高中文科数学练习 第2章第1节 函数及其表示含解析人教版A版

合集下载

高中数学必修1(人教A版)第二章基本初等函数2-1知识点总结 含同步练习题及答案

高中数学必修1(人教A版)第二章基本初等函数2-1知识点总结 含同步练习题及答案

(2 x )2 + 2 x − 6 = 0,
令 t = 2 x ,则 t > 0 ,所以
t 2 + t − 6 = 0.
解得 t = 2 或 t = −3.因为 t > 0 ,所以 t = 2 ,即 2 x = 2 ,所以 x = 1. 若 a−5x > ax+7 (a > 0 且 a ≠ 1),求 x 的取值范围.
< 1 的解为
(
)
B.−2 < t < 1 C.−2 < t < 2 D.−3 < t < 2
A.1 < t < 2
答案: A 解析: 若不等式
x2 − 2ax + a > 0,对 x ∈ R 恒成立,则 Δ = 4a2 − 4a < 0 ∴ 0 < a < 1 又 2 a2t+1 < at +2t−3 < 1 ,则 2t + 1 > t 2 + 2t − 3 > 0 t + 1 > t 2 + 2t − 3 ∴ 1 < t < 2 . 即 { 22 t + 2t − 3 > 0
2
3 3 ] 上是增函数,在 [ , +∞) 上是减函数,所以 2 2 3 3 −x2 +3x+2 在 f (x) = 2 (−∞, ] 上是增函数,在 [ , +∞) 上是减函数. 2 2 x (2)函数的定义域为 R,令 t = 2 (t > 0),则 y = (2 x )2 − 2 × 2 x + 5 = t 2 − 2t + 5 = (t − 1)2 + 4,根据该函数的图象可得,y ∈ [4, +∞). 当 t ≥ 1 时,y = (t − 1)2 + 4 在 [1, +∞) 上为增函数,又 2 x ≥ 1 ,即 x ≥ 0,且 t = 2 x 在 [0, +∞) 上为增函数,由复合函数的单调性的判断方法知,原函数在 [0, +∞) 上是增函数.同 理,原函数在 (−∞, 0] 上为增函数.

新人教A版高中数学【必修1】 1.2.2第1课时函数的表示法课时作业练习含答案解析

新人教A版高中数学【必修1】 1.2.2第1课时函数的表示法课时作业练习含答案解析

1.2.2 函数的表示法 第1课时 函数的表示法课时目标 1.掌握函数的三种表示方法——解析法、图象法、列表法.2.在实际情境中,会根据不同的需要选择恰当方法表示函数.函数的三种表示法(1)解析法——用____________表示两个变量之间的对应关系; (2)图象法——用______表示两个变量之间的对应关系; (3)列表法——列出______来表示两个变量之间的对应关系.一、选择题1.一个面积为100 cm 2的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为( )A .y =50x (x >0)B .y =100x (x >0)C .y =50x (x >0)D .y =100x (x >0)2.一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则正确论断的个数是( )A .0B .1C .2D .3 1xA.1xB.1x -1C.11-xD.1x -1 4.已知f (x )=2x +3,g (x +2)=f (x ),则g (x )等于( ) A .2x +1 B .2x -1 C .2x -3 D .2x +7 5.若g (x )=1-2x ,f [g (x )]=1-x 2x 2,则f (12)的值为( ) A .1 B .15 C .4 D .306.在函数y =|x |(x ∈[-1,1])的图象上有一点P (t ,|t |),此函数与x 轴、直线x =-1及x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )二、填空题7.一个弹簧不挂物体时长12 cm ,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例.如果挂上3 kg 物体后弹簧总长是13.5 cm ,则弹簧总长y (cm)与所挂物体质量x (kg)之间的函数关系式为_________________________________________________________ _______________. 8.已知函数y =f (x )满足f (x )=2f (1x )+x ,则f (x )的解析式为____________.9.已知f (x )是一次函数,若f (f (x ))=4x +8,则f (x )的解析式为__________________. 三、解答题10.已知二次函数f (x )满足f (0)=f (4),且f (x )=0的两根平方和为10,图象过(0,3)点,求f (x )的解析式.11.画出函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题: (1)比较f (0)、f (1)、f (3)的大小; (2)若x 1<x 2<1,比较f (x 1)与f (x 2)的大小; (3)求函数f (x )的值域.能力提升12.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6·时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A .y =[x10] B .y =[x +310] C .y =[x +410] D .y =[x +510]13.设f (x )是R 上的函数,且满足f (0)=1,并且对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),求f (x )的解析式.1.如何作函数的图象一般地,作函数图象主要有三步:列表、描点、连线.作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式(可能有的要表示为分段函数),再列表描出图象,并在画图象的同时注意一些关键点,如与坐标轴的交点、分段函数的区间端点等.2.如何求函数的解析式求函数的解析式的关键是理解对应关系f的本质与特点(对应关系就是对自变量进行对应处理的操作方法,与用什么字母表示无关),应用适当的方法,注意有的函数要注明定义域.主要方法有:代入法、待定系数法、换元法、解方程组法(消元法).第1课时 函数的表示法知识梳理(1)数学表达式 (2)图象 (3)表格 作业设计1.C [由x +3x2·y =100,得2xy =100. ∴y =50x (x >0).]2.B [由题意可知在0点到3点这段时间,每小时进水量为2,即2个进水口同时进水且不出水,所以①正确;从丙图可知3点到4点水量减少了1,所以应该是有一个进水口进水,同时出水口也出水,故②错;当两个进水口同时进水,出水口也同时出水时,水量保持不变,也可由题干中的“至少打开一个水口”知③错.]3.B [令1x =t ,则x =1t ,代入f (1x )=x1-x ,则有f (t )=1t1-1t=1t -1,故选B.]4.B [由已知得:g (x +2)=2x +3,令t =x +2,则x =t -2,代入g (x +2)=2x +3,则有g (t )=2(t -2)+3=2t -1,故选B.] 5.B [令1-2x =12,则x =14, ∴f (12)=1-142142=15.]6.B [当t <0时,S =12-t 22,所以图象是开口向下的抛物线,顶点坐标是(0,12);当t >0时,S =12+t 22,开口是向上的抛物线,顶点坐标是(0,12).所以B 满足要求.] 7.y =12x +12解析 设所求函数解析式为y =kx +12,把x =3,y =13.5代入,得13.5=3k +12,k =12. 所以所求的函数解析式为y =12x +12. 8.f (x )=-x 2+23x (x ≠0) 解析 ∵f (x )=2f (1x )+x ,① 111由①②消去f (1x ),得f (x )=-23x -x3, 即f (x )=-x 2+23x (x ≠0). 9.f (x )=2x +83或f (x )=-2x -8 解析 设f (x )=ax +b (a ≠0), 则f (f (x ))=f (ax +b )=a 2x +ab +b .∴⎩⎪⎨⎪⎧a 2=4ab +b =8,解得⎩⎪⎨⎪⎧a =2b =83或⎩⎪⎨⎪⎧a =-2b =-8. 10.解 设f (x )=ax 2+bx +c (a ≠0).由f (0)=f (4)知⎩⎪⎨⎪⎧f 0=c ,f 4=16a +4b +c ,f 0=f 4,得4a +b =0.① 又图象过(0,3)点, 所以c =3.②设f (x )=0的两实根为x 1,x 2, 则x 1+x 2=-b a ,x 1·x 2=ca .所以x 21+x 22=(x 1+x 2)2-2x 1x 2=(-b a )2-2·c a =10. 即b 2-2ac =10a 2.③由①②③得a =1,b =-4,c =3.所以f (x )=x 2-4x +3. 11.解 因为函数f (x )=-x 2+2x +3的定义域为R ,列表:(1)根据图象,容易发现f (0)=3,f (1)=4,f (3)=0, 所以f (3)<f (0)<f (1).(3)根据图象,可以看出函数的图象是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4].12.B [方法一 特殊取值法,若x =56,y =5,排除C 、D ,若x =57,y =6,排除A ,所以选B. 方法二 设x =10m +α(0≤α≤9),0≤α≤6时, [x +310]=[m +α+310]=m =[x 10],当6<α≤9时,[x +310]=[m +α+310]=m +1=[x10]+1, 所以选B.]13.解 因为对任意实数x ,y ,有 f (x -y )=f (x )-y (2x -y +1), 所以令y =x ,有f (0)=f (x )-x (2x -x +1), 即f (0)=f (x )-x (x +1).又f (0)=1, ∴f (x )=x (x +1)+1=x 2+x +1.。

新课标2022版高考数学总复习第二章函数第一节函数及其表示练习含解析理

新课标2022版高考数学总复习第二章函数第一节函数及其表示练习含解析理

高考数学总复习:第一节 函数及其表示学习要求:1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用.1.函数与映射的概念函数映射两集合A 、B设A 、B 是两个① 非空数集 设A 、B 是两个② 非空集合对应关系f :A →B按照某种确定的对应关系f ,使对于集合A中的③ 任意 一个数x ,在集合B 中都有④ 唯一确定 的数f (x )与之对应按某种确定的对应关系f ,使对于集合A 中的⑤ 任意 一个元素x ,在集合B 中都有⑥ 唯一确定 的元素y 与之对应名称 称f :A →B 为从集合A 到集合B 的一个函数 称对应f :A →B 为从集合A 到集合B 的一个映射记法y =f (x ),x ∈A 对应f :A →B▶提醒 判断一个对应关系是不是函数关系,就看这个对应关系是否满足函数定义中“定义域内的任意一个自变量的值都有唯一确定的函数值”这个核心点.2.函数的有关概念 (1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的⑦ 定义域 ;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的⑧ 值域 .(2)函数的三要素:⑨ 定义域 、值域和对应关系.(3)相等函数:若两个函数的⑩ 定义域 相同,且 对应关系 完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示方法: 解析法 、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.▶提醒一个分段函数的解析式要把每一段写在一个大括号内,各段函数的定义域不可以相交.知识拓展1.常见函数的定义域(1)分式函数中分母不等于0.(2)偶次根式函数的被开方式大于等于0.(3)一次函数、二次函数的定义域为R.(4)y=a x(a>0且a≠1),y=sin x,y=cos x的定义域均为R.(5)y=tan x的定义域为{x|x∈R且x≠xπ+π2,x∈Z}.(6)函数f(x)=x0的定义域为{x|x∈R且x≠0}.(7)y=log a x(a>0,且a≠1)的定义域为{x|x>0}.2.基本初等函数的值域(1)y=kx+b(k≠0)的值域是R.(2)y=ax2+bx+c(a≠0)的值域:当a>0时,值域为[4xx-x24x ,+∞);当a<0时,值域为(-∞,4xx-x24x].(3)y=xx(k≠0)的值域是{y|y≠0}.(4)y=a x(a>0且a≠1)的值域是(0,+∞).(5)y=log a x(a>0且a≠1)的值域是R.1.判断正误(正确的打“√”,错误的打“✕”).(1)函数y=1与y=x0是同一个函数.()(2)f(x)=√x-3+√2-x是一个函数.()(3)若两个函数的定义域与值域相同,则这两个函数相等.()(4)函数y=f(x)的图象与直线x=1的交点最多有1个.()答案(1)✕(2)✕(3)✕(4)√2.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是 ( )答案 B3.(新教材人教A 版必修第一册P65例2改编)函数f (x )=√2x的定义域为 ( )A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞) 答案 A 要使f (x )=2x有意义,需满足2x-1>0,解得x >0,∴函数f (x )=2x的定义域为(0,+∞),故选A.4.(2020山东威海一中期中)已知函数f (x )的定义域为(-1,0),则函数f (2x -2)的定义域为( ) A.(-1,1) B.(-1,-12) C.(-1,0) D.(12,1)答案 D ∵f (x )的定义域为(-1,0),∴-1<2x -2<0,解得12<x <1,∴函数f (2x -2)的定义域为(12,1),故选D .5.已知f (x )是一次函数,且f [f (x )]=x +2,则f (x )= ( )A.x +1B.2x -1C.-x +1D.x +1或-x -1答案 A 因为f (x )是一次函数,所以可设f (x )=kx +b (k ≠0).由f [f (x )]=x +2得k (kx +b )+b =x +2,即k 2x +kb +b =x +2,所以k 2=1,kb +b =2,解得k =1,b =1,则f (x )=x +1.故选A.函数、映射概念的理解典例1 (1)给出下列四个对应:①A =R,B =R,对应关系f :x →y ,y =1x +1,x ∈A ,y ∈B ;②A ={x |12x ∈N *},B ={x |x =1x,x ∈N *},对应关系f :a →b ,b =1x;③A ={x |x ≥0},B =R,对应关系f :x →y ,y 2=x ,x ∈A ,y ∈B ;④A ={x |x 是平面α内的矩形},B ={y |y 是平面α内的圆},对应关系f :每一个矩形都对应它的外接圆. 其中是从A 到B 的映射的为( )A.①③B.②④C.①④D.③④ (2)下列函数中,与函数y =x +1是相等函数的是 ( )A.y =(√x +1)2B.y =√x 33+1C.y =x 2x+1 D.y =√x 2+1答案 (1)B (2)B解析 (1)对于①,当x =-1时,y 的值不存在,所以①不是从A 到B 的映射;对于②,A ,B 是两个集合,分别用列举法表述为A ={2,4,6,…},B ={1,12,13,14,…},由对应关系f :a →b ,b =1x 知,②是从A 到B 的映射;③不是从A 到B 的映射,如A 中的元素1对应B 中两个元素±1;④是从A 到B 的映射.(2)对于A,函数y =(√x +1)2的定义域为{x |x ≥-1},与函数y =x +1的定义域不同,不是相等函数;对于B,两个函数的定义域和对应关系都相同,是相等函数;对于C,函数y =x 2x +1的定义域为{x |x ≠0},与函数y =x +1的定义域不同,不是相等函数;对于D,两个函数的定义域相同,但对应关系不同,不是相等函数,故选B .名师点评1.定义域和值域都相同的两个函数不一定是相等函数.2.判断一个从集合A 到集合B 的对应是不是一个函数(映射)的依据可归纳为可以一对一,也可以多对一,但不能一对多.1.下列对应关系:①A ={1,4,9},B ={-3,-2,-1,1,2,3}, f :x →x 的平方根; ②A =R,B =R, f :x →x 的倒数; ③A =R,B =R, f :x →x 2-2;④A ={-1,0,1},B ={-1,0,1}, f :x →x 2. 其中是A 到B 的映射的是 ( )A.①③B.②④C.③④D.②③ 答案 C2.下列四组函数中,表示相等函数的一组是 ( )A.f (x )=|x |,g (x )=√x 2B.f (x )=√x 2,g (x )=(√x )2C.f (x )=x 2-1x -1,g (x )=x +1D.f (x )=√x +1·√x -1,g (x )=√x 2-1 答案 A函数的定义域角度一 具体函数的定义域典例2 (1)函数f (x )=√x +1+lg(6-3x )的定义域为 ( )A.(-∞,2)B.(2,+∞)C.[-1,2)D.[-1,2] (2)函数f (x )=√4-|x |+lgx 2-5x +6x -3的定义域为 ( )A.(2,3)B.(2,4]C.(2,3)∪(3,4]D.(-1,3)∪(3,6] 答案 (1)C (2)C解析 (1)要使函数f (x )=√x +1+lg(6-3x )有意义,则{x +1≥0,6-3x >0,即-1≤x <2.故函数f (x )的定义域为[-1,2).(2)要使函数f (x )有意义,需满足{4-|x |≥0,x 2-5x +6x -3>0,即{|x |≤4,(x -3)(x -2)x -3>0,解得2<x <3或3<x ≤4,故f (x )的定义域为(2,3)∪(3,4].角度二 已知函数定义域,求参数的取值范围典例3 (1)(2019河北衡水联考)若函数y =xx -1xx 2+4xx +3的定义域为R,则实数m 的取值范围是 ( )A.(0,34]B.(0,34)C.[0,34]D.[0,34)(2)若函数f (x )=√xx 2+xxx +x 的定义域为{x |1≤x ≤2},则a +b 的值为 . 答案 (1)D (2)-92解析 (1)要使函数的定义域为R, 则mx 2+4mx +3≠0恒成立, ①当m =0时,显然满足条件; ②当m ≠0时,由Δ=(4m )2-4m ×3<0, 得0<m <34. 综上可知,0≤m <34.(2)函数f (x )=√xx 2+xxx +x 的定义域是不等式ax 2+abx +b ≥0的解集.由题意知不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2}, 所以{x <0,1+2=-x ,1×2=xx,解得{x =-32,x =-3, 所以a +b =-32-3=-92. 角度三 抽象函数的定义域典例4 已知函数f (x )的定义域是[0,2],则函数g (x )=f (x +12)+f (x -12)的定义域是 .答案 [12,32]解析 因为函数f (x )的定义域是[0,2],所以函数g (x )=f (x +12)+f (x -12)中的自变量x 需要满足{0≤x +12≤2,0≤x -12≤2,解得12≤x ≤32,所以函数g (x )的定义域是[12,32]. ◆变式探究 若函数y =f (x )的定义域是[0,2],则函数g (x )=x (2x )x -1的定义域是 .答案 [0,1)解析 由题意得{0≤2x ≤2,x -1≠0,解得0≤x <1,所以g (x )的定义域为[0,1).名师点评简单函数定义域的类型及求法(1)已知函数的解析式,构造使解析式有意义的不等式(组)求解. (2)抽象函数:①若已知函数f (x )的定义域为[a ,b ],则函数f [g (x )]的定义域由不等式a ≤g (x )≤b 求出; ②若已知函数f [g (x )]的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.1.(1)函数f (x )=√2x -1-1的定义域是 . (2)函数f (x )=(x -12)0√x +2的定义域是 .答案 (1)(1,3] (2)(-2,12)∪(12,+∞) 2.若函数y =的定义域为R,则实数a 的取值范围是 .答案 [0,12)解析 由题意得ax 2-4ax +2>0恒成立, 则a =0或{x >0,x =(-4x )2-4×x ×2<0,解得0≤a <12.3.已知函数y =f (x 2-1)的定义域为[0,2],则函数g (x )=x (2x )x -1的定义域是 .答案 [-12,1)∪(1,32]解析 因为y =f (x 2-1)的定义域为[0,2],所以x ∈[0,2],x 2-1∈[-1,3],所以{-1≤2x ≤3,x -1≠0,解得-12≤x ≤32且x ≠1,所以函数g (x )的定义域是[-12,1)∪(1,32].函数的解析式典例5 (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ). (2)已知函数f (x )满足f (-x )+2f (x )=2x,求f (x ). 解析 (1)解法一(待定系数法):因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c.因为f (2x +1)=4x 2-6x +5,所以{4x =4,4x +2x =-6,x +x +x =5,解得{x =1,x =-5,x =9,所以f (x )=x 2-5x +9(x ∈R). 解法二(换元法): 令2x +1=t (t ∈R),则x =x -12,所以f (t )=4(x -12)2-6·x -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R).解法三(配凑法):因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)(解方程组法)由f (-x )+2f (x )=2x①, 得f (x )+2f (-x )=2-x②,①×2-②得3f (x )=2x +1-2-x,即f (x )=2x +1-2-x3.故函数的解析式是f (x )=2x +1-2-x3(x ∈R).方法技巧求函数解析式的常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的式子,然后以x 替代g (x )得f (x )的解析式.(2)换元法:已知函数f (g (x ))的解析式,求f (x )的解析式时可用换元法,即令g (x )=t ,从中解出x ,代入已知解析式进行换元,此时要注意新元的取值范围.(3)待定系数法:若已知函数的类型(如一次函数、二次函数),则可用待定系数法.(4)解方程组法:已知关于f (x )与f (1x )或f (-x )的等式,可根据已知条件构造出等式,组成方程组,通过解方程组求出f (x )的解析式.(2020河北衡水中学调研)已知f (x )是二次函数,且f (0)=0, f (x +1)=f (x )+x +1.求f (x )的解析式.解析 设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0知c =0,则f (x )=ax 2+bx ,又由f (x +1)=f (x )+x +1得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以{2x +x =x +1,x +x =1,解得a =b =12,所以f (x )=12x 2+12x (x ∈R).分段函数角度一 分段函数的最值问题典例6 已知函数f (x )={x 2-2xx +9,x ≤1,x +4x +x ,x >1,若f (x )的最小值为f (1),则实数a 的取值范围是 .答案 [2,+∞)解析 当x >1时, f (x )=x +4x +a ≥4+a ,当且仅当x =2时,等号成立.当x ≤1时, f (x )=x 2-2ax +9为二次函数,要想在x =1处取最小值,则函数图象的对称轴要满足x =a ≥1,并且f (1)≤4+a ,即1-2a +9≤a +4,解得a ≥2.角度二 已知函数值,求参数的值(或取值范围)典例7 设函数f (x )={x 2+2x ,x <0,x +1,x ≥0,则f (-1)= ;若f (a )>f (a -1),则实数a 的取值范围是 .答案 -1;(-12,+∞)名师点评分段函数问题的求解策略(1)根据分段函数的解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.(2)已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.1.(2020辽宁盘锦一中模拟)已知函数f (x )={2e x -1,x <1,x 3+x ,x ≥1,则f (f (x ))<2的解集为 ( )A.(1-ln 2,+∞)B.(-∞,1-ln 2)C.(1-ln 2,1)D.(1,1+ln 2)答案 B 因为当x ≥1时, f (x )=x 3+x ≥2,当x <1时, f (x )=2e x -1<2,所以f (f (x ))<2等价于f (x )<1,即2e x -1<1,解得x <1-ln 2, 所以f (f (x ))<2的解集为(-∞,1-ln 2),故选B.2.(2018课标全国Ⅰ文,12,5分)设函数f (x )={2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是 ( )A.(-∞,-1]B.(0,+∞)C.(-1,0)D.(-∞,0)答案 D 函数f (x )={2-x ,x ≤0,1,x >0的图象如图所示:由f (x +1)<f (2x )得{2x <0,2x <x +1,得{x <0,x <1.∴x <0,故选D .3.已知函数f (x )={log 2(3-x ),x ≤0,2x -1,x >0,若f (a -1)=12,则实数a = .答案 log 23解析 由题意知当a -1≤0,即a ≤1时,log 2(3-a +1)=12,解得a =4-√2>1,舍去.当a -1>0,即a >1时,2a -1-1=12,解得a =log 23>1,成立.故a =log 23.微专题——新定义函数的有关计算新定义函数问题是近几年高考中函数的热点题型,解答这类问题的关键在于阅读理解时准确把握新定义、新信息,并把它纳入已有的知识体系之中,用原来的知识和方法来解决新情境下的问题,一般有两方面的考查:(1)利用新函数进行计算;(2)讨论新函数的性质.典例 (2020浙江镇海中学高三模拟)定义符号函数sgn x ={1,x >0,0,x =0,-1,x <0,若f (x )是定义在R 上的减函数,g (x )=f (x )-f (ax )(a >1),则 ( )A.sgn[g (x )]=sgn xB.sgn[g (x )]=-sgn xC.sgn[g (x )]=sgn[f (x )]D.sgn[g (x )]=-sgn[f (x )] 答案 A解析 由题意知g (x )=f (x )-f (ax ),且f (x )是R 上的减函数, 当x >0时,x <ax ,则有f (x )>f (ax ), 则g (x )=f (x )-f (ax )>0, 此时sgn[g (x )]=1;当x =0时,x =ax ,则有f (x )=f (ax ), 则g (x )=f (x )-f (ax )=0, 此时sgn[g (x )]=0;当x <0时,x >ax ,则有f (x )<f (ax ), 则g (x )=f (x )-f (ax )<0, 此时sgn[g (x )]=-1. 综上所述,sgn[g (x )]=sgn x. 故选A.根据新定义得到f (x )的表达式,判断函数f (x )在定义域的单调性,可得结果.1.(2020辽宁大连高三月考)在实数的原有运算法则中,我们定义新运算 “x” 如下:当a ≥b 时,a x b =a ;当a <b 时,a x b =b 2,则函数f (x )=(1x x )·x -(2x x )(x ∈[-2,2])的最大值等于(“·”和“-”仍为通常的乘法和减法) ( )A.-1B.1C.12D.6 答案 D 因为a x b ={x ,x ≥x ,x 2,x <x ,所以f (x )=(1x x )·x -(2x x )={x -2,-2≤x ≤1,x 3-2,1<x ≤2,易知函数f (x )在[-2,2]上单调递增,所以f (x )max =f (2)=6,故选D.2.定义符号函数sgn x ={1,x >0,0,x =0,-1,x <0,则当x ∈R 时,不等式x +2>(2x -1)sgn x的解集为 .答案 {x |-3-√334<x <3}解析 当x >0时,不等式可转化为x +2>2x -1,解得0<x <3; 当x =0时,不等式可转化为2>1,不等式成立;当x <0时,不等式可转化为x +2>12x -1①,因为2x -1<0,所以①等价于(x +2)(2x -1)<1,即2x 2+3x -3<0,解得-3-√334<x <0.综上所述,不等式的解集为 {x |-3-√334<x <3}.A 组 基础达标1.下列各组函数中,表示同一个函数的是 ( )A.f (x )=x 2和f (x )=(x +1)2B.f (x )=(√x )2x和f (x )=(x )2C.f (x )=log a x 2和f (x )=2log a xD.f (x )=x -1和f (x )=√(x -1)2答案 B2.函数y =ln(x 2-x )+√4-2x 的定义域为 ( )A.(-∞,0)∪(1,+∞)B.(-∞,0)∪(1,2]C.(-∞,0)D.(-∞,2)答案 B 由已知得{x 2-x >0,4-2x≥0,解得{x <0或x >1,x ≤2,即x ∈(-∞,0)∪(1,2],故选B.3.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A.(-1,1) B.(-1,-12)C.(-1,0)D.(12,1)答案 B4.已知函数f (x +1)=3x +2,则f (x )= ( )A.3x +2B.3x +1C.3x -1D.3x +4 答案 C5.已知f (10x)=x ,则f (5)= ( )A.105B.510C.log 510D.lg 5 答案 D6.(2020湖南湘潭一中模拟)已知函数f (x )={x +1x -2,x >2,x 2+2,x ≤2,则f (f (1))= ( )A.-12 B.2 C.4 D.11 答案 C ∵函数f (x )={x +1x -2,x >2,x 2+2,x ≤2,∴f (1)=12+2=3,∴f (f (1))=f (3)=3+13-2=4.故选C.7.已知函数f (x )={3-x +1(x ≤0),x x +2(x >0),若f (f (-1))=18,则实数a 的值是 ( )A.0B.1C.2D.3 答案 C8.设函数f :R →R 满足f (0)=1,且对任意的x ,y ∈R 都有f (xy +1)=f (x )·f (y )-f (y )-x +2,则f (2 017)= ( ) A.0 B.1 C.2 017 D.2 018答案 D 令x =y =0,则f (1)=f (0)·f (0)-f (0)-0+2=1×1-1-0+2=2,令y =0,则f (1)=f (x )·f (0)-f (0)-x +2,将f (0)=1, f (1)=2代入得f (x )=1+x ,所以f (2 017)=2 018,故选D .9.(2020湖南郴州二中模拟)设x ∈R,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数.例如:[-2.1]=-3,[3.1]=3,已知函数f (x )=2x +32x +1,则函数y =[f (x )]的值域为 ( )A.{0,1,2,3}B.{0,1,2}C.{1,2,3}D.{1,2} 答案 D f (x )=2x +32x+1=2x +1+22x+1=1+22x+1,∵2x>0,∴1+2x>1,∴0<22x+1<2,∴1<1+22x +1<3,即1<f (x )<3.当1<f (x )<2时,[f (x )]=1;当2≤f (x )<3时,[f (x )]=2.综上,函数y =[f (x )]的值域为{1,2},故选D.B 组 能力拔高10.已知函数f (x )={(x -1)x +4-2x ,x <1,1+log 2x ,x ≥1,若f (x )的值域为R,则实数a 的取值范围是( )A.(1,2]B.(-∞,2]C.(0,2]D.[2,+∞)答案 A 当x ≥1时, f (x )=1+log 2x ≥1;当x <1时, f (x )=(a -1)x +4-2a 必须是增函数,且值域区间的右端点的值大于或等于1,才能满足f (x )的值域为R,可得{x -1>0,x -1+4-2x ≥1,解得1<a ≤2.11.(2020江苏苏州一中期中)已知函数f (x )={2x ,x ≤1,log 3(x -1),x >1,且f (x 0)=1,则x 0=( )A.0B.4C.0或4D.1或3 答案 C 当x 0≤1时,由f (x 0)=2x 0=1得x 0=0(满足x 0≤1);当x 0>1时,由f (x 0)=log 3(x 0-1)=1得x 0-1=3,得x 0=4(满足x 0>1),故选C. 12.(2020北京,11,5分)函数f (x )=1x +1+ln x 的定义域是 .答案 (0,+∞)解析 要使函数f (x )有意义,则{x +1≠0,x >0,故x >0,因此函数f (x )的定义域为(0,+∞). 13.(2019湖南衡阳模拟)已知函数f (x )=xxx -1,若f (x )+f (1x )=3,则f (x )+f (2-x )= .答案 6 解析 ∵f (x )=xx x -1, f (x )+f (1x)=3, ∴f (x )+f (1x )=xx x -1+xx 1x-1=xx x -1-x x -1=x (x -1)x -1=3,解得a =3,∴f (x )=3x x -1,∴f (x )+f (2-x )=3x x -1+6-3x 2-x -1=6(x -1)x -1=6.C 组 思维拓展14.(2020广东珠海一中模拟)已知x 为实数,用[x ]表示不超过x 的最大整数,例如[1.2]=1,[-1.2]=-2,[1]=1.对于函数f (x ),若存在m ∈R 且m ∉Z,使得f (m )=f ([m ]),则称函数f (x )是Ω函数. (1)判断函数f (x )=x 2-13x ,g (x )=sin πx 是不是Ω函数(只需写出结论);(2)已知f (x )=x +x x,请写出a 的一个值,使得f (x )为Ω函数,并给出证明. 解析 (1)f (x )=x 2-13x 是Ω函数,g (x )=sin πx 不是Ω函数. (2)a =32.证明:设k ∈N *,取a ∈(k 2,k 2+k ),令[m ]=k ,m =x x ,则一定有m -[m ]=xx -k =x -x 2x∈(0,1),且f (m )=f ([m ]),所以f (x )是Ω函数.。

2021版高考文科数学(人教A版)一轮复习教师用书:第二章 第1讲 函数及其表示 Word版含答案

2021版高考文科数学(人教A版)一轮复习教师用书:第二章 第1讲 函数及其表示 Word版含答案

第1讲函数及其表示一、知识梳理1.函数与映射的概念(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.[注意]函数图象的特征:与x轴垂直的直线与其最多有一个公共点.利用这个特征可以判断一个图形能否作为一个函数的图象.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.[注意] 分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.二、习题改编1.(必修1P23练习T2改编)下列四个图形中,不是以x 为自变量的函数的图象是( )答案:C2.(必修1P18例2改编)下列哪个函数与y =x 相等( ) A .y =x 2xB .y =2log 2xC .y =x 2D .y =(3x )3答案:D一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)对于函数f :A →B ,其值域是集合B .( )(2)函数f (x )=x 2-2x 与g (t )=t 2-2t 是同一函数.( )(3)若两个函数的定义域与值域相同,则这两个函数是相等函数.( ) (4)函数f (x )的图象与直线x =1最多有一个交点.( ) (5)分段函数是由两个或几个函数组成的.( ) 答案:(1)× (2)√ (3)× (4)√ (5)× 二、易错纠偏常见误区(1)对函数概念理解不透彻; (2)解分段函数不等式忽视范围.1.下列函数中,与函数y =x +1是相等函数的是( ) A .y =(x +1)2 B .y =3x 3+1 C .y =x 2x+1D .y =x 2+1解析:选B.对于A.函数y =(x +1)2的定义域为{x |x ≥-1},与函数y =x +1的定义域不同,不是相等函数;对于B.定义域和对应关系都相同,是相等函数;对于C.函数y =x 2x +1的定义域为{x |x ≠0},与函数y =x +1的定义域不同,不是相等函数;对于D ,定义域相同,但对应关系不同,不是相等函数.2.设函数f (x )=⎩⎪⎨⎪⎧|x |,x <1,3x -5,x ≥1,则使得f (x )≥1的自变量x 的取值范围为 .解析:当x <1时,|x |≥1,所以x ≥1或x ≤-1. 所以x ≤-1;当x ≥1时,3x -5≥1,所以x ≥2.所以x ≥2;所以x 的取值范围为(-∞,-1]∪[2,+∞). 答案:(-∞,-1]∪[2,+∞)函数的定义域(多维探究) 角度一求函数的定义域(2020·辽宁鞍山一中一模)函数f (x )=14-x 2+ln(2x +1)的定义域为( ) A.⎣⎡⎦⎤-12,2 B.⎣⎡⎭⎫-12,2 C.⎝⎛⎦⎤-12,2 D.⎝⎛⎭⎫-12,2 【解析】 要使函数f (x )有意义,需满足⎩⎪⎨⎪⎧4-x 2>0,2x +1>0,解得-12<x <2.所以函数f (x )的定义域为⎝⎛⎭⎫-12,2.故选D. 【答案】 D求函数定义域的两种方法连接,而应该用并集符号“∪”连接.角度二 已知函数的定义域求参数若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是 .【解析】 由题意可得mx 2+mx +1≥0对x ∈R 恒成立. 当m =0时,1≥0恒成立;当m ≠0时,则⎩⎪⎨⎪⎧m >0,Δ=m 2-4m ≤0, 解得0<m ≤4. 综上可得0≤m ≤4. 【答案】 [0,4]已知函数定义域求参数取值范围,通常是根据已知的定义域将问题转化为方程或不等式恒成立的问题,然后求得参数的值或范围.1.函数f (x )=3xx -1+ln(2x -x 2)的定义域为( ) A .(2,+∞) B .(1,2) C .(0,2)D .[1,2]解析:选B.要使函数有意义,则⎩⎪⎨⎪⎧x -1>0,2x -x 2>0,解得1<x <2. 所以函数f (x )=3xx -1+ln(2x -x 2)的定义域为(1,2). 2.如果函数f (x )=ln(-2x +a )的定义域为(-∞,1),那么实数a 的值为( ) A .-2B .-1C .1D .2解析:选D.因为-2x +a >0, 所以x <a 2,所以a2=1,所以a =2.3.(2020·山东安丘质量检测)已知函数f (x )的定义域为[0,2],则函数g (x )=f ⎝⎛⎭⎫12x +8-2x的定义域为( )A .[0,3]B .[0,2]C .[1,2]D .[1,3]解析:选A.由题意,可知x 满足⎩⎪⎨⎪⎧0≤12x ≤2,8-2x ≥0,解得0≤x ≤3,即函数g (x )的定义域为[0,3],故选A.函数的解析式(师生共研)(1)已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )的解析式为 .(2)若f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2,则f (x )的解析式为 . (3)已知函数f (x )满足f (-x )+2f (x )=2x ,则f (x )的解析式为 . 【解析】 (1)(换元法)令2x +1=t ,由于x >0,所以t >1且x =2t -1,所以f (t )=lg 2t -1,即f (x )的解析式是f (x )=lg 2x -1(x >1).(2)(待定系数法)设f (x )=ax 2+bx +c (a ≠0), 又f (0)=c =3.所以f (x )=ax 2+bx +3,所以f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.所以⎩⎪⎨⎪⎧4a =4,4a +2b =2,所以⎩⎪⎨⎪⎧a =1,b =-1,所以所求函数的解析式为f (x )=x 2-x +3. (3)(解方程组法)因为2f (x )+f (-x )=2x ,① 将x 换成-x 得2f (-x )+f (x )=-2x ,② 由①②消去f (-x ),得3f (x )=6x , 所以f (x )=2x .【答案】(1)f(x)=lg2x-1(x>1)(2)f(x)=x2-x+3(3)f(x)=2x 求函数解析式的4种方法1.(一题多解)已知二次函数f (2x +1)=4x 2-6x +5,则f (x )= . 解析:法一(换元法):令2x +1=t (t ∈R ),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R ),所以f (x )=x 2-5x +9(x ∈R ).法二(配凑法):因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R ).法三(待定系数法):因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R ). 答案:x 2-5x +9(x ∈R )2.定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )= .解析:因为-1≤x ≤0,所以0≤x +1≤1,所以f (x )=12f (x +1)=12(x +1)[1-(x +1)]=-12x (x +1).故当-1≤x ≤0时,f (x )=-12x (x +1).答案:-12x (x +1)分段函数(多维探究) 角度一 求分段函数的函数值(1)(2020·合肥一检)已知函数f (x )=⎩⎪⎨⎪⎧x +1x -2,x >2,x 2+2,x ≤2,则f (f (1))=( ) A .-12B .2C .4D .11(2)(2020·山西太原三中模拟)设函数f (x )=⎩⎪⎨⎪⎧x 2-1(x ≥2),log 2x (0<x <2),若f (m )=3,则f ⎝⎛⎭⎫52-m = .【解析】 (1)因为f (1)=12+2=3,所以f (f (1))=f (3)=3+13-2=4.故选C.(2)当m ≥2时,m 2-1=3,所以m =2或m =-2(舍); 当0<m <2时,log 2m =3,所以m =8(舍). 所以m =2.所以f ⎝⎛⎭⎫52-m =f ⎝⎛⎭⎫12=log 212=-1. 【答案】 (1)C (2)-1分段函数的求值问题的解题思路(1)求函数值:先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.角度二 分段函数与方程、不等式问题(1)(一题多解)设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( )A .2B .4C .6D .8(2)(一题多解)(2018·高考全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤01,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)【解析】 (1)法一:当0<a <1时,a +1>1, 所以f (a )=a ,f (a +1)=2(a +1-1)=2a . 由f (a )=f (a +1)得a =2a , 所以a =14.此时f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6. 当a ≥1时,a +1>1,所以f (a )=2(a -1),f (a +1)=2(a +1-1)=2a . 由f (a )=f (a +1)得2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6,故选C.法二:因为当0<x <1时,f (x )=x ,为增函数, 当x ≥1时,f (x )=2(x -1),为增函数, 又f (a )=f (a +1), 所以a =2(a +1-1), 所以a =14.所以f ⎝⎛⎭⎫1a =f (4)=6.(2)法一:①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x )即为2-(x +1)<2-2x ,即-(x +1)<-2x ,解得x <1.因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x )即1<2-2x ,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 故选D.法二:因为f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,所以函数f (x )的图象如图所示.由图可知,当x +1≤0且2x ≤0时,函数f (x )为减函数,故f (x +1)<f (2x )转化为x +1>2x .此时x ≤-1.当2x <0且x +1>0时,f (2x )>1,f (x +1)=1, 满足f (x +1)<f (2x ). 此时-1<x <0.综上,不等式f (x +1)<f (2x )的解集为(-∞,-1]∪(-1,0)=(-∞,0). 故选D.【答案】 (1)C (2)D有关分段函数不等式问题,要按照分段函数的“分段”进行分类讨论,从而将问题转化为简单的不等式组来解.1.已知f (x )=⎩⎪⎨⎪⎧2x ,x >0,f (x +1),x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .-2 B .4 C .2D .-4解析:选B.由题意得f ⎝⎛⎭⎫43=2×43=83. f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13=f ⎝⎛⎭⎫23=2×23=43. 所以f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=4.2.已知函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≥0,-3x ,x <0,若a [f (a )-f (-a )]>0,则实数a 的取值范围为( )A .(1,+∞)B .(2,+∞)C .(-∞,-1)∪(1,+∞)D .(-∞,-2)∪(2,+∞)解析:选D.当a >0时,不等式a [f (a )-f (-a )]>0可化为a 2+a -3a >0,解得a >2.当a <0时.不等式a [f (a )-f (-a )]>0可化为-a 2-2a <0,解得a <-2.综上所述,a 的取值范围为(-∞,-2)∪(2,+∞).3.(2020·安徽安庆二模)已知函数f (x )=⎩⎨⎧x +1,-1<x <0,2x ,x ≥0.若实数a 满足f (a )=f (a -1),则f ⎝⎛⎭⎫1a = .解析:由题意得a >0.当0<a <1时,由f (a )=f (a -1),即2a =a .解得a =14,则f ⎝⎛⎭⎫1a =f (4)=8,当a ≥1时,由f (a )=f (a -1),得2a =2(a -1),无解. 答案:8核心素养系列2 数学抽象——函数的新定义问题所谓“新定义”函数,是相对于高中教材而言,指在高中教材中不曾出现或尚未介绍的一类函数.函数新定义问题的一般形式是:由命题者先给出一个新的概念、新的运算法则,或者给出一个抽象函数的性质等,然后让学生按照这种“新定义”去解决相关的问题.(2020·广东深圳3月模拟)在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,若函数f (x )的图象恰好经过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数.给出下列函数:①f (x )=sin 2x ;②g (x )=x 3; ③h (x )=⎝⎛⎭⎫13x;④φ(x )=ln x . 其中是一阶整点函数的是( ) A .①②③④ B .①③④ C .①④D .④【解析】 对于函数f (x )=sin 2x ,它的图象(图略)只经过一个整点(0,0),所以它是一阶整点函数,排除D ;对于函数g (x )=x 3,它的图象(图略)经过整点(0,0),(1,1),…,所以它不是一阶整点函数,排除A ;对于函数h (x )=⎝⎛⎭⎫13x,它的图象(图略)经过整点(0,1),(-1,3),…,所以它不是一阶整点函数,排除B.故选C.【答案】 C本题意在考查考生的数学抽象、逻辑推理、数学运算、直观想象等核心素养.破解新定义函数题的关键是:紧扣新定义的函数的含义,学会语言的翻译、新旧知识的转化,便可使问题顺利获解.如本例,若能把新定义的一阶整点函数转化为函数f(x)的图象恰好经过1个整点,问题便迎刃而解.1.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y=x2+1,值域为{1,3}的同族函数有()A.1个B.2个C.3个D.4个解析:选C.由x2+1=1得x=0,由x2+1=3得x=±2,所以函数的定义域可以是{0,2},{0,-2},{0,2,-2},故值域为{1,3}的同族函数共有3个.2.若函数f(x)同时满足下列两个条件,则称该函数为“优美函数”:(1)∀x∈R,都有f(-x)+f(x)=0;(2)∀x 1,x 2∈R ,且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0.①f (x )=sin x ;②f (x )=-2x 3;③f (x )=1-x ; 以上三个函数中, 是“优美函数”.解析:由条件(1),得f (x )是R 上的奇函数,由条件(2),得f (x )是R 上的单调递减函数.对于①,f (x )=sin x 在R 上不单调,故不是“优美函数”;对于②,f (x )=-2x 3既是奇函数,又在R 上单调递减,故是“优美函数”;对于③,f (x )=1-x 不是奇函数,故不是“优美函数”.答案:②[基础题组练]1.函数y =1ln (x -1)的定义域为( )A .(1,+∞)B .[1,+∞)C .(1,2)∪(2,+∞)D .(1,2)∪[3,+∞)解析:选C.由ln(x -1)≠0,得x -1>0且x -1≠1.由此解得x >1且x ≠2,即函数y =1ln (x -1)的定义域是(1,2)∪(2,+∞).2.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A .-74B.74C.43D .-43解析:选B.令t =12x -1,则x =2t +2,所以f (t )=2(2t +2)-5=4t -1,所以f (a )=4a -1=6,即a =74.3.(2020·江西南昌一模)设函数f (x )=⎩⎪⎨⎪⎧x 2-2x (x ≤0),f (x -3)(x >0),则f (5)的值为( ) A .-7 B .-1 C .0D.12解析:选D.f (5)=f (5-3)=f (2)=f (2-3)=f (-1)=(-1)2-2-1=12.故选D.4.已知f ⎝⎛⎭⎫1+x x =x 2+1x 2+1x ,则f (x )等于( ) A .(x +1)2(x ≠1) B .(x -1)2(x ≠1) C .x 2-x +1(x ≠1)D .x 2+x +1(x ≠1)解析:选C.f ⎝⎛⎭⎫1+x x =x 2+1x 2+1x =⎝⎛⎭⎫x +1x 2-x +1x +1,令x +1x =t (t ≠1),则f (t )=t 2-t +1,即f (x )=x 2-x +1(x ≠1).5.设函数f (x )=⎩⎪⎨⎪⎧1x ,x >1,-x -2,x ≤1,则f (f (2))= ,函数f (x )的值域是 .解析:因为f (2)=12,所以f (f (2))=f ⎝⎛⎭⎫12=-12-2=-52. 当x >1时,f (x )∈(0,1), 当x ≤1时,f (x )∈[-3,+∞), 所以f (x )∈[-3,+∞). 答案:-52[-3,+∞)6.若函数f (x )在闭区间[-1,2]上的图象如图所示,则此函数的解析式为 .解析:由题图可知,当-1≤x <0时,f (x )=x +1;当0≤x ≤2时,f (x )=-12x ,所以f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-12x ,0≤x ≤2.答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-12x ,0≤x ≤27.已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,则使f (x )≥-1成立的x 的取值范围是 .解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1, 解得-4≤x ≤0或0<x ≤2,故x 的取值范围是[-4,2]. 答案:[-4,2] 8.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x,x ≥0,且f (-2)=3,f (-1)=f (1).(1)求f (x )的解析式; (2)画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1)得⎩⎪⎨⎪⎧-2a +b =3,-a +b =2,解得a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0. (2)f (x )的图象如图所示.[综合题组练]1.(2020·海淀期末)下列四个函数:①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:选B.①y =3-x 的定义域与值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝⎛⎭⎫12,+∞,③y =x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x (x ≤0),1x (x >0)的定义域和值域均为R .所以定义域与值域相同的函数是①④,共有2个,故选B.2.(创新型)设f (x ),g (x )都是定义在实数集上的函数,定义函数(f ·g )(x ):∀x ∈R ,(f ·g )(x )=f (g (x )).若f (x )=⎩⎪⎨⎪⎧x ,x >0,x 2,x ≤0,g (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,则( )A .(f ·f )(x )=f (x )B .(f ·g )(x )=f (x )C .(g ·f )(x )=g (x )D .(g ·g )(x )=g (x )解析:选A.对于A ,(f ·f )(x )=f (f (x ))=⎩⎪⎨⎪⎧f (x ),f (x )>0,f 2(x ),f (x )≤0,当x >0时,f (x )=x >0,(f ·f )(x )=f (x )=x ;当x <0时,f (x )=x 2>0,(f ·f )(x )=f (x )=x 2;当x =0时,(f ·f )(x )=f 2(x )=0=02,因此对任意的x ∈R ,有(f ·f )(x )=f (x ),故A 正确,选A.3.(2020·宁夏银川一中一模)已知函数f (x )=⎩⎨⎧2-x+1,x ≤0,-x ,x >0,则f (x +1)-9≤0的解集为 .解析:因为f (x )=⎩⎨⎧2-x+1,x ≤0,-x ,x >0,所以当x +1≤0时,⎩⎪⎨⎪⎧x ≤-1,2-(x +1)-8≤0,解得-4≤x ≤-1;当x +1>0时,⎩⎨⎧x >-1,-x +1-9≤0,解得x >-1.综上,x ≥-4,即f (x +1)-9≤0的解集为[-4,+∞). 答案:[-4,+∞)4.(创新型)设函数f (x )的定义域为D ,若对任意的x ∈D ,都存在y ∈D ,使得f (y )=-f (x )成立,则称函数f (x )为“美丽函数”,下列所给出的几个函数:①f (x )=x 2;②f (x )=1x -1;③f (x )=ln(2x +3);④f (x )=2sin x -1. 其中是“美丽函数”的序号有 .解析:由已知,在函数定义域内,对任意的x 都存在着y ,使x 所对应的函数值f (x )与y 所对应的函数值f (y )互为相反数,即f (y )=-f (x ).故只有当函数的值域关于原点对称时才会满足“美丽函数”的条件.①中函数的值域为[0,+∞),值域不关于原点对称,故①不符合题意;②中函数的值域为(-∞,0)∪(0,+∞),值域关于原点对称,故②符合题意;③中函数的值域为(-∞,+∞),值域关于原点对称,故③符合题意;④中函数f(x)=2sin x-1的值域为[-3,1],不关于原点对称,故④不符合题意.故本题正确答案为②③.答案:②③。

2020届高考数学 第二章第一节函数及其表示课后练习 人教A版 .doc

2020届高考数学 第二章第一节函数及其表示课后练习 人教A版 .doc

"【三维设计】高考数学 第二章第一节函数及其表示课后练习 人教A 版 "一、选择题1.已知a 、b 为实数,集合M =⎩⎨⎧⎭⎬⎫b a ,1,N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .-1B .0C .1D .±1解析:a =1,b =0,∴a +b =1.答案:C2.已知函数f (x )=⎩⎪⎨⎪⎧ 2x+1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于() A.12 B.45C .2D .9解析:∵f (0)=20+1=2.∴f (f (0))=f (2)=4+2a .令4+2a =4a ,得a =2.答案:C3.定义x ⊗y =x 3-y ,则h ⊗(h ⊗h )=( )A .-hB .0C .hD .h 3解析:由定义得h ⊗h =h 3-h ,h ⊗(h ⊗h )=h ⊗(h 3-h )=h 3-(h 3-h )=h .答案:C4.已知函数f (x )的图象是两条线段(如图,不含端点),则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫13=( )A .-13 B.13C .-23 D.23解析:由函数的图象知f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫13=f ⎝ ⎛⎭⎪⎫-23=13.答案:B5.(2012·济南模拟)已知函数f ⎝ ⎛⎭⎪⎫x -1x =x 2+1x 2,则f (3)=( )A .8B .9C .11D .10解析:∵f ⎝ ⎛⎭⎪⎫x -1x =⎝ ⎛⎭⎪⎫x -1x 2+2,∴f (3)=9+2=11. 答案:C二、填空题6.已知函数f (x )=⎩⎪⎨⎪⎧ x 2+2ax ,x ≥22x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a ,若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3.答案:(-1,3)7.已知函数f (x )=2x +1与函数y =g (x )的图象关于直线x =2成轴对称图形,则函数y =g (x )的解析式为________.解析:设点M (x ,y )在所求函数的图象上,点M ′(x ′,y ′)是M 关于直线x =2的对称点,则⎩⎪⎨⎪⎧ x ′=4-x ,y ′=y ,又y ′=2x ′+1,∴y =2(4-x )+1=9-2x ,即g (x )=9-2x .答案:g (x )=9-2x三、解答题8.若函数f (x )=x ax +b(a ≠0),f (2)=1,又方程f (x )=x 有唯一解,求f (x )的解析式. 解:由f (2)=1得22a +b=1,即2a +b =2; 由f (x )=x 得x ax +b =x ,变形得x ⎝ ⎛⎭⎪⎫1ax +b -1=0, 解此方程得x =0或x =1-b a ,又因方程有唯一解,∴1-b a=0, 解得b =1,代入2a +b =2得a =12, ∴f (x )=2x x +2. 9.设x ≥0时,f (x )=2;x <0时,f (x )=1,又规定:g (x )=3f x -1-f x -22(x >0),试写出y =g (x )的表达式,并画出其图象.解:当0<x <1时,x -1<0,x -2<0,∴g (x )=3-12=1; 当1≤x <2时,x -1≥0,x -2<0,∴g (x )=6-12=52; 当x ≥2时,x -1>0,x -2≥0,∴g (x )=6-22=2. 故g (x )=⎩⎪⎨⎪⎧ 1,0<x <1,52,1≤x <2,2,x ≥2.其图象如图10.如图①是某公共汽车线路收支差额y 元与乘客量x 的图象.(1)试说明图①上点A、点B以及射线AB上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图②③所示.你能根据图象,说明这两种建议的意义吗?(3)图①、图②中的票价是多少元?图③中的票价是多少元?(4)此问题中直线斜率的实际意义是什么?解:(1)点A表示无人乘车时收入差额为-20元,点B表示有10人乘车时收入差额为0元,线段AB上的点表示亏损,AB延长线上的点表示赢利.(2)图②的建议是降低成本,票价不变,图③的建议是增加票价.(3)图①②中的票价是2元.图③中的票价是4元.(4)斜率表示票价.。

05 第二章 第一节 函数及其表示

05 第二章 第一节 函数及其表示

课时质量评价
考向2 分段函数与方程、不等式
【例3】(1)已知函数f (x)=ቊ2x+x,1,x>x≤0,0.若f (a)+f (1)=0,则实数a的值等于(
)
√A.-3
B.-1
C.1
D.3
A 解析:f (1)=2×1=2,据此结合题意分类讨论:当a>0时,f (a)=2a,由f
(a)+f (1)=0,得2a+2=0,解得a=-1,不满足题意,舍去;当a≤0时,f (a)
B.{x|1<x<3}
C.{x|x<-3}
D.{x|x>3,或-3<x<1}
个函数
对应关系
y=f (x),x∈A
三要素
定义域 值域
__x_的取值范围 与x的值相对应的y的值的集合___{_f_(_x_)|_x_∈__A_}_____
第一节 函数及其表示
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
自查自测 知识点二 函数的表示方法 1.已知函数f(x)由下表给出,则f(3)=__3_.
A.[-5,5]
√B.

1 2
,2
C.[-2,3]
D.
1 2
,2
B 解析:因为函数y=f (x)的定义域是[-2,3],所以-2≤2x-1≤3,解得-
12≤x≤2,所以函数y=f
(2x-1)的定义域是

1 2
,2
.故选B.
第一节 函数及其表示
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
第一节 函数及其表示
必备知识 落实“四基”
核心考点 提升“四能”

人教版高中数学A版必修1课后习题及答案(全)

人教版高中数学A版必修1课后习题及答案(全)

高中数学必修1课后习题答案第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-.(4)8∈C ,9.1∉C 9.1N ∉.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7}; (3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集; (5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==,{3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=-.3.解:{|}AB x x =是等腰直角三角形, {|}AB x x =是等腰三角形或直角三角形. 4.解:显然{2,4,6}U B =,{1,3,6,7}U A =, 则(){2,4}U A B =,()(){6}U U A B =.1.1集合习题1.1 (第11页) A 组1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数; (3)Q π∉π是个无理数,不是有理数; (42R 2是实数; (59Z 93=是个整数; (6)25)N ∈ 2(5)5=是个自然数.2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-;3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-; (2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形. 等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}A B x x =≥,{|34}A B x x =≤<.7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}BC =,{3}B C =, 则(){1,2,3,4,5,6}A B C =,(){1,2,3,4,5,6,7,8}A B C =.8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()A B C =∅.(1){|}A B x x =是参加一百米跑或参加二百米跑的同学; (2){|}A C x x =是既参加一百米跑又参加四百米跑的同学.9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形, 平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形, {|}S A x x =是梯形.10.解:{|210}AB x x =<<,{|37}A B x x =≤<, {|3,7}R A x x x =<≥或,{|2,10}R B x x x =≤≥或,得(){|2,10}R A B x x x =≤≥或, (){|3,7}R A B x x x =<≥或,(){|23,710}R A B x x x =<<≤<或, (){|2,3710}R A B x x x x =≤≤<≥或或.B 组1.4 集合B 满足A B A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合, 即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==,当3a =时,集合{3}A =,则{1,3,4},AB A B ==∅; 当1a =时,集合{1,3}A =,则{1,3,4},{1}AB A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}A B A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},A B a A B ==∅.4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =, 得U B A ⊆,即()U U A B B =,而(){1,3,5,7}U A B =, 得{1,3,5,7}U B =,而()U U B B =,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.解:(1)要使原式有意义,则470x +≠,即74x ≠-, 得该函数的定义域为7{|}4x x ≠-; (2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=,同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-,则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.解:(1)不相等,因为定义域不同,时间0t >;(2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页) 1.解:显然矩形的另一边长为2250x cm -,222502500y x x x x =-=-,且050x <<,即22500(050)y x x x =-<<.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示. 3.解:4.解:因为3sin 602=,所以与A 中元素60相对应的B 中的元素是32; 因为2sin 452=,所以与B 中的元素22相对应的A 中元素是45. 1.2函数及其表示习题1.2(第23页) 1.解:(1)要使原式有意义,则40x -≠,即4x ≠,得该函数的定义域为{|4}x x ≠;(2)x R ∈,2()f x x =都有意义,即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠, 得该函数的定义域为{|41}x x x ≤≠且.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()()g x x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(3)对于任何实数,都有362x x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞;(2)定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.解:因为2()352f x x x =-+,所以2(2)3(2)5(2)2852f -=⨯--⨯-+=+,即(2)852f -=+;同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++,即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++,即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+,即2()(3)3516f a f a a +=-+. 5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上;(2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根,即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=,即(1)f -的值为8.7.图象如下:8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d,即d =(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x =+>, 另外2()l x y =+,而22210,xy d x y ==+,得0)l d ===>,即(0)l d =>.9.解:依题意,有2()2dx vt π=,即24v x t dπ=, 显然0x h ≤≤,即240v t h dπ≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.解:(1)函数()r f p =的定义域是[5,0][2,6)-;(2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.解:(1)驾驶小船的路程为222x +,步行的路程为12x -,得2221235x xt +-=+,(012)x ≤≤, 即241235x xt +-=+,(012)x ≤≤. (2)当4x =时,2441242583()3535t h +-=+=+≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间. 3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数. 4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->, 即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数. 5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=, 所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-, 所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内每一个x 都有22()11()()x x f x f x x x -++-==-=--, 所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=, 所以函数2()1f x x =+为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称的; ()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增; (2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数; 当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数, 令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数. 4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元. 6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-, 所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数, 函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-, 因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.解:由矩形的宽为x m ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-,当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m . 3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <, 所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-; (2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =. 2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等, 即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的 垂直平分线的交点,即ABC ∆的外心.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==, 当0a =时,集合B =∅,满足B A ⊆,即0a =; 当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=, 得1a =-,或1a =, 综上得:实数a 的值为1,0-,或1. 5.解:集合20(,)|{(0,0)}30x y AB x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅;集合3039(,)|{(,)}2355x y BC x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭; 则39()(){(0,0),(,)}55AB BC =-.6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞; (2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞.7.解:(1)因为1()1x f x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++, 即(1)2af a a +=-+.8.证明:(1)因为221()1x f x x +=-,所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=;(2)因为221()1x f x x +=-,所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-.9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人. 2.解:因为集合A ≠∅,且20x ≥,所以0a ≥. 3.解:由(){1,3}UA B =,得{2,4,5,6,7,8,9}A B =,集合AB 里除去()U A B ,得集合B ,所以集合{5,6,7,8,9}B =.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩.5.证明:(1)因为()f x ax b =+,得121212()()222x x x x af a b x x b ++=+=++,121212()()()222f x f x ax b ax b ax x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++2212121()()22x x x x a b +=+++,因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I ) 2.1指数函数 练习(P54)1. a 21=a ,a 43=43a ,a53-=531a,a32-=321a.2. (1)32x =x 32, (2)43)(b a +=(a +b )43, (3)32n)-(m =(m -n )32, (4)4n)-(m =(m -n )2,(5)56q p =p 3q 25,(6)mm 3=m213-=m 25.3. (1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(23)31×(3×22)61=231311--×3613121++=2×3=6;(3)a 21a 41a 81-=a814121-+=a 85; (4)2x 31-(21x 31-2x 32-)=x 3131+--4x 3221--=1-4x -1=1x4-.练习(P58)1.如图图2-1-2-142.(1)要使函数有意义,需x -2≥0,即x ≥2,所以函数y =32-x 的定义域为{x |x ≥2};(2)要使函数有意义,需x ≠0,即函数y =(21)x 1的定义域是{x ∣x ≠0}.3.y =2x (x ∈N *)习题2.1 A 组(P59)1.(1)100;(2)-0.1;(3)4-π;(4)x -y .2解:(1)623b a ab=212162122123)(⨯⨯⨯b a a b =23232121--⨯b a =a 0b 0=1. (2)a aa2121=212121a a a⨯=2121a a ⨯=a 21.(3)415643)(mm m m m •••=4165413121mm m m m ••=4165413121+++mm=m 0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行.3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0; 对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0; 对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按π键,最后按即可.答案:8.825 0.4.解:(1)a 31a 43a127=a 1274331++=a 35; (2)a 32a 43÷a 65=a654332-+=a 127;(3)(x 31y43-)12=12431231⨯-⨯yx =x 4y -9;(4)4a 32b 31-÷(32-a 31-b 31-)=(32-×4)31313132+-+b a =-6ab 0=-6a ;(5))2516(462rt s -23-=)23(4)23(2)23(6)23(2)23(452-⨯-⨯-⨯--⨯-⨯rts=6393652----rt s =36964125s r r ; (6)(-2x 41y31-)(3x21-y 32)(-4x 41y 32)=[-2×3×(-4)]x 323231412141++-+-yx=24y ;(7)(2x 21+3y41-)(2x 21-3y41-)=(2x 21)2-(3y 41-)2=4x -9y 21-;(8)4x 41 (-3x 41y31-)÷(-6x21-y32-)=3231214141643+-++-⨯-y x =2xy 31. 点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-x ∈R ,即x ∈R ,所以函数y =23-x 的定义域为R . (2)要使函数有意义,需2x +1∈R ,即x ∈R ,所以函数y =32x +1的定义域为R . (3)要使函数有意义,需5x ∈R,即x ∈R,所以函数y =(21)5x的定义域为R . (4)要使函数有意义,需x ≠0,所以函数y =0.7x1的定义域为{x |x ≠0}.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x 年的产量为y ,一年内的产量是a (1+100p ),两年内产量是a (1+100p )2,…,x 年内的产量是a (1+100p )x ,则y =a (1+100p )x(x ∈N *,x ≤m ). 点评:根据实际问题,归纳是关键,注意x 的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y =3x ,当x =0.8和0.7时的函数值;因为3>1,所以函数y =3x 在R 上是增函数.而0.7<0.8,所以30.7<30.8.(2)0.75-0.1与0.750.1的底数都是0.75,它们可以看成函数y =0.75x ,当x =-0.1和0.1时的函数值; 因为1>0.75,所以函数y =0.75x 在R 上是减函数.而-0.1<0.1,所以0.750.1<0.75-0.1.(3)1.012.7与1.013.5的底数都是1.01,它们可以看成函数y =1.01x ,当x =2.7和3.5时的函数值; 因为1.01>1,所以函数y =1.01x 在R 上是增函数.而2.7<3.5,所以1.012.7<1.013.5. (4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y =0.99x ,当x =3.3和4.5时的函数值; 因为0.99<1,所以函数y =0.99x 在R 上是减函数.而3.3<4.5,所以0.994.5<0.993.3.8.(1)2m ,2n 可以看成函数y =2x ,当x =m 和n 时的函数值;因为2>1,所以函数y =2x 在R 上是增函数.因为2m <2n ,所以m <n . (2)0.2m ,0.2n 可以看成函数y =0.2x ,当x =m 和n 时的函数值;因为0.2<1, 所以函数y =0.2x 在R 上是减函数.因为0.2m <0.2n ,所以m >n . (3)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为0<a <1, 所以函数y =a x 在R 上是减函数.因为a m <a n ,所以m >n . (4)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为a >1, 所以函数y =a x 在R 上是增函数.因为a m >a n ,所以m >n . 点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P 与时间t 的函数解析式为P=(21)57301.当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=(21)573057309⨯=(21)9≈0.002. 答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2‰, 因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t 万年后,用一般的放射性探测器测不到碳14,那么(21)537010000t <0.001,解得t >5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的. B 组1. 当0<a <1时,a 2x -7>a 4x -12⇒x -7<4x -1⇒x >-3;当a >1时,a 2x -7>a 4x -1⇒2x -7>4x -1⇒x <-3. 综上,当0<a <1时,不等式的解集是{x |x >-3};当a >1时,不等式的解集是{x |x <-3}.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用. 解:(1)设y =x 21+x21-,那么y 2=(x 21+x21-)2=x +x -1+2.由于x +x -1=3,所以y =5.(2)设y =x 2+x -2,那么y =(x +x -1)2-2.由于x +x -1=3,所以y =7.(3)设y =x 2-x -2,那么y =(x +x -1)(x -x -1),而(x -x -1)2=x 2-2+x -2=5,所以y =±35. 点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口. 3.解:已知本金为a 元.1期后的本利和为y 1=a +a ×r =a (1+r ), 2期后的本利和为y 2=a (1+r )+a (1+r )×r =a (1+r )2, 3期后的本利和为y 3=a (1+r )3, …x 期后的本利和为y =a (1+r )x .将a =1 000,r =0.022 5,x =5代入上式得y =a (1+r )x =1 000×(1+0.022 5)5=1 000×1.02255≈1118. 答:本利和y 随存期x 变化的函数关系式为y =a (1+r )x ,5期后的本利和约为1 118元. 4.解:(1)因为y 1=y 2,所以a 3x +1=a -2x .所以3x +1=-2x .所以x =51-. (2)因为y 1>y 2,所以a 3x +1>a -2x . 所以当a >1时,3x +1>-2x .所以x >51-. 当0<a <1时,3x +1<-2x .所以x <51-.2.2对数函数 练习(P64)1.(1)2log 83=; (2)2log 325=; (3)21log 12=-; (4)2711log 33=-2.(1)239=; (2)35125=; (3)2124-=; (4)41381-=3.(1)设5log 25x =,则25255x ==,所以2x =; (2)设21log 16x =,则412216x -==,所以4x =-; (3)设lg1000x =,则310100010x ==,所以3x =; (4)设lg 0.001x =,则3100.00110x -==,所以3x =-;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5.练习(P68)1.(1)lg()lg lg lg xyz x y z =++;(2)222lg lg()lg lg lg lg lg 2lg lg xy xy z x y z x y z z =-=++=++;(3)33311lg()lg lg lg lg 3lg lg22xy x y z x y z =-=+-=+-;(4)2211lg()lg (lg lg )lg 2lg lg 22y z x y z x y z ==-+=--. 2.(1)223433333log (279)log 27log 9log 3log 3347⨯=+=+=+=;(2)22lg1002lg1002lg104lg104====;(3)5lg 0.00001lg105lg105-==-=-; (4)11ln 22e ==3. (1)22226log 6log 3log log 213-===; (2)lg5lg 2lg101+==; (3)555511log 3log log (3)log 1033+=⨯==;(4)13333351log 5log 15log log log 31153--====-. 4.(1)1; (2)1; (3)54练习(P73)1.函数3log y x =及13log y x =的图象如右图所示.相同点:图象都在y 轴的右侧,都过点(1,0) 不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.2. (1)(,1)-∞; (2)(0,1)(1,)+∞; (3)1(,)3-∞; (4)[1,)+∞3. (1)1010log 6log 8< (2)0.50.5log 6log 4< (3)2233log 0.5log 0.6> (4) 1.5 1.5log 1.6log 1.4>习题2.2 A 组(P74) 1. (1)3log 1x =; (2)41log 6x =; (3)4log 2x =; (4)2log 0.5x = (5) lg 25x = (6)5log 6x =2. (1)527x = (2) 87x = (3) 43x = (4)173x= (5) 100.3x = (6) 3xe =3. (1)0; (2) 2; (3) 2-; (4)2; (5) 14-; (6) 2. 4. (1)lg 6lg 2lg3a b =+=+; (2) 3lg 42lg 22log 4lg3lg3ab===; (3) 2lg122lg 2lg3lg3log 1222lg 2lg 2lg 2b a +===+=+; (4)3lg lg3lg 22b a =-=- 5. (1)x ab =; (2) mx n=; (3) 3n x m =; (4)b x =.6. 设x 年后我国的GDP 在1999年的GDP 的基础上翻两番,则(10.073)4x+=解得 1.073log 420x =≈. 答:设20年后我国的GDP 在1999年的GDP 的基础上翻两番.7. (1)(0,)+∞; (2) 3(,1]4. 8. (1)m n <; (2) m n <; (3) m n >; (4)m n >.9. 若火箭的最大速度12000v =,那么62000ln 112000ln(1)61402M M M M e mm m m ⎛⎫+=⇒+=⇒+=⇒≈ ⎪⎝⎭答:当燃料质量约为火箭质量的402倍时,火箭的最大速度可达12km/s. 10. (1)当底数全大于1时,在1x =的右侧,底数越大的图象越在下方.所以,①对应函数lg y x =,②对应函数5log y x =,③对应函数2log y x =. (2)略. (3)与原函数关于x 轴对称. 11. (1)235lg 25lg 4lg92lg52lg 22lg3log 25log 4log 98lg 2lg3lg5lg 2lg3lg5⋅⋅=⨯⨯=⨯⨯= (2)lg lg lg log log log 1lg lg lg a b c b c a b c a a b c⋅⋅=⨯⨯= 12. (1)令2700O =,则312700log 2100v =,解得 1.5v =. 答:鲑鱼的游速为1.5米/秒. (2)令0v =,则31log 02100O=,解得100O =. 答:一条鱼静止时的耗氧量为100个单位.B 组1. 由3log 41x =得:143,43xx-==,于是11044333x x -+=+= 2. ①当1a >时,3log 14a<恒成立; ②当01a <<时,由3log 1log 4a a a <=,得34a <,所以304a <<.综上所述:实数a 的取值范围是3{04a a <<或1}a >3. (1)当1I = W/m 2时,112110lg 12010L -==;(2)当1210I -= W/m 2时,121121010lg 010L --==答:常人听觉的声强级范围为0120dB .4. (1)由10x +>,10x ->得11x -<<,∴函数()()f x g x +的定义域为(1,1)- (2)根据(1)知:函数()()f x g x +的定义域为(1,1)-∴ 函数()()f x g x +的定义域关于原点对称又∵ ()()log (1)log (1)()()a a f x g x x x f x g x -+-=-++=+ ∴()()f x g x +是(1,1)-上的偶函数.5. (1)2log y x =,0.3log y x =; (2)3xy =,0.1x y =.习题2.3 A 组(P79) 1.函数y =21x是幂函数.2.解析:设幂函数的解析式为f (x )=x α,因为点(2,2)在图象上,所以2=2α.所以α=21,即幂函数的解析式为f (x )=x 21,x ≥0.3.(1)因为流量速率v 与管道半径r 的四次方成正比,所以v =k ·r 4; (2)把r =3,v =400代入v =k ·r 4中,得k =43400=81400,即v =81400r 4;(3)把r =5代入v =81400r 4,得v =81400×54≈3 086(cm 3/s ), 即r =5 cm 时,该气体的流量速率为3 086 cm 3/s .第二章 复习参考题A 组(P82)1.(1)11; (2)87; (3)10001; (4)259. 2.(1)原式=))(()()(212121212212122121b a b a b a b a -+++-=b a b b a a b b a a -++++-2121212122=ba b a -+)(2;(2)原式=))(()(1121----+-a a a a a a =aa a a 11+-=1122+-a a .3.(1)因为lg 2=a ,lg 3=b ,log 125=12lg 5lg =32lg 210lg2•=3lg 2lg 22lg 1+-,所以log 125=ba a +-21. (2)因为2log 3a =,3log 7b =37147log 27log 56log 27⨯=⨯=2log 112log 377++=7log 2log 11)7log 2(log 33333÷++÷=b ab a ÷++÷111)1(3=13++ab ab . 4.(1)(-∞,21)∪(21,+∞);(2)[0,+∞).5.(32,1)∪(1,+∞);(2)(-∞,2);(3)(-∞,1)∪(1,+∞).6.(1)因为log 67>log 66=1,所以log 67>1.又因为log 76<log 77=1,所以log 76<1.所以log 67>log 76. (2)因为log 3π>log 33=1,所以log 3π>1.又因为log 20.8<0,所以log 3π>log 20.8.7.证明:(1)因为f (x )=3x ,所以f (x )·f (y )=3x ×3y =3x +y .又因为f (x +y )=3x +y ,所以f (x )·f (y )=f (x +y ).(2)因为f (x )=3x ,所以f (x )÷f (y )=3x ÷3y =3x -y . 又因为f (x -y )=3x -y ,所以f (x )÷f (y )=f (x -y ).8.证明:因为f (x )=lgxx+-11,a 、b ∈(-1,1), 所以f (a )+f (b )=lgbb a a +-++-11lg11=lg )1)(1()1)(1(b a b a ++--, f (ab b a ++1)=lg (abb a ab ba +++++-1111)=lg b a ab b a ab +++--+11=lg )1)(1()1)(1(b a b a ++--. 所以f (a )+f (b )=f (abba ++1). 9.(1)设保鲜时间y 关于储藏温度x 的函数解析式为y =k ·a x (a >0,且a ≠1).因为点(0,192)、(22,42)在函数图象上,所以022192,42,k a k a ⎧=⋅⎪⎨=⋅⎪⎩解得⎪⎩⎪⎨⎧≈==.93.0327,19222a k 所以y =192×0.93x ,即所求函数解析式为y =192×0.93x . (2)当x =30 ℃时,y ≈22(小时);当x =16 ℃时,y ≈60(小时),即温度在30 ℃和16 ℃的保鲜时间约为22小时和60小时. (3)图象如图:图2-210.解析:设所求幂函数的解析式为f (x )=x α,因为f (x )的图象过点(2,22), 所以22=2α,即221-=2α.所以α=21-.所以f (x )=x 21-(x >0).图略,f (x )为非奇非偶函数;同时它在(0,+∞)上是减函数.B 组1.A2.因为2a =5b =10,所以a =log 210,b =log 510,所以a 1+b 1=10log 12+10log 15=lg 2+lg 5=lg 10=1. 3.(1)f (x )=a 122+-x 在x ∈(-∞,+∞)上是增函数. 证明:任取x 1,x 2∈(-∞,+∞),且x 1<x 2.f (x 1)-f (x 2)=a 122+-x -a +1222+x =1222+x -1221+x =)12)(12()22(21221++-x x x x .因为x 1,x 2∈(-∞,+∞),所以.012.01212>+>+x x 又因为x 1<x 2, 所以2122x x <即2122x x <<0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以函数f (x )=a 122+-x 在(-∞,+∞)上是增函数. (2)假设存在实数a 使f (x )为奇函数,则f (-x )+f (x )=0,即a 121+--x +a 122+-x =0⇒a =121+-x +121+x =122+x +121+x=1, 即存在实数a =1使f (x )=121+--x 为奇函数.4.证明:(1)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以[g (x )]2-[f (x )]2=[g (x )+f (x )][g (x )-f (x )]=)22)(22(xx x x x x x x e e e e e e e e -----++++ =e x ·e -x =e x -x =e 0=1, 即原式得证.(2)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以f (2x )=222x x e e -+,2f (x )·g (x )=2·2x x e e --·2x x e e -+=222xx e e --.所以f (2x )=2f (x )·g (x ).(3)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以g (2x )=222x x e e -+,[g (x )]2+[f (x )]2=(2x x ee -+)2+(2xx e e --)2=4222222x x x x e e e e --+-+++=222xx e e -+.所以g (2x )=[f (x )]2+[g (x )]2.5.由题意可知,θ1=62,θ0=15,当t =1时,θ=52,于是52=15+(62-15)e -k ,解得k ≈0.24,那么θ=15+47e -0.24t . 所以,当θ=42时,t ≈2.3;当θ=32时,t ≈4.2.答:开始冷却2.3和4.2小时后,物体的温度分别为42 ℃和32 ℃.物体不会冷却到12 ℃. 6.(1)由P=P 0e -k t 可知,当t =0时,P=P 0;当t =5时,P=(1-10%)P 0.于是有(1-10%)P 0=P 0e -5k ,解得k =51-ln 0.9,那么P=P 0e t )9.0ln 51(.所以,当t =10时,P=P 0e 9.01051n I ⨯⨯=P 0e ln 0.81=81%P 0.答:10小时后还剩81%的污染物. (2)当P=50%P 0时,有50%P 0=P 0et )9.0ln 51(,解得t =9.0ln 515.0ln ≈33.答:污染减少50%需要花大约33h . (3)其图象大致如下:图2-3新课程标准数学必修1第三章课后习题解答第三章 函数的应用 3.1函数与方程 练习(P88)1.(1)令f (x )=-x 2+3x +5,作出函数f (x )的图象(图3-1-2-7(1)),它与x 轴有两个交点,所以方程-x 2+3x +5=0有两个不相等的实数根.(2)2x (x -2)=-3可化为2x 2-4x +3=0,令f (x )=2x 2-4x +3,作出函数f (x )的图象(图3-1-2-7(2)),它与x 轴没有交点,所以方程2x (x -2)=-3无实数根. (3)x 2=4x -4可化为x 2-4x +4=0,令f (x )=x 2-4x +4,作出函数f (x )的图象(图3-1-2-7(3)), 它与x 轴只有一个交点(相切),所以方程x 2=4x -4有两个相等的实数根. (4)5x 2+2x =3x 2+5可化为2x 2+2x -5=0,令f (x )=2x 2+2x -5,作出函数f (x )的图象(图3-1-2-7(4)), 它与x 轴有两个交点,所以方程5x 2+2x =3x 2+5有两个不相等的实数根.图3-1-2-72.(1)作出函数图象(图3-1-2-8(1)),因为f(1)=1>0,f(1.5)=-2.875<0,所以f(x)=-x3-3x+5在区间(1,1.5)上有一个零点.又因为f(x)是(-∞,+∞)上的减函数,所以f(x)=-x3-3x+5在区间(1,1.5)上有且只有一个零点.(2)作出函数图象(图3-1-2-8(2)),因为f(3)<0,f(4)>0,所以f(x)=2x·ln(x-2)-3在区间(3,4)上有一个零点.又因为f(x)=2x·ln(x-2)-3在(2,+∞)上是增函数,所以f(x)在(3,4)上有且仅有一个零点. (3)作出函数图象(图3-1-2-8(3)),因为f(0)<0,f(1)>0,所以f(x)=e x-1+4x-4在区间(0,1)上有一个零点.又因为f(x)=e x-1+4x-4在(-∞,+∞)上是增函数,所以f(x)在(0,1)上有且仅有一个零点.(4)作出函数图象(图3-1-2-8(4)),因为f(-4)<0,f(-3)>0,f(-2)<0,f(2)<0,f(3)>0,所以f(x)=3(x+2)(x-3)(x+4)+x在(-4,-3),(-3,-2),(2,3)上各有一个零点.图3-1-2-8练习(P91)1.由题设可知f(0)=-1.4<0,f(1)=1.6>0,于是f(0)·f(1)<0,所以函数f(x)在区间(0,1)内有一个零点x0.下面用二分法求函数f(x)=x3+1.1x2+0.9x-1.4在区间(0,1)内的零点.取区间(0,1)的中点x1=0.5,用计算器可算得f(0.5)=-0.55.因为f(0.5)·f(1)<0,所以x0∈(0.5,1).再取区间(0.5,1)的中点x2=0.75,用计算器可算得f(0.75)≈0.32.因为f(0.5)·f(0.75)<0,所以x0∈(0.5,0.75).同理,可得x0∈(0.625,0.75),x0∈(0.625,0.687 5),x0∈(0.656 25,0.687 5).由于|0.687 5-0.656 25|=0.031 25<0.1,所以原方程的近似解可取为0.656 25.2.原方程可化为x+lgx-3=0,令f(x)=x+lgx-3,用计算器可算得f(2)≈-0.70,f(3)≈0.48.于是f(2)·f(3)<0,所以这个方程在区间(2,3)内有一个解x0.下面用二分法求方程x=3-lgx在区间(2,3)的近似解.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)≈-0.10.因为f(2.5)·f(3)<0,所以x0∈(2.5,3).再取区间(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈0.19.因为f(2.5)·f(2.75)<0,所以x0∈(2.5,2.75).同理,可得x0∈(2.5,2.625),x0∈(2.562 5,2.625),x0∈(2.562 5,2.593 75),x0∈(2.578 125,2.593 75),x0∈(2.585 937 5,2.59 375).由于|2.585 937 5-2.593 75|=0.007 812 5<0.01,所以原方程的近似解可取为2.593 75.习题3.1 A组(P92)1.A,C 点评:需了解二分法求函数的近似零点的条件.2.由x,f(x)的对应值表可得f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,又根据“如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.”可知函数f(x)分别在区间(2,3),(3,4),(4,5)内有零点.3.原方程即(x+1)(x-2)(x-3)-1=0,令f(x)=(x+1)(x-2)(x-3)-1,可算得f(-1)=-1,f(0)=5.于是f(-1)·f(0)<0,所以这个方程在区间(-1,0)内有一个解.下面用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)=3.375.因为f(-1)·f(-0.5)<0,所以x0∈(-1,-0.5).再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)≈1.58.因为f(-1)·f(-0.75)<0,所以x0∈(-1,-0.75).同理,可得x0∈(-1,-0.875),x0∈(-0.937 5,-0.875).由于|(-0.875)-(-0.937 5)|=0.062 5<0.1,所以原方程的近似解可取为-0.937 5.4.原方程即0.8x-1-lnx=0,令f(x)=0.8x-1-lnx,f(0)没有意义,用计算器算得f(0.5)≈0.59,f(1)=-0.2.于是f(0.5)·f(1)<0,所以这个方程在区间(0.5,1)内有一个解.下面用二分法求方程0.8x-1=lnx在区间(0,1)内的近似解.取区间(0.5,1)的中点x1=0.75,用计算器可算得f(0.75)≈0.13.因为f(0.75)·f(1)<0,所以x0∈(0.75,1).再取(0.75,1)的中点x2=0.875,用计算器可算得f(0.875)≈-0.04.。

高考数学一轮复习第2章函数的概念及基本初等函数(Ⅰ)第1节函数及其表示课件理新人教A版

高考数学一轮复习第2章函数的概念及基本初等函数(Ⅰ)第1节函数及其表示课件理新人教A版

●命题角度三 分段函数与不等式问题
【例 4】 (2019 届湖北四地七校联考)已知函数 f(x)=12x-7,x<0,

log2(x+1),x≥0,
f(a)<1,则实数 a 的取值范围是( )
A.(-∞,-3)∪[0,1)
B.(-3,0)
C.(-3,1)
D.(-∞,-3)∪(1,+∞)
[解析] 因为 f(a)<1,所以a12<0a,-7<1或alo≥g20(,a+1)<1,得-3<a<0 或 0≤a<1.所 以实数 a 的取值范围是(-3,1),故选 C.
|跟踪训练|
1.(2019 届定州模拟)下列函数中,满足 f(x2)=[f(x)]2 的是( )
A.f(x)=ln x
B.f(x)=|x+1|
C.f(x)=x3
D.f(x)=ex
解析:选 C 对于函数 f(x)=x3,有 f(x2)=(x2)3=x6,[f(x)]2=(x3)2=x6,所以 f(x2)=[f(x)]2,
考点一 函数解析式的求法 【例 1】 (1)若 f1+1x=x12-1,则 f(x)=________. (2)若 f(x)为有理函数,且 f(x+1)+f(x-1)=2x2-4x,则 f(x)=________. (3)已知 f(x)+2f1x=x+1,则 f(x)=________.
[解析] (1)解法一(配凑法):
考点二 分段函数——多维探究 高考对分段函数的考查多以选择题、填空题的形式出现,试题难度一般较小. 常见的命题角度有:(1)分段函数求值问题;(2)分段函数的自变量求值问题;(3)分段 函数与不等式问题.
●命题角度一 分段函数求值问题
【例 2】 (2020 届成都摸底)已知函数 f(x)=sinπx+π6,x≤0,则 f(-2)+f(1)= 2x+1,x>0,

2016高考总复习(人教A版)高中数学_第二章_第1讲_函数及其表示教学案及课后作业(含答案)

2016高考总复习(人教A版)高中数学_第二章_第1讲_函数及其表示教学案及课后作业(含答案)

第1讲 函数及其表示2016高考导航知识梳理1.函数与映射的概念(1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法. 3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.[做一做] 1.(2014·高考江西卷)函数f (x )=ln(x 2-x )的定义域为( )A .(0,1)B .[0,1]C .(-∞,0)∪(1,+∞)D .(-∞,0]∪[1,+∞)2.设函数f (x )==⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =( )A .-3B .±3C .-1D .±1要点整合1.辨明两个易误点(1)易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A 到B 的一个映射,A 、B 若不是数集,则这个映射便不是函数.(2)分段函数是一个函数,而不是几个函数.分段函数的定义域是各段定义域的并集,值域是各段值域的并集.2.函数解析式的四种常用求法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法;(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(4)解方程组法:已知关于f (x )与f (1x)或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).[做一做] 3.(2015·长春模拟)下列对应关系:①A ={1,4,9},B ={-3,-2,-1,1,2,3},f :x →x 的平方根; ②A =R ,B =R ,f :x →x 的倒数; ③A =R ,B =R ,f :x →x 2-2;④A ={-1,0,1},B ={-1,0,1},f :A 中的数平方. 其中是A 到B 的映射的是( )A .①③B .②④C .③④D .②③4.已知f ⎝⎛⎭⎫1x =x 2+5x ,则f (x)=________.5.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (x )=________.典例剖析考点一__函数的基本概念____________________以下给出的同组函数中,是否表示同一函数?为什么?(1)f 1:y =xx;f 2:y =1.(2)f 1:y =⎩⎪⎨⎪⎧1,x ≤1,2,1<x <2,3,x ≥2;f 2:(3)f 1:y =2x ;f 2[规律方法] 两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x 表示,但也可用其他字母表示,如:f (x )=2x -1,g (t )=2t -1,h (m )=2m -1均表示同一函数.1.有以下判断:①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,(x ≥0)-1,(x <0)表示同一函数;②函数y =f (x )的图象与直线x =1的交点最多有1个;③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;④若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0. 其中正确判断的序号是________.考点二__分段函数(高频考点)____________________分段函数作为考查函数知识的最佳载体,以其考查知识容量大而成为高考命题的亮点,常以选择题、填空题的形式出现,试题难度不大,多为容易题或中档题.高考对分段函数的考查主要有以下四个命题角度: (1)由分段函数解析式,求函数值(或最值); (2)由分段函数解析式与方程,求参数的值; (3)由分段函数解析式,求解不等式;(4)由分段函数解析式,判断函数的奇偶性.(本章第4讲再讲解)(1)(2014·高考江西卷)已知函数f (x )=⎩⎪⎨⎪⎧a ·2x,x ≥0,2-x ,x <0(a ∈R ),若f [f (-1)]=1,则a =( )A .14B .12C .1D .2(2)(2013·高考福建卷)已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫π4=________. (3)(2015·榆林模拟)已知f (x )=⎩⎪⎨⎪⎧12x +1, x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.[规律方法] 解决分段函数求值问题的方法:(1)求分段函数的函数值时,应根据所给自变量的大小选择相应段的解析式求解,有时每段交替使用求值.(2)若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值是否符合相应段的自变量的取值范围,做到分段函数分段解决.2.(1)(2015·福建南安一中上学期期末)已知f (x )=⎩⎨⎧3sin πx ,x ≤0,f (x -1)+1,x >0,则f ⎝⎛⎭⎫23的值为( )A .12B .-12C .1D .-1(2)(2015·西城模拟)设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c (x ≤0),2(x >0),若f (-2)=f (0),f (-1)=-3,则方程f (x )=x 的解集为________.(3)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.考点三__求函数的解析式______________________(1)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式.(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试求出f (x )的解析式.(3)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式. [规律方法] 求函数解析式常用的方法: (1)待定系数法;(2)换元法(换元后要注意新元的取值范围); (3)配凑法;(4)解方程组法.3.(1)已知f ⎝⎛⎭⎫x +1x =x 2+1x2,则f (x )的解析式为f (x )=__________; (2)已知f (x +1)=x +2x ,则f (x )的解析式为f (x )=__________;(3)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,则f (x )的解析式为f (x )=__________;(4)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x ·x -1,则f (x )=________.名师讲坛方法思想——分类讨论思想在分段函数中的应用(2014·高考浙江卷)设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2,x >0.若f (f (a ))=2,则a=________.若本例中的“f (f (a ))=2”变为“f (f (a ))≤2”,其他条件不变,求实数a 的取值范围.[名师点评] (1)解答本题利用了分类讨论思想,分类讨论思想是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略.因f (x )为分段函数,由于f (a )和a 正负不确定,应分情况讨论.(2)求解过程中,求出的参数的值或范围并不一定符合题意,因此要检验结果是否符合要求.(2015·山西四校联考)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(8-x ), x ≤0f (x -1)-f (x -2), x >0,则f (3)的值为( )A .1B .2C .-2D .-3知能训练一、选择题1.(2015·嘉兴调研)设集合M ={x |-2≤x ≤2},N ={y |0≤y ≤2},给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是()A. B. C.D.2.已知f :x →-sin x 是集合A (A ⊆[0,2π])到集合B ={0,12}的一个映射,则集合A 中的元素个数最多有( )A .4个B .5个C .6个D .7个3.(2014·江西卷)已知函数f (x )=⎩⎨⎧a ·2x ,x ≥0,2-x ,x <0(a ∈R ),若f [f (-1)]=1,则a =( )A .14B .12 C .1 D .24.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=( ) A .x -1 B .x +1 C .2x +1 D .3x +35.图中的图象所表示的函数的解析式为()A .y =32|x -1| (0≤x ≤2)B .y =32-32|x -1| (0≤x ≤2) C .y =32-|x -1| (0≤x ≤2) D .y =1-|x -1| (0≤x ≤2)6.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A .y =[x10] B .y =[x +310] C .y =[x +410] D .y =[x +510]7.已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .1B .2C .3D .48.具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①9.已知函数f (x )=⎩⎨⎧2x+1,x <1x 2+ax ,x ≥1若f (f (0))=4a ,则实数a 等于( )A .12B .45 C .2 D .910.已知函数f (x )满足f (x )+2f (3-x )=x 2,则f (x )的解析式为( )A .f (x )=13x 2-4x +6 B .f (x )=x 2-12x +18 C .f (x )=6x +9 D .f (x )=2x +3 11.已知f (x 5)=lg x ,则f (2)等于( ) A .lg2 B .lg32 C .lg 132 D .15lg212.已知函数f (x )=5|x |,g (x )=ax 2-x (a ∈R ).若f [g (1)]=1,则a =( ) A .1 B .2 C .3 D .-113.已知函数f (x )=⎩⎨⎧x 2+2x ,x <0,x 2-2x ,x ≥0.若f (-a )+f (a )≤0,则实数a 的取值范围是( )A .[-1,1]B .[-2,0]C .[0,2]D .[-2,2]14.(2015·黄冈一模)如图,已知四边形ABCD .若四边形ABCD 上的点在映射f :(x ,y )→(x +1,2y )作用下的象集为四边形1111D C B A ,且四边形1111D C B A 的面积是12,则四边形ABCD 的面积是( )A .9B .6C .6D .1213.定义在R 上的函数()f x 满足()()()2f x y f x f y xy +=++(R y x ∈,),(1)2f =,则(2)f -等于( ) A .2B .3C .6D .9二、填空题1.已知f ⎝ ⎛⎭⎪⎫x -1x =x 2+1x 2,则函数f (3)=________.2.(2014·浙江卷)设函数f (x )=⎩⎨⎧x 2+2x +2,x ≤0,-x 2,x >0.若f (f (a ))=2,则a =__________.3.(2014·新课标全国卷Ⅰ)设函数f (x )=⎩⎨⎧e x -1,x <1,x 13 ,x ≥1,则使得f (x )≤2成立的x 的取值范围是__________.4.若函数f (x )在闭区间[-1,2]上的图象如图所示,则此函数的解析式为________.5.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎨⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32,则a +3b 的值为_______6.设函数f (x )的定义域为R ,对于任意实数x 1,x 2,都有f (x 1)+f (x 2)=2f (x 1+x 22)f (x 1-x 22),f (π)=-1,则f (0)=________.7.已知偶函数f (x ),对任意的x 1,x 2∈R 恒有f (x 1+x 2)=f (x 1)+f (x 2)+2x 1x 2+1,则函数f (x )的解析式为________.8.已知),(y x 在映射f 的作用下的象是),(xy y x +(1)求)3,2(-在f 下的象是 (2)若在f 下的象是)3,2(-,则其原象是9.已知2(3)4log 3233x f x =+,则8(2)(4)(8)(2)f f f f ++++的值等于10.设20lg ,0()3,0ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰,若((1))1f f =,则a = 三、解答题1.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.2.函数f (x )对一切函数x 、y 均有f (x +y )-f (y )=x (x +2y +1)成立,且f (1)=0, (1)求f (0)的值;(2)试确定函数f (x )的解析式.3.已知函数f (x )=⎪⎩⎪⎨⎧++-12122c cx 10<≤<<<x c c x ,满足f (c 2)=98. (1)求常数c 的值; (2)解不等式f (x )>28+1.4.运货卡车以每小时x 千米的速度匀速行驶130千米(50≤x ≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油(2+x 2360)升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.5.(选做题)规定[t ]为不超过t 的最大整数,例如[12.6]=12,[-3.5]=-4,对任意实数x ,令f 1(x )=[4x ],g (x )=4x -[4x ],进一步令f 2(x )=f 1[g (x )].(1)若x =716,分别求f 1(x )和f 2(x );(2)若f 1(x )=1,f 2(x )=3同时满足,求x 的取值范围.6.函数()f x 对一切实数x ,y 均有x y x y f y x f )12()()(++=-+成立,且0)1(=f (1)求)0(f 的值; (2)求()f x 的解析式.(3)设A ={a R ∈|当102x <<时,不等式()32f x x a +<+ 恒成立} B ={a R ∈|当[2,2]x ∈-时,()()g x f x ax =-是单调函数},求(C )R A B函数及其表示参考答案[做一做]CDC 4. 1x 2+5x (x ≠0) 5.x 2-4x +3考点一[解] (1)不同函数.f 1(x )的定义域为{x ∈R |x ≠0},f 2(x )的定义域为R .(2)同一函数,x 与y 的对应关系完全相同且定义域相同,它们是同一函数的不同表示方式. (3)同一函数.理由同(2).1.②③考点二[答案] (1)A (2)-2 (3)[-4,2]答案:(1)B (2){-2,2} (3)(-1,3) 考点三[解] (1)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg 2t -1,即f (x )=lg 2x -1(x >1).(2)设f (x )=ax 2+bx +c (a ≠0),又f (0)=c =3.∴f (x )=ax 2+bx +3,∴f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2. ∴⎩⎪⎨⎪⎧4a =4,4a +2b =2,∴⎩⎪⎨⎪⎧a =1,b =-1,∴所求函数的解析式为f (x )=x 2-x +3. (3)当x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1).① 以-x 代替x 得,2f (-x )-f (x )=lg(-x +1).②由①②消去f (-x )得,f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).3.答案:(1)x 2-2(x ≥2或x ≤-2) (2)x 2-1(x ≥1) (3)x 2+2x +1 (4)23x +13名师讲坛 [答案] 2解:由题意得⎩⎪⎨⎪⎧f (a )<0,f 2(a )+2f (a )+2≤2或⎩⎪⎨⎪⎧f (a )>0,-f 2(a )≤2,解得f (a )≥-2. 由⎩⎪⎨⎪⎧a ≤0,a 2+2a +2≥-2或⎩⎪⎨⎪⎧a >0,-a 2≥-2,解得a ≤ 2.解析:选D知能训练一、选择题BBABB B DBCA DADB 二、填空题1.11 2. 2 3.(-∞,8] 4.答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0-12x ,0≤x ≤2 5.-10 6.17.【解析】 取x 1=x 2=0,所以f (0)=2f (0)+1.所以f (0)=-1.因为f [x +(-x )]=f (x )+f (-x )+2x ·(-x )+1,又f (-x )=f (x ),所以f (x )=12-x . 【答案】 f (x )=12-x三、解答题1.解析:(1)设二次函数f (x )=ax 2+bx +c (a ≠0).∵f (0)=1,∴c =1. 把f (x )的表达式代入f (x +1)-f (x )=2x ,有 a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .∴2ax +a +b =2x .∴a =1,b =-1.∴f (x )=x 2-x +1. (2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.2. 解析:(1)令x =1,y =0,得f (1)-f (0)=2.又∵f (1)=0,∴f (0)=-2. (2)令y =0,则f (x )-f (0)=x (x +1),由(1)知,f (x )=x (x +1)+f (0)=x (x +1)-2=x 2+x -2.3.解析:(1)因为0<c <1,所以c 2<c ,由f (c 2)=98,即c 3+1=98,c =12.(2)由(1)得f (x )=⎩⎨⎧12x +1,(0<x <12)2-4x+1,(12≤x <1)由f (x )>28+1得,当0<x <12时, 解得24<x <12, 当12≤x <1时,解得12≤x <58,所以f (x )>28+1的解集为{x |24<x <58}. 4.解:(1)行车所用时间为t =130x (h),y =130x ×2×⎝ ⎛⎭⎪⎫2+x 2360+14×130x ,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =2 340x +1318x ,x ∈[50,100].(2)y =2 340x +1318x ≥2610,当且仅当2 340x =1318x ,即x =1810时,上述不等式中等号成立.故当x =1810时,这次行车的总费用最低,最低费用为2610元.5.解:(1)∵x =716时,4x =74,∴f 1(x )=⎣⎢⎡⎦⎥⎤74=1.∵g (x )=74-⎣⎢⎡⎦⎥⎤74=34.∴f 2(x )=f 1[g (x )]=f 1⎝ ⎛⎭⎪⎫34=[3]=3.(2)∵f 1(x )=[4x ]=1,g (x )=4x -1,∴f 2(x )=f 1(4x -1)=[16x -4]=3. ∴⎩⎨⎧1≤4x <2,3≤16x -4<4,∴716≤x <12.故x 的取值范围是⎣⎢⎡⎭⎪⎫716,12.。

2022数学第二章函数2

2022数学第二章函数2

第二章函数2.1函数及其表示必备知识预案自诊知识梳理1.函数与映射的概念2。

函数的有关概念(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,叫做函数的定义域;与x的值相对应的y值叫做函数值,叫做函数的值域,显然,值域是集合B的子集.(2)函数的三要素:、和.(3)相等函数:如果两个函数的相同,并且完全一致,那么我们就称这两个函数相等.3。

函数的表示方法表示函数的常用方法有、和.4.分段函数(1)定义:如果一个函数,在其定义域内,对于自变量的不同取值区间,有不同的对应方式,则称其为分段函数。

(2)分段函数的相关结论①分段函数虽然由几个部分组成,但是它表示的是一个函数.②分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集。

1。

映射:(1)映射是函数的推广,函数是特殊的映射,A,B为非空数集的映射就是函数;(2)映射问题允许多对一,但不允许一对多。

2。

判断两个函数相等的依据是两个函数的定义域和对应关系完全一致。

考点自诊1。

判断下列结论是否正确,正确的画“√”,错误的画“×”。

(1)函数是其定义域到值域的映射.()(2)函数y=f(x)的图象与直线x=1有两个交点.()(3)定义域相同,值域也相同的两个函数一定是相等函数.()(4)对于函数f:A→B,其值域是集合B.()(5)分段函数是由两个或几个函数组成的.()+ln x的定义域是.2.(2020北京,11)函数f(x)=1x+13.已知f,g都是从A到A的映射(其中A={1,2,3}),其对应关系如下表:则f(g(3))等于()2022 2.1A.1 B。

2 C.3 D。

不存在4。

(2020辽宁大连模拟,文2)设函数f(x)={1-x2,x≤1,x2+x-2,x>1,则f1 f(2)的值为()A.1516B。

—2716C.89D.185。

如图表示的是从集合A到集合B的对应,其中是映射,是函数.关键能力学案突破考点函数及其有关的概念【例1】以下给出的同组函数中,表示相等函数的有.(只填序号)①f1(x)=xx,f2(x)=1;②f1(x)={1,x≤1,2,1<x<2,3,x≥2,f2(x):③f1(x)=2x,f2(x):如图所示。

2020-2021学年人教版 高三数学复习《2.1 函数及其表示》练习及解析答案

2020-2021学年人教版 高三数学复习《2.1 函数及其表示》练习及解析答案

第二章 函数、导数及其应用 第一节 函数及其表示一、基础知识考点一 函数的定义域 [典例] (1)函数y =ln (1-x )x +1+1x的定义域是( )A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0) D.⎝⎛⎭⎫12,1 [题组训练] 1.函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f (x +1)x -1的定义域是________________.考点二 求函数的解析式 [典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x );(2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ).[题组训练] 1.已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________. 2.已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________. 3.已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 考点三 分段函数 考法(一) 求函数值[典例] 已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3 考法(二) 求参数或自变量的值(或范围)[典例] 设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0) [题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6 D .8 2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f (x -1),x >1,则f (f (3))=________.3.设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________. 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4 2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2) B .(2,+∞) C .[0,2)∪(2,+∞) D .(-∞,2)∪(2,+∞)3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74 C.43 D .-43 4.下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1 D .y =x +1x -15.已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或36.已知函数y =f (2x -1)的定义域是[0,1],则函数f (2x +1)log 2(x +1)的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0) 7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2 D .f (x )=-2x8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①9.函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 10.若函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,则f (f (-9))=________.11.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.12.已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.第二章 函数、导数及其应用 第一节 函数及其表示(答案)一、基础知识1.函数与映射的概念 2.函数的有关概念(1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.求函数定义域的策略 (1)确定函数的定义域常从解析式本身有意义,或从实际出发. (2)如果函数y =f (x )是用表格给出,则表格中x 的集合即为定义域.(3)如果函数y =f (x )是用图象给出,则图象在x 轴上的投影所覆盖的x 的集合即为定义域. (2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据. 两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数 若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意 (1)分段函数虽然由几个部分构成,但它表示同一个函数. (2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集. (3)各段函数的定义域不可以相交. 考点一 函数的定义域[典例] (1)(2019·长春质检)函数y =ln (1-x )x +1+1x的定义域是( )A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1) (2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0) D.⎝⎛⎭⎫12,1 [解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1. 所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0,得-1<x <-12.[答案] (1)D (2)B[解题技法] 1.使函数解析式有意义的一般准则(1)分式中的分母不为0;(2)偶次根式的被开方数非负;(3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1;(5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出; (2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [题组训练] 1.函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2] 解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f (x +1)x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2018,且x ≠1. 因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}.答案:{x |0≤x ≤2 018,且x ≠1} 考点二 求函数的解析式 [典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x );(2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ).[解] (1)法一:待定系数法 因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c . 因为f (2x +1)=4x 2-6x +5,所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R).法二:换元法 令2x +1=t (t ∈R),则x =t -12, 所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R).法三:配凑法 因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9,所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法 由f (-x )+2f (x )=2x , ①得f (x )+2f (-x )=2-x ,②①×2-②,得3f (x )=2x +1-2-x.即f (x )=2x +1-2-x 3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件(1)待定系数法 先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法 对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法 由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法 已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=_________. 解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1, 得a (x +1)2+b (x +1)=ax 2+bx +x +1,即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1, 所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R). 答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1(x >1).答案:lg 2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________.解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,① 把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f (x )+f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f (x )=3x,解此方程组可得f (x )=2x -1x (x ≠0).答案:2x -1x(x ≠0)考点三 分段函数 考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( ) A .-2 B .2 C .3 D .-3[解析] 由题意得,f (-2)=a -2+b =5,① f (-1)=a -1+b =3,② 联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x+1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2.[答案] B [解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点. 考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法 ①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x ,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x ,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0).法二:数形结合法 ∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示.结合图象知,要使f (x +1)<f (2x ),则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,∴x <0,故选D.[答案] D [解题技法] 已知函数值(或范围)求自变量的值(或范围)的方法 (1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( )A .2 B .4 C .6 D .8 解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a ,解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6. 当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f (x -1),x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2,∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________. 解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0. ②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞.答案:⎝⎛⎭⎫-14,+∞4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a -7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1.综上可得-3<a <1.答案:(-3,1) [课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2) B .(2,+∞) C .[0,2)∪(2,+∞) D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( )A.74 B .-74 C.43 D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1 D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516. 6.已知函数y =f (2x -1)的定义域是[0,1],则函数f (2x +1)log 2(x +1)的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0) 解析:选D 由f (2x -1)的定义域是[0,1],得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1],∴要使函数f (2x +1)log 2(x +1)有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2 D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( )A .①② B .①③ C .②③ D .① 解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x>1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③.9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1.所以该函数的定义域为(0,1].答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,则f (f (-9))=________.解析:∵函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2.答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0.依题知a +1=-2,解得a =-3.答案:-312.已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是____.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1,得-4≤x ≤0或0<x ≤2,故x 的取值范围是[-4,2].答:[-4,2]。

数学一轮复习第二章函数导数及其应用第一讲函数及其表示学案含解析

数学一轮复习第二章函数导数及其应用第一讲函数及其表示学案含解析

第二章函数、导数及其应用第一讲函数及其表示知识梳理·双基自测错误!错误!错误!错误!知识点一函数的概念及表示1.函数与映射的概念函数映射两集合A,B 设A,B是两个__非空数集__设A,B是两个__非空集合__对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的__任意__一个数x,在集合B中有__唯一__的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的__任意__一个元素x在集合B中有__唯一__的元素y与之对应名称称对应__f:A→B__为从集合A到集合B的一个函数称对应__f:A→B__为从集合A到集合B的一个映射记法y=f(x),x∈A对应f:A→B是一个2。

函数(1)函数实质上是从一个非空数集到另一个非空数集的映射.(2)函数的三要素:__定义域、值域、对应法则__。

(3)函数的表示法:__解析法、图象法、列表法__。

(4)两个函数只有当__定义域和对应法则__都分别相同时,这两个函数才相同.知识点二分段函数及应用在一个函数的定义域中,对于自变量x的不同取值范围,有着不同的对应关系,这样的函数叫分段函数,分段函数是一个函数而不是几个函数.错误!错误!错误!错误!1.映射:(1)映射是函数的推广,函数是特殊的映射,A,B为非空数集的映射就是函数;(2)映射的两个特征:第一,在A中取元素的任意性;第二,在B中对应元素的唯一性;(3)映射问题允许多对一,但不允许一对多.2.判断两个函数相等的依据是两个函数的定义域和对应关系完全一致.3.分段函数虽由几个部分组成,但它表示的是一个函数.4.与x轴垂直的直线和一个函数的图象至多有1个交点.双错误!错误!错误!题组一走出误区1.判断下列结论是否正确(请在括号中打“√"或“×”)(1)f(x)=错误!+错误!是一个函数.(×)(2)函数f(x)的图象与直线x=1的交点只有1个.(×)(3)已知f(x)=m(x∈R),则f(m3)等于m3.(×)(4)y=ln x2与y=2ln x表示同一函数.(×)(5)f(x)=错误!则f(-x)=错误!(√)题组二走进教材2.(必修P23T2改编)下列所给图象是函数图象的个数为(B)A.1 B.2C.3 D.4[解析]①中当x〉0时,每一个x的值对应两个不同的y值,因此不是函数图象,②中当x=x0时,y的值有两个,因此不是函数图象,③④中每一个x的值对应唯一的y值,因此是函数图象.3.(必修1P24T4改编)已知f(x5)=lg x,则f(2)等于(D) A.lg 2 B.lg 32C.lg 错误!D.错误!lg 2[解析]解法一:由题意知x〉0,令t=x5,则t〉0,x=t错误!,∴f(t)=lg t错误!=错误!lg t,即f(x)=错误!lg x(x>0),∴f(2)=错误!lg 2,故选D.解法二:令x5=2,则x=2错误!,∴f(2)=lg 2错误!=错误!lg 2。

2019高三数学人教A版 文一轮教师用书:第2章 第1节 函

2019高三数学人教A版 文一轮教师用书:第2章 第1节 函

第章函数、导数及其应用第一节函数及其表示[考纲传真](教师用书独具)1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).(对应学生用书第7页)[基础知识填充]1.函数与映射的概念(1)函数的定义域、值域在函数y=f(x),x∈A中,自变量x的取值范围(数集A)叫做函数的定义域;函数值的集合{f(x)|x∈A}叫做函数的值域.(2)函数的三要素:定义域、对应关系和值域.(3)相等函数:如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.(4)函数的表示法表示函数的常用方法有解析法、图象法和列表法.3.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数. [知识拓展]求函数定义域的依据 (1)整式函数的定义域为R ; (2)分式的分母不为零;(3)偶次根式的被开方数不小于零; (4)对数函数的真数必须大于零; (5)正切函数y =tan x 的定义域为;(6)x 0中x ≠0;(7)实际问题中除要考虑函数解析式有意义外,还应考虑实际问题本身的要求.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)函数是特殊的映射.( )(2)函数y =1与y =x 0是同一个函数.( )(3)与x 轴垂直的直线和一个函数的图象至多有一个交点.( ) (4)分段函数是两个或多个函数.( )[答案] (1)√ (2)× (3)√ (4)×2.(教材改编)函数y =2x -3+1x -3的定义域为( ) A .⎣⎢⎡⎭⎪⎫32,+∞B .(-∞,3)∪(3,+∞)C .⎣⎢⎡⎭⎪⎫32,3∪(3,+∞)D .(3,+∞)C [由题意知⎩⎨⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3.]3.(2018·西安模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1log 12x ,x >1则f [f (4)]=________.【导学号:79170012】14[f (4)=log 124=-2,所以f [f (4)]=f (-2)=2-2=14.] 4.(2015·全国卷Ⅱ)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =________.-2 [∵f (x )=ax 3-2x 的图象过点(-1,4),∴4=a ×(-1)3-2×(-1),解得a =-2.] 5.给出下列四个命题:①函数是其定义域到值域的映射; ②f (x )=x -3+2-x 是一个函数; ③函数y =2x (x ∈N )的图象是一条直线; ④f (x )=lg x 2与g (x )=2lg x 是同一个函数.其中正确命题的序号是________.① [由函数的定义知①正确.∵满足⎩⎨⎧x -3≥0,2-x ≥0的x 不存在,∴②不正确.∵y =2x (x ∈N )的图象是位于直线y =2x 上的一群孤立的点, ∴③不正确.∵f (x )与g (x )的定义域不同,∴④也不正确.](对应学生用书第8页)( )A .(-2,1)B .[-2,1]C .(0,1)D .(0,1](2)(2017·郑州模拟)若函数y =f (x )的定义域为[0,2],则函数g (x )=f (2x )x -1的定义域是________. (1)C (2)[0,1)[(1)由题意得⎩⎨⎧-x 2-x +2≥0ln x ≠0x >0,解得0<x <1,故选C .(2)由0≤2x ≤2,得0≤x ≤1,又x -1≠0,即x ≠1, 所以0≤x <1,即g (x )的定义域为[0,1).][规律方法] 1.求给出解析式的函数的定义域,可构造使解析式有意义的不等式(组)求解.2.(1)若已知f (x )的定义域为[a ,b ],则f (g (x ))的定义域可由a ≤g (x )≤b 求出; (2)若已知f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.[变式训练1] (1)函数f (x )=1-2x +1x +3的定义域为( ) A .(-3,0] B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)已知函数f (2x )的定义域为[-1,1],则f (x )的定义域为________.(1)A (2)⎣⎢⎡⎦⎥⎤12,2 [(1)由题意,自变量x 应满足⎩⎨⎧ 1-2x ≥0,x +3>0,解得⎩⎨⎧x ≤0,x >-3,∴-3<x ≤0.(2)∵f (2x )的定义域为[-1,1], ∴12≤2x ≤2,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2.](1)已知f⎝ ⎛⎭⎪2x +1=lg x ,求f (x )的解析式.(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式.(3)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x =x (x ≠0),求f (x )的解析式.[解] (1)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1, ∴⎩⎨⎧2a =1,a +b =-1,即⎩⎪⎨⎪⎧a =12,b =-32,∴f (x )=12x 2-32x +2.(3)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,∴f ⎝ ⎛⎭⎪⎫1x +2f (x )=1x .联立方程组⎩⎪⎨⎪⎧f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f (x )=1x ,解得f (x )=23x -x3(x ≠0).[规律方法] 求函数解析式的常用方法(1)待定系数法:若已知函数的类型,可用待定系数法;(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(3)构造法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出f (x );(4)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),即得f (x )的表达式.[变式训练2] (1)已知f (x +1)=x +2x ,则f (x )=________. 【导学号:79170013】 (2)已知f (x )是一次函数,且2f (x -1)+f (x +1)=6x ,则f (x )=________. (3)已知函数f (x )满足f (-x )+2f (x )=2x ,则f (x )=________. (1)x 2-1(x ≥1) (2)2x +23 (3)2x +1-2-x3[(1)(换元法)设x +1=t (t ≥1),则x =t -1,所以f (t )=(t -1)2+2(t -1)=t 2-1(t ≥1),所以f (x )=x 2-1(x ≥1). (配凑法)f (x +1)=x +2x =(x +1)2-1,又x +1≥1,∴f (x )=x 2-1(x ≥1). (2)∵f (x )是一次函数, ∴设f (x )=kx +b (k ≠0), 由2f (x -1)+f (x +1)=6x ,得2[k (x -1)+b ]+k (x +1)+b =6x ,即3kx -k +3b =6x , ∴⎩⎨⎧3k =6-k +3b =0,∴k =2,b =23,即f (x )=2x +23. (3)由f (-x )+2f (x )=2x ①, 得f (x )+2f (-x )=2-x ②, ①×2-②,得3f (x )=2x +1-2-x .即f (x )=2x +1-2-x3.∴f (x )的解析式为f (x )=2x +1-2-x3.]角度1 求分段函数的函数值(1)(2017·湖南衡阳八中一模)若f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x ,x ≤0,log 3x ,x >0,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=( ) A .-2 B .-3 C .9D .-9(2)(2017·东北三省四市一联)已知函数f (x )的定义域为(-∞,+∞),如果f (x +2 016)=⎩⎨⎧2sin x ,x ≥0,lg (-x ),x <0,那么f (2 016+π4)·f (-7 984)=( )A .2 016B .14 C .4D .12 016(1)C (2)C [(1)∵f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x ,x ≤0,log 3x ,x >0,∴f ⎝ ⎛⎭⎪⎫19=log 319=-2,∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=f (-2)=⎝ ⎛⎭⎪⎫13-2=9.故选C .(2)当x ≥0时,有f (x +2 016)=2sin x ,∴f ⎝ ⎛⎭⎪⎫2 016+π4=2sin π4=1;当x <0时,f (x +2 016)=lg(-x ),∴f (-7 984)=f (-10 000+2 016)=lg 10 000=4,∴f ⎝ ⎛⎭⎪⎫2 016+π4·f (-7 984)=1×4=4,故选C .] 角度2 已知分段函数的函数值求参数(1)(2017·成都二诊)已知函数f (x )=⎩⎨⎧log 2x ,x ≥1,x 2+m 2,x <1,若f (f (-1))=2,则实数m 的值为( ) A .1 B .1或-1 C . 3D .3或- 3(2)设函数f (x )=⎩⎨⎧3x -b ,x <1,2x ,x ≥1.若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫56=4,则b =( )A .1B .78C .34D .12(1)D (2)D [(1)f (f (-1))=f (1+m 2)=log 2(1+m 2)=2,m 2=3,解得m =±3,故选D .(2)f ⎝ ⎛⎭⎪⎫56=3×56-b =52-b ,若52-b <1,即b >32,则3×⎝ ⎛⎭⎪⎫52-b -b =152-4b =4,解得b =78,不符合题意,舍去;若52-b ≥1,即b ≤32,则252-b =4,解得b =12.]角度3 解与分段函数有关的方程或不等式(1)(2017·石家庄一模)已知函数f (x )=⎩⎪⎨⎪⎧sin πx 2,-1<x ≤0,log 2(x +1),0<x <1,且f (x )=-12,则x 的值为________. 【导学号:79170014】 (2)(2014·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.(1)-13 (2)(-∞,8] [(1)当-1<x ≤0时,f (x )=sin πx 2=-12,解得x =-13; 当0<x <1时,f (x )=log 2(x +1)∈(0,1),此时f (x )=-12无解,故x 的值为-13. (2)当x <1时,x -1<0,e x -1<e 0=1≤2, ∴当x <1时满足f (x )≤2.当x ≥1时,x ≤2,x ≤23=8,∴1≤x ≤8. 综上可知x ∈(-∞,8].][规律方法] 1.求分段函数的函数值,要先确定要求值的自变量属于定义域的哪一个子集,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.2.已知函数值或函数值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.易错警示:当分段函数自变量的范围不确定时,应分类讨论.。

一轮文数(人教版A版)练习:第二章 第一节 函数及其表示(含解析)

一轮文数(人教版A版)练习:第二章 第一节 函数及其表示(含解析)

课时规范练 A 组 基础对点练1、函数y =lg (x +1)x -2定义域是( )A 、(-1,+∞)B 、[-1,+∞)C 、(-1,2)∪(2,+∞)D 、[-1,2)∪(2,+∞)解析:由题意知,要使函数有意义,需⎩⎪⎨⎪⎧x -2≠0x +1>0,即-1<x <2或x>2,所以函数定义域为(-1,2)∪(2,+∞)、故选C. 答案:C2、函数f (x )=1log 2x -1定义域为( )A 、(0,2)B 、(0,2]C 、(2,+∞)D 、[2,+∞)解析:由题意可知x 满足log 2x -1>0,即log 2x >log 22,根据对数函数性质得x >2,即函数f (x )定义域是(2,+∞)、 答案:C3、设f (x )=⎩⎪⎨⎪⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))=( )A 、-1 B.14 C.12D.32解析:∵f (-2)=2-2=14,∴f (f (-2))=f ⎝ ⎛⎭⎪⎫14=1-14=12,故选C.答案:C4、f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫13x (x ≤0),log 3x (x >0),则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=( )A 、-2B 、-3C 、9D 、-9解析:∵f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫13x (x ≤0),log 3x (x >0),∴f ⎝ ⎛⎭⎪⎫19=log 319=-2,∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=f (-2)=⎝ ⎛⎭⎪⎫13-2=9.故选C.答案:C5、已知函数f (x )=⎩⎪⎨⎪⎧0,x >0,π,x =0,π2+1,x <0,则f (f (f (-1)))值等于( )A 、π2-1B 、π2+1C 、πD 、0解析:由函数解析式可得f (f (f (-1)))=f (f (π2+1))=f (0)=π.故选C. 答案:C6、设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x ,x ≥1.若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫56=4,则b =( )A 、1 B.78 C.34D.12解析:f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫56=f ⎝ ⎛⎭⎪⎫3×56-b =f ⎝ ⎛⎭⎪⎫52-b .当52-b <1,即b >32时,3×⎝ ⎛⎭⎪⎫52-b -b =4,解得b =78(舍)、当52-b ≥1,即b ≤32时,252b-=4,解得b =12.故选D.7、已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 值等于( ) A 、-3 B 、-1 C 、1D 、3解析:由题意知f (1)=21=2.∵f (a )+f (1)=0, ∴f (a )+2=0.①当a >0时,f (a )=2a,2a +2=0无解; ②当a ≤0时,f (a )=a +1,∴a +1+2=0, ∴a =-3. 答案:A8、函数f (x )=1-2x+1x +3定义域为( )A 、(-3,0]B 、(-3,1]C 、(-∞,-3)∪(-3,0]D 、(-∞,-3)∪(-3,1]解析:由题意得⎩⎪⎨⎪⎧1-2x ≥0x +3>0,所以-3<x ≤0.答案:A9、已知函数f (x )=2x +1(1≤x ≤3),则( ) A 、f (x -1)=2x +2(0≤x ≤2) B 、f (x -1)=2x -1(2≤x ≤4) C 、f (x -1)=2x -2(0≤x ≤2) D 、f (x -1)=-2x +1(2≤x ≤4)解析:因为f (x )=2x +1,所以f (x -1)=2x -1.因为函数f (x )定义域为[1,3],所以1≤x -1≤3,即2≤x ≤4,故f (x -1)=2x -1(2≤x ≤4)、10、设x ∈R ,则f (x )与g (x )表示同一函数是( ) A 、f (x )=x 2,g (x )=x 2 B 、f (x )=(x )2x ,g (x )=x(x )2C 、f (x )=1,g (x )=(x -1)0D 、f (x )=x 2-9x +3,g (x )=x -3解析:对于A ,f (x )=x 2(x ∈R),与g (x )=x 2=|x |(x ∈R)对应关系不同,所以不是同一函数;对于B ,f (x )=(x )2x =1(x >0),与g (x )=x (x )2=1(x >0)定义域相同,对应关系也相同,所以是同一函数;对于C ,f (x )=1(x ∈R),与g (x )=(x -1)0=1(x ≠1)定义域不同,所以不是同一函数;对于D ,f (x )=x 2-9x +3=x -3(x ≠-3),与g (x )=x -3(x ∈R)定义域不同,所以不是同一函数、故选B. 答案:B11、已知函数f (x )=⎩⎪⎨⎪⎧log 2x -1,x >0,f (2-x ),x ≤0,则f (0)=( )A 、-1B 、0C 、1D 、3解析:f (0)=f (2-0)=f (2)=log 22-1=0. 答案:B12、已知实数a <0,函数f (x )=⎩⎪⎨⎪⎧x 2+2a ,x <1,-x ,x ≥1,若f (1-a )≥f (1+a ),则实数a 取值范围是( ) A 、(-∞,-2]B 、[-2,-1]C 、[-1,0)D 、(-∞,0)解析:当a <0时,1-a >1,1+a <1,所以f (1-a )=-(1-a )=a -1,f (1+a )=(1+a )2+2a =a 2+4a +1, 由f (1-a )≥f (1+a )得a 2+3a +2≤0,解得-2≤a ≤-1,所以a ∈[-2,-1]、故选B. 答案:B13、若函数f (x )=2x +3,g (x +2)=f (x ),则函数g (x )表达式为________、 解析:令x +2=t ,则x =t -2.因为f (x )=2x +3,所以g (x +2)=f (x )=2x +3,所以g (t )=2(t -2)+3=2t -1.故函数g (x )表达式为g (x )=2x -1.答案:g (x )=2x -114、(2018·唐山一中测试)已知函数f (x )=ax 5-bx +|x |-1,若f (-2)=2,则f (2)=________.解析:因为f (-2)=2,所以-32a +2b +2-1=2,即32a -2b =-1,则f (2)=32a -2b +2-1=0. 答案:015、已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x +1,x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫14值是__________、解析:由题意可得f ⎝ ⎛⎭⎪⎫14=log 214=-2, ∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫14=f (-2)=3-2+1=109. 答案:10916、设函数f (x )=⎩⎪⎨⎪⎧x 13,x ≥8,2e x -8,x <8,则使得f (x )≤3成立x 取值范围是__________、解析:当x ≥8时,x 13≤3,x ≤27,即8≤x ≤27;当x <8时,2e x -8≤3恒成立、综上,x ∈(-∞,27]、 答案:(-∞,27]B 组 能力提升练1、(2018·郑州教学质量监测)若函数y =f (x )定义域是[0,2 016],则函数g (x )=f (x +1)x -1定义域是( )A 、[-1,2 015]B 、[-1,1)∪(1,2 015]C 、[0,2 016]D 、[-1,1)∪(1,2 016]解析:要使函数f (x +1)有意义,则0≤x +1≤2 016,解得-1≤x ≤2 015,故函数f (x +1)定义域为[-1,2 015],所以函数g (x )有意义条件是⎩⎪⎨⎪⎧-1≤x ≤2 015x -1≠0,故函数g (x )定义域为[-1,1)∪(1,2 015]、 答案:B2、(2018·大同质检)已知f (x )是一次函数,且f [f (x )]=x +2,则f (x )=( ) A 、x +1 B 、2x -1 C 、-x +1D 、x +1或-x -1解析:设f (x )=kx +b ,则由f [f (x )]=x +2,可得k (kx +b )+b =x +2,即k 2x +kb +b =x +2,∴k 2=1,kb +b =2.解得k =1,b =1,则f (x )=x +1.故选A. 答案:A3、(2018·天津模拟)设函数f (x )满足f ⎝ ⎛⎭⎪⎫1-x 1+x =1+x ,则f (x )表达式为( )A.21+xB.21+x 2C.1-x 21+x 2D.1-x 1+x解析:令1-x 1+x =t ,则x =1-t 1+t ,代入f ⎝ ⎛⎭⎪⎫1-x 1+x =1+x ,得f (t )=1+1-t 1+t =21+t ,故选A. 答案:A4、(2018·郑州质检)设函数f :R →R 满足f (0)=1,且对任意 x ,y ∈R 都有f (xy +1)=f (x )f (y )-f (y )-x +2,则f (2 017)=( ) A 、0 B 、1 C 、2 017D 、2 018解析:令x =y =0,则f (1)=f (0)f (0)-f (0)+2=1×1-1+2=2;令y =0,则f (1)=f (x )f (0)-f (0)-x +2,将f (0)=1,f (1)=2代入,可得f (x )=1+x ,所以f (2 017)=2 018.故选D. 答案:D5、已知函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2e x,-2≤x ≤2f (-x ),x <-2,则f (-2 017)=( )A 、1B 、e C.1eD 、e 2解析:由已知可得,当x >2时,f (x )=f (x -4),故其周期为4,f (-2 017)=f (2 017)=f (2 016+1)=f (1)=e. 答案:B6、函数f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则不等式f (x )>2解集为( ) A 、(-2,4)B 、(-4,-2)∪(-1,2)C 、(1,2)∪(10,+∞)D 、(10,+∞)解析:令2e x -1>2(x <2),解得1<x <2;令log 3(x 2-1)>2(x ≥2),解得x >10,故选C. 答案:C7、已知函数f (x )=⎩⎨⎧f (x +2),x <2,⎝ ⎛⎭⎪⎫13x,x ≥2,则f (-1+log 35)值为( )A.115 B.53 C 、15D.23解析:∵-1+log 35<2,∴f (-1+log 35)=f (-1+log 35+2)=f (1+log 35)=f (log 315)=⎝ ⎛⎭⎪⎫133log 15=115,故选A.答案:A8、设函数f (x )=⎩⎪⎨⎪⎧x 2-1,x ≥0,1x ,x <0,若f (f (a ))=-12,则实数a =( )A 、 4B 、-2C 、4或-12 D 、4或-2答案:C9、已知函数f (x )=⎩⎪⎨⎪⎧2e x -1,x <1x 3+x ,x ≥1,则f (f (x ))<2解集为( )A 、(1-ln 2,+∞)B 、(-∞,1-ln 2)C 、(1-ln 2,1)D 、(1,1+ln 2)解析:因为当x ≥1时,f (x )=x 3+x ≥2,当x <1时,f (x )=2e x -1<2,所以f (f (x ))<2等价于f (x )<1,即2e x -1<1,解得x <1-ln 2,所以f (f (x ))<2解集为(-∞,1-ln 2),故选B. 答案:B10、已知函数f (x )=⎩⎪⎨⎪⎧x ln (1+x )+x 2,x ≥0-x ln (1-x )+x 2,x <0,若f (-a )+f (a )≤2f (1),则实数a 取值范围是( ) A 、(-∞,-1]∪[1,+∞) B 、[-1,0] C 、[0,1] D 、[-1,1]解析:若x >0,则-x <0,f (-x )=x ln(1+x )+x 2=f (x ),同理可得x <0时,f (-x )=f (x ),且x =0时,f (0)=f (0),所以f (x )为偶函数、当x ≥0时,易知f (x )=x ln(1+x )+x 2为增函数,所以不等式f (-a )+f (a )≤2f (1)等价于2f (a )≤2f (1),即f (a )≤f (1),亦即f (|a |)≤f (1),则|a |≤1,解得-1≤a ≤1,故选D. 答案:D11、已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 值为( ) A 、-32 B 、-34 C 、-32或-34D.32或-34解析:当a >0时,1-a <1,1+a >1.由f (1-a )=f (1+a )得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )得-1+a -2a =2+2a +a ,解得a =-34,所以a 值为-34,故选B. 答案:B12、给出定义:若m -12<x ≤m +12(其中m 为整数),则m 叫作离实数x 最近整数,记作{x },即{x }=m .现给出下列关于函数f (x )=|x -{x }|四个命题:①f ⎝ ⎛⎭⎪⎫-12=12; ②f (3.4)=-0.4;③f ⎝ ⎛⎭⎪⎫-14=f ⎝ ⎛⎭⎪⎫14; ④y =f (x )定义域为R ,值域是⎣⎢⎡⎦⎥⎤-12,12.其中真命题序号是( ) A 、①② B 、①③ C 、②④D 、③④解析:①∵-1-12<-12≤-1+12,∴⎩⎨⎧⎭⎬⎫-12=-1, ∴f ⎝ ⎛⎭⎪⎫-12=⎪⎪⎪⎪⎪⎪-12-⎩⎨⎧⎭⎬⎫-12=⎪⎪⎪⎪⎪⎪-12+1=12,∴①正确、 ②∵3-12<3.4≤3+12,∴{3,4}=3, ∴f (3.4)=|3.4-{3.4}|=|3.4-3|=0.4,∴②错误、③∵0-12<-14≤0+12,∴⎩⎨⎧⎭⎬⎫-14=0, ∴f ⎝ ⎛⎭⎪⎫-14=⎪⎪⎪⎪⎪⎪-14-0=14.∵0-12<14≤0+12,∴⎩⎨⎧⎭⎬⎫14=0,∴f ⎝ ⎛⎭⎪⎫14=⎪⎪⎪⎪⎪⎪14-0=14,∴f ⎝ ⎛⎭⎪⎫-14=f ⎝ ⎛⎭⎪⎫14, ∴③正确、④y =f (x )定义域为R ,值域是⎣⎢⎡⎦⎥⎤0,12,∴④错误、故选B. 答案:B13、若函数f (2x )定义域是[-1,1],则函数f (2x -1)+f (2x +1)定义域是________、解析:因为函数f (2x )定义域是[-1,1],所以-2≤2x ≤2,所以函数f (x )定义域为[-2,2],所以f (2x -1)+f (2x +1)定义域应满足条件为-2≤2x -1≤2且-2≤2x +1≤2,即-12≤x ≤32且-32≤x ≤12,所以-12≤x ≤12,所以函数f (2x -1)+f (2x +1)定义域是⎣⎢⎡⎦⎥⎤-12,12. 答案:⎣⎢⎡⎦⎥⎤-12,12 14、已知函数f (x )=⎩⎨⎧ x 2+1, x ≤0,-(x -1)2, x >0,则不等式f (x )≥-1解集是________、 解析:由题意得⎩⎨⎧ x ≤0,x 2+1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1,解得-4≤x ≤0或0<x ≤2, 即-4≤x ≤2,即不等式解集为[-4,2]、答案:[-4,2]15、已知函数f (x )定义域为实数集R ,∀x ∈R ,f (x -90)=⎩⎪⎨⎪⎧ lg x ,x >0,-x ,x ≤0,则f (10)-f (-100)值为__________、 解析:令t =x -90,得x =t +90,则f (t )=⎩⎪⎨⎪⎧lg (t +90),t >-90,-(t +90),t ≤-90,f (10)=lg 100=2,f (-100)=-(-100+90)=10,所以f (10)-f (-100)=-8.答案:-816、(2018·郑州质检)若函数f (x )满足:∀a ,b ∈R ,都有3f ⎝ ⎛⎭⎪⎫a +2b 3=f (a )+2f (b ),且f (1)=1,f (4)=7,则f (2 017)=__________.解析:由已知得f ⎝ ⎛⎭⎪⎫a +2b 3=f (a )+2f (b )3. 取f (x )=kx +m ,易验证f (x )=kx +m 满足f ⎝ ⎛⎭⎪⎫a +2b 3=f (a )+2f (b )3. 由f (1)=1,f (4)=7得⎩⎪⎨⎪⎧k +m =14k +m =7,由此解得k =2,m =-1,故f (x )=2x -1,f (2 017)=2×2 017-1=4 033.答案:4 033。

高考一轮总复习数学(文科)练习第2章 第1节 函数及其表示 Word版含解析

高考一轮总复习数学(文科)练习第2章 第1节 函数及其表示 Word版含解析

第二章函数、导数及其应用
第一节函数及其表示
【最新考纲】.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.了解简单的分段函数,并能简单应用(函数分段不超过三段).
.函数与映射的概念
.函数的定义域、值域
()在函数=(),∈中,自变量的取值范围(数集)叫做函数的定义域;函数值的集合{()∈}叫做函数的值域.
()如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.
.函数的表示方法
表示函数的常用方法有解析法、图象法和列表法.
.分段函数
()若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.
()分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.
.(质疑夯基)判断下列结论的正误.(正确的打“√”,错误的打“×”)
()函数=与=是同一个函数.( ) ()与轴垂直的直线和一个函数的图象至多有一个交点.( )
()函数=+的值域是{≥}.( ) ()若两个函数的定义域与值域相同,则这两个函数相等.( )
答案:()×()√()×()×
.(·重庆卷)函数()=(+-)的定义域是( )
.[-,] .(-,)
.(-∞,-]∪[,+∞) .(-∞,-)∪(,+∞)
解析:要使函数有意义,只需+->,即(+)(-)>,解得<-或。

2020高考文科数学(人教A版)总复习练习:第二章 函数 课时规范练7 Word版含解析

2020高考文科数学(人教A版)总复习练习:第二章 函数 课时规范练7 Word版含解析

课时规范练11函数的图象基础巩固组1.函数f(x)=则y=f(x+1)的图象大致是()2.已知f(x)=2x,则函数y=f(|x-1|)的图象为()3.(2018浙江,5)函数y=2|x|sin 2x的图象可能是()4.(2017全国3,文7)函数y=1+x+的部分图象大致为()5.已知函数f(x)=x2+e x-(x<0)与g(x)=x2+ln(x+a)的图象上存在关于y轴对称的点,则a的取值范围是()A.-B.(-,)C. D.-6.(2018衡水中学押题二,7)函数y=sin x+ln|x|在区间[-3,3]的图象大致为()7.已知函数f(x)(x∈R)满足f(x)=f(2-x),若函数y=|x2-2x-3|与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则 x i=()A.0B.mC.2mD.4m8.已知函数f(x)满足f(x+1)=-f(x),且f(x)是偶函数,当x∈[0,1]时,f(x)=x2.若在区间[-1,3]内,函数g(x)=f(x)-kx-k有4个零点,则实数k的取值范围为.综合提升组9.已知当0<x≤时,4x<log a x,则a的取值范围是()A. B.C.(1,)D.(,2)10.(2018湖南长郡中学四模,8)若实数x,y满足|x-1|-ln=0,则y关于x的函数图象大致形状是()11.已知f(x)=则函数y=2f2(x)-3f(x)+1的零点个数是.12.(2018河北衡水中学押题二,16)已知函数f(x)=---若函数g(x)=f(x)+3m有3个零点,则实数m的取值范围是.创新应用组13.(2018河北衡水中学金卷一模,12)若函数y=f(x)满足:①f(x)的图象是中心对称图形;②当x∈D 时,f(x)图象上的点到其对称中心的距离不超过一个正数M,则称f(x)是区间D上的“M对称函数”.若函数f(x)=(x+1)3+m(m>0)是区间[-4,2]上的“M对称函数”,则实数M的取值范围是()A.[3,+)B.[,+)C.(0,3]D.(3,+)14.(2018河北衡水中学17模,9)函数y=x∈-的图象大致是()课时规范练11函数的图象1.B将f(x)的图象向左平移一个单位即得到y=f(x+1)的图象.故选B.2.D f(|x-1|)=2|x-1|.当x=0时,y=2.可排除选项A,C.当x=-1时,y=4.可排除选项B.故选D.3.D因为在函数y=2|x|sin 2x中,y1=2|x|为偶函数,y2=sin 2x为奇函数,所以y=2|x|sin 2x为奇函数.所以排除选项A,B.当x=0,x=,x=π时,sin 2x=0,故函数y=2|x|sin 2x在[0,π]上有三个零点,排除选项C,故选D.4.D当x=1时,y=1+1+sin 1=2+sin 1>2,故排除A,C;当x→+时,y→+,故排除B,满足条件的只有D,故选D.5.B由已知得与函数f(x)的图象关于y轴对称的图象的解析式为h(x)=x2+e-x-(x>0).令h(x)=g(x),得ln(x+a)=e-x-,作函数M(x)=e-x-的图象,显然当a≤0时,函数y=ln(x+a)的图象与M(x)的图象一定有交点.当a>0时,若函数y=ln(x+a)的图象与M(x)的图象有交点,则ln a<,则0<a<.综上a<.故选B.6.A设f(x)=sin x+ln|x|,当x>0时,f(x)=sin x+ln x⇒F'(x)=cos x+,当x∈(0,1)时,f'(x)>0,即函数f(x)在(0,1)上为单调递增函数,排除B;当x=1时,f(1)=sin 1>0,排除D;因为f(-x)=sin(-x)+ln|-x|=-sin x+ln|x|≠±f(x),所以函数f(x)为非奇非偶函数,排除C,故选A.7.B由题意可知,y=f(x)与y=|x2-2x-3|的图象都关于直线x=1对称,所以它们的交点也关于直线x=1对称.当m为偶数时,x i=2·=m;当m为奇数时,x i=2·-+1=m,故选B.8.依题意得f(x+2)=-f(x+1)=f(x),即函数f(x)是以2为周期的函数.g(x)=f(x)-kx-k在区间[-1,3]内有4个零点,即函数y=f(x)与y=k(x+1)的图象在区间[-1,3]内有4个不同的交点.在坐标平面内画出函数y=f(x)的图象(如图所示),注意直线y=k(x+1)恒过点(-1,0),可知当k∈时,相应的直线与函数y=f(x)在区间[-1,3]内有4个不同的交点,故实数k的取值范围是.9.B设函数f(x)=4x和g(x)=log a x,画出两个函数在上的图象(图略),可知当a>1时不满足条件,当0<a<1时,f<g,即2<log a,则a>,所以a的取值范围为.10.B原方程可化为-|x-1|=ln y,即y=e-|x-1|,由于x=1时,y=1,故排除C,D,当x=0时,y=<1,排除A选项,故选B.11.5方程2f2(x)-3f(x)+1=0的解为f(x)=或1.作出y=f(x)的图象,由图象知零点的个数为5.12.-作出函数y=f(x)的图象,如下图所示,∵g(x)=f(x)+3m有3个零点,∴0<-3m<1,解得-<m<0,即实数m的取值范围是-.13.A函数f(x)=(x+1)3+m(m>0)的图象可由y=x3的图象向左平移1个单位长度,再向上平移m个单位长度得到,故函数f(x)的图象关于点Q(-1,m)对称.由f(x)=(x+1)3+m(m>0)的图象(略)可知,点(-4,m-27)或点(2,m+27)到点Q(-1,m)的距离最大,最大值为d=--=3,根据条件只需M≥3.故选A.14.A由题意可得f(x)=,x∈-,∵f(-x)=-=-=-f(x),-∴函数f(x)为奇函数,其图象关于原点对称,∴排除选项C.又y'=f'(x)=,∴当x∈时,f'(x)>0,f(x)单调递增,∴排除选项B和D.故选A.。

2020高考文科数学(人教A版)总复习练习:第二章 函数 课时规范练5 Word版含解析

2020高考文科数学(人教A版)总复习练习:第二章 函数 课时规范练5 Word版含解析

课时规范练9指数与指数函数基础巩固组1.化简(x>0,y>0)得()A.2x2yB.2xyC.4x2yD.-2x2y2.函数f(x)=a|2x-4|(a>0,a≠1),满足f(1)=,则f(x)的单调递减区间是()A.(-∞,2]B.[2,+∞)C.[-2,+∞)D.(-∞,-2]3.已知f(x)=3x-b(2≤x≤4,b为常数)的图象经过点(2,1),则f(x)的值域为()A.[9,81]B.[3,9]C.[1,9]D.[1,+∞)4.函数y=a x-a(a>0,且a≠1)的图象可能是()5.已知a=20.2,b=0.40.2,c=0.40.6,则()A.a>b>cB.a>c>bC.c>a>bD.b>c>a6.已知f(x)=2x+2-x,若f(a)=3,则f(2a)等于()A.5B.7C.9D.117.已知x,y∈R,且2x+3y>2-y+3-x,则下列各式正确的是()A.x-y>0B.x+y<0C.x-y<0D.x+y>08.若偶函数f(x)满足f(x)=2x-4(x≥0),则{x|f(x-3)>0}=()A.{x|x<-3或x>5}B.{x|x<1或x>5}C.{x|x<1或x>7}D.{x|x<-3或x>3}9.函数f(x)=-的单调减区间为.10.已知函数f(x)=3x-.(1)若f(x)=2,求x的值;(2)判断x>0时,f(x)的单调性;(3)若3t f(2t)+mf(t)≥0对于t∈恒成立,求m的取值范围.综合提升组11.函数y=(0<a<1)图象的大致形状是()12.若关于x的方程|a x-1|=2a(a>0,a≠1)有两个不等实根,则a的取值范围是()A.(0,1)∪(1,+∞)B.(0,1)C.(1,+∞)D.13.当x∈(-∞,-1]时,不等式(m2-m)·4x-2x<0恒成立,则实数m的取值范围是.14.已知函数f(x)=是奇函数.(1)求m的值;(2)设g(x)=2x+1-a,若函数f(x)与g(x)的图象至少有一个公共点,求实数a的取值范围.创新应用组15.(2018湖南衡阳一模,9)若实数x,y满足|x-1|-ln y=0,则y关于x的函数图象的大致形状是()16.(2018辽宁抚顺一模,12)已知函数f(x),若在其定义域内存在实数x满足f(-x)=-f(x),则称函数f(x)为“局部奇函数”,若函数f(x)=4x-m·2x-3是定义在R上的“局部奇函数”,则实数m的取值范围是() A.[-) B.[-2,+∞)C.(-∞,2)D.[-2)课时规范练9指数与指数函数1.A原式=(26x12y6=2x2|y|=2x2y.2.B由f(1)=,得a2=.又a>0,∴a=,即f(x)=-.∵y=|2x-4|在(-∞,2]上递减,在[2,+∞)上递增,∴f(x)在(-∞,2]上递增,在[2,+∞)上递减,故选B.3.C由f(x)的图象过定点(2,1)可知b=2.因为f(x)=3x-2在[2,4]上是增函数,所以f(x)min=f(2)=1,f(x)max=f(4)=9.故选C.4.C当x=1时,y=a1-a=0,所以y=a x-a的图象必过定点(1,0),结合选项可知选C.5.A由0.2<0.6,0<0.4<1,可知0.40.2>0.40.6,即b>c.又因为a=20.2>1,b=0.40.2<1,所以a>b.综上,a>b>c.6.B由f(a)=3得2a+2-a=3,两边平方得+2-2a+2=9,即+2-2a=7,故f(2a)=7.7.D因为2x+3y>2-y+3-x,所以2x-3-x>2-y-3y.令f(x)=2x-3-x,因为f(x)=2x-3-x=2x-为增函数,f(x)>f(-y),所以x>-y,即x+y>0.8.B∵f(2)=0,∴f(x-3)>0等价于f(|x-3|)>0=f(2).∵f(x)=2x-4在[0,+∞)内为增函数,∴|x-3|>2,解得x<1或x>5.9.(-∞,1]设u=-x2+2x+1,∵y=在R上为减函数,又u=-x2+2x+1的增区间为(-∞,1],∴f(x)的减区间为(-∞,1].10.解 (1)当x≤0时,f(x)=3x-3x=0,∴f(x)=2无解.当x>0时,f(x)=3x-,令3x-=2.∴(3x)2-2×3x-1=0,解得3x=1±.∵3x>0,∴3x=1+.∴x=log3(1+).(2)∵y=3x在(0,+∞)上单调递增,y=在(0,+∞)上单调递减,∴f(x)=3x-在(0,+∞)上单调递增.(3)∵t∈,∴f(t)=3t->0.∴3t f(2t)+mf(t)≥0化为3t-+m-≥0,即3t+m≥0,即m≥-32t-1.令g(t)=-32t-1,则g(t)在上为减函数,∴g(x)max=-4.∴所求实数m的取值范围是[-4,+∞).11.D函数定义域为{x|x∈R,x≠0},且y=-当x>0时,函数是一个指数函数, ∵0<a<1,∴函数在(0,+∞)上是减函数;当x<0时,函数图象与指数函数y=a x(x<0,0<a<1)的图象关于x轴对称,在(-∞,0)上是增函数,故选D.12.D方程|a x-1|=2a(a>0且a≠1)有两个不等实根转化为函数y=|a x-1|与y=2a有两个交点.①当0<a<1时,如图(1),∴0<2a<1,即0<a<.②当a>1时,如图(2),而y=2a>1不符合要求.综上,0<a<.13.(-1,2)原不等式变形为m2-m<.∵函数y=在(-∞,-1]上是减函数,∴-=2,当x∈(-∞,-1]时,m2-m<恒成立等价于m2-m<2,解得-1<m<2.14.解 (1)由函数f(x)是奇函数,可知f(0)=1+m=0,解得m=-1.(2)函数f(x)与g(x)的图象至少有一个公共点,即方程-=2x+1-a至少有一个实根,即方程4x-a·2x+1=0至少有一个实根.令t=2x>0,则方程t2-at+1=0至少有一个正根.方法一:∵a=t+≥2,∴a的取值范围为[2,+∞).方法二:令h(t)=t2-at+1,由于h(0)=1>0,∴只需解得a≥2.∴a的取值范围为[2,+∞).15.A由实数x,y满足|x-1|-ln y=0,可得y=e|x-1|=--因为e>1,故函数在[1,+∞)上为增函数,由y=e|x-1|知f(x)的图象关于直线x=1对称,对照选项,只有A正确,故选A.16.B根据“局部奇函数”的定义可知,方程f(-x)=-f(x)有解即可,即4-x-m·2-x-3=-(4x-m·2x-3),∴4-x+4x-m(2-x+2x)-6=0,化为(2-x+2x)2-m(2-x+2x)-8=0有解,令2-x+2x=t(t≥2),则有t2-mt-8=0在[2,+∞)上有解,设g(t)=t2-mt-8,则抛物线的对称轴为t=,若m≥4,则Δ=m2+32>0,满足方程有解;若m<4,要使t2-mt-8=0在[2,+∞)上有解,则需--解得-2≤m<4.综上可得实数m的取值范围为[-2,+∞).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时规范练 A 组 基础对点练1.函数y =lg (x +1)x -2的定义域是( )A .(-1,+∞)B .[-1,+∞)C .(-1,2)∪(2,+∞)D .[-1,2)∪(2,+∞)解析:由题意知,要使函数有意义,需⎩⎪⎨⎪⎧x -2≠0x +1>0,即-1<x <2或x >2,所以函数的定义域为(-1,2)∪(2,+∞).故选C. 答案:C 2.函数f (x )=1log 2x -1的定义域为( )A .(0,2)B .(0,2]C .(2,+∞)D .[2,+∞)解析:由题意可知x 满足log 2x -1>0,即log 2x >log 22,根据对数函数的性质得x >2,即函数f (x )的定义域是(2,+∞). 答案:C3.设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))=( )A .-1 B.14 C.12D.32解析:∵f (-2)=2-2=14,∴f (f (-2))=f ⎝⎛⎭⎫14=1-14=12,故选C. 答案:C4.f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫13x (x ≤0),log 3x (x >0),则f ⎣⎡⎦⎤f ⎝⎛⎭⎫19=( ) A .-2 B .-3 C .9D .-9解析:∵f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫13x (x ≤0),log 3x (x >0),∴f ⎝⎛⎭⎫19=log 319=-2,∴f ⎣⎡⎦⎤f ⎝⎛⎭⎫19=f (-2)=⎝⎛⎭⎫13-2=9.故选C. 答案:C5.已知函数f (x )=⎩⎪⎨⎪⎧0,x >0,π,x =0,π2+1,x <0,则f (f (f (-1)))的值等于( )A .π2-1B .π2+1C .πD .0解析:由函数的解析式可得f (f (f (-1)))=f (f (π2+1))=f (0)=π.故选C. 答案:C6.设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x ,x ≥1.若f ⎝⎛⎭⎫f ⎝⎛⎭⎫56=4,则b =( ) A .1 B.78 C.34D.12解析:f ⎝⎛⎭⎫f ⎝⎛⎭⎫56=f ⎝⎛⎭⎫3×56-b =f ⎝⎛⎭⎫52-b .当52-b <1,即b >32时,3×⎝⎛⎭⎫52-b -b =4,解得b =78(舍).当52-b ≥1,即b ≤32时,252b -=4,解得b =12.故选D. 答案:D7.已知函数f (x )=⎩⎪⎨⎪⎧2x,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .3解析:由题意知f (1)=21=2.∵f (a )+f (1)=0, ∴f (a )+2=0.①当a >0时,f (a )=2a,2a +2=0无解; ②当a ≤0时,f (a )=a +1,∴a +1+2=0, ∴a =-3. 答案:A8.函数f (x )=1-2x +1x +3的定义域为( ) A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1]解析:由题意得⎩⎪⎨⎪⎧1-2x≥0x +3>0,所以-3<x ≤0.答案:A9.已知函数f (x )=2x +1(1≤x ≤3),则( )A .f (x -1)=2x +2(0≤x ≤2)B .f (x -1)=2x -1(2≤x ≤4)C .f (x -1)=2x -2(0≤x ≤2)D .f (x -1)=-2x +1(2≤x ≤4)解析:因为f (x )=2x +1,所以f (x -1)=2x -1.因为函数f (x )的定义域为[1,3],所以1≤x -1≤3,即2≤x ≤4,故f (x -1)=2x -1(2≤x ≤4). 答案:B10.设x ∈R ,则f (x )与g (x )表示同一函数的是( ) A .f (x )=x 2,g (x )=x 2 B .f (x )=(x )2x ,g (x )=x (x )2C .f (x )=1,g (x )=(x -1)0D .f (x )=x 2-9x +3,g (x )=x -3解析:对于A ,f (x )=x 2(x ∈R),与g (x )=x 2=|x |(x ∈R)的对应关系不同,所以不是同一函数;对于B ,f (x )=(x )2x =1(x >0),与g (x )=x (x )2=1(x >0)的定义域相同,对应关系也相同,所以是同一函数;对于C ,f (x )=1(x ∈R),与g (x )=(x -1)0=1(x ≠1)的定义域不同,所以不是同一函数;对于D ,f (x )=x 2-9x +3=x -3(x ≠-3),与g (x )=x -3(x ∈R)的定义域不同,所以不是同一函数.故选B. 答案:B11.已知函数f (x )=⎩⎪⎨⎪⎧log 2x -1,x >0,f (2-x ),x ≤0,则f (0)=( )A .-1B .0C .1D .3解析:f (0)=f (2-0)=f (2)=log 22-1=0. 答案:B12.已知实数a <0,函数f (x )=⎩⎪⎨⎪⎧x 2+2a ,x <1,-x ,x ≥1,若f (1-a )≥f (1+a ),则实数a 的取值范围是( )A .(-∞,-2]B .[-2,-1]C .[-1,0)D .(-∞,0)解析:当a <0时,1-a >1,1+a <1,所以f (1-a )=-(1-a )=a -1,f (1+a )=(1+a )2+2a =a 2+4a +1,由f (1-a )≥f (1+a )得a 2+3a +2≤0,解得-2≤a ≤-1,所以a ∈[-2,-1].故选B. 答案:B13.若函数f (x )=2x +3,g (x +2)=f (x ),则函数g (x )的表达式为________.解析:令x +2=t ,则x =t -2.因为f (x )=2x +3,所以g (x +2)=f (x )=2x +3,所以g (t )=2(t -2)+3=2t -1.故函数g (x )的表达式为g (x )=2x -1. 答案:g (x )=2x -114.(2018·唐山一中测试)已知函数f (x )=ax 5-bx +|x |-1,若f (-2)=2,则f (2)=________. 解析:因为f (-2)=2,所以-32a +2b +2-1=2,即32a -2b =-1,则f (2)=32a -2b +2-1=0. 答案:015.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x +1,x ≤0,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫14的值是__________. 解析:由题意可得f ⎝⎛⎭⎫14=log 214=-2, ∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫14=f (-2)=3-2+1=109. 答案:10916.设函数f (x )=⎩⎪⎨⎪⎧x 13,x ≥8,2e x -8,x <8,则使得f (x )≤3成立的x 的取值范围是__________.解析:当x ≥8时,x 13≤3,x ≤27,即8≤x ≤27;当x <8时,2e x -8≤3恒成立.综上,x ∈(-∞,27]. 答案:(-∞,27]B 组 能力提升练1.(2018·郑州教学质量监测)若函数y =f (x )的定义域是[0,2 016],则函数g (x )=f (x +1)x -1的定义域是( ) A .[-1,2 015] B .[-1,1)∪(1,2 015] C .[0,2 016]D .[-1,1)∪(1,2 016]解析:要使函数f (x +1)有意义,则0≤x +1≤2 016,解得-1≤x ≤2 015,故函数f (x +1)的定义域为[-1,2 015],所以函数g (x )有意义的条件是⎩⎪⎨⎪⎧-1≤x ≤2 015x -1≠0,故函数g (x )的定义域为[-1,1)∪(1,2 015].答案:B2.(2018·大同质检)已知f (x )是一次函数,且f [f (x )]=x +2,则f (x )=( ) A .x +1 B .2x -1 C .-x +1D .x +1或-x -1解析:设f (x )=kx +b ,则由f [f (x )]=x +2,可得k (kx +b )+b =x +2,即k 2x +kb +b =x +2,∴k 2=1,kb +b =2.解得k =1,b =1,则f (x )=x +1.故选A. 答案:A3.(2018·天津模拟)设函数f (x )满足f ⎝ ⎛⎭⎪⎫1-x 1+x =1+x ,则f (x )的表达式为( )A.21+xB.21+x 2C.1-x 21+x 2D.1-x 1+x解析:令1-x 1+x =t ,则x =1-t 1+t ,代入f ⎝ ⎛⎭⎪⎫1-x 1+x =1+x ,得f (t )=1+1-t 1+t =21+t ,故选A.答案:A4.(2018·郑州质检)设函数f :R →R 满足f (0)=1,且对任意 x ,y ∈R 都有f (xy +1)=f (x )f (y )-f (y )-x +2,则f (2 017)=( ) A .0 B .1 C .2 017D .2 018解析:令x =y =0,则f (1)=f (0)f (0)-f (0)+2=1×1-1+2=2;令y =0,则f (1)=f (x )f (0)-f (0)-x +2,将f (0)=1,f (1)=2代入,可得f (x )=1+x ,所以f (2 017)=2 018.故选D. 答案:D5.已知函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2e x,-2≤x ≤2f (-x ),x <-2,则f (-2 017)=( )A .1B .e C.1eD .e 2解析:由已知可得,当x >2时,f (x )=f (x -4),故其周期为4,f (-2 017)=f (2 017)=f (2 016+1)=f (1)=e. 答案:B6.函数f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则不等式f (x )>2的解集为( ) A .(-2,4)B .(-4,-2)∪(-1,2)C .(1,2)∪(10,+∞)D .(10,+∞)解析:令2e x -1>2(x <2),解得1<x <2;令log 3(x 2-1)>2(x ≥2),解得x >10,故选C.答案:C7.已知函数f (x )=⎩⎪⎨⎪⎧f (x +2),x <2,⎝⎛⎭⎫13x ,x ≥2,则f (-1+log 35)的值为( )A.115 B.53 C .15D.23解析:∵-1+log 35<2,∴f (-1+log 35)=f (-1+log 35+2)=f (1+log 35)=f (log 315)=⎝⎛⎭⎫133log 15=115,故选A. 答案:A8.设函数f (x )=⎩⎨⎧x2-1,x ≥0,1x ,x <0,若f (f (a ))=-12,则实数a =( )A . 4B .-2C .4或-12D .4或-2答案:C9.已知函数f (x )=⎩⎪⎨⎪⎧2e x -1,x <1x 3+x ,x ≥1,则f (f (x ))<2的解集为( )A .(1-ln 2,+∞)B .(-∞,1-ln 2)C .(1-ln 2,1)D .(1,1+ln 2)解析:因为当x ≥1时,f (x )=x 3+x ≥2,当x <1时,f (x )=2e x -1<2,所以f (f (x ))<2等价于f (x )<1,即2e x -1<1,解得x <1-ln 2,所以f (f (x ))<2的解集为(-∞,1-ln 2),故选B.答案:B10.已知函数f (x )=⎩⎪⎨⎪⎧x ln (1+x )+x 2,x ≥0-x ln (1-x )+x 2,x <0,若f (-a )+f (a )≤2f (1),则实数a 的取值范围是( )A .(-∞,-1]∪[1,+∞)B .[-1,0]C .[0,1]D .[-1,1]解析:若x >0,则-x <0,f (-x )=x ln(1+x )+x 2=f (x ),同理可得x <0时,f (-x )=f (x ),且x=0时,f (0)=f (0),所以f (x )为偶函数.当x ≥0时,易知f (x )=x ln(1+x )+x 2为增函数,所以不等式f (-a )+f (a )≤2f (1)等价于2f (a )≤2f (1),即f (a )≤f (1),亦即f (|a |)≤f (1),则|a |≤1,解得-1≤a ≤1,故选D. 答案:D11.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为( )A .-32B .-34C .-32或-34D.32或-34解析:当a >0时,1-a <1,1+a >1.由f (1-a )=f (1+a )得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )得-1+a -2a =2+2a +a ,解得a =-34,所以a 的值为-34,故选B. 答案:B12.给出定义:若m -12<x ≤m +12(其中m 为整数),则m 叫作离实数x 最近的整数,记作{x },即{x }=m .现给出下列关于函数f (x )=|x -{x }|的四个命题: ①f ⎝⎛⎭⎫-12=12; ②f (3.4)=-0.4; ③f ⎝⎛⎭⎫-14=f ⎝⎛⎭⎫14; ④y =f (x )的定义域为R ,值域是⎣⎡⎦⎤-12,12. 其中真命题的序号是( ) A .①② B .①③ C .②④D .③④解析:①∵-1-12<-12≤-1+12,∴⎩⎨⎧⎭⎬⎫-12=-1, ∴f ⎝⎛⎭⎫-12=⎪⎪⎪⎪-12-⎩⎨⎧⎭⎬⎫-12=⎪⎪⎪⎪-12+1=12,∴①正确. ②∵3-12<3.4≤3+12,∴{3,4}=3,∴f (3.4)=|3.4-{3.4}|=|3.4-3|=0.4,∴②错误.③∵0-12<-14≤0+12,∴⎩⎨⎧⎭⎬⎫-14=0,∴f ⎝⎛⎭⎫-14=⎪⎪⎪⎪-14-0=14.∵0-12<14≤0+12,∴⎩⎨⎧⎭⎬⎫14=0,∴f ⎝⎛⎭⎫14=⎪⎪⎪⎪14-0=14, ∴f ⎝⎛⎭⎫-14=f ⎝⎛⎭⎫14, ∴③正确.④y =f (x )的定义域为R ,值域是⎣⎡⎦⎤0,12,∴④错误.故选B. 答案:B13.若函数f (2x )的定义域是[-1,1],则函数f (2x -1)+f (2x +1)的定义域是________. 解析:因为函数f (2x )的定义域是[-1,1],所以-2≤2x ≤2,所以函数f (x )的定义域为[-2,2],所以f (2x -1)+f (2x +1)的定义域应满足的条件为-2≤2x -1≤2且-2≤2x +1≤2,即-12≤x ≤32且-32≤x ≤12,所以-12≤x ≤12,所以函数f (2x -1)+f (2x +1)的定义域是⎣⎡⎦⎤-12,12. 答案:⎣⎡⎦⎤-12,1214.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1, x ≤0,-(x -1)2, x >0,则不等式f (x )≥-1的解集是________.解析:由题意得⎩⎪⎨⎪⎧x ≤0,x 2+1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1,解得-4≤x ≤0或0<x ≤2, 即-4≤x ≤2,即不等式的解集为[-4,2]. 答案:[-4,2]15.已知函数f (x )的定义域为实数集R ,∀x ∈R ,f (x -90)=⎩⎪⎨⎪⎧lg x ,x >0,-x ,x ≤0,则f (10)-f (-100)的值为__________.解析:令t =x -90,得x =t +90,则f (t )=⎩⎪⎨⎪⎧lg (t +90),t >-90,-(t +90),t ≤-90,f (10)=lg 100=2,f (-100)=-(-100+90)=10,所以f (10)-f (-100)=-8. 答案:-816.(2018·郑州质检)若函数f (x )满足:∀a ,b ∈R ,都有3f ⎝⎛⎭⎫a +2b 3=f (a )+2f (b ),且f (1)=1,f (4)=7,则f (2 017)=__________. 解析:由已知得f ⎝⎛⎭⎫a +2b 3=f (a )+2f (b )3. 取f (x )=kx +m ,易验证f (x )=kx +m 满足 f ⎝⎛⎭⎫a +2b 3=f (a )+2f (b )3. 由f (1)=1,f (4)=7得⎩⎪⎨⎪⎧k +m =14k +m =7,由此解得k =2,m =-1,故f (x )=2x -1,f (2 017)=2×2017-1=4 033. 答案:4 033。

相关文档
最新文档