算法设计与分析实验报告3
算法设计与分析的实验报告
![算法设计与分析的实验报告](https://img.taocdn.com/s3/m/6d38261df11dc281e53a580216fc700aba68527c.png)
实验一递归与分治策略一、实验目的1.加深学生对分治法算法设计方法的基本思想、基本步骤、基本方法的理解与掌握;2.提高学生利用课堂所学知识解决实际问题的能力;3.提高学生综合应用所学知识解决实际问题的能力。
二、实验内容1、①设a[0:n-1]是已排好序的数组。
请写二分搜索算法,使得当搜索元素x不在数组中时,返回小于x的最大元素位置i和大于x的最小元素位置j。
当搜索元素在数组中时,i和j相同,均为x在数组中的位置。
②写出三分搜索法的程序。
三、实验要求(1)用分治法求解上面两个问题;(2)再选择自己熟悉的其它方法求解本问题;(3)上机实现所设计的所有算法;四、实验过程设计(算法设计过程)1、已知a[0:n-1]是一个已排好序的数组,可以采用折半查找(二分查找)算法。
如果搜索元素在数组中,则直接返回下表即可;否则比较搜索元素x与通过二分查找所得最终元素的大小,注意边界条件,从而计算出小于x的最大元素的位置i和大于x的最小元素位置j。
2、将n个元素分成大致相同的三部分,取在数组a的左三分之一部分中继续搜索x。
如果x>a[2(n-1)/3],则只需在数组a的右三分之一部分中继续搜索x。
上述两种情况不成立时,则在数组中间的三分之一部分中继续搜索x。
五、实验结果分析二分搜索法:三分搜索法:时间复杂性:二分搜索每次把搜索区域砍掉一半,很明显时间复杂度为O(log n)。
(n代表集合中元素的个数)三分搜索法:O(3log3n)空间复杂度:O(1)。
六、实验体会本次试验解决了二分查找和三分查找的问题,加深了对分治法的理解,收获很大,同时我也理解到学习算法是一个渐进的过程,算法可能一开始不是很好理解,但是只要多看几遍,只看是不够的还要动手分析一下,这样才能学好算法。
七、附录:(源代码)二分搜索法:#include<iostream.h>#include<stdio.h>int binarySearch(int a[],int x,int n){int left=0;int right=n-1;int i,j;while(left<=right){int middle=(left+right)/2;if(x==a[middle]){i=j=middle;return 1;}if(x>a[middle])left=middle+1;else right=middle-1;}i=right;j=left;return 0;}int main(){ int a[10]={0,1,2,3,4,5,6,7,8,9};int n=10;int x=9;if(binarySearch(a,x,n))cout<<"找到"<<endl;elsecout<<"找不到"<<endl;return 0;}实验二动态规划——求解最优问题一、实验目的1.加深学生对动态规划算法设计方法的基本思想、基本步骤、基本方法的理解与掌握;2.提高学生利用课堂所学知识解决实际问题的能力;3.提高学生综合应用所学知识解决实际问题的能力。
算法实验报告
![算法实验报告](https://img.taocdn.com/s3/m/1c121a9181eb6294dd88d0d233d4b14e85243e13.png)
算法实验报告算法实验报告引言:算法是计算机科学的核心内容之一,它是解决问题的方法和步骤的描述。
算法的设计和分析是计算机科学与工程中的重要研究方向之一。
本实验旨在通过对算法的实际应用和实验验证,深入理解算法的性能和效果。
实验一:排序算法的比较在本实验中,我们将比较三种常见的排序算法:冒泡排序、插入排序和快速排序。
我们将通过对不同规模的随机数组进行排序,并记录每种算法所需的时间和比较次数,以评估它们的性能。
实验结果显示,快速排序是最快的排序算法,其时间复杂度为O(nlogn),比较次数也相对较少。
插入排序的时间复杂度为O(n^2),比较次数较多,但对于小规模的数组排序效果较好。
而冒泡排序的时间复杂度也为O(n^2),但比较次数更多,效率相对较低。
实验二:图的最短路径算法在图的最短路径问题中,我们将比较Dijkstra算法和Floyd-Warshall算法的效率和准确性。
我们将使用一个带权有向图,并计算从一个顶点到其他所有顶点的最短路径。
实验结果表明,Dijkstra算法适用于单源最短路径问题,其时间复杂度为O(V^2),其中V为顶点数。
而Floyd-Warshall算法适用于多源最短路径问题,其时间复杂度为O(V^3)。
两种算法在准确性上没有明显差异,但在处理大规模图时,Floyd-Warshall算法的效率较低。
实验三:动态规划算法动态规划是一种通过将问题分解成子问题并记录子问题的解来解决复杂问题的方法。
在本实验中,我们将比较两种动态规划算法:0-1背包问题和最长公共子序列问题。
实验结果显示,0-1背包问题的动态规划算法可以有效地找到最优解,其时间复杂度为O(nW),其中n为物品个数,W为背包容量。
最长公共子序列问题的动态规划算法可以找到两个序列的最长公共子序列,其时间复杂度为O(mn),其中m和n分别为两个序列的长度。
结论:通过本次实验,我们对不同算法的性能和效果有了更深入的了解。
排序算法中,快速排序是最快且效率最高的;在图的最短路径问题中,Dijkstra算法和Floyd-Warshall算法分别适用于不同的场景;动态规划算法可以解决复杂的问题,并找到最优解。
算法分析与设计实验报告合并排序快速排序
![算法分析与设计实验报告合并排序快速排序](https://img.taocdn.com/s3/m/3e7316486d85ec3a87c24028915f804d2b1687d9.png)
算法分析与设计实验报告:合并排序与快速排序一、引言算法是计算机科学中非常重要的一部分,它涉及到解决问题的方法和步骤。
合并排序和快速排序是两种经典而常用的排序算法。
本文将对这两种排序算法进行分析和设计实验,通过对比它们的性能和效率,以期得出最优算法。
二、合并排序合并排序是一种分治算法,它将原始数组不断分解为更小的数组,直到最后细分为单个元素。
然后,再将这些单个元素两两合并,形成一个有序数组。
合并排序的核心操作是合并两个有序的数组。
1. 算法步骤(1)将原始数组分解为更小的子数组,直到每个子数组只有一个元素;(2)两两合并相邻的子数组,同时进行排序,生成新的有序数组;(3)重复步骤(2),直到生成最终的有序数组。
2. 算法性能合并排序的最优时间复杂度为O(nlogn),其中n为待排序数组的长度。
无论最好情况还是最坏情况,合并排序的复杂度都相同。
合并排序需要额外的存储空间来存储临时数组,所以空间复杂度为O(n)。
三、快速排序快速排序也是一种分治算法,它将原始数组根据一个主元(pivot)分成两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元。
然后,递归地对这两个子数组进行排序,最后得到有序数组。
快速排序的核心操作是划分。
1. 算法步骤(1)选择一个主元(pivot),可以是随机选择或者固定选择第一个元素;(2)将原始数组根据主元划分为两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元;(3)递归地对这两个子数组进行快速排序;(4)重复步骤(2)和(3),直到每个子数组只有一个元素,即得到最终的有序数组。
2. 算法性能快速排序的平均时间复杂度为O(nlogn),其中n为待排序数组的长度。
最坏情况下,当每次选择的主元都是最小或最大元素时,时间复杂度为O(n^2)。
快速排序是原地排序,不需要额外的存储空间,所以空间复杂度为O(1)。
四、实验设计为了验证合并排序和快速排序的性能和效率,我们设计以下实验:1. 实验目的:比较合并排序和快速排序的时间复杂度和空间复杂度。
算法分析与设计实验报告
![算法分析与设计实验报告](https://img.taocdn.com/s3/m/33742c3f26284b73f242336c1eb91a37f11132ce.png)
算法分析与设计实验报告算法分析与设计实验报告一、引言算法是计算机科学的核心,它们是解决问题的有效工具。
算法分析与设计是计算机科学中的重要课题,通过对算法的分析与设计,我们可以优化计算机程序的效率,提高计算机系统的性能。
本实验报告旨在介绍算法分析与设计的基本概念和方法,并通过实验验证这些方法的有效性。
二、算法分析算法分析是评估算法性能的过程。
在实际应用中,我们常常需要比较不同算法的效率和资源消耗,以选择最适合的算法。
常用的算法分析方法包括时间复杂度和空间复杂度。
1. 时间复杂度时间复杂度衡量了算法执行所需的时间。
通常用大O表示法表示时间复杂度,表示算法的最坏情况下的运行时间。
常见的时间复杂度有O(1)、O(log n)、O(n)、O(n log n)和O(n^2)等。
其中,O(1)表示常数时间复杂度,O(log n)表示对数时间复杂度,O(n)表示线性时间复杂度,O(n log n)表示线性对数时间复杂度,O(n^2)表示平方时间复杂度。
2. 空间复杂度空间复杂度衡量了算法执行所需的存储空间。
通常用大O表示法表示空间复杂度,表示算法所需的额外存储空间。
常见的空间复杂度有O(1)、O(n)和O(n^2)等。
其中,O(1)表示常数空间复杂度,O(n)表示线性空间复杂度,O(n^2)表示平方空间复杂度。
三、算法设计算法设计是构思和实现算法的过程。
好的算法设计能够提高算法的效率和可靠性。
常用的算法设计方法包括贪心算法、动态规划、分治法和回溯法等。
1. 贪心算法贪心算法是一种简单而高效的算法设计方法。
它通过每一步选择局部最优解,最终得到全局最优解。
贪心算法的时间复杂度通常较低,但不能保证得到最优解。
2. 动态规划动态规划是一种将问题分解为子问题并以自底向上的方式求解的算法设计方法。
它通过保存子问题的解,避免重复计算,提高算法的效率。
动态规划适用于具有重叠子问题和最优子结构的问题。
3. 分治法分治法是一种将问题分解为更小规模的子问题并以递归的方式求解的算法设计方法。
算法与分析实验报告
![算法与分析实验报告](https://img.taocdn.com/s3/m/f6ea6440854769eae009581b6bd97f192279bfd7.png)
算法与分析实验报告一、引言算法是现代计算机科学中的核心概念,通过合理设计的算法可以解决复杂的问题,并提高计算机程序的执行效率。
本次实验旨在通过实际操作和数据统计,对比分析不同算法的执行效率,探究不同算法对于解决特定问题的适用性和优劣之处。
二、实验内容本次实验涉及两个经典的算法问题:排序和搜索。
具体实验内容如下:1. 排序算法- 冒泡排序- 插入排序- 快速排序2. 搜索算法- 顺序搜索- 二分搜索为了对比不同算法的执行效率,我们需要设计合适的测试用例并记录程序执行时间进行比较。
实验中,我们将使用随机生成的整数数组作为排序和搜索的测试数据,并统计执行时间。
三、实验步骤1. 算法实现与优化- 实现冒泡排序、插入排序和快速排序算法,并对算法进行优化,提高执行效率。
- 实现顺序搜索和二分搜索算法。
2. 数据生成- 设计随机整数数组生成函数,生成不同大小的测试数据。
3. 实验设计- 设计实验方案,包括测试数据的规模、重复次数等。
4. 实验执行与数据收集- 使用不同算法对随机整数数组进行排序和搜索操作,记录执行时间。
- 多次重复同样的操作,取平均值以减小误差。
5. 数据分析与结果展示- 将实验收集到的数据进行分析,并展示在数据表格或图表中。
四、实验结果根据实验数据的收集与分析,我们得到以下结果:1. 排序算法的比较- 冒泡排序:平均执行时间较长,不适用于大规模数据排序。
- 插入排序:执行效率一般,在中等规模数据排序中表现良好。
- 快速排序:执行效率最高,适用于大规模数据排序。
2. 搜索算法的比较- 顺序搜索:执行时间与数据规模成线性关系,适用于小规模数据搜索。
- 二分搜索:执行时间与数据规模呈对数关系,适用于大规模有序数据搜索。
实验结果表明,不同算法适用于不同规模和类型的问题。
正确选择和使用算法可以显著提高程序的执行效率和性能。
五、实验总结通过本次实验,我们深入了解了不同算法的原理和特点,并通过实际操作和数据分析对算法进行了比较和评估。
算法设计与分析实验报告(中南民族大学)
![算法设计与分析实验报告(中南民族大学)](https://img.taocdn.com/s3/m/b44a1178a417866fb84a8e71.png)
院系:计算机科学学院专业:年级:课程名称:算法设计与分析基础班号:组号:指导教师:年月日实验结果及分析1.求最大数2.递归法与迭代法性能比较递归迭代3.改进算法1.利用公式法对第n项Fibonacci数求解时可能会得出错误结果。
主要原因是由于double类型的精度还不够,所以程序算出来的结果会有误差,要把公式展开计算。
2.由于递归调用栈是一个费时的过程,通过递归法和迭代法的比较表明,虽然递归算法的代码更精简更有可读性,但是执行速度无法满足大数问题的求解。
3.在当前计算机的空间较大的情况下,在一些速度较慢的问题中,空间换时间是一个比较周全的策略。
实验原理(算法基本思想)定义:若A=(a ij), B=(b ij)是n×n的方阵,则对i,j=1,2,…n,定义乘积C=A⋅B 中的元素c ij为:1.分块解法通常的做法是将矩阵进行分块相乘,如下图所示:二.Strassen解法分治法思想将问题实例划分为同一问题的几个较小的实例。
对这些较小实例求解,通常使用递归方法,但在问题规模足够小时,也会使用另一种算法。
如果有必要,合并这些问题的解,以得到原始问题的解。
求解矩阵相乘的DAC算法,使用了strassen算法。
DAC(A[],B[],n){If n=2 使用7次乘法的方法求得解ElseDivide(A)//把A分成4块Divide(B)//把B分成4块调用7次strassen算法求得解的4块合并这4块得到解并返回}伪代码Serial_StrassenMultiply(A, B, C) {T1 = A0 + A3;T2 = B0 + B3;StrassenMultiply(T1, T2, M1);T1 = A2 + A3;StrassenMultiply(T1, B0, M2);T1 = (B1 - B3);StrassenMultiply (A0, T1, M3);T1 = B2 - B0;StrassenMultiply(A3, T1, M4);T1 = A0 + A1;StrassenMultiply(T1, B3, M5);T1 = A2 – A0;T2 = B0 + B1;StrassenMultiply(T1, T2, M6);T1 = A1 – A3;T2 = B2 + B3;StrassenMultiply(T1, T2, M7);C0 = M1 + M4 - M5 + M7C1 = M3 + M5C2 = M2 + M4C3 = M1 - M2 + M3 + M6}实验结果及分析时间复杂度1.分块相乘总共用了8次乘法,因而需要Θ(n log28)即Θ(n3)的时间复杂度。
算法设计与分析:递归与分治法-实验报告(总8页)
![算法设计与分析:递归与分治法-实验报告(总8页)](https://img.taocdn.com/s3/m/03b7861f2bf90242a8956bec0975f46527d3a7bd.png)
算法设计与分析:递归与分治法-实验报告(总8页)实验目的:掌握递归与分治法的基本思想和应用,学会设计和实现递归算法和分治算法,能够分析和评价算法的时间复杂度和空间复杂度。
实验内容:1.递归算法的设计与实现3.算法的时间复杂度和空间复杂度分析实验步骤:1)递归定义:一个函数或过程,在其定义或实现中,直接或间接地调用自身的方法,被成为递归。
递归算法是一种控制结构,它包含了解决问题的基础情境,也包含了递归处理的情境。
2)递归特点:递归算法具有以下特点:①依赖于递归问题的部分解被划分为若干较小的部分。
②问题的规模可以通过递推式递减,最终递归终止。
③当问题的规模足够小时,可以直接求解。
3)递归实现步骤:①确定函数的定义②确定递归终止条件③确定递归调用的过程4)经典实例:斐波那契数列递推式:f(n) = f(n-1) + f(n-2)int fib(int n) {if (n <= 0)return 0;else}5)优化递归算法:避免重复计算例如,上述斐波那契数列的递归算法会重复计算一些中间结果,影响效率。
可以使用动态规划技术,将算法改为非递归形式。
int f1 = 0, f2 = 1;for (int i = 2; i <= n; i++) {f1 = f2;使用循环避免递归,重复计算可以大大减少,提高效率。
1)分治算法的定义:将原问题分解成若干个规模较小且类似的子问题,递归求解子问题,然后合并各子问题得到原问题的解。
2)分治算法流程:②将问题分解成若干个规模较小的子问题。
③递归地解决各子问题。
④将各子问题的解合并成原问题的解。
3)分治算法实例:归并排序归并排序是一种基于分治思想的经典排序算法。
排序流程:②分别对各子数组递归进行归并排序。
③将已经排序好的各子数组合并成最终的排序结果。
实现源代码:void mergeSort(int* arr, int left, int right) {if (left >= right)while (i <= mid && j <= right)temp[k++] = arr[i] < arr[j] ? arr[i++] : arr[j++];temp[k++] = arr[i++];1) 时间复杂度的概念:指完成算法所需的计算次数或操作次数。
算法设计与分析实验报告
![算法设计与分析实验报告](https://img.taocdn.com/s3/m/2f9240ad1711cc7930b7165d.png)
算法设计与分析实验报告实验一全排列、快速排序【实验目的】1. 掌握全排列的递归算法。
2. 了解快速排序的分治算法思想。
【实验原理】一、全排列全排列的生成算法就是对于给定的字符集,用有效的方法将所有可能的全排列无重复无遗漏地枚举出来。
任何n个字符集的排列都可以与1~n的n个数字的排列一一对应,因此在此就以n 个数字的排列为例说明排列的生成法。
n个字符的全体排列之间存在一个确定的线性顺序关系。
所有的排列中除最后一个排列外,都有一个后继;除第一个排列外,都有一个前驱。
每个排列的后继都可以从它的前驱经过最少的变化而得到,全排列的生成算法就是从第一个排列开始逐个生成所有的排列的方法。
二、快速排序快速排序(Quicksort)是对冒泡排序的一种改进。
它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
【实验内容】1.全排列递归算法的实现。
2.快速排序分治算法的实现。
【实验结果】1. 全排列:2. 快速排序:实验二最长公共子序列、活动安排问题【实验目的】1. 了解动态规划算法设计思想,运用动态规划算法实现最长公共子序列问题。
2. 了解贪心算法思想,运用贪心算法设计思想实现活动安排问题。
【实验原理】一、动态规划法解最长公共子序列设序列X=和Y=的一个最长公共子序列Z=,则:i. 若xm=yn,则zk=xm=yn且Zk-1是Xm-1和Yn-1的最长公共子序列;ii. 若xm≠yn且zk≠xm ,则Z是Xm-1和Y的最长公共子序列;iii. 若xm≠yn且z k≠yn ,则Z是X和Yn-1的最长公共子序列。
其中Xm-1=,Yn-1=,Zk-1=。
最长公共子序列问题具有最优子结构性质。
由最长公共子序列问题的最优子结构性质可知,要找出X=和Y=的最长公共子序列,可按以下方式递归地进行:当xm=yn时,找出Xm-1和Yn-1的最长公共子序列,然后在其尾部加上xm(=yn)即可得X和Y的一个最长公共子序列。
程序设计与算法分析综合实验报告
![程序设计与算法分析综合实验报告](https://img.taocdn.com/s3/m/fec03052f08583d049649b6648d7c1c709a10b6a.png)
程序设计与算法分析综合实验报告
1. 实验目的
该实验的目的是通过设计和实现一个程序来分析算法的运行时间和空间复杂度,以便更好地理解算法的性能和优化方法。
2. 实验方法
在实验中,我们选择了一种特定的算法,并使用不同规模的数据进行测试。
我们记录了算法在处理不同规模数据时的运行时间和占用的内存空间,并进行了分析和总结。
3. 实验结果
通过实验,我们得出了以下结论:
- 算法的运行时间随着输入规模的增加而增加,但增长的速度并不是线性的,可能存在其他因素影响。
- 算法在不同规模的数据上,占用的内存空间并不一致,可以通过优化算法来减少内存使用量。
具体的实验结果请参见附录。
4. 实验分析
在实验分析中,我们对算法的性能进行了深入研究:
- 我们分析了算法运行时间与输入规模的关系,并观察到了一些规律和趋势。
- 我们比较了不同规模数据上的内存使用情况,并探讨了一些可能的优化方法。
5. 实验总结
通过本次实验,我们深入了解了程序设计与算法分析,掌握了一些基本的算法分析方法和技巧。
同时,我们也认识到了算法的优化对程序性能的影响,为以后的程序设计和优化提供了启示。
6. 附录
实验数据
注:以上数据仅为示例,实际数据可根据实际实验进行填充。
参考资料
- 《算法分析与设计》。
算法设计与分析实验报告
![算法设计与分析实验报告](https://img.taocdn.com/s3/m/b66a04516d175f0e7cd184254b35eefdc9d31576.png)
实验一找最大和最小元素与归并分类算法实现(用分治法)一、实验目的1.掌握能用分治法求解的问题应满足的条件;2.加深对分治法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。
二、实验内容1、找最大和最小元素输入n 个数,找出最大和最小数的问题。
2、归并分类将一个含有n个元素的集合,按非降的次序分类(排序)。
三、实验要求(1)用分治法求解问题(2)上机实现所设计的算法;四、实验过程设计(算法设计过程)1、找最大和最小元素采用分治法,将数组不断划分,进行递归。
递归结束的条件为划分到最后若为一个元素则max和min都是这个元素,若为两个取大值赋给max,小值给min。
否则就继续进行划分,找到两个子问题的最大和最小值后,比较这两个最大值和最小值找到解。
2、归并分类使用分治的策略来将一个待排序的数组分成两个子数组,然后递归地对子数组进行排序,最后将排序好的子数组合并成一个有序的数组。
在合并过程中,比较两个子数组的首个元素,将较小的元素放入辅助数组,并指针向后移动,直到将所有元素都合并到辅助数组中。
五、源代码1、找最大和最小元素#include<iostream>using namespace std;void MAXMIN(int num[], int left, int right, int& fmax, int& fmin); int main() {int n;int left=0, right;int fmax, fmin;int num[100];cout<<"请输入数字个数:";cin >> n;right = n-1;cout << "输入数字:";for (int i = 0; i < n; i++) {cin >> num[i];}MAXMIN(num, left, right, fmax, fmin);cout << "最大值为:";cout << fmax << endl;cout << "最小值为:";cout << fmin << endl;return 0;}void MAXMIN(int num[], int left, int right, int& fmax, int& fmin) { int mid;int lmax, lmin;int rmax, rmin;if (left == right) {fmax = num[left];fmin = num[left];}else if (right - left == 1) {if (num[right] > num[left]) {fmax = num[right];fmin = num[left];}else {fmax = num[left];fmin = num[right];}}else {mid = left + (right - left) / 2;MAXMIN(num, left, mid, lmax, lmin);MAXMIN(num, mid+1, right, rmax, rmin);fmax = max(lmax, rmax);fmin = min(lmin, rmin);}}2、归并分类#include<iostream>using namespace std;int num[100];int n;void merge(int left, int mid, int right) { int a[100];int i, j,k,m;i = left;j = mid+1;k = left;while (i <= mid && j <= right) {if (num[i] < num[j]) {a[k] = num[i++];}else {a[k] = num[j++];}k++;}if (i <= mid) {for (m = i; m <= mid; m++) {a[k++] = num[i++];}}else {for (m = j; m <= right; m++) {a[k++] = num[j++];}}for (i = left; i <= right; i++) { num[i] = a[i];}}void mergesort(int left, int right) { int mid;if (left < right) {mid = left + (right - left) / 2;mergesort(left, mid);mergesort(mid + 1, right);merge(left, mid, right);}}int main() {int left=0,right;int i;cout << "请输入数字个数:";cin >> n;right = n - 1;cout << "输入数字:";for (i = 0; i < n; i++) {cin >> num[i];}mergesort(left,right);for (i = 0; i < n; i++) {cout<< num[i];}return 0;}六、运行结果和算法复杂度分析1、找最大和最小元素图1-1 找最大和最小元素结果算法复杂度为O(logn)2、归并分类图1-2 归并分类结果算法复杂度为O(nlogn)实验二背包问题和最小生成树算法实现(用贪心法)一、实验目的1.掌握能用贪心法求解的问题应满足的条件;2.加深对贪心法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。
算法设计与分析实验报告
![算法设计与分析实验报告](https://img.taocdn.com/s3/m/93055c4d580216fc700afdf9.png)
算法设计与分析实验报告教师:学号:姓名:实验一:串匹配问题实验目的:(1) 深刻理解并掌握蛮力法的设计思想;(2) 提高应用蛮力法设计算法的技能;(3) 理解这样一个观点: 用蛮力法设计的算法, 一般来说, 经过适度的努力后, 都可以对算法的第一个版本进行一定程度的改良, 改进其时间性能。
三、实验要求:( 1) 实现BF 算法;(2 ) 实现BF 算法的改进算法: KMP 算法和BM 算法;(3 ) 对上述3 个算法进行时间复杂性分析, 并设计实验程序验证分析结果。
#include "stdio.h"#include "conio.h"#include <iostream>//BF算法int BF(char s[],char t[]){ int i; int a; int b; int m,n; m=strlen(s); //主串长度n=strlen(t); //子串长度printf("\n*****BF*****算法\n");for(i=0;i<m;i++){ b=0; a=i; while(s[a]==t[b]&&b!=n){a++; b++; }if(b==n){ printf("查找成功!!\n\n"); return 0;}}printf("找不到%s\n\n",t); return 0; }//前缀函数值,用于KMP算法int GETNEXT(char t[],int b){ int NEXT[10]; NEXT[0]=-1;int j,k; j=0; k=-1; while(j<strlen(t)){if ((k==-1)||(t[j]==t[k])){j++;k++;NEXT[j]=k; }else k=NEXT[k];}b=NEXT[b];return b;}//KMP算法int KMP(char s[],char t[]){int a=0; int b=0;int m,n; m=strlen(s); //主串长度n=strlen(t); //子串长度printf("\n*****KMP算法*****\n");while(a<=m-n){while(s[a]==t[b]&&b!=n){a++;b++; }if(b==n){printf("查找成功!!\n\n");return 0;}b=GETNEXT(t,b);a=a-b;if(b==-1) b++;}printf("找不到%s\n\n",t);return 0; } //滑动距离函数,用于BM算法int DIST(char t[],char c){ int i=0,x=1;int n; n=strlen(t);while(x&&i!=n-1){if(t[i]==c)x=0;else i++;}if(i!=n-1)n=n-1-i;return n; } //BM算法结果分析与体会:glibc里的strstr函数用的是brute-force(naive)算法,它与其它算法的区别是strstr不对pattern(needle)进行预处理,所以用起来很方便。
算法设计与分析实验报告
![算法设计与分析实验报告](https://img.taocdn.com/s3/m/65b86c02f12d2af90242e656.png)
ቤተ መጻሕፍቲ ባይዱCost(L)=+
Cost(R)=+
如果用W(i,j)表示Q(i)+的和,于是可以得到检索树T的预期成本是:
P(k)+Cost(L)+Cost(R)+W(0.k-1)+W(k,n),
如果T是最优的,则上式必定为最小值。则必须有Cost(L)=C(0,k-1)和Cost(R)=C(k,n),而且k应该选择使得P(k)+ C(0,k-1)+ C(k,n)+W(0,k-1)+W(k,n)最下的k值。
2.最优二分检索树问题设计分析
已知一个固定的标识符集合,希望产生一个构造二分检索树的方法。可以预料,同一个标识符集合有不同的二分检索树,而不同的二分检索树有不用的性能特征。由于一般的检索树具有不同的概率,另外,也要做一些不成功的检索,即对不在这棵树中标识符的检索。假定给出的标识符集合为{},其中,设P(i)是对 的检索概率,Q(i)是正被检索的标识符X的概率,而标识符X满足 <X<,1<=i<=n,那么就是不成功的概率。明显的有=1.
算法设计与分析实验报告
山东技术科技学院
一、
1.掌握贪心方法、动态规划的基本思想
2.了解适用贪心方法、动态规划的问题类型,并能设计相应的贪心法算法
3.掌握贪心算法、动态规划算法时间空间复杂度分析,以及问题复杂性分析方法
二、
1.实现单源点生成最短路径的贪心方法,完善算法,求出长度,并推导路径上的结点序列
1
主函数main
FindWays()函数流程图
Ni=n
Y
Length=0
Y
N
1
2.
算法设计与分析实验报告
![算法设计与分析实验报告](https://img.taocdn.com/s3/m/727a29c7a32d7375a5178048.png)
算法设计与分析报告学生姓名学号专业班级指导教师完成时间目录一、课程内容 (3)二、算法分析 (3)1、分治法 (3)(1)分治法核心思想 (3)(2)MaxMin算法分析 (3)2、动态规划 (4)(1)动态规划核心思想 (4)(2)矩阵连乘算法分析 (5)3、贪心法 (5)(1)贪心法核心思想 (5)(2)背包问题算法分析 (6)(3)装载问题算法分析 (7)4、回溯法 (7)(1)回溯法核心思想 (7)(2)N皇后问题非递归算法分析 (7)(3)N皇后问题递归算法分析 (8)三、例子说明 (9)1、MaxMin问题 (9)2、矩阵连乘 (10)3、背包问题 (10)4、最优装载 (10)5、N皇后问题(非递归) (11)6、N皇后问题(递归) (11)四、心得体会 (12)五、算法对应的例子代码 (12)1、求最大值最小值 (12)2、矩阵连乘问题 (13)3、背包问题 (15)4、装载问题 (17)5、N皇后问题(非递归) (19)6、N皇后问题(递归) (20)一、课程内容1、分治法,求最大值最小值,maxmin算法;2、动态规划,矩阵连乘,求最少连乘次数;3、贪心法,1)背包问题,2)装载问题;4、回溯法,N皇后问题的循环结构算法和递归结构算法。
二、算法分析1、分治法(1)分治法核心思想当要求解一个输入规模为n,且n的取值相当大的问题时,直接求解往往是非常困难的。
如果问题可以将n个输入分成k个不同子集合,得到k个不同的可独立求解的子问题,其中1<k≤n, 而且子问题与原问题性质相同,原问题的解可由这些子问题的解合并得出。
那末,这类问题可以用分治法求解。
分治法的核心技术1)子问题的划分技术.2)递归技术。
反复使用分治策略将这些子问题分成更小的同类型子问题,直至产生出不用进一步细分就可求解的子问题。
3)合并技术.(2)MaxMin算法分析问题:在含有n个不同元素的集合中同时找出它的最大和最小元素。
算法实验3-最大子段和问题实验报告
![算法实验3-最大子段和问题实验报告](https://img.taocdn.com/s3/m/9dfef7252af90242a895e5fd.png)
昆明理工大学信息工程与自动化学院学生实验报告( 2011 — 2012 学年 第 1 学期 )课程名称:算法设计与分析 开课实验室:信自楼机房444 2012 年12月 14日一、上机目的及内容1.上机内容给定有n 个整数(可能有负整数)组成的序列(a 1,a 2,…,a n ),求改序列形如∑=jk ka1的子段和的最大值,当所有整数均为负整数时,其最大子段和为0。
2.上机目的(1)复习数据结构课程的相关知识,实现课程间的平滑过渡; (2)掌握并应用算法的数学分析和后验分析方法;(3)理解这样一个观点:不同的算法能够解决相同的问题,这些算法的解题思路不同,复杂程度不同,解题效率也不同。
二、实验原理及基本技术路线图(方框原理图或程序流程图)(1)分别用蛮力法、分治法和动态规划法设计最大子段和问题的算法; 蛮力法设计原理:利用3个for 的嵌套(实现从第1个数开始计算子段长度为1,2,3…n 的子段和,同理计算出第2个数开始的长度为1,2,3…n-1的子段和,依次类推到第n 个数开始计算的长为1的子段和)和一个if (用来比较大小),将其所有子段的和计算出来并将最大子段和赋值给summax1。
用了3个for 嵌套所以时间复杂性为○(n 3);分治法设计原理:1)、划分:按照平衡子问题的原则,将序列(1a ,2a ,…,na )划分成长度相同的两个字序列(1a ,…,⎣⎦2/n a )和(⎣⎦12/+n a ,…,na )。
2)、求解子问题:对于划分阶段的情况分别的两段可用递归求解,如果最大子段和在两端之间需要分别计算s1=⎣⎦⎣⎦)2/1(max2/n i an ik k≤≤∑=,s2=⎣⎦⎣⎦)2/(max12/n j n ajn k k≤≤∑+=,则s1+s2为最大子段和。
若然只在左边或右边,那就好办了,前者视s1为summax2,后者视s2 o summax2。
3)、合并:比较在划分阶段的3种情况下的最大子段和,取三者之中的较大者为原问题的解。
算法分析与设计实验报告
![算法分析与设计实验报告](https://img.taocdn.com/s3/m/b1791b2666ec102de2bd960590c69ec3d5bbdb69.png)
算法分析与设计实验报告算法分析与设计实验报告⼀.实验⽬的1掌握回溯法解题的基本思想以及算法设计⽅法;2.掌握动态规则法和分⽀限界法的基本思想和算法设计⽅法;3掌握深度优先遍历法的基本思想及运⽤;4.进⼀步的对N皇后问题,⼦集和数问题,0-1背包问题做深⼊的了解。
⼆.实验内容1.实现求n 皇后问题和⼦集和数问题的回溯算法。
2.⽤动态规划的⽅法实现0/1背包问题。
3.⽤分⽀限界法实现0/1背包问题。
4.⽤深度优化的⽅法遍历⼀个图,并判断图中是否有回路存在,如果有,请输出回路。
三.实验设计1. N 皇后问题:我是采取了尊循 top-down design 的顺序来设计整个算法和程序。
采⽤ OOP 的思想,先假设存在⼀个 · 表⽰棋盘格局的类 queens ,则定义回溯函数 solve_from(queens configuration),configuration 表⽰当前棋盘格局,算法不断扩展棋盘的当前格局(找到下⼀个⾮冲突位置),当找到⼀个解决⽅案时打印该⽅案。
该递归函数采⽤回溯法求出所有解。
main 函数调⽤ solve_from 时传递的实参是⼀个空棋盘。
对于模拟棋盘的 queens 类,我们可以定义三个数据成员: 1.size :棋盘的边长,即⼤⼩ .2. count :已放置的互不冲突的皇后数 3.array[][]:布尔矩阵,true 表⽰当前格有皇后这⾥需要稍加思考以便稍后可以简化程序:因为每⾏只能放⼀个皇后,从上到下,从左到右放,那么 count 个皇后占⽤的⾏为 0——count -1。
所以count 还表⽰下⼀个皇后应该添加在哪⼀⾏。
这样,和 remove 操作的⼊⼝参数就只需要提供列号就⾏了, add 降低了耦合度:)下⾯是程序运⾏结果:2.⼦集和数问题:本设计利⽤⼤⼩固定的元组来研究回溯算法,在此情况下,解向量的元素X (i )取1或0值,它表⽰是否包含了权数W (i ).⽣成图中任⼀结点的⼉⼦是很容易的。
算法设计及实验报告
![算法设计及实验报告](https://img.taocdn.com/s3/m/dca3912efad6195f312ba68d.png)
算法设计及实验报告实验报告1 递归算法一、实验目的掌握递归算法的基本思想;掌握该算法的时间复杂度分析;二、实验环境电脑一台,Turbo C 运行环境三、实验内容、步骤和结果分析以下是四个递归算法的应用例子:用C语言实现1.阶乘:main(){int i,k;scanf("%d\n",&i);k= factorial(i);printf("%d\n",k);}int factorial(int n){ int s;if(n==0) s=1;else s=n*factorial(n-1); //执行n-1次return s;}阶乘的递归式很快,是个线性时间,因此在最坏情况下时间复杂度为O(n)。
2.Fibonacci 数列:main(){int i,m;scanf("%d\n",&i);m=fb(i);printf("%d",m);}int fb(int n){int s;if(n<=1)return 1;else s=fb(n-1)+fb(n-2);return s;}Fibonacci数列则是T(n)=T(n-1)+T(n-2)+O(1)的操作,也就是T(n)=2T(n)+O(1),由递归方程式可以知道他的时间复杂度T(n)是O(2n),该数列的规律就是不停的赋值,使用的内存空间也随着函数调用栈的增长而增长。
3.二分查找(分治法)#include<stdio.h>#define const 8main(){int a[]={0,1,2,3,4,5,6,7,8,9};int n=sizeof(a);int s;s=BinSearch(a,const,n);printf("suo cha de shu shi di %d ge",s);}BinSearch(int a[],int x,int n){int left,right,middle=0;left=0;right=n-1;whlie(left<=right){middle=(left+right)/2;if(x==a[middle]) return middle;if(x>a[middle]) left=middle+1;else right=middle-1;}return -1;}二分搜索算法利用了元素间的次序关系,采用分治策略,由上程序可知,每执行一次while循环,数组大小减少一半,因此在最坏情况下,while循环被执行了O(logn)次。
算法设计与分析实验报告
![算法设计与分析实验报告](https://img.taocdn.com/s3/m/aaea6eed168884868662d68d.png)
本科实验报告课程名称:算法设计与分析实验项目:递归与分治算法实验地点:计算机系实验楼110专业班级:物联网1601 学号:2016002105 学生姓名:俞梦真指导教师:郝晓丽2018年05月04 日实验一递归与分治算法1.1 实验目的与要求1.进一步熟悉C/C++语言的集成开发环境;2.通过本实验加深对递归与分治策略的理解和运用。
1.2 实验课时2学时1.3 实验原理分治(Divide-and-Conquer)的思想:一个规模为n的复杂问题的求解,可以划分成若干个规模小于n的子问题,再将子问题的解合并成原问题的解。
需要注意的是,分治法使用递归的思想。
划分后的每一个子问题与原问题的性质相同,可用相同的求解方法。
最后,当子问题规模足够小时,可以直接求解,然后逆求原问题的解。
1.4 实验题目1.上机题目:格雷码构造问题Gray码是一个长度为2n的序列。
序列无相同元素,每个元素都是长度为n的串,相邻元素恰好只有一位不同。
试设计一个算法对任意n构造相应的Gray码(分治、减治、变治皆可)。
对于给定的正整数n,格雷码为满足如下条件的一个编码序列。
(1)序列由2n个编码组成,每个编码都是长度为n的二进制位串。
(2)序列中无相同的编码。
(3)序列中位置相邻的两个编码恰有一位不同。
2.设计思想:根据格雷码的性质,找到他的规律,可发现,1位是0 1。
两位是00 01 11 10。
三位是000 001 011010 110 111 101 100。
n位是前n-1位的2倍个。
N-1个位前面加0,N-2为倒转再前面再加1。
3.代码设计:}}}int main(){int n;while(cin>>n){get_grad(n);for(int i=0;i<My_grad.size();i++)cout<<My_grad[i]<<endl;My_grad.clear();}return 0;}运行结果:1.5 思考题(1)递归的关键问题在哪里?答:1.递归式,就是如何将原问题划分成子问题。
算法设计与分析 实验报告
![算法设计与分析 实验报告](https://img.taocdn.com/s3/m/32d38460bdd126fff705cc1755270722192e59cf.png)
算法设计与分析实验报告算法设计与分析实验报告一、引言在计算机科学领域,算法设计与分析是非常重要的研究方向。
本次实验旨在通过实际案例,探讨算法设计与分析的方法和技巧,并验证其在实际问题中的应用效果。
二、问题描述本次实验的问题是求解一个整数序列中的最大子序列和。
给定一个长度为n的整数序列,我们需要找到一个连续的子序列,使得其和最大。
三、算法设计为了解决这个问题,我们设计了两种算法:暴力法和动态规划法。
1. 暴力法暴力法是一种朴素的解决方法。
它通过枚举所有可能的子序列,并计算它们的和,最终找到最大的子序列和。
然而,由于需要枚举所有子序列,该算法的时间复杂度为O(n^3),在处理大规模数据时效率较低。
2. 动态规划法动态规划法是一种高效的解决方法。
它通过定义一个状态转移方程,利用已计算的结果来计算当前状态的值。
对于本问题,我们定义一个一维数组dp,其中dp[i]表示以第i个元素结尾的最大子序列和。
通过遍历整个序列,我们可以利用状态转移方程dp[i] = max(dp[i-1]+nums[i], nums[i])来计算dp数组的值。
最后,我们返回dp数组中的最大值即为所求的最大子序列和。
该算法的时间复杂度为O(n),效率较高。
四、实验结果与分析我们使用Python编程语言实现了以上两种算法,并在相同的测试数据集上进行了实验。
1. 实验设置我们随机生成了1000个整数作为测试数据集,其中包含正数、负数和零。
为了验证算法的正确性,我们手动计算了测试数据集中的最大子序列和。
2. 实验结果通过对比实验结果,我们发现两种算法得到的最大子序列和是一致的,验证了算法的正确性。
同时,我们还对两种算法的运行时间进行了比较。
结果显示,暴力法的运行时间明显长于动态规划法,进一步证明了动态规划法的高效性。
五、实验总结通过本次实验,我们深入了解了算法设计与分析的方法和技巧,并通过实际案例验证了其在解决实际问题中的应用效果。
我们发现,合理选择算法设计方法可以提高算法的效率,从而更好地解决实际问题。
《算法设计与分析》课程实验报告 (分治法(三))
![《算法设计与分析》课程实验报告 (分治法(三))](https://img.taocdn.com/s3/m/39ee299329ea81c758f5f61fb7360b4c2e3f2ae0.png)
《算法设计与分析》课程实验报告实验序号:04实验项目名称:实验4 分治法(三)一、实验题目1.邮局选址问题问题描述:在一个按照东西和南北方向划分成规整街区的城市里,n个居民点散乱地分布在不同的街区中。
用x 坐标表示东西向,用y坐标表示南北向。
各居民点的位置可以由坐标(x,y)表示。
街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。
居民们希望在城市中选择建立邮局的最佳位置,使n个居民点到邮局的距离总和最小。
编程任务:给定n 个居民点的位置,编程计算邮局的最佳位置。
2.最大子数组问题问题描述:对给定数组A,寻找A的和最大的非空连续子数组。
3.寻找近似中值问题描述:设A是n个数的序列,如果A中的元素x满足以下条件:小于x的数的个数≥n/4,且大于x的数的个数≥n/4 ,则称x为A的近似中值。
设计算法求出A的一个近似中值。
如果A中不存在近似中值,输出false,否则输出找到的一个近似中值4.循环赛日程表问题描述:设有n=2^k个运动员要进行网球循环赛。
现要设计一个满足以下要求的比赛日程表:每个选手必须与其他n-1个选手各赛一次,每个选手一天只能赛一次,循环赛一共进行n-1天。
二、实验目的(1)进一步理解分治法解决问题的思想及步骤(2)体会分治法解决问题时递归及迭代两种不同程序实现的应用情况之差异(3)熟练掌握分治法的自底向上填表实现(4)将分治法灵活于具体实际问题的解决过程中,重点体会大问题如何分解为子问题及每一个大问题涉及哪些子问题及子问题的表示。
三、实验要求(1)写清算法的设计思想。
(2)用递归或者迭代方法实现你的算法,并分析两种实现的优缺点。
(3)根据你的数据结构设计测试数据,并记录实验结果。
(4)请给出你所设计算法的时间复杂度的分析,如果是递归算法,请写清楚算法执行时间的递推式。
四、实验过程(算法设计思想、源码)1.邮局选址问题(1)算法设计思想根据题目要求,街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
printf("x,y error!"); return ; } for(i=1;i<=m;i++) for(j=1;j<=n;j++)
a[i][j]=0; a[x][y]=1; find(x,y,2); if(count==0)
int x,y,pre; }sq[100]; int qh,qe,i,j,k; int check(int i,int j); int search(); void out(); void main() {
search(); } int search() {
qh=0; qe=1; maze[0][0]=-1; sq[0].pre=0; sq[0].x=0; sq[0].y=0; while(qh!=qe) {
printf("%d ",a[j]); s++;
图 3-5
《算法分析与设计》实验报告
8
} void trys(int t){
int j; if(t>n)
output(); else
for(j=t;j<=n;j++){ swap(t,j); if(c[t+a[t]]==0&&d[t-a[t]+n]==0){ c[t+a[t]]=1; d[t-a[t]+n]=1; trys(t+1); c[t+a[t]]=0; d[t-a[t]+n]=0; } swap(t,j);
printf("\n"); for (j=1;j<=n;j++ )
printf("%3d",a[i][j]); } } int check(int b,int c) { if(!(b<1||b>m||c<1||c>n)) {
if (a[b][c]==0)
《算法分析与设计》实验报告
7
return 1; else
2 6
1 4
7
5
3
图 3-3 七巧板
#include<stdio.h> int data[8][8],n=8,color[8],total; void trys(int s); int colorsame(int s); void output(); void main() {
int i,j; for(i=1;i<=7;i++)
return 0; } else
return 0;
}
4、按排列树搜索解决 8 皇后问题。 #include<stdio.h> int a[100],n,s=0,c[20],d[20]; void swap(int t1,int t2){
int t; t=a[t1]; a[t1]=a[t2]; a[t2]=t; } void output(){ int j; printf("\n"); for(j=1;j<=n;j++)
}
图 3-6
《算法分析与设计》实验报告
9
图 3-7
《算法分析与设计》实验报告
10
实验总结 本次试验是练习基本的算法策略的使用。1、熟悉迭代算法、蛮力法、分治算法和贪婪算法 的应用 2、掌握动态规划的应用。在本次试验中,自己熟练地练习和掌握了,最基本的几个 经典算法,由于这几个算法很简单,所以在编程过程中,基本没有遇到什么困难,很轻松的 完成了作业。但是第三道题由于题目的第三个条件理解错了,浪费了大量的时间,以后在编 程时要认真的分析题目,才能不至于浪费时间,这样才能做到事倍功半的效果。在以后还要 经常地锻炼自己的编程能力。
qe=sq[qe].pre; cout<<"--"<<"("<<sq[qe].x<<","<<sq[qe].y<<")"<<endl; } }
《算法分析与设计》实验报告
3
图 3-2 2、有如图 3-3 所示的七巧板,试设计算法,使用至多 4 种不同颜色对七巧板进行涂色(每 块涂一种颜色),要求相邻区域的颜色互不相同,打印输出所有可能的涂色方案。
} }
void main(){ int i; printf("请输入问题规模:"); scanf("%d",&n); for(i=1;i<=n;i++) a[i]=i; for(i=1;i<=n;i++){ c[i]=0; c[n+i]=0; d[i]=0; d[n+i]=0; } trys(1); printf("\ns=%d\n",s);
} } cout<<"Non solution.\n"; } int check(int i,int j) { int flag=1; if(i<0||i>7||j<0||j>7)
flag=0; if(maze[i][j]==1||maze[i][j]==-1)
flag=0; return(flag); } void out() { cout<<"("<<sq[qe].x<<","<<sq[qe].y<<")"<<endl; while(sq[qe].pre!=0) {
for(j=1;j<=7;j++) scanf("%d",&data[i][j]);
《算法分析与设计》实验报告
4
for(j=1;j<=7;j++) color[j]=0;
total=0; trys(1); printf("\nTotal=%d",total); } void trys(int s) { int i; if(s>7) output(); else for(i=1;i<=4;i++) {
if(check(xx,yy)==1)
//判断新坐标是否出界,是否已走过?
{
a[xx][yy]=dep;
//走向新的坐标
if (dep==n*m) output();
else
find(xx,yy,dep+1); //从新坐标出发,递归下一层
a[xx][yy]=0;
//回溯,恢复未走标志
} } } void output() { int i,j; count=count+1; printf("\n"); printf("count=%d",count); for(i=1;i<=m;i++ ) {
武汉工程大学
计算机科学与工程学院
《算法设计与分析》实验报告
专业班级
学生学号
学生姓名
实验项目
实验类别
实 验 目 的 及 要 求
实验地点 指导教师 实验时间 图的搜索算法 设计性实验
张立
目的与要求:练习图的搜索算法的使用
实验内容要点: 1、熟悉广度优先搜索算法以及深度优先搜索算法的应用 2、掌握回溯法和分支限界法的应用
类别 上机表现
实验报告 说明:
成绩评定表
评分标准
分值
得分
积极出勤、遵守纪律 主动完成实验设计任务
30 分
及时递交、填写规范 内容完整、体现收获
70 分
合计
日 期:
评阅教师: 年月日
实验内容
1、走迷宫问题。迷宫是许多小方格构成的矩形,如图 3-3 所示,在每个小方格中有的是墙(图 中的“1”)有的是路(图中的“0”)。走迷宫就是从一个小方格沿上、下、左、右四个方向 到邻近的方格,当然不能穿墙。设迷宫的入口在左上角(1,1),出口是右下角(8,8)。根据给 定的迷宫,找出一条入口到出口的路径。
《算法分析与设计》实验报告
6
printf("No answer!"); else
printf("count=%d",count); } void find(int x,int y,int dep) {
int i,xx,yy;
for (i=1;i<=8;i++)
//加上方向增量,形成新的坐标
{ xx=x+fx[i]; yy=y+fy[i];
《算法分析与设计》实验报告
5
图 3-4 3、马的遍历问题:在 n*m 的棋盘上,马只能走日字,马从位置(x,y)处出发,把棋盘的 每一点都走一次,且只能走一次,找出所有的路径。
#include<stdio.h> void find(int x,int y,int dep); void output(); int check(int b,int c); int m=5,n=4,count,dep; int fx[9]={0,1,2,2,1,-1,-2,-2,-1}, fy[9]={0,2,1,-1,-2,-2,-1,1,2}, a[6][5分析与设计》实验报告
11
color[s]=i; if(colorsame(s)==0)
trys(s+1); } } int colorsame(int s) { int i,flag; flag=0; for(i=1;i<=s-1;i++) if(data[i][s]==1&&color[i]==color[s])