立体几何专题——空间角

合集下载

空间角总结

空间角总结

空间角总结什么是空间角?空间角是几何学中的一个重要概念,用来描述两个向量之间的夹角。

空间角通常用希腊字母θ(theta)表示,其单位是弧度(rad)。

空间角的概念可以扩展到三维空间中,帮助我们描述物体之间的方向关系和位置关系。

空间角的特征空间角具有以下几个重要特征:1.空间角是无向角:空间角没有方向之分,只关注两个向量之间夹角的大小,与向量的起点和终点无关。

2.空间角的大小范围:空间角的取值范围是0到π(也就是0到180度)。

3.水平角和垂直角:当两个向量在同一平面内,夹角为水平角;当两个向量互相垂直,夹角为垂直角。

4.空间角的计算方法:可以使用余弦定理或向量的点积来计算空间角的大小。

空间角的计算方法余弦定理余弦定理是计算空间角的常用方法之一。

设有两个向量A和B,它们之间的夹角θ满足以下关系:cos(θ) = (A·B) / (|A| * |B|)其中,A·B表示向量A和向量B的点积,|A|和|B|表示向量A和向量B的模。

通过余弦定理,我们可以根据向量的数值计算出它们之间的夹角。

向量的点积另一种计算空间角的方法是使用向量的点积。

向量A·B的点积可以通过以下公式计算得到:A·B = |A| * |B| * cos(θ)其中,θ表示向量A和向量B的夹角。

通过这个公式,我们可以根据两个向量的点积来计算它们之间的夹角。

球面角与立体角除了空间角之外,还有两个相关概念:球面角和立体角。

球面角球面角是指由球心发出的射线与球面上两个端点所夹的角。

球面角的单位是球面度(sr),1球面度是球面上的一个单位面积所占的立体角。

球面角可以通过球面面积和球半径来计算。

立体角立体角用来描述三维空间中的角度,是由空间中一点发出的射线与空间中的两个向量所夹的角。

立体角的单位是立体度(steradian,sr),1立体度表示空间中的一个单位面积所占的立体角。

立体角可以通过空间角和距离来计算。

立体几何综合复习——空间角(完整版)

立体几何综合复习——空间角(完整版)

立体几何专题复习-----空间角的求法(一)异面直线所成的角:定义:已知两条异面直线,a b ,经过空间任一点O 作直线//,//a a b b '',,a b ''所成的角的大小与点O 的选择无关,把,a b ''所成的锐角(或直角)叫异面直线,a b 所成的角(或夹角).为了简便,点O 通常取在异面直线的一条上理解说明:(1)平移法:即根据定义,以“运动”的观点,用“平移转化”的方法,使之成为相交直线所成的角。

(2)异面直线所成的角的范围:]2,0(π(3)异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直.两条异面直线,a b 垂直,记作a b ⊥. (4)求异面直线所成的角的方法:法1:通过平移,在一条直线上找一点,过该点做另一直线的平行线;法2;找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求(5).向量法: CDAB CD AB →→=.cos θ(二)直线和平面所成的角1.线面角的定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角2、记作:θ;3、范围:[0,2π]; 当一条直线垂直于平面时,所成的角θ=2π,即直线与平面垂直;1.二面角的平面角:(1)过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则AOB ∠叫做二面角lαβ--的平面角(2)一个平面垂直于二面角l αβ--的棱l ,且与两半平面交线分别为,,OA OB O 为垂足,则AOB ∠也是l αβ--的平面角说明:(1)二面角的平面角范围是[0,180];(2)二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直 (3)二面角的平面角的特点:1)角的顶点在棱上 ;2)角的两边分别在两个面内 ;3)角的边都要垂直于二面角的棱。

2、作二面角的平面角的常用方法:①、点P 在棱上——作垂直于棱的直线(如图1) ;②、点P 在一个半平面——三垂线定理法;(如图2) ③、点P 在二面角内——垂面法。

立体几何-空间角求法题型(线线角、线面角、二面角)

立体几何-空间角求法题型(线线角、线面角、二面角)

空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。

空间角是线线成角、线面成角、面面成角的总称。

其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。

空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。

下面举例说明。

一、异面直线所成的角:例1如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,12AA =。

E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。

求直线1EC 与1FD 所成的角的余弦值。

思路一:本题易于建立空间直角坐标系,把1EC 与1FD 所成角看作向量EC 1与FD 的夹角,用向量法求解。

思路二:平移线段C 1E 让C 1与D 1重合。

转化为平面角,放到三角形中,用几何法求解。

(图1)解法一:以A 为原点,1AB AD AA 、、分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有 D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2),于是11(1,3,2),(4,2,2)EC FD ==-设EC 1与FD 1所成的角为β,则:112222221121cos 14132(4)22EC FD EC FD β⋅===⋅++⨯-++ ∴直线1EC 与1FD 所成的角的余弦值为2114解法二:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。

则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。

空间几何的立体角计算

空间几何的立体角计算

空间几何的立体角计算在空间几何中,立体角是指球心所在的立体角。

它是一个以球心为顶点,包含在球面上的一个锐角空间图形。

计算立体角的方法有很多种,下面将介绍几种常见的计算方法。

一、球体的立体角计算对于球体而言,可以通过球的半径和球心与球面上两点之间的弧长计算立体角。

假设球心为O,球面上两点为A和B,对应的单位法向量为a和b。

则球体的立体角可以用以下公式表示:Ω = acos(a·b)其中,·表示向量的点积运算,acos表示反余弦函数。

上述公式表示了向量a和向量b的夹角。

二、多面体的立体角计算对于多面体,可以将其分解为若干个共有顶点的面组成的角。

然后根据面的法向量来计算每个面对应的立体角,并将其相加得到总的立体角。

比如,假设有一个四面体,顶点分别为A、B、C和D,面分别为ABC、ACD、ADB和BDC。

其中,每个面都可以计算对应的立体角。

假设面ABC与面ACD的夹角为α,面ABC与面ADB的夹角为β,面ABC与面BDC的夹角为γ,则四面体的立体角Ω可以用以下公式表示:Ω = α + β + γ而计算每个面对应的立体角,可以使用球体的立体角计算方法进行计算。

三、棱锥的立体角计算对于棱锥而言,可以通过棱锥的顶角和侧面法向量计算立体角。

假设棱锥的顶点为O,底面上一点为A,底面上的两条棱为OB和OC,顶角为∠BOC,底面上的法向量为n,则棱锥的立体角可以用以下公式表示:Ω = 2π - ∠BOC其中,∠BOC可以通过向量OB和向量OC的点积计算得到。

四、扇形的立体角计算对于扇形而言,可以通过确定扇形对应的圆锥的顶角和底面法向量计算立体角。

圆锥的底面是扇形的圆心O、半径r和夹角θ所在的圆。

假设圆锥的顶点为O,扇形上的两点为A和B,顶角为α,则扇形的立体角可以用以下公式表示:Ω = α - sinα其中,α可以通过扇形的半径r和夹角θ计算得到:α = rθ。

以上是几种常见的空间几何中立体角的计算方法,可以根据不同的几何形状选择合适的方法进行计算。

空间角及其计算

空间角及其计算

建筑学中的应用
建筑设计
空间角在建筑设计中具有重要应用,如确定建筑物的朝向、布局和采光等。通 过合理利用空间角,可以优化建筑物的空间布局和采光效果,提高居住和使用 质量。
室内设计
在室内设计中,空间角的应用同样重要。通过合理调整室内家具和装饰品的摆 放角度,可以营造出更加舒适和美观的室内环境。
物理学中的应用
物理学
在物理学的力学、电磁学和光学等 领域,空间角也具有重要应用,如 描述带电粒子的运动轨迹、光的折 射和反射等。
02
空间角的计算方法
几何法
定义
几何法是利用空间几何知识,通 过作垂线、平行线、中线等手段, 将空间角转化为平面角或线线角,
然后进行计算的方法。
步骤
1. 作出相关垂线、平行线或中线; 2. 将空间角转化为平面角或线线 角;3. 利用平面几何知识计算角
空间角在其他领域的应用拓展
航天工程
利用空间角计算,优化航天器的轨道设计和姿态控制,提高航天 任务的可靠性和成功率。
机器人技术
通过空间角的计算,实现机器人的精准定位和自主导航,拓展机器 人在工业、医疗等领域的应用。
虚拟现实与游戏设计
利用空间角技术,提升虚拟环境的真实感和沉浸感,为游戏玩家和 设计师提供更加丰富的体验。
空间角及其计算
• 空间角的基本概念 • 空间角的计算方法 • 空间角的应用实例 • 空间角与空间几何的关系 • 空间角的未来发展与展望
01
空间角的基本概念
定义与性质
定义
空间角是指两个非平行直线或平 面在三维空间中形成的角度。
性质
空间角具有方向性,其大小和方 向可以通过几何学和三角函数来 描述。
光学研究
在光学研究中,空间角是描述光线传播方向和角度的重要参数。通过测量和计算 空间角,可以研究光线的反射、折射和散射等现象,进一步探索光与物质之间的 相互作用。

立体几何---空间角 学生

立体几何---空间角 学生

立体几何-------空间角1.正方体ABCD-A1B1C1D1中,E是棱BB1中点,G是DD1中点,F是BC上一点且FB=14BC,则GB与EF所成的角为2.在三棱锥O-ABC中,三条棱OA,OB,OC两两垂直,且OA=OB=OC,M是AB边的中点,则OM与平面ABC所成角的正切值是________.3.二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的平个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为4.已知点E、F分别在正方体ABCD-A1B1C1D1的棱BB1,CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC所成的二面角的正切值为________.5.正四棱锥S-ABCD中,O为顶点在底面上的射影,P为侧棱SD的中点,且SO=OD,则直线BC与平面P AC所成的角是________.6.如图,四面体ABCD中,AB、BC、BD两两垂直,AB=BC=BD=4,E、F分别为棱BC、AD的中点.(1)求异面直线AB与EF所成角的余弦值;(2)求E到平面ACD的距离;(3)求EF与平面ACD所成角的正弦值.7.如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,P A⊥平面ABCD,P A=3,AD=2,AB=23,BC=6.(1)求证:BD⊥平面P AC;(2)求二面角P-BD-A的大小.8.如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =12AA 1,D 是棱AA 1的中点,DC1⊥BD .(1)证明:DC 1⊥BC . (2)求二面角A 1-BD -C 1的大小.9、如图,四棱锥P -ABCD 的底面是平行四边形,PA ⊥平面ABCD ,AC AB ⊥,AB PA =,点E 是PD 上的点,且DE EP λ= (0<λ≤1).(1) 求证:PB ⊥AC ;(2) 求λ的值,使PB ∥平面ACE ;(3)当1λ=时,求二面角E AC B --的大小.10、如图,在四棱锥AEFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(1)求证:AO⊥BE;(2)求平面AEF与平面ABE的夹角的余弦值;(3)若BE⊥平面AOC,求a的值.。

立体几何中的向量方法空间角

立体几何中的向量方法空间角

点 A 到平面 MNC 的距离为 a . 2
P
N
D
C
M
A
B
4. 异面直线间旳距离
已知a,b是异面直线, CD为a,b旳公垂线,
n是直线CD的方向向量,
A,B分别在直线a,b上
b
n
C A
DB a
n AB d CD
n
例.已知:直三棱柱ABC A1B1C1的侧棱AA1 4, 底面ABC中, AC BC 2, BCA 900, E为AB的中点。求CE与AB1的距离。
由(1)知D(0,0,0),P(0,0,1),
z P
B(1,1,0),E(0,1 ,1) 22
E
y
PD (0,0,1),EB (1,1 , 1)
C
B
22
x
G
00 1
cos PD,EB
2
D
6
A
13
6
2
所以EB与底面ABCD所成旳角旳正弦值为 6
6
所以EB与底面ABCD所成旳角旳正切值为
5 5
练习5: 如图,在四棱锥P-ABCD中,底面ABCD是 正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC旳中 点,作EF⊥PB交PB于点F.
|
6 3
即所求二面角得余弦值是 6 3
1. 三棱锥P-ABC PA⊥ABC,PA=AB=AC,
BAC 900,E为PC中点 ,则PA与BE所成角旳
余弦值为____6_____ . 6
2. 直三棱柱ABC-A1B1C1中, A1A=2, BAC 900 AB=AC=1, 则AC1与截面BB1CC1所成 角旳余弦值为__31_01_0_____ .
x

立体几何专题复习(三) 空间角专题

立体几何专题复习(三)   空间角专题

空间角例题讲解:一、异面直线夹角问题例1、(1)如图,正棱柱1111ABCD A BC D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为_ _ _(2) 如图,在直三棱柱ABC -A 1B 1C 1中,∠BCA= 90,点D 1、F 1分别是A 1B 1和A 1C 1的中点,若BC=CA=CC 1,求BD 1与AF 1所成的角的余弦值_________。

二、线面夹角问题例2、(1)直线a 是平面α的斜线,直线b 在平面α内,当a 与b 成60O 的角,且b 与a 在α内的射影成45O的角时,a 与α所成的角为( ) (A)60O (B)45O (C) 90O (D)30O(2)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,且 2AC BC BD AE ===,M 是AB 的中点.(I )求证:CM EM ⊥;(II )求CM 与平面CDE 所成的角.三、二面角问题例3、(1)四边形ABCD 是正方形,P 是平面ABCD 外一点,且⊥PA 平面ABCD ,PA=AB=a ,则二面角D PC B --的大小为 。

(2)在二面角βα--l 的一个平面α内有一条直线AB ,它与棱的夹角为︒45,AB 与平面β所成的角为︒30,则二面角的大小为 ;1A(3) 如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中点,P A ⊥底面ABCD ,P A =2.(Ⅰ)证明:平面PBE ⊥平面P AB ;(Ⅱ)求平面P AD 和平面PBE 所成二面角的平面角的正弦值大小.巩固练习:一、选择题1.已知正四棱锥S -ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 、SD 所成角的余弦值为( )A.13B.23C.33D.232.如图,四棱锥S -ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不.正确的是( ) A .AC ⊥SBB .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角D .AB 与SC 所成的角等于DC 与SA 所成的角3.已知三棱锥底面是边长为1的正三角形,侧棱长均为2,则侧棱与底面所成角的余弦值为( ) A.32 B.12 C.33 D.364.已知正四面体A -BCD ,设异面直线AB 与CD 所成的角为α,侧棱AB 与底面BCD 所成的角为β,侧面ABC 与底面BCD 所成的角为γ,A B C E D P则( )A.α>β>γB.α>γ>βC.β>α>γD.γ>β>α二、填空题5.已知正方体ABCD-A1B1C1D1中,E为C1D1的中点,则异面直线AE与BC所成角的余弦值为________.6.已知点O在二面角α-AB-β的棱上,点P在α内,且∠POB=45°.若对于β内异于O的任意一点Q,都有∠POQ≥45°,则二面角α-AB-β的大小是__________.7.已知点E、F分别在正方体ABCD-A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC所成的二面角的正切值等于________.三、解答题8.如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别为AB、SC的中点.(1)证明:EF∥平面SAD;(2)设SD=2CD,求二面角A-EF-D的余弦值.9.如图,正方体ABCD-A1B1C1D1中,E为棱C1D1上的动点,F为棱BC的中点.(1)求证:AE⊥DA1;(2)求直线DF与平面A1B1CD所成角的正弦值;(3)若E为C1D1的中点,在线段AA1上求一点G,使得直线AE⊥平面DFG.10.如图,在四面体ABCD中,平面ABC⊥平面ACD,AB⊥BC,AD=CD,∠CAD=30°.(1)若AD=2,AB=2BC,求四面体ABCD的体积;(2)若二面角C-AB-D为60°,求异面直线AD与BC所成角的余弦值.。

立体几何-空间角题型

立体几何-空间角题型

立体几何-空间角求法题型空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。

空间角是线线成角、线面成角、面面成角的总称。

其 取值范围分别是:0° <90°、0°< <90°、0° < 180°。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化 到三角形边角关系或是转化为空间向量的坐标运算来解。

空间角的求法一般是: 一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。

下面针 对几何法举例说明。

、异面直线所成的角:【例】如右下图,在长方体ABCD AB i C i D i 中,已知AB 4 , AD 3 , AA 2。

E 、F 分别是线段AB 、BC 上的点,且EB FB 1。

求直线EC 1与FD 1所成的角的余弦值解:延长BA 至点日,使AE=1,连结EF DE 1、D 1E 1、DF,有 D 1C 1//E 1E , DQ=E 1E ,则四边形 D 1E 1EG 是平 行四边形。

贝U E 1D 1//EC 1于是/ E 1D 1F 为直线EG 与FD 1所成的角2 J 2 2 2DD 1 、AE 1 AD DD 112 32 22 J4在 Rt A D 1DF 中, FD 1 、、FD 2 DD 12.CF 2 CD 2 DD 12.22 42 22-24在厶日FDi 中,由余弦定理得:在 Rt A BEiF 中,v''E 1 F 2 BF 2D 1E 1 \ DE ; 在 Rt A D 1DE1 中,D 1E 12 FD 12 E 1F 2 .21 2 D 1E FD 1 14•••直线EG 与FD !所成的角的余弦值为-2114可见,“转化”是求异面直线所成角的关键。

平移线段法,或化为向量的夹角、线面角 【例】已知直三棱柱 ABC ABG’AB AC,F 为BB 1上一点,BF BC 2a, FB 1 a 。

高中数学立体几何中的空间角解析

高中数学立体几何中的空间角解析

高中数学立体几何中的空间角解析立体几何是高中数学中的重要内容之一,其中空间角是立体几何中的一个重要概念。

本文将以具体的题目为例,详细介绍空间角的定义、性质和解题技巧,帮助高中学生更好地理解和应用空间角。

一、空间角的定义和性质空间角是指由两条射线在同一平面内围成的角,也可以理解为由两条射线在三维空间中围成的角。

具体来说,设有两条射线OA和OB,它们在同一平面内,那么角AOB就是由这两条射线所围成的空间角。

空间角的度量单位与平面角相同,可以用度(°)或弧度(rad)来表示。

在解题中,我们通常使用度来度量空间角。

空间角具有以下性质:1. 两条射线的方向不同,所围成的空间角大小在0°到180°之间;2. 如果两条射线的方向相同,所围成的空间角大小为0°;3. 如果两条射线的反向延长线相交,所围成的空间角大小为180°。

二、空间角的解题技巧1. 利用空间角的定义和性质进行解题在解题过程中,我们可以根据空间角的定义和性质来推导出一些结论,从而解决问题。

例如,如果题目给出了两条射线的夹角,我们可以利用空间角的定义直接得出答案;如果题目给出了两条射线的方向,我们可以根据空间角的性质判断空间角的大小。

举例:已知射线OA与射线OB的夹角为60°,射线OC与射线OB的夹角为120°,求射线OA与射线OC的夹角。

解析:根据空间角的定义,射线OA与射线OC的夹角等于射线OA与射线OB的夹角加上射线OB与射线OC的夹角。

即所求角度为60°+120°=180°。

根据空间角的性质,当两条射线的反向延长线相交时,所围成的空间角大小为180°。

因此,射线OA与射线OC的夹角为180°。

2. 利用平面角的知识解决空间角问题在解决空间角问题时,我们还可以利用平面角的知识进行推导和计算。

由于空间角是由两条射线在同一平面内围成的角,所以可以将空间角转化为平面角进行计算。

立体几何-空间角求法题型(线线角、线面角、二面角)

立体几何-空间角求法题型(线线角、线面角、二面角)

空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现, 也是历年来高考命题者的热点, 几乎年年必考。

空间角是线线成角、线面成角、面面成角的总称。

其取值范围分别是:0° < 90°、0°< < 90°、0° < 180°。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转 化为空间向量的坐标运算来解。

空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正 余弦定理)和向量法。

下面举例说明。

一、异面直线所成的角:例1如右下图,在长方体 ABCD A i BiGD i 中,已知AB 4 , AD 3, AA 2。

E 、F 分别是线段AB 、BC 上的点,且EB FB 1。

求直线EC i 与FD i 所成的角的余弦值。

思路一:本题易于建立空间直角坐标系,uuu uuu把EC i 与FD i 所成角看作向量 EC 与FD 的夹角,用向量法求 解。

思路二:平移线段C i E 让C i 与D i 重合。

转化为平面角,放到 三角形中,用几何法求解。

(图I )uuu uju umr解法一:以A 为原点,ABAD'AA 分别为x 轴、y 轴、z 轴的•••直线EC i 与FD i 所成的角的余弦值为 --- I4解法二: 延长 BA 至点 E i ,使 AE i =I ,连结 E i F 、DE i 、D i E i 、DF , 有D i C i //E i E , D i C i =E i E ,则四边形 D i E i EC i 是平行四边形。

则 E i D i //EC i 于是/ E i D i F 为直线EC i 与FD i 所成的角。

在 Rt △ BE i F 中, E i F -J E i F 2 BF 2「5 2 i 2 「‘莎。

立体几何专题——空间角

立体几何专题——空间角

立体几何专题:空间角第一节:异面直线所成的角一、基础知识1.定义: 直线a 、b 是异面直线,经过空间一交o ,分别a ΄//a ,b ΄//b ,相交直线a ΄b ΄所成的锐角(或直角)叫做。

2.范围: ⎥⎦⎤⎝⎛∈2,0πθ3.方法: 平移法、问量法、三线角公式(1)平移法:在图中选一个恰当的点(通常是线段端点或中点)作a 、b 的平行线,构造一个三角形,并解三角形求角。

(2)向量法:可适当选取异面直线上的方向向量,利用公式ba b a b a ⋅=><=,cos cos θ求出来方法1:利用向量计算。

选取一组基向量,分别算出 b a ⋅,a ,b 代入上式 方法2:利用向量坐标计算,建系,确定直线上某两点坐标进而求出方向向量),,(111z y x a =),,(222z y x b =222222212121212121cos z y x z y x z z y y x x ++++++=∴θ(3)三线角公式 用于求线面角和线线角 斜线和平面内的直线与斜线的射影所成角的余弦之积等于斜线和平面内的直线所成角的余弦 即:θθθcos cos cos 21= 二、例题讲练例1、(2007年全国高考)如图,正四棱柱1111ABCD A B C D -中, 12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为 例2、在长方体ABCD-A 1B 1C 1D 1中,已知AB=a ,BC=)(b a b >,AA 1=c ,求异面直线D 1B 和AC 所成的角的余弦值。

方法一:过B 点作 AC 的平行线(补形平移法) 方法二:过AC 的中点作BD1平行线方法三:(向量法)例3、 已知四棱锥P ABCD -的底面为直角梯形,//AB DC ,⊥=∠PA DAB ,90 底面ABCD ,且12PA AD DC ===,1AB =,M 是PB 的中点(Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;例4、 如图,在四棱锥P ABCD -中,底面ABCD 为矩形,侧棱PA ⊥底面ABCD ,3AB =,1BC =,2PA =, E 为PD 的中点求直线AC 与PB 所成角的余弦值;AB1B 1A 1D 1CCDOBB1A1AC1D CD1ϕ2ϕ1c b aθPαO AB1.正方体的12条棱和12条 面对角线中,互相异面的两条线成的角大小构成的集合是。

空间的角最新版

空间的角最新版

D
O
G
F E
C
B
R tAGOAAG11=AA9=G0
ABE GAO
即直线AE与D1F所成的角为直角(。 算)
例2.已知,在矩形ABCD中,AB=4,BC=3,E为DC边上的中点,
沿AE折成60º的二面角,分别求DE、DC与平面AC所成的角。
D
D
E
C
3
E2 C
3
A
4
B
A
4
B
二面角 D—AE—B 为60º
AE 13
131313
D
D 2 E 2C
E
C
3
M
F
N
A
4B
图(1)
MF
N
A
B
图(2)
在Rt∆DFM中,M F D M CO 60 S6 1 31 23 13
在Rt∆EFM中,EF M2EM2F 5
13
5
在Rt∆DFE中,Cos∠DEF=
EF 13 5 5 13 DE 2 2 13 26
直线与平面 所成的角
平面的一条斜线和它在这个平面内的
射影所成的锐角,叫做这条直线和这 个平面所成的角,特别地,若Lᅩα则 L与α所成的角是直角,若L//α或 L α,则L与α所成的角是的角。
二面角及它 的
平面角
从一条直线出发的两个半平面所组 成的图形叫做二面角。以二面角的 棱上任意一点为端点,在两个面内 分别作垂直于棱的两条射线,这两 条射线所成的角叫做二面角的平面 角。
在图(2)中∵DF=
D 2 E 2 F 2 2 (5)24 2 5 5 2 5 2 7 33 13 131313 13
33
在Rt∆DFC中, tanDCFDF 133 33 219 CF 73 73 73

第2讲 立体几何中的空间角问题

第2讲 立体几何中的空间角问题

(2)求直线DF与平面DBC所成角的正弦值.
解 方法一 如图(2),过点O作OH⊥BD,交直线BD于点H,连接CH.
由ABC-DEF为三棱台,得DF∥CO,
所以直线DF与平面DBC所成角等于直线CO与平面DBC所成角.
由BC⊥平面BDO,得OH⊥BC,又BC∩BD=B,
故OH⊥平面DBC,
所以∠OCH为直线CO与平面DBC所成角.
(2)(2021·温州模拟)如图,点M,N分别是正四面体ABCD的棱AB,CD上 的点,设BM=x,直线MN与直线BC所成的角为θ,则 A.当ND=2CN时,θ随着x的增大而增大 B.当ND=2CN时,θ随着x的增大而减小 C.当CN=2ND时,θ随着x的增大而减小
√D.当CN=2ND时,θ随着x的增大而增大
又∵AA1∥B1B,∴BB1⊥BM. 又BM∩BC=B,BM,BC⊂平面BMC, ∴BB1⊥平面BMC, 又CM⊂平面BMC,∴BB1⊥CM.
(2)求直线BM与平面CB1M所成角的正弦值.
解 方法一 作BG⊥MB1于点G,连接CG. 由(1)知BC⊥平面AA1B1B,得到BC⊥MB1, 又BC∩BG=B,BC,BG⊂平面BCG,
MN= x2-3x+7,
所以在△MNE 中,cos θ=2
4-x x2-3x+7
=12 1+x2-9-3x5+x 7(x∈[0,3]),
令 f(x)=x2-9-3x5+x 7,
则 f′(x)=5xx22--31x8+x-782<0,
所以f(x)在定义域内单调递减,即x增大,f(x)减小,即cos θ减小,从而θ 增大,故D正确,C错误.
所以在△FNM中, cos θ=2 x25--3xx+7=21
1+x21-8-3x7+x 7(x∈[0,3]),

高中数学中的立体几何空间角与空间距离计算方法

高中数学中的立体几何空间角与空间距离计算方法

高中数学中的立体几何空间角与空间距离计算方法立体几何是数学中的一个分支,其重点研究的是三维空间中点、线、面和体之间的关系。

在立体几何中,空间角和空间距离是非常关键的概念。

本文将详细探讨高中数学中的立体几何空间角与空间距离计算方法。

一、空间角的概念与计算方法1. 空间角的概念空间角指的是由两个非共面向量所张成的角度,在立体几何中具有重要的意义。

空间角的大小是依据两个向量的夹角计算得来的。

2. 空间角的计算方法在计算空间角时,我们首先需要求出两个向量的点积。

设向量a=(a1,a2,a3)和向量b=(b1,b2,b3),则它们的点积为a*b=a1b1+a2b2+a3b3。

接下来,我们可以利用余弦定理来计算角度,即cosθ=(a*b)/(|a||b|),其中|a|和|b|分别表示向量a和向量b的模长,θ表示向量a和向量b之间的夹角。

二、空间距离的概念与计算方法1. 空间距离的概念空间距离指的是三维空间中两个点之间的距离,也是立体几何中经常涉及到的一个概念。

2. 空间距离的计算方法我们可以借助勾股定理来计算空间距离。

设点A(x1,y1,z1)和点B(x2,y2,z2)是三维空间中的两个点,它们之间的距离为d,则d=sqrt((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)。

三、空间角和空间距离的应用空间角和空间距离在立体几何中的应用非常广泛,例如在计算棱台的侧面积、计算四面体内切圆半径、求解圆锥截面面积等问题中,我们都需要用到空间角和空间距离的知识。

比如,在计算棱台的侧面积时,我们需要首先求出两条棱所在的平面之间的空间角,然后根据棱长和计算出的角度,就可以快速计算出棱台的侧面积。

在计算四面体内切圆半径时,我们需要先计算出四面体各面的法线向量,然后根据法线向量计算面上的角度,最后用勾股定理求出四面体内切圆的半径。

在求解圆锥截面面积时,我们需要用到空间角和空间距离的知识,以找出圆锥截面的边界和计算截面的面积。

空间角的概念与性质

空间角的概念与性质

空间角的概念与性质概念:空间角是几何学中一个重要的概念,它是两个射线在三维空间中共面的情况下,通过共同端点形成的角。

与平面角类似,空间角同样由两个边构成,但由于存在三个维度,空间角的度量相对复杂一些。

性质:1. 角的度量:空间角的度量通常使用弧度制。

当两条射线在共同端点处的夹角为θ时,我们可以使用弧度来度量这个角。

一个直角等于π/2弧度,一个圆等于2π弧度。

因此,任意空间角的度量均可以转化为弧度的形式进行计算。

2. 空间角的几何关系:空间角的大小与其对应的几何关系有着密切的联系。

例如,当空间角为零时,即两个射线重合,形成的是一个平角;当空间角为直角时,两个射线相互正交,形成的是一个直角;当空间角大于直角时,两个射线夹角超过90度,形成一个钝角;当空间角小于直角时,两个射线的夹角小于90度,形成一个锐角。

3. 空间角与平行线:如果两个空间角的边分别平行,那么这两个角相等。

这是因为平行线之间的夹角为零,在三维空间中形成的空间角也不例外。

4. 空间角的投影:空间角的度量与其在投影面上形成的平面角的度量有关。

在垂直于投影面的方向上,空间角的投影是相等的。

5. 空间角的余角:与平面角类似,空间角也有余角的概念。

两个空间角的余角之和等于一个全角。

特别地,如果两个空间角之和为直角,那么这两个角即互为余角。

6. 空间角的三角函数:由于空间角的度量是以弧度为单位的,我们可以使用三角函数来计算和研究空间角。

其中,正弦、余弦和正切等三角函数与空间角的度量之间存在着特定的关系。

结论:空间角是三维空间中一组射线的几何特性的度量,它在几何学和物理学中具有广泛的应用。

在几何学中,对空间角的研究有助于解决射线之间的夹角关系以及空间图形的构造问题。

在物理学中,利用空间角可以描述物体在空间中的相对位置和方向,进而研究物体的运动规律和力学性质。

因此,空间角的概念与其性质具有重要的理论和实际意义。

立体几何之空间角

立体几何之空间角

立体几何之空间角一、基本知识回顾空间的角主要包括两条异面直线所成的角、直线与平面所成的角以及二面角。

) 异面直线所成角 1.022.π⎧⎛⎤ ⎪⎥⎝⎦⎪⎨⎧⎪⎨⎪⎩⎩范围:,平移相交(找平行线替换)求法:向量法⎥⎦⎤⎝⎛20π,) 直线与平面所成角 1.π⎧⎡⎤⎪⎢⎥⎣⎦⎪⎨⎧⎪⎨⎪⎩⎩范围0,2定义2.求法向量法⎥⎦⎤⎢⎣⎡2,0π nm nm⋅⋅=arcsin θ 若n m ⊥则α//a 或α⊂a 若n m //则α⊥a) 二面角[]1.0.2.π⎧⎪⎪⎪⎪⎪⎧⎪⎪⎨⎨⎪⎪⎩⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩范围:定义法(即垂面法)作二面角平面角的方法:三垂线定理及逆定理垂线法直接法3.求二面角大小的方法射影面积法向量法θcos S S =' ☎S 为原斜面面积 S '为射影面积 θ为斜面与射影所成锐二面角的平面角✆当θ为锐角时,nm nm⋅⋅=arccos θ当θ为锐角时,nm nm ⋅⋅-=arccos πθ二、例题讲解在正三棱柱111ABC A B C -中,若1,AB 求1AB 与B C 1所成的角的大小。

解:法一:如图一所示,设O 为C B 1、B C 1的交点,D AC 为的中点,则所求角是DOB ∠。

设1,BB a AB ==则,于是在DOB ∆中,122211,,21,,2OB BC BD OD AB BD OB OD =======+ 即90,DOB ∠=︒∴ ︒=∠90DOB法二:取11A B 的中点O 为坐标原点,如图建立空间直角坐标系,xyz O -AB 21的长度单位,则由1AB =有((())((111111110,,,0,1,0,0,2,,,220,A B B C AB C B AB C B AB C B-∴==⋅=-=∴⊥如图二所示,在四棱锥P A B C D -中,底面A B C D 是一直角梯形,90,//,,2B A D A D B C A BB C a A D a ∠=︒===且PA ABCD ⊥底面,PD 与底面成30︒角。

高考数学复习 第十二讲 立体几何之空间角

高考数学复习 第十二讲  立体几何之空间角

第十二讲 立体几何之空间角一、基本知识回顾空间的角主要包括两条异面直线所成的角、直线与平面所成的角以及二面角。

1) 异面直线所成角 1.022.π⎧⎛⎤ ⎪⎥⎝⎦⎪⎨⎧⎪⎨⎪⎩⎩范围:,平移相交(找平行线替换)求法:向量法⎥⎦⎤⎝⎛20π,2) 直线与平面所成角 1.π⎧⎡⎤⎪⎢⎥⎣⎦⎪⎨⎧⎪⎨⎪⎩⎩范围0,2定义2.求法向量法⎥⎦⎤⎢⎣⎡2,0π nm n m ⋅⋅=arcsin θ 若n m ⊥则α//a 或α⊂a 若n m//则α⊥a3) 二面角[]1.0.2.π⎧⎪⎪⎪⎪⎪⎧⎪⎪⎨⎨⎪⎪⎩⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩范围:定义法(即垂面法)作二面角平面角的方法:三垂线定理及逆定理垂线法直接法3.求二面角大小的方法射影面积法向量法θcos S S =' (S 为原斜面面积,S '为射影面积,θ为斜面与射影所成锐二面角的平面角)当θ为锐角时,n m nm⋅⋅=arccos θ当θ为锐角时,nm nm ⋅⋅-=arccos πθ二、例题讲解1。

在正三棱柱111ABC A B C -中,若12,AB BB =求1AB 与B C 1所成的角的大小. 解:法一:如图一所示,设O 为C B 1、B C 1的交点,D AC 为的中点,则所求角是DOB ∠。

设1,2BB a AB a ==则,于是在DOB ∆中,122211336,2,222213,,22OB BC a BD a a OD AB a BD OB OD =======+ 即90,DOB ∠=︒∴ ︒=∠90DOB法二:取11A B 的中点O 为坐标原点,如图建立空间直角坐标系,xyz O -AB 21的长度单位,则由12AB BB =有()()()()()()111111110,1,2,0,1,2,0,1,0,3,0,00,2,2,3,1,2,220,A B B C AB C B AB C B AB C B-∴=-=-⋅=-=∴⊥2.如图二所示,在四棱锥P ABCD -中,底面ABCD 是一直角梯形,90,//,,2,BAD AD BC AB BC a AD a ∠=︒===且PA ABCD ⊥底面,PD 与底面成30︒角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何专题:空间角第一节:异面直线所成的角一、基础知识1.定义: 直线a 、b 是异面直线,经过空间一交o ,分别a ΄//a ,b ΄//b ,相交直线a ΄b ΄所成的锐角(或直角)叫做 。

2.范围: ⎥⎦⎤⎝⎛∈2,0πθ3.方法: 平移法、问量法、三线角公式(1)平移法:在图中选一个恰当的点(通常是线段端点或中点)作a 、b 的平行线,构造一个三角形,并解三角形求角。

(2)向量法:可适当选取异面直线上的方向向量,利用公式a =><=cos cos θ求出来方法1:利用向量计算。

选取一组基向量,分别算出 ⋅方法2:利用向量坐标计算,建系,确定直线上某两点坐标进而求出方向向量),,(111z y x a = ),,(222z y x b =222222212121212121c o s z y x z y x z z y y x x ++++++=∴θ(3)三线角公式 用于求线面角和线线角 斜线和平面内的直线与斜线的射影所成角的余弦之积等于斜线和平面内的直线所成角的余弦 即:θθθcos cos cos 21= 二、例题讲练例1、(2007年全国高考)如图,正四棱柱1111ABCD A B C D -中, 12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为 例2、在长方体ABCD-A 1B 1C 1D 1中,已知AB=a ,BC=)(b a b >,AA 1=c ,求异面直线D 1B 和AC 所成的角的余弦值。

方法一:过B 点作 AC方法二:过AC 的中点作BD1平行线方法三:(向量法)例3、 已知四棱锥P ABCD -的底面为直角梯形,//AB DC ,⊥=∠PA DAB ,90 底面ABCD,且12PA AD DC ===,1AB =,M 是PB 的中点(Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;证明:以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为1(0,0,0),(0,2,0),(1,1,0),(1,0,0),(0,0,1),(0,1,)2A B C D P MAB1B 1A1D 1CCD(Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=⋅==所以故由题设知AD DC ⊥,且AP 与AD 是平面PAD 内的两条相交直线, 由此得DC ⊥面PAD 又DC 在面PCD 上,故面PAD ⊥面PCD(Ⅱ)解:因),1,2,0(),0,1,1(-==PB AC.510||||,cos ,2,5||,2||=⋅>=<=⋅==PB AC PB AC PB AC 所以故例4、 如图,在四棱锥P ABCD -中,底面ABCD 为矩形,侧棱PA ⊥底面ABCD ,AB =1BC =,2PA =, E 为PD 的中点 求直线AC 与PB 所成角的余弦值;解:(Ⅰ)建立如图所示的空间直角坐标系,则,,,,,A B C D P E 的坐标为(0,0,0)A 、B 、C 、(0,1,0)D 、(0,0,2)P 、1(0,,1)2E ,从而).2,0,3(),0,1,3(-== 设与的夹角为θ,则,1473723cos ===θ ∴AC 与PB 1. 正方体的12条棱和12条 面对角线中,互相异面的两条线成的角大小构成的集合是 {}οοο60,45,90 。

2. 正方体1AC 中,O 是底面ABCD 的中心,则OA 1和BD 1所成角的大小为 。

3. 已知l 为异面直线a 与b 的公垂线,点p ∈,若a 、b 间距离为2,点P 到的距离为2,P 到b 的距离为5 ,则异面直线a 与b4. 如图正三棱柱ABC-A 1B 1C 1中AB=2AA 1A 1B 1,A 1C 1的中点,则AM 与CN5. 如图PD ⊥平面ABCD,四边形ABCD AB=2AD=2DP ,E 为CD 中点。

(1)AP 与BE 所成的角为(2)若∈F 直线PD ,且AF 与BE 所成角为1. θ=30˚行吗?2. θ=75˚时;DPDF= 。

6. 空间四边形ABCD 中,对角线AC ,BD 与各边长均为1,O 为BCD ∆的重心,M 是AC的中点,E 是 AO 的中点,求异面直线OM 与BE7.空间四边形ABCD 中AB=BC=CD ,∠BCD=∠ABC=120˚,AB ⊥CD ,M 、N 分别是中点(1)AC 和BD 所成的角为 。

(2)MN 与BC 所成的角为 。

8.已知正方体AC 1中,(1)E 、F 分别是A 1D 1,A 1C1的中点,则AE 与CF 所成的角为 (2)M 、N 分别是AA 1,BB 1的中点,则CM 和D 1N 所成的角是 。

9、如图,三棱锥P —ABC 中, PC ⊥平面ABC ,PC=AC=2,AB=BC ,D 是PB 上一点,且CD ⊥平面PAB . (I) 求证:AB ⊥平面PCB ; (II) 求异面直线AP 与BC 所成角的大小;(3π) 解法一:(I) ∵PC ⊥平面ABC ,⊂A B 平面ABC , ∴PC ⊥AB .∵CD ⊥平面PAB ,⊂A B 平面PAB , ∴CD ⊥AB .又C CD PC = , ∴AB ⊥平面PCB .(II) 过点A 作AF//BC ,且AF=BC ,连结PF ,CF .则 PAF ∠为异面直线PA 与BC 所成的角.由(Ⅰ)可得AB ⊥BC ,∴CF ⊥AF .由三垂线定理,得PF ⊥AF .则AF=CF=2,PF=6 CF PC 22=+, 在PFA Rt ∆中, tan ∠PAF=26AF PF ==3, ∴异面直线PA 与BC 所成的角为3π.解法二:(II) 由(I) AB ⊥平面PCB ,∵PC=AC=2,又∵AB=BC ,可求得BC=2.以B 为原点,如图建立坐标系.则A(0,2,0),B(0,0,0),C (2,0,0),P (2,0,2).),22,2(AP -=,)0,0,2(B C =.则22BC AP ⨯=⋅+0+0=2.,cos >=<=2222⨯=21. ∴异面直线AP 与BC 所成的角为3π.DABCDPE F第二节、直线和平面所成的角一、基础知识1.定义: (①斜线和平面所成的角②垂线与平面所成的角③αα//l l 或⊂)2.直线与平面所成角范围是 。

3.斜线与平面所成的角是此斜线与平面内所有直线所成角中最小的角。

(最小值定理)4. 求法: 几何法 公式法 问量法(1)几何法:作出斜线与射影所成的角,论证所作(或所找)的角就是要滶的角,解三角形求出此角。

(2)公式法:θθθθθθcos cos cos cos cos cos 2121=⇔=21,,,θθθα=∠=∠=∠⊥BOC AOC AOB B AB 于点(即:与斜线射影所成的两角的余弦的积等于斜线和平面内的直线所成角的余弦值) (3,, 则><m 的余角或其补角的余角即为a 与α所成的角θ,m =><=cos sin θ二、例题讲解例1、在长方体AC 1中,AB=2,BC=CC 1=1,求(1)CD 与面ABC 1D 1所成的角 (2)A 1C 与平面ABC 1D 1所成的角 (3)A 1C 与平面BC 1D 所成的角例2、四面体ABCD 中,所有棱长都相等,M 为AD 的中点,求CM 与平面BCD 所成角的余弦值。

例3、(2007高考全国卷1)四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =∠,2AB =,BC =(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.例4、如图,2,1l l 是互相垂直的异面直线,M 、N 分别在2,1l l 上,且MN ⊥1l ,MN ⊥2l ,点AB 在1l 上,C 在2l 上,AM=MB=MN 。

(1)证明:AC ⊥NB(2)若∠ABC=60˚,求NB 与平面ABC 所成角的余弦值。

1、(2008年高考全国卷1)已知三棱柱ABC-A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为三角形ABC 的中心,则AB 1与底面ABC 所成的角的正弦值等于 2、(2008上海高考)如图,在棱长为2的正方体1111ABCD A B CD -中,E 是1BC 的中点。

求直线DE 与平面ABCD 所成角的大小(结果用反三角函数值表示).3、过点P 作平面α的两条斜线段PA 和PB ,则PA=PB 是斜线PA 和PB 与平面α成等角的 条件。

4、如图所示,∠BOC 在平面α内,OA 是α的斜线,∠AOB=∠AOC=60˚,OA=OB=OC=a ,BC=2a ,求OA 和平面α所成的角的大小。

5、如图,已知正方形ABCD ,SA ⊥现面ABCD ,且SA=AB ,M 、N 分别为SB 、SD 的中点,求SC 和平面AMN 所成的角6、给出下列命题,其中正确命题序号是 。

(1)若PA 、PB 、PC 与平面α成等角,则迠P 在平面α上的射影O 是∆ABC 的外心 (2)已知直线上l 与平面α所成角是4π,直线a 是α内与l 异面的任一直线,则l 与平面α 所成角范围是⎥⎦⎤⎢⎣⎡2,4ππ (3)在三棱锥P-ABC 中,若二面角P-AB-C ,P-BC-A ,P-CA-B ,大小相等,则点P 在平面ABC 上射影O 是∆ABC 内心。

(4)坡度为α的斜坡,有一条与坡脚水平线成30˚的小道,若沿小道每前进100m ,高度就上升25m,那么此坡坡度为30˚。

L2CA EB 1 D 1 DC 1 A 1B C 第7题图第6题图7、(2007湖北高考)如图,在三棱锥V ABC -中,VC ⊥底面ABC ,AC BC ⊥,D 是AB 的中点,且AC BC a ==,VDC θ∠=π02θ⎛⎫<< ⎪⎝⎭. (I )求证:平面VAB ⊥VCD ;(II )试确定θ的值,使得直线BC 与平面VAB 所成的角为6π。

(Ⅲ)当解θ变化时,求直线BC 与平面VAB第三节 平面与平面所成的角一、基础知识1.定义:二面角:由一条直线出发的 所组成的图形叫做二面角 平面角:过棱上同一点分别位于二面角的两个面内,且与棱同时垂直的两条射线所成的角叫做二面角的平面角,二面角的取值范围是 .注:二面角是空间图形,平面角是平面图形。

在书写时不要写成”∠AOB 为所求二面角”,而应写成”∠AOB 为二面角βα--l 的平面角”。

2.求法:几何法 向量法 公式法(2)向量法:①分别求出α和β的法向量,,则二面角βα--l 的大小为><或π—>< 用此法须知:〈1〉需建空间直角坐标系,定准相应点的坐标〈2〉通常容易找到一个面的法向量,只需通过二次垂直,求另一个平面的法向量 〈3〉当βα--l 为锐角时=θ><n m , (><n m ,为锐角)或 π—><n m ,(><n m ,为钝角) ②在平面α内⎪⎩⎪⎨⎧∈⊥EFA 在平面β内,BD ⊥EF ,且B ∈EF 分别求出BD AC ,,则><BD AC ,即为二面角βα--EF 的大小(3)公式法: ①设二面角βα--l 的大小为,θ,,,,l CD l AB CD AB ⊥⊥⊂⊂βα令,,,d BD n CD m AB ===则注意:与所成的角一定与二面角的平面角大小相等,但不一定是异面直线BA 和QO NP ED CBAM CD 所成角的大小。

相关文档
最新文档