第四章复习小结

合集下载

人教版(2024数学七年级上册第四章 小结与复习

人教版(2024数学七年级上册第四章 小结与复习
2. 单项式的系数:单项式中的数字因数叫作这个单项 式的系数.
3. 单项式的次数:一个单项式中,所有字母的指数的 和叫作这个单项式的次数.
4. 多项式:几个单项式的_和___叫作多项式. 5. 其中,每个单项式叫作多项式的项,不含字母 的项叫作 常数项 . 6. 多项式的次数:多项式里次数最高项的次数, 叫做这个多项式的次数. 7. 整式:___单__项__式__与__多__项__式____统称整式.
二次二项式
返回
考点2:同类项
例2 若 5xm+1y2 与 -x6yn 是同类项,则 m + n 的值为 ( B )
A. 6
B. 7
C. 8
D. 9
分析:由题意,得 m + 1 = 6,n = 2, 所以 m = 5,n = 2, 所以 m + n = 7.
练一练
2. (平凉期末) 如果单项式 3xa+3y2 与单项式 -4xyb-1 的
D. (-c) - (b - a) = -c - b + a = a - b - c,
练一练 3. (台江期末) 计算:
化简:
解:原式
= -x - y.
返回
考点4:整式的加减运算与求值
例4 先化简,再求值:6y3 + 4(x3 - 2xy) - 2(3y3 - xy), 其中 x = -2,y = 3. 解:原式 = 6y3 + 4(x3 - 2xy) - 2(3y3 - xy)
是同类项;(2) 只有同类项才能合并,如 x2+x3 不能合并.
三、整式的加减 一般地,几个整式相加减,如果有括号就先
_去__括__号___,然后再__合__并__同__类__项___. + (a - b) = a - b - (a - b) = -a + b

北师大2013版第四章三角形复习与小结2

北师大2013版第四章三角形复习与小结2
试判断AB与ED有什么关系?并说明理由。
课堂小结
交流本节课的收获,说说存在的困惑
布置作业
1、总结第三环节中练习中的错题,对其中的某些 题还有什么好的建议或变形 2 、通过交流把自己的总结再完善和改进后粘贴 到班级的板报中
C D
(三)回顾“三角形三条重要线段”
1、三角形ABC中,D为BC上的一点,且S△ABD =S△ADC,则AD为( ). A.高 B.角平分线 C.中线 D.不能确定 2、如图,已知AD、AE分别是三角形ABC的中 线、高,且AB=5cm,AC=3cm,则三角形 ABD与三角形ACD的周长之差为 ,三 角形ABD与三角形ACD的面积之间的关系为 _ _____.
2、已知一个三角形的两边长分别是2cm和4cm, 则第三边长x的取值范围 是 ;若x是奇数,则x的值 是 ; 此三角形的周长p的取值范围是 ______.
3、一个等腰三角形的一边是2cm,另一边是 9cm ,则这个三角形的周长是 cm 4、一个等腰三角形的一边是5cm,另一边是 7cm ,则这个三角形的周长是 cm
(二)回顾“三角形内角和”
1、在△ABC中, (1)∠C=70°,∠A=50°,则∠B= 度; (2)∠B=100°,∠A=∠C,则∠C= 度; (3)2∠A=∠B+∠C,则∠A= 度。 (4) ∠A∶∠B∶∠C=1∶3∶5,则∠A = ∠B= ∠C= 。 A 2、如图,已知五角星ABCDE,求 E B ∠A+∠B+∠C+∠D+∠E的度数和为 。
C
A D
B
4、如图所示:要说明△ABC≌△BAD, (1)已知∠1=∠2,若要以SAS为依据, 则可添加一个条件是 ; (2)已知∠1=∠2,若要以AAS为依据, 则可添加一个条件是 ;

人教版七年级上册数学第四章几何图形初步小结复习(一)

人教版七年级上册数学第四章几何图形初步小结复习(一)
小结复习(一)
一、复习回顾
几何图形
立体图形
从不同方向看立体图形 展开立体图形
直线、射线、线段
平面图形
平面图形
角的度量

角的比较与 运算
角的平分线
余角和补角
一、复习回顾
几何图形
立体图形
从不同方向看立体图形 展开立体图形
直线、射线、线段
平面图形
平面图形
角的度量

角的比较与 运算
角的平分线
余角和补角
一、复习回顾
N
B
所以 MC 1 AC ,NC 1 BC .
2
2
从而可得:
MN MC NC 1 ( AC BC) 1 AB .
2
2
又因为AB=6,
所以 MN=3.
二、典型例题
例4 如图,点C在线段AB上, AB=6,点M、点N分别是线段AC、 BC的中点,求MN的长度. 直线AB
A MC N B
(1)点C在线段AB上
分析: 点M是线段 AC的中点
点N是线段 BC的中点
A MC N B
MC 1 AC 2
NC 1 BC 2
MN MC NC
MN MC NC 1 ( AC BC) 1 AB
2
2
二、典型例题
例4 如图,点C在线段AB上, AB=6,点M、点N分别是线段AC、
BC的中点,求MN的长度.
A M C 解:因为点M、点N分别是线段AC、BC的中点,
直线的基本事实
二、典型例题
例3 (2)如图,从A地到B地有不同的路线可以到达,
其中__③__是最短的,理由是_两__点__之__间__,__线__段__最__短___.

大学物理复习第四章知识点总结

大学物理复习第四章知识点总结

大学物理复习第四章知识点总结大学物理复习第四章知识点总结一.静电场:1.真空中的静电场库仑定律→电场强度→电场线→电通量→真空中的高斯定理qq⑴库仑定律公式:Fk122err适用范围:真空中静止的两个点电荷F⑵电场强度定义式:Eqo⑶电场线:是引入描述电场强度分布的曲线。

曲线上任一点的切线方向表示该点的场强方向,曲线疏密表示场强的大小。

静电场电场线性质:电场线起于正电荷或无穷远,止于负电荷或无穷远,不闭合,在没有电荷的地方不中断,任意两条电场线不相交。

⑷电通量:通过任一闭合曲面S的电通量为eSdS方向为外法线方向1EdS⑸真空中的高斯定理:eSoEdSqi1int只能适用于高度对称性的问题:球对称、轴对称、面对称应用举例:球对称:0均匀带电的球面EQ4r20(rR)(rR)均匀带电的球体Qr40R3EQ240r(rR)(rR)轴对称:无限长均匀带电线E2or0(rR)无限长均匀带电圆柱面E(rR)20r面对称:无限大均匀带电平面EE⑹安培环路定理:dl0l2o★重点:电场强度、电势的计算电场强度的计算方法:①点电荷场强公式+场强叠加原理②高斯定理电势的计算方法:①电势的定义式②点电荷电势公式+电势叠加原理电势的定义式:UAAPEdl(UP0)B电势差的定义式:UABUAUBA电势能:WpqoPP0EdlEdl(WP00)2.有导体存在时的静电场导体静电平衡条件→导体静电平衡时电荷分布→空腔导体静电平衡时电荷分布⑴导体静电平衡条件:Ⅰ.导体内部处处场强为零,即为等势体。

Ⅱ.导体表面紧邻处的电场强度垂直于导体表面,即导体表面是等势面⑵导体静电平衡时电荷分布:在导体的表面⑶空腔导体静电平衡时电荷分布:Ⅰ.空腔无电荷时的分布:只分布在导体外表面上。

Ⅱ.空腔有电荷时的分布(空腔本身不带电,内部放一个带电量为q的点电荷):静电平衡时,空腔内表面带-q电荷,空腔外表面带+q。

3.有电介质存在时的静电场⑴电场中放入相对介电常量为r电介质,电介质中的场强为:E⑵有电介质存在时的高斯定理:SDdSq0,intE0r各项同性的均匀介质D0rE⑶电容器内充满相对介电常量为r的电介质后,电容为CrC0★重点:静电场的能量计算①电容:②孤立导体的电容C4R电容器的电容公式C0QQUUU举例:平行板电容器C圆柱形电容器C4oR1R2os球形电容器CR2R1d2oLR2ln()R1Q211QUC(U)2③电容器储能公式We2C22④静电场的能量公式WewedVE2dVVV12二.静磁场:1.真空中的静磁场磁感应强度→磁感应线→磁通量→磁场的高斯定理⑴磁感应强度:大小BF方向:小磁针的N极指向的方向qvsin⑵磁感应线:是引入描述磁感应强度分布的曲线。

第四章整式的加减复习小结(第2课时专题讲解)(教学课件)七年级数学上册教学课件(人教版2024)

第四章整式的加减复习小结(第2课时专题讲解)(教学课件)七年级数学上册教学课件(人教版2024)

例2. 归纳“T”字形:用棋子摆成的“T”字形如图所示,按照图①②③的规 律摆下去,摆第n个“T”字形需要的棋子个数为___3__n_+_2_.
例3. 已知M=3x2-2x+4,N=x2-2x+3,试比较M,N的大小. 解:M-N=(3x2-2x+4)-(x2-2x+3) =3x2-2x+4-x2+2x-3 =2x2+1. 因为2x2≥0,所以2x2+1>0. 所以M-N>0,即M>N.
专题六 整式加减应用
例1. 已知a,b,c在数轴上的对应点的位置如图所示, 化简:|a+b|-3|b+c|+2|a-b|-|c-b|.
解:依题意,得a<0<b<c,|a|>|b|. 所以a+b<0,b+c>0,a-b<0,c-b>0. |a+b|-3|b+c|+2|a-b|-|c-b| =-(a+b)-3(b+c)-2(a-b)-(c-b) =-a-b-3b-3c-2a+2b-c+b =-3a-b-4c.
基础练习
D
B C
4.关于单项式-23x2y2z, 下列结论中正确的是( D ) A.系数是-2,次数是4 B.系数是-2,次数是5
C.系数是-2,次数是8
D.系数是-23,次数是5
5.不是同类项的是( B ) A.-25和1 B.-4xy2z2和-4x2yz2 C.-x2y和-yx2 D.-a2和4a2,
例2. 已知x+y=3,xy=1,则(5x+2)-(3xy-5y)的值为1_4_____.
解:(5x+2)-(3xy-5y) =5x+2-3xy-5y =5x-5y-3xy+2 =5(x-y)-3xy+2 因为 x+y=3,xy=1 原式=5×3-3+2=14

北师大版八年级数学下册第四章 因式分解 小结与复习

北师大版八年级数学下册第四章 因式分解 小结与复习

四、公式法 —— 完全平方公式 1. 完全平方公式:a2 + 2ab + b2 = ( a + b )2 a2 - 2ab + b2 = ( a - b )2 2. 完全平方式的特征:(1) 三项式;
(2) 有两项是两个数 (或式) 的_平__方__和__
的形式;
(3) 另一项是这两个数 (或式) 的_乘__积___
考点三 利用提公因式法求值
例3 计算: (1) 39×37-13×91; (2) 29×20.16+72×20.16+13×20.16-20.16×14. 解:(1) 39×37-13×91=3×13×37-13×91
= 13×(3×37-91)=13×20=260; (2) 29×20.16+72×20.16+13×20.16-20.16×14
解:每一块阴影的面积可以表示成相邻正方形的面积 的差, 而正方形的面积是其边长的平方, 则 S阴影=(1002-992)+(982-972)+…+(22-12) =100+99+98+97+…+2+1=5050.
答:所有阴影部分的面积和是 5050 cm2.
考点五 完全平方公式分解因式
例5 因式分解: (1)-3a2x2+24a2x-48a2; (2) (a2+4)2-16a2. 解:(1) 原式=-3a2(x2-8x+16)
=-3a2(x-4)2. (2) 原式=(a2+4)2-(4a)2
=(a2+4+4a)(a2+4-4a) =(a+2)2(a-2)2.
练一练
5. 已知 a+b=5,ab=10,求 1 a3b+a2b2+ 1 ab3的值.
2
2
解:1 a3b+a2b2+ 1 ab3= 1 ab(a2+2ab+b2)

七年级数学人教版(上册)第四章小结与复习

七年级数学人教版(上册)第四章小结与复习
第四章 图形初步认识
小结与复习
要点梳理
考点讲练
课堂小结
课后作业
要点梳理
一、几何图形 1. 立体图形与平面图形 (1) 立体图形的各部分不都在同一平面内,如:
(2) 平面图形的各部分都在同一平面内,如:
2. 从不同方向看立体图形 3. 立体图形的展开图
正方体
圆柱
三棱柱 圆锥
4. 点、线、面、体之间的联系 (1) 体是由面围成,面与面相交成线,线与线 相交成点;
看到的平面图,小正方形中的数字表示在该位置小正
方体的个数,画出从正面和左面方向 看到的平面图形.
21
12
考点讲练
解析:根据图中的数字,可知 从前面看有3列,从左到右的 个数分别是1,2,1;从左面 看有2列,个数都是2 .
解:
21 12
从正面看
从左面看
针对训练
1. 如图,从正面看A,B,C,D四个立体图形,分别 得到 a,b,c,d 四个平面图形,把上下两行相对 应立体图形与平面图形用线连接起来.
例6 如图,是一个三级台阶,A 和 B是这个台阶的两 个相对的端点,A 点上有一只蚂蚁,想到 B 点去吃可 口的食物. 若这只蚂蚁从 A 点出发,沿着台阶面爬到 B 点,你能画出蚂蚁爬行的最短路线吗?
A
B
解:如图,将台阶面展开成平 A 面图形. 连接 AB 两点,因为两点 之间线段最短,所以线段 AB 为蚂蚁爬行的最短路线.
C
∠ABC =∠ABE+∠CBE= 7x°. E
∵ BD 平分∠ABC,
∴ ∠ABD= 1 ∠ABC =3.5x°. A
B
2
∵∠ABE+∠DBE =∠ABD ,即2x + 21= 3.5x.

第四章小结与复习(课件)2024-2025学年沪科版七年级数学上册

第四章小结与复习(课件)2024-2025学年沪科版七年级数学上册
2
∠AON),你认为这个关系式正确吗?请说明理由.
随堂练习
解:(1)因为∠BON=55°,∠AON=15°, 所以∠AOB=∠AON+∠BON=70°. 因为OM平分∠AOB, 所以∠AOM= 12∠AOB=35°. 所以∠MON=∠AOM-∠AON
=35°-15°=20°. (2)正确. 理由如下: ∠= M12 (O∠NA=O∠NA+O∠MB-∠ONA)O-∠N=AO12∠N=AO12 B(∠-∠BAOONN-∠AON).
A
B
C
随堂练习 5. 如图所示,以O点为端点的5条射线OA,OB,OC,
OD,OE一共组成__1_0__个角.
【分析】每条射线都能与其它4条射线组成4个角, 共能组成4×5=20个角,其中有12 是重复的,所以这 5条射线能组成10个角.
随堂练习 6. 已知线段AB=6,在直线AB上取一点C,恰好使AC= 2BC,D为CB的中点,求线段AD的长.
随堂练习
解: ①当点C在线段AB上时,如图.
因为AC=2BC,设BC=x,则AC= 2x.
因为AB=AC+BC,所以6=2x+x,解得x=2.
所以BC=2,AC= 4.
因为D是CB的中点,所以CD=
1 2
BC=1,
所以AD=AC+CD=4+1 =5.
随堂练习
②当点C在线段AB的延长线上时,如图.
B C
O
A
回顾思考
思考: (2)余角的性质:_同__角__(__或__等__角__)__的__余__角__相__等__;
补角的性质:_同__角__(__或__等__角__)__的__补__角__相__等__. 它们是如何得到的?

第一轮复习第四章质量守恒定律总结

第一轮复习第四章质量守恒定律总结

第四章燃料燃烧,定量人事化学变化【考点1】质量守恒定律1、涵义:参加化学反应的各物质质量总和等于反应后生成的各物质质量的总和,这个规律叫做质量守恒定律。

2、适用范围:化学变化(物理变化与质量守恒定律无关)。

3、守恒实质:化学反应前后,各种原子种类、数目、质量都不改变。

4、化学反应过程中的变与不变。

①不改变:从宏观来看反应物和生成物的质量总和不变以及元素种类不变。

从微观来看有三不变,即原子种类不变、原子数目不变、原子质量不变。

②改变:1*从宏观来看物质种类一定改变2*从微观来看分子种类一定改变③可能改变:分子总数可能改变5、应用:①利用质量守恒定律推断物质的组成②利用质量守恒定律推断反应物或生成物的化学式③利用质量守恒定律进行有关计算④质量守恒定律中的守恒对象是物质质量6、注意:①质量守恒,不是体积守恒。

②参加反应的各物质的质量总和并不是反应物的任意质量之和,未参加反应的物质质量不能计算在内。

【考点2】化学方程式1、涵义:用化学式表示化学反应的式子,叫做化学方程式。

2、写方程式应遵循的原则:①客观事实原则:以客观事实为基础,不能随意臆造事实上不存在的物质。

②质量守恒定律:遵守质量守恒定律,选择适当的计量数使反应物、生成物各原子数相同。

3、书写步骤:(1)写出反应物和生成物的化学式(2)配平方程式,方法有:①观察法②最小公倍数法③奇数配偶数法④待定系数法⑤假定计量数“1”法⑥原子守恒法(3)注明反应条件,加热用“△”(点燃、高温都不能用“△”符号取代)。

(4)标出生成物状态。

若反应物中无气体,生成物中有气体,在其化学式后面标上“↑”;若反应物无固体,生成物有固体,在其化学式后面标上“↓”。

4、表示的意义:从质的方面:表明反应物、生成物、反应条件;从量的方面,在宏观角度能表明反应物、生成物间的质量比;在微观角度表明反应物、生成物间粒子数之比。

5、读法:可以从质的角度、量的角度、粒子的角度来读化学方程式。

初中数学九年级上册第四章 小结与复习

初中数学九年级上册第四章 小结与复习

5. 找出下列图形的位似中心.
6. 如图,下面的网格中,每个小正方形的边长均为 1, 点 O 和 △ABC 的顶点均为小正方形的顶点.
A A′
B B′ C′ C O (1) 在图中 △ABC 内部作 △A′B′C′,使 △A′B′C′ 和 △ABC 位似,且位似中心为点 O,位似比为 2 : 3. 解:如图所示. 4 2 (2) 线段 AA′ 的长度是 3 .
(2) 测距 (不能直接测量的两点间的距离) 测量不能到达两点间的距离,常构造相似三角形 求解.
5. 位似 (2 :位似图形上任意一对对应点到位似中心 1) 性质 如果两个图形不仅相似,而且对应顶点的连 的距离之比等于位似比;对应线段平行或者在 线相交于一点,那么这样的两个图形叫做位 一条直线上 . 似图形,这个点叫做位似中心 . (这时的相似
针对训练 如图,小明同学跳起来把一个排球打在离地 2 m 远的地上,然后反弹碰到墙上,如果她跳起击球时的 高度是 1.8 m,排球落地点离墙的距离是 6 m,假设 球一直沿直线运动,球能碰到墙面离地多高的地方?
C
A 1.8m B 2m O 6m D
解:∵∠ABO=∠CDO=90°, ∠AOB=∠COD, ∴△AOB∽△COD. 1.8 2 AB BO , ,∴ ∴ CD 6 CD DO 解得 CD = 5.4m. 故球能碰到墙面离地 5.4m 高的地方. A C
E B C
4. 如图,在 □ABCD 中,点 E 在边 BC 上,BE : EC =1 : 2,连接 AE 交 BD 于点 F,则 △BFE 的面积 与 △DFA 的面积之比为 1 : 9 .
考点二 相似的应用 例3 如图,某一时刻一根 2 m 长的竹竿 EF 的影长 GE 为 1.2 m,此时,小红测得一棵被风吹斜的柏树 与地面成 30°角,树顶端 B 在地面上的影子点 D 与 B 到垂直地面的落点 C 的距离是 3.6 m,求树 AB 的长.

北师大版(2024新版)七年级数学上册第四章课件:第四章 基本的平面图形 小结与复习

北师大版(2024新版)七年级数学上册第四章课件:第四章 基本的平面图形 小结与复习
北师大版 七年级(上册) 2024新版教材
第四章 基本的平面图形 小结与复习
知识梳理
基 本 平 面 图 形
直线 两点确定一条直线
线段 射线
两点之间线段最短 线段的中点 线段比较长短
角的定义

角平分线
角比较大小
尺规作图
知识梳理
基 本 平 面 图 形
多边形
定义 对角线 正多边形
定义

弧 扇形
圆心角
知识回顾

是否 可以 度量
不能 度量
不能 度量
表示方法
表示 方法
备注
作图 描述
射线 AB
A,B两点 以A为端点
有序,端 作射线
点在前
AB
直线
AB 或直 线BA 或直线
a
A,B两点
无序
过A,B两点 作直线AB
知识回顾
2.两点确定一条直线 经过两点有且只有一条直线.
二、比较线段的长度 1.线段的基本事实 两点之间的所有连线中,线段__最__短___. 简述为:两点之间,线段__最__短____ .
基础巩固
4.下午2时15分到5时30分,时钟的时针转过的度数 为__9_7_.5_°_.
解析:时钟被分成12个大格,相当于把圆分成12等份, 每一等份等于30°. 分针转360°时,时针转一格,即30°. 从2时15分到5时30分,时针走了(3.5-0.25)格, 即30°×(3.5-0.25)=97.5°.
知识回顾
4.角的度量 (1)角的度量单位是度、分、秒. (2)它们之间的关系是六十进制的,即1°=60′,1′=60″.
5.方向角 借助角表示方向,通常以正北或正南为基准,配以偏 西或偏东的角度来描述方向.

2023-2024学年八年级数学北师大版下册名师教学设计:第四章 小结与复习

2023-2024学年八年级数学北师大版下册名师教学设计:第四章 小结与复习

2023-2024学年八年级数学北师大版下册名师教学设计:第四章小结与复习一. 教材分析北师大版八年级数学下册第四章主要包括了锐角三角函数、正弦函数、余弦函数和正切函数的定义和性质,以及它们在实际问题中的应用。

这一章是整个初中数学的重要部分,也是学生对数学进行分析、解决实际问题的重要工具。

在学习这一章时,学生需要对三角函数有一个清晰的认识,掌握其定义、性质和应用,为后续学习打下基础。

二. 学情分析学生在学习这一章之前,已经学习了初中数学的大部分内容,包括代数、几何等,对数学问题有一定的分析能力。

但部分学生可能对三角函数的概念和性质理解不深,对于如何运用三角函数解决实际问题还不够熟练。

因此,在教学过程中,需要关注学生的学习情况,针对性地进行讲解和辅导。

三. 教学目标1.理解锐角三角函数、正弦函数、余弦函数和正切函数的定义和性质。

2.学会运用三角函数解决实际问题。

3.提高学生的数学分析能力和解决问题的能力。

四. 教学重难点1.重点:三角函数的定义和性质,以及如何运用三角函数解决实际问题。

2.难点:对三角函数的理解和运用,特别是如何将实际问题转化为三角函数问题。

五. 教学方法采用讲授法、案例分析法、小组合作法等多种教学方法,引导学生通过自主学习、合作交流,掌握三角函数的知识和技能。

六. 教学准备1.教案:详细的教学设计,包括导入、呈现、操练、巩固、拓展、小结等环节。

2.课件:生动的课件,帮助学生形象地理解三角函数的概念和性质。

3.练习题:针对性的练习题,巩固学生对三角函数的理解和运用。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何利用三角函数解决问题,激发学生的学习兴趣。

2.呈现(10分钟)讲解三角函数的定义和性质,通过示例让学生初步理解并掌握。

3.操练(15分钟)让学生通过做练习题,巩固对三角函数的理解和运用。

教师在旁边进行辅导,针对学生的不同问题进行讲解。

4.巩固(5分钟)通过总结刚才的学习内容,让学生加深对三角函数的认识。

冀教版七级上册数学-第四章-小结与复习

冀教版七级上册数学-第四章-小结与复习
√√ √ 3 x
式共有( C )
A.5 个
B.4 个
C.3 个
D.2 个
π 2.代数式-πx32y的系数是___ _3____,次数是___3_____ .
考点二 多项式
例2 多项式1+xy-xy2的次数及最高次项的系数分别是( C )
A.2,1
B.2,-1
C.3,-1
D.5,-1
【解析】选C.多项式1+xy-xy2的次数是多项式中次数最高
针对训练
运用整体思想
7. 已知式子x2+3x+5的值为7,那么式子3x2+9x-2的
值是( A ) A.0
B.2
C.4
D.6
【解析】已知x2+3x+5=7,目前没办法解出x.可以考
虑把x2+3x当做一个整体,于是可得x2+3x=2.
因此3x2+9x-2=3(x2+3x)-2=3×2-2=6-2=4.故选A.
三、去括号、添括号 去括号的法则: (1)括号前是“+”时,把括号和它前面的“+”去掉, 原括号里的各项都不改变符号. (2)括号前是“-”时,把括号和它前面的“-”号去 掉,原括号里的各项都改变符号.
四、整式加减 一般地,几个整式相加减,如果有括号就先_去__括__号___, 然后再__合__并__同__类__项___.
5.多项式的项:多项式中的每一个单项式都叫做 这个多项式的项.其中不含字母的项叫做常数项.
多项式中含有几项,这个多项式就叫做几项式. 6.多项式的次数:多项式里,最高次项的次数, 叫做这个多项式的次数. 多项式的次数是几,这个多项式就叫做几次式. 7.整式:_单__项__式__与__多__项__式___统称整式.
学练优七年级数学上(JJ) 教学课件

华师版七年级数学上册第4章 相交线和平行线小结与复习

华师版七年级数学上册第4章  相交线和平行线小结与复习

知识回顾
4. 同位角、同旁内角、内错角
角的 名称
位置特征
基本 结构 图形 特征
相同点
共同特征
同位 截线:同侧 1 角 被截线:同旁 2
同旁 截线:同侧 内角 被截线:之间
内错 截线:两侧 角 被截线:之间
12
F 都在截 线同侧 都没有公
U 都在 共顶点
被截线 Z 之间
知识回顾
5. 平行线 在同一平面内不相交的两条直线叫做平行线.
第4章 相交线和平行线
华东师大版
知识梳理
两条 直线 相交
相 交 线
邻补角
邻补角互补
对顶角
对顶角相等
基本事实:同一平面内,过一点有且只有一 条直线与已知直线垂直
垂直平分线:垂直并且平分一条线段的直线 垂 线 垂线段的性质:垂线段最短
点到直线的距离:从直线外一点到这 条直线的垂线段的长度
两条直线被第 三条直线所截
∴ ∠DOG=∠DOF-∠FOG=90°-35°=55°.
能力提升
2.如图,AD 为三角形 ABC 的高,能表示点到直线
(线段)的距离的线段B有( A )到 BC 的距离 A
A. 2条
B. 3条
C. 4条
D. 5条
B
B 到 AD 的距离
DC
C 到 AD 的距离
能力提升
3. 如图,直线 AB,CD 被两条直线所截,若∠1=64°,
2. 如图,已知∠DAC=∠ACB,∠D+∠DFE=180°,
求证:EF//BC.
DF C
证明:∵∠DAC= ∠ACB (已知),
∴ AD//BC(内错角相等,两直线平行). ∵ ∠D+∠DFE=180°(已知),

2017-2018学年北师大版八年级数学下册教案:第四章小结与复习

2017-2018学年北师大版八年级数学下册教案:第四章小结与复习
3.重点难点解析:在讲授过程中,我会特别强调一次函数的图像、性质和解析式的求解。对于难点部分,如一次函数在实际问题中的应用,我会通过举例和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关实际问题,如物体的运动轨迹、消费与收入的关系等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过尺子和直线的移动来观察一次函数图像的变化。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
2017-2018学年北师大版八年级数学下册教案:第四章小结与复习
一、教学内容
2017-2018学年北师大版八年级数学下册教案:第四章小结与复习
4.1一次函数的图像与性质
4.2一次函数的解析式
4.3一次函数的实际应用
4.4一次函数与方程、不等式的关系
4.5一次函数的复习与拓展
本节课将围绕第四章的核心知识点进行梳理与巩固,包括一次函数的图像与性质、解析式的求解、实际应用以及一次函数与方程、不等式的关系。通过对本章内容的复习,使学生更好地理解和掌握一次函数的相关知识,提高解决实际问题的能力。同时,注重引导学生发现知识点之间的内在联系,培养学生的逻辑思维和抽象思维能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一次函数的应用》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过速度与时间的关系?”比如,我们走路、骑自行车或坐车的速度不同,到达目的地的时间也会有所不同。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一次函数在现实生活中的应用奥秘。

最新湘教版七年级数学下册 第4章 小结与复习

最新湘教版七年级数学下册 第4章 小结与复习
l1
则∠3的度数为8x°,根据题意可得
x°+x°+8x°=180°,解得x=18.
4
3
2 1
l2 l3
即∠1=∠2=18°,
而∠4=∠1+∠2(对顶角相等). 故∠4=36°.
方法归纳 利用方程解决问题 ,是几何与代数知识相
结合的一种体现,它可以使解题思路清晰,过程简便.
在有关线段或角的求值问题中它的应用非常广泛. 针对训练 5.如图所示,直线AB与CD相交于点O, A ∠AOC:∠AOD=2:3,求∠BOD的度数. 答案:72° D O
五、平移 1.平移的概念:在平面内,将一个图形沿某个方向移 动一定的距离,这样的图形运动称为平移.
2.平移的性质:
(1)平移前后的图形的形状和大小完全相同; (2)对应线段平行且相等.
考点讲练
考点一 利用对顶角、垂线的性质求角度 例1 如图,AB⊥CD于点O,直线EF过O点, ∠AOE=65°,求∠DOF的度数. 解: ∵AB⊥CD,∴∠AOC=90°. ∵∠AOE=65°, ∴∠COE=25°.
并说明理由.
解:连接AB,作BC⊥MN,C是垂足,
线段AB和BC就是符合题意的线路图.
因为从A到B,线段AB最短,
从B到MN,垂线段BC最短,所以AB+BC最短.
方法归纳
与垂线段有关的作图,一般是过一点作已知直
线的垂线,作图的依据是“垂线段最短”.
考点三 平行线的性质和判定 例3 (1)如图所示,∠1=72°,∠2=72°,
考点二 点到直线的距离
例2 如图AC⊥BC,CD⊥AB于点D,CD=4.8cm,AC=6cm,
BC=8cm,则点C到AB的距离是 4.8 cm;点A到BC的距
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章
复习小结
初一年级数学 任课教师:徐均艳 2012年12月
一、梳理知识
几 何 图 形
立体图形
从不同方向看立体图形
展开立体图形
平面图形
两点确定一直线
直线、射线、线段 两点之间线段最短
平面图形

角的度量 角的大小比较 余角和补角
中点
角的平分线
同角(等角)的余角相等 同角(等角)的补角相等
二、典型例题
D
B
答: ∠COE的度数为40 °,
∠BOE的度数为140 °.
三、课堂小结及作业
1、通过本节课的学习,你有哪些新的收获? 2、你能多“数”与“形”两个方面认识线段的中点 和角的平分线概念? 3、作业:课本148页复习题第8、11题.
D
B
例6:如图,直线AB、CD相交于点O,OE是 ∠AOC的角平分线,且∠AOB=80 °, (1)求∠COE的度数, A (2)求∠BOE的度数. E 解(2)∵∠BOD=80° O
∴∠BOC= 180 ° - ∠ BOD =180 ° -80° C =100 ° ∴ ∠BOE= ∠BOC+ ∠COE = 100 °+ 40 ° =140 °
例1.如图,是由7块正方体堆成的物体,请说出图(1) 图(2)图(3)分别是从哪一个方向看得到的?
俯视图
主视图
侧视.下列图形中,不是正方体的展开图是( D)
A
B
C
D
例3.如图,C是AB的 中点,AD=5cm, DB=3cm,求线段CD的长
解:∵AD=5cm,DB=3cm A ∴AB=AD+DB =5+3 =8cm ∵C是AB的中点, 1 ∴BC=2 AB = 1 ×8 2 =4cm ∴CD=BC —BD=3cm.
C D
B
例4:一个角的余角比它的补角的 还少20°,求这个角.
解:设这个角为x由题意知 1 (180-x)-(90-x)=20 3 1 x-90+ x=20 60 3 1 - x+x =20-60+90 3 2 x=50 3 x=75 ° 答:这个角为75°
1 3
例5:如图,AOB为直线,OC平分 ∠AOD, ∠BOD=42 °,求∠AOC 的度数.
解:∵∠AOB=180°, ∠BOD=42 ° ∴ ∠AOD=∠AOB-∠BOD =180°-42 ° A =138° ∵OC平分∠AOD ∴ ∠AOC= 1 ∠AOD 21 = 2 × 138° =69 ° 答: ∠AOC的度数为69 °
C D
O
B
例6:如图,直线AB、CD相交于点O,OE是 ∠AOC的角平分线,且∠AOB=80 °, (1)求∠COE的度数, A (2)求∠BOE的度数. E 解:(1)∵∠BOD=80° O (同角的补角相等) ∴ ∠AOC=80° C ∵OE平分∠AOC 1 ∴ ∠COE= ∠AOC 21 = 2 × 80° =40 °
相关文档
最新文档