .①错误,②错误二、多选题9.(2023·海南海口·模拟预测)下列命题为真命题的是( )A .一组数据22 ,20 ,17 ,15,13,11,9,8,8,7 的第90百分位数是21B .若等差数列{}n a 满足x y p q a a a a +=+(x 、y 、p 、*N )q Î,则x y p q +=+C .非零平面向量a r 、b r 、c r 满足//a b r r ,//b c r r,则//a cr r D .在ABC V 中,“AB AC >”与“cos cos C B <”互为充要条件10.(2024·全国·模拟预测)设,a b r r是两个非零向量,下列命题正确的是( )A .若0a b ×=r r,则//a b r r B .若a b a b ×=×r r r r ,则//a br r C .若a b ^r r,则()2a b a b×=×r r r r D .若a b a b +=-r r r r ,则a b^r r11.(2022·辽宁·模拟预测)“圆幂定理”是平面几何中关于圆的一个重要定理,它包含三个结论,其中一个是相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.如图,已知圆O 的半径为2,点P 是圆O 内的定点,且OP =,弦AC 、BD 均过点P ,则下列说法正确的是( )A .PA PC ×uu u r uuu r为定值B .OA OC ×uuu r uuu r的取值范围是[]2,0-C .当AC BD ^时,AB CD ×uuu r uuu r为定值D .AC BD ×uuu r uuu r 的最大值为12三、填空题12.(2024·天津·一模)已知平行四边形ABCD 的面积为23πBAD Ð=,且2BE EC =uuu r uuu r .若F 为线段DE 上的动点,且56AF AB AD l =+uuu r uuu r uuu r,则实数l 的值为 ;AF uuu r 的最小值为 .13.(2023·河南·模拟预测)已知向量()1cos ,sin e a a =u r ,()2cos ,sin e b b =u u r ,()0,1m =u r ,若12e e m +=u r u u r u r ,则12e e ×=u r u u r.14.(2024·青海西宁·二模)若向量,a b r r 不共线,且()()//xa b a yb ++r r r r,则xy 的值为 .四、解答题15.(2024·吉林延边·一模)已知ABC V 的内角A ,B ,C 所对的边分别为a ,b ,c ,sin sin sin A B c aC b a +-=-.(1)求B ;(2)若点D 在AC 上,且2AD BD DC ==,求ac.16.(2024·浙江温州·模拟预测)ABC V 的角,,A B C 对应边是 a ,b ,c ,三角形的重心是 O .已知3,4,5OA OB OC ===.(1)求 a 的长.(2)求ABC V 的面积.17.(2023·湖南·模拟预测)在ABC V 中,角,,A B C 所对的边分别为,,,a b c ABC V 的面积为πsin 3A A æö-ç÷èø.(1)求C 的大小.(2)点D 满足AD CA =uuu r uuu r.若c =,a b .18.(2023·四川成都·三模)在锐角ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且6a =,()2sin 2sin()A C b B C +++=(1)求角B 的大小;(2)若3AC DC =uuu r uuu r ,BD =c 的值.19.(2024·山东青岛·一模)已知O 为坐标原点,点W 为O e :224x y +=和M e 的公共点,0OM OW ×=uuuu r uuuu r ,M e 与直线20x +=相切,记动点M 的轨迹为C .(1)求C 的方程;(2)若0n m >>,直线1:0l x y m --=与C 交于点A ,B ,直线2:0l x y n --=与C 交于点A ¢,B ¢,点A ,A ¢在第一象限,记直线AA ¢与BB ¢的交点为G ,直线AB ¢与BA ¢的交点为H ,线段AB 的中点为E .①证明:G ,E ,H 三点共线;②若()217m n ++=,过点H 作1l 的平行线,分别交线段AA ¢,BB ¢于点T ,T ¢,求四边形GTET ¢面积的最大值.【拓展冲刺练】一、单选题1.(2024·黑龙江·模拟预测)已知在梯形ABCD 中,//AB CD 且满足2AB DC =uuu r uuur,E 为AC 中点,F 为线段AB 上靠近点B 的三等分点,设AB a =uuu r r ,AD b uuu r r =,则EF =uuu r ( ).A .2132a b -r r B .3146a b -r r C .51122a b -r r D .1126a b -r r 2.(2024·北京西城·二模)已知向量a r ,b r 满足()4,3a =r ,()210,5a b -=-r r ,则( )A .0a b +=r r r B .0a b ×=r r C .a b >r r D .a br r ∥3.(2024·全国·二模)点,O P 是ABC V 所在平面内两个不同的点,满足OP OA OB OC =++uuu r uuu r uuu r uuu r ,则直线OP 经过ABC V 的( )A .重心B .外心C .内心D .垂心4.(2024·浙江宁波·模拟预测)已知ABC V 是边长为1的正三角形,1,3AN NC P =uuu r uuu r 是BN 上一点且29AP mAB AC =+uuu r uuu r uuu r ,则AP AB ×=uuu r uuu r ( )A .29B .19C .23D .1二、多选题5.(2024·福建厦门·三模)已知等边ABC V 的边长为4,点D ,E 满足2BD DA =uuu r uuu r ,BE EC =uuu r uuu r ,AE 与CD 交于点O ,则( )A .2133CD CA CB =+uuu r uuu r uuu r B .8BO BC ×=uuu r uuu rC .2CO OD =uuu r uuu r D .||OA OB OC ++=uuu r uuu r uuu r 6.(2024·安徽淮北·一模)如图,边长为2的正六边形ABCDEF ,点P 是DEF V 内部(包括边界)的动点,AP xAB y AD =+uuu r uuu r uuu r ,x ,y ÎR .( )A .0AD BE CF -+=uuu r uuu r uuu r rB .存在点P ,使x y=C .若34y =,则点P 的轨迹长度为2D .AP AB ×uuu r uuu r 的最小值为2-三、填空题7.(2024·山西太原·三模)赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了 “勾股圆方图”,亦称“赵爽弦图” (以直角三角形的斜边为边得到的正方形). 类比 “赵爽弦图”,构造如图所示的图形,它是由三个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,且DF AF =,点P 在AB 上,2BP AP =,点Q 在DEF V 内 (含边界)一点,若PQ PD PA l =+uuu r uuu r uuu r ,则l 的最大值为 .8.(2022·辽宁鞍山·模拟预测)点P 在椭圆2214x y +=上,P 不在坐标轴上,()2,0A ,()2,1C ,()10,1B ,()20,1B -,直线1B P 与2x =交于点T ,直线2B P 与x 轴交于点S ,设OS OA l ®®=,AT AC m ®®=,则l m +的值为 .9.(2023·四川乐山·一模)已知正方形ABCD 边长为MN 是正方形ABCD 的外接圆的一条动弦,2MN =,P 为正方形ABCD 边上的动点,则MP PN ×uuu r uuu r 的最大值为 .四、解答题10.(2023·江西·模拟预测)在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知M为BC 边的中点,()2a ab AM CB -×=uuuu r uuu r .(1)求角C 的大小;(2)若ABC V 的面积为ABC V 周长的最小值.11.(2023·河北·模拟预测)如图,D 为ABC V 内部一点,DE BC ^于E ,AB AD =.请从下面①②③中选取两个作为条件,证明另一个成立.①3CE EB =uuu r uuu r ;②())sin sin sin B C B C +=-;③2AD DE AE DE AD AD DE +=×.。
专题平面向量常见题型与解题指导
平面向量常见题型与解题指导一、考点回顾1、本章框图2、高考要求1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。
2、掌握向量的加法和减法的运算法则及运算律。
3、掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件。
4、了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。
5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。
6、掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。
7、掌握正、余弦定理,并能初步运用它们解斜三角形。
8、通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。
3、热点分析对本章内容的考查主要分以下三类:1.以选择、填空题型考查本章的基本概念和性质.此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题.2.以解答题考查圆锥曲线中的典型问题.此类题综合性比较强,难度大,以解析几何中的常规题为主.3.向量在空间中的应用(在B类教材中).在空间坐标系下,通过向量的坐标的表示,运用计算的方法研究三维空间几何图形的性质.在复习过程中,抓住源于课本,高于课本的指导方针.本章考题大多数是课本的变式题,即源于课本.因此,掌握双基、精通课本是本章关键.分析近几年来的高考试题,有关平面向量部分突出考查了向量的基本运算。
对于和解析几何相关的线段的定比分点和平移等交叉内容,作为学习解析几何的基本工具,在相关内容中会进行考查。
本章的另一部分是解斜三角形,它是考查的重点。
总而言之,平面向量这一章的学习应立足基础,强化运算,重视应用。
考查的重点是基础知识和基本技能。
4、复习建议由于本章知识分向量与解斜三角形两部分,所以应用本章知识解决的问题也分为两类:一类是根据向量的概念、定理、法则、公式对向量进行运算,并能运用向量知识解决平面几何中的一些计算和证明问题;另一类是运用正、余弦定理正确地解斜三角形,并能应用解斜三角形知识解决测量不可到达的两点间的距离问题。
高中数学平面向量知识点总结及常见题型
高中数学平面向量知识点总结及常见题型平面向量一、向量的基本概念与基本运算1.向量的概念:向量是既有大小又有方向的量。
向量一般用a、b、c等字母来表示,或用有向线段的起点与终点的大写字母表示,如:AB(几何表示法)或a(坐标表示法)。
向量的大小即向量的模(长度),记作|AB|或|a|。
向量不能比较大小,但向量的模可以比较大小。
②零向量:长度为0的向量,记为0,其方向是任意的,与任意向量平行。
③单位向量:模为1个单位长度的向量。
向量a为单位向量|a|=1.④平行向量(共线向量):方向相同或相反的非零向量。
任意一组平行向量都可以移到同一直线上。
方向相同或相反的向量,称为平行向量,记作a∥b。
由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。
⑤相等向量:长度相等且方向相同的向量。
相等向量经过平移后总可以重合,记为a b。
大小相等,方向相同(x1,y1)(x2,y2)x1x2,y1y2.2.向量加法求两个向量和的运算叫做向量的加法。
设AB a,BC b,则a+b=AB BC=AC。
1)0+a=a;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。
2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点。
当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则。
向量加法的三角形法则可推广至多个向量相加:AB BC CD…+PQ QR AR,但这时必须“首尾相连”。
3.向量的减法①相反向量:与a长度相等、方向相反的向量,叫做a的相反向量,记作a。
零向量的相反向量仍是零向量。
关于相反向量有:(i)(a)=a;(ii) a+(a)=(a)+a=0.iii) 若向量a、b互为相反向量,则a=-b,b=-a,a+b=0.向量减法:向量a加上b的相反向量叫做a与b的差,记作a-b=a+(-b),求两个向量差的运算,叫做向量的减法。
高中平面向量常考题型
高中平面向量常考题型2、已知向量 a r , b r 不共线, OA r = α a r , OB r = β b r (实数).若点 C 在直线 AB 上,且 OC r = xa r + yb r ( x, y 都P A + PB + PC = BC, 则与4、点 O 时 ∆ABC 内的一点,满足 O A r + λOB r + (λ - 1)OC r = 0r,一、线性运算1、如图,在 ∆ABC平面向量常考题型中,点 M 为 BC 的中点,点 N 在边 AC 上,且 AN = 2 N C ,AM与 BN 相交于点 P ,则AP : PM =.【答案:4】uuuuuuα ≠ 0, β ≠ 0uuu是实数),则 x + y =α β.【答案:1】3、在∆ABC所在的平面内有一点P满足uuur uuur uuur uuur∆PBC∆ABC的 面 积 之 比为.【答案: 1 】3uuuuuuuuu若 ∆OAB 的面积与 ∆OAC 的面积的比为 1 ,则 λ 的值为3()A.D.123 2B 2 C.13【答案: A 】2、..已知平行四边形ABCD 中,AB=8,AD=5,CPr=3uuur,AP BP AB AD⎪AB|ADAC uuur二、数量积1、(2012浙江卷15).在∆ABC中,M是BC的中点,AM=3,BC=10,则uuur uuurAB⋅AC=______________.【答案】—16uuuPD若uuur⋅uuur=2,则uuur⋅uuur=.【答案22】3、函数y=tan⎛πx-π⎫(0<x<4)的图像如图⎝42⎭所示,A 为图像与x轴的交点,过点A的直线l与函数的图像交于B,C 两点,则(OB+OC)⋅OA=()A.-8B.-4C.4D.8【答案D】4、四边形ABCD 中,AB⊥BC,AD⊥DC.若|uuur|=a,uuur|=b,则uuur⋅BD=.【答案:b2-a2】5、(2012宁波十校联考.理科17)在∆ABC中,AC=2,BC=6.已知点O是∆ABC内一点,且满足OA+3OB+4OC=0,则OC⋅(BA+2BC)=.【答案40】AB ⋅ AF = 2的值,则uuur uuuvAD ⋅ AC =.APABAQAC,若 uuur ⋅ C P r = - 3 ,则 λ =11 1 AO AM6、在矩形 ABCD 中,AB =2, BC = 2,点 E 为 BC 的中点,点F在边CD上,若uuur uuurAE⋅ BF为.【答案2】7、如图:在 ∆ABC 中, AD ⊥ AB ,uuur uuur BC = 3 B D,uuur| AD |= 1,则uuur uuur【答案: 3 】8、2012 天津理(7)已知△ABC 为等边三角形, AB =2 ,设点 P ,Q 满足 uuur=λ uuur , uuur =(1 - λ )uuur ,λ ∈ RBQuuu2(A ) (B) ±2(C) ±10(D)2 2 2-3 ± 2 22【答案】 A .9、点 O 是 ∆ABC 的外接圆的圆心, M 是 BC 的中点, A C = 3 ,若uuur ⋅ uuuur = 4 ,则 A B =.【答案7】10、(2014 宁波十校联考).已知 a, b , c 均为单位向量,且满足 a ⋅ b = 0 ,则 (a + b + c) ⋅ (a + c) 的最大值是A. 2+ 2 2B.3 + 2C.2 + 5D.1 +2 3【答案】 C .11、边长为 2 的正方形 ABCD 内有一动点 P ,满足 ∆P AB, ∆PBC 的面积都不超过 1,则PB ⋅ PC 的取值范围AP BCuuur uuur B rP PC为.【答案】. (-1,1)12、已知平面向量 a, b , e 满足, | e |= 1 , a ⋅ e = 1 ,b ⋅ e = 2, | a - b |= 2 ,则 a ⋅ b 的最小值为.【答案:5 4】P A, PB13、(2010 全国卷 11)已知圆O 的半径为 1,为该圆的两条切线,A, B 为两切点,那么 P A ⋅ PB的最小值为(A) -4 +2 (B)-3 + 2(C)-4 + 2 2(D) -3 + 22【答案D】14、已知 ∆ABC 的边 BC 的垂直平分线交 BC 于Q,交 AC 于 P ,若 | AB |= 1 , | AC |= 2 ,则 uuur ⋅ uuur 的值是( )A. 3B.3C.23 D.3 2【答案】 B15、(2013 年浙江高考)设 ∆ABC ,P 是边 AB 上一定点,满足 P B = 1 AB ,且对于 AB 边上任意一点 P ,4恒有PB ⋅ PC ≥ uuu ⋅uuur,则()0 A.∠ABC = 90︒ B. ∠BAC = 90︒ C. AB = AC D. AC = BCr5 | OA | ⋅ | OC |,⎛ 4 ⎫ 3 a ⋅ c = 20sin θ ⋅ sin(θ + ∠AOC ) = 20sin θ sin θ + cos θ ⎪ = 8 + 10sin(2 θ + ϕ) ≤ 185 r rr r rrrr r〈crrr rrr【答案】 D16、已知向量 a , b , c 满足 a ⋅ b = 0 ,(c - a) ⋅ (c - b ) = 0,| a - b |= 5, | a - c |= 3 ,则 a ⋅ c 的最大值是.【解析】如图所示,设 OA = a ,OB = b ,OC = c,则 BA = a - b ,由(c - a) ⋅ (c - b ) = 0 得,点 C 在以 AB 为直径的圆上运动,AC = 3, BA = 5, BC = 4 .a ⋅ c =| OA | ⋅ | OC | cos ∠AOC =4设 ∠ACO = θ ,在 ∆AOC 中,由正弦定理,| OA | | OC | | AC |= = = 5sin θ sin(π - θ - ∠AOC ) sin ∠AOC,所以 | OA |= 5sin θ , | OC |= 5sin(θ + ∠AOC ) ,r r⎝ 5 ⎭所以 a⋅ c 的最大值是18.17、已知平面向量 a, b , c 满足:| a - b |= 2 , 〈a, b 〉 = 5π,12r r| c - a |= 6 - 2, - a, c - b 〉 = 7π ,则 a ⋅ c的最大值为.12【答案: 2 3 】AM原点,且OM r = tOA r + (1- t )OB r ( t 为实数),若 N (1,0),则0)B(C.1 D.|(三、模长公式1、设点 M 是线段 BC 的中点, BC = 4 ,若uuur uuur uuur uuur | A B + AC |=| AB - AC |,则 uuuur = ()C】A. 8 B . 4C . 2D . 1【答案:2、已知在平面坐标系中, A(-2, , (1,3), O 为uuuuuuuuuuuuuur| MN |的最小值是.【答案: 3 2 】23、(2012 江西)直角三角形 ABC 中,点 D 是斜边 AB 的中点,点 P 是线段 CD 的中点,则| P A |2 + | PB |2| PC |2=()A. 2B . 4C . 5D . 10【答a, b , c案: D 】4、(2012 宁波十校联考.9)已知非零向量,满足 | a - b |= 1 , a - c) ⋅ (b - c) = 0 ,设 | c | 的最大值最小值分别为 m , n ,则 m - n 的值为()A.1B.212 4【答案A】5、已知向量 | a |= 2 ,b |= a ⋅ b = 1 ,a - 2c) ⋅ (b - c) = 0 ,则 | a - c |的最小值是()2C.r r r rrr ⋅b r r向量 a r , b r 是单位向量,若 a?b r0 ,且 | c r - a r | +| c r - 2b r |= 5,则r 的取值范围是()9 、 已知 a, b 是单位向量,,若向量 c 满足rvvvvvA.132;B. 13 - 37 - 12 D.7 2【答案C】6、 已知向量 a = (1,0) , b = (0,1) ,向量 c 满足(a + c) ⋅ (c - b ) = 0,则 | c | 的最大值是()A.2B.12C. 2D.22【答案: C 】7、设向量a, b , c满足 | a |=| b |= 1 , a u = -1,2r r r r a - c, b - c=60°,则 | c|的最大值等于.【答案:2】8、(2015 年浙江省六校联考.理科 6)已知rr | c +2a |A .[1,3]B .[ 2 2 ,3]C .[ 6 5 , 2 2 ]5D .[ 6 5 ,3]【答案: D 】5r r a ⋅ b = 0rrr| c - a - b |= 1,则 | c | 的取值范围是()A. [ 2 - 1, 2 + 1]B. [ 2 - 1, 2 + 2]C. [1, 2 + 1]D. [1, 2 + 2]10、设向量a = (2,0) ,b = ( x , y) ,若b 与 b - a 的夹角是vvvvrrrrrrrrrrAB AC AB ACAB AC2,当 | CB r + λ CA r |取到最小值时,则r r b |rrrrrrrr2B.π6,则 | b |的最大值是()A.2B.2 3C.4D.4 3【答案】C11、已知单位向量 a, b , c , rx ,且 a + b + c = 0,记 y =| x - a | + | x - b | + | x - c | ,则 y的最大值是.【答案 4】12、在VABC 中, B C = 2 ,且对于任意实数t ,都有|t uuuv + (1- t )uuuv |≥| t uuuv + (1- t )uuuv|= 3 (t 0 00 ∈ R),则uuuv ⋅ uuuv的最小值是, t 为.【答案】 8, 1 .13、在 ∆ABC 中, ∠A = 120o , BC = 213, AC = 2 ,AB =λ =uuu uuu.【答案:6, - 5 】214、已知向量a, b的夹角为 π ,| uur = 2,若对于任3意的 x ∈ R ,都有 | b + xa |≥| a - b | 恒成立,则 | tb - a | + | tb - 1 a |2( t ∈ R )的最小值为( )A.133 2C. 1 +32 D.7 2【答案】D四、向量与三角形的“四心”| AC | ⎪⎭, λ ∈(0,+ ∞),则 P 点得轨迹一| AB || AB | PC + | BC | P A +|CA | PB = 0 , P 为 ∆ABC的内心;⎪+∈+AB AC ( )r r AB ACr r ∈ + 1AM ⋅ A C1、若点 O 是 △ABC 的外心,且 OA r + OB r + CO r = 0r ,则 △ABC的(一)有关结论:O 是平面上一定点, A, B, C是平面上不共线的三点, P 为动点,1、OP = OA + λ ⎛ ABAC ⎫ ⎝定通过 ∆ABC 的内心;uuur uuur uuur uuur uuur uuur r2、 OP = OA + λ (AB + AC )λ (0, ∞)过重心; AP + BP + CP = 0 , P 是重心;uuur uuuruuur uuur OP = OA + λ ( uuu + uuu | AB | sin B | AC | sin Cuuur 1 uuur uuur uuur) 过重心; PG = P A + PB + PC , G 为重心;3uuur uuur uuur uuur uuur uuur3、 HA ⋅ HB = HB ⋅ HC = HC ⋅ HA,则 H 是垂心,uuur uuuruuur uuur OP = OA + λ ( uuu + uuu| AB | cos B | AC | cos C)λ (0, ∞),则 P 点得轨迹一定通过 ∆ABC 的垂心;4、 M 是 ∆ABC 的外心, H 是垂心,则uuuur uuur uuur uuuur MH = MA + MB + MC,uuuur uuur AM ⋅ AB = | AB |22, uuuuruuuur = 1 | AC |2.2(二)考题精选uuuuuuuuu内角 C 为____(答:120 o )O是 △ABC 的外心,且 OA + OB + OC = 0 ,则角 C 为(答:60°);2、.已知 ∆ABC 中, AB = 5 , AC = 3 , O , H 分别是 ∆ABC 的外心和垂心,则 OH ⋅ BC =的平分线上,且 | OC r |= 2 ,则 OC r =.是其重心,且满足 aGA r + bGBr + cGC r = 0r ,则 △ABC 为【答案】83、在直角坐标系 xoy 中,点 A (0,1) ,B(-3,4) ,若点C 在∠AOBuuu uuu4、已知点 O 是 △ABC 所在平面上的一点,若uuur uuur uuur raOA + bOB + cOC = 0 ,则点 O 是 △ABC 的()A.内心B .外心C .垂心D .重心5、若点 O 是 △ABC 所在平面上一点,满足uuur uuur uuuur uuur uuur uuur |OA |2 + | BC |2 =| OB |2 + | CA |2 =| OC |2 + | AB |2(),则若点 O 是 △ABC 的A.内心B .外心C .垂心D .重心6、已知 △ABC 的三个内角 A, B, C 的对边分别是 a, b , c ,Guuu uuu uuu()A.等腰三角形B.等腰直角三角形C.等腰三角形D.等边三角形7、若 △ABC 存在一点 P ,使得 P A2+ PB 2 + PC2取得最小值,则点 P 应为 △ABC 的()A. 内心B .外心C .垂心D .重心11uuuurBCAOABAC3| uuur|PBPCββ2、已知 △ABC ,若对于任意 t ∈ R , | uuur - tBC r | ≥| uuur |,β8 、在 ∆ABC 中, BC = 5 , G, M 分别是 ∆ABC 的重心和外心,且MG ⋅ uuur = 5,则 ∆ABC 的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.以上三种情况都可能9、在 ∆ABC 中, AB = 1 , BC =6 , C A = 2 , ∆ABC 外接圆的圆心为 O ,若uuur = λ uuur + μ uuur ,则λ =,μ =.【答案: 4 , 】5 510、 点 O 是 ∆ABC 的外接圆的圆心,AB = 2a ,AC = 2 ,a∠BAC =2π3,若uuur uuur uuur AO = x AB + y AC,则3x + 6 y的最小值是.【 6+2 2 】11* 、设点 P 是 ∆ABC 所在平面内的动点,满足uuur uuur uuur CP = λCA + μCB,3λ + 4μ = 2 ,λ, μ ∈ R , P A |=| uuuur =| uuur | ,若 | AB |= 3 ,则 ∆ABC 面积的最大值是四、综合问题1、(2011 年高考浙江卷文科 15)若平面向量 α,满足uurα = 1,|β | ≤ 1,且以向量 α, 为邻边的平行四边形的面积为 1 ,则 α, 的夹角 θ 取值范围是___。
平面向量常见题型汇编(含答案)
解析:外心 在 上的投影恰好为它们的中点,分别设为 ,
所以 在 上的投影为 ,而 恰好为 中点,
故考虑 ,
所以
2.范围问题
例题8: 若过点 的直线 与 相交于 两点,则 的取值范围是_______
解析:本题中因为 位置不断变化,所以不易用数量积定义求解,可考虑利用投影,即过 作直线 的垂线,
,则 , ,
由 , 为中点可得: 为 中点,从而 在 方向上的投影分别为 ,由 即可求得 的范围为
3.综合问题
例题10:已知 为直角三角形 的外接圆, 是斜边 上的高,且 , ,点 为线段 的中点,若 是 中绕圆心 运动的一条直径,则 _________
解析:本题的难点在于 是一条运动的直径,所以很难直接用定义求解。
解析:由 可将三角形放入平面直角坐标系中,建立如图坐标系,
其中 , ,
∵ ∴
∵ ,即 当且仅当 时取等号
∴
变式2:已知点A在线段BC上(不含端点),O是直线BC外一点,且 ,则 的最小值是___________
分析:本题主要考查了不等式,不等式求最值问题,属于中档题。解决此类问题,重要的思路是如何应用均值不等式或其他重要不等式,很多情况下,要根据一正、二定、三取等的思路去思考,本题根据条件构造 ,研究的式子分别加1后变形,即可形成所需条件,应用均值不等式.
解析: ,
变式9:在平面上, , ,若 ,则 的取值范围是
分析:以 为入手点,考虑利用坐标系求解,题目中用字母表示:设 ,则 ,所求 范围即为求 的范围。下一步将题目的模长翻译成 关系,再寻找关于 的不等关系即可
解析:如图以 为轴建立坐标系:设 ,
常考问题平面向量的线性运算及综合应用
常考问题平面向量的线性运算及综合应用部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑常考问题8平面向量的线性运算及综合应用[真题感悟] 1.(2018·辽宁卷>已知点A(1,3>,B(4,-1>,则与向量A错误!同方向的单位向量为( >.b5E2RGbCAPA.错误!B.错误!p1EanqFDPwC.错误!D.错误!DXDiTa9E3d解读A错误!=(4,-1>-(1,3>=(3,-4>,∴与A错误!同方向的单位向量为错误!=错误!.RTCrpUDGiT答案A 2.(2018·福建卷>在四边形ABCD中,错误!=(1,2>,错误!=(-4,2>,则该四边形的面积为( >5PCzVD7HxAA.错误!B.2错误!C.5D.10解读因为错误!·错误!=0,所以错误!⊥错误!.jLBHrnAILg 故四边形ABCD的面积S=错误!|错误!||错误!|=错误!×错误!×2错误!=5.xHAQX74J0X答案C 3.(2018·湖北卷>已知点A(-1,1>,B(1,2>,C(-2,-1>,D(3,4>,则向量错误!在错误!方向上的投影为( >LDAYtRyKfEA.错误!B.错误!C. -错误!D.-错误!解读错误!=(2,1>,错误!=(5,5>,所以错误!在错误!方向上的投Zzz6ZB2Ltk影为错误!=错误!=错误!=错误!.dvzfvkwMI1答案A 4.(2018·新课标全国Ⅰ卷>已知两个单位向量a,b的夹角为60°,c=ta+(1-t>b.若b·c=0,则t=________.rqyn14ZNXI 解读因为向量a,b为单位向量,又向量a,b的夹角为60°,所以a·b=错误!,由b·c=0,得∴b·c=ta·b+(1-t>·b2=错误!t+(1-t>×12=错误!t+1-t=1-错误!t=0.∴t=2.EmxvxOtOco答案2 5.(2018·山东卷>已知向量错误!与错误!的夹角为120°,且|错误!|=3,|错误!|=2.若A错误!=λ错误!+错误!,且错误!⊥错误!,则实数λ的值为________.SixE2yXPq5解读由错误!⊥错误!知错误!·错误!=0,即错误!·错误!=(λ错误!+错误!>·(错误!-错误!>=(λ-1>错误!·错误!-λA 错误!2+错误!2=(λ-1>×3×2×错误!-λ×9+4=0,解得λ=错误!.6ewMyirQFL答案错误![考题分析]题型选择题、填空题难度低档考查平面向量的有关概念(如单位向量>、数量积的运算(求模与夹角等>.中档在平面几何中,求边长、夹角及数量积等.高档在平面几何中,利用数量积的计算求参数值等.1.向量的概念(1>零向量模的大小为0,方向是任意的,它与任意非零向量都共线,记为0.(2>长度等于1个单位长度的向量叫单位向量,a的单位向量为±错误!.(3>方向相同或相反的向量叫共线向量(平行向量>.(4>如果直线l的斜率为k,则a=(1,k>是直线l的一个方向向量.(5>|b|cos〈a,b〉叫做b在向量a方向上的投影.2.两非零向量平行、垂直的充要条件设a=(x1,y1>,b=(x2,y2>,(1>若a∥b⇔a=λb(λ≠0>;a∥b⇔x1y2-x2y1=0.(2>若a⊥b⇔a·b=0;a⊥b⇔x1x2+y1y2=0.3.平面向量的性质(1>若a=(x,y>,则|a|=错误!=错误!.(2>若A(x1,y1>,B(x2,y2>,则|A错误!|=错误!.kavU42VRUs (3>若a=(x1,y1>,b=(x2,y2>,θ为a与b的夹角,则cosθ=错误!=错误!.y6v3ALoS89 4.当向量以几何图形的形式出现时,要把这个几何图形中的一个向量用其余的向量线性表示,就要根据向量加减法的法则进行,特别是减法法则很容易使用错误,向量错误!=错误!-错误!(其中O为我们所需要的任何一个点>,这个法则就是终点向量减去起点向量.M2ub6vSTnP 5.根据平行四边形法则,对于非零向量a,b,当|a+b|=|a-b|时,平行四边形的两条对角线长度相等,此时平行四边形是矩形,条件|a+b|=|a-b|等价于向量a,b互相垂直,反之也成立.0YujCfmUCw 6.两个向量夹角的范围是[0,π],在使用平面向量解决问题时要特别注意两个向量夹角可能是0或π的情况,如已知两个向量的夹角为钝角时,不单纯就是其数量积小于零,还要求不能反向共线.eUts8ZQVRd热点一平面向量的线性运算【例1】(2018·江苏卷>设D,E分别是△ABC的边AB,BC上的点,AD=错误!AB,BE=错误!BC.若错误!=λ1错误!+λ2错误!(λ1,λ2为实数>,则λ1+λ2的值为________.sQsAEJkW5T解读如图,错误!=错误!+错误!=错误!错误!+错误!错误!=错误!错误!+错误!(错误!-错误!>=-错误!错误!+错误!错误!,则λ1=-错误!,λ2=错误!,λ1+λ2=错误!.GMsIasNXkA答案错误![规律方法]在一般向量的线性运算中,只要把其中的向量当作字母,其运算类似于代数中合并同类项的运算,在计算时可以进行类比.本例中的第(1>题就是把向量错误!用TIrRGchYzg 错误!,错误!表示出来,再与题中已知向量关系式进行对比,得出相等关系式,可求相应的系数.7EqZcWLZNX【训练1】(2018·天津卷>在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若错误!·错误!=1,则AB的长为________.lzq7IGf02E 解读在平行四边形ABCD中,取AB的中点F,则错误!=错误!,∴错误!=错误!=错误!-错误!错误!,又错误!=错误!+错误!,zvpgeqJ1hk ∴错误!·错误!=(错误!+错误!>·(错误!-错误!错误!>=错误!2-错误!错误!·错误!+错误!·错误!-错误!错误!2=|错误!|2+错误!|错误!||错误!|·cos60°-错误!|错误!|2=1+错误!×错误!|错误!|-错误!|错误!|2=1.NrpoJac3v1∴错误!|错误!|=0,又|错误!|≠0,∴|错误!|=错误!.1nowfTG4KI答案错误!热点二平面向量的数量积【例2】若两个非零向量a,b满足|a+b|=|a-b|=2|a|,则向量b与a+b的夹角为( >.A.错误!B.错误!C.错误!D.错误!fjnFLDa5Zo 解读法一由已知|a+b|=|a-b|,两边平方,整理可得a·b=0.①由已知|a+b|=2|a|,两边平方,整理可得a2+b2+2a·b=4a2.②把①代入②,得b2=3a2,即|b|=错误!|a|.③而b·(a+b>=b·a+b2=b2,故cos〈b,a+b〉=错误!=tfnNhnE6e5错误!=错误!=错误!.HbmVN777sL又〈b,a+b〉∈[0,π],所以〈b,a+b〉=错误!.法二如图,作O错误!=a,O错误!=b,以OA,OB为邻边作平行四边形OACB,则O错误!=a+b,B错误!=a-b.V7l4jRB8Hs 由|a+b|=|a-b|,可知|O错误!|=|B错误!|,所以平行四边形OACB是矩形.又|a+b|=|a-b|=2|a|,可得|O错误!|=|B错误!|=2|O错误!|,故在Rt△AOB中,|错误!|=错误!83lcPA59W9=错误!|O错误!|,故tan∠OBA=错误!=错误!,所以∠BOC=∠OBA=错误!.而〈b,a+b〉=∠BOC=错误!.mZkklkzaaP答案A [规律方法]求解向量的夹角,关键是正确求出两向量的数量积与模.本例中有两种解法,其一利用已知向量所满足的条件和向量的几何意义求解,其二构造三角形,将所求夹角转化为三角形的内角求解,更为直观形象.AVktR43bpw 【训练2】(2018·湖南卷>已知a,b是单位向量,a·b=0.若向量c满足|c-a-b|=1,则|c|的取值范围是( >.ORjBnOwcEd A.[错误!-1,错误!+1] B.[错误!-1,错误!+2]2MiJTy0dTTC.[1,错误!+1] D.[1,错误!+2]解读由a,b为单位向量且a·b=0,可设a=(1,0>,b=(0,1>,又设c=(x,y>,代入|c-a-b|=1得(x-1>2+(y-1>2=1,又|c|=错误!,故由几何性质得错误!-1≤|c|≤错误!+1,即错误!-1≤|c|≤错误!+1.答案A热点三平面向量与三角函数的综合【例3】已知向量m=(sinx,-1>,n=(cosx,3>.(1>当m∥n时,求错误!的值;(2>已知在锐角△ABC中,a,b,c分别为角A,B,C的对边,错误!c=2asin(A+B>,函数f(x>=(m+n>·m,求f错误!的取值范围.gIiSpiue7A解(1>由m∥n,可得3sinx=-cosx,于是tanx=-错误!,∴错误!=错误!=错误!=-错误!.uEh0U1Yfmh(2>在△ABC中A+B=π-C,于是sin(A+B>=sinC,由正弦定理,得错误!sinC=2sinAsinC,∵sinC≠0,∴sinA=错误!.又△ABC为锐角三角形,∴A=错误!,于是错误!<B<错误!.∵f(x>=(m+n>·m=(sinx+cosx,2>·(sinx,-1>=sin2x+sinxcosx-2=错误!+错误!sin2x-2=错误!sin错误!-错误!,IAg9qLsgBX ∴f错误!=错误!sin错误!-错误!=错误!sin2B-错误!.由错误!<B<错误!得错误!<2B<π,∴0<sin2B≤1,-错误!<错误!sin2B-错误!≤错误!-错误!,WwghWvVhPE即f(B+错误!>∈错误!.asfpsfpi4k [规律方法]在平面向量与三角函数的综合问题中,一方面用平面向量的语言表述三角函数中的问题,如利用向量平行、垂直的条件表述三角函数式之间的关系,利用向量模表述三角函数之间的关系等;另一方面可以利用三角函数的知识解决平面向量问题.在解决此类问题的过程中,只要根据题目的具体要求,在向量和三角函数之间建立起联系,就可以根据向量或者三角函数的知识解决问题.ooeyYZTjj1【训练3】(2018·江苏卷>已知向量a=(cosα,sinα>,b=(cosβ,sinβ>,0<β<α<π.BkeGuInkxI(1>若|a-b|=错误!,求证:a⊥b;(2>设c=(0,1>,若a+b=c,求α,β的值.(1>证明由|a-b|=错误!,即(cosα-cosβ>2+(sinα-sinβ>2=2,整理得cosαcosβ+sinαsinβ=0,即a·b=0,因此a⊥b.PgdO0sRlMo(2>解由已知条件得错误!3cdXwckm15 cosβ=-cosα=cos(π-α>,由0<α<π,得0<π-α<π,又0<β<π,故β=π-α.则sinα+sin (π-α>=1,即sinα=错误!,故α=错误!或α=错误!.当α=错误!时,β=错误!(舍去>h8c52WOngM 当α=错误!时,β=错误!.审题示例(四> 突破有关平面向量问题的思维障碍图1解读法一设直角三角形ABC的两腰长都为4,如图1所示,以C为原点,CA,CB所在的直线分别为x轴,y轴,建立平面直角坐标系,则A(4,0>,B(0,4>,因为D为AB的中点,所以D(2,2>.因为P为CD的中点,所以P(1,1>.故|PC|2=12+12=2,|PA|2=(4-1>2+(0-1>2=10,|PB|2=(0-1>2+(4-1>2=10,所以错误!=错误!=10.v4bdyGious图2法二如图2所示,以C为坐标原点,CA,CB所在的直线分别作为x轴,y轴建立平面直角坐标系.设|CA|=a,|CB|=b,则A(a,0>,B(0,b>,则D错误!,P错误!,J0bm4qMpJ9∴|PC|2=错误!2+错误!2=错误!+错误!,XVauA9grYP|PB|2=错误!2+错误!2=错误!+错误!,bR9C6TJscw|PA|2=错误!2+错误!2=错误!+错误!,pN9LBDdtrd 所以|PA|2+|PB|2=10错误!=10|PC|2,DJ8T7nHuGT∴错误!=10.法三如图3所示,取相互垂直的两个向量C错误!=a,C错误!=b 作为平面向量的基向量,显然a·b=0.QF81D7bvUA图3则在△ABC中,B错误!=a-b,因为D为AB的中点,所以C错误!=错误!(a+b>.4B7a9QFw9h 因为P为CD的中点,所以P错误!=-错误!C错误!=-错误!×错误!(a+b>=-错误!(a+b>.在△CBP中,P错误!=P错误!+C 错误!=-错误!(a+b>+b=-错误!a+错误!b,在△CAP中,P 错误!=P错误!+C错误!=-错误!(a+b>+a=错误!a-错误!b.所以|P错误!|2=错误!2=错误!(a2+b2+2a·b>=错误!(|a|2+|b|2>,|P错误!|2=错误!2=错误!a2+错误!b2-错误!a·b=错误!|a|2+错误!|b|2,|P错误!|2=错误!2=错误!a2+错误!b2-错误!a·b=错误!|a|2+错误!|b|2.故错误!=错误!=10.ix6iFA8xoX答案D 方法点评以上根据向量数与形的基本特征,结合题目中的选项以及直角三角形的条件,从三个方面提出了不同的解法,涉及向量的基本运算、坐标运算等相关知识,在寻找解题思路时,应牢牢地把握向量的这两个基本特征.wt6qbkCyDE [针对训练]在△ABC中,已知BC=2,错误!·错误!=1,则△ABC的面积S△ABC最大值是________.Kp5zH46zRk解读以线段BC所在直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系,则B(-1,0>,C(1,0>.设A(x,y>,则错误!=(-1-x,-y>,错误!=(1-x,-y>,于是错误!·错误!=(-1-x>(1-x>+(-y>(-y>=x2-1+y2.Yl4HdOAA61由条件错误!·错误!=1知x2+y2=2,ch4PJx4BlI这表明点A在以原点为圆心,错误!为半径的圆上.当OA⊥BC时,△ABC面积最大,即S△ABC=错误!×2×错误!=错误!.(建议用时:60分钟>1.(2018·陕西卷>设a,b为向量,则“|a·b|=|a||b|”是“a∥b”的( >.A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解读由|a||b||cos〈a,b〉|=|a||b|,则有cos〈a,b〉=±1.即〈a,b〉=0或π,所以a∥b.由a∥b,得向量a与b同向或反向,所以〈a,b〉=0或π,所以|a·b|=|a||b|.qd3YfhxCzo答案C 2.已知向量a与b的夹角为120°,|a|=3,|a+b|=错误!则|b|等于( >.E836L11DO5A.5B.4C.3D.1解读向量a与b的夹角为120°,|a|=3,|a+b|=错误!,则a·b=|a||b|·cos120°=-错误!|b|,|a+b|2=|a|2+2a·b+|b|2.所以13=9-3|b|+|b|2,则|b|=-1(舍去>或|b|=4.答案B 3.(2018·辽宁一模>△ABC中D为BC边的中点,已知A错误!=a,A错误!=b则在下列向量中与A错误!同向的向量是( >.S42ehLvE3MA.错误!+错误!B.错误!-错误!501nNvZFisC.错误!D.|b|a+|a|b解读∵A错误!=错误!(A错误!+A错误!>=错误!(a+b>,jW1viftGw9∴向量错误!与向量A错误!是同向向量.xS0DOYWHLP答案C 4.已知非零向量a,b,c满足a+b+c=0,向量a与b的夹角为60°,且|a|=|b|=1,则向量a与c的夹角为( >.LOZMkIqI0wA.30°B.60°C.120°D.150°解读因为a+b+c=0,所以c=-(a+b>.所以|c|2=(a+b>2=a2+b2+2a·b=2+2cos60°=3.所以|c|=错误!.ZKZUQsUJed 又c·a=-(a+b>·a=-a2-a·b=-1-cos60°=-错误!,设向量c与a的夹角为θ,则cosθ=错误!=错误!=-错误!.又0°≤θ≤180°,所以θ=150°.dGY2mcoKtT答案D5.(2018·安徽卷>在平面直角坐标系中,O是坐标原点,两定点A,B满足|错误!|=|错误!|=错误!·错误!=2,则点集{P|错误!=λ错误!+μ错误!,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是( >.rCYbSWRLIA A.2错误!B.2错误!C.4错误!D.4错误!FyXjoFlMWh 解读由|错误!|=|错误!|=错误!·错误!=2,知cos∠AOB=错误!,又0≤∠AOB≤π,则∠AOB=错误!,又A,B是两定点,可设A(错误!,1>,B(0,2>,P(x,y>,由错误!=λ错误!+μ错误!,可得错误!⇒错误!TuWrUpPObX 因为|λ|+|μ|≤1,所以错误!+错误!≤1,当错误!7qWAq9jPqE 由可行域可得S0=错误!×2×错误!=错误!,所以由对称性可知点P所表示的区域面积S=4S0=4错误!,故选D.llVIWTNQFk答案D 6.(2018·新课标全国Ⅱ卷>已知正方形ABCD的边长为2,E为CD的中点,则错误!·错误!=________.yhUQsDgRT1解读由题意知:错误!·错误!=(错误!+错误!>·(错误!-错误!>=(错误!+错误!错误!>·(错误!-错误!>=错误!2-错误!错误!·错误!-错误!错误!2=4-0-2=2.MdUZYnKS8I答案2 7.(2018·江西卷>设e1,e2为单位向量,且e1,e2的夹角为错误!,若a=e1+3e2,b=2e1,则向量a在b方向上的射影为________.09T7t6eTno 解读a在b方向上的射影为|a|cos〈a,b〉=错误!.∵a·b=(e1+3e2>·2e1=2e错误!+6e1·e2=5.|b|=|2e1|=2.∴错误!=错误!.答案错误! 8.在直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P 是腰DC上的动点,则|P错误!+3P错误!|的最小值为______.e5TfZQIUB5解读建立如图所示的直角坐标系,设DC=m,P(0,t>,t∈[0,m],由题意可知,A(2,0>,B(1,m>,P错误!=(2,-t>,P错误!=(1,m-t>,P错误!+3P错误!=(5,3m-4t>,|P错误!+3P 错误!|=错误!≥5,当且仅当t=错误!m时取等号,即|P错误!+3P错误!|的最小值是5.s1SovAcVQM答案59.如图,在平面直角坐标系xOy中,点A在x轴正半轴上,直线AB的倾斜角为错误!,|OB|=2,设∠AOB=θ,θ∈错误!.GXRw1kFW5s(1>用θ表示点B的坐标及|OA|;(2>若tanθ=-错误!,求O错误!·O错误!的值.UTREx49Xj9解(1>由题意,可得点B的坐标为(2cosθ,2sinθ>.在△ABO中,|OB|=2,∠BAO=错误!,∠B=π-错误!-θ=错误!-θ.由正弦定理,得错误!=错误!,8PQN3NDYyP即|OA|=2错误!sin错误!.mLPVzx7ZNw(2>由(1>,得O错误!·O错误!=|O错误!||O错误!|cosθAHP35hB02d=4错误!sin错误!cosθ.NDOcB141gT因为tanθ=-错误!,θ∈错误!,1zOk7Ly2vA所以sinθ=错误!,cosθ=-错误!.又sin错误!=sin错误!cosθ-cos错误!sinθ=错误!×错误!-错误!×错误!=错误!,fuNsDv23Kh 故O错误!·O错误!=4错误!×错误!×错误!=-错误!.tqMB9ew4YX 10.已知△ABC的内角A,B,C所对的边分别是a,b,c,设向量m =(a,b>,n=(sinB,sinA>,p=(b-2,a-2>.HmMJFY05dE(1>若m∥n,求证:△ABC为等腰三角形;(2>若m⊥p,边长c=2,C=错误!,求△ABC的面积.(1>证明因为m∥n,所以asinA=bsinB,即a·错误!=b·错误!(其中R是△ABC外接圆的半径>,所以a=b.所以△ABC为等腰三角形.ViLRaIt6sk(2>解由题意,可知m·p=0,即a(b-2>+b(a-2>=0,所以a+b =ab,由余弦定理,知4=c2=a2+b2-2abcos错误!=(a+b>2-3ab,即(ab>2-3ab-4=0,所以ab=4或ab=-1(舍去>.9eK0GsX7H1所以S△AB C=错误!absinC=错误!×4×sin错误!=错误!.naK8ccr8VI11.如图所示,A,B分别是单位圆与x轴、y轴正半轴的交点,点P在单位圆上,∠AOP=θ(0<θ<π>,C点坐标为(-2,0>,平行四边形OAQP的面积为S.B6JgIVV9ao(1>求O错误!·O错误!+S的最大值;P2IpeFpap5(2>若CB∥OP,求sin错误!的值.3YIxKpScDM解(1>由已知,得A(1,0>,B(0,1>,P(cos θ,sin θ>,因为四边形OAQP是平行四边形,所以O错误!=O错误!+O错误!=(1,0>+(cosθ,sinθ>gUHFg9mdSs=(1+cosθ,sinθ>.所以O错误!·O错误!=1+cos θ.uQHOMTQe79又平行四边形OAQP的面积为S=|O错误!|·|O错误!|sinθ=sinθ,IMGWiDkflP 所以O错误!·O错误!+S=1+cosθ+sinθ=错误!sin错误!+1.WHF4OmOgAw又0<θ<π,所以当θ=错误!时,O错误!·O错误!+S的最大值为错误!+1.aDFdk6hhPd(2>由题意,知C错误!=(2,1>,O错误!=(cosθ,sinθ>,ozElQQLi4T因为CB∥OP,所以cosθ=2sinθ.又0<θ<π,cos2θ+sin2θ=1,解得sinθ=错误!,cosθ=错误!,所以sin2θ=2sinθcosθ=错误!,cos2θ=cos2θ-sin2θ=错误!.CvDtmAfjiA 所以sin错误!=sin2θcos错误!-cos2θsin错误!=错误!×错误!-错误!×错误!=错误!.QrDCRkJkxh申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
高中数学平面向量专题复习(知识要点+六大考试题型详解)
平面向量六大题型知识点:1.向量的有关概念(1)定义:即有大小,又有方向的量叫做向量. (2)表示:a AB(,)OA x y =2121(,)AB x x y y =--(3)向量的长度(模):a 或AB 的模记作||a 或||AB . (4)几种特殊向量: 定义备注0,方向任意||aa 即为单位向量记为ab ∥,规定0与任意向量共线a b =,相等一定平行,平行不一定相等a b =-,AB BA =-2.向量的运算 运算几何表示字母表示坐标表示加法a b AB BC AC +=+=三角形法则 类比“位移之和”首尾相连,首位连11(,)a x y =,22(,)b x y = 1212(,)a b x x y y +=++a b AB AD AC +=+= 平行四边形法则 类比“力的合成” 共起点,对角线减法a b AB AC CB -=-= 共起点,后指前11(,)a x y =,22(,)b x y = 1212(,)a b x x y y -=--数乘长度变为||λ倍0λ>,方向相同0λ<,方向相反 0λ=,0a λ=11(,)a x y =12(,)a x x λλλ=数量积||||cos a b a b θ⋅=11(,)a x y =,22(,)b x y =1212a b x x y y ⋅=+3.其他概念(1)平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ,2λ,使1122a e e λλ=+,我们把不共线的向量1e ,2e 叫做表示这一平面内所有向量的一组基底.(2)投影:||cos (||cos )a b θθ叫做向量a 在b 方向上(b 在a 方向上)的投影.常用投影计算公式:||cos ||||||a b a a a b θ⋅==||a bb ⋅. (3)向量不等式:||||||||||||a b a b a b -≤±≤+(等号在向量a ,b 共线时取得).4.重要结论ABC 中,的中点ABC 的重心(1)PC PA PB λλ=+-1()2AD AB AC =+GB GC ++5.常用性质设向量a 与b 夹角为θ,11(,)a x y =,22(,)b x y =.a b λ= ||||cos 0a b a b θ⋅==12a b x x ⋅=+2||a a = 21||a x y =+cos ||||a ba b θ⋅=122211cos x x x yθ+=+重要考试题型:题型一:向量概念1给出如下命题: ①若||||a b =,则a b =;②若A ,B ,C ,D 是不共线的四点,则AB DC =是四边形ABCD 为平行四边形的充要条件; ③若a b =,b c =,则a c =; ④a b =的充要条件是||||a b =且a b ∥; ⑤若a b ∥,b c ∥,则a c ∥. 其中正确的命题的序号是______.解析:①两向量模相等,方向不一定相同,所以a b =不正确;②AB DC =说明AB 和DC 两条边即平行又相等,可以推出四边形为平行四边形,反之也成立,是充要条件,正确;③两个向量相等说明它们大小相等,方向相同,故满足此条件的都是相等向量,正确; ④两向量模相等,且平行,不能说明它们方向相同,故错误;⑤若0b =,根据0与任意向量平行的性质,则a b ∥且b c ∥,但a 与c 之间不一定平行,不排除0时,向量之间没有平行的传递性,故错误;主要考察向量定义,表示、以及特殊向量,属于基础题型,需要注意的是: (1)向量二要素(大小、方向)(2)加模后变为实数,去掉了方向的要素,可以比较大小 (3)0与任意向量共线(没有平行传递性) (4)共线向量方向相同或相反 (5)相反向量长度相等AD BC =;AB DC =且||||AB AD =.AD BC =说明AD 和BC 两条边相等且平行,所以为平行四边形;AB DC =说明AB 和DC 相等且平行,为平行四边形,|||AB AD =说明两临边相等,为菱形.答案:(1)平行四边形 (2给出如下命题:①向量AB 的长度与向量BA 的长度相等;a 与b 平行,则a 与b 的方向相同或相反;③两个有公共起点而且相等的向量,其终点必相同;④两个公共终点的向量,一定是共线向量;AB 与向量CD 是共线向量,则点其中正确的命题个数是( B .2 C .3AB 和BA 长度相等,方向相反,正确;②当为零向量时,不满足条件,错误;③起点相同,长度和方向也相同,终点一定相同,正确;④终点相同,起点未必相同,不一定是共线向量,错误;⑤共线向量即平行向量,它们的起点和终点不一定在同一直线上,错误;答案:C题型二:向量四则运算1如图:正六边形ABCDEF 中,BA CD EF ++=( ) A .0 B .BE C .AD D .CF解析:由于BA DE =,故BA CD EF CD DE EF CF ++=++=. 答案:D2根如图所示,已知正六边形ABCDEF ,O 是它的中心,若BA =a ,BC =b ,试用a ,b 将向量OE ,BF ,BD ,FD 表示出来.解析:OE BO a b ==+;2BF BA AF BA BO a b =+=+=+;2BD BC CD BC BO a b =+=+=+;FD AC BC BA b a ==-=-.答案: a b +,2a b +,2a b +,b a -3AB AC BC --=( )A .2BCB .0C .2BC -D .2AC主要考察向量的加法、减法、数乘、数量积四种运算法则,包含纯字母运算、纯坐标运算、字母结合图形运算、坐标结合图形运算等形式,属于基础题型,需要注意: (1)向量没有位置概念,相等向量的有向线段等价 (2)熟练掌握加减法的口诀,可以直接计算的就不必画图 (3)注意数形结合思想的运用,加减法的对角线性质 (4)字母运算和坐标运算自成一体,也可相互转化AC AB BD CD --+=( A .0 B .DA BC AB 0AC AB BD CD BC BD CD DC CD --+=-+=+=. A OA OC OB CO --+-=_____.解析:原式等于 ()()OB OA CO CO AB -+-=. AB如图,D ,E ,F 分别是ABC 的边AB ,BC ,CA 的中点,则( ) A .0AD BE CF ++= B .0BD CF DF -+= C .0AD CE CF +-= D .0BD BE FC --=AD FE =,BE EC =,则0AD BE CF FE EC CF ++=++=,A 正确.A在ABCD 中,BC CD BA -+=( ) A .BC B .AD C .AB D .AC在平行四边形中,BA 和CD 是相反向,则0CD BA -+=,故0BC BC +=.答案:A8若O 是ABC 所在平面内一点,且满足||2|OB OC OB OC OA -=+-,则的形状为_______.2()()OB OC OA OB OA OC OA AB AC +-=-+-=+,ABC为直角三角(2,4)a=,(1,1)b=-,则a b-=()B.(5,9).(3,7)D(4,8)(1,1)(5,7)a b-=--=.已知四边形ABCD2BC AD=,则顶点D的坐标为((,AD x=2(24)(4,3)BC AD x y==-=,即72y=.(1,3)a=-,(2,4)b=-,若表示向量a,32b a-,c的有向线段首尾相接能构成三角形,则向量c为(1)-.(1,1)-4,6)D.(4,6)-(,)c x y=,能构成三角432230a b a c a b c+-+=++=,即2,4)(,6)(6,12)(4,6)(0,0)x y x y-+-+--++=,即40x-+=,,解得4x=,(2,3)BA=(4,7)CA=BC=(2,4)-B.(3,4)C.(6,10)(4,7)AC=--,(2,3)(4,BC BA AC=+=+-ABC 中,|5BC =,|8CA =,BC CA ⋅.解析:设BC 和CA 的夹角为θ,则120θ=︒,因为||5BC =,|8CA =,则||||cos 58cos120BC CA BC CA θ⋅==⨯答案:20-14已知a ,b 为单位向量,其夹角为)a b b -⋅=( ) A .1- B D .2 221)22||||cos60||2102a b b a b b a b b -⋅=⋅-=︒-=⨯-=.已知两个单位向量a ,b 夹角为60︒,(1)c ta t b =+-,若0b c ⋅=,则2(1)cos6010b c ta b t b t t ⋅=⋅+-=︒+-=,解得2t =. 2设(1,2)a =-,(3,4)b =-,(3,2)c =,则(2)a b c +⋅=( ) A .(15,12)- B .0 C . D .11- 2(1,2)2(3,4)5,6)a b +=-+-=-,(2)(5,6)(3,2)a b c +⋅=-⋅C已知两个单位向量1e ,2e 的夹角为3π,若向量1122b e e =-,21234b e e =+,则12b b ⋅=______.2212121211221(2)(34)32832862b b e e e e e e e e ⋅=-⋅+=-⋅-=-⨯-=-. 6-题型三:平面向量基本定理1在ABCD 中,AB a =,AD b =,3AN NC =,M 为BC 的中点,则MN =_____.解析:33()44AN AC a b ==+,1122AM AB BM AB AD a b =+=+=+, 所以1144MN AN AM a b =-=-+.答案:1144a b -+2如图,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM c =,AN d =,试用c ,d 表示AB ,AD .解析:设AB a =,AD b =,则1212c AM AD DM b a d AN AB BN a b⎧==+=+⎪⎪⎨⎪==+=+⎪⎩,解得2(2)32(2)3a d c b c d ⎧=-⎪⎪⎨⎪=-⎪⎩,所以4233AB d c =-,4233AD c d =-. 答案:4233AB d c =-,4233AD c d =-主要考察用两个不共线向量表示一个向量,即12a e e λμ=+,大部分是围绕求基底的系数出题,属简单题型,但考查方式较为灵活,需要注意:(1)有些目标向量用已知基底不太好构造,可以用相对熟悉的基底(例如平行四边形的临边)来表示已知基底,再用熟悉的基底来表示目标向量(2)有些题目会用到几何图形比例问题,注意观察图形中的三角形相似 (3)在求一些长度问题时,可能会用到解三角形内容在梯形ABCD 中,AB CD ∥,2AB CD =,M ,N 分别为CD ,BC 的中点,若AB AM AN λμ=+,则λμ+=______.2AB AN NB AN CN AN CA AN AN CM MA =+=+=++=++=14AN AB AM --,所以8455AB AN AM =-,即45λ=-,85μ=,故λ+答案:454在ABC 中,AB c =,AC b =,若点D 满足2BD DC =,则AD =( A .2133b c + B .5233c b - C .13b c - D .1233b c + 22221()()()33333AD AB BD AB BC AB AC AB c b c b c =+=+=+-=+-=+.答案:A在平行四边形ABCD 中,AC 与DB 相交于点O ,E 是线段OD 的中点,AE 延长线与CD 交于F ,若AC a =,BD b =,则AF =( ) A .1142a b + B .2133a b +C .1124a b + D .1233a b +AD AB aAD AB b+=-=,解得1()2AD a b =+,1()2AB a b =-,EDFEBA ,DE 13=,故11121()()23233AF AD DF a b a b a b =+=++⨯-=+.B如图,平面内有三个向量OA ,OB ,OC ,OA 与OB 夹角为120︒,OA 与OC 夹角为30︒,且||||1OA OB ==,||23OC =,若OC OA OB λμ=+,则λμ+的值为_____.解析:作平行四边形ODCE ,则OC OD OE OA OB λμ=+=+,4cos30OCOD ==︒,2tan30OCOE ==︒,即4λ=,2μ=,6λμ+=. 答案:6(1,1)a =,(1,1)b =-,(4,2)c =,则c =( )a b + B .3a b - C .3a b + D .3a b +(,)(,)(,)(4,2)c a b λμλλμμλμλμ=+=+-=-+=,所以4λμ-=,λ+3,1μ=-,则3c a b =-.如图:向量a b -=( ) A .1224e e -- B .1242e e -- C .123e e - D .123e e -+解析:由图可知12()3a b a b e e -=+-=-+. 答案:D向量a b c ++可表示为( ) A .1232e e - B .1233e e -- C .1232e e + D .1223e e +解析:a b c ++在图上画出来,可知1232a b c e e ++=+.答案:C10向量a ,b ,c 在正方形网格中的位置如图所示,若c a b λμ=+,则λμ=______. 解析:如图所示建立平面直角坐标系,可得(1,1)a =--,(6,2)b =,(1,3)c =--,则(,)(6,2)c a b λμλλμμ=+=-+=(6,2)(1,3)μλλμ-+=--,解得2λ=-,12μ=-,则4λμ=. 答案:4题型四:共线、中点、重心问题1设1e ,2e 是不共线向量,若向量1235a e e =+与向量123b me e =-共线,则m 的值等于( )A .95-B .53-C .35-D .59-解析,a 与b 共线,则满足b a λ=,即12123(35)me e e e λ-=+,则335m λλ=⎧⎨-=⎩,解得95m =-.答案:A主要考察一些常用结论,即本学案知识点第4点的内容,属中下难度题型,再强调一下:(1)(0)a b a b b λ⇔=≠∥,1221x y x y =(2)(1),,PC PA PB A B C λλ=+-⇔三点共线,P A 和PB 系数和为0(3)D 为BC 中点,1()2AD AB AC =+,即平行四边形对角线的一半(4)G 为ABC 重心,0GA GB GC ++=a b λ+与(2)b a --共线((2))a b b a λμ+=--,即2a b a b λμμ+=-,12μλμ=⎧⎨=-⎩,解得λ答案:D3已知(1,0)a =,(2,1)b =,ka b -与2a b +共线;(23AB a b =+,BC a mb =+,且A 三点共线,求m 的值.1)(,0)(2,1)(2,1)ka b k k -=-=--2(1,0)(4,2)(5,2)a b +=+=,两者共线,2)(1)5=-⨯,解得12k =-.,B ,C 三点共线,则AB BC λ=,即23()a b a mb λ+=+,则23=⎧⎨=⎩32m = (2,2),(,0)B a ,(0,)C b (0)ab ≠共线,则1a b(AB a =-(2,AC =-AB AC ∥,2)(2)=-⨯,化简得2ab a -,得1112a b +=BC ,已知点(A -AB DC =,设D (8,8)AB =(8DC =-0=,2y =-,故.答案:(0,6已知向量a ,b ,且2AB a b =+,56BC a b =-+,72CD a b =-,则一定共线的三点是( )363AD AB BC CD a b AB =++=+=,所以AD AB ∥,A ,AABC 中,12AM AC =,29AD mAB AC =+,则m =______.12(1)(1)29AD AB AM AB AC mAB AC λλλλ=+-=+-=+,则12,则59m λ==.59设D ,E ,F 分别为ABC 的三边BC ,CA ,AB ,的中点,则EB FC +=( )A .ADB .12ADC .BC D .12BC 11()()()22EB FC BE CF BA BC CA CB AB AC AD +=-+=-+++=+=.A已知O 是ABC 所在平面内一点,D 为BC 边中点,且20OA OB OC ++=,那么( )AO OD = 2AO OD = 3AO OD = D .2AO OD =是中点,则有2OB OC OD +=,原式变为220OA OD +=,即OA OD =-,故AO OD =.答案:A10设M 是ABC 所在平面上的一点,且33022MB MA MC ++=,D 是AC 中点,则||||MD BM 的值为( A .13 B .12D .23)232MA MC MD MD BM +=⋅==,即MD 与BM 共线,则||13||MD BM =.ABC 和点M满足0MA MB MC ++=,若存在实数m 使得AB AC mAM +=成立,则m =_____.解析:由0MA MB MC ++=可知M 为ABC 的重心,则2211[()]()3323AM AD AB AC AB AC ==+=+,即3AB AC AM +=,则3m =. 答案:312如图,在ABC 中,点O 是B C 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB mAM =,AC nAN =,则m n +的值为______.1()222m n AO AB AC AM AN =+=+,因为,O ,N 三点共线,m n2n =. 2在ABC 中,已知D 是AB 边上的一点,2AD DB =,13CD CA CB λ=+,则λ ) .23 3D .23- 解析:因为A ,D ,13CD CA CB λ=+,则113λ+=,23λ=.三点在同一条直线l 上,O 为直线l 外一点,0pOA qOB rOC ++= ,0pOA qOB rOC ++=变形得q rOA OB OC p p=--,因,B ,C 三点共线,则有0=,化简得p q r ++=答案:015已知点G 是ABC 的重心,点P 是GBC 内一点,若AP AB AC λμ=+,则λμ+的取值范围是( )A .1(,1)2 B .2(,1)3 C .3(1,)2D .(1,2)解析:P 是GBC 内一点,则1λμ+<,当且仅当P 在线段BC 上时,λμ+最大等于1,当P 和G 重合时,λμ+最小,此时1()3AP AG AB AC ==+,即23λμ+=,故213λμ<+<. 答案:B 16在ABC 中,2AB =,3AC =,D 是边B C 的中点,则AD BC ⋅=______.解析:1()2AD AB AC =+,BC AC AB =-,则221()2AD BC AC AB ⋅=-15(94)22=-=.答案:52题型五:面积比问题1在ABC 所在平面内有一点P ,如果2PA PC AB PB +=-,那么PBC 与ABC 的面积之比是( ) A .34 B .12 C .13D .23 主要考察用向量性质来研究三角形的关系,掌握了原理后较为简单,大体有3种形式:(1)高相同,底不同,向量线性计算得出底的比例关系(2)高不同,底相同,高的比转换为相似三角形的比,再转化为向量基底的长度比 (3)三角形店内一点与三个顶点的连线把三角形分成三个小三角,它们的面积比问题,把题目给出的向量前面的系数标到对应线段上,与每一个线段所对的三角形面积比就是它们的系数比解析:2PA PC AB PB +=-化简可得3PC AP =,即P 在AC 上,两个三角形高相等,则34S PBC PC S ABC AC ==.答案:A如图,设P ,Q 为ABC 内的两点,且2155AP AB AC =+,2134AQ AB AC =+,则ABP 与ABQ 的面积之比为______.解析:如图作辅助线,EF ,GH 分别为两个三角形的高,15AE AC =,14AG AC =,则45S ABP EF AE S ABQ GH AG ===.答案:45已知O 是正三角形ABC 内部一点,230OA OB OC ++=,则OAC 与OAB 的面23 D .13解析:画图,把向量前面的系数标到对应线段上,与每一个线段所对的三角形面积比就是它们的系数比,则OAC 与OAB 的面积比为2:3. 答案:BABC 内一点且满足320PA PB PC ++=,则PBC ,PAC ,PAB 的面积比为( )4:3:2 2:3:4 C .1:1:1 D .3:4:6 解析:画图,把向量前面的系数标到对应线段上,与每一个线段所对的三角形面积比就是它们的系数比,则面积比为4:3:2. 答案:A题型六:垂直、求模、求角、投影问题1已知向量(,3)a k =,(1,4)b =,(2,1)c =,且(23)a b c -⊥,则k =( ) A .92- B .0 C .3 D .152解析:23(2,6)(3,12)(23,6)a b k k -=-=--,由题意知(23)0a b c -⋅=,则(23,6)(2,1)2(23)60k k --⋅=--=,解得3k =.答案:C2设向量a ,b 满足||10a b +=,||6a b -=,则a b ⋅=( ) A .1 B .2 C .3 D .5解析:由||10a b +=两边平方得22210a b a b ++⋅=,由||6a b -=两边平方得2226a b a b +-⋅=,两式相减得1a b ⋅=.答案:A 3已知向量a ,b 满足(2)()6a b a b +⋅-=-,且||1a =,||2b =,则a 与b 的夹角为主要考察数量积的性质,即本学案知识点第5点的内容,利用数量积的字母公式或坐标公式进行带入计算,由于是本章最后一节,题目融合程度可以比较高,需要记住一些常见题型和结论,大量的练习,高考出题大部分是考察这里,题目难度较低,但也可以出一些中等难度题型,需要注意的是:(1)两个向量的夹角一定要看准,向量的夹角不是线段的夹角,是方向的夹角 (2)0a b a b ⊥⇔⋅=,此乃五星级考点(3)求模公式2||a a =和2211||a x y =+一定要熟练运用,给你带模的条件很多时候都需要平方后再使用(4)求角公式就是数量积公式反过来用 (5)投影有简化公式||a bb ⋅,考察方式比较多样,涉及数量积最值的投影问题,通常需要作图来看,数形结合22222)()21226a b a b a b a b a b +⋅-=-+⋅=-⨯+⋅=-,解1a b ⋅=,11cos 122||||a b a b ⋅==⨯,3πθ=.答案:3π4已知点1,1)-,(1,2)B AB 在CD 方向上的投影为(2,1)AB =(5,5)CD = ,||52CD =10510||||552AB CD AB CD ⋅+==⨯ ,投影为3103|cos 510AB θ⨯=322如图,在平行四边形ABCD 中,AP BD ⊥,垂足为P ,且3AP =,则AP AC ⋅=_____.22||||cos AP AC AP AO AP AO ⋅=⋅=∠Rt APO 中,|cos ||AO PAC AP ∠=,所以22||218AP AC AP ⋅==⨯.答案:186在平行四边形ABCD 中,1AD =,60BAD ∠=为CD 的中点,1AC BE ⋅=,则AB 的长为_____.AB a =,AD b =,AC a b =+,12BE b a=-,222111111()()||||11222222AC BE a b b a a b a b a a ⋅=+⋅-=⋅-+=⨯-+=,解得||0()a =舍去或1||2=a .答案:127已知1e ,2e 是夹角为2π的两个单位向量,122a e e =-,12b ke e =+,若a ⋅则实数k 的值为______a ,b 不共线,且|||a b =,则下列结论中正确的是(a b +与a b -垂直 B .a b +与a b -共线 a b +与a 垂直 D .a b +与a 共线|||a b =可得22||||a b =,即2222||||()()0a b a b a b a b -=-=+⋅-=,A 项很明显都不正确.答案:A 设向量a ,b 满足||||1a b ==,12a b ⋅=-,则|2|a b +=( ) B .3 C .5 D .72222|(2)441423a b a b a b a b +=+=++⋅=+-=.B若(1,3)OA =-,||||OA OB =,0OA OB ⋅=,则||AB =______解析:设||(,)OB x y =,由两个条件可知2221330x y x y ⎧+=+⎪⎨-=⎪⎩,解得(3,1)(3,OB =-或,则(2,4)2)AB OB OA =-=-或,22||=AB 答案:2511设向量a ,b 满足||10a b +=,||6a b -=,则a b ⋅=( )A .B .2C .3D .5解析:条件中两式分别平方得22210a a b b +⋅+=,2226a a b b -⋅+=,两式相减得4a b ⋅=,1a b ⋅=.答案:Aa b ∥ a b ⊥ |||a b = a b a b +=-解析:法一:根据向量加法和减法法则,||a b +和||a b -分别代表以a ,b 为临边的平行四边形的对角线长度,两对角线长度一样,说明四边形为矩形.故有a b ⊥;可得222222a a b b a a b b +⋅+=-⋅+,即40a b ⋅=,则a b ⊥.(2,4)a =,(1,2)b =-,若()c a a b b =-⋅,则||c =_____. ()(2,4)(28)(1,2)(8,8)c a a b b =-⋅=--+-=-,22||8(8)82c =+-=.82(,1)a x =,(1,)b y =,(2,4)c =-a c ⊥,b c ∥,则||a b +=( A .5 B .10 .25 D .10a c ⊥,则240a c x ⋅=-=,得2x =,bc ∥,则42y -=,(2,1)(1,2)(3,1)a b +=+-=-,故|9110a b +=+=.答案:B15已知(1,1)m λ=+,(2,2)n λ=+,若()()m n m n +⊥-,则λA .4- .3- C .2- D .1-(2m n λ+=+(1,m n -=--()()(2m n m n λ+⋅-=-.B单位向量1e 与2e 的夹角为α,且13=,向量1232a e e =-与123b e e =-的夹,则cos β=_____1212(32)(3)8a b e e e e ⋅=-⋅-=,212|(32)3a e e =-=,212||(3)8b e e =-=,8||||38a b a b ⋅==2 已知向量a ,b 满足(2)()6a b a b +⋅-=-,|1a =,||2b =,则a 与b 的夹角为222)()2186a b a b a b a b a b +⋅-=-+⋅=-+⋅=-,所以1a b ⋅=,故11122||||a b a b ⋅==⨯,60θ=︒. 60︒若向量(1,2)a =,(1,1)b =-,则a b +与a b -的夹角等于(A .4π- B .6π 4π D .34π (3,3)a b +=,(0,3)a b -=,)()9a b a b +⋅-=,|2|32a b +=,922||||323a b a b ⋅===⨯,夹角为4π.设向量a ,b 夹角为θ(3,3)a =,(1,1)b a -=-(,)b x y =,2(23,23)(1,1)b a x y -=---,得(1,2)b =,9a b ⋅=,||32a =,|5b =,9310cos 10||||325a b a b θ⋅===⨯. 答案:31010已知i ,j 为互相垂直的单位向量,2a i j =+,i j +,且a 与a b λ+的夹角为锐角,则实数λ5(,0)(0,)3-+∞ 3 C .5[,0)(0,)3-+∞ D .5(,0)3- 由题意知(1,2)a =,(1,1)b =,(1,2)a b λλλ+=++,夹角为锐角,即cos 0θ>|||||sin a b a b θ⨯=,a 与b 的夹角,若(3,a =--(1,3)b =|a b ⨯=( )A .3B .23C .2D .432||||a b a b ⋅-=⨯|||||sin a b a b θ⨯==已知点(1,1)A -(3,4),则向量AB 在CD 方向上的投影为( )D .3152- (2,1)AB =(5,5)CD =15AB CD ⋅=,|5AB =,|52CD =151010||||552a b a b θ⋅===⨯,投影为2||cos AB θ=. A (,1)A a ,(2,B 为平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为(.543a b -= D .5414a b +=OA 与OB 在OC 方向上的投影相同,则有OA OC OB OC ⋅=⋅,带入坐标,则有85b =+,即45a b -=.A向量a 的模为1,且a ,b 满足||4a b -=,||2a b +=,则b 在a 方向上的投影等|4a b -=两22216a b a b +-⋅=,|2a b +=两2224a b a b ++⋅=,两式相减得3a b ⋅=-,则投影为3||a b a ⋅=-. 答案:3- 25 在矩形ABCD 中,2,1BC =,的中点,若界)任意一点,则AE AF ⋅的最大值为(2.4 C .2解析:如图,建立坐标系,设AE 与AF 夹角为θ,则||||cos AE AF AE AF θ⋅==2212()||cos 2AF θ+,||cos AF θ为AF 在AE 方向上的投影,由投影定义可知,只有点F 取点C 时,投影有最大值,此时19(2,)(2,1)22AE AF ⋅=⋅=. 答案:C如图,在等腰直角三角形ABC 中,90A ∠=︒,22BC =,G 是ABC 的重心,P 是ABC 内的任意一点(含边界),则BG BP ⋅的最大值为_____.解析:如图所示,2222225||413333BG BD AB AD ==+=+=, 25||||cos ||cos 3BG BP BG BP BP θθ⋅==,则BG BP ⋅的最大值即||cos BP θ最大,由投影定义可知,当P 与C 重合时,有最大值,由余弦定理得222581310cos 2102522BD BC CD BD BC θ+-+-===⋅⨯,则最大值25310||||cos 224310BG BP BG BC θ⋅==⨯⨯=.数学浪子整理制作,侵权必究。
平面向量在高考试题中的应用
平面向量在高考试题中的应用平面向量在高考试题中的应用
平面向量是一种有用的数学概念,在中学数学教学中都有涉及,而在高考试题中,也有很多使用平面向量的题目。
平面向量的相关知识,主要涉及到了向量的定义、一元二次方程、空间向量、向量的和、矢量的乘法、点乘积、向量的标准化等等。
在高考试题中,经常会出现向量的定义、一元二次方程的求解、矢量的乘法、点乘积的计算等问题。
例如:
(1)如果有两个平面向量a=(a1,a2)、b=(b1,b2),求a+b 的结果;
(2)若a=(a1,a2)、b=(b1,b2),求a*b;
(3)若a=(a1,a2,a3)、b=(b1,b2,b3),求a*b;
(4)给定两个空间向量a=(a1,a2,a3)、b=(b1,b2,b3),求a*b;
(5)已知a=(a1,a2)、b=(b1,b2),求a·b的结果;
(6)已知a=(a1,a2,a3)、b=(b1,b2,b3),求a·b的结果。
此外,在高考中还经常会考到向量的标准化、向量的合成、向量的投影等内容。
从上面可以看出,平面向量在高考试题中的应用非常广泛,所以学生在备考高考时,要特别重视对平面向量的研究,充分掌握相关知识点,以保证高考成绩的取得。
全国通用2023高中数学必修二第六章平面向量及其应用必考考点训练
全国通用2023高中数学必修二第六章平面向量及其应用必考考点训练单选题1、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =c =2a ,则cosB 等于( ) A .18B .14C .13D .12 答案:B分析:直接利用余弦定理计算可得. 解:因为b =c =2a ,所以cosB =a 2+c 2−b 22ac=a 2+4a 2−4a 22a×2a=14.故选:B2、在锐角△ABC 中,角A ,B ,C 所对的边为a ,b ,c ,若sinBsinC 3sinA=cosA a+cosC c,且S △ABC =√34(a 2+b 2−c 2),则c 2a+b 的取值范围是( ) A .(6,2√3]B .(6,4√3]C .[12,√33)D .[√3,2) 答案:D分析:根据给定条件利用正弦定理、余弦定理、三角形面积定理求出角C 及边c ,再求出a +b 的范围即可计算作答.在锐角△ABC 中,由余弦定理及三角形面积定理得:S △ABC =√34(a 2+b 2−c 2)=√32abcosC =12absinC , 即有tanC =√3,而C ∈(0,π2),则C =π3,又sinBsinC 3sinA=cosA a+cosC c,由正弦定理、余弦定理得,b⋅√323a =b 2+c 2−a 22bca +a 2+b 2−c 22abc,化简得:c =2√3,由正弦定理有:asinA =bsinB =csinC =√3√32=4,即a =4sinA ,b =4sinB ,△ABC 是锐角三角形且C =π3,有A ∈(0,π2),B =2π3−A ∈(0,π2),解得A ∈(π6,π2),因此a +b =4(sinA +sinB)=4[sinA +sin(2π3−A)] =4(sinA +√32cosA +12sinA)=4√3sin(A +π6),由A ∈(π6,π2)得:A +π6∈(π3,2π3),sin(A +π6)∈(√32,1], 所以c 2a+b =4√3sin(A+π6)∈[√3,2).故选:D小提示:思路点睛:涉及求三角形周长范围问题,时常利用三角形正弦定理,转化为关于某个角的函数,再借助三角函数的性质求解.3、在△ABC中,sin2A=sinBsinC,若∠A=π3,则∠B的大小是()A.π6B.π4C.π3D.2π3答案:C分析:由正弦定理边角互化,以及结合余弦定理,即可判断△ABC的形状,即可判断选项.因为sin2A=sinBsinC,所以a2=bc,由余弦定理可知a2=b2+c2−2bccosπ3=b2+c2−bc=bc,即(b−c)2=0,得b=c,所以△ABC是等边三角形,∠B=π3.故选:C4、设a⃗,b⃗⃗均为单位向量,且|a⃗−b⃗⃗|=1,则|a⃗−2b⃗⃗|=()A.√3B.√7C.3D.7答案:A分析:由已知,利用向量数量积的运算律求得a⃗⋅b⃗⃗=12,又|a⃗−2b⃗⃗|2=a⃗2−4a⃗⋅b⃗⃗+4b⃗⃗2即可求|a⃗−2b⃗⃗|. 由题设,|a⃗−b⃗⃗|2=a⃗2−2a⃗⋅b⃗⃗+b⃗⃗2=1,又a⃗,b⃗⃗均为单位向量,∴a⃗⋅b⃗⃗=12,∴|a⃗−2b⃗⃗|2=a⃗2−4a⃗⋅b⃗⃗+4b⃗⃗2=3,则|a⃗−2b⃗⃗|=√3.故选:A5、已知向量a⃗=(1,1),b⃗⃗=(−2,3),那么|a⃗−2b⃗⃗|=()A.5B.5√2C.8D.√74答案:B分析:根据平面向量模的坐标运算公式,即可求出结果.因为向量a⃗=(1,1),b⃗⃗=(−2,3),所以a⃗−2b⃗⃗=(5,−5)|a ⃗−2b ⃗⃗|=√52+(−5)2=5√2. 故选:B.6、下列命题中假命题是( ) A .向量AB⃗⃗⃗⃗⃗ 与BA ⃗⃗⃗⃗⃗ 的长度相等 B .两个相等的向量,若起点相同,则终点也相同 C .只有零向量的模等于0 D .共线的单位向量都相等 答案:D分析:利用相反向量的概念可判断A 选项的正误;利用相等向量的定义可判断B 选项的正误;利用零向量的定义可判断C 选项的正误;利用共线向量的定义可判断D 选项的正误.对于A 选项,AB⃗⃗⃗⃗⃗ 与BA ⃗⃗⃗⃗⃗ 互为相反向量,这两个向量的长度相等,A 选项正确; 对于B 选项,两个相等的向量,长度相等,方向相同,若两个相等向量的起点相同,则终点也相同,B 选项正确; 对于C 选项,只有零向量的模等于0,C 选项正确;对于D 选项,共线的单位向量是相等向量或相反向量,D 选项错误. 故选:D.小提示:本题考查平面向量的相关概念,考查相等向量、相反向量、共线向量以及零向量的定义的应用,属于基础题.7、△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc = A .6B .5C .4D .3 答案:A分析:利用余弦定理推论得出a ,b ,c 关系,在结合正弦定理边角互换列出方程,解出结果. 详解:由已知及正弦定理可得a 2−b 2=4c 2,由余弦定理推论可得 −14=cosA =b 2+c 2−a 22bc , ∴c 2−4c 22bc=−14 , ∴3c 2b =14 , ∴b c =32×4=6,故选A .小提示:本题考查正弦定理及余弦定理推论的应用. 8、如图,四边形ABCD 是平行四边形,则12AC ⃗⃗⃗⃗⃗ +12BD⃗⃗⃗⃗⃗⃗ =( )A .AB ⃗⃗⃗⃗⃗ B .CD ⃗⃗⃗⃗⃗C .CB ⃗⃗⃗⃗⃗D .AD ⃗⃗⃗⃗⃗ 答案:D分析:由平面向量的加减法法则进行计算. 由题意得AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ , 所以12AC ⃗⃗⃗⃗⃗ +12BD ⃗⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=AD ⃗⃗⃗⃗⃗ . 故选:D.9、若|AB ⃗⃗⃗⃗⃗ |=5,|AC ⃗⃗⃗⃗⃗ |=8,则|BC ⃗⃗⃗⃗⃗ |的取值范围是( ) A .[3,8]B .(3,8) C .[3,13]D .(3,13) 答案:C分析:利用向量模的三角不等式可求得|BC⃗⃗⃗⃗⃗ |的取值范围. 因为|BC ⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ |,所以,||AC ⃗⃗⃗⃗⃗ |−|AB ⃗⃗⃗⃗⃗ ||≤|BC ⃗⃗⃗⃗⃗ |≤|AC ⃗⃗⃗⃗⃗ |+|AB ⃗⃗⃗⃗⃗ |,即3≤|BC ⃗⃗⃗⃗⃗ |≤13. 故选:C.10、在△ABC 中,AB =3,AC =2,∠BAC =60°,点P 是△ABC 内一点(含边界),若AP⃗⃗⃗⃗⃗ =23AB ⃗⃗⃗⃗⃗ +λAC ⃗⃗⃗⃗⃗ ,则|AP ⃗⃗⃗⃗⃗ |的最大值为( ) A .2√73B .83C .2√193D .2√133答案:D分析:以A 为原点,以AB 所在的直线为x 轴,建立坐标系,设点P 为(x,y),根据向量的坐标运算可得y =√3(x −2),当直线y =√3(x −2)与直线BC 相交时|AP⃗⃗⃗⃗⃗ |最大,问题得以解决 以A 为原点,以AB 所在的直线为x 轴,建立如图所示的坐标系, ∵AB =3,AC =2,∠BAC =60°,∴A(0,0),B(3,0),C(1,√3),设点P 为(x,y),0⩽x ⩽3,0⩽y ⩽√3, ∵ AP⃗⃗⃗⃗⃗ =23AB ⃗⃗⃗⃗⃗ +λAC ⃗⃗⃗⃗⃗ , ∴(x ,y)=23(3,0)+λ(1,√3)=(2+λ,√3λ), ∴ {x =2+λy =√3λ , ∴y =√3(x −2),① 直线BC 的方程为y =−√32(x −3),②,联立①②,解得{x =73y =√33, 此时|AP⃗⃗⃗⃗⃗ |最大, ∴|AP|=√499+13=2√133, 故选:D .小提示:本题考查了向量在几何中的应用,考查了向量的坐标运算,解题的关键是建立直角坐标系将几何运算转化为坐标运算,同时考查了学生的数形结合的能力,属于中档题 填空题11、已知向量a ⃗,b ⃗⃗,其中|a ⃗|=1,|b ⃗⃗|=2,且(a ⃗−2b ⃗⃗)⊥(3a ⃗+b ⃗⃗),则向量a ⃗与b ⃗⃗的夹角等于____; 答案:2π3##120°分析:利用夹角公式求出向量a ⃗与b⃗⃗的夹角.因为(a ⃗−2b ⃗⃗)⊥(3a ⃗+b ⃗⃗),所以(a ⃗−2b ⃗⃗)·(3a ⃗+b ⃗⃗)=0,即3a →2−5a →·b →−2b →2=0,所以5a →·b →=3−8=−5,所以a ·→b →=−1.而a ⃗·b ⃗⃗=|a ⃗||b ⃗⃗|cos⟨a ⃗,b ⃗⃗⟩=−1,所以cos⟨a ⃗,b ⃗⃗⟩=−12, 因为⟨a ⃗,b ⃗⃗⟩∈[0,π],所以⟨a ⃗,b ⃗⃗⟩=2π3. 所以答案是:2π312、已知△ABC 为正三角形,则下列各式中成立的是___________.(填序号)①|AB⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ |;②|AB ⃗⃗⃗⃗⃗ −CA ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ |;③|AB ⃗⃗⃗⃗⃗ −CA ⃗⃗⃗⃗⃗ |=|CA ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ |;④|CA ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ |=|AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ |. 答案:①②③分析:设D,E,F 分别为AB,BC,AC 的中点,根据平面向量的加法和减法的运算法则逐一判断即可得出答案. 对于①,|AB⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ |=|CB ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ |,故①成立; 对于②,设D,E,F 分别为AB,BC,AC 的中点, 则AE =CD =BF =√32AB , |AB⃗⃗⃗⃗⃗ −CA ⃗⃗⃗⃗⃗ |=|AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ |=|2AE ⃗⃗⃗⃗⃗ |=√3|AB ⃗⃗⃗⃗⃗ |, |BC⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ |=|2BF ⃗⃗⃗⃗⃗ |=√3|BA ⃗⃗⃗⃗⃗ |, 所以|AB⃗⃗⃗⃗⃗ −CA ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ |,故②成立; 对于③,|CA⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ |=|CA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ |=|2CD ⃗⃗⃗⃗⃗ |=√3|AB ⃗⃗⃗⃗⃗ |, 所以|AB⃗⃗⃗⃗⃗ −CA ⃗⃗⃗⃗⃗ |=|CA ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ |,故③正确; 对于④,|AB⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ |=|CB ⃗⃗⃗⃗⃗ |=|AB ⃗⃗⃗⃗⃗ |≠|CA ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ |,故④不成立. 所以答案是:①②③.13、如图,直径AB =4的半圆,D 为圆心,点C 在半圆弧上,∠ADC =π3,线段AC 上有动点P ,则DP ⃗⃗⃗⃗⃗ ⋅BA⃗⃗⃗⃗⃗ 的最小值为______.答案:4分析:设AP ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ (0≤λ≤1),可得出DP ⃗⃗⃗⃗⃗ =(1−λ)DA ⃗⃗⃗⃗⃗ +λDC ⃗⃗⃗⃗⃗ ,计算得出DA ⃗⃗⃗⃗⃗ ⋅DC ⃗⃗⃗⃗⃗ =2,利用平面向量数量积的运算性质可得出DP ⃗⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ 关于λ的表达式,结合λ的取值范围可求得DP ⃗⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ 的最小值. 设AP⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ (0≤λ≤1), 则DP ⃗⃗⃗⃗⃗ =DA ⃗⃗⃗⃗⃗ +AP ⃗⃗⃗⃗⃗ =DA ⃗⃗⃗⃗⃗ +λAC ⃗⃗⃗⃗⃗ =DA ⃗⃗⃗⃗⃗ +λ(DC ⃗⃗⃗⃗⃗ −DA ⃗⃗⃗⃗⃗ )=(1−λ)DA ⃗⃗⃗⃗⃗ +λDC⃗⃗⃗⃗⃗ , ∵∠ADC =π3,|DC ⃗⃗⃗⃗⃗ |=|DA ⃗⃗⃗⃗⃗ |=12|BA ⃗⃗⃗⃗⃗ |=2,则DA ⃗⃗⃗⃗⃗ ⋅DC ⃗⃗⃗⃗⃗ =|DA ⃗⃗⃗⃗⃗ |⋅|DC ⃗⃗⃗⃗⃗ |cos π3=2, 所以,DP ⃗⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ =[(1−λ)DA ⃗⃗⃗⃗⃗ +λDC ⃗⃗⃗⃗⃗ ]⋅2DA ⃗⃗⃗⃗⃗ =2(1−λ)DA ⃗⃗⃗⃗⃗ 2+2λDA ⃗⃗⃗⃗⃗ ⋅DC ⃗⃗⃗⃗⃗ =2×22(1−λ)+2λ×2=8−4λ∈[4,8]. 因此,DP ⃗⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ 的最小值为4. 所以答案是:4.小提示:方法点睛:求两个向量的数量积有三种方法: (1)利用定义:(2)利用向量的坐标运算; (3)利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用. 解答题14、已知向量a 与b ⃗ 的夹角为120∘,|a |=3,|b ⃗ |=2. (1)求(2a +b ⃗ )⋅(a −2b ⃗ )的值; (2)求|2a +b ⃗ |的值. 答案:(1)19;(2)2√7.分析:(1)由向量数量积的定义计算即可求解;(2)先计算|2a+b⃗|2=(2a+b⃗)2的值,再开方即可求解.(1)因为|a|=3,|b⃗|=2,且a,b⃗的夹角为120∘,所以a⋅b⃗=|a|⋅|b⃗|⋅cos120∘=3×2×(−12)=−3,所以(2a+b⃗)⋅(a−2b⃗)=2a2−3a⋅b⃗−2b⃗2=2|a|2−3a⋅b⃗−2|b⃗|2=2×9−3×(−3)−2×4=19;(2)|2a+b⃗|2=(2a+b⃗)2=4|a|2+4a⋅b⃗+|b⃗|2=36−12+4=28,所以|2a+b⃗|=2√7.15、已知f(x)=√3cos2x+2sin(3π2+x)sin(π−x),x∈R,(1)求f(x)的最小正周期及单调递减区间;(2)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,且f(A)=−√3,a=4,求BC边上的高的最大值.答案:(1)最小正周期为π;单调递减区间为[kπ-π12,kπ+5π12](k∈Z);(2)2√3.分析:(1)整理得f(x)=2cos(2x+π6),可得其最小正周期及单调递减区间;(2)由f(A)=−√3,可得A=π3,设BC边上的高为ℎ,所以有12aℎ=12bcsinA⇒ℎ=√38bc,由余弦定理可知:a2=b2+c2−2bccosA ,得出bc≤16,最后可得ℎ最大值.解:(1)f(x)=√3cos2x+2sin(3π2+x)sin(π−x)=√3cos2x−2cosxsinx=√3cos2x−sin2x=2cos(2x+π6).f(x)的最小正周期为:T=2π|2|=π;当2kπ≤2x+π6≤2kπ+π(k∈Z)时,即当kπ-π12≤x≤kπ+5π12(k∈Z)时,函数f(x)单调递减,所以函数f(x)单调递减区间为:[kπ-π12,kπ+5π12](k∈Z);(2)因为f(A)=−√3,所以f(A)=2cos(2A+π6)=−√3⇒cos(2A+π6)=−√32,∵A∈(0,π2),∴2A+π6∈(π6,7π6),∴2A+π6=5π6,∴A=π3.设BC边上的高为ℎ,所以有12aℎ=12bcsinA⇒ℎ=√38bc,由余弦定理可知:a2=b2+c2−2bccosA ,∴ 16=b2+c2−bc,∵b2+c2≥2bc,∴bc≤16(当用仅当b=c时,取等号),所以ℎ=√38bc≤2√3,因此BC边上的高的最大值2√3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量常考题型一、数量积1、(2012浙江卷15).在∆ABC 中,M 是BC 的中点,AM =3,BC =10,则AB AC ⋅=______________. 【答案】—16.2、..已知平行四边形ABCD 中,8AB =,5AD =,3CP PD = ,若2AP BP ⋅=,则AB AD ⋅= .【答案 22】3、函数()4024tan <<⎪⎭⎫⎝⎛-=x x y ππ的图像如图所示,A 为图像与x 轴的交点,过点A 的直线l 与函数的图像交于C B ,两点,则 =⋅+OA OC OB )(( )A .8-B .4-C .4D .8 【答案 D 】4、(2012宁波十校联考.理科17)在ABC ∆中,2=AC ,6=BC .已知点O 是ABC ∆内一点,且满足043=++OC OB OA ,则=+⋅)2( .【答案 40】5、在矩形ABCD 中,2AB BC ==,点E 为BC 的中点,点F 在边CD 上,若AB AF ⋅= AE BF ⋅的值为 .【答案6、2012天津理(7)已知△ABC 为等边三角形,=2AB ,设点P ,Q 满足=AP AB λ,=(1)AQ AC λ- ,R λ∈,若3=2BQ CP ⋅- ,则=λ(A )12 (B)12(C)12± (D)32-± 【答案】A .7、点O 是ABC ∆的外接圆的圆心,M 是BC 的中点,3AC =,若4AO AM ⋅=,则AB = .【答案8(2014宁波十校联考).已知,,均为单位向量,且满足0=⋅,则⋅++)(c b a )(+的最大值是A.222+B. 23+C. 52+D. 321+ 【答案】C .9、边长为2的正方形ABCD 内有一动点P ,满足PBC PAB ∆∆,的面积都不超过1,则PC PB ⋅的取值范围为 .【答案】)12,1--(.10、已知平面向量e b a ,,满足,1||=e ,1=⋅e a ,2=⋅e b ,2||=-b a ,则b a ⋅的最小值为 .【答案:54】11、(2010全国卷11)已知圆O 的半径为1,,PA PB 为该圆的两条切线,,A B 为两切点,那么⋅的最小值为(A) 4- (B)3-+ (C) 4-+3-+ D 】12、(2013年浙江高考)设ABC ∆,0P 是边AB 上一定点,满足014P B AB =,且对于AB 边上任意一点P ,恒有00PB PC P B PC ⋅≥⋅,则( ).A ︒=∠90ABC .B ︒=∠90BAC .C AC AB = .D BC AC =【答案】D13、已知向量a,b ,c 满足0=⋅b a ,0)()=-⋅-b c a c (,5||=-b a ,3||=-c a ,则c a ⋅的最大值是 .【解析】设=,=,=,则-=,由0)()=-⋅-(得,点C 在以AB 为直径的圆上运动,3,5AC BA ==.设CAE θ∠=,则点()4sin ,3sin C θθ,设OA m =,则4sin 3cos m θθ=-,(4sin 3cos )4sin a c θθθ⋅=-⋅=86sin 28cos 2810sin(2)θθθϕ--=-+18≤.所以a c ⋅的最大值是18.14、已知平面向量,,a b c 满足:||2a b -= ,5,12a b π〈〉= ,||c a -=,7,12c a c b π〈--〉= ,则a c ⋅ 的最大值为 .【答案:二、模长公式1、设点M 是线段BC 的中点,4BC =,若||||AB AC AB AC +=-,则AM = ( ).8A .4B .2C .1D 【答案:C 】2、已知在平面坐标系中,(20)A -,,1,3B (),O 为原点,且(1)OM tOA t OB =+-(t 为实数),若(1,0)N ,则||MN 的最小值是 .【答案:223】3、(2012江西)直角三角形ABC 中,点D 是斜边AB 的中点,点P 是线段CD 的中点,则=+222||||||PC PB PA ( ).2A .4B .5C .10D 【答案:D 】 4、(2012宁波十校联考.9)已知非零向量,,,满足1||=-,0)()=-⋅-(,设||c 的最大值最小值分别为n m ,,则n m -的值为( ).A 1 .B 2 .C21 .D 41【答案 A 】 5、已知向量2||=,1||=⋅=b a b ,0)()2=-⋅-c b c a (,则||-的最小值是( ) .A213; .B 2313- .C 217- .D 27【答案 C 】 6、 已知向量)0,1(=a ,)1,0(=b ,向量满足0)()(=-⋅+b c c a ,则||的最大值是( ) .A 2 .B21 .C 2 .D 22【答案:C 】 7、设向量,,a b c 满足||||1a b == ,12a b ⋅=- ,,a c b c -- =60°,则||c 的最大值等于 . 【答案:2】8、.(2015年浙江省六校联考.理科6)已知向量,a b是单位向量,若0a b ?,且|||2|c a c b -+- |2|c a +的取值范围是( ) A .[1,3] B .[,3] C .[5, D .[5,3] 【答案:D 】 9、已知,a b 是单位向量,0a b ⋅= ,若向量c 满足||1c a b --= ,则||c的取值范围是( ).A11] .B12] .C[11] .D[12]10、设向量(2,0)a = ,(,)b x y = ,若b 与b a -的夹角是6π,则||b 的最大值是( ) .A 2 B. C . 4 D. 【答案】 C11、已知单位向量a ,b ,c ,x,且0a b c ++= ,记||||||y x a x b x c =-+-+- ,则y 的最大值是 .【答案 4】12、在ABC 中,2BC =,且对于任意实数t ,都有00|(1)||(1)|3t AB t AC t AB t AC +-≥+-=0()t R ∈,则AB AC ⋅ 的最小值是 ,0t 为 .【答案】 8,12.三、向量与三角形的“四心”(一)有关结论:O 是平面上一定点,C B A ,,是平面上不共线的三点,P 为动点,1、⎭⎫⎝⎛++=||||AC AB OA OP λ,),(∞+∈0λ,则P 点得轨迹一定通过ABC ∆的内心; ||||+||0AB PC BC PA CA PB +=,P 为ABC ∆的内心;2、()++=λ),(∞+∈0λ过重心;=++,P 是重心;()||sin ||sin AB ACOP OA AB B AC C λ=++过重心;()13PG PA PB PC =++ ,G 为重心;3、HA HB HB HC HC HA ⋅=⋅=⋅ ,则H 是垂心,()||cos ||cos AB AC OP OA AB B AC Cλ=++),(∞+∈0λ,则P 点得轨迹一定通过ABC ∆的垂心; 4、M 是ABC ∆的外心,H 是垂心,则MH MA MB MC =++.(二)考题精选1、若点O 是ABC △的外心,且0OA OB CO ++= ,则ABC △的内角C 为____(答:120)O 是ABC △的外心,且0=++OC OB OA ,则角C 为 (答:60°); 2、.已知ABC ∆中,5AB =,3=AC ,H O ,分别是ABC ∆的外心和垂心,则⋅= 【答案】 83、在直角坐标系xoy 中,点(0,1)A ,(3,4)B -,若点C 在AOB ∠的平分线上,且||2OC = ,则OC =.4、已知点O 是ABC △所在平面上的一点,若0aOA bOB cOC ++=,则点O 是ABC△的( ).A 内心 .B 外心 .C 垂心 .D 重心5、若点O 是ABC △所在平面上一点,满足222222||||||||||||OA BC OB CA OC AB +=+=+ ,则若点O 是ABC △的( ) .A 内心 .B 外心 .C 垂心 .D 重心6、已知ABC △的三个内角,,A B C 的对边分别是,,a b c ,G 是其重心,且满足0aGA bGB cGC ++=,则ABC △为( ).A 等腰三角形 .B 等腰直角三角形 .C 等腰三角形 .D 等边三角形7、若ABC △存在一点P ,使得222PA PB PC ++取得最小值,则点P 应为ABC △的( ).A 内心 .B 外心 .C 垂心 .D 重心8、在ABC ∆中,5BC =,,G M 分别是ABC ∆的重心和外心,且5MG BC ⋅=,则ABC∆的形状是 ( ).A 锐角三角形 .B 钝角三角形 .C 直角三角形 .D 以上三种情况都可能9、在ABC ∆中,1AB =,BC =2CA =,ABC ∆外接圆的圆心为O ,若AO AB AC λμ=+ ,则=λ , =μ .【答案:4355,】10、 点O 是ABC ∆的外接圆的圆心,2A B a =,2AC a =,23BAC π∠=,若AO x AB y AC=+,则36x y +的最小值是 .【四、综合问题1、(2011年高考浙江卷文科15)若平面向量, 满足1,||1αβ=≤,且以向量,为邻边的平行四边形的面积为12,则,的夹角θ取值范围是___。
【答案】5[,]66ππ2、已知ABC △,若对于任意t R ∈,||||BA tBC AC -≥,则ABC △一定是( ).A 锐角三角形 .B 钝角三角形 .C 直角三角形 .D 答案不确定3、(2011年高考天津卷文科14)已知直角梯形ABCD 中//AD BC ,90ADC ∠=,2AD =,1BC =,P 是腰DC 上的动点,则|3|PA PB +的最小值为 .【答案】54、已知G 是ABC ∆的重心,点,P Q 分别在,AC BC 上,记CA a = ,CB b =,CP ma = ,CQ nb = ,若PQ 过ABC ∆的重心,则11m n += .【答案:3】5、已知点O 是ABC ∆内的一点,且满足+230OA OB OC +=,则(1)AOB ∆与AOC ∆的面积的比为 ;【答案:3:2】 (2)ABC ∆与AOC ∆的面积的比为 ;【答案:3:1】 (3)ABC ∆与四边形ABOC 的面积之比为 .【答案:6:5】【说明】要注意到,当G 为ABC ∆的重心时,易证::1:1:1GAB GBC GCA S S S ∆∆∆=.6、点O 时ABC ∆内的一点,满足(1)0OA OB OC λλ++-=,若OAB ∆的面积与OAC ∆的面积的比为13,则λ的值为( )3.2A 2B 1.3C 1.2D 【答案:A 】 7、(2016宁波二模.文科8)在ABC ∆中,点D 满足34AD AB =,P 为ABC ∆内一点,且满足32105AP AB AC =+ ,则APD ABCSS ∆∆=( ) 3.10A 9.20B 6.35C 9.35D 【答案:A 】8、点O 是ABC ∆内的一点,且满足3OA OC OB +=-,则A O B ∆与AOC ∆的面积之比为 .【答案:1:3】。