2020年高考数学专题训练——第14讲立体几何选择填空压轴题专练

合集下载

(完整版)2020年高考理科数学《立体几何》题型归纳与训练,推荐文档

(完整版)2020年高考理科数学《立体几何》题型归纳与训练,推荐文档

2020年高考理科数学《立体几何》题型归纳与训练【题型归纳】题型一线面平行的证明例1如图,高为1的等腰梯形ABCD 中,AM =CD =AB =1.现将△AMD 沿MD 折起,使平面AMD ⊥13平面MBCD ,连接AB ,AC .试判断:在AB 边上是否存在点P ,使AD ∥平面MPC ?并说明理由【答案】当AP =AB 时,有AD ∥平面MPC .13理由如下:连接BD 交MC 于点N ,连接NP .在梯形MBCD 中,DC ∥MB ,==,DNNB DCMB 12在△ADB 中,=,∴AD ∥PN .APPB 12∵AD ⊄平面MPC ,PN ⊂平面MPC ,∴AD ∥平面MPC .【解析】线面平行,可以线线平行或者面面平行推出。

此类题的难点就是如何构造辅助线。

构造完辅助线,证明过程只须注意规范的符号语言描述即可。

本题用到的是线线平行推出面面平行。

【易错点】不能正确地分析DN 与BN 的比例关系,导致结果错误。

【思维点拨】此类题有两大类方法:1.构造线线平行,然后推出线面平行。

此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。

在此,我们需要借助倒推法进行分析。

首先,此类型题目大部分为证明题,结论必定是正确的,我们以此为前提可以得到线面平行。

再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行于该直线,而交线就是我们要找的线,从而做出辅助线。

从这个角度上看我们可以看出线线平行推线面平行的本质就是过已知直线做一个平面与已知平面相交即可。

如本题中即是过AD 做了一个平面ADB 与平面MPC 相交于线PN 。

最后我们只须严格使用正确的符号语言将证明过程反向写一遍即可。

即先证AD 平行于PN ,最后得到结论。

构造交线的方法我们可总结为如下三个图形。

一一一一一一一一一2.构造面面平行,然后推出线面平行。

此类方法辅助线的构造通常比较简单,但证明过程较繁琐,一般做为备选方案。

高考数学压轴专题2020-2021备战高考《空间向量与立体几何》分类汇编附答案解析

高考数学压轴专题2020-2021备战高考《空间向量与立体几何》分类汇编附答案解析

新数学《空间向量与立体几何》试卷含答案一、选择题1.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的体积为()6483C.2882A.B.163D.1633【答案】 B【分析】【剖析】联合三视图,复原直观图,获得一个圆锥和一个圆柱,计算体积,即可.【详解】联合三视图,复原直观图,获得故体积V r 2h1r 2 l22 412223 168 3,应选 B.333【点睛】本道题考察了三视图复原直观图,考察了组合体体积计算方法,难度中等.2.如图,在长方体ABCD A1B1C1D1中,AB AD3, AA 1 ,而对角线A1B上存1在一点 P ,使得AP D1P 获得最小值,则此最小值为()A.7B.3C.1+ 3D.2【答案】 A【分析】【剖析】把面 AA1 B 绕 A1B 旋转至面BA1M使其与对角面A1BCD1在同一平面上,连结MD 1并求出,就是最小值.【详解】把面 AA1 B 绕 A1B 旋转至面BA1M使其与对角面A1BCD1在同一平面上,连结MD1. MD1就是|AP|| D1 P | 的最小值,Q |AB| |AD|3,|AA1| 1 , tan AA1 B33,AA1B600 .1因此 MA1D1=90 o +60o =150oMD1A D2 A M 22A D1A M cos MA D1 3 22 3 ( 3 )711111112应选 A.【点睛】此题考察棱柱的构造特点,考察计算能力,空间想象能力,解决此类问题常经过转变,转变为在同一平面内两点之间的距离问题,是中档题.3.在以下命题中:r r r r rr①三个非零向量 a , b ,c不可以组成空间的一个基底,则 a ,b,c共面;r r r r② 若两个非零向量 a ,b与任何一个向量都不可以组成空间的一个基底,则 a ,b共线;uuur uuur uuuur uuuur③ 对空间随意一点O和不共线的三点 A,B,C,若OP2OA2OB2OC,则P,A,B,C四点共面r r r r r r r r,④ 若a,b是两个不共线的向量,且c a b(R, ,0) ,则 { a,b, c} 组成空间的一个基底r r r r r r r r r⑤若 a, b, c 为空间的一个基底,则a b,b c,c a组成空间的另一个基底;此中真命题的个数是()A.0B. 1C. 2D. 3【答案】 D【分析】【剖析】依据空间向量的运算法例,逐个判断即可获得结论.【详解】r r r r r①由空间基底的定义知,三个非零向量 a ,b,c不可以组成空间的一个基底,则 a , b ,rc 共面,故①正确;r r②由空间基底的定义知,若两个非零向量 a ,b与任何一个向量都不可以组成空间的一个基r r底,则a,b共线,故② 正确;③由 2 2 221,依据共面向量定理知P, A, B, C 四点不共面,故③错误;r r r r r r r r r④由c a b ,当 1 时,向量c与向量a,b组成的平面共面,则a,b,c不能组成空间的一个基底,故④ 错误;r r r r r r⑤利用反证法:若a b,b c, c a不组成空间的一个基底,r r r r1x r r r r r r r r设 a b x b c c a,整理得c xa 1 x b ,即a,b,c共面,又因r r r r r r r r ra,b,c为空间的一个基底,因此a b, b c, c a能组成空间的一个基底,故⑤正确.综上:①②⑤正确.应选: D.【点睛】此题考察空间向量基本运算,向量共面,向量共线等基础知识,以及空间基底的定义,共面向量的定义,属于基础题.4.已知平面α∩β=l, m 是α内不一样于A.若 m∥ β,则 m∥l l 的直线,那么以下命题中错误的选项是(B.若 m∥l ,则 m∥ β)C.若 m⊥ β,则Dm⊥ l D.若m⊥l ,则m⊥ β【分析】【剖析】A由线面平行的性质定理判断 .B 依据两个平面订交,一个面中平行于它们交线的直线必平行于另一个平面判断 .C 依据线面垂直的定义判断 .D 依据线面垂直的判判定理判断 .【详解】A选项是正确命题,由线面平行的性质定理知,能够证出线线平行;B选项是正确命题,因为两个平面订交,一个面中平行于它们交线的直线必平行于另一个平面;C选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不可以推出它垂直于这个平面;应选: D.【点睛】此题主要考察线线关系和面面关系,还考察了推理论证的能力,属于中档题.5.《九章算术》卷五商功中有以下问题:今有刍甍(音meng,底面为矩形的屋脊状的几何体),下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.已知该刍甍的三视图如图所示,则此刍甍的体积等于( )A.3B.5C.6D.12【答案】 B【分析】【剖析】第一由三视图复原几何体,再将刍甍分为三部分求解体积,最后计算求得刍甍的体积.【详解】由三视图换元为以下图的几何体,该几何体分为三部分,中间一部分是直棱柱,双侧是同样的三棱锥,而且三棱锥的体积11 31 1,3中间棱柱的体积 V 112 3 ,32因此该刍甍的体积是 1 23 5 .应选: B【点睛】此题考察组合体的体积,要点考察空间想象能力和计算能力,属于中档题型.6.如图,棱长为 1 的正方体ABCD A1 B1C1D1,O 是底面 A B C D 的中心,则O到平1111面 ABC1 D1的距离是()A.1223B.4C.D.222【答案】 B【分析】【剖析】如图成立空间直角坐标系,可证明A1 D平面ABC1D1,故平面ABC1 D1的一个法向量uuuur为:DA1,利用点到平面距离的向量公式即得解.【详解】如图成立空间直角坐标系,则:11O( ,,1), D1 (0,0,1), A(1,0,0), B(1,1,0),C1 (0,1,1)22 uuuur( 1,1,0)OD122因为 AB平面 ADD1 A1 , AD1平面 ADD 1A1 AB A1 D ,又 AD1A1D , AB I AD1A1D平面ABC1D1uuuur故平面 ABC1 D1的一个法向量为:DA1(1,0,1) O到平面 ABC1D1的距离为:uuuur uuuur1d | OD1DA1 |22 uuuur4 |DA1|2应选: B【点睛】此题考察了点到平面距离的向量表示,考察了学生空间想象,观点理解,数学运算的能力,属于中档题 .7.三棱柱ABC A1B1C1中,底面边长和侧棱长都相等,BAA1CAA1 60 ,则异面直线 AB1与 BC1所成角的余弦值为()A.3B.63D.3 3C.664【答案】 B【分析】【剖析】uuuv v uuuv v uuuv v uuuv uuuuv设 AA1 c , AB a, AC b ,依据向量线性运算法例可表示出AB1和 BC1;分别求解uuuv uuuuv uuuv uuuuv uuuv uuuuv出 AB1BC1和 AB1, BC1,依据向量夹角的求解方法求得 cos AB1, BC1,即可得所求角的余弦值 .【详解】uuuv uuuv uuuvv v v设棱长为 1 ,AA1c ,AB a,AC b由题意得: v v 1 v v 1 v v1a b , b c , a c 22 2 uuuv v v uuuuv uuuv uuuv v v vQ AB 1 a c , BC 1 BC BB 1 b a cuuuv uuuuv v v v v v v v v 2 v vvv v v v 21 1 AB 1 BC 1a cb ac a b aa cbc a c c11 1uuuv22v v 2 v 2v vv23又AB 1a ca 2a c cuuuuv v v v 2 v 2 v 2 BC 1b a cb auuuv uuuuvuuuv uuuuvcosAB 1 BC 1AB 1 , BC 1uuuv uuuuvAB 1 BC 1v 2 v vv v v v 2c 2a b2b c 2a c1 6666 即异面直线 AB 1 与 BC 1 所成角的余弦值为:6此题正确选项: B【点睛】此题考察异面直线所成角的求解,要点是能够经过向量的线性运算、数目积运算将问题转变为向量夹角的求解问题 .8.如图,在正方体ABCD A 1B 1C 1D 1 中, M , N 分别为棱 C 1D 1 ,CC 1 的中点,以下四个结论: ① 直线 DM 与 CC 1 是订交直线; ② 直线 AM 与 NB 是平行直线;③ 直线 BN 与MB 1 是异面直线; ④ 直线 AM 与 DD 1 是异面直线.此中正确的个数为()A .1B .2C .3D .4【答案】 C【分析】【剖析】依据正方体的几何特点,可经过判断每个选项中的两条直线字母表示的点能否共面;假如共面,则可能是订交或许平行;若不共面,则是异面.【详解】① : CC 1 与DM 是共面的,且不平行,因此必然订交,故正确;② :若 AM 、 BN 平行,又 AD 、BC 平行且AMADA, BNBCB,因此平面BNC P 平面 ADM ,显然不正确,故错误;③ : BN 、MB 不共面,因此是异面直线,故正确;1④ : AM 、DD 1 不共面,因此是异面直线,故正确;应选 C.【点睛】异面直线的判断方法:一条直线上两点与此外一条直线上两点不共面,那么两条直线异 面;反之则为共面直线,可能是平行也可能是订交.9.在四周体 ABCD 中, AB , BC , BD 两两垂直, AB BC BD 4,E 、F 分别为棱 BC 、 AD 的中点,则直线 EF 与平面 ACD 所成角的余弦值( )A .1B .3 C .2 2D .6 3333【答案】 C【分析】【剖析】因为 AB , BC , BD 两两垂直,以 BA 为 X 轴,以 BD 为 Y 轴,以 BC 为 Z 轴成立空间直 uuurr uuur ruuur rEF n角坐标系,求出向量EF 与平面 ACD 的法向量 n ,再依据 cos EF , nuuur r ,即可 | EF || n |得出答案 .【详解】因为在四周体ABCD 中, AB , BC , BD 两两垂直,以 BA 为 X 轴,以 BD 为 Y 轴,以 BC 为 Z 轴成立空间直角坐标系, 又因为 AB BC BD 4;A 4,0,0 , B(0,0,0), D(0,4,0), C(0,0,4) ,又因为 E 、 F 分别为棱 BC 、 AD 的中点因此 E(0,0,2),F (2,2,0)uuur 2,2,uuur uuur故 EF2 ,AD ( 4,4,0) , AC ( 4,0, 4) .rv uuuvn AD设平面 ACD 的法向量为 n( x, y, z) ,则 v uuuvn AC令 x 1, 则 yz 1;r(1,1,1) 因此 nuuur r uuur r2 1 EF ncos EF , nuuur r323 3| EF || n |设直线 EF 与平面 ACD 所成角为 uuur r,则 sin cos EF , n因此cos1 sin 22 23应选: C【点睛】此题主要考察线面角,经过向量法即可求出,属于中档题目.10. 三棱锥 D ABC 中, CD 底面 ABC,ABC 为正三角形,若AE / /CD, ABCDAE2,则三棱锥 DABC 与三棱锥 E ABC 的公共部分组成的几何体的体积为( )A .3 B .31 D . 393C .3【答案】 B【分析】依据题意画出以下图的几何体:∴三棱锥 D ABC 与三棱锥 E ABC 的公共部分组成的几何体为三棱锥 F ABC∵ ABC 为正三角形, AB 21 2 23 ∴S ABC322∵ CD 底面 ABC , AE/ /CD ,CD AE 2∴四边形 AEDC 为矩形,则 F 为 EC 与 AD 的中点 ∴三棱锥 FABC 的高为 1CD12∴三棱锥 FABC 的体积为 V1 3 3 133应选 B.11. 已知平面 ,和直线 l 1 , l 2 ,且 αI “P l 2 ”是 “l 1∥ 且 l 1 ∥ β”的β l 2 ,则 l 1 ( )A .充足不用要条件B .必需不充足条件C.充要条件D.既不充足也不用要条件【答案】 B【分析】【剖析】将“P l 2”与“l1∥且 l1∥ β”相互推导,依据可否推导的状况判断充足、必需条件.l1【详解】当“P l 2”时, l1可能在或内,不可以推出“且 l1∥ β”当.“l1∥且 l1∥ β”时,l1l1∥因为αI β l2,故“l1 P l2”所.以“l1 P l2”是“l1∥且 l1∥ β”的必需不充足条件.应选: B.【点睛】本小题主要考察充足、必需条件的判断,考察空间直线、平面的地点关系,属于基础题.12.设,为两条不一样的直线,,为两个不一样的平面,以下命题中,正确的选项是()A.若,与所成的角相等,则B.若,,则C.若,,则D.若,,则【答案】 C【分析】试题剖析:若,与所成的角相等,则或,订交或,异面; A错.若,,则或,B错.若,,则正确 . D.若,,则,订交或,异面, D错考点:直线与平面,平面与平面的地点关系13.在正四周体A BCD 中,P是 AB 的中点,Q是直线 BD 上的动点,则直线PQ与AC 所成角可能为()A.B.C.5D.121242【答案】 C【分析】【剖析】依据题意,取 BC 的中点 M ,连结 MQ ,则AC / / MQ,因此QPM 为异面直线 PQ 与AC 所成角,在利用余弦定理可得MQ4x2 2 x,易知 PQ MQ ,因此在等腰三角形 PMQ 中 cos QPM1,0x 4,即可求出x242xcos QPM 3 , 3,从而求出结果 .123【详解】取 BC的中点M,连结 MQ,则AC / /MQ,因此QPM 为异面直线 PQ 与AC所成角,以以下图所示:设正四周体 A BCD 的棱长为 4 ,BQ x,0x4,在 BMQ 中,MQ2BM 2BQ 22BM BQ cos604x22x,在正四周体 A BCD 中,易知PQ MQ ,因此在等腰三角形 PMQ 中, cos QPM1,0x44x22x因此 cos QPM3,3,PQ 与AC所成角可能为5123因此异面直线.12应选: C.【点睛】此题主要考察了异面直线成角,余弦定理的应用,考察了空间几何中的动向问题,考察学生的应用能力和空间想象能力,属于中档题.14.以下说法正确的有几个()① 四边形确立一个平面;② 假如一条直线在平面外,那么这条直线与该平面没有公共点;③ 过直线外一点有且只有一条直线与已知直线平行;④ 假如两条直线垂直于同一条直线,那么这两条直线平行;A.0个B.1 个C.2 个D.3 个【答案】B【分析】【剖析】对四个说法逐个剖析,由此得出正确的个数.【详解】①错误,如空间四边形确立一个三棱锥.②错误,直线可能和平面订交.③正确,依据公理二可判断 ③ 正确 . ④错误,在空间中,垂直于同一条直线的两条直线可能订交,也可能异面,也可能平行 .综上所述,正确的说法有 1个,应选 B.【点睛】本小题主要考察空间相关命题真假性的判断,属于基础题.15 .等腰三角形ABC 的腰 AB AC 5, BC 6 ,将它沿高 AD 翻折,使二面角BAD C 成 60 ,此时四周体 ABCD 外接球的体积为()A . 7B . 28C . 19 19D .28 763【答案】 D 【分析】 剖析:详解:由题意,设 BCD 所在的小圆为 O 1 ,半径为 r ,又因为二面角 B AD C 为 600,即BDC600 ,因此 BCD 为边长为 3 的等边三角形,3又正弦定理可得,2rsin 6002 3,即BE 2 3 ,设球的半径为 R ,且 AD 4 ,22 DE 2 4R 42 (2 3) 2 28在直角 ADE 中, 2RAD ,因此 R7 ,因此球的体积为 V4 R 3 4 ( 7) 328 7 ,应选 D .333点睛:此题考察了相关球的组合体问题,以及三棱锥的体积的求法,解答时要仔细审题, 注意球的性质的合理运用,求解球的组合体问题常用方法有(1)三条棱两两相互垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线 的中点,再依据勾股定理求球的半径.16. 已知空间四边形OABC ,其对角线为 OB , AC , M , N 分别是边 OA , CB 的中点,点 G 在线段 MN 上,且使 MGuuuv uuuv uuuv uuuv2GN ,用向量 OA , OB , OC 表示向量 OG 是( )uuuv uuuv 2 uuuv 2 uuuvuuuv1 uuuv2 uuuv 2 uuuvA . OGOAOBOCB . OGOAOBOC3 32 3 3uuuv1 uuuv 1 uuuv 1 uuuvuuuv1 uuuv 1 uuuv2 uuuvC . OGOAOBOCD . OGOAOBOC633633【答案】 C【分析】【剖析】依据所给的图形和一组基底,从起点 O 出发,把不是基底中的向量,用是基底的向量来表示,就能够获得结论.【详解】uuur uuuur uuuur uuuur 2 uuuur Q OG OM MG OM 3MN ,uuuur 2 uuuur uuur uuur 1 uuuur2 uuuruuur uuur1 uuur 1 uuur 1 uuur1 OMMOOCCNOMOC3OBOCOA OB OC333633uuur 1 uuur 1 uuur1 uuurOGOAOBOC ,63 3应选: C .【点睛】此题考察向量的基本定理及其意义,解题时注意方法,即从要表示的向量的起点出发,沿着空间图形的棱走到终点,若出现不是基底中的向量的状况,再重复这个过程.17. 设 ,是两个不一样的平面, l , m 是两条不一样的直线,且 l, m,则( )A .若/ / ,则 l // mB .若 m / /a ,则 / /C .若 m ,则D .若,则 l // m【答案】 C【分析】【剖析】依据空间线线、线面、面面的地点关系,对选项进行逐个判断可得答案 .【详解】A.若 //,则 l 与 m 可能平行,可能异面,因此A 不正确. B. 若 m / /a ,则 与 可能平行,可能订交,因此B 不正确 .C. 若 m ,由 D 若 ,且确.m ,依据面面垂直的判判定理可得,因此 C 正确 .l , m,则 l 与 m 可能平行,可能异面,可能订交 , 因此 D 不正【点睛】此题考察空间线线、线面、面面的地点判判定理和性质定理,考察空间想象能力,属于基础题 .18.已知,是不一样的两个平面,直线a,直线 b,条件 p : a 与 b 没有公共点,条件 q :/ /,则p是 q的()A.充足不用要条件B.必需不充足条件C.充要条件D.既不充足又不用要条件【答案】 B【分析】∵ a 与b没有公共点时, a 与b所在的平面可能平行,也可能订交(交点不在直线b 上)∴命题p: a 与b没有公共点?命题q:∥ ,为假命题又∵ ∥时, a 与b平行或异面,即 a 与b没有公共点∴命题 q:∥? 命题p:a与b没有公共点,为真命题;故 p 是q的必需不充足条件应选 B19.已知直三棱柱ABC A1B1C1的全部棱长都相等,M 为A1C1的中点,则AM与BC1所成角的余弦值为 ( )A.15B.5C.6D.10 3344【答案】 D【分析】【剖析】取 AC 的中点 N ,连结C1N,则AM / /C1N,因此异面直线AM与 BC1所成角就是直线AM与 C1N 所成角,在BNC1中,利用余弦定理,即可求解.【详解】由题意,取 AC 的中点 N ,连结C1N,则AM / /C1N,因此异面直线AM与 BC1所成角就是直线AM与 C1N 所成角,设正三棱柱的各棱长为 2 ,则 C1N5, BC122, BN 3 ,设直线 AM与C1N所成角为,在 BNC1中,由余弦定理可得cos(5) 2(22) 2(3) 210 ,2522410,应选D.即异面直线 AM与BC1所成角的余弦值为4【点睛】此题主要考察了异面直线所成角的求解,此中解答中把异面直线所成的角转变为订交直线所成的角是解答的要点,侧重考察了推理与运算能力,属于基础题.20.一个各面均为直角三角形的四周体有三条棱长为2,则该四周体外接球的表面积为()A.6πB. 12πC. 32πD. 48π【答案】 B【分析】【剖析】先作出几何图形,确立四个直角和边长,再找到外接球的球心和半径,再计算外接球的表面积 .【详解】由题得几何体原图以下图,此中 SA⊥平面 ABC,BC⊥平面 SAB,SA=AB=BC=2,因此 AC=2 2 ,SC 2 3,设 SC中点为 O,则在直角三角形 SAC中, OA=OC=OS= 3 ,在直角三角形1SBC中, OB= SC3 ,2因此 OA=OC=OS=OB= 3 ,因此点 O 是四周体的外接球球心,且球的半径为 3 .因此四周体外接球的表面积为243=12.应选: B【点睛】此题主要考察四周体的外接球的表面积的计算,意在考察学生对这些知识的理解掌握水平易剖析推理的能力 .。

2020年全国高考数学试题分类汇编1-选择填空压轴题-含详细答案

2020年全国高考数学试题分类汇编1-选择填空压轴题-含详细答案

2020年全国高考数学试题汇编选择填空压轴题一、选择题(本大题共11小题,共54.0分)1.2020年3月14日是全球首个国际圆周率日(πDay).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似,数学家阿尔⋅卡西的方法是:当正整数n充分大时,计算单位圆的内接正6n边形的周长和外切正6n边形(各边均与圆相切的正6n边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔⋅卡西的方法,π的近似值的表达式是()A. 3n(sin30°n +tan30°n) B. 6n(sin30°n+tan30°n)C. 3n(sin60°n +tan60°n) D. 6n(sin60°n+tan60°n)2.设集合A={(x,y)|x−y≥1,ax+y>4,x−ay≤2},则()A. 对任意实数a,(2,1)∈AB. 对任意实数a,(2,1)∉AC. 当且仅当a<0时,(2,1)∉AD. 当且仅当a≤32时,(2,1)∉A3.根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与MN最接近的是()(参考数据:lg3≈0.48)A. 1033B. 1053C. 1073D. 10934.数学中有许多形状优美、寓意美好的曲线,曲线C:x2+y2=1+|x|y就是其中之一(如图).给出下列三个结论:①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到原点的距离都不超过√2;③曲线C所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是()A. ①B. ②C. ①②D. ①②③5.袋中装有偶数个球,其中红球、黑球各占一半,甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个放入乙盒,否则就放入丙盒,重复上述过程,直到袋中所有球都被放入盒中,则()A. 乙盒中黑球不多于丙盒中黑球B. 乙盒中红球与丙盒中黑球一样多C. 乙盒中红球不多于丙盒中红球D. 乙盒中黑球与丙盒中红球一样多6. 若2a +log 2a =4b +2log 4b ,则( )A. a >2bB. a <2bC. a >D. a <7. 已知函数f(x)={x 3,x ≥0,−x,x <0.若函数g(x)=f(x)−|kx 2−2x|(k ∈R)恰有4个零点,则k 的取值范围是( ) A. (−∞,−12)∪(2√2,+∞) B. (−∞,−12)∪(0,2√2) C. (−∞,0)∪(0,2√2)D. (−∞,0)∪(2√2,+∞)8. 已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为▵ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π9. 0−1周期序列在通信技术中有着重要应用,若序列a 1a 2…a n …满足a i ∈(0,1)(i =1,2,…),且存在正整数m ,使得a i+m =a i (i =1,2,…)成立,则称其为0−1周期序列,并称满足a i+m =a i (i =1,2,…)的最小正整数m 为这个序列的周期.对于周期为m 的0−1序列a 1a 2…a n …,C(k)=1m ∑a i a i+k (k =1,2,…,m −1)m i=1是描述其性质的重要指标.下列周期为5的0−1序列中,满足C(k)≤15(k =1,2,3,4)的序列是( )A. 11010…B. 11011…C. 10001…D. 11001…10. 已知<,<.设a =3,b =5,c =8,则( )A. a <b <cB. b <a <cC. b <c <aD. c <a <b11. 某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段,表中为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则( )A. 2号学生进入30秒跳绳决赛B. 5号学生进入30秒跳绳决赛C. 8号学生进入30秒跳绳决赛D. 9号学生进入30秒跳绳决赛二、不定项选择题(本大题共1小题,共5.0分)12. 信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且P(X =i)=>0(i =1,2,,n),=1,定义X 的信息熵H(X)=−( )A. 若n =1,则H (x )=0B. 若n =2,则H(x)随着的增大而增大C. 若=(i =1,2,,n),则H(x)随着n 的增大而增大D. 若n =2m ,随机变量Y 的所有可能取值为1,2,,m ,且P(Y =j)=+(j =1,2,,m)则H(X)H(Y)三、填空题(本大题共12小题,共60.0分)13.为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W与时间t的关系为W=f(t),用−f(b)−f(a)b−a的大小评价在[a,b]这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲,乙两企业的污水排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强.其中所有正确结论的序号是______.14.某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有______种;②这三天售出的商品最少有______种.15.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(i)男学生人数多于女学生人数;(ii)女学生人数多于教师人数;(iii)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为______.②该小组人数的最小值为______.16.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为________.17.已知椭圆M:x2a2+y2b2=1(a>b>0),双曲线N:x2m2−y2n2=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N的离心率为________.18.三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.(1)记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是______ ;(2)记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是______ .19.设函数f(x)={x 3−3x,x≤a−2x,x>a.①若a=0,则f(x)的最大值为______;②若f(x)无最大值,则实数a的取值范围是______.20.如图,在三棱锥P−ABC的平面展开图中,AC=1,AB=AD=,AB AC,AB AD,CAE=,则FCB=__________.21.设有下列四个命题:P1:两两相交且不过同一点的三条直线必在同一平面内.P2:过空间中任意三点有且仅有一个平面.P3:若空间两条直线不相交,则这两条直线平行.P4:若直线l⊂平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是________.①p1∧p4②p1∧p2③¬p2∨p3④¬p3∨¬p422.关于函数f(x)=x+有如下四个命题:f(x)的图像关于y轴对称.f(x)的图像关于原点对称,f(x)的图像关于直线x=对称.f(x)的最小值为2.其中所有真命题的序号是__________.23. 如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD ⃗⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =−32,则实数λ的值为______,若M ,N 是线段BC 上的动点,且|MN ⃗⃗⃗⃗⃗⃗⃗ |=1,则DM ⃗⃗⃗⃗⃗⃗⃗ ⋅DN ⃗⃗⃗⃗⃗⃗ 的最小值为______.24. 数列{a n }满足a n+2+(−1)n a n =3n −1,前16项和为540,则a 1=____.答案和解析1.【答案】A【解析】【分析】本题考查数学中的文化,考查圆的内接和外切多边形的边长的求法,考查运算能力,属于基础题.设内接正6n边形的边长为a,外切正6n边形的边长为b,运用圆的性质,结合直角三角形的锐角三角函数的定义,可得所求值.【解答】解:如图,设内接正6n边形的边长为a,外切正6n边形的边长为b,可得a=2sin360°12n =2sin30°n,b=2tan360°12n =2tan30°n,则2π≈6na+6nb2=6n(sin30°n+tan30°n),即π≈3n(sin30°n +tan30°n),故选:A.2.【答案】D【解析】【分析】本题考查元素与集合的关系,考查运算求解能力,是中档题.根据题意,取特例判断求解即可.【解答】解:当a=−1时,集合A={(x,y)|x−y≥1,ax+y>4,x−ay≤2}={(x,y)|x−y≥1,−x+y>4,x+ y≤2},显然(2,1)不满足,−x+y>4,x+y≤2,所以A不正确;当a=4时,集合A={(x,y)|x−y≥1,ax+y>4,x−ay≤2}={(x,y)|x−y≥1,4x+y>4,x−4y≤2},可知:此时(2,1)∈A,所以B不正确;当a=1时,集合A={(x,y)|x−y≥1,ax+y>4,x−ay≤2}={(x,y)|x−y≥1,x+y>4,x−y≤2},显然此时(2,1)∉A,所以C不正确;故选:D.3.【答案】D【解析】【分析】本题考查指数形式与对数形式的互化,属于基础题.根据对数的性质:T=a log a T,可得:3=10lg3≈100.48,将M也化为10为底的指数形式,进而可得结果.【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴MN ≈101731080=1093.故选D.4.【答案】C【解析】【分析】本题考查了方程与曲线,属中档题.将x换成−x方程不变,所以图形关于y轴对称,根据对称性讨论y轴右边的图形可得.【解答】解:将x换成−x方程不变,所以图形关于y轴对称,当x=0时,代入得y2=1,∴y=±1,即曲线经过(0,1),(0,−1),当x>0时,方程变为y2−xy+x2−1=0,所以由△=x2−4(x2−1)≥0,解得x∈(0,2√33],所以x只能取整数1,当x=1时,y2−y=0,解得y=0或y=1,即曲线经过(1,0),(1,1),根据对称性可得曲线还经过(−1,0),(−1,1),故曲线一共经过6个整点,故①正确,当x>0时,由x2+y2=1+xy得x2+y2−1=xy≤x2+y22,(当x=y时取等),∴x2+y2≤2,∴√x2+y2≤√2,即曲线C上y轴右边的点到原点的距离不超过√2,根据对称性可得:曲线C上任意一点到原点的距离都不超过√2,故②正确,×2×1=1,在x轴上方图形面积大于矩形面积=1×2=2,x轴下方的面积大于等腰直角三角形的面积=12因此曲线C所围成的“心形”区域的面积大于2+1=3,故③错误,故选C.5.【答案】B【解析】【分析】本题考查了推理与证明,重点是找到切入点逐步进行分析,对学生的逻辑思维能力有一定要求,属于中档题.取出的两球有四种情况,分别分析三个盒子中球的关系即可得出结果.【解答】解:取两个球共有4种情况:①红+红,则乙盒中红球数加1个;②黑+黑,则丙盒中黑球数加1个;③红+黑(红球放入甲盒中),则乙盒中黑球数加1个;④黑+红(黑球放入甲盒中),则丙盒中红球数加1个.设一共有球2a个,则a个红球,a个黑球,甲中球的总个数为a,其中红球x个,黑球y个,x+y=a.则乙中有x个球,其中k个红球,j个黑球,k+j=x;丙中有y个球,其中l个红球,i个黑球,i+l=y;黑球总数a=y+i+j,又x+y=a,故x=i+j由于x=k+j,所以可得i=k,即乙中的红球等于丙中的黑球.故选B.6.【答案】B【解析】【分析】本题考查指数及对数的运算性质,指数及对数函数的单调性,属中档题.【解答】解:根据指数及对数的运算性质,4b+2log4b=22b+log2b,∵log2(2b)=log2b+1>log2b,∴22b+log2(2b)>22b+log2b=2a+log2a,根据函数f(x)=2x+log2x是定义域上的增函数,由f(2b)>f(a),得a<2b,故答案为B.7.【答案】D【解析】【分析】本题考查函数的零点,参数的取值范围,关键利用分类讨论思想,分析函数的交点,属于难题.问题转化为f(x)=|kx2−2x|有四个根,⇒y=f(x)与y=ℎ(x)=|kx2−2x|有四个交点,再分三种情况当k=0时,当k<0时,当k>0时,讨论两个函数四否能有4个交点,进而得出k的取值范围.【解答】解:若函数g(x)=f(x)−|kx2−2x|(k∈R)恰有4个零点,则f(x)=|kx2−2x|有四个根,即y=f(x)与y=ℎ(x)=|kx2−2x|有四个交点,当k=0时,y=f(x)与y=|−2x|=2|x|图象如下:两图象有2个交点,不符合题意,当k<0时,y=|kx2−2x|与x轴交于两点x1=0,x2=2k(x2<x1)图象如图所示,两图象有4个交点,符合题意,当k>0时,y=|kx2−2x|与x轴交于两点x1=0,x2=2k(x2>x1)在[0,2k)内两函数图象有两个交点,所以若有四个交点,只需y=x3与y=kx2−2x在(2k,+∞)还有两个交点,即可,即x3=kx2−2x在(2k,+∞)还有两个根,即k=x+2x 在(2k,+∞)还有两个根,函数y=x+2x≥2√2,(当且仅当x=√2时,取等号),所以0<2k<√2,且k>2√2,所以k>2√2,综上所述,k的取值范围为(−∞,0)∪(2√2,+∞).故选:D.8.【答案】B【解析】【分析】本题考查球的结构与性质,球的表面积公式,属中档题.【解答】解:由圆O1的面积为4π=πr2,故圆O1的半径ρ=2,∵AB=BC=AC=OO1,则三角形ABC是正三角形,由正弦定理:ABsin60∘=2r=4,得AB=OO1=2√3,由R2=r2+OO12,得球O的半径R=4,表面积为4πR2=64π,故答案为A.9.【答案】C【解析】【分析】本题主要考查新定义类型的问题,属于较难题.【解答】解:对于A选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+0+0)=15,C(2)=15∑a i5i=1a i+2=15(0+1+0+1+0)=25>15,不满足,排除;对于B选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+1+1)=35>15,不满足,排除;对于C选项,C(1)=15∑a i5i=1a i+1=15(0+0+0+0+1)=15,C(2)=15∑a i5i=1a i+2=15(0+0+0+0+0)=0,C(3)=15∑a i5i=1a i+3=15(0+0+0+0+0)=0,C(4)=15∑a i5i=1a i+4=15(1+0+0+0+0)=15,满足;对于D选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+0+1)=25>15,不满足,排除;故选C.10.【答案】A【解析】【分析】本题主要考查对数与对数函数,借助中间值比较大小.【解答】解:a=log53=ln 3ln 5,b=log85=ln 5ln 8,c=log138=ln 8ln 13,a−b=ln 3ln 5−ln 5ln 8=ln 3⋅ln 8−(ln 5)2ln 5⋅ln 8<(ln 3+ln 82)2−(ln 5)2ln 5⋅ln 8=(ln 24+ln 25)(ln 24−ln 25)4ln 5⋅ln 8<0;c−45=ln 8ln 13−45=5ln 8−4ln 135ln 13=ln 85−ln 1345ln 13>0;b−45=ln 5ln 8−45=5ln 5−4ln 85ln 8=ln 55−ln 845ln 13<0;综上所述,a<b<45<c,即a<b<c,故选A.11.【答案】B【解析】解:∵这10名学生中,进入立定跳远决赛的有8人,故编号为1,2,3,4,5,6,7,8的学生进入立定跳远决赛,又由同时进入立定跳远决赛和30秒跳绳决赛的有6人,则3,6,7号同学必进入30秒跳绳决赛,剩下1,2,4,5,8号同学的成绩分别为:63,a,60,63,a−1有且只有3人进入30秒跳绳决赛,故成绩为63的同学必进入30秒跳绳决赛,故选:B根据已知中这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,逐一分析四个答案的正误,可得结论.本题考查的知识点是推理与证明,正确利用已知条件得到合理的逻辑推理过程,是解答的关键.12.【答案】AC【解析】【分析】本题考查离散型随机变量的应用,重点考查对新定义的理解,属于难题.【解答】解:A选项中,由题意知p1=1,此时H(X)=−1×log21=0,故A正确;B选项中,由题意知p1+p2=1,且p1∈(0,1),H(X)=−p1log2p1−p2log2p2=−p1log2p1−(1−p1)log2(1−p1),设f(x)=−xlog2x−(1−x)log2(1−x),x∈(0,1)则f′(x)=−log2x−1ln2+log2(1−x)+1ln2=log2(1x−1),当x∈(12,1)时,f′(x)<0,当x∈(0,12)时,f′(x)>0,故当p1∈(0,12)时,H(X)随着p1的增大而增大,当p1∈(12,1)时,H(X)随着p1的增大而减小,故B错误;C 选项中,由题意知H(X)=n ×(−1n )log 21n =log 2n ,故H(X)随着n 的增大而增大,故C 正确.D 选项中,由题意知H(Y)=−∑(p j +p 2m+1−j )m j=1log 2(p j +p 2m+1−j ),H(X)=−∑p j 2m j=1log 2p j =−∑(p j m j=1log 2p j +p 2m+1−j log 2p 2m+1−j ), H(X)−H(Y)=∑log 2(p j +p 2m+1−j )p j +p 2m+1−j m j=1−∑(log 2p j p j +log 2p 2m+1−jp 2m+1−j m j=1) =∑log 2(p j +p 2m+1−j )p j +p 2m+1−j p j p j p 2m+1−j p 2m+1−j m j=1=∑log 2(p j +p 2m+1−j )p j (p j +p 2m+1−j )p 2m+1−j p j p j p 2m+1−j p 2m+1−j m j=1=∑log 2(1+p 2m+1−j p j )p j (1+p j p 2m+1−j )p 2m+1−j m j=1>0,故D 错误,故答案为AC .13.【答案】①②③【解析】解:设甲企业的污水排放量W 与时间t 的关系为W =f(t),乙企业的污水排放量W 与时间t 的关系为W =g(t).对于①,在[t 1,t 2]这段时间内,甲企业的污水治理能力为−f(t 2)−f(t 1)t 2−t 1, 乙企业的污水治理能力为−g(t 2)−g(t 1)t 2−t 1.由图可知,f(t 1)−f(t 2)>g(t 1)−g(t 2),∴−f(t 2)−f(t 1)t 2−t 1>−g(t 2)−g(t 1)t 2−t 1,即甲企业的污水治理能力比乙企业强,故①正确;对于②,由图可知,f(t)在t 2时刻的切线的斜率小于g(t)在t 2时刻的切线的斜率,但两切线斜率均为负值, ∴在t 2时刻,甲企业的污水治理能力比乙企业强,故②正确;对于③,在t 3时刻,甲,乙两企业的污水排放都小于污水达标排放量,∴在t 3时刻,甲,乙两企业的污水排放都已达标,故③正确;对于④,由图可知,甲企业在[0,t 1],[t 1,t 2],[t 2,t 3]这三段时间中,在[t 1,t 2]的污水治理能力最强,故④错误.∴正确结论的序号是①②③.故答案为:①②③.由两个企业污水排放量W 与时间t 的关系图象结合平均变化率与瞬时变化率逐一分析四个命题得答案. 本题考查利用数学解决实际生活问题,考查学生的读图视图能力,是中档题.14.【答案】16 29【解析】解:①设第一天售出商品的种类集为A ,第二天售出商品的种类集为B ,第三天售出商品的种类集为C ,如图,则第一天售出但第二天未售出的商品有19−3=16种;②由①知,前两天售出的商品种类为19+13−3=29种,第三天售出但第二天未售出的商品有18−4=14种,当这14种商品属于第一天售出但第二天未售出的16种商品中时,即第三天没有售出前两天的商品时,这三天售出的商品种类最少为29种.故答案为:①16;②29.①由题意画出图形得答案;②求出前两天所受商品的种数,由特殊情况得到三天售出的商品最少种数. 本题考查集合的包含关系及其应用,考查了集合中元素的个数判断,考查学生的逻辑思维能力,是中档题. 15.【答案】6 12【解析】解:①设男学生女学生分别为x ,y 人,若教师人数为4,则{x >yy >42×4>x,即4<y <x <8,即x 的最大值为7,y 的最大值为6,即女学生人数的最大值为6.②设男学生女学生分别为x ,y 人,教师人数为z ,则{x >yy >z 2z >x,即z <y <x <2z即z 最小为3才能满足条件,此时x 最小为5,y 最小为4,即该小组人数的最小值为12,故答案为:6,12①设男学生女学生分别为x ,y 人,若教师人数为4,则{x >yy >42×4>x,进而可得答案;②设男学生女学生分别为x,y人,教师人数为z,则{x>yy>z2z>x,进而可得答案;本题考查的知识点是推理和证明,简易逻辑,线性规划,难度中档.16.【答案】①130;②15.【解析】【分析】本题考查不等式在实际问题的应用,考查化简运算能力,属于中档题.①由题意可得顾客一次购买的总金额,减去x,可得所求值;②在促销活动中,设订单总金额为m元,讨论m的范围,可得(m−x)×80%≥m×70%,解不等式,结合恒成立思想,可得x的最大值.【解答】解:①当x=10时,顾客一次购买草莓和西瓜各1盒,可得60+80=140(元),即有顾客需要支付140−10=130(元);②在促销活动中,设订单总金额为m元,当0<m<120时,显然符合题意;当m≥120时,可得(m−x)×80%≥m×70%,即有x≤m8,可得x≤1208=15,则x的最大值为15元.故答案为:130;15.17.【答案】√3−1;2【解析】【分析】本题考查椭圆和双曲线的简单性质,考查计算能力,属于中档题.根据题意,可得正六边形的一个顶点(c2,√3c2),代入椭圆方程,求出椭圆的离心率;再根据双曲线渐近线斜率求出双曲线离心率即可.【解答】解:椭圆M:x2a2+y2b2=1(a>b>0),双曲线N:x2m2−y2n2=1,若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,又椭圆的一个焦点为(c,0),可得正六边形的一个顶点(c2,√3c2),可得:c 24a 2+3c 24b 2=1,可得14e 2+34(1e 2−1)=1,可得e 4−8e 2+4=0,e ∈(0,1), 解得e =√3−1.同时,双曲线的渐近线的斜率为√3,即n m =√3,可得:n 2m 2=3,即m 2+n 2m 2=4,可得双曲线的离心率为√m2+n 2m =2.故答案为:√3−1;2.18.【答案】Q 1;p 2【解析】【分析】本题考查的知识点是函数的图象,分析出Q i 和p i 的几何意义,是解答的关键.(1)若Q i 为第i 名工人在这一天中加工的零件总数,则Q i =A i +B i ,是A i B i 连线的中点的纵坐标的2倍,进而得到答案.(2)若p i 为第i 名工人在这一天中平均每小时加工的零件数,则p i 为A i B i 中点与原点连线的斜率;进而得到答案.【解答】解:(1)设A 1(x A 1,y A 1),B 1(x B 1,y B 1),线段A 1B 1的中点为E(x 1,y 1),则Q 1=y A 1+y B 1=2y 1.因此,要比较Q 1,Q 2,Q 3的大小,只需比较线段A 1B 1,A 2B 2,A 3B 3中点纵坐标的大小,作图比较知Q 1最大.(2)若p i 为第i 名工人在这一天中平均每小时加工的零件数,则p i 为A i B i 中点与原点连线的斜率,故p 1,p 2,p 3中最大的是p 2.故答案为:Q 1,p 2.19.【答案】2;(−∞,−1)【解析】【分析】本题考查的知识点是分段函数的应用,函数的最值,难度中档.①将a =0代入,求出函数的导数,分析函数的单调性,可得当x =−1时,f(x)的最大值为2;②根据y =x 3−3x 与y =−2x 有三个交点,结合f(x)无最大值,可得答案.【解答】解:①若a =0,则f(x)={x 3−3x,x ≤0−2x,x >0,则f′(x)={3x 2−3,x ≤0−2,x >0, 当x <−1时,f′(x)>0,此时函数为增函数,当x >−1时,f′(x)<0,此时函数为减函数,故当x =−1时,f(x)的最大值为2;②对于y =x 3−3x ,可知y′=3x 2−3,令y′=3x 2−3=0得x =±1,当x ∈(−∞,−1)∪(1,+∞)时,y′>0,函数单调递增;当x ∈(−1,1)时,y′<0,函数单调递减;且易知y =x 3−3x 与y =−2x 有三个交点,坐标为(0,0),(1,−2),(−1,2),若f(x)无最大值,则a <−1,故答案为:2,(−∞,−1).20.【答案】−14【解析】【分析】本题考查利用正余弦定理解三角形,属于中档题.【解答】解:由已知得BD =√2AB =√6,∵D 、E 、F 重合于一点,∴AE =AD =√3,BF =BD =√6,∴ △ACE 中,由余弦定理得,∴CE =CF =1,∴在△BCF 中,由余弦定理得.故答案为.21.【答案】①③④【解析】【分析】本题考查含逻辑联结词的命题真假的判断以及立体几何相关知识,属于中档题.【解答】解:对于p1:可设l1与l2,所得平面为α.若l3与l1相交,则交点A必在平面α内.同理l2与l3的交点B在平面α内,故直线AB在平面α内,即l3在平面α内,故p1为真命题.对于p2:过空间中任意三点,若三点共线,可形成无数个平面,故p2为假命题.对于p3:空间中两条直线的位置关系有平行,相交,异面,故p3为假命题.对于p4:若m⊥α,则m垂直于平面α内的所有直线,故m⊥l,故p4为真命题.综上可知,p1∧p4为真命题,¬p2∨p3为真命题,¬p3∨¬p4为真命题.故答案为①③④.22.【答案】②③【解析】【分析】本题主要考查了三角函数的图象与性质及函数的奇偶性、对称性等有关知识,属于中档题.根据函数奇偶性定义可判断出函数图象的对称性;通过函数图象关于直线对称可得等量关系,进而检验等式是否成立即可;特殊值法可判断出函数的最值.【解答】解:根据题意,易得函数定义域关于原点对称,f(−x)=sin(−x)+1sin(−x)=−(sinx+1sinx)=−f(x),所以f(x)是奇函数,图象关于原点对称,故①错误,②正确;若函数f(x)关于直线x=π2对称,则有f(π2−x)=f(π2+x),即sin(π2−x)+1sin(π2−x)=sin(π2+x)+1sin(π2+x),通过化简可得等式成立.故③正确;当x=−π2时,f(−π2)=−2<2,故④错误.故答案为②③.23.【答案】16 132 【解析】【分析】 本题考查了向量在几何中的应用,考查了向量的共线和向量的数量积,以及二次函数的性质,属于中档题. 以B 为原点,以BC 为x 轴建立如图所示的直角坐标系,根据向量的平行和向量的数量积即可求出点D 的坐标,即可求出λ的值,再设出点M ,N 的坐标,根据向量的数量积可得关于x 的二次函数,根据二次函数的性质即可求出最小值.【解答】解:以B 为原点,以BC 为x 轴建立如图所示的直角坐标系,∵∠B =60°,AB =3,∴A(32,3√32), ∵BC =6,∴C(6,0),∵AD ⃗⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ ,∴AD//BC ,设D(x 0,3√32), ∴AD ⃗⃗⃗⃗⃗⃗ =(x 0−32,0),AB ⃗⃗⃗⃗⃗ =(−32,−3√32), ∴AD ⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =−32(x 0−32)+0=−32,解得x 0=52, ∴D(52,3√32), ∴AD ⃗⃗⃗⃗⃗⃗ =(1,0),BC ⃗⃗⃗⃗⃗ =(6,0),∴AD ⃗⃗⃗⃗⃗⃗ =16BC ⃗⃗⃗⃗⃗ , ∴λ=16,∵|MN⃗⃗⃗⃗⃗⃗⃗ |=1, 设M(x,0),则N(x +1,0),其中0≤x ≤5,∴DM ⃗⃗⃗⃗⃗⃗⃗ =(x −52,−3√32),DN ⃗⃗⃗⃗⃗⃗ =(x −32,−3√32), ∴DM ⃗⃗⃗⃗⃗⃗⃗ ⋅DN ⃗⃗⃗⃗⃗⃗ =(x −52)(x −32)+274=x 2−4x +212=(x −2)2+132,当x =2时取得最小值,最小值为132,第21页,共21页 故答案为:16,132. 24.【答案】7【解析】【分析】本题主要考查累加法求通项公式,等差数列的求和公式以及数列的递推关系,属较难题. 对n 取偶数,再结合条件可求得前16项中所有奇数项的和,对n 取奇数时,利用累加法求得a n+2的值,用其表示出前16项和可得答案.【解答】解:因为a n+2+(−1)n a n =3n −1,当n =2,6,10,14时,a 2+a 4=5,a 6+a 8=17, a 10+a 12=29,a 14+a 16=41因为前16项和为540,所以a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=540−(5+17+29+41), 所以a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=448,当n 为奇数时,a n+2−a n =3n −1,所以a 3−a 1=2,a 5−a 3=8,a 7−a 5=14⋯a n+2−a n =3n −1,累加得a n+2−a 1=2+8+14+⋯3n −1=(2+3n−1)⋅n+122,∴a n+2=(3n+1)⋅(n+1)4+a 1,∴a 3=2+a 1,a 5=10+a 1,a 7=24+a 1,a 9=44+a 1,a 11=70+a 1,a 13=102+a 1, a 15=140+a 1,因为a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=448,所以8a 1+392=448,所以a 1=7. 故答案为7.。

立体几何选择填空压轴题专练

立体几何选择填空压轴题专练

立体几何选择填空压轴题专练A 组一、选择题1.如图,矩形ABCD 中, 2AB AD =, E 为边AB 的中点,将ADE ∆沿直线DE翻转成1A DE ∆(1A ∉平面ABCD ).若M 、O 分别为线段1A C 、DE 的中点,则在ADE ∆翻转过程中,下列说法错误的是( )A. 与平面1A DE 垂直的直线必与直线BM 垂直B. 异面直线BM 与1A E 所成角是定值C. 一定存在某个位置,使DE MO ⊥D. 三棱锥1A ADE -外接球半径与棱AD 的长之比为定值 【答案】C【解析】取CD 的中点F ,连BF,MF,如下图:可知面MBF// 1A DE ,所以A 对。

取1A D 中点G,可知//EG BM ,如下图,可知B 对。

点A 关于直线D E 的对为F,则DE ⊥面1A AF ,即过O 与DE 垂直的直线在平面1A AF 上。

故C 错。

三棱锥1A ADE -外接球的球心即为O 点,所以外接球半径为22AD 。

故D 对。

选C 2.一个几何体的三视图如图所示,已知这个几何体的体积为103,则h =( )A .32B .3C .33D .53 【答案】B 【解析】由三视图可知该几何体是三棱锥,其中底面是矩形,边长为6,5,高为h ,所以体积15610333V h h =⨯⨯⨯=∴=3.如图,矩形ABCD 中,AB=2AD,E 为边AB 的中点,将△ADE 沿直线DE 翻折成△A 1DE .若M 为线段A 1C 的中点,则在△ADE 翻折过程中,下面四个命题中不正确的是A .|BM |是定值B .点M 在某个球面上运动C .存在某个位置,使DE ⊥A 1 CD .存在某个位置,使MB//平面A 1DE 【答案】C 【解析】取CD 中点F ,连接MF ,BF ,则MF//A 1D 且MF=21A 1D,FB//ED 且FB=ED 所以DE A MFB 1∠=∠,由余弦定理可得MB 2=MF 2+FB 2-2MF •FB •cos ∠MFB 是定值,所以 M 是在以B 为圆心,MB 为半径的球上,可得①②正确.由MF//A 1D 与 FB//ED 可得平面MBF ∥平面A 1DE ,可得④正确;A 1C 在平面ABCD 中的射影为AC ,AC 与DE 不垂直,可得③不正确.故答案为:①②④.4.如图,正四面体D ABC -的顶点A 、B 、C 分别在两两垂直的三条射线Ox , Oy ,Oz 上,则在下列命题中,错误的是( ) A. O ABC -是正三棱锥B. 直线OB 与平面ACD 相交C. 直线CD 与平面ABC 所成的角的正弦值为32D. 异面直线AB 和CD 所成角是90︒ 【答案】C【解析】①如图ABCD 为正四面体, ∴△ABC 为等边三角形, 又∵OA 、OB 、OC 两两垂直, ∴OA ⊥面OBC ,∴OA ⊥BC ,过O 作底面ABC 的垂线,垂足为N , 连接AN 交BC 于M ,由三垂线定理可知BC ⊥AM , ∴M 为BC 中点,同理可证,连接CN 交AB 于P ,则P 为AB 中点, ∴N 为底面△ABC 中心,∴O ﹣ABC 是正三棱锥,故A 正确.②将正四面体ABCD 放入正方体中,如图所示,显然OB 与平面ACD 不平行. 则B 正确,③由上图知:直线CD 与平面ABC 6,则C 错误 ④异面直线AB 和CD 所成角是90︒,故D 正确. 二、填空题 5.(2017全国1卷理)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O 。

(word完整版)2020年高考理科数学《立体几何》题型归纳与训练,推荐文档

(word完整版)2020年高考理科数学《立体几何》题型归纳与训练,推荐文档

2020年高考理科数学《立体几何》题型归纳与训练【题型归纳】题型一线面平行的证明1例1如图,高为1的等腰梯形ABCD中,AM=CD=3AB=1.现将△AMD 沿MD 折起,使平面AMD⊥平面MBCD ,连接AB,AC.试判断:在AB边上是否存在点解析】线面平行,可以线线平行或者面面平行推出。

此类题的难点就是如何构造辅助线。

构造完辅助线,证明过程只须注意规范的符号语言描述即可。

本题用到的是线线平行推出面面平行。

易错点】不能正确地分析DN 与BN 的比例关系,导致结果错误。

思维点拨】此类题有两大类方法:1. 构造线线平行,然后推出线面平行。

此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。

在此,我们需要借助倒推法进行分析。

首先,此类型题目大部分为证明题,结论必定是正确的,我们以此为前提可以得到线面平行。

再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行于该直线,而交线就是我们要找的线,从而做出辅助线。

从这个角度上看我们可以看出线线平行推线面平行的本质就是过已知直线做一个平面与已知平面相交即可。

如本题中即是过AD 做了一个平面ADB 与平面MPC 相交于线PN。

最后我们只须严格使用正确的符号语言将证明过程反向1【答案】当AP=3AB 时,有AD ∥平面MPC.理由如下:连接BD 交MC 于点N,连接NP.在梯形MBCD 中,DC∥MB,DNNBDCMB1,2,AP 1在△ADB 中,P AP B=12,∴AD∥PN.∵AD? 平面MPC ,PN ? 平面MPC ,∴ AD∥平面MPC.P,使AD ∥平面MPC ?并说明理由写一遍即可。

即先证AD 平行于PN,最后得到结论。

构造交线的方法我们可总结为如下三个图形。

2. 构造面面平行,然后推出线面平行。

此类方法辅助线的构造通常比较简单,但证明过程较繁琐,一般做为备选方案。

辅助线的构造理论同上。

我们只须过已知直线上任意一点做一条与已知平面平行的直线即可。

2020年高考数学真题模拟好题专题练习:立体几何(附答案与详解)

2020年高考数学真题模拟好题专题练习:立体几何(附答案与详解)

高考数学真题模拟好题专题练习:立体几何【命题趋势】立体几何一直在高中数学中占有很大的分值,未来的高考中立体几何也会持续成为高考的一个热点,理科高考中立体几何主要考查三视图的相关性质利用,简单几何体的体积,表面积以及外接圆问题.另外选择部分主要考查在点线面位置关系,简单几何体三视图.选择题主要还是以几何体的基本性质为主,解答题部分主要考查平行,垂直关系以及二面角问题.本专题针对高考高频知识点以及题型进行总结,希望通过本专题的学习,能够掌握高考数学中的立体几何的题型,将高考有关的立体几何所有分数拿到.【满分技巧】基础知识点考查:一般来说遵循三短一长选最长.要学会抽象问题具体会,将题目中的直线转化成显示中的具体事务,例如立体坐标系可以看做是一个教室的墙角有关外接圆问题:一般图形可以采用补形法,将几何体补成正方体或者是长方体,再利用不在同一个平面的四点确定一个立体平面原理,从而去求.内切圆问题:转化成正方体的内切圆去求.求点到平面的距离问题:采用等体积法.求几何体的表面积体积问题:应注意巧妙选取底面积与高.对于二面角问题应采用建立立体坐标系去求.但是坐标系要注意采用左手系务必要标记准确对应点以及法向量对应的坐标.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)1.(2019·安徽高考模拟(理))已知,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列命题正确的是( )A .若//,//m n αα,则//m nB .若,αγβγ⊥⊥,则//αβC .若//,//m n αα,且,m n ββ⊂⊂,则//αβD .若,m n αβ⊥⊥,且αβ⊥,则m n ⊥2.(2019·四川射洪中学高三月考(理))已知某几何体的三视图如图所示,则该几何体的最大边长为( )A B C D .3.(2019·安徽高考模拟(理))当动点P 在正方体1111ABCD A B C D -的体对角线1A C 上运动时,异面直线BP 与1AD 所成角的取值范围是( )A .,64ππ⎡⎤⎢⎥⎣⎦B .,63ππ⎡⎤⎢⎥⎣⎦C .,43ππ⎡⎤⎢⎥⎣⎦D .,32ππ⎡⎫⎪⎢⎣⎭4.(2019·湖南高三期末(理))设a ,b 是空间中不同的直线,α,β是不同的平面,则下列说法正确的是( )A .a b ∥,b α⊂,则a P αB .a α⊂,b β⊂,αβ∥,则a b ∥C .a α⊂,b α⊂,a β∥,b β∥,则αβ∥D .αβ∥,a α⊂,则a β∥ 5.(2019·贵州高考模拟(理))如图在正方体1111ABCD A B C D -中,点O 为线段BD 的中点. 设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是( )A .B .C .33D .[3 6.(2019·宁夏吴忠中学高考模拟(理))已知直三棱柱111C C AB -A B 中,C 120∠AB =o ,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A B C D 7.(2019·广东高考模拟(理))已知三棱锥P ABC -的底面ABC 是边长为2的等边三角形,PA ⊥平面ABC ,且2PA =,则该三棱锥外接球的表面积为( )A .683πB .20πC .48πD .283π 8.(2019·河南高考模拟(理))如图,点P 在正方体1111ABCD A B C D -的面对角线1BC 上运动,则下列四个结论:①三棱锥1A D PC -的体积不变;1//A P ②平面1ACD ;1DP BC ⊥③;④平面1PDB ⊥平面1ACD .其中正确的结论的个数是( )A .1个B .2个C .3个D .4个9.(2019·河北高考模拟(理))正方体1111ABCD A B C D -的棱上(除去棱AD)到直线 1A B 与1CC 的距离相等的点有3个,记这3个点分别为,,E F G ,则直线1AC 与平面EFG 所成角的正弦值为( )A B C D 10.(2019·湖北高考模拟(理))如图,已知四面体ABCD 为正四面体,2,AB E F =,。

高考满分数学压轴题14 立体几何的动态问题(可编辑可打印)

高考满分数学压轴题14 立体几何的动态问题(可编辑可打印)

一.方法综述立体几何的动态问题是高考的热点,问题中的“不确定性”与“动感性”元素往往成为学生思考与求解问题的思维障碍,使考题的破解更具策略性、挑战性与创新性.一般立体动态问题形成的原因有动点变化、平面图形的翻折、几何体的平移和旋转以及投影与截面问题,由此引发的常见题型为动点轨迹、角度与距离的计算、面积与体积的计算、探索性问题以及有关几何量的最值求解等.动态立体几何题在变化过程中总蕴含着某些不变的因素,因此要认真分析其变化特点,寻找不变的静态因素,从静态因素中,找到解决问题的突破口.求解动态范围的选择、填空题,有时应把这类动态的变化过程充分地展现出来,通过动态思维,观察它的变化规律,找到两个极端位置,即用特殊法求解范围.对于探究存在问题或动态范围(最值)问题,用定性分析比较难或繁时,可以引进参数,把动态问题划归为静态问题.具体地,可通过构建方程、函数或不等式等进行定量计算,以算促证.二.解题策略类型一 立体几何中动态问题中的角度问题例1. 已知平行四边形ABCD 中,1AB =,2AD =,60A ∠=︒,沿对角线BD 将ABD △折起到PBD △的位置,使得平面PBD ⊥平面BCD ,如图,若M ,N 均是线段PD 的三等分点,点Q 是线段MN 上(包含端点)的动点,则二面角Q BC D --的正弦值的取值范围为( )A .12,23⎡⎤⎢⎥⎣⎦B .14192⎡⎢⎣⎦C .24193⎡⎢⎣⎦D .11,32⎡⎤⎢⎥⎣⎦【来源】2021年浙江省新高考测评卷数学(第五模拟) 【答案】B【解析】在ABD △中,1AB =,2AD =,60BAD ∠=︒,所以由余弦定理得3BD =,所以222AB BD AD +=,所以AB BD ⊥,由翻折的性质可知,PB BD ⊥.又平面PBD ⊥平面BCD ,平面PBD 平面BCD BD =,所以PB ⊥平面BCD ,过点Q 作//QQ PB ',交BD 于点Q ',则QQ '⊥平面BCD ,所以QQ BC '⊥,过Q '作Q T BC '⊥,垂足为T ,连接QT ,则BC ⊥平面QQ T ',立体几何的动态问题所以QTQ '∠为二面角Q BC D --的平面角. 设2QD a =(1233a ≤≤),则QQ a '=,3DQ a '=,33BQ a '=-,()113322Q T BQ a ''==-,所以2222211(33)76322QT QQ Q T a a a a ⎡⎤''=+=+-=-+⎢⎥⎣⎦, 所以22222sin 136176373142QQ aQTQ QT a a a aa ''∠====⎛⎫-+-+-+ ⎪⎝⎭. 由二次函数的单调性知,21314y a ⎛⎫=-+ ⎪⎝⎭在12,33⎡⎤⎢⎥⎣⎦上的值域为19,164⎡⎤⎢⎥⎣⎦,所以221419sin ,2191314QTQ a ⎡⎤'∠=∈⎢⎥⎣⎦⎛⎫-+ ⎪⎝⎭,即二面角Q BC D --的正弦的取值范围为1419,219⎡⎤⎢⎥⎣⎦. 故选:B.【举一反三】1.(2020·黑龙江牡丹江一中高三(理))如图,在正方体1111ABCD A B C D -中,O 是AC 中点,点P 在线段11A C 上,若直线OP 与平面11A BC 所成的角为θ,则sin θ的取值范围是( ).A .23⎣⎦B .11,32⎡⎤⎢⎥⎣⎦C .33⎣⎦D .11,43⎡⎤⎢⎥⎣⎦【答案】A【解析】如图,设正方体棱长为1,()11101A PAC λλ=≤≤.以D 为原点,分别以DA ,DC ,1DD 所在直线为x ,y ,z 轴建立空间直角坐标系. 则11,,022O ⎛⎫ ⎪⎝⎭,()1,,1P λλ-,所以11,,122OP λλ⎛⎫=--⎪⎝⎭.在正方体1111ABCD A B C D -中,可证1B D ⊥平面11A BC , 所以()11,1,1B D =---是平面11A BC 的一个法向量.所以122211()()122sin cos ,1113163222OP B D λλθλλλ-----===⎛⎫⎛⎫⎛⎫⨯-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以当12λ=时,sin θ30λ=或1时,sin θ取得最小值23. 所以23sin 3θ∈⎣⎦.故选A . 2.(2020·广东高考模拟)在正方体1111ABCD A B C D -中,E 是侧面11ADD A 内的动点,且1B E //平面1BDC ,则直线1B E 与直线AB 所成角的正弦值的最小值是( )A .13 B .33 C .12 D .22【答案】B【解析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,设正方体1111ABCD A B C D -中棱长为1, 设E(a,0,c),0a 1≤≤,0c 1≤≤,1B (1,1,1),B(1,1,0), D(0,0,0),1C (0,1,1),()1B E a 1,1,c 1=---,DB (1,=1,0),1DC (0,=1,1),设平面1DBC 的法向量n (x,=y ,z),则1n DB 0n DC 0x y y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取x 1=,得()n 1,1,1=-,1B E //平面1BDC ,1B E n a 11c 10∴⋅=-++-=,解得a c 1+=,()222a c a c 2ac 12ac ∴+=+-=-,2a c 1ac 24+⎛⎫≤=⎪⎝⎭,设直线1B E 与直线AB 所成角为θ,AB (0,=1,0),()()1221AB B E 1cos θAB B Ea 11c 1⋅∴==⋅-++-2a c 1ac 24+⎛⎫≤= ⎪⎝⎭,322ac 2∴-≥,1222ac 3∴≤-,()()()222211sin θ11a c 2a c 3a 11c 1∴=-=-+-++-++-221123111a c 122ac 33=-=-≥-=++-. ∴直线1B E 与直线AB 所成角的正弦值的最小值是33.3.(2020·浙江台州中学高三)如图,已知正方体ABCD EFGR -的上底面中心为H ,点O 为AH 上的动点,P 为FG 的三等分点(靠近点F ),Q 为EF 的中点,分别记二面角P OQ R --,Q OR P --,R OP Q --的平面角为,,αβγ,则( )A .γαβ<<B .αγβ<<C .αβγ<<D .βαγ<<【答案】D【解析】分析:建立空间直角坐标系,对动点O 选取一个特殊位置,然后求出三个侧面的法向量,根据向量夹角的余弦值求得三个二面角的余弦值,比较后可得二面角的大小.详解:建立如图所示的空间直角坐标系E xyz -.考虑点O 与点A 重合时的情况.设正方体的棱长为1,则()()111,,0,Q ,0,0,R 01,0,O 0,0,132P ⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭. 设平面OPQ 的一个法向量为1(,,)n x y z =,由111(,,)(,0,1)02211(,,)(,,0)02323x n OQ x y z z x y n PQ x y z ⎧⋅=⋅-=-=⎪⎪⎨⎪⋅=⋅--=--=⎪⎩,得322x y x z ⎧=-⎪⎪⎨⎪=⎪⎩,令2x =,得1(2,3,1)n =-.同理可得平面OPR 和平面OQR 的法向量分别为23(2,3,3),(6,3,7)n n ==. 结合图形可得:1323521cos cos ,,cos cos ,7471147n n n n αβ====⨯⨯12cos cos ,711n n γ==⨯∴cos cos cos γαβ<<,又0,,γαβπ<<,∴γαβ>>.故选D . 类型二 立体几何中动态问题中的距离问题【例2】(2020·山西高三)设点M 是棱长为2的正方体ABCD -A 1B 1C 1D 1的棱AD 的中点,点P 在面BCC 1B 1所在的平面内,若平面D 1PM 分别与平面ABCD 和平面BCC 1B 1所成的锐二面角相等,则点P 到点C 1的最短距离是( ) A 25B .22C .1D .63【答案】A【解析】如图,过点P 作1D M 的平行线交BC 于点Q 、交11B C 于点E ,连接MQ ,则PQ 是平面1D PM 与平面11BCC B 的交线,MQ 是平面1D PM 与平面ABCD 的交线.EF 与1BB 平行,交BC 于点F ,过点F 作FG 垂直MQ 于点G ,则有,MQ 与平面EFG 垂直,所以,EG 与MQ 垂直,即角EGF 是平面1D PM 与平面ABCD 的夹角的平面角,且sin EFEGF EG∠=, MN 与CD 平行交BC 于点N ,过点N 作NH 垂直EQ 于点H ,同上有:sin MNMHN MH∠=,且有EGF MHN ∠=∠,又因为EF MN AB ==,故EG MH =, 而2EMQ S EG MQ MH EQ ∆=⨯=⨯,故MQ EQ =,而四边形1EQMD 一定是平行四边形,故它还是菱形,即点E 一定是11B C 的中点, 点P 到点1C 的最短距离是点1C 到直线BE 的距离,以A 为原点,AB 为x 轴,AD 为y 轴,1AA 为z 轴,建立空间直角坐标系,()2,1,2E ,()2,0,0B , ()12,2,2C ,()0,1,2BE =, ()10,2,2BC =,∴点P 到点1C 的最短距离:22111||625||1()221()5||||58BE BC d BC BE BC =-=⨯-=⨯.故选:A .【指点迷津】求两点间的距离或其最值.一种方法,可建立坐标系,设点的坐标,用两点间距离公式写出距离,转化为求函数的最值问题;另一种方法,几何法,根据几何图形的特点,寻找那两点间的距离最大(小),求其值. 【举一反三】1.(2020·四川高三(理))已知三棱锥S ABC -中,1SA SB SC ===,且SA 、SB 、SC 两两垂直,P 是三棱锥S ABC -外接球面上一动点,则P 到平面ABC 的距离的最大值是( )A .33B .3C .233D .433【答案】C 【解析】【分析】,,SA SB SC 是棱长为1的正方体MNQB ADCS -上具有公共顶点S 的三条棱,以B 为原点,,,BM BQ BS 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,三棱锥S ABC -外接球就是正方体MNQB ADCS -的外接球,由正方体及球的几何性质可得点P 与N 重合时,点P 到平面ABC 的距离最大,求出平面ABC 的法向量,由点到直线的距离公式即可得结果. 【详解】三棱锥S ABC -,满足,,SA SB SC 两两垂直,且,,1SA SB SC =,∴如图,,SA SB SC 是棱长为1的正方体MNQB ADCS -上具有公共顶点S 的三条棱,以B 为原点,,,BM BQ BS 分别为x 轴,y 轴,z 轴,建立空间直角坐标系, 则()()()()()0,0,0,1,0,1,0,1,1,0,0,1,1,1,0B A C S N ,()()()1,0,1,0,1,1,1,1,0BA BC BN ===,设平面ABC 的法向量(),,n x y z =,则00n BA x z n BC y z ⎧⋅=+=⎨⋅=+=⎩,取1x =,得()1,1,1n =-,三棱锥S ABC -外接球就是棱长为1的正方体MNQB ADCS -的外接球,P 是三棱锥S ABC -外接球上一动点,∴由正方体与球的几何性质可得,点P 点与N 重合时,点P 到平面ABC 的距离最大,∴点P 到平面ABC 的距离的最大值为1102333BN n d n⋅++===.故选C. 2.已知四边形ABCD 是边长为5的菱形,对角线8BD =(如图1),现以AC 为折痕将菱形折起,使点B 达到点P 的位置.棱AC ,PD 的中点分别为E ,F ,且四面体PACD 的外接球球心落在四面体内部(不含边界,如图2),则线段EF 长度的取值范围为( )A .14,42⎛⎫ ⎪ ⎪⎝⎭B .141,2⎛⎫⎪ ⎪⎝⎭C .14,62⎛⎫⎪ ⎪⎝⎭D .()3,4【来源】江西省鹰潭市2021届高三高考二模数学(文)试题 【答案】A 【解析】由题意可知△APC 的外心1O 在中线PE 上, 设过点1O 的直线1l ⊥平面APC ,可知1l ⊂平面PED , 同理△ADC 的外心2O 在中线DE 上,设过点2O 的直线2l ⊥平面ADC ,则2l ⊂平面PED , 由对称性知直线12,l l 的交点O 在直线EF 上.根据外接球的性质,点O 为四面体PACD 的外接球的球心. 由题意得3,4EA PE ==,而2221111,4O A O E EA O A O E PE =++==所以178O E =. 令PEF θ∠=,显然02πθ<<,所以cos 4cos 4EF PE θθ==<. 因为1cos EF O EPE OEθ==, 所以172OE EF O E PE ⋅=⋅=, 又OE EF <,所以272EF >,即142EF >. 综上可知1442EF <<. 故选:A.3(2020广西柳州市模考)如图,在正方体中,棱长为1,点为线段上的动点(包含线段端点),则下列结论错误的是( )A .当时,平面B .当为中点时,四棱锥的外接球表面为C .的最小值为D .当时,平面【答案】C【解析】对于,连结,,,则,,,设到平面的距离为,则,解得,∴.∴当时,为与平面的交点.∵平面∥平面, ∵平面,∴∥平面,故A 正确. 又由以上分析可得,当时,即为三棱锥的高,∴平面,所以D 正确. 对于B ,当为中点时,四棱锥为正四棱锥, 设平面的中心为,四棱锥的外接球为,所以,解得,故四棱锥的外接球表面积为,所以B 正确.对于C ,连结,,则, ∴,由等面积法得的最小值为,∴的最小值为.所以C 不正确.故选:C.类型三 立体几何中动态问题中的面积、体积问题【例3】(2020·河南高三(理))在棱长为3的正方体1111ABCD A B C D -中,E 是1AA 的中点,P 是底面ABCD 所在平面内一动点,设1PD ,PE 与底面ABCD 所成的角分别为12θθ,(12θθ,均不为0),若12θθ=,则三棱锥11P BB C -体积的最小值是( ) A .92B .52C .32D .54【答案】C【解析】建系如图,正方体的边长为3,则(3E ,0,3)2,1(0D ,0,3),设(P x ,y ,0)(0x ,0)y ,则(3PE x =-,y -,3)2,1(PD x =-,y -,3),12θθ=,(0z =,0,1),12cos cos θθ∴=,即11||||||||||||PD z PE z PE z PD z =,代入数据,得:222233299(3)4x y x y =++-++,整理得:228120x y x +-+=,变形,得:22(4)4(02)x y y -+=, 即动点P 的轨迹为圆的一部分,过点P 作PF BC ⊥,交BC 于点F ,则PF 为三棱锥11P BB C -的高∴点P 到直线AD 的距离的最大值是2.则min 321PF =-=.1111119332212BB C BB B C S ∆=⋅⋅=⨯⨯=,1111193132213P BB C BB C V PF S -∆=⨯⨯⋅⋅=∴=故选:C .【指点迷津】求几何体体积的最值,先观察几何图形三棱锥,其底面的面积为不变的几何量,求点P到平面BCD 的距离的最大值,选择公式,可求最值. 【举一反三】1.(2020·四川高三期末)长方体1111ABCD A B C D -中,2AB =,1BC =,12AA =,P 为该正方体侧面11CC D D 内(含边界)的动点,且满足tan tan 22PAD PBC ∠+∠=.则四棱锥P ABCD -体积的取值范围是( ) A .20,3⎛⎤ ⎥⎝⎦B .22,33⎡⎤⎢⎥⎣⎦ C .40,3⎛⎤ ⎥⎝⎦D .24,33⎡⎤⎢⎥⎣⎦ 【答案】B【解析】如图所示:在RT PAD 中,tan PD PAD PD AD ∠==,在RT PBC 中,tan PCPBC PC BC∠==, 因为tan tan 22PAD PBC ∠+∠=,所以22PD PC +=.因为222PD PC CD +=>=,所以点P 的轨迹是以,C D 为焦点 222a =的椭圆. 如下图所示:2a =1c =,211b =-=,椭圆的标准方程为:2212x y +=.1(0,1)P联立22112x x y =⎧⎪⎨+=⎪⎩,解得:2y =.所以22()P -,32P . 当点P 运动到1P 位置时,此时四棱锥P ABCD -的高最长, 所以max 1112()21333P ABCD ABCD V S PO -=⨯⨯=⨯⨯=. 当点P 运动到2P 或3P 位置时,此时四棱锥P ABCD -的高最短,所以min 21122()23323P ABCD ABCD V S P D -=⨯⨯=⨯⨯=. 综上所述:2233P ABCD V -≤≤. 2.如图,长方形ABCD 中,152AB =,1AD =,点E 在线段AB (端点除外)上,现将ADE 沿DE 折起为A DE '.设ADE α∠=,二面角A DE C '--的大小为β,若π2αβ+=,则四棱锥A BCDE '-体积的最大值为( )A .14 B .23 C 151-D 51- 【答案】A【解析】设过A 与DE 垂直的线段长为a ,则tan AE α=,150tan 2α<<,1cos DE α=,sin a α=,则四棱锥A BCDE '-的高πsin sin sin sin cos 2h a βαααα⎛⎫=⋅=⋅-=⎪⎝⎭, 则111515tan 1sin cos 3222A BCDE V ααα'-⎛=⨯⨯-+⨯⨯ ⎝⎭)115tan sin cos 6ααα=⨯ )2115cos sin 6ααα=- )11152cos 21212αα=+- 115112cos 234412αα⎛⎫=+- ⎪ ⎪⎝⎭()11sin 2312αϕ=+-,15tan 15ϕ⎛⎫= ⎪ ⎪⎝⎭, ∴四棱锥A BCDE '-体积的最大值为1113124-=. 故选:A.3.(2020·重庆市松树桥中学校高三)如图,在单位正方体1111ABCD A B C D -中,点P 在线段1AD 上运动,给出以下四个命题:①异面直线1A P 与1BC 间的距离为定值;②三棱锥1D BPC -的体积为定值;③异面直线1C P 与直线1CB 所成的角为定值; ④二面角1P BC D --的大小为定值.其中真命题有( ) A .1个 B .2个 C .3个 D .4个【答案】D【解析】对于①,异面直线1A P 与1BC 间的距离即为两平行平面11ADD A 和平面11BCC B 间的距离,即为正方体的棱长,为定值.故①正确.对于②,由于11D BPC P DBC V V --=,而1DBC S ∆为定值,又P ∈AD 1,AD 1∥平面BDC 1,所以点P 到该平面的距离即为正方体的棱长,所以三棱锥1D BPC -的体积为定值.故②正确.对于③,由题意得在正方体1111ABCD A B C D -中,B 1C ⊥平面ABC 1D 1,而C 1P ⊂平面ABC 1D 1,所以B 1C ⊥C 1P ,故这两条异面直线所成的角为90︒.故③正确;对于④,因为二面角P −BC 1−D 的大小,即为平面ABC 1D 1与平面BDC 1所成的二面角的大小,而这两个平面位置固定不变,故二面角1P BC D --的大小为定值.故④正确.综上①②③④正确.选D .类型四 立体几何中动态问题中的轨迹问题【例4】(2020南充高考一模)如图,直二面角AB αβ--,P α∈,C β∈,D β∈,且AD AB ⊥,BC AB ⊥,5AD =,10BC =,6AB =,APD CPB ∠=∠,则点P 在平面α内的轨迹是( )A.圆的一部分B.椭圆的一部分C.一条直线D.两条直线【答案】A【解析】以AB 所在直线为x 轴,AB 的中垂线为y 轴,建立平面直角坐标系,设点(),P x y ,()30A -,,()3,0B ,AD AB ⊥,BC AB ⊥,则AD α⊥,BC α⊥,5AD =,10BC =,6AB =,APD CPB ∠=∠,Rt APDRt CPB∴∆∆,()()22223511023x y APAD BPBC x y ++∴====-+ ,即()()2222343x y x y ⎡⎤-+=++⎣⎦,整理得:()22516x y ++=,故点P 的轨迹是圆的一部分,故选A .【指点迷津】空间轨迹问题的求解策略:1.利用侧面展开或展到一个平面上寻求轨迹;2.利用圆锥曲线定义求轨迹;3.这辗转过程中动点的轨迹;4.利用函数观点探求轨迹 【举一反三】1.已知正方体1111ABCD A B C D -的棱长为23M ,N 为体对角线1BD 的三等分点,动点P 在三角形1ACB 内,且三角形PMN 的面积63PMN S =△P 的轨迹长度为( )A .269π B .263π C .469π D .463π 【答案】B【解析】如图所示:连接11BC B C O =,因为四边形11BCC B 是正方形,所以11BC B C ⊥,因为11D C ⊥平面11BCC B ,1B C ⊂平面11BCC B ,所以11D C ⊥1B C , 又11111,BC D C C BC =⊂平面11BC D ,11D C ⊂平面11BC D ,所以1B C ⊥平面11BC D ,所以11B C D B ⊥, 同理可知:11B A D B ⊥,又因为1B C ⊂平面1ACB ,1B A ⊂平面1ACB ,111B C B A B =,所以1D B ⊥平面1ACB ,根据题意可知:11136,26D B AB AB BC AC =====所以1ACB 为正三角形,所以160∠=︒B AC ,所以11326266322ACB S=⨯⨯⨯=,设B 到平面1ACB 的距离为h , 因为11B ACB B ABC V V --=,所以111133ACB ACBSh S BB ⋅⋅=⋅⋅,所以11ACB ACBSh SBB ⋅=⋅,所以()232323262342h ⨯⨯⨯=⨯,所以1123h D B ==,所以h BN =, 所以N 即为1D B 与平面1ACB 的交点,由题意可知:1D B ⊥平面1ACB ,所以MN PN ⊥,所以11262223PMNSMN PN PN PN =⋅=⋅⋅==,再如下图所示:在正三角形1ACB 中,高3sin 6026322AO AC =︒== 所以内切圆的半径16233r AO ==<,且623AN <=,取1B C 的两个三等分点,E F ,连接,EN FN ,所以1//,//NE AB NF AC ,所以NEF 是以PN 长度为边长的正三角形,所以P 的轨迹是以N 为圆心,半径等于263的圆,圆的周46π,在1ACB 内部的轨迹是三段圆弧,每一段圆弧的圆心角为60︒,所以对应的轨迹长度是圆周长的一半为63π,故选:B. 2、(2020贵阳高考模拟)在正方体1111ABCD A B C D -中,已知点P 为平面11AA D D 中的一个动点,且点P 满足:直线1PC 与平面11AA D D 所成的角的大小等于平面PBC 与平面11AA D D 所成锐二面角的大小,则点P 的轨迹为( )A .直线B .椭圆C .圆D .抛物线 【答案】DF E P C 1B 1D 1A 1DCBA z yx3.几何中常用表示L 的测度,当L 为曲线、平面图形和空间几何体时,L 分别对应其长度、面积和体积.在ABC 中,3AB =,4BC =,5AC =,P 为ABC 内部一动点(含边界),在空间中,到点P 的距离为1的点的轨迹为L ,则L 等于( ) A .612π+B .2263π+ C .20123π+ D .22123π+ 【来源】安徽省合肥市2021届高三下学期第三次教学质量检测理科数学试题 【答案】D【解析】空间中,到点P 的距离为1的点的轨迹所构成的空间几何体在垂直于平面ABC 的角度看,如下图所示:其中:BCDF ,ACEI 和ABGH 区域内的几何体为底面半径为1的半圆柱;CDE ,BFG ,AHI 区域内的几何体为被两平面所截得的部分球体,球心分别为,,C B A ;ABC 区域内的几何体是高为2的直三棱柱. 四边形BCDF 和ACEI 为矩形,2DCB ECA π∴∠=∠=,2DCE ACB ACB πππ∴∠=--∠=-∠,同理可得:FBG ABC π∠=-∠,HAI CAB π∠=-∠,()332DCE FBG HAI ACB ABC CAB ππππ∴∠+∠+∠=-∠+∠+∠=-=,∴CDE ,BFG ,AHI 区域内的几何体合成一个完整的,半径为1的球,则CDE ,BFG ,AHI 区域内的几何体的体积之和3144133V ππ=⨯=; 又BCDF ,ACEI 和ABGH 区域内的几何体的体积之和()221134562V ππ=⨯⨯++=;ABC 区域内的直三棱柱体积31342122V =⨯⨯⨯=,4226121233L πππ∴=++=+.故选:D.三.强化训练1.(2020·内蒙古高三期末)如图,棱长为1的正方体1111ABCD A B C D -中,M 是线段1A B 上的动点,则下列结论正确的是( ).①异面直线AD 与1CB 所成的角为45︒②11DC D M ⊥③三棱锥1M DCC -的体积为定值 ④1AM MD +的最小值为2. A .①②③ B .①②④C .③④D .②③④【答案】A【解析】①∵AD ∥BC ,∴异面直线AD 与1CB 所成的角即为BC 与1CB 所成的角, 可得夹角为45︒,故①正确;②连接1CD ,∵1DC ⊥平面A 1BCD 1,1D M ⊂平面A 1BCD 1, ∴11DC D M ⊥,故②正确;③∵1A B ∥平面DCC 1D 1,∴线段A 1B 上的点M 到平面DCC 1D 1的距离都为1, 又△DCC 1的面积为定值12, 因此三棱锥M −DCC 1的体积1111326V =⨯⨯=为定值,故③正确; ④将面AA 1B 与面A 1BCD 1沿A 1B 展成平面图形,线段AD 1即为AP +PD 1的最小值, 在△D 1A 1A 中,∠D 1A 1A =135°, 利用余弦定理解三角形得111211135222AD cos =+-⨯⨯⨯︒=+<,故④不正确.因此只有①②③正确.故选:A .2.(2020河南省焦作市高三)在棱长为4的正方体ABCD ﹣A 1B 1C 1D 1中,点E 、F 分别在棱AA 1和AB 上,且C 1E ⊥EF ,则|AF|的最大值为( )A .B .1C .D .2【答案】B【解析】以AB ,AD ,AA 1所在直线为x ,y ,z 轴,建立空间直角坐标系如图所示,则C 1(4,4,4),设E (0,0,z ),z ∈[0,4],F (x ,0,0),x ∈[0,4],则|AF|=x .=(4,4,4﹣z ),=(x ,0,﹣z ).因为C 1E ⊥EF ,所以,即:z 2+4x ﹣4z =0,x =z ﹣.当z =2时,x 取得最大值为1.|AF|的最大值为1.故选:B .3.(2020·重庆巴蜀中学高三(理))棱长为2的正方体1111ABCD A B C D -中,N 为1CC 的中点,P 在底面ABCD 内运动,1D P 与平面ABCD 所成角为1θ,NP 与平面ABCD 所成角为2θ,若12θθ=,则AP 的最小值为( ) A .2 B .83C .4D .1【答案】A【解析】分析:先证明PD=2PC ,再在底面ABCD 内建立如图所示的直角坐标系,求出211680sin()99PA αϕ=-+,再利用三角函数的图象和性质求出|AP|的最小值. 【详解】设12θθθ==,所以12tan tan DD PD θθ==,1PC tan tan CN θθ==,所以PD=2PC. 在底面ABCD 内建立如图所示的直角坐标系,设点P(x,y),则2222(1)2(+1)x y x y -+=+整理得22516454(),cos ,sin 39333x y x y αα++=∴=-=, 所以2224841168011680(cos )(sin 2)sin()43339999PA αααϕ=-+-=-+≥-=, 即||2AP ≥,所以|AP|的最小值为2.故选:A4.已知三棱锥A BCD -的所有棱长均为2,E 为BD 的中点,空间中的动点P 满足PA PE ⊥,PC AB ⊥,则动点P 的轨迹长度为( ) A .1116πB 3πC 11πD 3π【来源】浙江省五校2021届高三下学期5月联考数学试题 【答案】C【解析】正四面体A BCD -2,建立空间直角坐标系如图所示,()()22,,2,2,2,0,0,2,222E C B ⎛⎫ ⎪ ⎪⎝⎭,设(),,P x y z ,()22,,2,,,22PE x y z AP x y z ⎛⎫=---= ⎪ ⎪⎝⎭,()2,2,PC x y z =---.由于PA PE ⊥,PC AB ⊥,所以00AP PE PC AB ⎧⋅=⎨⋅=⎩,即()()2220222220x x y y z z y z ⎧⎛⎫⎛⎫-+-+-=⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎨⎪--=⎪⎩,即22222202220x x y y z z y z ⎧-+-+-=⎪⎨⎪+-=⎩, 即2222223442420x y z y z ⎧⎛⎫⎛⎫⎛⎫⎪-+-+-= ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎨⎝⎭⎝⎭⎝⎭⎪+-=⎪⎩, 22222234424x y z ⎛⎫⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭表示球心为222,,442⎛⎫ ⎪ ⎪⎝⎭,半径为32R =的球. 20y z +-=表示垂直于yAz 平面的一个平面.所以P 的轨迹是上述平面截球面所得圆.球心222,,442⎛⎫ ⎪ ⎪⎝⎭到平面20y z +-=的距离为22222142411d +-==+, 所以截得的圆的半径2231114164r R d =-=-=, 所以截得的圆,也即P 点的轨迹的长度为11112242r πππ=⨯=. 故选:C5.(2020郑州一中高三期末)在三棱锥中,平面,M是线段上一动点,线段长度最小值为,则三棱锥的外接球的表面积是()A.B.C.D.【答案】C【解析】如图所示:三棱锥中,平面,M是线段上一动点,线段长度最小值为,则:当时,线段达到最小值,由于:平面,所以:,解得:,所以:,则:,由于:,所以:则:为等腰三角形.所以:,在中,设外接圆的直径为,则:,所以:外接球的半径,则:,故选:C.(2020九江高三一模)在长方体中,,,分别是棱6.的中点,是底面内一动点,若直线与平面没有公共点,则三角形面积的最小值为()A.B.C.D.【答案】C【解析】补全截面EFG为截面EFGHQR如图,其中H 、Q 、R 分别为、的中点,易证平面ACD 1∥平面EFGHQR ,∵直线D 1P 与平面EFG 不存在公共点, ∴D 1P∥面ACD 1,∴D 1P 面ACD 1,∴P ∈AC ,∴过P 作AC 的垂线,垂足为K ,则BK=,此时BP 最短,△PBB 1的面积最小, ∴三角形面积的最小值为,故选:C .7.(2020·浙江高三期末)在三棱锥P ABC -中,2,3PA PB PC AB AC BC ======,点Q 为ABC ∆ 所在平面内的动点,若PQ 与PA 所成角为定值θ,π(0,)4θ∈,则动点Q 的轨迹是 A .圆 B .椭圆C .双曲线D .抛物线【答案】B【解析】建立空间直角坐标系,根据题意,求出Q 轨迹方程,可得其轨迹.由题,三棱锥P ABC -为正三棱锥,顶点P 在底面ABC 的射影O 是底面三角形ABC 的中心,则以O 为坐标原点,以OA 为x 轴,以OP 为z 轴,建立如图所示的空间直角坐标系,根据题意可得1OA OP ==,设Q 为平面ABC 内任 一点,则()()()()()1,0,0,0,0,1,,,0,1,0,1,,,1A P Q x y PA PQ x y =-=- ,由题PQ 与PA 所成角为定值θ,π0,4θ⎛⎫∈ ⎪⎝⎭,则,221cos 21PA PQ x PA PQ x y θ⋅+==⋅++则()()22222cos11x y x θ++=+ ,化简得222cos22cos 2cos20x y x θθθ⋅+⋅-+= ,ππ0,,20,,cos 20,42θθθ⎛⎫⎛⎫∈∴∈> ⎪ ⎪⎝⎭⎝⎭故动点Q 的轨迹是椭圆.选B8.(2020·上海格致中学高三月考)在正方体''''ABCD A B C D -中,若点P (异于点B )是棱上一点,则满足BP 与AC '所成的角为45︒的点P 的个数为( )A .0B .3C .4D .6【答案】B 【解析】【分析】建立空间直角坐标系,通过分类讨论利用异面直线的方向向量所成的夹角即可找出所有满足条件的点P 的个数.【详解】建立如图所示的空间直角坐标系,不妨设棱长1AB =,(1B ,0,1),(1C ,1,1). ①在Rt △AA C ''中,||tan 2||A C A AC AA '''∠'=='45A AC '∠'≠︒.同理AB ,AD 与AC '所成的角都为arctan 245≠︒.故当点P 位于(分别与上述棱平行或重合)棱BB ',BA ,BC 上时,与AC '所成的角都为arctan 245≠︒,不满足条件;②当点P 位于棱AD 上时,设(0P ,y ,1),(01)y ,则(1BP =-,y ,0),(1AC '=,1,1)-.若满足BP 与AC '所成的角为45︒,则22|||1||cos ,|2||||13BP AC y BP AC BP AC y '-+=<'>=='+, 化为2410y y ++=,无正数解,舍去; 同理,当点P 位于棱A D ''上时,也不符合条件; ③当点P 位于棱B C ''上时,设(1P ,y ,0),(01)y , 则(0BP =,y ,1)-,(1AC '=,1,1)-.若满足BP 与AC '所成的角为45︒,则22|||1||cos ,|2||||13BP AC y BP AC BP AC y '+=<'>=='+, 化为2410y y -+=,01y ,解得23y =-,满足条件,此时点(1,23,0)P -.④同理可求得棱C D ''上一点(532,1,0)P -,棱C C '上一点(1,1,324)P -. 而其它棱上没有满足条件的点P .综上可知:满足条件的点P 有且只有3个.故选:B 9.(2020上海交通大学附属中学高三)如图,已知三棱锥,平面,是棱上的动点,记与平面所成的角为,与直线所成的角为,则与的大小关系为( )A .B .C .D .不能确定【答案】C【解析】如图所示:∵PA ⊥平面ABC ,∴PD 与平面ABC 所成的角=∠PDA, 过点A 作AE ⊥BC ,垂足为E ,连接PE ,∵PA ⊥平面ABC ,∴PA ⊥BC ,∴BC⊥平面PAE ,∴BC⊥PE,在Rt△AED ,Rt△PAD ,Rt△PED 中:cos ,cos ,cos,∴coscoscos < cos ,又均为锐角, ∴,故选C.10.(2020·湖南长郡中学高三(理))在三棱锥P ABC -中,PA ⊥平面ABC ,23BAC π∠=,3AP =,23AB =,Q 是边BC 上的一动点,且直线PQ 与平面ABC 所成角的最大值为3π,则三棱锥P ABC -的外接球的表面积为( ) A .45π B .57πC .63πD .84π【答案】B【解析】分析:根据题意画出图形,结合图形找出ABC △的外接圆圆心与三棱锥P ABC - 外接球的球心,求出外接球的半径,再计算它的表面积.详解:三棱锥P ABC PA ABC 中,平面,-⊥ 设直线PQ 与平面ABC 所成角为θ ,如图所示;则3PAsinPQ PQ ,θ== 由题意且θ的最大值是3π3PQ=,,解得PQ =即PQ 的最小值为∴AQ ,即点A 到BC ,AQ BC ∴⊥,AB BC ∴== 6BC ;∴= 取ABC △的外接圆圆心为O ',作OO PA ' ,62120r sin ∴=︒,解得r =;O A ∴'=M 为PA 的中点,32OM O A PM ∴='==,由勾股定理得CP R === ∴三棱锥P ABC -的外接球的表面积是224457S R πππ==⨯⨯=.故选B.11.在直三棱柱111ABC A B C -中,底面ABC 是以B 为直角的等腰三角形,且3AB =,1AA =若点D 为棱1AA 的中点,点M 为面BCD 的一动点,则11 B M C M +的最小值为( )A .B .6C . D【来源】江西省赣州市2021届高三二模数学(理)试题 【答案】C【解析】由题意知,BC AB ⊥,111ABC A B C -为直三棱柱,即面ABC ⊥面11ABB A ,面ABC面11ABB A AB =,BC ⊂面ABC ,∴BC ⊥面11ABB A ,又BC ⊂面BCD , ∴面BCD ⊥面11ABB A .∴易得1B 关于平面BCD 对称点E 落在1A A 的延长线上,且AE =1A E =11 B M C M +的最小时,1C 、M 、E 三点共线.∴221111111||992735B M C M EM C M EC AC A E +=+≥=+=++=. 故选:C12.在棱长为2的正四面体ABCD 中,点P 为ABC 所在平面内一动点,且满足433PA PB +=,则PD 的最大值为( ) A .3B .2103C .393D .2【来源】河南省鹤壁市2021届高三一模数学(文)试题 【答案】B【解析】如图所示,在平面ABC 内,4323PA PB +=>, 所以点P 在平面ABC 内的轨迹为椭圆,取AB 的中点为点O ,连接CO ,以直线AB 为x 轴,直线OC 为y 建立如下图所示的空间直角坐标系O xyz -,则椭圆的半焦距1c =,长半轴a =b ==所以,椭圆方程为()2233104x y z +==.点D 在底面的投影设为点E ,则点E 为ABC 的中心,11333OE OC ===, 故点E 正好为椭圆短轴的一个端点,23CE OC ==,则DE ==, 因为222PD DE EP =+,故只需计算EP 的最大值.设(),,0P x y ,则E ⎛⎫⎪ ⎪⎝⎭,则22222241543333EP x y y y y y y ⎛=+=-++=--+ ⎝⎭,当y ⎡=⎢⎣⎦时,2EP 取最大值,即22max516393939EP ⎛⎛=-⨯---+= ⎝⎭⎝⎭,因此可得2241640999PD ≤+=,故PD . 故选:B.13.在棱长为1的正方体1111ABCD A B C D -中,P 是线段1BC 上的点,过1A 的平面α与直线PD 垂直,当P 在线段1BC 上运动时,平面α截正方体1111ABCD A B C D -所得的截面面积的最小值是( )A .1B .54C D【来源】北京市朝阳区2021届高三一模数学试题 【答案】C【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()10,0,1A 、()1,0,0B 、()11,0,1B 、()1,1,0C 、()11,1,1C 、()0,1,0D 、()10,1,1D , 设点()1,,P t t ,其中01t ≤≤.①当0t =时,点P 与点B 重合,()1,1,0BD =-,()1,1,0AC =,()10,0,1AA =, 所以,0BD AC ⋅=,10BD AA ⋅=,则BD AC ⊥,1BD AA ⊥, 1AC AA A ⋂=,BD ∴⊥平面11AAC C ,此时平面α即为平面11AAC C ,截面面积为12S AA AC =⋅= ②当1t =时,同①可知截面面积为2S =③当01t <<时,()1,1,DP t t =-,()11,1,1AC =-, 1110DP AC t t ⋅=+--=,1A C PD ∴⊥,则1A C α⊂, 设平面α交棱1DD 于点()0,1,E z ,()1,0,CE z =-,10DP CE tz ⋅=-+=,可得11z t=>,不合乎题意. 设平面α交棱AB 于点(),0,0M x ,()1,1,0CM x =--,()110DP CM x t ⋅=---=,可得x t =,合乎题意,即(),0,0M t ,同理可知,平面α交棱11C D 于点()1,1,1N t -,()11,1,0A N t MC =-=,且1A N 与MC 不重合,故四边形1A MCN 为平行四边形,()11,1,1AC =-,()11,1,0A N t =-,1112112cos 322AC A N t CA N AC A N t t ⋅-∠==⋅⋅-+,则()()2211221sin 1cos 322t t CA N CA N t t -+∠=-∠=-+,所以,截面面积为()1221111362sin 2122242CA NS S AC A N CA N t t t ⎡⎤⎛⎫==⋅∠=-+=-+=<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦△. 综上所述,截面面积的最小值为62. 故选:C.14.如图,斜线段AB 与平面α所成的角为π4,B 为斜足.平面α上的动点P 满足π6PAB ∠=,则点P 的轨迹为( )A .圆B .椭圆C .双曲线的一部分D .抛物线的一部分【答案】B【解析】建立如图所示的空间直角坐标系,设(0,1,0),(0,0,1),(,,0)(0,1,1),(,,1)B A P x y AB AP x y ⇒=-=-22223cos ,62(2)1121AB AP x y x y ⇒<>=⇒+-=⋅++ 所以点P 的轨迹是椭圆. 故选:B.15.已知正方体ABCD A B C D ''''-的棱长为1,点M ,N 分别为线段AB ',AC 上的动点,点T 在平面BCC B ''内,则MT NT +的最小值是( )A .2B .233C .62D .1【答案】B【解析】A 点关于BC 的对称点为E ,M 关于BB '的对称点为M ', 记d 为直线EB '与AC 之间的距离,则MT NT M T NT M N d ''+=+≥≥, 由//B E D C '',d 为E 到平面ACD '的距离, 因为111111333D ACE ACEV S '-=⨯⨯==⨯⨯=,而()21332346D ACE E ACD V V d d ''--==⨯⨯⨯=,故233d =, 故选:B.16.如图,ABC 是等腰直角三角形,AB AC =,点D 是AB 上靠近A 的三等分点,点E 是AC 上靠近C 的三等分点,沿直线DE 将ADE 翻折成A DE ',所成二面角A DE B '--的平面角为α,则( )A .A DB A EC α∠≥∠'≥' B .A EC A DB α∠≥∠'≥' C .A DB A EC α≥∠'∠≥'D .A EC A DB α≥∠'∠≥'【答案】B【详解】如图,在等腰直角三角形中,过B 作直线//l DE ,作BM ED ⊥交直线DE 于点M ,过C 作直线DE 的垂线,垂足为R ,交直线l 与T ,过A 作DE 的垂线,垂足为O ,且交l 于N ,不妨设3AB =,则1,2AD CE BD AE ====, 在直角三角形ADE 中,255AO ==, 因为BMD AOD ,故12AO AD BM BD ==,故455BM =,同理52522155DM DO ==⨯⨯= 所以45ON =,35BN OM ==,同理5RC OS ==65NT =.在几何体中连接,,A B A S A C ''',如图,因为,,A O DE NO DE '⊥⊥故NOA '∠为二面角A DE B '--的平面角,故NOA α'∠=,而A O NO O '⋂=,故DE ⊥平面AON ',所以TB ⊥平面AON ',而A N '⊂平面AON ',故BN A N '⊥.24162545162cos 4cos 55555A N αα'=+-⨯=-, 故216929164cos cos 5555A B αα'=-+=-,故29165cos 4155cos cos 21255A DB αα-+'∠==-⨯⨯, 同理14cos cos 55A EC α'∠=-,11cos cos cos 055A DB αα'∠-=--<,故cos cos A DB α'∠<,同理cos cos A EC α'∠<,33cos cos cos 055A DB A EC α''∠-∠=+>,故cos cos A DB A EC ''∠>∠,因为(),,0,A DB A EC απ''∠∠∈,故A EC A DB α''∠>∠>, 故选B.17.如图,棱长为2的长方体1111ABCD A B C D -中,P 为线段11B D 上动点(包括端点).则以下结论正确的为( )A .三棱锥1P A BD -中,点P 到面1A BD 2B .过点P 平行于面1A BD 的平面被正方体1111ABCD A BCD -3C .直线1PA 与面1A BD 所成角的正弦值的范围为36⎣⎦D .当点P 和1B 重合时,三棱锥1P A BD -3【来源】广东省普宁市2020-2021学年高三上学期期末数学试题 【答案】C【解析】对于A 中,由111142222323P A BD A PBD V V --==⨯=,1A BD 为等边三角形,面积为11226232A BD =⨯=△S ,设点P 到面1A BD 的距离为h ,由142333h ⨯=,求得23h =所以A不正确;对于B 中,过点P 平行于平面1A BD 的平面被正方体截得的多边形平面11B D C , 此时三角形11B D C 为边长为221226=232⨯B 不正确; 对于C 中,由正方体的结构特征和性质,可得点P 到平面1A BD 23当点P 在线段11B D 上运动时,1max 2PA =(P 为端点时),in 1m 2PA =设直线1PA 与平面1A BD 所成角为θ,则36sin ,33θ∈⎣⎦,所以C 正确;对于D 中,当点P 与1B 重合时,此时三棱锥为11B A BD -,设1B D 的中点为O ,因为11190B BD B A D ∠=∠=︒,可得11OA OB OD OB === 所以三棱锥1P A BD -的外接球的球心为1B D 的中点,其半径为3,所以三棱锥1P A BD -的外接球的体积为34(3)433ππ⨯=,所以D 不正确.故选:C.18.如图,在棱长为33的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足15213DP PB +=+,则直线1B P 与直线1AD 所成角的取值范围为( )(参考数据:43sin 53,sin 3755==)A .37,143⎡⎤⎣⎦B .37,90⎡⎤⎣⎦C .53,143⎡⎤⎣⎦D .37,127⎡⎤⎣⎦【来源】江西省景德镇一中2020-2021学年高三上学期期末考试数学(理)试题 【答案】B【解析】如图,建立空间直接坐标系,连结1B D ,交平面11A BC 于点O ,()0,0,0D ,()133,33,33B ,()133,0,33A ,()33,33,0B ,()10,33,33C ,()133,33,33DB =,()10,33,33A B =-,()133,0,33BC =-,110DB A B ⋅=,110DB BC ⋅=,111111,DB A B DB BC A B BC B ∴⊥⊥⋂=,,1DB ∴⊥平面11A BC ,根据等体积转化可知111111B A BC B A B C V V --=, 即()()23111311363332232B O ⨯⨯⨯⨯=⨯⨯,解得:13B O =, 13339B D =⨯=,16D O ∴=,11//AD BC ,∴异面直线1AD 与1B P 所成的角,转化为1BC 与1B P 所成的角,如图,将部分几何体分类出来,再建立一个空间直角坐标系,取1BC 的中点E ,过点O 作1//OF BC ,则以点O 为原点,1,,OF OE OB 为,,x y z 轴的正方向,建立空间直角坐标系(),,0P x y ,()10,0,3B ,()0,0,6D -,3326,22B ⎫⎪⎪⎭,13326,22C ⎛⎫ ⎪ ⎪⎝⎭,()1,,3B P x y =-,()136,0,0BC =-, 15213PB PD +=+,22229365213x y x y ++++=+2222936x y x y ++<++,即15PB =22925x y ∴++=,即2216x y +=,[]4,4x ∈-1111113644cos ,,555365B P BC x x B P BC B P BC ⋅-⎡⎤<>===-∈-⎢⎥⨯⎣⎦,因为异面直线所成的角是锐角,并设为θ,则4cos 0,5θ⎛⎤∈ ⎥⎝⎦,4sin 535=,4cos375∴=,37,90θ⎡⎤∴∈⎣⎦ 故选:B19.如图,在三棱锥D ABC -中,,1,1AD BC BC AD ⊥==.且2AB BD AC CD +=+=,则四面体ABCD 的体积的最大值为( )A .14B .212C .36D .524【来源】浙江省衢州市五校联盟2020-2021学年高三上学期期末联考数学试题 【答案】B【解析】作BE ⊥AD 于E ,连接CE ,如图,因为,AD BC ⊥,BE BC 再平面BEC 内相交,所以AD ⊥平面BEC , 因为CE ⊂平面BEC ,所以CE ⊥AD , 因为2AB BD AC CD +=+=,所以B 与C 都是在以A 、D 为焦点的椭球上,且BE 、CE 都垂直于焦距AD , AB +BD = AC +CD =2,显然ABD ACD ≅,所以BE =CE . 取BC 中点F ,,,BC E AD E F F ⊥∴⊥ 要求四面体ABCD 的体积的最大值,因为AD 是定值,只需三角形EBC 的面积最大, 因为BC 是定值,所以只需EF 最大即可,当△ABD 是等腰直角三角形时几何体的体积最大, 因为AB +BD = AC +CD =2,1AB ∴=,22222131121,(1)22222EB EF ⎛⎫⎛⎫⎛⎫∴=-==--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以几何体的体积为11221132212⨯⨯⨯⨯=故选:B20.如图,三棱锥A BCD -的底面BCD 在平面α内,所有棱均相等,E 是棱AC 的中点,若三棱锥A BCD -绕棱CD 旋转,设直线BE 与平面α所成的角为θ,则cos θ的取值范围为( )A .36⎤⎥⎣⎦B .5,16⎡⎤⎢⎥⎣⎦C .110,6⎡⎢⎣⎦D .330,6⎡⎢⎣⎦【来源】浙江省宁波市慈溪市2020-2021学年高三上学期期末数学试题 【答案】A【解析】取AD 的中点F ,连接EF 、BF ,如下图所示:。

2020年高考数学(理)二轮专题学与练 14 直线与圆(高考押题)(解析版)

2020年高考数学(理)二轮专题学与练 14 直线与圆(高考押题)(解析版)

高考押题专练1.已知直线l :y =k (x +3)和圆C :x 2+(y -1)2=1,若直线l 与圆C 相切,则k =( ) A .0 B.3 C.33或0 D.3或0【答案】D【解析】因为直线l 与圆C 相切,所以圆心C (0,1)到直线l 的距离d =|-1+3k |1+k 2=1,解得k =0或k =3,故选D.2.圆:x 2+y 2-2x -2y +1=0上的点到直线x -y =2距离的最大值是( ) A .1+2 B .2 C .1+22D .2+22【答案】A【解析】将圆的方程化为(x -1)2+(y -1)2=1,即圆心坐标为(1,1),半径为1,则圆心到直线x -y =2的距离d =|1-1-2|2=2,故圆上的点到直线x -y =2距离的最大值为d +1=2+1.3.直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“|AB |=2”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【解析】依题意,注意到|AB |=2=|OA |2+|OB |2等价于圆心O 到直线l 的距离等于22,即有1k 2+1=22,k =±1.因此,“k =1”是“|AB |=2”的充分不必要条件.4.若三条直线l 1:4x +y =3,l 2:mx +y =0,l 3:x -my =2不能围成三角形,则实数m 的取值最多有( ) A .2个 B .3个 C .4个 D .6个 【答案】C【解析】三条直线不能围成三角形,则至少有两条直线平行或三条直线相交于同一点.若l 1∥l 2,则m =4;若l 1∥l 3,则m =-14;若l 2∥l 3,则m 的值不存在;若三条直线相交于同一点,则m =1或-53.故实数m 的取值最多有4个,故选C.5.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( )A .x 2+y 2-2x +4y =0B .x 2+y 2+2x +4y =0C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =0 【答案】C【解析】由(a -1)x -y +a +1=0得(x +1)a -(x +y -1)=0,由x +1=0且x +y -1=0,解得x =-1,y =2,即该直线恒过点(-1,2),∴所求圆的方程为(x +1)2+(y -2)2=5,即x 2+y 2+2x -4y =0.6.与直线x +y -2=0和曲线x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是( ) A .(x +2)2+(y -2)2=2 B .(x -2)2+(y +2)2=2 C .(x +2)2+(y +2)2=2 D .(x -2)2+(y -2)2=2 【答案】D【解析】由题意知,曲线方程为(x -6)2+(y -6)2=(32)2,过圆心(6,6)作直线x +y -2=0的垂线,垂线方程为y =x ,则所求的最小圆的圆心必在直线y =x 上,又圆心(6,6)到直线x +y -2=0的距离d =|6+6-2|2=52,故最小圆的半径为52-322=2,圆心坐标为(2,2),所以标准方程为(x -2)2+(y -2)2=2.7.已知圆C 关于x 轴对称,经过点(0,1),且被y 轴分成两段弧,弧长之比为2∶1,则圆的方程为( ) A .x 2+⎝⎛⎭⎫y ±332=43B .x 2+⎝⎛⎭⎫y ±332=13C.⎝⎛⎭⎫x ±332+y 2=43D.⎝⎛⎭⎫x ±332+y 2=13【答案】C【解析】设圆的方程为(x ±a )2+y 2=r 2(a >0),圆C 与y 轴交于A (0,1),B (0,-1),由弧长之比为2∶1,易知∠OCA =12∠ACB =12×120°=60°,则tan 60°=|OA ||OC |=1|OC |=3,所以a =|OC |=33,即圆心坐标为⎝⎛⎭⎫±33,0,r 2=|AC |2=12+⎝⎛⎭⎫±332=43.所以圆的方程为⎝⎛⎭⎫x ±332+y 2=43,故选C.8.设圆x 2+y 2-2x -2y -2=0的圆心为C ,直线l 过(0,3)且与圆C 交于A ,B 两点,若|AB |=23,则直线l的方程为()A.3x+4y-12=0或4x-3y+9=0B.3x+4y-12=0或x=0C.4x-3y+9=0或x=0D.3x-4y+12=0或4x+3y+9=0【答案】B【解析】由题可知,圆心C(1,1),半径r=2.当直线l的斜率不存在时,直线方程为x=0,计算出弦长为23,符合题意;当直线l的斜率存在时,可设直线l的方程为y=kx+3,由弦长为23可知,圆心到该直线的距离为1,从而有|k+2|k2+1=1,解得k=-34,所以直线l的方程为y=-34x+3,即3x+4y-12=0.综上,直线l的方程为x=0或3x+4y-12=0,故选B.9.关于曲线C:x2+y4=1,给出下列四个命题:①曲线C有两条对称轴,一个对称中心;②曲线C上的点到原点距离的最小值为1;③曲线C的长度l满足l>42;④曲线C所围成图形的面积S满足π<S<4.上述命题中,真命题的个数是()A.4 B.3 C.2D.1【答案】A【解析】①将(x,-y),(-x,y),(-x,-y)代入,方程不变,则可以确定曲线关于x轴,y轴对称,关于原点对称,故①是真命题.②由x2+y4=1得0≤x2≤1,0≤y4≤1,故x2+y2≥x2+y2·y2=x2+y4=1,即曲线C上的点到原点的距离为x2+y2≥1,故②是真命题.③由②知,x2+y4=1的图象位于单位圆x2+y2=1和边长为2的正方形之间,如图所示,其每一段弧长均大于2,所以l>42,故③是真命题.④由③知,π×12<S<2×2,即π<S<4,故④是真命题.综上,真命题的个数为4.10.已知直线l :x +ay -1=0(a ∈R)是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=( ) A .2 B .4 2 C .6D .210【答案】C【解析】由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,解得a =-1,∴A (-4,-1),|AC |2=(-4-2)2+(-1-1)2=40.又r =2,∴|AB |2=40-4=36,即|AB |=6.11.两个圆C 1:x 2+y 2+2ax +a 2-4=0(a ∈R)与C 2:x 2+y 2-2by -1+b 2=0(b ∈R)恰有三条公切线,则a +b 的最小值为( ) A .32 B .-32 C .6D .-6【答案】B【解析】两个圆恰有三条公切线,则两圆外切,两圆的标准方程为圆C 1:(x +a )2+y 2=4,圆C 2:x 2+(y -b )2=1,所以C 1(-a,0),C 2(0,b ),||C 1C 2=a 2+b 2=2+1=3,即a 2+b 2=9.由⎝⎛⎭⎫a +b 22≤a 2+b 22,得(a +b )2≤18,所以-32≤a +b ≤32,当且仅当“a =b ”时等号成立.所以a +b 的最小值为-3 2.12.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y -2=0的距离等于1,则半径r 的取值范围是( )A .(4,6)B .[4,6]C .(4,5)D .(4,5] 【答案】A【解析】设直线4x -3y +m =0与直线4x -3y -2=0之间的距离为1,则有|m +2|5=1,m =3或m =-7.圆心(3,-5)到直线4x -3y +3=0的距离等于6,圆心(3,-5)到直线4x -3y -7=0的距离等于4,因此所求圆半径的取值范围是(4,6),故选A.13.若直线x -y +m =0被圆(x -1)2+y 2=5截得的弦长为23,则m 的值为( ) A .1 B .-3 C .1或-3D .2【解析】因为圆(x -1)2+y 2=5的圆心C (1,0),半径r = 5.又直线x -y +m =0被圆截得的弦长为2 3.所以圆心C 到直线的距离d =r 2-(3)2=2, 因此|1-0+m |12+(-1)2=2,所以m =1或m =-3. 【答案】C14.已知过点(-2,0)的直线与圆C :x 2+y 2-4x =0相切于点P (P 在第一象限内),则过点P 且与直线3x -y =0垂直的直线l 的方程为( ) A .x +3y -2=0 B .x +3y -4=0 C.3x +y -2=0D .x +3y -6=0【解析】圆C :x 2+y 2-4x =0的标准方程(x -2)2+y 2=4, 所以圆心C (2,0),半径r =2.又过点(-2,0)的直线与圆C 相切于第一象限, 所以易知倾斜角θ=30°,切点P (1,3), 设直线l 的方程为x +3y +c =0,把点 P (1,3)代入,所以1+3+c =0,所以c =-4. 所以直线l 的方程为x +3y -4=0. 【答案】B15.圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( ) A .-43 B .-34C. 3 D .2 【答案】A【解析】因为圆x 2+y 2-2x -8y +13=0的圆心坐标为(1,4),所以圆心到直线ax +y -1=0的距离d =|a +4-1|a 2+1=1,解得a =-43.16.已知圆(x -2)2+(y +1)2=16的一条直径通过直线x -2y +3=0被圆所截弦的中点,则该直径所在的直线方程为( )A .3x +y -5=0B .x -2y =0C .x -2y +4=0D .2x +y -3=0 【答案】D【解析】直线x -2y +3=0的斜率为12,已知圆的圆心坐标为(2,-1),该直径所在直线的斜率为-2,所以该直径所在的直线方程为y +1=-2(x -2),即2x +y -3=0,故选D.17.圆心在曲线y =2x (x >0)上,与直线2x +y +1=0相切,且面积最小的圆的方程为( )A .(x -2)2+(y -1)2=25B .(x -2)2+(y -1)2=5C .(x -1)2+(y -2)2=25D .(x -1)2+(y -2)2=5 【答案】D【解析】设圆心坐标为C ⎝⎛⎭⎫a ,2a (a >0),则半径r =2a +2a +15≥22a ×2a +15=5,当且仅当2a =2a ,即a =1时取等号.所以当a =1时圆的半径最小,此时r =5,C (1,2),所以面积最小的圆的方程为(x -1)2+(y -2)2=5.18.已知圆O :x 2+y 2=4上到直线l :x +y =a 的距离等于1的点至少有2个,则a 的取值范围为( ) A .(-32,32)B .(-∞,-32)∪(32,+∞)C .(-22,22)D .[-32,3 2 ] 【答案】A【解析】由圆的方程可知圆心为O (0,0),半径为2,因为圆上的点到直线l 的距离等于1的点至少有2个,所以圆心到直线l 的距离d <2+1=3,即d =|-a |12+12=|a |2<3,解得a ∈(-32,32),故选A. 19.已知点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,过点P 的直线l 与圆C :x 2+y 2=14相交于A ,B 两点,则|AB |的最小值是( )A .2 6B .4 C. 6 D .2 【答案】B【解析】根据约束条件画出可行域,如图中阴影部分所示,设点P 到圆心的距离为d ,则求最短弦长,等价于求到圆心的距离最大的点,即为图中的P 点,其坐标为(1,3),则d =1+32=10,此时|AB |min =214-10=4,故选B.20.过原点且与直线6x -3y +1=0平行的直线l 被圆x 2+(y -3)2=7所截得的弦长为________. 【解析】由题意可得l 的方程为2x -y =0,∵圆心(0,3)到l 的距离为d =1,∴所求弦长=2R 2-d 2=27-1=2 6. 【答案】2621.已知f (x )=x 3+ax -2b ,如果f (x )的图象在切点P (1,-2) 处的切线与圆(x -2)2+(y +4)2=5相切,那么3a +2b =________.【解析】由题意得f (1)=-2⇒a -2b =-3,又∵f ′(x )=3x 2+a ,∴f (x )的图象在点P (1,-2)处的切线方程为y +2=(3+a )(x -1),即(3+a )x -y -a -5=0,∴|(3+a )×2+4-a -5|(3+a )2+12=5⇒a =-52,∴b =14,∴3a +2b =-7.【答案】-722.著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:(x -a )2+(y -b )2可以转化为平面上点M (x ,y )与点N (a ,b )的距离.结合上述观点,可得f (x )=x 2+4x +20+x 2+2x +10的最小值为________.【解析】∵f (x )=x 2+4x +20+x 2+2x +10=(x +2)2+(0-4)2+(x +1)2+(0-3)2,∴f (x )的几何意义为点M (x ,0)到两定点A (-2,4)与B (-1,3)的距离之和,设点A (-2,4)关于x 轴的对称点为A ′,则A ′为(-2,-4).要求f (x )的最小值,可转化为|MA |+|MB |的最小值,利用对称思想可知|MA |+|MB |≥|A ′B |=(-1+2)2+(3+4)2=52,即f (x )=x 2+4x +20+x 2+2x +10的最小值为5 2. 【答案】5223.已知圆C 的方程是x 2+y 2-8x -2y +8=0,直线y =a (x -3)被圆C 截得的弦最短时,直线方程为________. 【解析】圆C 的标准方程为(x -4)2+(y -1)2=9, 所以圆C 的圆心C (4,1),半径r =3. 又直线y =a (x -3)过定点P (3,0),则当直线y =a (x -3)与直线CP 垂直时,被圆C 截得的弦长最短. 因此a ·k CP =a ·1-04-3=-1,所以a =-1.故所求直线的方程为y =-(x -3),即x +y -3=0. 【答案】x +y -3=024.已知圆C :x 2+y 2-4x -6y +12=0,点A (3,5). (1)求过点A 的圆的切线方程;(2)O 点是坐标原点,连接OA ,OC ,求△AOC 的面积S . 【解析】(1)由圆C :x 2+y 2-4x -6y +12=0,配方, 得(x -2)2+(y -3)2=1,圆心C (2,3). 当斜率存在时,设过点A 的圆的切线方程为 y -5=k (x -3), 即kx -y +5-3k =0.由d =|2k -3+5-3k |k 2+1=1,得k =34.又斜率不存在时直线x =3也与圆相切, 故所求切线方程为x =3或3x -4y +11=0. (2)直线OA 的方程为y =53x ,即5x -3y =0,点C 到直线OA 的距离为 d =|5×2-3×3|52+32=134,又|OA |=32+52=34, 所以S =12|OA |d =12.25.在平面直角坐标系xOy 中,圆C :x 2+y 2+4x -2y +m =0与直线x -3y +3-2=0相切. (1)求圆C 的方程;(2)若圆C 上有两点M ,N 关于直线x +2y =0对称,且|MN |=23,求直线MN 的方程. 【解析】(1)将圆C :x 2+y 2+4x -2y +m =0化为(x +2)2+(y -1)2=5-m , 因为圆C :x 2+y 2+4x -2y +m =0与直线x -3y +3-2=0相切, 所以圆心(-2,1)到直线x -3y +3-2=0的距离d =41+3=2=r , 所以圆C 的方程为(x +2)2+(y -1)2=4.(2)若圆C 上有两点M ,N 关于直线x +2y =0对称,则可设直线MN 的方程为2x -y +c =0, 因为|MN |=23,半径r =2,所以圆心(-2,1)到直线MN 的距离为22-(3)2=1. 则|-4-1+c |5=1,所以c =5±5, 所以直线MN 的方程为2x -y +5± 5=0.26.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方. (1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由. 【解析】(1)设圆心C (a ,0)⎝⎛⎭⎫a >-52,则|4a +10|5=2⇒a =0或a =-5(舍). 所以圆C :x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t ,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 2=4,y =k (x -1),得(k 2+1)x 2-2k 2x +k 2-4=0. 所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB ,则k AN =-k BN ⇒y 1x 1-t +y 2x 2-t =0⇒k (x 1-1)x 1-t +k (x 2-1)x 2-t =0⇒2x 1x 2-(t +1)(x 1+x 2)+2t=0⇒2(k 2-4)k 2+1-2k 2(t +1)k 2+1+2t =0⇒t =4,所以当点N 为(4,0)时,能使得∠ANM =∠BNM 总成立.。

2024年高考数学压轴题专项训练:立体几何压轴题十大题型汇总(解析版)(共65页)(1)

2024年高考数学压轴题专项训练:立体几何压轴题十大题型汇总(解析版)(共65页)(1)

立体几何压轴题十大题型汇总命题预测本专题考查类型主要涉及点立体几何的内容,主要涉及了立体几何中的动点问题,外接球内切球问题,以及不规则图形的夹角问题,新定义问题等。

预计2024年后命题会继续在以上几个方面进行。

高频考法题型01几何图形内切球、外接球问题题型02立体几何中的计数原理排列组合问题题型03立体几何动点最值问题题型04不规则图形中的面面夹角问题题型05不规则图形中的线面夹角问题题型06几何中的旋转问题题型07立体几何中的折叠问题题型08不规则图形表面积、体积问题题型09立体几何新定义问题题型10立体几何新考点题型01几何图形内切球、外接球问题解决与球相关的切、接问题,其通法是作出截面,将空间几何问题转化为平面几何问题求解,其解题思维流程如下:(1)定球心:如果是内切球,球心到切点的距离相等且为球的半径;如果是外接球,球心到接点的距离相等且为半径;(2)作截面:选准最佳角度做出截面(要使这个截面尽可能多的包含球、几何体的各种元素以及体现这些元素的关系),达到空间问题平面化的目的;(3)求半径下结论:根据作出截面中的几何元素,建立关于球的半径的方程,并求解.1(多选)(23-24高三下·浙江·开学考试)如图,八面体的每个面都是正三角形,并且4个顶点A ,B ,C ,D 在同一个平面内,如果四边形ABCD 是边长为2的正方形,则()A.异面直线AE 与DF 所成角大小为π3B.二面角A -EB -C 的平面角的余弦值为13C.此八面体一定存在外接球D.此八面体的内切球表面积为8π3【答案】ACD=|OA |=|OB |=|OC |=|OD |可判断C 项,运用等体积法求得内切球的半径,进而可求得内切球的表面积即可判断D 项.【详解】连接AC 、BD 交于点O ,连接OE 、OF ,因为四边形ABCD 为正方形,则AC ⊥BD ,又因为八面体的每个面都是正三角形,所以E 、O 、F 三点共线,且EF ⊥面ABCD ,所以以O 为原点,分别以OB 、OC 、OE 为x 轴、y 轴、z 轴建立空间直角坐标系O -xyz ,如图所示,则O (0,0,0),A (0,-2,0),B (2,0,0),C (0,2,0),D (-2,0,0),E (0,0,2),F (0,0,-2),对于A 项,AE =(0,2,2),DF=(2,0,2),设异面直线AE 与DF 所成角为θ,则cos θ=|cos AE ,DF |=|AE ⋅DF||AE ||DF |=22×2=12,所以θ=π3,即异面直线AE 与DF 所成角大小为π3,故A 项正确;对于B 项,BE =(-2,0,2),BA =(-2,-2,0),BC=(-2,2,0),设面ABE 的一个法向量为n=(x 1,y 1,z 1),则n ⋅BE=0n ⋅BA =0 ⇒-2x 1+2z 1=0-2x 1-2y 1=0,取x 1=1,则y 1=-1,z 1=1,则n=(1,-1,1),设面BEC 的一个法向量为m=(x 2,y 2,z 2),则n ⋅BE=0n ⋅BC =0⇒-2x 2+2z 2=0-2x 2+2y 2=0,取x 2=1,则y 2=1,z 2=1,则m=(1,1,1),所以cos n ,m =n ⋅m |n ||m |=1-1+13×3=13,又因为面ABE 与BEC 所成的二面角的平面角为钝角,所以二面角A -EB -C 的平面角的余弦值为-13,故B 项错误;对于C 项,因为|OE |=|OF |=|OA |=|OB |=|OC |=|OD |=2,所以O 为此八面体外接球的球心,即此八面体一定存在外接球,故C 项正确;对于D 项,设内切球的半径为r ,则八面体的体积为V =2V E -ABCD =2×13S ABCD ⋅EO =2×13×2×2×2=823,又八面体的体积为V =8V E -ABO =8V O -ABE =8×13S EAB ⋅r =8×13×12×22×sin π3×r =833r ,所以833r =823,解得r =63,所以内切球的表面积为4πr 2=4π×632=8π3,故D 项正确.故选:ACD .2(2024·浙江宁波·二模)在正四棱台ABCD -A 1B 1C 1D 1中,AB =4,A 1B 1=2,AA 1=3,若球O 与上底面A 1B 1C 1D 1以及棱AB ,BC ,CD ,DA 均相切,则球O 的表面积为()A.9πB.16πC.25πD.36π【答案】C【分析】根据勾股定理求解棱台的高MN =1,进而根据相切,由勾股定理求解球半径R =52,即可由表面积公式求解.【详解】设棱台上下底面的中心为N ,M ,连接D 1B 1,DB ,则D 1B 1=22,DB =42,所以棱台的高MN =B 1B 2-MB -NB 1 2=3 2-22-2 2=1,设球半径为R ,根据正四棱台的结构特征可知:球O 与上底面A 1B 1C 1D 1相切于N ,与棱AB ,BC ,CD ,DA 均相切于各边中点处,设BC 中点为E ,连接OE ,OM ,ME ,所以OE 2=OM 2+ME 2⇒R 2=R -1 2+22,解得R =52,所以球O 的表面积为4πR 2=25π,故选:C3(2024·河北石家庄·二模)已知正方体的棱长为22,连接正方体各个面的中心得到一个八面体,以正方体的中心O 为球心作一个半径为233的球,则该球O 的球面与八面体各面的交线的总长为()A.26πB.463π C.863π D.46π【答案】B【分析】画出图形,求解正方体的中心与正八面体面的距离,然后求解求与正八面体的截面圆半径,求解各个平面与球面的交线、推出结果.【详解】如图所示,M 为EF 的中点,O 为正方体的中心,过O 作PM 的垂线交于点N ,正八面体的棱长为2,即EF =2,故OM =1,OP =2,PM =3,则ON =63,设球与正八面体的截面圆半径为r ,如图所示,则r =2332-ON 2=2332-632=63,由于MN =ZN =33,NJ =NI =63,所以IJ =233,则∠INJ =π2,平面PEF 与球O 的交线所对应的圆心角恰为π2,则该球O 的球面与八面体各面的交线的总长为8×14×2π×63 =463π故选:B 4(多选)(2022·山东聊城·二模)用与母线不垂直的两个平行平面截一个圆柱,若两个截面都是椭圆形状,则称夹在这两个平行平面之间的几何体为斜圆柱.这两个截面称为斜圆柱的底面,两底面之间的距离称为斜圆柱的高,斜圆柱的体积等于底面积乘以高.椭圆的面积等于长半轴与短半轴长之积的π倍,已知某圆柱的底面半径为2,用与母线成45°角的两个平行平面去截该圆柱,得到一个高为6的斜圆柱,对于这个斜圆柱,下列选项正确的是()A.底面椭圆的离心率为22B.侧面积为242πC.在该斜圆柱内半径最大的球的表面积为36πD.底面积为42π【答案】ABD【分析】不妨过斜圆柱的最高点D 和最低点B 作平行于圆柱底面的截面圆,夹在它们之间的是圆柱,作出过斜圆柱底面椭圆长轴的截面,截斜圆柱得平行四边形,截圆柱得矩形,如图,由此截面可得椭圆面与圆柱底面间所成的二面角的平面角,从而求得椭圆长短轴之间的关系,得离心率,并求得椭圆的长短轴长,得椭圆面积,利用椭圆的侧面积公式可求得斜椭圆的侧面积,由斜圆柱的高比圆柱的底面直径大,可知斜圆柱内半径最大的球的直径与圆柱底面直径相等,从而得其表面积,从而可关键各选项.【详解】不妨过斜圆柱的最高点D 和最低点B 作平行于圆柱底面的截面圆,夹在它们之间的是圆柱,如图,矩形ABCD 是圆柱的轴截面,平行四边形BFDE 是斜圆柱的过底面椭圆的长轴的截面,由圆柱的性质知∠ABF =45°,则BF =2AB ,设椭圆的长轴长为2a ,短轴长为2b ,则2a =2⋅2b ,a =2b ,c =a 2-b 2=a 2-22a 2=22a ,所以离心率为e =c a =22,A 正确;EG ⊥BF ,垂足为G ,则EG =6,易知∠EBG =45°,BE =62,又CE =AF =AB =4,所以斜圆柱侧面积为S =2π×2×(4+62)-2π×2×4=242π,B 正确;2b =4,b =2,2a =42,a =22,椭圆面积为πab =42π,D 正确;由于斜圆锥的两个底面的距离为6,而圆柱的底面直径为4,所以斜圆柱内半径最大的球的半径为2,球表面积为4π×22=16π,C 错.故选:ABD .5(21-22高三上·湖北襄阳·期中)在正方体ABCD -A 1B 1C 1D 1中,球O 1同时与以A 为公共顶点的三个面相切,球O 2同时与以C 1为公共顶点的三个面相切,且两球相切于点F .若以F 为焦点,AB 1为准线的抛物线经过O 1,O 2,设球O 1,O 2的半径分别为r 1,r 2,则r1r 2=.【答案】2-3/-3+2【分析】首先根据抛物线的定义结合已知条件得到球O 2内切于正方体,设r 2=1,得到r 1=2-3,即可得到答案.【详解】如图所示:根据抛物线的定义,点O 2到点F 的距离与到直线AB 1的距离相等,其中点O 2到点F 的距离即半径r 2,也即点O 2到面CDD 1C 1的距离,点O 2到直线AB 1的距离即点O 2到面ABB 1A 1的距离,因此球O 2内切于正方体.不妨设r 2=1,两个球心O 1,O 2和两球的切点F 均在体对角线AC 1上,两个球在平面AB 1C 1D 处的截面如图所示,则O 2F =r 2=1,AO 2=AC 12=22+22+222=3,所以AF =AO 2-O 2F =3-1.因为r 1AO 1=223,所以AO 1=3r 1,所以AF =AO 1+O 1F =3r 1+r 1,因此(3+1)r 1=3-1,得r 1=2-3,所以r1r 2=2- 3.故答案为:2-3题型02立体几何中的计数原理排列组合问题1(2024·浙江台州·二模)房屋建造时经常需要把长方体砖头进行不同角度的切割,以契合实际需要.已知长方体的规格为24cm ×11cm ×5cm ,现从长方体的某一棱的中点处作垂直于该棱的截面,截取1次后共可以得到12cm ×11cm ×5cm ,24cm ×112cm ×5cm ,24cm ×11cm ×52cm 三种不同规格的长方体.按照上述方式对第1次所截得的长方体进行第2次截取,再对第2次所截得的长方体进行第3次截取,则共可得到体积为165cm 3的不同规格长方体的个数为()A.8B.10C.12D.16【答案】B【分析】根据原长方体体积与得到的体积为165cm 3长方体的关系,分别对长宽高进行减半,利用分类加法计数原理求解即可.【详解】由题意,V 长方体=24×11×5=8×165,为得到体积为165cm 3的长方体,需将原来长方体体积缩小为原来的18,可分三类完成:第一类,长减半3次,宽减半3次、高减半3次,共3种;第二类,长宽高各减半1次,共1种;第三类,长宽高减半0,1,2 次的全排列A 33=6种,根据分类加法计数原理,共3+1+6=10种. 故选:B2(2023·江苏南通·模拟预测)在空间直角坐标系O -xyz 中,A 10,0,0 ,B 0,10,0 ,C 0,0,10 ,则三棱锥O -ABC 内部整点(所有坐标均为整数的点,不包括边界上的点)的个数为()A.C 310B.C 39C.C 210D.C 29【答案】B【分析】先利用空间向量法求得面ABC 的一个法向量为n =1,1,1 ,从而求得面ABC 上的点P a ,b ,c 满足a +b +c =10,进而得到棱锥O -ABC 内部整点为Q s ,t ,r 满足3≤s +t +r ≤9,再利用隔板法与组合数的性质即可得解.【详解】根据题意,作出图形如下,因为A 10,0,0 ,B 0,10,0 ,C 0,0,10 ,所以AB =-10,10,0 ,AC=-10,0,10 ,设面ABC 的一个法向量为n=x ,y ,z ,则AB ⋅n=-10x +10y =0AC ⋅n=-10x +10z =0,令x =1,则y =1,z =1,故n=1,1,1 ,设P a ,b ,c 是面ABC 上的点,则AP=a -10,b ,c ,故AP ⋅n=a -10+b +c =0,则a +b +c =10,不妨设三棱锥O -ABC 内部整点为Q s ,t ,r ,则s ,t ,r ∈N *,故s ≥1,t ≥1,r ≥1,则s +t +r ≥3,易知若s +t +r =10,则Q 在面ABC 上,若s +t +r >10,则Q 在三棱锥O -ABC 外部,所以3≤s +t +r ≤9,当s +t +r =n ,n ∈N *且3≤n ≤9时,将n 写成n 个1排成一列,利用隔板法将其隔成三部分,则结果的个数为s ,t ,r 的取值的方法个数,显然有C 2n -1个方法,所有整点Q s ,t ,r 的个数为C 22+C 23+⋯+C 28,因为C r n +C r -1n =n !r !n -r !+n !r -1 !n +1-r !=n +1-r n !+rn !r !n +1-r !=n +1 !r !n +1-r!=C rn +1,所以C 22+C 23+⋯+C 28=C 33+C 23+⋯+C 28=C 34+C 24+⋯+C 28=⋯=C 38+C 28=C 39.故选:B .【点睛】关键点睛:本题解决的关键是求得面ABC 上的点P a ,b ,c 满足a +b +c =10,从而确定三棱锥O -ABC 内部整点为Q s ,t ,r 满足3≤s +t +r ≤9,由此得解.3(2024·重庆·模拟预测)从长方体的8个顶点中任选4个,则这4个点能构成三棱锥的顶点的概率为()A.2736B.2935C.67D.3235【答案】B【分析】首先求出基本事件总数,再计算出这4个点在同一个平面的概率,最后利用对立事件的概率公式计算可得.【详解】根据题意,从长方体的8个顶点中任选4个,有C 48=70种取法,“这4个点构成三棱锥的顶点”的反面为“这4个点在同一个平面”,而长方体有2个底面和4个侧面、6个对角面,一共有12种情况,则这4个点在同一个平面的概率P =1270=635,所以这4个点构成三棱锥的概率为1-635=2935.故选:B .4(多选)(2024·重庆·模拟预测)如图,16枚钉子钉成4×4的正方形板,现用橡皮筋去套钉子,则下列说法正确的有(不同的图形指两个图形中至少有一个顶点不同)()A.可以围成20个不同的正方形B.可以围成24个不同的长方形(邻边不相等)C.可以围成516个不同的三角形D.可以围成16个不同的等边三角形【答案】ABC【分析】利用分类计算原理及组合,结合图形,对各个选项逐一分析判断即可得出结果.【详解】不妨设两个钉子间的距离为1,对于选项A ,由图知,边长为1的正方形有3×3=9个,边长为2的正方形有2×2=4个,边长为3的正方形有1个,边长为2的正方形有2×2=4个,边长为5的有2个,共有20个,所以选项A 正确,对于选项B ,由图知,宽为1的长方形有3×3=9个,宽为2的长方形有4×2=8个,宽为3的长方形有5个,宽为2的有2个,共有24个,所以选项B 正确,对于选项C ,由图知,可以围成C 316-10C 34-4C 33=516个不同的三角形,所以选项C 正确,对于选项D ,由图可知,不存在等边三角形,所以选项D 错误,故选:ABC .5(2024·上海浦东新·模拟预测)如图ABCDEF -A B C D E F 为正六棱柱,若从该正六棱柱的6个侧面的12条面对角线中,随机选取两条,则它们共面的概率是.【答案】611【分析】根据题意,相交时分为:在侧面内相交,两个相邻面相交于一个点,相隔一个面中相交于对角线延长线上,分别分析几种情况下对角线共面的个数,再利用古典概型的概率计算公式,计算结果即可.【详解】由题意知,若两个对角线在同一个侧面,因为有6个侧面,所以共有6组,若相交且交点在正六棱柱的顶点上,因为有12个顶点,所以共有12组,若相交且交点在对角线延长线上时,如图所示,连接AD ,C D ,E D ,AB ,AF ,先考虑下底面,根据正六边形性质可知EF ⎳AD ⎳BC ,所以E F ⎳AD ⎳B C ,且B C =E F ≠AD ,故ADC B 共面,且ADE F 共面,故AF ,DE 相交,且C D ,AB 相交,故共面有2组,则正六边形对角线AD 所对应的有2组共面的面对角线,同理可知正六边形对角线BE ,CF 所对的分别有两组,共6组,故对于上底面对角线A D ,B E ,C F 同样各对两组,共6组,若对面平行,一组对面中有2组对角线平行,三组对面共有6组,所以共面的概率是6+12+12+6C 212=611.故答案为:611.题型03立体几何动点最值问题空间几何体中线段和差最值以及几何体中的轨迹问题,以及线线角和线面角的求解,综合性较强,难度较大,解答时要发挥空间想象,明确空间的位置关系,结合空间距离,确定动点的轨迹形状;结合等体积法求得点到平面的距离,结合线面角的定义求解.1(多选)(2024·浙江台州·二模)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为平面ABCD 内一动点,且直线D 1P 与平面ABCD 所成角为π3,E 为正方形A 1ADD 1的中心,则下列结论正确的是()A.点P 的轨迹为抛物线B.正方体ABCD -A 1B 1C 1D 1的内切球被平面A 1BC 1所截得的截面面积为π6C.直线CP 与平面CDD 1C 1所成角的正弦值的最大值为33D.点M 为直线D 1B 上一动点,则MP +ME 的最小值为11-266【答案】BCD【分析】对于A ,根据到D 点长度为定值,确定动点轨迹为圆;对于B ,理解内切球的特点,计算出球心到平面的距离,再计算出截面半径求面积;对于C ,找到线面所成角的位置,再根据动点的运动特点(相切时)找到正弦的最大值;对于D ,需要先找到P 点位置,再将立体问题平面化,根据三点共线距离最短求解.【详解】对于A ,因为直线D 1P 与平面ABCD 所成角为π3,所以DP =1tan π3=33.P 点在以D 为圆心,33为半径的圆周上运动,因此运动轨迹为圆.故A 错误.对于B ,在面BB 1D 1D 内研究,如图所示O 为内切球球心,O 1为上底面中心,O 2为下底面中心,G 为内切球与面A 1BC 1的切点.已知OG ⊥O 1B ,OG 为球心到面A 1BC 1的距离.在正方体中,O 1B =62,O 2B =22,O 1O 2=1.利用相似三角形的性质有OG O 2B =OO 1O 1B,即OG 22=1262,OG =36.因此可求切面圆的r 2=122-362=16,面积为π6.故B 正确.对于C ,直线CP 与平面CDD 1C 1所成角即为∠PCD ,当CP 与P 点的轨迹圆相切时,sin ∠PCD 最大.此时sin ∠PCD =13=33.故C 正确.对于D ,分析可知,P 点为BD 和圆周的交点时,MP 最小.此时可将面D 1AB 沿着D 1B 翻折到面BB 1D 1D 所在平面.根据长度关系,翻折后的图形如图所示.当E ,M ,P 三点共线时,MP +ME 最小.因为O 2P =33-22,O 1O 2=1,所以最小值为12+33-222=11-266,故D 正确.故选:BCD2(多选)(2024·江苏扬州·模拟预测)如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为平面ABCD 内一动点,则()A.若M 在线段AB 上,则D 1M +MC 的最小值为4+22B.平面ACD 1被正方体内切球所截,则截面面积为π6C.若C 1M 与AB 所成的角为π4,则点M 的轨迹为椭圆D.对于给定的点M ,过M 有且仅有3条直线与直线D 1A ,D 1C 所成角为60°【答案】ABD迹方程判断C ,合理转化后判断D 即可.【详解】对于A ,延长DA 到E 使得AE =2,则D 1M +MC =EM +MC ≥EC =4+22,等号在E ,M ,C 共线时取到;故A 正确,对于B ,由于球的半径为12,球心到平面ACD 1的距离为36,故被截得的圆的半径为14-112 =66,故面积为π66 2=π6,故B 正确,对于C ,C 1M 与AB 所成的角即为C 1M 和C 1D 1所成角,记CM =xCD +yCB ,则x 2+y 2+1=2(y 2+1),即x 2-y 2=1,所以M 的轨迹是双曲线;故C 错误,对于D ,显然过M 的满足条件的直线数目等于过D 1的满足条件的直线l 的数目,在直线l 上任取一点P ,使得D 1P =D 1A =D 1C ,不妨设∠PD 1A =π3,若∠PD 1C =π3,则AD 1CP 是正四面体,所以P 有两种可能,直线l 也有两种可能,若∠PD 1C =2π3,则l 只有一种可能,就是与∠AD 1C 的角平分线垂直的直线,所以直线l 有三种可能.故选:ABD3(多选)(2023·安徽芜湖·模拟预测)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,棱AB 的中点为M ,过点M 作正方体的截面α,且B 1D ⊥α,若点N 在截面α内运动(包含边界),则()A.当MN 最大时,MN 与BC 所成的角为π3B.三棱锥A 1-BNC 1的体积为定值23C.若DN =2,则点N 的轨迹长度为2πD.若N ∈平面A 1BCD 1,则BN +NC 1 的最小值为6+23【答案】BCD【分析】记BC ,CC 1,C 1D ,D 1A 1,A 1A 的中点分别为F ,H ,G ,F ,E ,构建空间直角坐标系,证明M ,F ,H ,G ,F ,E 共面,且DB 1⊥平面MEFGHI ,由此确定平面α,找到MN 最大时N 的位置,确定MN 与BC 所成角的平面角即可判断A ,证明A 1BC 1与平面α平行,应用向量法求M 到面A 1BC 1的距离,结合体积公式,求三棱锥A 1-BNC 1的体积,判断B ;根据球的截面性质确定N 的轨迹,进而求周长判断C ,由N ∈平面A 1BCD 1确定N 的位置,通过翻折为平面图形,利用平面几何结论求解判断D .【详解】记BC ,CC 1,C 1D ,D 1A 1,A 1A 的中点分别为F ,H ,G ,F ,E ,连接EF ,FG ,GH ,HI ,IM ,ME ,连接GM ,FI ,因为FG ∥A 1C 1,A 1C 1∥AC ,AC ∥MI ,又FG =12A 1C 1 =12AC =MI 所以FG ∥MI ,FG =MI ,所以四边形FGIM 为平行四边形,连接FI ,MG ,记其交点为S ,根据正方体性质,可构建如下图示的空间直角坐标系,则A (2,0,0),A 1(2,0,2),B (2,2,0),C 1(0,2,2),B 12,2,2 ,M (2,1,0),E (2,0,1),F (1,0,2),G (0,1,2),H (0,2,1),I (1,2,0),S 1,1,1 ,因为DB 1 =2,2,2 ,SM =1,0,-1 ,SI =0,1,-1 ,SH =-1,1,0 ,SG =-1,0,1 ,SF =0,-1,1 ,SE =1,-1,0 ,所以DB 1 ⋅SM =0,DB 1 ⋅SI =0,DB 1 ⋅SH =0,DB1 ⋅SG =0,DB 1 ⋅SF =0,DB 1 ⋅SE =0所以M ,E ,F ,G ,H ,I 六点共面,因为DB 1 =2,2,2 ,MI =-1,1,0 ,ME =0,-1,1 ,所以DB 1 ⋅MI =-2+2+0=0,DB 1 ⋅ME =0-2+2=0,所以DB 1 ⊥MI ,DB 1 ⊥ME ,所以DB 1⊥MI ,DB 1⊥ME ,又MI ,ME ⊂平面MEFGHI ,所以DB 1⊥平面MEFGHI ,故平面MEFGHI 即为平面α,对于A ,N 与G 重合时,MN 最大,且MN ⎳BC 1,所以MN 与BC 所成的角的平面角为∠C 1BC ,又BC =CC 1 ,∠BCC 1=90°,所以∠C 1BC =π4,故MN 与BC 所成的角为π4,所以A 错误;对于B ,因为所以DB 1 =2,2,2 ,A 1C 1 =-2,2,0 ,BC 1=-2,0,2 ,所以DB 1 ⋅A 1C 1 =-4+4+0=0,DB 1 ⋅BC 1 =-4+0+4=0,所以DB 1 ⊥A 1C 1 ,DB 1 ⊥BC 1 ,所以DB 1⊥A 1C 1,DB 1⊥BC 1,又A 1C 1,BC 1⊂平面A 1BC 1,所以DB 1⊥平面A 1BC 1,又DB 1⊥平面MEFGHI ,所以平面A 1BC 1∥平面MEFGHI ,所以点N 到平面A 1BC 1的距离与点M 到平面A 1BC 1的距离相等,所以V A 1-BNC 1=V N -A 1BC 1=V M -A 1BC 1,向量DB 1 =2,2,2 为平面A 1BC 1的一个法向量,又MB =(0,1,0),所以M 到面A 1BC 1的距离d =DB 1 ⋅MB DB 1=33,又△A 1BC 1为等边三角形,则S △A 1BC 1=12×(22)2×32=23,所以三棱锥A 1-BNC 1的体积为定值13×d ×S △A 1BC 1=23,B 正确;对于C :若DN =2,点N 在截面MEFGHI 内,所以点N 的轨迹是以D 为球心,半径为2的球体被面MEFGHI 所截的圆(或其一部分),因为DS =1,1,1 ,DB 1 =2,2,2 ,所以DB 1 ∥DS ,所以DS ⊥平面MEFGHI ,所以截面圆的圆心为S ,因为DB 1 =2,2,2 是面MEFGHI 的法向量,而DF =(1,0,2),所以D 到面MEFGHI 的距离为d =m ⋅DFm=3,故轨迹圆的半径r =22-(3)2=1,又SM =2,故点N 的轨迹长度为2πr =2π,C 正确.对于D ,N ∈平面A 1BCD 1,N ∈平面MEFGHI ,又平面A 1BCD 1与平面MEFGHI 的交线为FI ,所以点N 的轨迹为线段FI ,翻折△C 1FI ,使得其与矩形A 1BIF 共面,如图,所以当B ,N ,C 1三点共线时,BN +NC 1 取最小值,最小值为BC 1 ,由已知C 1I =C 1F =5,BI =1,FI =22,过C 1作C 1T ⊥BI ,垂足为T ,则C 1T =2,所以IT=C 1I2-C 1T 2=3=BT 2+C T 2=3+12+2=6+23,所以BN +NC 1 的最小值为6+23,D 正确;故选:BCD【点睛】关键点点睛:本题解决的关键在于根据截面的性质确定满足条件的过点M 的截面位置,再结合异面直线夹角定义,锥体体积公式,球的截面性质,空间图形的翻折判断各选项.4(多选)(2024·福建厦门·一模)如图所示,在五面体ABCDEF 中,四边形ABCD 是矩形,△ABF 和△DCE 均是等边三角形,且AB =23,EF =x (x >0),则()A.EF ⎳平面ABCDB.二面角A -EF -B 随着x 的减小而减小C.当BC =2时,五面体ABCDEF 的体积V (x )最大值为272D.当BC =32时,存在x 使得半径为32的球能内含于五面体ABCDEF 【答案】ACD【分析】A 由线面平行的判定证明;B 设二面角A -EF -B 的大小为2α,点F 到面ABCD 的距离为h ,则tan α=3h,分析取最小值的对应情况即可判断;C 把五面体ABCDEF 补成直三棱柱FGI -EKJ ,取AB ,GI 的中点M ,H ,设∠FMH =θ0<θ≤π2,则MH =3cos θ,FH =3sin θ,结合V (x )=V FGI -EKJ -2V F -ABIG 并应用导数研究最值;D 先分析特殊情况:△ABF 和△DCE 所在平面均垂直于面ABCD 时构成正三棱柱ABF -DCE ,再借助左视图、正视图研究内切圆半径分析一般情况判断.【详解】A :由题设BC ⎳AD ,AD ⊂面ADEF ,BC ⊄面ADEF ,则BC ⎳面ADEF ,由面BCEF ∩面ADEF =EF ,BC ⊂面BCEF ,则BC ⎳EF ,BC ⊂面ABCD ,EF ⊄面ABCD ,则EF ⎳平面ABCD ,对;B :设二面角A -EF -B 的大小为2α,点F 到面ABCD 的距离为h ,则tan α=3h,点F 到面ABCD 的距离,仅在面FAB ⊥面ABCD 时取得最大值,当EF =x =BC 时tan α取最小值,即α取最小值,即二面角A -EF -B 取最小值,所以EF =x ∈(0,+∞),二面角先变小后变大,错;C :当BC =2,如图,把五面体ABCDEF 补成直三棱柱FGI -EKJ ,分别取AB ,GI 的中点M ,H ,易得FH ⊥面ABCD ,FM =3,设∠FMH =θ0<θ≤π2,则MH =3cos θ,FH =3sin θ,V (x )=V ABCDEF =V FGI -EKJ -2V F -ABIG =12×23×3sin θ×(2+6cos θ)-2×13×3sin θ×23×3cos θ=63sin θ+63sin θcos θ,令f (θ)=0⇒2cos 2θ+cos θ-1=0,可得cos θ=12或cos θ=-1(舍),即θ=π3,0<θ<π3,f (θ)>0,f (θ)递增,π3<θ≤π2,f(θ)<0,f (θ)递减,显然θ=π3是f (θ)的极大值点,故f (θ)max =63×32+63×32×12=272.所以五面体ABCDEF 的体积V (x )最大值为272,C 对;D :当BC =32时,△ABF 和△DCE 所在平面均垂直于面ABCD 时构成正三棱柱ABF -DCE ,此时正三棱柱内最大的求半径r =34<32,故半径为32的球不能内含于五面体ABCDEF ,对于一般情形,如下图示,左图为左视图,右图为正视图,由C 分析结果,当五面体ABCDEF 体积最大时,其可内含的球的半径较大,易知,当∠FMH =π3时,FH =332,IH =3,IF =392,设△FIG 的内切圆半径为r 1,则12×332×23=12r 1×23+2×392 ,可得r 1=332+13>32,另外,设等腰梯形EFMN 中圆的半径为r 2,则r 2=34tan π3=334>r 1=332+13,所以,存在x 使半径为32的球都能内含于五面体ABCDEF ,对.故选:ACD【点睛】关键点点睛:对于C 通过补全几何体为棱柱,设∠FMH =θ0<θ≤π2得到五面体ABCDEF 的体积关于θ的函数;对于D 从特殊到一般,结合几何体视图研究内切圆判断最大半径是否大于32为关键.5(多选)(2024·广西南宁·一模)在边长为2的正方体ABCD -A 1B 1C 1D 1中,动点M 满足AM =xAB+yAD +zAA 1 ,(x ,y ,z ∈R 且x ≥0,y ≥0,z ≥0),下列说法正确的是()A.当x =14,z =0,y ∈0,1 时,B 1M +MD 的最小值为13B.当x =y =1,z =12时,异面直线BM 与CD 1所成角的余弦值为105C.当x +y +z =1,且AM =253时,则M 的轨迹长度为42π3D.当x +y =1,z =0时,AM 与平面AB 1D 1所成角的正弦值的最大值为63【答案】AD【分析】对于A ,确定M 的位置,利用侧面展开的方法,求线段的长,即可判断;对于B ,利用平移法,作出异面直线所成角,解三角形,即可判断;对于C ,结合线面垂直以及距离确定点M 的轨迹形状,即可确定轨迹长度;对于D ,利用等体积法求得M 点到平面AB 1D 1的距离,结合线面角的定义求得AM 与平面AB 1D 1所成角的正弦值,即可判断.【详解】对于A ,在AB 上取点H ,使AH =14AB ,在DC 上取点K ,使DK =14DC ,因为x =14,z =0,y ∈0,1 ,即AM =14AB +yAD ,故M 点在HK 上,将平面B 1HKC 1与平面AHKD 沿着HK 展开到同一平面内,如图:连接B 1D 交HK 于P ,此时B ,P ,D 三点共线,B 1M +MD 取到最小值即B 1D 的长,由于AH =14AB =12,∴BH =32,则B 1H =22+32 2=52,故AB 1=52+12=3,∴B 1D =(B 1A )2+AD 2=32+22=13,即此时B 1M +MD 的最小值为13,A 正确;对于B ,由于x =y =1,z =12时,则AM =AB +AD +12AA 1 =AC +12CC 1 ,此时M 为CC 1的中点,取C 1D 1的中点为N ,连接BM ,MN ,BN ,则MN ∥CD 1,故∠BMN 即为异面直线BM 与CD 1所成角或其补角,又MN =12CD 1=2,BM =22+12=5,BN =(BC 1)2+(C 1N )2=8+1=3,故cos ∠BMN =BM 2+MN 2-BN 22BM ⋅MN =5 2+2 2-3225⋅2=-1010,而异面直线所成角的范围为0,π2,故异面直线BM 与CD 1所成角的余弦值为1010,B 错误;对于C ,当x +y +z =1时,可得点M 的轨迹在△A 1BD 内(包括边界),由于CC 1⊥平面ABCD ,BD ⊂平面ABCD ,故CC 1⊥BD ,又BD ⊥AC ,AC ∩CC 1=C ,AC ,CC 1⊂平面ACC 1,故BD ⊥平面ACC 1,AC 1⊂平面ACC 1,故BD ⊥AC 1,同理可证A 1B ⊥AC 1,A 1B ∩BD =B ,A 1B ,BD ⊂平面A 1BD ,故AC 1⊥平面A 1BD ,设AC 1与平面A 1BD 交于点P ,由于V A -A 1BD =V A 1-ABD =13×12×2×2×2=43,△A 1BD 为边长为22的正三角形,则点A 到平面A 1BD 的距离为AP =4313×34×22 2=233,若AM =253,则MP =AM 2-AP 2=223,即M 点落在以P 为圆心,223为半径的圆上,P 点到△A 1BD 三遍的距离为13×32×22=63<223,即M 点轨迹是以P 为圆心,223为半径的圆的一部分,其轨迹长度小于圆的周长42π3,C 错误;因为当x +y =1,z =0时,AM =AB +AD,即M 在BD 上,点M 到平面AB 1D 1的距离等于点B 到平面AB 1D 1的距离,设点B 到平面AB 1D 1的距离为d ,则V B -AB 1D 1=V D 1-ABB 1=13S △ABB 1⋅A 1D 1=13×12×2×2×2=43,△AB 1D 1为边长为22的正三角形,即13S △A 1BD ⋅d =13×34×22 2×d =43,解得d =233,又M 在BD 上,当M 为BD 的中点时,AM 取最小值2,设直线AM 与平面AB 1D 1所成角为θ,θ∈0,π2,则sin θ=d AM =233AM≤2332=63,即AM 与平面AB 1D 1所成角的正弦值的最大值为63,D 正确,故选:AD【点睛】难点点睛:本题考查了空间几何体中线段和差最值以及几何体中的轨迹问题,以及线线角和线面角的求解,综合性较强,难度较大,解答时要发挥空间想象,明确空间的位置关系,难点在于C ,D 选项的判断,对于C ,要结合空间距离,确定动点的轨迹形状;对于D ,要结合等体积法求得点到平面的距离,结合线面角的定义求解.题型04不规则图形中的面面夹角问题利用向量法解决立体几何中的空间角问题,关键在于依托图形建立合适的空间直角坐标系,将相关向量用坐标表示,通过向量的坐标运算求空间角,其中建系的关键在于找到两两垂直的三条直线.1(2024·浙江台州·二模)如图,已知四棱台ABCD -A 1B 1C 1D 1中,AB =3A 1B 1,AB ∥CD ,AD ⊥AB ,AB =6,CD =9,AD =6,且AA 1=BB 1=4,Q 为线段CC 1中点,(1)求证:BQ ∥平面ADD 1A 1;(2)若四棱锥Q -ABB 1A 1的体积为3233,求平面ABB 1A 1与平面CDD 1C 1夹角的余弦值.【答案】(1)证明见解析(2)217【分析】(1)分别延长线段AA 1,BB 1,CC 1,DD 1交于点P ,将四棱台补成四棱锥P -ABCD ,取DD 1的中点E ,连接QE ,AE ,由四边形ABQE 为平行四边形,得到BQ ∥AE ,然后利用线面平行的判定定理证明;(2)先证明AD ⊥平面ABB 1A 1,再以A 为坐标原点,以直线AB 为x 轴,以直线AD 为y 轴,建立空间直角坐标系,求得平面CDD 1C 1的法向量为m =x ,y ,z ,易得平面ABB 1A 1的一个法向量为n=0,1,0 ,然后由cos m ,n=m ⋅n m n 求解.【详解】(1)证明:如图所示:分别延长线段AA 1,BB 1,CC 1,DD 1交于点P ,将四棱台补成四棱锥P -ABCD .∵A 1B 1=13AB ,∴PC 1=13PC ,∴CQ =QC 1=C 1P ,取DD 1的中点E ,连接QE ,AE ,∵QE ⎳CD ⎳AB ,且QE =123+9 =6=AB ,∴四边形ABQE 为平行四边形.∴BQ ∥AE ,又AE ⊂平面ADD 1A 1,BQ ⊄平面ADD 1A 1,∴BQ ∥平面ADD 1A 1;(2)由于V Q -ABB 1A 1=23V C -ABB 1A 1,所以V C -ABB 1A 1=163,又梯形ABB 1A 1面积为83,设C 到平面ABB 1A 1距离为h ,则V C -ABB 1A 1=13S 梯形ABB 1A 1⋅h =163,得h =6.而CD ∥AB ,AB ⊂平面ABB 1A 1,CD ⊄平面ABB 1A 1,所以CD ∥平面ABB 1A 1,所以点C 到平面ABB 1A 1的距离与点D 到平面ABB 1A 1的距离相等,而h =6=AD ,所以AD ⊥平面ABB 1A 1.以A 为坐标原点,以直线AB 为x 轴,以直线AD 为y 轴,建立空间直角坐标系,易得△PAB 为等边三角形,所以A 0,0,0 ,B 6,0,0 ,C 9,6,0 ,D 0,6,0 ,P 3,0,33设平面CDD 1C 1的法向量为m=x ,y ,z ,则m ⋅DP=x ,y ,z ⋅3,-6,33 =3x -6y +33z =0m ⋅DC=x ,y ,z ⋅9,0,0 =9x =0,得x =0,y =32z ,不妨取m =0,3,2 ,又平面ABB 1A 1的一个法向量为n=0,1,0 .则,平面ABB 1A 1与平面CDD 1C 1夹角的余弦值为217.2(2024·浙江杭州·二模)如图,在多面体ABCDPQ 中,底面ABCD 是平行四边形,∠DAB =60°,BC=2PQ =4AB =4,M 为BC 的中点,PQ ∥BC ,PD ⊥DC ,QB ⊥MD .(1)证明:∠ABQ =90°;(2)若多面体ABCDPQ 的体积为152,求平面PCD 与平面QAB 夹角的余弦值.【答案】(1)证明见解析;(2)31010.【分析】(1)根据余弦定理求解DM =3,即可求证DM ⊥DC ,进而根据线线垂直可证明线面垂直,即可得线线垂直,(2)根据体积公式,结合棱柱与棱锥的体积关系,结合等体积法可得PM =h =33,即可建立空间直角坐标系,求解法向量求解.【详解】(1)在△DCM 中,由余弦定理可得DM =DC 2+MC 2-2DC ⋅MC cos60°=3,所以DM 2+DC 2=CM 2,所以∠MDC =90°,所以DM ⊥DC .又因为DC ⊥PD ,DM ∩PD =D ,DM ,DP ⊂平面PDM ,所以DC ⊥平面PDM ,PM ⊂平面PDM .所以DC ⊥PM .由于PQ ⎳BM ,PQ =BM =2,所以四边形PQBM 为平行四边形,所以PM ∥QB .又AB ∥DC ,所以AB ⊥BQ ,所以∠ABQ =90°.(2)因为QB ⊥MD ,所以PM ⊥MD ,又PM ⊥CD ,DC ∩MD =D ,DC ,MD ⊂平面ABCD ,所以PM ⊥平面ABCD .取AD 中点E ,连接PE ,设PM =h .设多面体ABCDPQ 的体积为V ,则V =V 三棱柱ABQ -PEM +V 四棱锥P -CDEM =3V A -PEM +V 四棱锥P -CDEM =3V P -AEM +V 四棱锥P -CDEM=S △AEM ×h +13S 四边形CDEM ×h =S △AEM ×h +132S △AEM ×h =53S △AEM ×h =53×12×2×1×sin 2π3h =152.解得PM =h =33.建立如图所示的空间直角坐标系,则A -3,2,0 ,B -3,1,0 ,C 3,-1,0 ,D 3,0,0 ,P 0,0,33 ,Q -3,1,33 ,M 0,0,0 .则平面QAB 的一个法向量n=1,0,0 .所以CD =0,1,0 ,PD=3,0,-33 ,设平面PCD 的一个法向量m=x ,y ,z ,则m ⋅CD=0,n ⋅PD =0,即y =0,3x -33z =0, 取m=3,0,1 .所以cos θ=m ⋅n m ⋅n=31010.。

2020高考—立体几何(选择+填空+答案)

2020高考—立体几何(选择+填空+答案)

2020年高考——立体几何1.(20全国Ⅰ文3).埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A .514-B .512-C .514+D .512+ 2.(20全国Ⅰ文12).已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π3.(20全国Ⅱ文11).已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为A .3B .32C .1D .324.(20全国Ⅱ理7).右图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为A .EB .FC .GD .H5.(20全国Ⅱ理10).已知△ABC是面积为934的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为A.3B.32C.1 D.326.(20全国Ⅲ文9).如图为某几何体的三视图,则该几何体的表面积是A.6+42B.4+42C.6+23D.4+237.(20新高考Ⅰ4).日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA 与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A.20°B.40°C.50°D.90°8.(20天津5).若棱长为23A.12πB.24πC.36πD.144π9.(20浙江5).某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是A .73B .143C .3D .610.(20北京4).某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ).A .63+B .623+C .123+D .123+11.(20新高考Ⅰ16).已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为球5BCC 1B 1的交线长为________.12.(20全国Ⅰ理16).如图,在三棱锥P –ABC 的平面展开图中,AC =1,3AB AD =AB⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB = .13.(20全国Ⅱ文16).设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧ ②12p p ∧ ③23p p ⌝∨ ④34p p ⌝∨⌝ 14.(20全国Ⅲ文16).已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.15.(20天津15).如图,在四边形ABCD 中,60,3B AB ∠=︒=,6BC =,且3,2AD BC AD AB λ=⋅=-,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的最小值为_________.16.(20浙江14).已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______.17.(20江苏9).如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是 ▲ cm.参考答案:1.C 2.A 3.C 4.A 5.C 6.C 7.B 8.C9.A 10. D 112π12.14-13.①③④215.16;13216.1 17.1232π。

高考立体几何试题——选择填空

高考立体几何试题——选择填空

高考立体几何试题——选择填空1.(文)把边长为2的正方形ABCD 沿对角线AC 折成直二面角,折成直二面角后,在A ,B ,C ,D 四点所在的球面上,B 与D 两点之间的球面距离为(C ) (A)22π(B)π(C)2π (D)3π 2.(文)平面α∥平面β的一个充分条件是( ) A.存在一条直线a a ααβ,∥,∥ B.存在一条直线a a a αβ⊂,,∥C.存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥ D.存在两条异面直线a b a a b αβα⊂,,,∥,∥3.(理)已知m n ,为两条不同的直线,αβ,为两个不同的平面,则下列命题中正确的是( D ) A .m n m n ααββαβ⊂⊂⇒,,∥,∥∥ B .m n m n αβαβ⊂⊂⇒∥,,∥ C .m m n n αα⇒⊥,⊥∥ D .n m n m αα⇒∥,⊥⊥4.(理)顶点在同一球面上的正四棱柱ABCD A B C D ''''-中,1AB AA '=,A C ,两点间的球面距离为( B )A .π4B .π2C .4π D .2π 5.(理)平面α外有两条直线m 和n ,如果m 和n 在平面α的射影分别是m '和n ',给出下列四个命题: ①m n m n ''⊥⇒⊥; ②m n m n ''⊥⇒⊥; ③m '与n '相交⇒m 与n 相交或重合; ④m '与n '平行⇒m 与n 平行或重合. 其中不正确的命题个数是( D ) A.1 B.2 C.3 D.4 6.(文)在棱长为1的正方体1111ABCD A B C D -中,E F ,分别为棱11AA BB ,的中点,G 为棱11A B 上的一点,且1(01)AG λλ=≤≤.则点G 到平面1D EF 的距离为( D )B.27.(理)棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( D )A .2B .1C .12+D 8.(文)如图1,在正四棱柱1111ABCD A B C D -中,EF ,分别是1AB ,1BC 的中点,则以下结论中不成立...的是( D ) A .EF 与1BB 垂直 B .EF 与BD 垂直 C .EF 与CD 异面D .EF 与11AC 异面9.()已知两条直线m n ,,两个平面αβ,.给出下面四个命题: ①m n ∥,m n αα⇒⊥⊥;②αβ∥,m α⊂,n m n β⊂⇒∥; ③m n ∥,m n αα⇒∥∥;④αβ∥,m n ∥,m n αβ⇒⊥⊥. 其中正确命题的序号是( C ) A.①、③ B.②、④C.①、④ D.②、③10.(理)如图,正方体1AC 的棱长为1,过点A 作平面1A BD 的垂线,垂足为点H ,则以下命题中,错误..的命题是( )DA.点H 是1A BD △的垂心 B.AH 垂直平面11CB D C.AH 的延长线经过点1C D.直线AH 和1BB 所成角为4511.(文)四面体ABCD 的外接球球心在CD 上,且2CD =,AD =A B ,间的球面距离是( C ) A.π6B.π3C.2π3D.5π612.(文)如图,正方体1AC 的棱长为1,过点作平面1A BD 的垂线,垂足为点H .有下列四个命题 A.点H 是1A BD △的垂心 B.AH 垂直平面11CB DC.二面角111C B D C --D.点H 到平面1111A B C D 的距离为3413.(理)平面α∥平面β的一个充分条件是( D ) A.存在一条直线a a ααβ,∥,∥ B.存在一条直线a a a αβ⊂,,∥C.存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥ D.存在两条异面直线a b a a b αβα⊂,,,∥,∥14.(文)若m n ,是两条不同的直线,αβγ,,是三个不同的平面,则下列命题中的真命题...是( B ) A .若m βαβ⊂⊥,,则m α⊥B .若m β⊥,m α∥,则αβ⊥111BC .若αγ⊥,αβ⊥,则βγ⊥D .若m αγ=,n βγ=,m n ∥,则αβ∥15.(全国I 文理)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( D ) A .15B .25C .35D .4517.(全国卷Ⅱ理)已知正三棱柱111ABC A B C -的侧棱长与底面边长相等,则1AB 与侧面11ACC A 所成角的正弦值等于( A ) A 6B 10C 2D 318.(全国卷Ⅱ文)已知三棱锥的侧棱长的底面边长的2倍,则侧棱与底面所成角的余弦值等于( ) A .36B .34C .22D .3219.(理)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( B ) (A )433 (B)33 (C)43 (D)12320.(文)Rt △ABC 的三个顶点在半径为13的球面上,两直角边的长分别为6和8,则球心到平面ABC 的距离是( D )(A )5 (B )6 (C )10 (D )12 21.(文)已知P 为平面a 外一点,直线l ⊂a,点Q ∈l ,记点P 到平面a 的距离为a,点P 到直线l 的距离为b ,点P 、Q 之间的距离为c ,则A (A )c b a ≤≤ (B )c b a ≤≤ (C)b c a ≤≤ (D)a c b ≤≤ 22.(文理)如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是( D ) (A )BD ∥平面CB 1D 1(B )AC 1⊥BD(C )AC 1⊥平面CB 1D 1(D )异面直线AD 与CB 1角为60° 23.(文理)设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的球面距离都是2π,且三面角B -OA -C 的大小为3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是C(A )67π (B )45π (C )34π (D )23π 24.(文理)如图,l 1、l 2、l 3是同一平面的三条平行直线,l 1与l 2间的距离是1,l 2与l 3间的距离是2,正三角形ABC 的三顶点分别在l 1、l 2、l 3上,则△ABC 的边长是D(A )32(B )364(C )4173(D )321225.(文理)设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( D ) A.若a b ,与α所成的角相等,则a b ∥ B.若a b αβ,∥∥,αβ∥,则a b ∥ C.若a b a b αβ⊂⊂,,∥,则αβ∥ D.若a b αβ⊥⊥,,αβ⊥,则a b ⊥26.(文理)若P 两条异面直线l m ,外的任意一点,则( )B A.过点P 有且仅有一条直线与l m ,都平行 B.过点P 有且仅有一条直线与l m ,都垂直 C.过点P 有且仅有一条直线与l m ,都相交 D.过点P 有且仅有一条直线与l m ,都异面27.(理科数学必修+选修Ⅱ)已知正三棱柱111ABC A B C -的侧棱长与底面边长相等,则1AB 与侧面11ACC A 所成角的正弦值等于( )A B C .2D 28.(文理科数学必修+选修Ⅱ)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )D A .15B .25C .35D .4530.(文)垂直于同一平面的两条直线( )A A .平行 B .垂直 C .相交 D .异面 31.(理)若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成( C ) A.5部分 B.6部分 C.7部分 D.8部分 32.(理科数学必修+选修Ⅱ)(16)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为.33.(文理)已知点O 在二面角AB αβ--的棱上,点P 在α,且45POB ∠=.若对于β异于O 的任意一点Q ,都有45POQ ∠≥,则二面角AB αβ--的大小是.9034.(全国I 文)正四棱锥S ABCD -S ,A ,B ,C ,D 都在同一个球面上,则该球的体积为_________.4π335.(文科数学必修+选修1)正四棱锥S ABCD -S ,A ,B ,C ,D 都在同一个球面上,则该球的体积为_________.4π336.(理科数学必修+选修Ⅱ)一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为cm 2.37.(文理)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为.14π38.(理)在四面体O-ABC 中,D c OC b OB a AB ,,,===为BC 的中点,E 为AD 的中点,则OE =(用a ,b ,c 表示).111244++a b c 39.(理)在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是(写出所有正确结论的编号..). ①③④⑤ ①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体; ④每个面都是等边三角形的四面体; ⑤每个面都是直角三角形的四面体.40.(文)棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,则球O 的表面积是;设E F ,分别是该正方体的棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为.3π41.(全国卷Ⅱ文理)一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为cm 2.2+42.(文)若一个底面边长为243.(文理)如图,在正三棱柱ABC -A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角是.6π44.()正三棱锥P ABC -的高为2,侧棱与底面ABC 成45角,则点A 到侧面PBC 的距离为_____.545.(全国I 理)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为.46.(理)在平面上,两条直线的位置关系有相交、平行、重合三种. 已知αβ,是两个相交平面,空间两条直线12l l ,在α上的射影是直线12s s ,,12l l ,在β上的射影是直线12t t ,.用1s 与2s ,1t 与2t 的位置关系,写出一个总能确定1l 与2l 是异面直线的充分条件:21//s s ,并且1t 与2t 相交(//1t 2t ,并且1s 与2s 相交)47.(文)如图,在直三棱柱111C B A ABC -中, 90=∠ACB ,21=AA ,1==BC AC ,则异面直线BA 1与AC 所成角的大小是(结果用反三角函数值表示).66arccos48.理12.如果一个凸多面体是n 棱锥,那么这个凸多面体的所有顶点所确定的 直线共有 条.这些直线中共有()f n 对异面直线,则(4)f =49.理7.若m n ,是两条不同的直线,αβγ,,是三个不同的平面,则下列命题中的真命题是( )A .若m βαβ⊂⊥,,则m α⊥B .若m αγ=n βγ=,m n ∥,则αβ∥C .若m β⊥,m α∥,则αβ⊥D .若αγ⊥,αβ⊥,则βγ⊥50.理15.若一个底面边长为2选校网.xuanxiao.高考频道专业大全历年分数线上万大学图片大学视频院校库(按ctrl 点击打开)选校网(.xuanxiao.)是为高三同学和家长提供高考选校信息的一个。

2020届高三数学立体几何专项训练

2020届高三数学立体几何专项训练

2020届高三数学立体几何专题(文科)吴丽康2019-111.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的点.(Ⅰ)证明:PB2. 如图,四棱锥P­ABCD中,AB∥CD,AB=2CD,E为PB的中点.(1)求证:CE∥平面PAD;(2)在线段AB上是否存在一点F,使得平面PAD∥平面CEF若存在,证明你的结论,若不存在,请说明理由.3如图,在四棱锥P -ABCD 中,平面PAC ⊥平面ABCD ,且PA ⊥AC ,PA =AD =2,四边形ABCD 满足BC ∥AD ,AB ⊥AD ,AB =BC =1.点E ,F 分别为侧棱PB ,PC 上的点, 且PE PB =PF PC=λ(λ≠0). (1)求证:EF ∥平面PAD ;(2)当λ=12时,求点D 到平面AFB 的距离.4.如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形.(1)证明:平面A 1BD ∥平面CD 1B 1;(2)若平面ABCD ∩平面B 1D 1C =直线l ,证明:B 1D 1∥l .5..如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH.6.如图,在四棱锥P­ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.7.(2018北京通州三模,18)如图,在四棱锥P-ABCD中,平面PA B⊥平面ABCD,四边形ABCD 为正方形,△PAB为等边三角形,E是PB中点,平面AED与棱PC交于点F.(1)求证:AD∥EF; (2)求证:PB⊥平面AEFD;(3)记四棱锥P-AEFD的体积为V1,四棱锥P-ABCD的体积为V2,直接写出的值.8...如图,在四棱锥P­ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD,若G为AD的中点.(1)求证:BG⊥平面PAD;(2)求证:AD⊥PB;(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD并证明你的结论.9.(2016·高考北京卷)如图,在四棱锥P­ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面PAC;(2)求证:平面PAB⊥平面PAC;(3)设点E为AB的中点.在棱PB上是否存在点F,使得PA∥平面CEF说明理由.10..如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若AF⊥EF,求证:平面PAD⊥平面ABCD.11..如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,PA =AB =BC =3,AD =CD =1,∠ADC =120°,点M 是AC 与BD 的交点,点N 在线段PB 上,且PN =14PB . (1)证明:MN ∥平面PDC ;(2)求直线MN 与平面PAC 所成角的正弦值.12..(2016·高考四川卷)如图,在四棱锥PABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12AD .(1)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由;(2)证明:平面PAB ⊥平面PBD .13.(2016·高考江苏卷)如图,在直三棱柱ABC A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .14.【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB ο求三棱柱111C B A ABC -的高.15.(2017天津,文17)如图,在四棱锥P-ABCD中,AD⊥平面PDC,AD∥ BC, PD⊥PB,AD=1,BC=3,CD=4,PD=2.(1)求异面直线AP与BC所成角的余弦值;(2)求证:PD⊥平面PBC;(3)求直线AB与平面PBC所成角的正弦值.16.(2016·高考浙江卷)如图,在三棱台ABC DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(1)求证:BF⊥平面ACFD;(2)求直线BD与平面ACFD所成角的余弦值.17..(2018·全国Ⅲ)如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC.(2)在线段AM上是否存在点P,使得MC∥平面PBD说明理由.立体几何中的翻折问题18...如图(1),在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a , E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图(2)中△A 1BE 的位置,得到四棱锥A 1­BCDE .(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1­BCDE 的体积为362,求a 的值.19..如图1,在直角梯形ABCD 中,∠ADC =90°,AB ∥CD ,AD =CD =12AB =2, E 为AC 的中点,将△ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直, 如图2.在图2所示的几何体D -ABC 中:(1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD ∥平面BEF ,求几何体F -BCE 的体积.20.如图,长方体ABCD­A1B1C1D1中,AB=16,BC=10,AA1=8.点E,F分别在A1B1,D1C1上,过点E、F的平面α与此长方体的面相交,交线围成一个正方形EFGH.(1)求证:A1E=D1F;(2)判断A1D与平面α的关系.2020届高三数学立体几何专题(文科) 1解析:(Ⅰ)设AC的中点为O,连接EO. 在三角形PBD中,中位线EOV=(Ⅱ)∵AP=1,AD=-P ABD-11=32P ABD V PA AB AD ∴⋅⋅⋅AB 32AB =, 作AH ⊥PB 角PB 于H ,由题意可知BC ⊥平面PAB ,∴BC ⊥AH ,故AH ⊥平面PBC .又PA AB AH PB ⋅==A 点到平面PBC 2.(1)证明:如图所示,取PA 的中点H ,连接EH ,DH ,因为E 为PB 的中点, 所以EH ∥AB ,EH =12AB ,又AB ∥CD ,CD =12AB . 所以EH ∥CD ,EH =CD ,因此四边形DCEH 是平行四边形, 所以CE ∥DH , 又DH ⊂平面PAD ,CE ⊄平面PAD , 所以CE ∥平面PAD . (2)如图所示,取AB 的中点F ,连接CF ,EF , 所以AF =12AB ,又CD =12AB ,所以AF =CD ,又AF ∥CD ,所以四边形AFCD 为平行四边形,所以CF ∥AD ,又CF ⊄平面PAD ,所以CF ∥平面PAD ,由(1)可知CE ∥平面PAD , 又CE ∩CF =C ,故平面CEF ∥平面PAD , 故存在AB 的中点F 满足要求.3.(1)证明 ∵PE PB =PF PC=λ(λ≠0),∴EF ∥BC .∵BC ∥AD ,∴EF ∥AD .又EF ⊄平面PAD ,AD ⊂平面PAD ,∴EF ∥平面PAD . (2)解 ∵λ=12,∴F 是PC 的中点,在Rt△PAC 中,PA =2,AC =2,∴PC =PA 2+AC 2=6,∴PF =12PC =62.∵平面PAC ⊥平面ABCD ,且平面PAC ∩平面ABCD =AC ,PA ⊥AC ,PA ⊂平面PAC ,∴PA ⊥平面ABCD ,∴PA ⊥BC .又AB ⊥AD ,BC ∥AD ,∴BC ⊥AB ,又PA ∩AB =A ,PA ,AB ⊂平面PAB , ∴BC ⊥平面PAB , ∴BC ⊥PB ,∴在Rt△PBC 中,BF =12PC =62.连接BD ,DF ,设点D 到平面AFB 的距离为d ,在等腰三角形BAF 中,BF =AF =62,AB =1, ∴S △ABF =54,又S △ABD =1,点F 到平面ABD 的距离为1, ∴由V F -ABD =V D -AFB ,得13×1×1=13×d ×54,解得d =455,即点D 到平面AFB 的距离为455.4.证明 (1)由题设知BB 1∥DD 1且BB 1=DD 1,所以四边形BB 1D 1D 是平行四边形, 所以BD ∥B 1D 1.又BD ⊄平面CD 1B 1,B 1D 1⊂平面CD 1B 1, 所以BD ∥平面CD 1B 1.因为A 1D 1∥B 1C 1∥BC 且A 1D 1=B 1C 1=BC , 所以四边形A 1BCD 1是平行四边形,所以A 1B ∥D 1C .又A 1B ⊄平面CD 1B 1,D 1C ⊂平面CD 1B 1, 所以A 1B ∥平面CD 1B 1.又因为BD ∩A 1B =B ,BD ,A 1B ⊂平面A 1BD , 所以平面A 1BD ∥平面CD 1B 1. (2)由(1)知平面A 1BD ∥平面CD 1B 1,又平面ABCD ∩平面B 1D 1C =直线l , 平面ABCD ∩平面A 1BD =直线BD ,所以直线l ∥直线BD , 在四棱柱ABCD -A 1B 1C 1D 1中,四边形BDD 1B 1为平行四边形, 所以B 1D 1∥BD ,所以B 1D 1∥l .5.连接AC 交BD 于点O ,连接MO ,因为PM =MC ,AO =OC ,所以PA ∥MO ,因为PA⊄平面MBD,MO⊂平面MBD,所以PA∥平面MBD.因为平面PAHG∩平面MBD=GH,所以AP∥GH.6.[证明] (1)在四棱锥P­ABCD中,因为PA⊥底面ABCD,CD⊂平面ABCD,所以PA⊥CD,因为AC⊥CD,且PA∩AC=A,所以CD⊥平面PAC,而AE⊂平面PAC,所以CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.因为E是PC的中点,所以AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD.而PD⊂平面PCD,所以AE⊥PD.因为PA⊥底面ABCD,所以PA⊥AB.又因为AB⊥AD且PA∩AD=A,所以AB⊥平面PAD,而PD⊂平面PAD,所以AB⊥PD.又因为AB∩AE=A,所以PD⊥平面ABE.7.(1)证明因为ABCD为正方形,所以AD∥BC.因为AD⊄平面PBC,BC⊂平面PBC,所以AD∥平面PBC.因为AD⊂平面AEFD,平面AEFD∩平面PBC=EF, 所以AD∥EF.(2)证明因为四边形ABCD是正方形,所以AD⊥AB.因为平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AD⊂平面ABCD,所以AD⊥平面PAB.因为PB⊂平面PAB,所以AD⊥PB.因为△PA B为等边三角形,E是PB中点,所以PB⊥AE.因为AE⊂平面AEFD,AD⊂平面AEFD,AE∩AD=A,所以PB⊥平面AEFD.(3)解由(1)知,V1=V C-AEFD,V E-ABC=V F-ADC=V C-AEFD=V1,∴V BC-AEFD=V1,则V P-ABCD=V1+V1=V1, ∴.8.[解] (1)证明:在菱形ABCD中,∠DAB=60°,G为AD的中点,所以BG⊥AD.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以BG⊥平面PAD.(2)证明:如图,连接PG.因为△PAD为正三角形,G为AD的中点,所以PG⊥AD.由(1)知,BG⊥AD,又PG∩BG=G,所以AD⊥平面PGB.因为PB⊂平面PGB,所以AD⊥PB.(3)当F为PC的中点时,满足平面DEF⊥平面ABCD.证明如下:取PC的中点F,连接DE、EF、DF.在△PBC中,FE∥PB,在菱形ABCD中,GB∥DE.而FE⊂平面DEF,DE⊂平面DEF,EF∩DE=E,PB⊂平面PGB,GB⊂平面PGB,PB∩GB=B,所以平面DEF∥平面PGB.因为BG⊥平面PAD,PG⊂平面PAD,所以BG⊥PG.又因为PG⊥AD,AD∩BG=G,所以PG⊥平面ABCD.又PG⊂平面PGB,所以平面PGB⊥平面ABCD,所以平面DEF⊥平面ABCD.9.【解】(1)证明:因为PC⊥平面ABCD,所以PC⊥DC.又因为DC⊥AC,且PC∩AC=C,所以DC⊥平面PAC.(2)证明:因为AB∥DC,DC⊥AC,所以AB⊥AC.因为PC⊥平面ABCD,所以PC⊥AB.又因为PC∩AC=C,所以AB ⊥平面PAC .又AB ⊂平面PAB ,所以平面PAB ⊥平面PAC . (3)棱PB 上存在点F ,使得PA ∥平面CEF . 理由如下:如图,取PB 中点F ,连接EF ,CE ,CF .又因为E 为AB 的中点,所以EF ∥PA . 又因为PA ⊄平面CEF ,且EF ⊂平面CEF ,所以PA ∥平面CEF .10.证明 (1)因为四边形ABCD 是矩形,所以AB ∥CD . 又AB ⊄平面PDC ,CD ⊂平面PDC ,所以AB ∥平面PDC , 又因为AB ⊂平面ABE ,平面ABE ∩平面PDC =EF ,所以AB ∥EF . (2)因为四边形ABCD 是矩形,所以AB ⊥AD . 因为AF ⊥EF ,(1)中已证AB ∥EF ,所以AB ⊥AF .又AB ⊥AD ,由点E 在棱PC 上(异于点C ),所以点F 异于点D , 所以AF ∩AD =A ,AF ,AD ⊂平面PAD ,所以AB ⊥平面PAD ,又AB ⊂平面ABCD ,所以平面PAD ⊥平面ABCD . 11.(1)证明 因为AB =BC ,AD =CD , 所以BD 垂直平分线段AC . 又∠ADC =120°,所以MD =12AD =12,AM =32. 所以AC =3.又AB =BC =3,所以△ABC 是等边三角形,所以BM =32,所以BM MD =3,又因为PN =14PB ,所以BM MD =BNNP =3,所以MN ∥PD .又MN ⊄平面PDC ,PD ⊂平面PDC , 所以MN ∥平面PDC .(2)解 因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥PA ,又BD ⊥AC ,PA ∩AC =A ,PA ,AC ⊂平面PAC ,所以BD ⊥平面PAC .由(1)知MN ∥PD ,所以直线MN 与平面PAC 所成的角即直线PD 与平面PAC 所成的角, 故∠DPM 即为所求的角.在Rt△PAD 中,PD =2,所以sin∠DPM =DM DP =122=14, 所以直线MN 与平面PAC 所成角的正弦值为14.12.【解】 (1)取棱AD 的中点M (M ∈平面PAD ),点M 即为所求的一个点.理由如下: 因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM ,所以四边形AMCB 是平行四边形,从而CM ∥AB . 又AB ⊂平面PAB ,CM ⊄平面PAB ,所以CM ∥平面PAB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(2)证明:由已知,PA ⊥AB ,PA ⊥CD ,因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交.所以PA ⊥平面ABCD ,从而PA ⊥BD .连接BM , 因为AD ∥BC ,BC =12AD ,所以BC ∥MD ,且BC =MD .所以四边形BCDM 是平行四边形.所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A ,所以BD ⊥平面PAB . 又BD ⊂平面PBD ,所以平面PAB ⊥平面PBD . 13.[证明] (1)在直三棱柱ABCA 1B 1C 1中,A 1C 1∥AC .在△ABC 中,因为D ,E 分别为AB ,BC 的中点, 所以DE ∥AC ,于是DE ∥A 1C 1.又DE ⊄平面A 1C 1F ,A 1C 1⊂平面A 1C 1F , 所以直线DE ∥平面A 1C 1F . (2)在直三棱柱ABCA 1B 1C 1中,A 1A ⊥平面A 1B 1C 1.因为A 1C 1⊂平面A 1B 1C 1,所以A 1A ⊥A 1C 1.又A 1C 1⊥A 1B 1,A 1A ⊂平面ABB 1A 1,A 1B 1⊂平面ABB 1A 1,A 1A ∩A 1B 1=A 1, 所以A 1C 1⊥平面ABB 1A 1.因为B 1D ⊂平面ABB 1A 1,所以A 1C 1⊥B 1D .又B 1D ⊥A 1F ,A 1C 1⊂平面A 1C 1F ,A 1F ⊂平面A 1C 1F ,A 1C 1∩A 1F =A 1, 所以B 1D ⊥平面A 1C 1F .因为直线B 1D ⊂平面B 1DE ,所以平面B 1DE ⊥平面A 1C 1F14.证明:(Ⅰ)连接 BC 1,则O 为B 1C 与BC 1的交点,∵AO ⊥平面BB 1C 1C . ∴AO ⊥B 1C , …2分 因为侧面BB 1C 1C 为菱形,∴BC 1⊥B 1C ,…4分 ∴BC 1⊥平面ABC 1,∵AB平面ABC 1,故B 1C ⊥AB . …6分(Ⅱ)作OD ⊥BC ,垂足为D ,连结AD ,∵AO ⊥BC ,∴BC ⊥平面AOD ,又BC 平面ABC ,∴平面ABC ⊥平面AOD ,交线为AD , 作OH ⊥AD ,垂足为H ,∴OH ⊥平面ABC . …9分 ∵∠CBB 1=60°,所以ΔCBB 1为等边三角形,又BC =1,可得OD =34, 由于AC ⊥AB 1,∴11122OA B C ==,∴227AD OD OA =+=由 OH·AD=OD·OA ,可得OH=2114,又O 为B 1C 的中点,所以点B 1到平面ABC 的距离为21, 所以三棱柱ABC-A 1B 1C 1的高高为217。

第14讲立体几何选择填空压轴题专练

第14讲立体几何选择填空压轴题专练

第十四讲 立体几何选择填空压轴题专练A 组一、选择题 1.如图,矩形ABCD 中, 2AB AD =, E 为边AB 的中点,将ADE ∆沿直线DE翻转成1A DE ∆(1A ∉平面ABCD ).若M 、O 分别为线段1A C 、DE 的中点,则在ADE ∆翻转过程中,下列说法错误的是( )A. 与平面1A DE 垂直的直线必与直线BM 垂直B. 异面直线BM 与1A E 所成角是定值C. 一定存在某个位置,使DE MO ⊥D. 三棱锥1A ADE -外接球半径与棱AD 的长之比为定值 【答案】C【解析】取CD 的中点F ,连BF,MF,如下图:可知面MBF// 1A DE ,所以A 对。

取1A D 中点G,可知//EG BM ,如下图,可知B 对。

点A 关于直线D E 的对为F,则DE ⊥面1A AF ,即过O 与DE 垂直的直线在平面1A AF 上。

故C 错。

三棱锥1A ADE -外接球的球心即为O 点,所以外接球半径为2AD 。

故D 对。

选C2.一个几何体的三视图如图所示,已知这个几何体的体积为,则h =( )A C .. 【答案】B 【解析】由三视图可知该几何体是三棱锥,其中底面是矩形,边长为6,5,高为h ,所以体积1563V h h =⨯⨯⨯==3.如图,矩形ABCD 中,AB=2AD,E 为边AB 的中点,将△ADE 沿直线DE 翻折成△A 1DE .若M 为线段A 1C 的中点,则在△ADE 翻折过程中,下面四个命题中不正确的是A .|BM |是定值B .点M 在某个球面上运动C .存在某个位置,使DE ⊥A 1 CD .存在某个位置,使MB//平面A 1DE 【答案】C 【解析】取CD 中点F ,连接MF ,BF ,则MF//A 1D 且MF=21A 1D,FB//ED 且FB=ED 所以DE A MFB 1∠=∠,由余弦定理可得MB 2=MF 2+FB 2-2MF •FB •cos ∠MFB 是定值,所以 M 是在以B 为圆心,MB 为半径的球上,可得①②正确.由MF//A 1D 与 FB//ED 可得平面MBF ∥平面A 1DE ,可得④正确;A 1C 在平面ABCD 中的射影为AC ,AC 与DE 不垂直,可得③不正确.故答案为:①②④.4.如图,正四面体D ABC -的顶点A 、B 、C 分别在两两垂直的三条射线Ox , Oy ,Oz 上,则在下列命题中,错误的是( ) A. O ABC -是正三棱锥B. 直线OB 与平面ACD 相交C. 直线CD 与平面ABC 所成的角的正弦值为2D. 异面直线AB 和CD 所成角是90︒ 【答案】C【解析】①如图ABCD 为正四面体, ∴△ABC 为等边三角形, 又∵OA 、OB 、OC 两两垂直, ∴OA ⊥面OBC ,∴OA ⊥BC ,过O 作底面ABC 的垂线,垂足为N , 连接AN 交BC 于M ,由三垂线定理可知BC ⊥AM , ∴M 为BC 中点,同理可证,连接CN 交AB 于P ,则P 为AB 中点, ∴N 为底面△ABC 中心,∴O ﹣ABC 是正三棱锥,故A 正确.②将正四面体ABCD 放入正方体中,如图所示,显然OB 与平面ACD 不平行. 则B 正确,③由上图知:直线CD 与平面ABC ,则C 错误 ④异面直线AB 和CD 所成角是90︒,故D 正确. 二、填空题 5.(2017全国1卷理)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O 。

2020高考数学理名师押题高端专题14解析几何大题

2020高考数学理名师押题高端专题14解析几何大题

解析几何大题专题十四(一)命题特点和预测:题.主要以圆、椭圆、考,每年1,发现解析几何大题8年8年全国新课标文数卷分析近81抛物线为载体考查圆的定义、性质、直线与圆的位置关系、椭圆与抛物线的定义、几何性质、直线与椭圆的位置关系,考查定点与定值问题、最值与范围问题、探索性问题、证明问题、弦年解析几何题,为难题.2019长与面积问题,考查设而不求思想及字母运算能力,常为第2021小题主要考查椭圆与抛物线的定义、几何性质,难度为基础题,第大题仍为必考试题,第难小题主要以直线与圆锥曲线的位置关系考查定点与定值问题或最值与两点,点交于,过的直线与新课标1,理19】设椭圆的右焦点为2018【.的坐标为(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:.22xy 2017年=1?(a>b>0),四点P(1,1),P(0,1),20【2017新课标1,理】已知椭圆C:P(–1,32122ba33),P(1,)中恰有三点在椭圆C上. 422(1)求C 的方程;(2)设直线l不经过P点且与C相交于A,B两点.若直线PA与直线PB的斜率的和为–1,222证明:l过定点.2016年【2016新课标理1,理21】设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l 交圆A于C,D两点,过B作AC的平行线交AD于点E.EA?EB为定值,并写出点E I()证明的轨迹方程;(II)设点E的轨迹为曲线C,直线l交C于M,N两点,过B且与l垂直的直线与圆A交11.面积的取值范围MPNQ两点,求四边形Q,P于2014年32)(0,;F是椭,椭圆E:【2014课标Ⅰ,理20】已知点A的离心率为223,OAF的斜率为为坐标原点圆E的右焦点,直线3(I)求E的方程;OPQ?ll.的直线方程的面积最大时,求的动直线与E 相交于P,Q两点。

当(II)设过点A2013年NPMM外切,动圆已知圆,:圆与:【2013课标Ⅰ,理20】N P C. 并且与圆的轨迹为曲线内切,圆心的方程;(Ⅰ)求C ll MP与曲线C交于A,都相切的一条直线,B两点,当圆(Ⅱ)是与圆P,圆的半径最长时,|AB|. 求2012年【2012课标Ⅰ,理20】设抛物线的焦点为,准线为,,已知以为FFC?Al为半径的圆两点;交于,圆心,DBFAFl的方程;的值及圆,(1)若的面积为,求pF?ABD24?90BFD??只有一个公共点,求坐,(2)若,三点在同一直线上,直线平行,且与与FABC nnmm距离的比值.标原点到,nm xOyABy =-点在直线,-1),2011 【全国新课标,理20】在平面直角坐标系3中,已知点(0 2011年OAMB MCM.上,,点满足,∥点的轨迹为曲线C的方程;(1)求lOCCPlP距离的最小值.点到(2)点处的切线,求为上的动点,为在【解析与点睛】(2018年)(19)【解析】(1)由已知得=1.x的方程为l,.或的坐标为A由已知可得,点.所以AM的方程为.轴重合时,与x(2)当l.为AB的垂直平分线,所以当l与x轴垂直时,OM x轴不重合也不垂直时,设l的方程为,,当l与.,MAMB的斜率之和为则,直线由得.将代入得..所以,.则.MB,故从而MA,的倾斜角互补,所以.综上,点睛:该题考查的是有关直线与椭圆的问题,涉及到的知识点有直线方程的两点式、直线与椭圆相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,在做题的时候需要先将特殊情况说明,一般情况下,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是.相等的结论年)(2017.(【解析】1)由于两点关于,y,经过两点轴对称,故由题设知C.上PC知,又由不经过点P,所以点C在21.,解得因此.的方程为故C.(2)设直线PA与直线PB的斜率分别为k,k,2221,),(B的坐标分别为(tt.设与x轴垂直,l:x=t,,由题设知,)A且,可得,l如果.则,得,不符合题设)(.从而可设l得代入:将由题设可知..x+x==,xx,则,By(设Ax,),(xy)21121122而..由题设,故.即. 解得,欲使当且仅当l:时,,即,,)l所以过定点(2【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简.2x3c2222?1y??b?a?c2a??1E的方程为,所以.故椭圆,.又a242kx?y?:ll?x,.轴时不合题意,故设直线(II)当2x3221??y?k2kx?y?,即时,.当代入得将44PQ?Od到直线的距离.从而.又点2Q?OP0t?,的面则.设,所,以积21k?74?k?4?t?20t???时,.所以,,当且仅当时取等号,且满足.因为2t OPQ?l.的方程为当的面积最大时,或NN rr年)(2013MM=3.的圆心为(1,0),=1,圆,-1(,0)半径半径【解析】由已知得圆的圆心为21x yPP R.(),半径为设动圆的圆心为,N r?r MP =|PM|+|PN|=(Ⅰ)∵圆,与圆外切且与圆=4内切,∴213,其方2M由椭圆的定义可知,曲线C是以,N为左右焦点,场半轴长为),短半轴长为的椭圆(左顶点除外.程为x22R?yP2, ≤|PM|-|PN|=C(Ⅱ)对于曲线上任意一点(,),由于R2≤,∴R=2. 当且仅当圆,0)时,2的圆心为(P,的半径最长时,其方程为P∴当圆.0ll2390y. 与当|AB|=的倾斜角为轴重合,可得时,则R||QP0xx lll r90=,可求得Q(-4由,≠R知0不平行)轴,设,与轴的交点为Q,当的倾斜角不为则时,1r|QM|12|k|3ll??k1?4)ky?(x?. :,由,解得于圆M相切得∴设42k?12k,解得代入=当并整理得时,将42?4?618x. ,∴|AB|===1,277218k当|AB|==,-时,由图形的对称性可知471832.|AB|=或综上,|AB|=7年)(2012)由对称性知:是等腰直角△,斜边【解析】(1p||BD?2BFD?的距离,点到准线Al的面积,2?4SABD?ABD?,?,坐标为解得,所以2p?F(0,1)圆.的方程为F?p,(2)由题设,则)F(0,2三点在同一直线,上,,FBA m的直径,故又为圆,对称.关于点FABFBA关于点由点,对称得:FABp3得:,,直线)3(Ap,2.pp3切点),P(63直线.,距离的比值为坐标原点到nm年)(2011 1).,-3),A(0,-,由已知得【解析】(1)设M(x,y)B(x ABMBMA.=(x,-y),-=(0,-3y),2)所以=(-x,-1-0.2)=-,-42y)·(x,-,即(-x再由题意可知1122.=C的方程为yx-所以曲线41112?x?x2yx?y?. P(2)设(x,所以lC:的斜率为上一点,因为为曲线),y000224的方程为l即.因此直线,,则O点到l的距离又所以,x lO2.已知椭圆的右顶点为,左焦点为,离心率,过点的直线与椭圆交于另一个点,且点在轴上的射影恰好为点,若.1.求椭圆(1)的标准方程;上任意一点作圆的切线过圆(2)与椭圆交于,两点,以为直径的圆是否过定点,如过定点,求出该定点;若不过定点,请说明理由.2.(1)求椭圆的方程;(2)过点的直线交椭圆于,两点,在轴上是否存在定点,使得为定值?若存在,求出点的值;若不存在,请说明理由.的坐标和已知平面上一动点到定点的距离与它到直线的距离之比为,记动点的轨迹为.曲线3.(1)求曲线的方程;(2)设直线与曲线交于,两点,为坐标原点,若,求面积的最大值.与已知抛物线的焦点为,直线相交于两点.的斜率分别为,求证:;1()记直线(2)若抛物线上异于的一点到的准线的距离为,且,问: 4.直线是否恒过定点?若过定点,求出该定点坐标;若不过定点,请说明理由.已知曲线上动点与定点的距离和它到定直线的距离的比是常数.若过.两点与曲线相交于的动直线 5.(1)判断曲线的名称并写出它的标准方程;(2)是否存在与点不同的定点,使得恒成立?若存在,求出点的坐标;若不存在,.请说明理由6,于不同的两点的实轴,且交垂直,动直线,的左右顶点分别为:双曲线(1)求点的轨迹的方程;(2)过点作的两条互相垂直的弦,,证明:过两弦,中点的直线恒过定点.为直径的圆与圆,是动点,以:.已知内切(1)求的轨迹的方程;7(2)设是圆与轴的交点,过点的直线与交于两点,直线交直线于点,.求证:三点共线已知椭圆方程为,其右焦点与抛物线的焦点重合,过且垂直于抛物线对称轴的直线与椭圆交于、两点,与抛物线交于、两点.)求椭圆的方程;(18(2)若直线l与(1)中椭圆相交于,两点, 直线, ,的斜率分别为,, (其中),且,,成等比数列;设的面积为, 以、为直径的圆的面积分别为, , 求的.取值范围已知椭圆的左顶点为,离心率为,点在椭圆上.9(1)求椭圆的方程;(2)若直线与椭圆交于,两点,直线,分别与轴交于点,,求证:在轴上存在点.,使得无论非零实数怎样变化,总有为直角,并求出点的坐标222=1上一动点,由G向C引切线,切G,为圆H:(x+2)+y>如图,已知抛物线C:y=2px(p0)点分别为E,F,当G点坐标为(-1,0)时,△GEF的面积为4.(Ⅰ)求C的方程;1022=1上运动时,记k,k分别为切线GE,x+2:在圆(Ⅱ)当点GH()+yGF的斜率,求||21的取值范围.【详细解析】【解析】,)∵(1,,∴1.,代人椭圆方程得:,设,∴,∴,∴∴,.∴椭圆的标准方程为的斜率不存在时,以)当直线(,2,半径为2或为直径的圆的圆心为为直径的圆的标准方程为:以或,因为两圆都过坐标原点,∴以为直径的圆过坐标原点,的斜率存在时,设其方程为,当直线,,因为直线与圆相切,所以圆心到直线的距离,,所以,,由.化简得:,∴,,∴,∴以为直径的圆过坐标原点,综上,以为直径的圆恒过坐标原点.的离心率为2.,∴,【解析】(1)∵椭圆的距离为的圆心到直线∵圆,截得的弦长为∴直线被圆..,故解得,∴椭圆的方程为)设,,2(,的方程:. 与当直线轴不重合时,设,,得由,,∴.,.时,,即无关,此时的值与当轴重合且时,与.当直线,使得∴存在点为定值.)设,,则3.【解析】(1,化简得的方程为;曲线,)设(2,联立,得。

上海市2020届高三数学一轮复习典型题专项训练:立体几何

上海市2020届高三数学一轮复习典型题专项训练:立体几何

上海市2020届高三数学一轮复习典型题专项训练立体几何一、选择、填空题1、(华东师范大学第二附属中学2019届高三10月考试)如图,在直三棱柱ABC-A 1B 1C 1中,∠ACB =90°,AA 1=2,AC =BC =1,则异面直线A 1B 与AC 所成角的余弦值是________.2、(2019届崇明区高三二模)已知圆锥的体积为33π,母线与底面所成角为3π,则该圆锥的侧面积为3、(2019届黄浦区高三二模)若球主视图的面积为9π,则该球的体积等于4、(2019届闵行松江区高三二模)已知l 、m 、n 是三条不同直线,α、β是两个不同平面,下列命题正确的是( )A. 若l m ⊥,l n ⊥,则m ∥nB. 若m α⊆,n β⊆,α∥β,则m ∥nC. 若m α⊆,n α⊆,mn A =,l m ⊥,l n ⊥,则l α⊥D. 平面α内有不共线的三点到平面β的距离相等,则α∥β5、(2019届浦东新区高三二模)如果一个圆柱的高不变,要使它的体积扩大为原来的5倍,那么它的底面半径应该扩大为原来的 倍。

6、(2019届浦东新区高三二模)如图,水平放置的正三棱柱的俯视图是( )A. B. C. D.7、(2019届青浦区高三二模)已知某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为8、(宝山区2018高三上期末)直角坐标系xOy 内有点P Q (21)(02)---,、,,将ΔPOQ 绕x 轴旋转一周,则所得几何体的体积为 .9、(崇明区2018高三上期末(一模))将一个正方形绕着它的一边所在的直线旋转一周,所得几何体的体积为27πcm 3,则该几何体的侧面积为 cm 2.10、(奉贤区2018高三上期末)圆锥的底面半径为1,母线长为3,则圆锥的侧面积等于________. 11、(2019届宝山区高三二模)将半径为1和2的两个铅球,熔成一个大铅球,那么这个大铅球的表面积是____________12、(2019届嘉定长宁区高三二模)已知一个圆锥的主视图(如右图所示)是边长分别为5,5,4的三角形,则该圆锥的侧面积为13、(奉贤区2018高三上期末)已知球主视图的面积等于9π,则该球的体积为________. 14、(青浦区2018高三上期末)将圆锥的侧面展开后得到一个半径为2的半圆,则此圆锥的体积为 .15、(2019届普陀区高三二模)某空间几何体的三视图如图所示,则该几何体的侧面积是16、(2019届普陀区高三二模)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则球心O 到平面ABC 的距离为( )17、(长宁、嘉定区区2018高三上期末)已知球的表面积为π16,则该球的体积为____________. 18、(长宁、嘉定区2018高三上期末)若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题一定正确的是………………………( ).(A )l 与1l 、2l 都不相交 (B )l 与1l 、2l 都相交(C )l 至多与1l 、2l 中的一条相交 (D )l 至少与1l 、2l 中的一条相交 19、(2019届徐汇区高三二模)已知球的主视图所表示图形的面积为9π,则该球的体积是 20、(虹口区2019届高三一模)关于三个不同平面α、β、γ与直线l ,下来命题中的假命题是( ) A. 若αβ⊥,则α内一定存在直线平行于βB. 若α与β不垂直,则α内一定不存在直线垂直于βC. 若αγ⊥,βγ⊥,l αβ=,则l γ⊥D. 若αβ⊥,则α内所有直线垂直于β21、(金山区2019届高三一模)在120︒的二面角内放置一个半径为6的小球,它与二面角的两个半平面相切于A 、B 两点,则这两个点在球面上的距离是 22、(浦东新区2019届高三一模)下列命题正确的是( ) A. 如果两条直线垂直于同一条直线,那么这两条直线平行 B. 如果两条直线垂直于同一条直线,那么这两条直线平行 C. 如果两条直线垂直于同一条直线,那么这两条直线平行 D. 如果两条直线垂直于同一条直线,那么这两条直线平行23、(普陀区2019届高三一模) 如图,正四棱柱1111ABCD A B C D -的底面边长为4,记1111AC B D F =,11BC B C E =,若AE BF ⊥,则此棱柱的体积为24、(闵行区2019届高三一模)已知a 、b 为两条不同的直线,α、β为两个不同的平面,a αβ=,a ∥b ,则下列结论不可能成立的是( )A. b ⇐β,且b ∥αB. b ⇐α,且b ∥βC. b ∥α,且b ∥βD. b 与α、β都相交25、(青浦区2019届高三一模)对于两条不同的直线m 、n 和两个不同的平面α、β,以下结论正确的是( )A. 若m ⇐α,n ∥β,m 、n 是异面直线,则α、β相交B. 若m α⊥,m β⊥,n ∥α,则n ∥βC. m ⇐α,n ∥α,m 、n 共面于β,则m ∥nD. 若m α⊥,n β⊥,α、β不平行,则m 、n 为异面直线参考答案:一、选择、填空题 1、662、2π3、36π4、C5、56、B7、228、4π9、18π 10、3π 11、3π 12、13123π13、36π 14、33π 15、410π. 16、B 17、332π18、D 19、36π 20、D 21、2π 22、D 23、322 24、D 25、C二、解答题1、(华东师范大学第二附属中学2019届高三10月考试)如图所示,在边长为5+2的长方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.2、(2019届崇明区高三二模)已知在直三棱柱111ABC A B C -中,90BAC ∠=︒,11AB BB ==,直线1B C 与平面ABC 成30°的角. (1)求三棱锥11C AB C -的体积; (2)求二面角1B B C A --的余弦值.3、(2019届黄浦区高三二模)如图,在棱长为2的正方体ABCD A B C D ''''-中,E 为AB 的中点. (1)求证:直线A E '平行于平面CC D D ''; (2)求异面直线A E '与B C '所成角的大小. (结果用反三角函数值表示)4、(2019届闵行松江区高三二模)如图,已知四棱锥P ABCD -的底面ABCD 是边长为2的正方形,PD ⊥底面ABCD ,1PD =.(1)求直线PB 与平面PCD 所成的角的大小; (2)求四棱锥P ABCD -的侧面积.5、(2019届浦东新区高三二模)已知正三棱柱111ABC A B C -中,122AA AC ==,延长CB 至D ,使CB BD =.(1)求证:1CA DA ⊥;(2)求二面角1B AD C --的大小.(结果用反三角函数值表示)6、(2019届青浦区高三二模)如图,圆柱是矩形11O OAA 绕其边1O O 所在直线旋转一周所得,AB 是底面圆的直径,点C 是弧AB 的中点.(1)求三棱锥1A ABC -体积与圆柱体积的比值; (2)若圆柱的母线长度与底面半径相等,点M 是线段1AO 的中点,求异面直线CM 与1BO 所成角的大小.7、(宝山区2018高三上期末)如图,在长方体ABCD A B C D 1111-中, 已知AB BC 4==,DD 18=,M 为棱C D 11的中点. (1)求四棱锥M ABCD -的体积;(2)求直线BM 与平面BCC B 11所成角的正切值.8、(奉贤区2018高三上期末)已知圆柱的底面半径为r,上底面圆心为O,正六边形ABCDEF内O,OA与底面所成角为60︒;接于下底面圆1(1)试用r表示圆柱的表面积S;(2)求异面直线DC与OA所成的角.-中,底面ABCD是矩形,PA⊥平面ABCD,9、(青浦区2018高三上期末)如图,在四棱锥P ABCDPA AD AB===,E是PB的中点.22-的体积;(1)求三棱锥P ABC(2)求异面直线EC和AD所成的角(结果用反三角函数值表示).10、(杨浦区2018高三上期末)如图,已知圆锥的侧面积为15π,底面半径OA和OB互相垂直,且OA=,P是母线BS的中点.3(1)求圆锥的体积;(2)求异面直线SO与PA所成角的大小.(结果用反三角函数值表示)11、(长宁、嘉定区2018高三上期末)如图,设长方体1111D C B A ABCD -中,3==BC AB ,41=AA . (1)求四棱锥ABCD A -1的体积;(2)求异面直线B A 1与C B 1所成角的大小(结果用反三角函数值表示).12、(2019届宝山区高三二模)如图,已知点P 在圆柱1OO 的底面圆O 上,0120AOP ∠=,圆O 的直径4AB =,圆柱的高13OO =.(1)求圆柱的表面积和三棱锥1A APB -的体积; (2)求点A 到平面1A PO 的距离.13、(2019届嘉定长宁区高三二模)已知正四棱柱ABCD-A 1B 1C 1D 1的底面边长为1,A1B 与底面ABCD 所成的角为π4(1)求三棱锥A 1-BCD 的体积;(2)求异面直线A 1B 与B 1C 所成的角的大小.14、(2019届普陀区高三二模)已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为4,E 、F 分别是棱AB 、D 1C 1的中点,联结EF 、FB 1、F A 1、D 1E 、A 1E 、B 1E . (1)求三棱锥A 1﹣FB 1E 的体积;(2)求直线D 1E 与平面B 1EF 所成角的大小(结果用反三角函数值表示).15、(2019届徐汇区高三二模)如图,正四棱柱1111ABCD A B C D -中,底面边长为2,1BC 与底面ABCD 所成角的大小为arctan2,M 是1DD 的中心,N 是BD 上的一动点,设DN DB λ=(01λ<<).(1)当12λ=时,证明:MN 与平面11ABC D 平行; (2)若点N 到平面BCM 的距离为d ,试用λ表示d ,并求出d 的取值范围.16、(浦东新区2019届高三一模)已知直三棱柱111A B C ABC -中,11AB AC AA ===,90BAC ︒∠=. (1)求异面直线1A B 与11B C 所成角; (2)求点1B 到平面1A BC 的距离.17、(宝山区2019届高三一模)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,正方形ABCD 的边长为2,4PA =,设E 为侧棱PC 的中点.(1)求正四棱锥E ABCD -的体积V ;(2)求直线BE 与平面PCD 所成角θ的大小.18、(崇明区2019届高三一模)如图,设长方体1111ABCD A B C D -中,2AB BC ==, 直线1A C 与平面ABCD 所成的角为4π. (1)求三棱锥1A A BD -的体积; (2)求异面直线1A B 与1B C 所成角的大小.19、(青浦区2019届高三一模)已知正四棱柱1111ABCD A B C D -的底面边长为3,15A D =. (1)求该正四棱柱的侧面积与体积;(2)若E 为线段1A D 的中点,求BE 与平面ABCD 所成角的大小.20、(徐汇区2019届高三一模)如图,已知正方体''''ABCD A B C D -的棱长为1. (1)正方体''''ABCD A B C D -中哪些棱所在的直线与直线'A B 是异面直线?(2)若,M N 分别是','A B BC 的中点,求异面直线MN 与BC 所成角的大小.参考答案: 二、解答题1、解:设圆锥的母线长为l ,底面半径为r ,高为h , 由已知条件解得r =2,l =42,S 全面积=πrl +πr 2=10π,h ==,V =πr 2h =.2、3、4、5、6、(1)13π;(2)3arccos 37、解:(1)因为长方体ABCD A B C D 1111-,所以点M 到平面ABCD 的距离就是DD 18=,故四棱锥M ABCD -的体积为M ABCD V -=ABCD S DD =1112833⋅⋅. (2)(如图)联结BC 1,BM ,因为长方体ABCD A B C D 1111-,且M C D 11∈, 所以MC 1⊥平面BCC B 11,故直线BM 与平面BCC B 11所成角就是MBC 1∠, 在Rt ΔMBC 1中,由已知可得MC C D 111122==,BC BB B C 22111145=+=, 因此,MC tan MBC BC 111251045∠===,即 直线BM 与平面BCC B 11所成角的正切值为510.8、(1)11OO OAO OA ⊥∴∠底面,为所成的线面角 3分 1111=tan 3OO A OO AO OAO r ⋅∠=直角三角形中, 2分22223(223)S r r r r πππ=+∙=+ 3分(2),DC FA OAF ∠因为所以为所求角或其补角 2分2,2,OAF OA r OF r AF r ===三角形中, 1分222441cos =224r r r OAF r r +-∠=⨯⨯ 2分1arccos 4所以,所求角为 1分9、解: (1) 依题意,PA ⊥平面ABCD ,底面ABCD 是矩形,高 2PA =,2BC AD ==,1AB = ……………………………2分E DBCA P∴12112ABC S =⋅⋅=△ …………………………………4分 故121233P ABC V -=⨯⨯=. ………………………………6分 (2)∵//BC AD ,所以ECB ∠或其补角为异面直线EC 和AD 所成的角θ,…… 8分又∵PA ⊥平面ABCD ,∴PA BC ⊥,又BC AB ⊥,∴BC PAB ⊥面,∴BC PB ⊥,于是在Rt CEB ∆中,2BC =,2211512222BE PB ==+=,…………11分 55tan 224BE BC θ===⨯,……………………………………………………13分10、解:(1)由题意,15OA SB ππ⋅⋅=得5BS =, ……2分 故2222534SO SB OB =-=-= ……4分从而体积2211341233V OA SO πππ=⋅⋅=⨯⨯=. ……7分 (2)如图,取OB 中点H ,联结PH AH 、. 由P 是SB 的中点知PH SO ∥,则APH ∠(或其补角)就是异面直线SO 与PA 所成角. ……10分 由SO ⊥平面OAB ⇒PH ⊥平面OAB ⇒PH AH ⊥.在OAH ∆中,由OA OB ⊥得22352AH OA OH =+=;……11分 在Rt APH ∆中,90AHP O∠=,122PH SB ==,352AH =……12分则35tan 4AH APH PH ∠==, 所以异面直线SO 与PA 所成角的大小35arctan 4…14分(其他方法参考给分)11、(1)因为⊥A A 1平面ABCD ,所以A A 1就是四棱锥ABCD A -1的高.9=⋅=BC AB S ABCD , ……………………………………………………………(3分)41=AA ,所以1249313111=⨯⨯=⋅=-A A S V ABCD ABCD A . …………………………(6分)故四棱锥ABCD A -1的体积为12.(2)连结D A 1、BD ,因为11B A ∥DC ,且DC B A =11,所以四边 形CD B A 11是平行四边形,所以D A 1∥C B 1.故D BA 1∠或其补角就是异面直线B A 1与C B 1所成的角. …………………………………(2分)在△BD A 1中,52121=+=A A AB B A ,52121=+=A A AD D A ,2322=+=AD AB BD . ……………………………………………(4分)所以,25162cos 11221211=⋅-+=∠D A B A BD D A B A D BA . …………………………………(7分) 所以,异面直线B A 1与C B 1所成角的大小为2516arccos . ……………………………(8分)12、【答案】(1)23;(2)32.【解析】(1)底面半径=2r ,圆柱表面积:2222422320S r rh πππππ=+=⋅+⋅⋅=,AB 为直径,则090APB ∠=,Rt APB ∆中,0012060AOP ABP ∠=⇒∠=1232APBSAP BP ⇒=⋅=,则111233A APB APBV S AA -=⋅=;(2)方法一:连接1A O ,在1R t A O A 中,113AO =,在1Rt A AP 中,123,21,AP A P ==在1POA 中,由余弦定理可得:11342113cos 132213AOP +-∠==-⋅⋅则123sin 13AOP ∠=,111213sin 232A OPSAOP =⋅⋅⋅∠=,由等体积法:11A AOP A A OP V V --=可得: 11113332AOP A OP S AA S h h ⋅=⋅⇒=,即点A 到平面1A PO 的距离为32.方法二:可以O 为坐标原点,AB 垂直平分线为x 轴,AB 为y 轴,1OO 为z 轴建立空间直角坐标系,则()()10,2,3,3,1,0OA OP =-=设平面1A PO 的一个法向量为(),,,n a b c =则有:12300300b c n OA a b n OP ⎧-+=⎧⋅=⎪⎪⇒⎨⎨+=⎪⋅=⎪⎩⎩; 取()33,3,2.b n =⇒=-则有11cos AA n AA n θ⋅=⋅⋅,其中1AA 在n 上的投影长度,即点A 到平面1A PO 的距离为()()10,0,33,3,232394AA n d n⋅-⋅===++.13、14、解:(1)∵正方体ABCD﹣A1B1C1D1的棱长为4,E、F分别是棱AB、D1C1的中点,连结EF、FB1、F A1、D1E、A1E、B1E.∴三棱锥A1﹣FB1E的体积15、16、解:(1)在直三棱柱ABC C B A -111中,AB AA ⊥1,AC AA ⊥1,︒=∠===9011BAC ,AA AC AB所以,211===BC C A B A .…………………………2分因为,11C B //BC ,所以,BC A 1∠为异面直线B A 1与11C B 所成的角或补角.……4分 在BC A 1∆中,因为,211===BC C A B A , 所以,异面直线B A 1与11C B 所成角为3π.…………………………7分 (2)设点1B 到平面BC A 1的距离为h ,由(1)得23322211=π⋅⨯⨯=∆sin S BC A ,…………………………9分 21112111=⨯⨯=∆B B A S ,…………………………11分 因为,B B A C BC A B V V 1111--=,…………………………12分 所以,CA S h S B B A BC A ⋅=⋅∆∆1113131,解得,33=h . 所以,点1B 到平面BC A 1的距离为33.…………………………14分 或者用空间向量:(1) 设异面直线B A 1与11C B 所成角为θ,如图建系,则()1011-=,,B A ,()01111,,C B -=,…………4分因为,321221111111π=θ⇒=⋅-=⋅⋅=θC B B A C B B A cos 所以,异面直线B A 1与11C B 所成角为3π.…………7分 (2)设平面BC A 1的法向量为()w ,v ,u n =, 则B A n ,BC n 1⊥⊥.又()011,,BC -=,()1011-=,,B A ,……………9分 所以,由⎩⎨⎧=-=+-⇒⎪⎩⎪⎨⎧=⋅=⋅00001w u v u B A n BC n ,得()111,,n =.…………12分所以,点1B 到平面BC A 1的距离331=⋅=n nB B d .…………………………14分 17、解:(1)因为正方形ABCD 的边长为2,所以4ABCD S =,…………2分11633P ABCD ABCD V S PA -=⋅=, …………………………………4分 因为E 为侧棱PC 的中点,所以1823P ABCD V V -==.…………………………………………………6分(2)建立空间直角坐标系,(0,0,0)A ,如图所示:(2,0,0)B ,(0,0,4),(2,2,0),(1,1,2)P C E ,……8分()()()1,1,2,2,2,4,2,0,0,BE PC DC =-=-=……………9分设平面PCD 的一条法向量为(,,)n a b c =02240020PC n a b c CD n a ⎧⋅=⇒+-=⎪⎨⋅=⇒=⎪⎩, 令1c =,则(0,2,1)n =,……………………………………………………11分 故230sin 15BE nBE n θ⋅==, ……………………………………………13分 所以,直线BE 与平面PCD 所成角大小230arcsin15.……………………14分 18、解:(1)联结AC ,因为1AA ABCD ⊥平面, 所以1A CA ∠就是直线1A C 与平面ABCD 所成的角,……………………………………2分所以14ACA π∠=,所以122AA =……………………………………4分所以11114233A BD ABD ABD A A V V S A A --==⋅=……………………………………7分 (2)联结1A D ,BD因为11//A B CD ,所以11//A D B C所以1BA D ∠就是异面直线1A B 与1B C 所成的角或其补角………………………3分在1BA D 中,2221(23)(23)(22)2cos 322323BA D +-∠==⨯⨯ 所以12arccos3BA D ∠=……………………………………6分 所以异面直线1A B 与1B C 所成角的大小是2arccos 3……………………………………7分 19、解:(1)在正四棱柱1111ABCD A B C D -中,∵1AA ⊥平面ABCD ,AD ⊂≠平面ABCD ,∴1AA AD ⊥,故12594AA =-=,∴正四棱柱的侧面积为(43)448⨯⨯=,体积为2(3)436⨯=.(2)建立如图的空间直角坐标系O xyz -,由题意可得(0,0,0)D ,(3,3,0)B ,1(3,0,4)A ,(0,0,0)D ,3(,0,2)2E , 1(0,0,4)AA =,3(,3,2)2BE =--, 设1AA 与BE 所成角为α,直线BE 与平面ABCD 所成角为θ, 则118461cos 61||||6144AA BE AA BE α⋅===⋅⨯, 又1AA 是平面ABCD 的一个法向量, 故461sin cos 61θα==,461arcsin 61θ=. 所以直线BE 与平面ABCD 所成的角为461arcsin 61. 20、解:(1)由异面直线的定义可知,棱,,',','',''AD DC CC DD D C B C 所在的直线与直线'A B 是异面直线 ……………….6分(2)连结',''BC A C ,因为,M N 分别是','A B BC 的中点, 所以MN ∥''A C ,又因为BC ∥''B C ,所以异面直线MN 与BC 所成角为'''A C B ∠(或其补角),…….9分 由于'''','''90A B B C A B C =∠=于是'''45A C B ∠=,………………13分 所以异面直线MN 与BC 所成角的大小为45.………….14分 NMD B C'A'B'D'A C。

2020年高考理科数学《立体几何》题型归纳与训练

2020年高考理科数学《立体几何》题型归纳与训练

2020年高考理科数学《立体几何》题型归纳与训练2020年高考理科数学《立体几何》题型归纳与训练【题型归纳】题型一线面平行的证明例1如图,高为1的等腰梯形ABCD中,AM=CD=AB=1.现将△AMD沿MD折起,使平面AMD⊥平面MBCD,连接AB,AC.试判断:在AB边上是否存在点P,使AD∥平面MPC?并说明理由【答案】当AP=AB时,有AD∥平面MPC.理由如下:连接BD交MC于点N,连接NP.在梯形MBCD中,DC∥MB,==,在△ADB中,=,∴AD∥PN.∵AD?平面MPC,PN?平面MPC,∴AD∥平面MPC.【解析】线面平行,可以线线平行或者面面平行推出。

此类题的难点就是如何构造辅助线。

构造完辅助线,证明过程只须注意规范的符号语言描述即可。

本题用到的是线线平行推出面面平行。

【易错点】不能正确地分析DN与BN的比例关系,导致结果错误。

【思维点拨】此类题有两大类方法:构造线线平行,然后推出线面平行。

此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。

在此,我们需要借助倒推法进行分析。

首先,此类型题目大部分为证明题,结论必定是正确的,我们以此为前提可以得到线面平行。

再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行于该直线,而交线就是我们要找的线,从而做出辅助线。

从这个角度上看我们可以看出线线平行推线面平行的本质就是过已知直线做一个平面与已知平面相交即可。

如本题中即是过AD做了一个平面ADB与平面MPC相交于线PN。

最后我们只须严格使用正确的符号语言将证明过程反向写一遍即可。

即先证AD平行于PN,最后得到结论。

构造交线的方法我们可总结为如下三个图形。

构造面面平行,然后推出线面平行。

此类方法辅助线的构造通常比较简单,但证明过程较繁琐,一般做为备选方案。

辅助线的构造理论同上。

我们只须过已知直线上任意一点做一条与已知平面平行的直线即可。

可总结为下图例2如图,在几何体ABCDE中,四边形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G,F分别是线段BE,DC的中点.求证:GF∥平面ADE;【答案】解法一:(1)证明:如图,取AE的中点H,连接HG,HD,又G是BE的中点,所以GH∥AB,且GH=AB.又F是CD的中点,所以DF=CD.由四边形ABCD是矩形得,AB∥CD,AB=CD,所以GH∥DF,且GH=DF,从而四边形HGFD是平行四边形,所以GF∥DH.又DH?平面ADE,GF?平面ADE,所以GF∥平面ADE.解法2:(1)证明:如下图,取AB中点M,连接MG,MF.又G是BE的中点,可知GM∥AE.又AE?平面ADE,GM?平面ADE,所以GM∥平面ADE.在矩形ABCD中,由M,F分别是AB,CD的中点得MF∥AD.又AD?平面ADE,MF?平面ADE,所以MF∥平面ADE.又因为GM∩MF=M,GM?平面GMF,MF?平面GMF,所以平面GMF∥平面ADE.因为GF?平面GMF,所以GF∥平面ADE.【解析】解法一为构造线线平行,解法二为构造面面平行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十四讲 立体几何选择填空压轴题专练A 组一、选择题 1.如图,矩形ABCD 中, 2AB AD =, E 为边AB 的中点,将ADE ∆沿直线DE翻转成1A DE ∆(1A ∉平面ABCD ).若M 、O 分别为线段1A C 、DE 的中点,则在ADE ∆翻转过程中,下列说法错误的是( )A. 与平面1A DE 垂直的直线必与直线BM 垂直B. 异面直线BM 与1A E 所成角是定值C. 一定存在某个位置,使DE MO ⊥D. 三棱锥1A ADE -外接球半径与棱AD 的长之比为定值 【答案】C【解析】取CD 的中点F ,连BF,MF,如下图:可知面MBF// 1A DE ,所以A 对。

取1A D 中点G,可知//EG BM ,如下图,可知B 对。

点A 关于直线D E 的对为F,则DE ⊥面1A AF ,即过O 与DE 垂直的直线在平面1A AF 上。

故C 错。

三棱锥1A ADE -外接球的球心即为O 点,所以外接球半径为22AD 。

故D 对。

选C 2.一个几何体的三视图如图所示,已知这个几何体的体积为103,则h =( )A .32B .3C .33D .53 【答案】B 【解析】由三视图可知该几何体是三棱锥,其中底面是矩形,边长为6,5,高为h ,所以体积15610333V h h =⨯⨯⨯=∴=3.如图,矩形ABCD 中,AB=2AD,E 为边AB 的中点,将△ADE 沿直线DE 翻折成△A 1DE .若M 为线段A 1C 的中点,则在△ADE 翻折过程中,下面四个命题中不正确的是A .|BM |是定值B .点M 在某个球面上运动C .存在某个位置,使DE ⊥A 1 CD .存在某个位置,使MB//平面A 1DE 【答案】C 【解析】取CD 中点F ,连接MF ,BF ,则MF//A 1D 且MF=21A 1D,FB//ED 且FB=ED 所以DE A MFB 1∠=∠,由余弦定理可得MB 2=MF 2+FB 2-2MF •FB •cos ∠MFB 是定值,所以 M 是在以B 为圆心,MB 为半径的球上,可得①②正确.由MF//A 1D 与 FB//ED 可得平面MBF ∥平面A 1DE ,可得④正确;A 1C 在平面ABCD 中的射影为AC ,AC 与DE 不垂直,可得③不正确.故答案为:①②④.4.如图,正四面体D ABC -的顶点A 、B 、C 分别在两两垂直的三条射线Ox , Oy ,Oz 上,则在下列命题中,错误的是( ) A. O ABC -是正三棱锥B. 直线OB 与平面ACD 相交C. 直线CD 与平面ABC 所成的角的正弦值为32D. 异面直线AB 和CD 所成角是90︒ 【答案】C【解析】①如图ABCD 为正四面体, ∴△ABC 为等边三角形, 又∵OA 、OB 、OC 两两垂直, ∴OA ⊥面OBC ,∴OA ⊥BC ,过O 作底面ABC 的垂线,垂足为N , 连接AN 交BC 于M ,由三垂线定理可知BC ⊥AM , ∴M 为BC 中点,同理可证,连接CN 交AB 于P ,则P 为AB 中点, ∴N 为底面△ABC 中心,∴O ﹣ABC 是正三棱锥,故A 正确.②将正四面体ABCD 放入正方体中,如图所示,显然OB 与平面ACD 不平行. 则B 正确,③由上图知:直线CD 与平面ABC 所成的角的正弦值为63,则C 错误 ④异面直线AB 和CD 所成角是90︒,故D 正确. 二、填空题 5.(2017全国1卷理)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O 。

D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形。

沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D 、E 、F 重合,得到三棱锥。

当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_______。

【答案】415【解析】如下图,设正三角形的边长为x ,则1332OG x =⨯36x =.∴356FG SG x ==-, 222233566SO h SG GO x x ⎛⎫⎛⎫==-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 3553⎛⎫=- ⎪ ⎪⎝⎭∴三棱锥的体积1133553343ABC V S h x ∆⎛⎫=⋅=⨯⨯- ⎪ ⎪⎝⎭451535123x x =-. 令()45353b x x x =-,则()3453'203n x x x =-, 令()'0n x =,43403x x -= ,43x =,max 75485441512V =⨯⨯-=.6.已知求的直径4,,SC A B =是该球球面上的点, 02,45AB ASC BSC =∠=∠=,则棱锥S ABC - 的体积为__________. 【答案】433【解析】设球心为O ,因为0A S CB S C45∠∠==,所以O A B SC ⊥面,143V 3433S OAB C OAB V V --=+=⨯⨯=.7.在三棱锥S ABC -中, ABC ∆是边长为3的等边三角形, 3,23SA SB ==,二面角S AB C --的大小为120°,则此三棱锥的外接球的表面积为__________.【答案】21π【解析】由题可得:球心O 在过底面ABC ∆的中心G 的垂直底面的直线上,又二面角S AB C --的大小为120°,取AB 的中点为M ,SB 的中点为N ,故120NMG ︒∠=,又33333120,,2222NMG NM CM MG NG ︒∠===⇒==,过M 做MH=GO ,且MH 垂直底面,所以32MH =, 32GO =,故球的半径为()222321324R ⎛⎫=+= ⎪⎝⎭,所以球的表面积为21π8.已知两平行平面αβ、间的距离为23,点A B α∈、,点C D β∈、,且4,3AB CD ==,若异面直线AB 与CD 所成角为60°,则四面体ABCD 的体积为__________.【答案】6【解析】设平面ABC 与平面β交线为CE ,取C E A B=,则0//,4,60AB CE CE ECD =∠=0112343sin60 6.32A BCD A CDE V V --==⨯⨯⨯⨯⨯=9.在空间直角坐标系O xyz -中,四面体A BCD -在,,xOy yOz zOx 坐标平面上的一组正投影图形如图所示(坐标轴用细虚线表示).该四面体的体积是____.【答案】43【解析】由图可知,该三棱锥的底面是底为4,高为1的三角形,高为2,故其体积为114412323V =⨯⨯⨯⨯=,故答案为43. 10.如图,在棱长为2的正四面体A BCD -中, E F 、分别为直线AB CD 、上的动点,且3EF =.若记EF 中点P 的轨迹为L ,则L 等于____________.(注: L 表示L 的测度,在本题, L 为曲线、平面图形、空间几何体时, L 分别对应长度、面积、体积.)【答案】π【解析】为了便于计算,将正四面体放置于如图的正方体中,可知,正方体的棱长为2,建立如图所示的空间直角坐标系,设()()()11220,,,2,,2,,,E y y Fy y P x y z -,()()()2221212223EF y y y y =+-+-+=,即()()22121221y y y y -++-= ,又121222{222x y y y y y z =+=+-=,即121222{222x y y y y y z =+=+-= ,代入上式得()()2222221z y -+-= ,即22221224y z ⎛⎫⎛⎫-+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,即P 的轨迹为半径为12的圆,周长为2L r ππ== .B 组一、选择题 1.正方体ABCD -A 1B 1C 1D 1的棱长为6,点O 在BC 上,且BO =OC ,过点O 的直线l 与直线AA 1,C 1D 1分别交于M ,N 两点,则MN 与面ADD 1A 1所成角的正弦值为( )A.B.C.D.【答案】A【解析】将平面11C D O 延展与1AA 交于M 连结MO ,并延长与11D C 延长线交于N ,平面交AD 于ED , 1MNC E 可知11C ED ∠ 等于MN 与11ADD A 成角,,由正方体的性质可知19C E = , 116293sin C ED ∠== ,故选A . 2.四棱锥P ABCD -的三视图如图所示,则该四棱锥的外接球的表面积为( )A.815π B. 8120πC. 1015πD. 10120π【答案】C【解析】根据三视图还原几何体为一个四棱锥P ABCD -,平面PAD ⊥ 平面ABCD ,由于PAD ∆为等腰三角形3,4PA PD AD ===,四边形ABCD 为矩形, 2CD = ,过PAD ∆的外心F 作平面PAD 的垂线,过矩形ABCD 的中心H 作平面ABCD 的垂线两条垂线交于一点O 为四棱锥外接球的球心,在三角形PAD 中,2223341cos 2339APD +-∠==⨯⨯ ,则45sin 9APD ∠=,4952sin 5459AD PF APD ===∠ , 9510PF =, 945PE =-= , 95551010OH EF ==-= ,116452BH =+=225505510010OB OH BH =+=+= ,50510141005S ππ=⨯=.选C.3.如图是正方体的平面展开图。

关于这个正方体,有以下判断:①ED 与NF 所成的角为60︒②CN ∥平面AFB ③//BM DE ④平面BDE ∥平面NCF 其中正确判断的序号是( ).A. ① ③B. ② ③C. ① ② ④D. ② ③ ④ 【答案】C【解析】把正方体的平面展开图还原成正方体ABCD EFMN - ,得:①ED 与NF 所成的角为60︒正确; ②,CN BE CN 不包含于平面,AFB BE ⊂ 平面,AFB CN ∴ 平面AFB ,故②正确; ③BM 与ED 是异面直线,故③不正确;④,,,,BD FN BE CN BD BE B BD BE ⋂=⊂ 平面BDE ,所以平面BDE平面NCF ,故 ④ 正确 ,正确判断的序号是① ② ④,故选C. 4.若三棱锥S A B C -的底面是以AB 为斜边的等腰直角三角形, 2AB SA SB SC ====,则该三棱锥的外接球的表面积为( ) A.163πB. 83πC. 433πD. 43π【答案】A【解析】如图,底面是等腰直角三角形, D 是AB 中点,所以外接球圆心O 在SD 上,设外接球半径为R ,所以有()22213R R =+-,解得233R =,所以该三棱锥的外接球表面积为163π. 故本题正确答案为A.5.三棱锥S ABC -中,侧棱SA ⊥底面ABC , 5AB =, 8BC =, 60B ∠=︒,25SA =,则该三棱锥的外接球的表面积为( )A.643π B. 2563π C. 4363π D. 2048327π 【答案】B【解析】由题,侧棱SA ⊥底面ABC , 5AB =, 8BC =, 60B ∠=︒,则根据余弦定理可得2215825872BC =+-⨯⨯⨯= , ABC 的外接圆圆心772sin 332BC r r B ==∴= 三棱锥的外接球的球心到面ABC 的距离15,2d SA == 则外接球的半径()22764533R ⎛⎫=+=⎪⎝⎭,则该三棱锥的外接球的表面积为225643S R ππ== 6.正方体1111ABCD A B C D -中,点P 在1A C 上运动(包括端点),则BP 与1AD 所成角的取值范围是( )A. ,43ππ⎡⎤⎢⎥⎣⎦B. ,42ππ⎡⎤⎢⎥⎣⎦C. ,62ππ⎡⎤⎢⎥⎣⎦D. ,63ππ⎡⎤⎢⎥⎣⎦【答案】D【解析】以点D 为原点,DA 、DC 、1DD 分别为x y z 、、 建立空间直角坐标系,设正方体棱长为1,设点P 坐标为(),1,x x x - ,则()()11,,,1,0,1BP x x x BC =--=- 设1BP BC 、 的夹角为α,所以()12221·11cos 121223?233BP BC BP BC x x x α===-+⨯⎛⎫-+ ⎪⎝⎭ ,所以当13x =时, cos α 取最大值3,26πα= 。

相关文档
最新文档