matlab 动态规划讲义

合集下载

利用MATLAB求解离散动态规划问题

利用MATLAB求解离散动态规划问题

14 / 28
利用MATLAB求解离散动态规划问题
三、动态规划求解函数-算例1求解过程分析
1. 阶段变量k: 将问题按工程分为4个阶段,即k = 1, 2, 3, 4 2. 状态变量sk : 状 态 变 量sk 表 示 第k个 工 程 至 第4个 工 程 可 用 的 投 资 总 额 , 显 然 有s1 = 60
穷举所有可能的结果,找出其中最优值及对应的策略
3 / 28
利用MATLAB求解离散动态规划问题
二、穷举法:算例1-算法与程序
对 于上 述 问 题 , 在 穷 举 求 解 时 应 注 意 投 资 额 不 多 于60万 元 的 约 束。稍加分析便知道60万元必须全部用完没有剩余,否则结果一 定不会是最优解。因此可以写出以下程序: 输入利润函数: V 1 = [0, 20, 50, 65, 80, 85, 85]; V 2 = [0, 20, 40, 50, 55, 60, 65]; V 3 = [0, 25, 60, 85, 100, 110, 115]; V 4 = [0, 25, 40, 50, 60, 65, 70];
10 / 28
利用MATLAB求解离散动态规划问题
二、穷举法:算例2-算法与程序(续)
n = size(R, 1); Path = zeros(50, 5); Path(1 : 50, 1) = 1; Path(1 : 50, 5) = n; D = inf ∗ ones(50, 1); m = 1; for i = 1 : n; if R(1, i) ∼= inf for j = 1 : n if R(i, j) ∼= inf for k = 1 : n if R(j, k) ∼= inf Path(m, 2 : 4) = [i, j, k]; D(m) = 0; D(m) = D(m)+ R(1, i)+ R(i, j)+ R(j, k)+ R(k, n); m = m + 1; end ...

基于Matlab的动态规划算法的实现及应用

基于Matlab的动态规划算法的实现及应用

基于Matlab的动态规划算法的实现及应用动态规划(Dynamic Programming)是一种用来求解多阶段最优化问题的方法,在许多领域中都得到了广泛的应用。

本文将介绍如何使用Matlab实现动态规划算法,并通过一个具体的应用案例来说明其使用方法和效果。

动态规划算法的基本思想是将一个问题分解成多个阶段,每个阶段的最优解可以通过前一阶段的最优解来计算得到。

具体实现时,需要定义一个状态转移方程来描述问题的阶段之间的关系,以及一个递推公式来计算每个阶段的最优解。

在Matlab中,可以使用矩阵来表示问题的状态和状态转移方程,使用循环结构来进行递推计算。

下面以求解最长递增子序列(Longest Increasing Subsequence)为例来说明动态规划算法在Matlab中的实现和应用。

最长递增子序列是一个经典的动态规划问题,给定一个序列,找出一个最长的子序列,使得子序列中的元素是递增的。

可以使用动态规划算法来求解该问题。

定义一个状态数组dp,其中dp(i)表示以第i个元素结尾的最长递增子序列的长度。

初始化dp数组为1,表示每个元素自身就是一个递增子序列。

然后,使用一个循环结构遍历序列的每个元素,计算以当前元素结尾的最长递增子序列的长度。

具体实现时,需要比较当前元素与之前的元素的关系,如果当前元素大于之前的元素,则可以将当前元素加入到之前的最长递增子序列中,并更新dp(i)为dp(j)+1,其中j为小于i的所有元素的位置。

遍历dp数组,找出其中的最大值,即为整个序列的最长递增子序列的长度。

下面是Matlab代码的实现:```matlabfunction LIS = LongestIncreasingSubsequence(nums)N = length(nums);dp = ones(1, N);for i = 1:Nfor j = 1:i-1if nums(i) > nums(j)dp(i) = max(dp(i), dp(j)+1);endendendLIS = max(dp);end```以上代码定义了一个函数LongestIncreasingSubsequence,输入参数为一个序列nums,输出结果为最长递增子序列的长度LIS。

基于Matlab的动态规划算法的实现及应用

基于Matlab的动态规划算法的实现及应用

基于Matlab的动态规划算法的实现及应用动态规划是一种解决多阶段决策过程的优化技术。

它的主要思想是将问题分成几个阶段,在每个阶段用一个状态来描述问题,然后找到在每个阶段中符合条件的最优状态值,以便决定在一个阶段结束的时候采取什么决策。

在Matlab中,可以非常方便地实现动态规划算法。

这里简要介绍一下基于Matlab的动态规划算法的实现及应用。

首先,我们需要定义状态转移方程。

状态转移方程是动态规划算法的核心,决定了如何从一个状态转移到另一个状态。

例如,我们要用动态规划算法求解一个背包问题,物品的重量为w1,w2,w3,w4,w5,物品的价值为v1,v2,v3,v4,v5,背包的容量为W。

那么状态转移方程可以定义如下:dp(i,j) = max(dp(i-1,j), dp(i-1,j-w(i))+v(i))其中dp(i,j)表示前i个物品放入容量为j的背包中所能得到的最大价值。

i表示物品的数量,j表示背包的容量。

w(i)表示第i个物品的重量,v(i)表示第i个物品的价值。

上式中的max表示在当前状态下,应该选择哪个状态值。

然后我们需要初始化第一个状态dp(1,j),当只考虑第1个物品时,dp(1, j)的值与w(1)和v(1)有关。

当物品数量为0时,dp(i, j)的值为0。

接下来,我们可以使用循环以及状态转移方程来计算出dp(i,j)的值,最终得到最优的解。

在Matlab中,可以利用循环完成状态转移方程的计算,例如:dp(1,:) = (w(1) <= j).*v(1);在上述代码中,利用循环计算每个状态的最大价值。

第一行是初始化第一个状态,即当只有一个物品的时候,dp(1, j)的值为v(1)或0。

第二行是循环计算后续状态的最大价值,根据状态转移方程进行计算。

在实际应用中,动态规划算法可以用于诸如最优路径规划、时间序列分析、机器学习等领域。

例如,在机器学习中,动态规划算法可以用于序列模型的预测和分类问题。

基于Matlab的动态规划程序实现

基于Matlab的动态规划程序实现

动态规划方法的Matlab 实现与应用动态规划(Dynamic Programming)是求解决策过程最优化的有效数学方法,它是根据“最优决策的任何截断仍是最优的”这最优性原理,通过将多阶段决策过程转化为一系列单段决策问题,然后从最后一段状态开始逆向递推到初始状态为止的一套最优化求解方法。

1.动态规划基本组成(1) 阶段 整个问题的解决可分为若干个阶段依次进行,描述阶段的变量称为阶段变量,记为k(2) 状态 状态表示每个阶段开始所处的自然状况或客观条件,它描述了研究问题过程的状况。

各阶段状态通常用状态变量描述,用k x 表示第k 阶段状态变量,n 个阶段决策过程有n+ 1个状态。

(3) 决策 从一确定的状态作出各种选择从而演变到下一阶段某一状态,这种选择手段称为决策。

描述决策的变量称为决策变量,决策变量限制的取值范围称为允许决策集合。

用()k k u x 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数。

用()k k D x Dk(xk)表示k x 的允许决策的集合。

(4) 策略 每个阶段的决策按顺序组成的集合称为策略。

由第k 阶段的状态k x 开始到终止状态的后部子过程的策略记为{}11(),(),,()k k k k n n u x u x u x ++ 。

可供选择的策略的范围称为允许策略集合,允许策略集合中达到最优效果的策略称为最优策略。

从初始状态*11()x x =出发,过程按照最优策略和状态转移方程演变所经历的状态序列{}****121,,,,n n x x x x + 称为最优轨线。

(5) 状态转移方程 如果第k 个阶段状态变量为k x ,作出的决策为k u ,那么第k+ 1阶段的状态变量1k x +也被完全确定。

用状态转移方程表示这种演变规律,记为1(,)k k k x T x u +=。

(6) 指标函数 指标函数是系统执行某一策略所产生结果的数量表示,是衡量策略优劣的数量指标,它定义在全过程和所有后部子过程上,用()k k f x 表示。

基于Matlab的动态规划算法的实现及应用

基于Matlab的动态规划算法的实现及应用

基于Matlab的动态规划算法的实现及应用动态规划是一种常用的优化算法,可以在给定的约束条件下,求解具有最优解的问题。

它通过将原问题拆分成若干子问题,并保存子问题的解,从而避免重复计算,减少运算量,提高算法的效率。

在Matlab中,可以通过使用递归或迭代的方式来实现动态规划算法。

下面将介绍一种基于Matlab的动态规划算法的实现及应用。

我们需要确定问题的状态,即在求解过程中需要保存的信息。

然后,定义状态转移方程,即问题的解与其子问题的解之间的关系。

确定边界条件,即问题的基本解。

以求解斐波那契数列为例,斐波那契数列的定义如下:F(0) = 0F(1) = 1F(n) = F(n-1) + F(n-2) (n>=2)我们可以使用动态规划算法来求解斐波那契数列。

定义一个数组dp,用来保存每个子问题的解。

然后,通过迭代的方式,计算从小到大的每个子问题的解,直到得到问题的最优解。

在Matlab中,可以使用以下代码实现动态规划算法求解斐波那契数列:```matlabfunction [result] = Fibonacci(n)% 初始化数组dpdp = zeros(1, n+1);% 定义边界条件dp(1) = 0;dp(2) = 1;% 迭代计算每个子问题的解for i = 3:n+1dp(i) = dp(i-1) + dp(i-2);end% 返回问题的最优解result = dp(n+1);end```运行以上代码,输入一个整数n,即可求解斐波那契数列的第n项。

除了求解斐波那契数列,动态规划算法还可以应用于其他许多领域,如路径规划、背包问题等。

在路径规划中,我们可以使用动态规划算法来求解最短路径或最优路径;在背包问题中,我们可以使用动态规划算法来求解能够装入背包的最大价值。

动态规划算法是一种强大的优化算法,在Matlab中的实现也相对简单。

通过定义问题的状态、状态转移方程和边界条件,我们可以使用动态规划算法来求解各种不同类型的问题。

基于Matlab的动态规划算法的实现及应用

基于Matlab的动态规划算法的实现及应用

基于Matlab的动态规划算法的实现及应用动态规划算法是解决许多计算问题的有效方法,它可以用于组合优化、资源分配和时间序列分析等方面。

Matlab是一种高级计算软件,提供了许多内置函数,使得动态规划算法的实现变得简单。

一、动态规划算法的基本思想动态规划算法是一种优化技术,可以用于解决一些复杂的计算问题。

它的基本思想是把一个大问题分解成一系列子问题,通过解决子问题得到整体的最优解。

在动态规划算法中,通常使用递推式来描述问题的最优解。

在Matlab中,动态规划算法的实现通常包括以下几个步骤:1.定义状态变量:根据问题的特性,定义一组状态变量,用于描述问题的状态。

2.制定状态转移方程:根据问题的条件和规则,制定一组状态转移方程,用于计算问题的最优解。

3.构建转移矩阵:将状态转移方程转化为矩阵形式,便于计算和优化。

4.初始化状态变量:将初始状态赋值给状态变量,用于递推计算。

5.递推计算:根据状态转移矩阵和当前状态,计算下一时刻状态的值,直到达到目标状态。

6.输出最优解:输出最终状态对应的最优解。

三、应用实例1.背包问题背包问题是一种组合优化问题,目标是在给定的一组限制条件下,尽可能地装满容量限制的背包。

动态规划算法可以有效解决背包问题。

function [optx,optf]=knapsack(w,v,c)%w:物品的重量; v:物品的价值; c:背包容量%optx:最优解; optf:最优解对应的函数值n=length(w); %物品数量f=zeros(n+1,c+1); %状态变量fx=zeros(1,n); %物品的选择变量xfor i=1:nfor j=1:cif j<w(i) %背包容量不足的情况f(i+1,j)=f(i,j);else %背包容量足够的情况f(i+1,j)=max(f(i,j),f(i,j-w(i))+v(i));endendendoptf=f(n+1,c); %最优解j=c; %从后往前寻找物品for i=n:-1:1if f(i+1,j)>f(i,j)x(i)=1;j=j-w(i);endendoptx=x; %最优解2.最长公共子序列问题最长公共子序列问题是一种字符串匹配问题,目标是在两个字符串中找到最长的公共连续子序列。

《动态规划MATLab》课件

《动态规划MATLab》课件

寻找最优子结构
将问题拆分为多个子问题,并定义子问 题之间的关系。
初始条件与边界条件定义
确定初始条件和边界条件,为求解过程 提供基础。
动态规划常见问题
1 背包问题
在给定容量和价值的情况 下,选择合适的物品放入 背包,使得背包中物品的 总价值最大化。
2 最长公共子序列
3 最长上升子序列
在给定两个序列的情况下, 找到它们之间最长的公共 子序列。
《动态规划MATLab》 PPT课件
这个《动态规划MATLab》PPT课件将帮您深入了解动态规划算法及其在 MATLab中的应用。通过丰富的示例和清晰的代码演示,您将掌握动态规划求 解问题的步骤和常见方法。
什么是动态规划
定义
动态规划是一种用于解决最优化问题的算法思想,通过将问题拆分为多个子问题并保存已计 算的中间结果,以减少重复计算的次数。
在给定序列的情况下,找 到其中最长的上升子序列。
MATLab介绍
基本语法
MATLab具有简洁而灵活的 语法,易于学习和使用。
数组与矩阵操作
MATLab提供了丰富的数组 和矩阵操作函数,方便快捷 地处理数据。
函数与脚本文件
MATLab支持函数和脚本文 件的编写与调用,使程序逻 辑更加结构化。
使用MATLab进行动态规划问题求解
1
用MATLab实现背包问题
通过MATLab编写代码,解决背包问题,得出最优解。
2
用MATLab实现最长公共子序列
利用MATLab函数,找到两个序列之间的最长公共子序列。
3
用MATLab实现最长上升子序列
使用MATLab算法,求解给定序列的最长上升子序列。

总结
动态规划思想及其应用

基于Matlab的动态规划算法的实现及应用

基于Matlab的动态规划算法的实现及应用

基于Matlab的动态规划算法的实现及应用动态规划算法是一种解决多阶段决策问题的优化方法,它可以在每个阶段选择最优决策,并且在各个阶段间保持最优子结构,从而达到整体最优的目的。

在实际应用中,动态规划算法被广泛用于求解优化问题、路径规划、资源分配等方面。

本文将介绍基于Matlab 的动态规划算法的实现及应用,并深入探讨其在实际问题中的应用。

一、动态规划算法的基本原理动态规划算法的基本原理是通过将问题分解为子问题,并计算每个子问题的最优解,然后存储下来以供后续使用。

最终得到整体最优解。

动态规划算法通常包括以下几个步骤:1. 确定状态和状态转移方程:首先需要确定问题的状态,然后建立状态之间的转移关系,也就是状态转移方程。

状态转移方程描述了问题的子问题之间的关系,是动态规划算法的核心。

2. 初始化:初始化动态规划数组,将初始状态下的值填入数组中。

3. 状态转移:利用状态转移方程计算出各个阶段的最优解,并将其存储在动态规划数组中。

4. 求解最优解:根据动态规划数组中存储的各个阶段的最优解,可以得到整体最优解。

Matlab是一种强大的计算软件,具有丰富的数值计算函数和可视化工具,非常适合实现动态规划算法。

下面以一个简单的背包问题为例,介绍如何在Matlab中实现动态规划算法。

假设有n件物品,每件物品的重量为w[i],价值为v[i]。

现在有一个容量为C的背包,问如何选择物品放入背包,使得背包中物品的总价值最大。

我们需要确定问题的状态和状态转移方程。

在这个问题中,我们可以定义状态dp[i][j]表示在前i件物品中选择若干个放入容量为j的背包中所能获得的最大价值。

状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])然后,我们可以利用Matlab实现这个动态规划算法,代码如下:```matlabfunction max_value = knapsack(w, v, C)n = length(w);dp = zeros(n+1, C+1);for i = 1:nfor j = 1:Cif j >= w(i)dp(i+1,j+1) = max(dp(i,j+1), dp(i,j-w(i)+1)+v(i));elsedp(i+1,j+1) = dp(i,j+1);endendendmax_value = dp(n+1,C+1);end```三、动态规划算法在实际问题中的应用动态规划算法在实际问题中有着广泛的应用,下面以路径规划问题为例,介绍动态规划算法的应用。

基于Matlab的动态规划算法的实现及应用

基于Matlab的动态规划算法的实现及应用

基于Matlab的动态规划算法的实现及应用动态规划算法是一种解决多阶段决策过程的优化问题的方法,它可以用于求解最优化问题、路径规划、序列匹配等多种应用场景。

在计算机科学领域,动态规划算法被广泛应用于图像处理、机器学习、自然语言处理等诸多领域中。

本文介绍了基于Matlab的动态规划算法的实现及其应用。

一、动态规划算法概述动态规划算法是一种通过将原问题分解成子问题来求解最终问题的优化方法。

它的核心思想是利用子问题的最优解来推导出原问题的最优解。

动态规划算法通常用于解决有重叠子问题和最优子结构性质的问题,这些问题的解可以通过递归地求解子问题而得到。

动态规划算法的一般步骤如下:1. 定义子问题:将原问题分解成若干子问题,确定子问题的状态和状态转移方程。

2. 利用子问题的最优解来递推原问题的最优解,并存储中间结果。

动态规划算法具有较强的通用性和灵活性,可以适用于多种不同类型的问题,如背包问题、最短路径问题、序列匹配问题等。

尤其在处理具有多阶段决策过程的问题时,动态规划算法能够有效地求解最优解。

二、Matlab中的动态规划算法实现Matlab是一种功能强大的科学计算软件,它提供了丰富的数值计算和数据可视化功能,也支持通过编程语言实现各种算法。

在Matlab中,可以通过编写脚本或函数来实现动态规划算法。

下面以一个经典的动态规划问题——斐波那契数列为例,介绍如何在Matlab中实现动态规划算法。

斐波那契数列是一个经典的递归算法问题,其定义如下:F(0) = 0F(1) = 1F(n) = F(n-1) + F(n-2),其中n>1我们可以用递归的方式来求解斐波那契数列:```matlabfunction result = fibonacci(n)if n == 0result = 0;elseif n == 1result = 1;elseresult = fibonacci(n-1) + fibonacci(n-2);endend```递归方法存在重复计算的问题,效率较低。

matlab求动态规划最优解

matlab求动态规划最优解

matlab求动态规划最优解求解步骤:(1)将过程划分为恰当的阶段。

(2)选择状态变量Xk,使它既能描述过程的状态,又满足无后效性,同时确定允许状态集合Xk。

(3)选择决策变量Uk,确定允许决策集合Uk(Xk)。

(4)写出状态转移方程。

(5)确定阶段指标Vk(xk,Wx)及指标函数Vkn的形式。

(6)写出基本方程即最优值函数满足的递归方程,以及端点条件。

例题:最短路线问题阶段按过程的演变划分,状态由各段的初始位置确定,决策为从各个状态出发的走向,即有Xk+1=Uk(Xk),阶段指标为相邻两段状态间的距离dk(Xk,Uk(Xk)),指标函数为阶段指标之和,最优值函数fk(Xk)是由出发Xk到终点的最短距离(或最小费用),基本方程为:fk(Xk)=min[dk(Xk,Uk(Xk))+fk+1(Xk+1)],k=n,n-1...,2,1,fn+1(Xn+1)=0利用这个模型可以算出例1的最短路线为AB1C2D1E2F2G,相应的最短距离为18。

动态规划的最优性原理:无论过去的状态跟决策如何,对前面的决策所形成的状态而言,后续决策必须构成最优策略。

对于动态规划而言,重要的并不是所谓的模板,比较重要的是在动态规划中,推导的思维方式。

在个人看来动态规划实际就是编程解决大量数据的决策问题的一种重要编程理念和编程思路。

在动态规划的思路即是反向确立后三次状态改变的两次决策量的最优决策,确定了该最优决策之后每次反向推导一步,穷举倒数第三次的不同决策所带来的状态变化量,与之前所得到的的最优决策量进行加成处理(可能加和也可能相减或相乘相除,具体视情况而定),将所得后三次决策的总决策量对比选取最优值,作为后四步的最优状态变化值。

先前重复推导,最终得到该问题的最优策略。

Matlab中的动态规划方法与示例分析

Matlab中的动态规划方法与示例分析

Matlab中的动态规划方法与示例分析引言动态规划是一种解决多阶段决策问题的优化方法,它通过将问题分解为若干阶段,在每个阶段中做出最优决策,从而得到整体最优解。

Matlab作为一种强大的计算工具,提供了丰富的函数和工具箱来支持动态规划的求解。

本文将通过介绍动态规划的基本原理和算法,结合几个实际示例,展示在Matlab中如何应用动态规划方法解决实际问题。

一、动态规划的基本原理动态规划的基本原理是通过自底向上的递推关系,将一个大问题分解为若干个子问题,并将每个子问题的最优解存储起来,以便在解决更大的问题时进行查找和利用。

具体地,动态规划有三个关键要素:最优子结构、边界条件和状态转移方程。

最优子结构是指一个问题的最优解可以由其子问题的最优解组成。

它是动态规划的关键特点,也是将问题分解为子问题并递归求解的基础。

边界条件是指问题的边界情况和初始状态,可以是递归求解的终止条件。

状态转移方程是指描述子问题之间关系的方程,它将子问题的最优解与大问题的最优解联系起来。

在求解过程中,通过将问题划分为子问题并依次求解,最终得到整体最优解。

二、动态规划的算法实现在Matlab中,可以通过定义递归函数或使用循环结构来实现动态规划算法。

递归函数的实现方式简单直观,但由于递归调用的开销较大,可能导致算法的效率较低。

循环结构的实现方式相对复杂,但可以通过数组或矩阵来存储子问题的最优解,以减少重复计算,提高算法的效率。

在实际应用中,动态规划可以通过以下步骤来实现:1. 确定问题的最优子结构、边界条件和状态转移方程。

2. 定义数组或矩阵来存储子问题的最优解。

3. 利用循环结构或递归函数,按照自底向上的顺序计算和存储子问题的最优解。

4. 根据存储的子问题最优解,计算并返回大问题的最优解。

三、动态规划实例分析1. 背包问题背包问题是动态规划中经典的例子,它的目标是在限制总重量的情况下,选择一些物品放入背包,使得背包中物品的总价值最大化。

动态规划MATLab.

动态规划MATLab.

称为 k子策略。记为 pk,n , 即
pk,n sk uk sk ,uk1 sk1 , ,un sn
允许策略集:在实际问题中,可供选择的策略所在 的范围,常记为 P。
五、状态转移方程 状态转移方程:描述系统由一个阶段到下一个阶段
的状态转移规律。例如,设系统第k阶段的
E, 相应的决策为 u3 C1 D1. 同理
f3
C2


min
d3 d3
C2 C2
, ,
D1 D2
f4 f4
D1

D2



min
4 3

4
3


6
即C2 到终点E的最短距离为6,其路径为C2 D2 E,
相应的决策为u3 C2 D2.
如案例中的多阶段决策问题可划分为四个阶
段,记为 k 1, 2,3, 4。
二、状态
状态:表示系统每个阶段开始时所处的自然状况或
客观条件。如案例中, 状态就是某阶段的出 发位置,它既是该阶段某支路的起点,又是前 一阶段某支路的终点。第一个阶段有一个状态
即为点A,第二个阶段有三个状态B1, B2, B3。
态 B1出发,则可做出三种不同决策,其允许决策集
合为 D2 B1 C1,C2,C3, 若选定的下一个状态是 C2, 则 u2 B1 C2.
四、策略
策略:从初始阶段到最终阶段,每个阶段均有一决 策,各阶段决策形成一个决策序列,此序列 称为系统的一个策略。
最优策略:使系统达到最优效果的策略。 全过程策略:对于具有几个阶段的多阶段决策问题,
迭代后有如下结果:
Feasible solution found at iteration:

最新2019-动态规划MATLab-PPT课件共33页

最新2019-动态规划MATLab-PPT课件共33页
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
最新2019-动态规划 MATLab-PPT课件
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯

matlab 动态规划讲义

matlab 动态规划讲义

第四章动态规划§1 引言1.1 动态规划的发展及研究内容动态规划(dynamic programming)是运筹学的一个分支,是求解多阶段决策问题的最优化方法。

20世纪50年代初R. E. Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优性原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法—动态规划。

1957年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。

动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。

例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。

虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。

应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是一种特殊算法(如线性规划是一种算法)。

因而,它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。

因此,在学习时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的技巧去求解。

例1 最短路线问题下面是一个线路网,连线上的数字表示两点之间的距离(或费用)。

试寻求一条由A到G距离最短(或费用最省)的路线。

例2 生产计划问题工厂生产某种产品,每单位(千件)的成本为1(千元),每次开工的固定成本为3(千元),工厂每季度的最大生产能力为6(千件)。

经调查,市场对该产品的需求量第一、二、三、四季度分别为2,3,2,4(千件)。

如果工厂在第一、二季度将全年的需求都生产出来,自然可以降低成本(少付固定成本费),但是对于第三、四季度才能上市的产品需付存储费,每季每千件的存储费为0.5(千元)。

动态规划讲义 含matlab算法

动态规划讲义 含matlab算法

例 3 图 货郎担问题Fra bibliotek例 4 图 旅行路线图
【分析】这两个问题看起来很非常相似,但本质上是完全不同的。为了方便讨论,可 以将每个顶点标记号码。由于必然经过最右边的顶点 7,所以一条路(P1-P2)可以看做两条 路(P1-7)与(P2-7)的结合。因此,这个题目的状态可以用两条道路结合的形式表示。可以 把这些状态中,两条路中起始顶点相同的状态归于一个阶段,设为阶段[P1,P2]。
S2: K=2,有: F2(B1)=min{d2(B1,C1)+F3(C1),d2(B1,C2)+f3(C2),d2(B1,C3)+F3(C3)}=min {9,12,14}=9
F2(m)=min{d2(B2,c2)+f3(C2),d2(B2,C4)+F3(C4)}=min{16,10}=10
S4:k=1,有: F1(A)=min{d1(A,B1)+F2(B1),d1(A,B2)+F2(B2)}=min{13,13}=13
在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系 的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。因此各个 阶段决策的选取不能任意确定,它依赖于当前面临的状态,又影响以后的发展。当各个阶段 决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线。这种把一个 问题看做是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题称为 多阶段决策最优化问题。
最优化原理与无后效性
上面已经介绍了动态规划模型的基本组成,现在需要解决的问题是:什么样的“多阶段 决策问题”才可以采用动态规划的方法求解?
一般来说,能够采用动态规划方法求解的问题必须满足.最优化原理和.无后效性原则。

基于Matlab的动态规划程序实现

基于Matlab的动态规划程序实现

动态规划方法的Matlab 实现与应用动态规划(Dynamic Programming)是求解决策过程最优化的有效数学方法,它是根据“最优决策的任何截断仍是最优的”这最优性原理,通过将多阶段决策过程转化为一系列单段决策问题,然后从最后一段状态开始逆向递推到初始状态为止的一套最优化求解方法。

1.动态规划基本组成(1) 阶段 整个问题的解决可分为若干个阶段依次进行,描述阶段的变量称为阶段变量,记为k(2) 状态 状态表示每个阶段开始所处的自然状况或客观条件,它描述了研究问题过程的状况。

各阶段状态通常用状态变量描述,用k x 表示第k 阶段状态变量,n 个阶段决策过程有n+ 1个状态。

(3) 决策 从一确定的状态作出各种选择从而演变到下一阶段某一状态,这种选择手段称为决策。

描述决策的变量称为决策变量,决策变量限制的取值范围称为允许决策集合。

用()k k u x 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数。

用()k k D x Dk(xk)表示k x 的允许决策的集合。

(4) 策略 每个阶段的决策按顺序组成的集合称为策略。

由第k 阶段的状态k x 开始到终止状态的后部子过程的策略记为{}11(),(),,()k k k k n n u x u x u x ++ 。

可供选择的策略的范围称为允许策略集合,允许策略集合中达到最优效果的策略称为最优策略。

从初始状态*11()x x =出发,过程按照最优策略和状态转移方程演变所经历的状态序列{}****121,,,,n n x x x x + 称为最优轨线。

(5) 状态转移方程 如果第k 个阶段状态变量为k x ,作出的决策为k u ,那么第k+ 1阶段的状态变量1k x +也被完全确定。

用状态转移方程表示这种演变规律,记为1(,)k k k x T x u +=。

(6) 指标函数 指标函数是系统执行某一策略所产生结果的数量表示,是衡量策略优劣的数量指标,它定义在全过程和所有后部子过程上,用()k k f x 表示。

动态规划MATLAB求解

动态规划MATLAB求解

例1系统可靠性问题某电子设备由5种元件1,2,3,4,5组成,这5中元件的可靠性分别为0.9,0.8,0.5,0.7,0.6。

为保证电子设备系统的可靠性,同种元件可并联多个。

现在允许设备使用元件的总数为15个,问如何设计使设备可靠性最大的元件安排方案。

解:将该问题看成一个5阶段动态规划问题,每个元件的配置看成一个阶段。

记:x k—配置第k个元件时可用元件的总数(状态变量);u—第k个元件并联的数目(决策变量);kc,—第k个兀件的可靠性;阶段指标函数为:v k(x k,u k)=l-(l-c k)uk;状态转移方程为:kkkkk x=x-u;基本方程为k+1kkf(x,u)=v(x,u),G(a,b)=a-b444444kf(x,u)=min iG(v(x,u),f(x))1u G D(x)J,k=4,3,2,1kkk kkkkk+1k+1kkk根据上面的阶段指标函数,状态转移方程和基本方程,写出下面的4个M函数以备计算调用,函数意义见主函数说明(1)%DecisFl.m(2)SubObjFl.m(3)TransFl.mI、”.,,[□”■.»I-.*I I".»111ifI.”HI.|KI."i....”L.,X|TrsTJ|Ln8GQL□[61®2345c7H.(4) ObjFl.mV.Editor-C=\.Fxngru Fil es ^VATUE ^K2aHffb\nrlE\xiieKiXObjF1-■(5) 调用主程序计算dynexamplel.m3(Z=x2';X t —[x :L^:Jj倉Edlitor —C=\Pro^r au.FileskUTLABkR.2OO6<b^.v0rk\z-LLEixi\drj3i?ii :«pl«1・■口回区1E.L 3.«匚S,a 匚21T KU*匸u 直z ■k二a ■|y”1与|眶 ■斗兔|旦寢丸■吐:E田m LI 鬥二□咱tS iH1j4|+1■■M .•:.-iolc>.c L HMF ; Fl=]5;KL5-t-5&件盘L=[fcl:riAFi^OfclGi S (1^】.1:I].|dyv创4npl4L.r-[p,f]=■DanicF]''E:\J-bQbjF I'TratlsFL','DbJFL')>■lyTipr^c n x H AC L S FL.T>>:)ObJIL ns讯STibObjr]m N TrorisFL.r-:■:wi.;pt(6)主程序dynprog.m(7)MATLAB主窗口运行程序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章动态规划§1 引言1.1 动态规划的发展及研究内容动态规划(dynamic programming)是运筹学的一个分支,是求解多阶段决策问题的最优化方法。

20世纪50年代初R. E. Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优性原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法—动态规划。

1957年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。

动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。

例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。

虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。

应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是一种特殊算法(如线性规划是一种算法)。

因而,它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。

因此,在学习时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的技巧去求解。

例1 最短路线问题下面是一个线路网,连线上的数字表示两点之间的距离(或费用)。

试寻求一条由A到G距离最短(或费用最省)的路线。

例2 生产计划问题工厂生产某种产品,每单位(千件)的成本为1(千元),每次开工的固定成本为3(千元),工厂每季度的最大生产能力为6(千件)。

经调查,市场对该产品的需求量第一、二、三、四季度分别为2,3,2,4(千件)。

如果工厂在第一、二季度将全年的需求都生产出来,自然可以降低成本(少付固定成本费),但是对于第三、四季度才能上市的产品需付存储费,每季每千件的存储费为0.5(千元)。

还规定年初和年末这种产品均无库存。

试制定一个生产计划,即安排每个季度的产量,使一年的总费用(生产成本和存储费)最少。

1.2 决策过程的分类根据过程的时间变量是离散的还是连续的,分为离散时间决策过程(discrete-time decision process )和连续时间决策过程(continuous-time decision process );根据过程的演变是确定的还是随机的,分为确定性决策过程(deterministic decision process )和随机性决策过程(stochastic decision process ),其中应用最广的是确定性多阶段决策过程。

§2 基本概念、基本方程和计算方法2.1 动态规划的基本概念和基本方程一个多阶段决策过程最优化问题的动态规划模型通常包含以下要素。

2.1.1 阶段阶段(step)是对整个过程的自然划分。

通常根据时间顺序或空间顺序特征来划分阶段,以便按阶段的次序解优化问题。

阶段变量一般用n k ,,2,1 =表示。

在例1中由A 出发为1=k ,由)2,1(=i B i 出发为2=k ,依此下去从)2,1(=i F i 出发为6=k ,共6=n 个阶段。

在例2中按照第一、二、三、四季度分为4,3,2,1=k ,共四个阶段。

2.1.2 状态状态(state )表示每个阶段开始时过程所处的自然状况。

它应能描述过程的特征并且无后效性,即当某阶段的状态变量给定时,这个阶段以后过程的演变与该阶段以前各阶段的状态无关。

通常还要求状态是直接或间接可以观测的。

描述状态的变量称状态变量(state variable )。

变量允许取值的范围称允许状态集合(set of admissible states)。

用k x 表示第k 阶段的状态变量,它可以是一个数或一个向量。

用k X 表示第k 阶段的允许状态集合。

在例1中2x 可取21,B B ,或将i B 定义为)2,1(=i i ,则12=x 或2,而}2,1{2=X 。

n 个阶段的决策过程有1+n 个状态变量,1+n x 表示n x 演变的结果。

在例1中7x 取G ,或定义为1,即17=x 。

根据过程演变的具体情况,状态变量可以是离散的或连续的。

为了计算的方便有时将连续变量离散化;为了分析的方便有时又将离散变量视为连续的。

状态变量简称为状态。

2.1.3 决策当一个阶段的状态确定后,可以作出各种选择从而演变到下一阶段的某个状态,这种选择手段称为决策(decision ),在最优控制问题中也称为控制(control )。

描述决策的变量称决策变量(decision variable ),变量允许取值的范围称允许决策集合(set of admissible decisions )。

用)(k k x u 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数,用)(k k x U 表示k x 的允许决策集合。

在例1中)(12B u 可取21,C C 或3C ,可记作3,2,1)1(2=u ,而}3,2,1{)1(2=U 。

决策变量简称决策。

2.1.4 策略决策组成的序列称为策略(policy )。

由初始状态1x 开始的全过程的策略记作)(11x p n ,即)}(,),(),({)(221111n n n x u x u x u x p =.由第k 阶段的状态k x 开始到终止状态的后部子过程的策略记作)(k kn x p ,即)}(,),({)(n n k k k kn x u x u x p =,1,,2,1-=n k .类似地,由第k 到第j 阶段的子过程的策略记作)}(,),({)(j j k k k kj x u x u x p =.可供选择的策略有一定的范围,称为允许策略集合(set of admissible policies),用)(),(),(11k kj k kn n x P x P x P 表示。

2.1.5. 状态转移方程在确定性过程中,一旦某阶段的状态和决策为已知,下阶段的状态便完全确定。

用状态转移方程(equation of state transition )表示这种演变规律,写作.,,2,1),,(1n k u x T x k k k k ==+ (1)在例1中状态转移方程为)(1k k k x u x =+。

2.1.6. 指标函数和最优值函数指标函数(objective function)是衡量过程优劣的数量指标,它是定义在全过程和所有后部子过程上的数量函数,用),,,,(11++n k k k kn x x u x V 表示,n k ,,2,1 =。

指标函数应具有可分离性,即kn V 可表为n k k k V u x 1,,+的函数,记为)),,,(,,(),,,,(1211111+++++++=n k k k n k k k k n k k k kn x x u x V u x x x u x V ϕ并且函数kϕ对于变量n k V 1+是严格单调的。

过程在第j 阶段的阶段指标取决于状态j x 和决策j u ,用),(j j j u x v 表示。

指标函数由),,2,1(n j v j =组成,常见的形式有:阶段指标之和,即∑=++=nk j j j j n k k k kn u x v x x u x V ),(),,,,(11 ,阶段指标之积,即∏=++=nk j j j j n k k k kn u x v x x u x V ),(),,,,(11 ,阶段指标之极大(或极小),即),((min)max ),,,,(11j j j nj k n k k k kn u x v x x u x V ≤≤++= .这些形式下第k 到第j 阶段子过程的指标函数为),,,(11++j k k k kj x x u x V 。

根据状态转移方程指标函数kn V 还可以表示为状态k x 和策略kn p 的函数,即),(kn k kn p x V 。

在k x 给定时指标函数kn V 对kn p 的最优值称为最优值函数(optimal value function ),记为)(k k x f ,即),(opt )()(kn k kn x P p k k p x V x f k kn kn ∈=,其中opt 可根据具体情况取max 或min 。

2.1.7 最优策略和最优轨线使指标函数kn V 达到最优值的策略是从k 开始的后部子过程的最优策略,记作},,{***n k kn u u p =。

*1n p 是全过程的最优策略,简称最优策略(optimal policy )。

从初始状态)(*11x x =出发,过程按照*1n p 和状态转移方程演变所经历的状态序列},,,{*1*2*1+n x x x 称最优轨线(optimal trajectory )。

2.1.8 递归方程 如下方程称为递归方程⎪⎩⎪⎨⎧=⊗==++∈++1,,)},(),({opt )(10)(11)(11 n k x f u x v x f x f k k k k k x U u k k n n k k k 或(2)在上述方程中,当⊗为加法时取0)(11=++k n x f ;当⊗为乘法时,取1)(11=++k n x f 。

动态规划递归方程是动态规划的最优性原理的基础,即:最优策略的子策略,构成最优子策略。

用状态转移方程(1)和递归方程(2)求解动态规划的过程,是由1+=n k 逆推至1=k ,故这种解法称为逆序解法。

当然,对某些动态规划问题,也可采用顺序解法。

这时,状态转移方程和递归方程分别为:nk u x T x k k k k ,,1),,(111 ==+++,⎪⎩⎪⎨⎧=⊗==+++∈+++++n k x f u x v x f x f k k k k k x U u k k k k k ,,1)},(),({opt )(10(111)(1111111 或)纵上所述,如果一个问题能用动态规划方法求解,那么,我们可以按下列步骤,首先建立起动态规划的数学模型:(i )将过程划分成恰当的阶段。

(ii )正确选择状态变量k x ,使它既能描述过程的状态,又满足无后效性,同时确定允许状态集合k X 。

(iii )选择决策变量k u ,确定允许决策集合)(k k x U 。

(iv )写出状态转移方程。

(v )确定阶段指标),(k k k u x v 及指标函数kn V 的形式(阶段指标之和,阶段指标之积,阶段指标之极大或极小等)。

相关文档
最新文档