抗信道衰落技术
描述mimo技术的三种应用模式
描述mimo技术的三种应用模式MIMO (Multiple-Input Multiple-Output)技术是一种广泛应用于无线通信系统中的技术,旨在提高系统的容量和可靠性。
MIMO技术通过同时使用多个天线进行传输和接收,以实现多个数据流的并行传输,从而有效地提高了信道的利用率。
MIMO技术有三种主要的应用模式,包括空时编码、空频编码和波束成形。
第一种应用模式是空时编码(Space-Time Coding),也被称为空时分组(STBC)。
在空时编码中,发送端根据特定的编码算法将数据分配到不同的天线上,并在接收端利用相应的解码算法来重建原始数据。
这种技术利用了空间多样性和时域多样性的特点,可以提高通信的可靠性和抗干扰能力。
空时编码被广泛应用于无线通信系统中,尤其是多天线系统,如4G LTE和Wi-Fi系统。
第二种应用模式是空频编码(Space-Frequency Coding),也被称为空频分组(SFC)。
在空频编码中,电信号被同时传输到不同的频率和空间分支上,以获得更好的频谱效率和容量。
通过将信号分配到不同的子载波和天线上,空频编码可以有效地抵抗多径衰落和信道干扰。
这种技术被广泛应用于多输入输出正交频分复用(MIMO-OFDM)系统,如4G LTE和Wi-Fi系统。
第三种应用模式是波束成形(Beamforming),也被称为波束赋形。
在波束成形中,发送器和接收器通过调整天线的辐射特性来将信号的增益集中在特定方向上,从而提高信号质量和系统的容量。
通过调整相位和幅度,波束成形可以将信号传输到目标用户,同时减小干扰和噪声的影响。
这种技术被广泛应用于蜂窝网络和雷达系统等领域,以提高通信质量和性能。
总的来说,MIMO技术的三种应用模式都具有提高系统容量、抗干扰能力和通信质量的优势。
它们在不同的无线通信系统中扮演着重要的角色,如4GLTE、5G和Wi-Fi系统等。
通过采用空时编码、空频编码和波束成形等技术,MIMO可以在有限的频谱资源下实现更高的数据传输速率和更稳定的信号传输。
移动通信抗衰落技术
OFDM在移动通信抗衰落中的应用摘要:针对移动通信信道的衰落,人们提出了许多解决方法。
OFDM是其中比较好的一种,文章简要论述了一下OFDM的基本原理,求出子载频正交的条件,并考察了OFDM在频域中的特点。
最后论述了OFDM在应用中的优缺点。
关键词:抗衰落OFDM原理优缺点移动通信信道是一个非常恶劣的通信环境,其中既有噪声、干扰也存在衰落,这三个方面的因素对移动通信系统的性能都会产生一定的负面影响,而其中衰落时我们最为关注的因素,因为衰落时移动信道的基本特性,信号在传输过程中会有信号的反射、折射、绕射、散射和吸收等现象,导致信号产生衰落,从而降低了信号的传输质量。
移动通信要得以实现也必须有相应的技术来克服这些因素的影响。
一般而言,提高移动通信系统性能的技术有:分集、均衡和信道编码。
分集是抗衰落的主要技术,均衡可以补偿时分信道中由于多径效应而产生的码间干扰,如果调制带宽超过了无线信道的相干带宽,将会产生码间干扰,并且调制信号将会展宽。
而接收机内的均衡器可以对信道中幅度和延迟进行补偿。
若信道不理想,在已调信号频带上很那保持理想传输特性时,会造成信号的严重失真和码间串扰。
为了解决这个问题,除了采用均衡器外,途径之一就是采用多个载波,将信道分成许多子信道。
将基带马援均匀分散地对每个子信道的载波调制。
假设有10个子信道,若每个载波的调制码元速率将降低至1/10,每个子信道的带宽也随之减小为1/10。
若子信道的带宽足够小,则可以认为信道特性接近理想信道特性,码间串扰可以得到有效的克服。
随着要求传输的码元速率不断提高,传输带宽也越来越宽,今日多媒体通信的信息传输速率已经到达若干Mb/s,并且移动通信的传输信道可能是在大城市中多径衰落严重的无线信道。
为了解决这个问题,并行调制的体制再次受到重视,正交频分复用(OFDM)就是在这种形势下得到发展的。
OFDM也是一类多载波并行调制的体制。
为了提高频率利用率和增大传输速率,各路子载波的已调信号频谱有部分重叠。
第4章 抗衰落技术 4.1 抗衰落技术概述4.2 分集接收技术4.3 均衡基本概念
用改善因子表示平均信噪比的改善,即分 集接收机合并器输出的平均信噪比较无分集接 收机的平均信噪比改善的分贝数(dB)
选择式合并及开关式合并的平均信噪比改 善因子随分集重数(M)增大而增大, 但增大速 率较小
D S(M )S01l0g kM 1k 1 (dB)
微分集是一种减小快衰落影响的分集技术, 在各种无线通信系统中都经常使用。理论和实 践都表明,在空间、频率、极化、场分量、角 度及时间等方面分离的无线信号,都呈现互相 独立的衰落特性。据此,微分集可分为六种:
1,空间分集 2,极化分集 重点1 3,角度分集 4,频率分集
5,时间分集 6,场分量分集
1,空间分集:空间分集的依据在于快衰落的空 间独立性,即在任意两个不同的位置上接收同一个信 号,只要两个位置的距离大到一定程度,则两处所收 信号的衰落是不相关的。为此,空间分集的接收机至 少需要两副相隔距离为d的天线,间隔距离d与工作波 长、地物及天线高度有关,d越大,两信号的衰落相 关性越小,在移动信道中,通常取:
6,场分量分集:电磁波的E场和H场载有 相同的消息,但反射机理不同,在移动通信中, Ez Hx Hy三个分量互不相关,可以通过接收 这三个场分量获得分集效果,场分量分集不要 求天线间的空间间隔,因此主要用于较低的工 作频段,如低于100MHz。当工作频率较高, 如800-900MHz时,空间分集很容易实现, 没有必要使用三副天线进行场分量分集
极化分集由于仅仅利用两电磁波的不同极 化方向,因而可大大缩短两天线间的距离,但 由于射频功率要分给两不同的极化天线,这会 导致3dB的射频功率损失
3,角度分集:由于地形地貌和建筑物等 环境的不同,到达接收端的不同路径的信号可 能来自于不同的方向。
移动通信第四章抗衰落技术
▪ Turbo码:具有较强的纠错能力,但译码 复杂,时延大,适合数据业务。
▪ 奇偶校验码
K个码元
k个码元+ L个校验码元=N个码元
举例:设信息序列长K=3, 校验序列长L=4;输入信息比特 为{S1, S2, S3}, 校验比特为{C1, C2,C3, C4};
校验的规则为:
Remainder
D16 D15 D2 1
= D9+D8+D7+D5+D4+D = 0·D15+0·D14+0·D13+0·D12+0·D11+0·D10+1·D9+1·D8+1·D7+0·D6+1·D5
+1·D4+0·D3+0·D2+1·D1+0
输出: 101101110000001110110010
得 到 :C(D)
S(D) DL
Remainder
g(D)
S(D) DL
C(D) Re D21 D20 D18 D17 D16
Remainder
D16 D15 D2 1
(D7 D6 D4 D3 D)(D16 D15 D2 1) D9 D8 D7 D5 D4 D
一. 原理
4.4 均衡技术
均衡技术是指各种用来处理码间干扰的算法和实现方法。
m(t)
r(t) cp(t)
t1
t2
t3
码间串扰
如果要消除码间干扰,需要系统传输特性满足无码间串扰条 件,即奈奎斯特第一准则。
第四章 抗衰落技术
二. 无码间串扰条件
1. 频域:系统传输特性满足:
第3章第4讲 扩频通信、抗衰落技术
——空间分集的两种变化形式:极化分集和角度分集
59
频率分集(Frequency Diversity)
频率分集是将待发送的信息分别调制到频率不相关的载 波上发送,只要载频间隔大于相干带宽,则接收端所接 收到信号的衰落是相互独立的。 在移动通信系统中,可采用信号载波频率跳变扩展频 谱技术来达到频率分集的目的。和空间分集相比,频 率分集的优点是减少了天线数目,缺点是要占用更多 的频谱资源,在发端需要多部发射机。
CDMA网络与GSM网络完全不同,由于不再把信道和用户分开考 虑,也就没有了传统的覆盖和容量之间的区别。一个小区的业务 量越大,小区面积就越小。因为在CDMA 网络中业务量增多就意 味着干扰的增大。这种小区面积动态变化的效应称为小区呼吸。 “小区呼吸”动态分配小区负荷,改善网络覆盖,增加系统容量
5.空分多址
2.CDMA系统地址码和扩频码的应用
主要可以分为3类: (1)用户地址码。 (2)信道地址码。 (3)小区地址码。
3 扩频通信的主要性能指标
(1).扩频处理增益
处理增益G定义为频谱扩展后的信号带 宽B2与频谱扩展前的信号带宽B1之比,即
B2 R2 T1 G B1 R1 T2
(4-23)
(3).频带利用率
频带利用率就是传输的数据率(bit/s) 与数字信号所占的频带(Hz)之比单位为 bit/s/Hz。
3.2.4 多址接入技术
1.多址接入技术简介
多址技术主要是解决如何使多用户共享系统无线资源的问题。 必须对不同移动台和基站发出的信号赋予不同的特征,使基 站能从众多移动台的信号中区分出哪一个移动台发出来的信 号,而各移动台又能识别出基站发出的信号中哪个是发给自 己的信号。
显分集
微分集
mimo技术有什么用_mino技术原理解析
mimo技术有什么用_mino技术原理解析所谓的MIMO,就字面上看到的意思,是MulTIple Input MulTIple Output(多入多出)的缩写,大部分您所看到的说法,都是指无线网络讯号通过多重天线进行同步收发,所以可以增加资料传输率。
然而比较正确的解释,应该是说,网络资料通过多重切割之后,经过多重天线进行同步传送,由于无线讯号在传送的过程当中,为了避免发生干扰起见,会走不同的反射或穿透路径,因此到达接收端的时间会不一致。
为了避免资料不一致而无法重新组合,因此接收端会同时具备多重天线接收,然后利用DSP重新计算的方式,根据时间差的因素,将分开的资料重新作组合,然后传送出正确且快速的资料流。
由于传送的资料经过分割传送,不仅单一资料流量降低,可拉高传送距离,又增加天线接收范围,因此MIMO技术不仅可以增加既有无线网络频谱的资料传输速度,而且又不用额外占用频谱范围,更重要的是,还能增加讯号接收距离。
所以不少强调资料传输速度与传输距离的无线网络设备,纷纷开始抛开对既有Wi-Fi联盟的兼容性要求,而采用MIMO 的技术,推出高传输率的无线网络产品。
mimo技术的作用无线电发送的信号被反射时,会产生多份信号。
每份信号都是一个空间流。
使用单输入单输出(SISO)的系统一次只能发送或接收一个空间流。
MIMO允许多个天线同时发送和接收多个空间流,并能够区分发往或来自不同空间方位的信号。
MIMO 技术的应用,使空间成为一种可以用于提高性能的资源,并能够增加无线系统的覆盖范围。
提高信道的容量MIMO接入点到MIMO客户端之间,可以同时发送和接收多个空间流,信道容量可以随着天线数量的增大而线性增大,因此可以利用MIMO信道成倍地提高无线信道容量,在不增加带宽和天线发送功率的情况下,频谱利用率可以成倍地提高。
提高信道的可靠性利用MIMO信道提供的空间复用增益及空间分集增益,可以利用多天线来抑制信道衰落。
多天线系统的应用,使得并行数据流可以同时传送,可以显著克服信道的衰落,降低误码。
高级网规优工程师认证考试题库(附答案)(可编辑)
高级网规优工程师认证考试题库(附答案)高级工程师一、TD基本原理1、异系统干扰选择题系统间干扰类型主要有:(ABCD)。
A、加性噪声干扰B、邻道干扰C、交调干扰D、阻塞干扰按照业界惯例,以灵敏度恶化以(A)1dB为干扰判断准则。
A、1dBB、2 dBC、3dBD、4dB三阶交调产生的干扰。
作为接收机前端三阶混频的结果,频率为f1和f2的两个信道外的连续波引入一个三阶交调成分,频率等于C。
A、f2B、2f1C、2f1+f2或者2f1-f2D、2f1+f2阻塞干扰是指当(AC)同时加入接收机时,强干扰会使接收机链路的非线性器件饱和,产生非线性失真。
A、强的干扰信号B、加性噪声C、有用信号D、阻塞干扰通常用(A)指标来衡量接收机抗邻道干扰的能力。
A、ACSB、ACLRC、ACIR将干扰源系统与被干扰系统共天馈系统,可以利用(C)达到系统间隔离的目的。
A、干放器B、加性噪声C、合路器D、阻塞干扰如果干扰源处于被干扰系统下方一定高度时,比如PHS和TD-CDMA系统,可以考虑将干扰源天线更换为(A)的天线来获取更高的空间隔离度。
A、上副瓣抑制较大B、下副瓣抑制较大C、上副瓣抑制较小D、上副瓣抑制较小接收机在接收有用信号的同时,落入信道内的干扰信号可能会引起接收机的(D)。
A、阻塞干扰B、带内阻塞C、杂散D、灵敏度损失ACLR是邻道泄漏,它是指(AB)发射信号落入到被干扰接收机通带内的能力。
A、邻道B、带外C、带内D、交调ACS是邻道选择性,指在(A)信号存在的情况下,接收机在其指定信道频率上接收有用信号的能力。
A、相邻信道B、同频C、异频D、干扰ACLR是邻道泄漏,定义为(AD)两个测得的信号功率之比。
A、发射功率B、干扰C、异频D、相邻信道ACS是邻道选择性,定义为接收机滤波器在(BC)两个信道频率上面的衰减比值。
A、专用信道频率B、指定信道频率上C、相邻信道频率上D、业务信道引起邻道干扰的具体原因有(ABCD)。
MIMO技术百科
MIMOMIMO属于空间分集简介MIMO(Multiple-Input Multiple-Out-put)系统是一项运用于802.11n的核心技术。
802.11n是IEEE继802.11b\a\g后全新的无线局域网技术,速度可达600Mbps。
同时,专有MIMO技术可改进已有802.11a/b/g网络的性能。
该技术最早是由Marconi于1908年提出的,它利用多天线来抑制信道衰落。
根据收发两端天线数量,相对于普通的SISO(Single-Input Single-Output)系统,MIMO还可以包括SIMO(Single-Input Multi-ple-Output)系统和MISO(Multiple-Input Single-Output)系统。
概述MIMO 表示多输入多输出。
读/maimo/或/mimo/,通常美国人读前者,英国人读后者,国际上研究这一领域的专家较多的都读/maimo/。
在第四代移动通信技术标准中被广泛采用,例如IEEE 802.16e (Wimax),长期演进(LTE)。
在新一代无线局域网(WLAN)标准中,通常用于 IEEE 802.11n,但也可以用于其他 802.11 技术。
MIMO 有时被称作空间分集,因为它使用多空间通道传送和接收数据。
只有站点(移动设备)或接入点(AP)支持 MIMO 时才能部署 MIMO。
优点MIMO 技术的应用,使空间成为一种可以用于提高性能的资源,并能够增加无线系统的覆盖范围。
无线电发送的信号被反射时,会产生多份信号。
每份信号都是一个空间流。
使用单输入单输出(SISO)的系统一次只能发送或接收一个空间流。
MIMO 允许多个天线同时发送和接收多个空间流,并能够区分发往或来自不同空间方位的信号。
多天线系统的应用,使得多达 min(Nt,Nr)的并行数据流可以同时传送。
同时,在发送端或接收端采用多天线,可以显著克服信道的衰落,降低误码率。
一般的,分集增益可以高达Nt*Nr。
移动通信原理 课后答案
无线传播与移动信道
2.1 移动通信信道具有哪些主要特点? 答:移动通信信道的主要特点: (1)传播的开放性; (2)接收环境的复杂性; (3)通信用户的随机移动性。 2.2 在移动通信中,电波传播的主要传播方式有哪几种? 答:电波传播的主要方式:直射、反射、绕射。 2.3 移动通信的信道中存在着大、中、小尺度(范围)的衰耗与衰落,它们各自具有什么性 质的特征? 答:移动通信信道中,大、中、小尺度衰耗与衰落的特征: (1)大尺度:电波在空间传播所产生的损耗,反映的是传播在宏观大范围(千米量级)的 空间距离上的接收信号电平平均值的变化趋势; (2)中尺度:主要是指电磁波在传播路径上受到建筑物等的阻挡所产生阴影效应而产生的 损耗,反映了在中等范围内(数百波长量级)的接收信号电平平均值起伏变化的趋势;为无 线传播所特有,一般从统计规律上看遵从对数正态分布,其变化率比传送信息率慢; (3)小尺度:反映微观小范围(数十波长以下量级)接收电平平均值的起伏变化趋势,其 电平幅度分布一般遵从瑞利(Rayleigh)分布、莱斯(Rice)分布和纳卡伽米(Nakagami) 分布。 2.4 移动通信中存在 3 种类型的快衰落,它们各自表示什么类型的快衰落?在什么情况下会 出现?各自克服需要采取的主要措施是什么? 答:移动通信中,快衰落分为以下三种类型:空间选择性快衰落、频率选择性快衰落和时间 选择性快衰落。 其产生的原因和克服需要采取的措施如下: (1)空间选择性快衰落:由于开放型的时变信道使天线的点波束产生了扩散而引起的,克 服措施为空间分集; (2)频率选择性快衰落:由于信道在时域的时延扩散而引起的,可采用自适应均衡喝 Rake 接收加以克服; (3)时间选择性快衰落:由于用户的高速移动在频域引起多普勒频移,在相应的时域其波 形产生时间选择性衰落,可采用信道交织技术加以克服。 2.5 移动通信中主要噪声干扰有哪几种?对于 CDMA,哪一类干扰是最主要的干扰? 答:移动通信中主要噪声干扰有:加性正态白噪声、多径干扰、多址干扰。 对于 CDMA,最主要的干扰是多径干扰。 2.6 Okumura-Hata 传播模型的主要运用环境与条件是什么? 答:Okumura-Hata 传播模型的主要运用环境与条件为:适用于小城镇与郊区的准平坦地区; 应用频率为 150 MHz ≤ f c ≤ 1500 MHz ;有效距离为 1km ≤ d ≤ 20km ;发射(基站)天线 有效高度为 30~200m;接收(移动台)天线有效高度为 1~10m。
OFDM技术的优缺点分析
1.3 OFDM技术优点首先,抗衰落能力强。
OFDM把用户信息通过多个子载波传输,在每个子载波上的信号时间就相应地比同速率的单载波系统上的信号时间长很多倍,使OFDM对脉冲噪声(ImpulseNoise)和信道快衰落的抵抗力更强。
同时,通过子载波的联合编码,达到了子信道间的频率分集的作用,也增强了对脉冲噪声和信道快衰落的抵抗力。
因此,如果衰落不是特别严重,就没有必要再添加时域均衡器。
其次,频率利用率高。
OFDM允许重叠的正交子载波作为子信道,而不是传统的利用保护频带分离子信道的方式,提高了频率利用效率。
再者,适合高速数据传输。
OFDM自适应调制机制使不同的子载波可以按照信道情况和噪音背景的不同使用不同的调制方式。
当信道条件好的时候,采用效率高的调制方式。
当信道条件差的时候,采用抗干扰能力强的调制方式。
再有,OFDM加载算法的采用,使系统可以把更多的数据集中放在条件好的信道上以高速率进行传送。
因此,OFDM技术非常适合高速数据传输。
此外,抗码间干扰(ISI)能力强。
码间干扰是数字通信系统中除噪声干扰之外最主要的干扰,它与加性的噪声干扰不同,是一种乘性的干扰。
造成码间干扰的原因有很多,实际上,只要传输信道的频带是有限的,就会造成一定的码间干扰。
OFDM由于采用了循环前缀,对抗码间干扰的能力很强。
OFDM技术的优点OFDM 技术的最大优点是,对抗频率选择性衰落或窄带干扰。
在单载波系统中,单个衰落或干扰能够导致整个通信链路失败,但在多载波系统中,仅有很小一部分载波会受到干扰。
对这些信道可以采用纠错码来进行纠错。
可以有效地对抗信号波形间的干扰。
适用于多径环境和衰落信道中的高速数据传输。
当信道中因为多径传输而出现频率选择性衰落时,只有落在频带凹陷处的子载波以及其携带的信息受影响,其他的子载波未受损害,因此系统总的误码率性能要好的多。
通过各子载波的联合编码,具有很强的抗衰落能力。
OFDM 技术本身已经利用了信道的频率分集,如果衰落不是很严重,就没有必要再加时域均衡器。
无线通信衰落信道的实现的开题报告
无线通信衰落信道的实现的开题报告
一、研究背景
随着科技的发展和移动通信技术的普及,人们对通信系统的性能要求越来越高,对信道的抗干扰、抗衰落能力提出了更高的要求。
衰落信道是无线通信中的一个重要问题,它会导致通信中的误码率和丢包率增加,影响通信的质量和可靠性。
因此,如何有效地解决衰落信道对无线通信系统性能的影响,是无线通信领域中的重要问题之一。
二、研究内容
本研究将围绕衰落信道的建模、仿真和性能评估展开研究,具体包括:
1.衰落信道的建模与理论分析
根据无线通信中的多径传输模型,建立衰落信道的数学模型,并在此基础上进行理论分析,探究衰落信道的特点和规律,为后续的仿真和性能评估奠定基础。
2.衰落信道的仿真与实现
使用MATLAB等工具,基于建立的数学模型,进行衰落信道的仿真实现,并对仿真结果进行分析和验证。
3.衰落信道的性能评估
通过对仿真结果进行性能分析,评估衰落信道对无线通信系统性能的影响,探究抗衰落技术、误码纠正等方面的解决方案。
三、研究意义
衰落信道问题是无线通信中一个重要的研究方向,研究衰落信道对无线通信系统性能的影响,寻找有效的解决方案,对于提高通信质量、提高通信系统的可靠性和稳定性等方面有着重要的意义。
本研究的结果对于无线通信领域的学术研究和应用开发都具有一定的参考价值。
移动通信——抗衰落技术
目录抗衰落技术 (2)一、概述 (2)1)引起衰落的原因 (2)2)抗衰落技术的种类 (2)二、分集接收技术 (2)1)基本思想 (3)2)适用范围 (3)3)如何实现自身的功能 (3)(1)时间分集 (3)(2)空间分集 (4)(3)频率分集 (5)4)各分集技术之间的优缺点 (5)三、合并技术 (5)1)基本思想: (5)2)适用范围: (6)3)如何实现自身的功能: (6)四、均衡技术 (6)1)基本思想 (6)2)适用范围 (7)3)如何实现自身的功能 (7)五、信道编码技术 (7)1)信道编码技术产生的原因与作用 (7)2)信道编码技术的基本思想及优缺点 (8)3)适用范围 (8)4)信道编码技术及功能的实现 (8)(1)分组码 (9)(2)卷积码 (9)(3)Turbo码 (10)(4)交织 (10)(5)伪随机序列扰码 (11)六、扩频技术 (11)1)基本思想 (12)2)适用范围 (12)3)如何实现自身的功能 (12)(1)直接序列扩频与解扩的原理 (12)(2)跳频扩频通信系统 (12)抗衰落技术一、概述衰落对传输信号的质量和传输可靠度都有很大的影响,严重的衰落甚至会使传播中断,随着移动通信技术的发展,传输的数据速率越来越高,人们对信号正确有效地接收的要求也越来越重要,在移动通信中,移动信道的多径传播、时延扩展以及伴随接收机移动过程产生的多普勒频移会使接收信号产生严重衰落;阴影效应会使接收的信号过弱而造成通信中断;信道存在的噪声和干扰也会使接收信号失真而造成误码;为了改善和提高接收信号的质量,在移动通信中就必须使用到抗衰落技术。
1)引起衰落的原因的也是最重要的衰落成因。
多条射线的产生,可能是由于地面、大气不均匀层或天线附近的地形地物的反射,也可能是由于电离层多次反射、电离层中的寻常波和非常波或天波和地波的同时出现。
多径干涉形成的衰落通常称为多径衰落或干涉型衰落。
非正常衰减发生时,接收信号电平低于正常值,从而形成衰落。
通信网络知识点
一、蜂窝系统的基本概念1.蜂窝系统的组成以及基本概念⑴公共交换电话网络⑵移动交换中心⑶基站⑷移动台⑸用户⑹收发信机2.切换,漫游的区别切换:移动台从一个基站转移到另外一个基站,从一个扇区转移到另外一个扇区,或者从一个信道转移到另外一个信道的过程。
MSC不发生变化漫游:一个移动台从自己的服务区域转移到另外的服务区域的过程。
MSC发生变化。
3.双工的概念支持两个方向同时通信移动电话4.频率复用的概念上行、下行使用不同的频率5.蜂窝结构为六边形的原因六边形比其他形状更贴近圆,可以完全覆盖6.六边形蜂窝系统中簇大小N的通用公式7.提高蜂窝系统容量的方法(小区分裂、裂向、使用中继器、分区微小区)二、信道衰落1.大尺度衰落和小尺度衰落的定义(平均值、短时变化)大尺度衰落:预测衰落的平均值包括路径损耗和阴影衰落小尺度衰落:预测衰落的短时间变化包括多径衰落和多普勒频移主要由多径传播和多普勒频移而产生的衰落反映了围观小范围内数个波长量级接收信号电平平均值的变化而产生的损耗衰减特性服从瑞利分布或者莱斯分布2.影响小尺度衰落的四大因素(多径传播、移动台移动速度、环境物体移动速度、系统带宽)3.自由空间传播损耗公式4.对数正态阴影衰落的数学公式5.Rayleigh衰落的数学公式6.相干带宽,相干时间的定义和计算方法相干带宽:考虑频率选择性衰落信道,在无线通信发射机发射信号带宽内的某一段频带宽度内,接收机接收信号的复包络在这个频带宽度内任两个频率分量上的信号分量的相关系数不小于0.5 (或0.9)时,称这一段频带宽度为相干带宽(coherence bandwidth)。
当信号的带宽小于相干带宽时,发生非频率选择性(平坦)衰落;当信号带宽大于相干带宽时,发生频率选择性衰落。
相干时间:满足两个时刻复包络采样信号基本相等条件的最远的两个时刻,称为相干时间7.平坦衰落和频率选择性衰落的判断依据。
当信号的带宽小于相干带宽时,发生非频率选择性(平坦)衰落;当信号带宽大于相干带宽时,发生频率选择性衰落。
2010级《移动通信技术》复习提纲
2010级《移动通信技术》复习提纲第1章概论1. 什么叫移动通信?通信的双方至少有一方处于移动状态下进行信息传输和交换的通信就叫做移动通信。
2. 移动通信有哪些主要特点?1. 移动通信必须利用无线电波进行信息传输。
2. 移动通信是在复杂的干扰环境中运行的。
3. 移动通信可以利用的频谱资源非常有限,而移动通信业务量的需求却与日俱增4. 移动通信系统的网络结构多种多样,网络管理和控制必须有效。
5. 移动通信设备(主要是移动台)必须适于在移动环境中使用。
3. 移动通信系统的分类:按工作方式可分为同频单工、异频单工、异频双工和半双工;按多址方式可分为频分多址(FDMA)、时分多址(TDMA)和码分多址(CDMA)5.移动通信包括哪些基本技术? 各项技术的主要作用是什么?调制技术: 把基带信号变换成适合信道传输的信号的技术。
移动信道中电波传播特性的研究:通过理论分析或根据实测数据进行统计分析(或二者结合),来总结和建立有普遍性的数学模型,利用这些模型,可以估算一些传播环境中的传播损耗和其它有关的传播参数多址方式:提高信道的容量。
抗干扰措施:除存在大量的环境噪声和干扰外,还存在大量电台产生的干扰,如邻道干扰、共道干扰和互调干扰等。
利用抗干扰技术可以减少这些干扰噪声。
组网技术:研究网络结构、网络接口、网络的控制与管理。
第2章移动信道1. 什么是信道?根据信道特性参数随外界各种因数的影响而变化的快慢,信道由可分为哪两种类型,移动通信信道属于哪种类型?移动通信信道有哪些基本特征? 简述移动通信信道存在的3类损耗和4种效应。
信道是指以传输媒质为基础的信号通道。
信道可以分为恒参信道和随参信道。
移动信道属于随参信道特点:①带宽有限;②干扰和噪声影响大;③存在着多径衰落。
1)路径传播损耗:一般称为衰耗,是指电波在空间传播所产生的损耗,它反映出传播在宏观大范围(千米量级)的空间距离上的接收信号电平平均值的变化趋势。
2)慢衰落损耗:它主要是指电波在传播路径上受到建筑物等的阻挡所产生的阴影效应而导致的损耗,它反映出在中等范围(数百波长量级)的空间距离上的接收信号电平平均值起伏变化的3)快衰落损耗:它是反映微观小范围(数十波长量级)的空间距离上的接收信号电平平均值的变化趋势。
信道相位衰落
信道相位衰落
信道相位衰落(Channel Phase Fading)是无线通信中的一个重要概念,指的是信号在传播过程中由于多径效应、多普勒效应等原因导致信号的相位发生随机性的变化。
这种随机性的变化对通信系统的性能有着重要的影响。
以下是关于信道相位衰落的一些基本概念:
1.多路径效应:多路径效应是指无线信号在传播过程中因经过多条不同的传播路径,导致信号的多个版本(副本)在接收端相互叠加,引起信号强度和相位的波动。
2.多普勒效应:多普勒效应是由于信号源或接收端移动引起的频率变化。
在移动通信中,如果移动速度较大,信号的频率会发生变化,从而引起相位衰落。
3.相位衰落对通信的影响:
4.抑制码:相位衰落可能导致信号的相位变化,使得接收端难以准确解调信号。
为了克服这个问题,通常使用差分相移键控(DPSK)等抗相位衰落的调制方式。
5.误码率增加:相位衰落会增加误码率,因为在信号传播过程中相位的不确定性增加,导致接收端难以正确解调信号。
6.信号失真:在强烈的相位衰落情况下,信号可能会出现严重的失真,影响通信质量。
7.衰落模型:为了模拟和分析信道相位衰落,通常使用一些数学模型,如瑞利衰落、莱斯衰落等。
这些模型描述了不同环境下信道的统计特性。
8.对策和调整:为了应对信道相位衰落,通信系统可以采用一些技术手段,如自适应调制、差分编码、等化器等,以提高系统对信道衰落的抗性。
移动通信中的衰落和抗衰落技术
移动通信中的衰落和抗衰落技术小结衰落的起因移动通信的传输媒介是发射机和接收机之间的无线信道,主要传播方式有直射、反射、绕射、散射等。
信号从发射机到接收机就会有很多不同的传播路径,信号经过每条路径的幅度和时延都不相同,多径分量之间有着不同的相移,这种现象叫做多径传播。
接收机无法辨别不同的多径分量,只是简单地把它们叠加起来,以至于彼此间相互干涉,这种干涉或相消或相长,会引起合成信号幅度的变化,这种效应--由不同的多径分量引起合成信号幅度的变化--称为小尺度衰落。
由于电磁波经过建筑传输,导致直射波的多径分量的幅度大大降低,这种效应叫做阴影效应,会导致大尺度衰落。
多径在宽带系统中的影响可采用两种不同的方式解释:1、信道传输函数随带宽而变化,也称为信道的频率选择性;2、信道的冲激响应会有延迟,即时延色散。
两种解释互为傅里叶变换。
相干带宽定义为相关系数小于一定门限的频率差,相干时间也是如此。
系统带宽大于相干带宽就会产生频率选择性衰落,小于相干带宽产生平坦衰落。
由相干时间决定的也会产生快衰落和慢衰落。
抗衰落技术◆分集技术◆RAKE接收◆纠错编码技术◆均衡技术分集分集的基本原理就是同一信息通过多个统计独立的信道到达接收机,用两个及以上的天线去接收,如果其中一路发生了衰落深陷,另外一路有可能没有,这样,就降低了中断概率,改善了接收端SNR的统计特性。
分集分为宏分集和微分集。
宏分集一般用于克服大尺度衰落,微分集用于克服小尺度衰落。
常见的微分集方法:空间分集:利用空间分离的天线。
时间分集:接收不同时刻的发送信号。
频率分集:在不同载频上传输信号。
角度分集:使用不同天线方向图的多个天线。
极化分集:多个天线接收不同方向的信号。
分集后的处理:1、选择合并。
选择并处理最佳的副本信号,其余副本全部丢弃。
2、合并分集。
合并所有的信号,再对合并的副本进行解码。
RAKE接收RAKE接收本质上也是一种多径分集接收机。
RAKE接收机所作的就是:通过多个相关检测器接收多径信号中的各路信号,并把它们合并在一起。
移动通信-第4章抗衰落
M
∑
∑
k=1
rk
图 3 – 40 等增益合并
第4章 噪声与干扰
4.1.2 分集合并性能的分析与比较
在通信系统中,信噪比是一项十分重要的性能指标, 它决定了系统的话音质量(模拟)和误码率(数字)。分 集合并的性能是指合并前后信噪比的改善程度。为了比较 三种合并方式,作如下假设:
•每支路噪声均为加性噪声且与信号不相关,噪声均值 为零,具有恒定的均方根值; •信号幅度的衰落速率远低于信号的最低调制频率; •各支路信号的衰落互不相关,彼此独立;
M
r(t) a1r1(t) a2r2 (t) aM rM (t) akrk (t)
k 1
式中,ak为第k个信号的加权系数。
第4章 噪声与干扰
(1)选择式合并:选择式合并是检测所有分集支路的 信号,以选择其中信噪比最高的那一个支路的信号作为合 并器的输出。由上式可见,在选择式合并器中,加权系数 只有一项为1,其余均为0。
(5)角度分集:角度分集的作法是使电波通过几个 不同路径,并以不同角度到达接收端,而接收端利用多 个方向性尖锐的接收天线能分离出不同方向来的信号分 量;由于这些分量具有互相独立的衰落特性,因而可以 实现角度分集并获得抗衰落的效果。
角度分集在较高频率时容易实现。
第4章 噪声与干扰
(6)时间分集:快衰落除了具有空间和频率独立性 之外,还具有时间上的独立性。同一信号在不同的时 间多次重发,只要各次发送的时间间隔足够大,那么 各次发送信号所出现的衰落将是彼此独立的,接收机 将重复收到的同一信号进行合并,就能减小衰落的影 响。
第4章 噪声与干扰
原理图中各条路径加权系数为1,属于等增益合并方式, 实际中应该采用最大比值合并,利用多个并行相关器,获得 各多径信号能量,即RAKE接收机利用多径信号,提高了通信 质量;
多天线MIMO技术在海面通信容量应用中的解决方案
多天线MIMO技术在海面通信容量应用中的解决方案多天线MIMO技术在海面通信容量应用中的解决方案海洋中的通信应用面临着一系列的挑战,如信道衰落、海浪干扰和多径效应等。
在这种复杂的环境下,传统的单天线通信技术很难满足高速、高质量的数据传输需求。
多天线MIMO技术通过使用多个天线进行数据传输,可以显著提高海面通信容量和稳定性。
多天线MIMO技术可以分为分集MIMO和多用户MIMO两种,分别针对信道衰落和多用户之间的互相影响。
分集MIMO通过使用多个天线同时传输同一数据,以克服信道传输过程中的信号衰落和失真问题。
多用户MIMO则主要解决多个用户同时使用同一频段互相干扰的问题,通过使用干扰消除和自适应调制技术,使得多个用户之间的传输能够得到最优化的调度和优先级管理。
海面的通信应用具有典型的信道多径效应,如反射、散射和绕射等。
多天线MIMO技术可以最大限度地利用这些信道多径效应,通过开展多维空间信号处理,提高信道容量和传输速率,同时减少信号失真和丢失。
在海面应用中,多天线MIMO技术可以明显降低误码率和实现高可靠性的数据传输。
在海面通信应用中,多天线MIMO技术的实现需要考虑天线安装、干扰管理和信号处理等问题。
天线的合理安装位置和数量选择是多天线MIMO技术应用中至关重要的因素,需要考虑信道环境、传输距离和接收设备特性等因素。
同时,针对海面中干扰源众多的特点,需要采用适当的干扰抑制和自适应调制技术,有效地解决干扰问题。
而在信号处理方面,需要通过设计合适的多维空间信号处理算法,最大程度地提高信号质量和传输容量。
总之,多天线MIMO技术在海面通信应用中具有广泛的应用前景和发展潜力。
未来在速度、稳定性和可靠性方面,多天线MIMO技术将为海面通信带来新的突破和改进。
对于多天线MIMO技术在海面通信容量应用中的相关数据,我们可以从以下角度进行分析:1. 数据传输速率多天线MIMO技术可以显著提高海面通信容量,根据不同的天线数量和配置方式,其传输速率也有所不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0,
f ≤W / 2(6-13)
f ≥W /2
· 不考虑噪声的影响,来自频率选择性 衰落信道的接收信号为
r(t) ∞ C( f ,t)S( f )ej2ft df ∞
1
∞
s(i /W )c(t i /W ,t)
W i∞
1
∞
s(t i /W )c(i /W ,t)
W i∞
(6-14)
· 在这两种情况下,待判决的接收信号 可以表示为
L
r(t)
T 0
ci*
(t)s*
(t
i
/W
)ci
(t)s(t
i
/W
)(6-17)
i 1
6.3 均衡技术及应用 6.3.1 均衡技术原理
6.3.2 线性均衡
· 均衡器通常是在数字域中实现,其采样 信号被存储于移位寄存器中。
· 对于模拟信号,均衡器输出的连续信号 波形将以符号速率被采样,并送至判决器。
第6章 抗信道衰落技术
6.1
概述
6.2
分集技术的基本概念
6.3
均衡技术及应用
6.4
交织技术
6.5
多天线技术
6.1 概述
· 接收信号的功率可以表示为
P(r) | r |n S(r) R2 (r)
(6-1)
· 抗多径衰落还常用均衡技术和差错控 制编码技术。
· 均衡、分集和信道编码这3种技术都被 用于改进无线链路的性能。
1.选择式合并
· 令 为每个支路的平均信噪比,则可 以证明,选择式合并的平均输出信噪比为
S
M k 1
1 k
(6-2)
· 由上式可得,每增加一条分集支路,
它对输出信噪比的贡献仅为总分集支路数 的倒数倍。
· 其合并增益为
GS
S
M k 1
1 k
(6-3)
2.最大比合并
· 合并后信号的包络为
M
k k k 1
(6-4)
· 设每个支路的噪声功率为 2,可以证
明,当 k k / 2 时,合并后的信噪比达
到最大。
· 合并后的输出为
M 2 k 2 k 1
1
2
M
2 k
k 1
(6-5)
· 最大比合并后的平均输出信噪比为
合并增益为
M M
GM
M
M
(6-6) (6-7)
3.等增益合并
· 由图6-18可知,在判决前,横向滤波
器的输出为
dˆk N2 cn yk n
(6-18)
n N1
· 线性横向滤波器可以达到的最小均方差
(6-19)
E | e(n) |2 min
T 2
T
T
N0 F (ejT ) 2
N0
d
· 输入信号yk被转换为一组作为中间值的 前向和后向误差信号,即fn(k)和bn(k) 。
· 判决反馈均衡(DFE)的基本思路是:一 旦一个信息符号经检测并被判定,就可以在检 测后续符号之前预测并消除由这个信息符号导 致的码间干扰。
· 判决反馈均衡既可以直接由横向滤波器实 现(见图6-20),也可以由格型滤波器实现。
· 横向滤波器由一个前馈滤波器(Feed Forward Filter,FFF)和一个反馈滤波器 (Feedback Filter,FBF)组成。
6.2 分集技术的基本概念
· 分集技术(Diversity Techniques)主要研 究如何利用多径信号来改善系统的性能。
· 分集技术利用无线传播环境中相互独立的 (或至少是高度不相关的)多径信号来实现。
6.2.1 分集技术分类
1.空间分集(Space Diversity)
图6-1 空间分集示意图
· 定义一组时变信道系数
ci (t)
1 W
c(i
/W,t)
(6-15)
那么,用这些信道系数表示式(6-14)可得
∞
r(t) ci (t)s(t i ) i ∞
(6-16)
截断的抽头延时线模型如图6-11所示。
2.RAKE接收机
· 假设接收端已知信道的参数,即抽头权 值已知,最佳接收机由分别与 i 1,2, , L , ci (t)s(t i /W ) ,相匹配的一组滤波器组成,也 可以采用互相关代替匹配滤波器。
2.极化分集(Polarization Diversity) 3.角度分集(Angle Diversity) 4.频率分集(Frequency Diversity) 5.时间分集(Time Diversity)
6.2.2 分集信号合并技术
· 对于具体的合并技术来说,通常有4类, 即选择式合并(Selective Combining)、 最大比合并(Maximal Ratio Combining)、 等增益合并(Equal Gain Combining)和 开关式合并(Switching Combining)。
L
y(t) zi (t)wi (t) i 1
(6-10)
· 加权系数由相应多径信号能量在总能 量中所占比例决定
L
wi zi2 (t) / zi2 (t) i 1
(6-11)
1.抽头延迟线信道模型
· RAKE接收机是以时延扩展即频率选 择性衰落信道为基础进行设计的,频率选 择性衰落信道通常采用抽头延迟线模型。
· 等增益合并取 k 1 ,合并后的平均
输出信噪比为
合并增益为
E
1
(M
1)
4
(6-8)
GE
E
P
1 (M 1)
4
(6-9)
4.开关式合并
6.2.3 多径分集与RAKE接收机
· 假定有L个相关器,每个相关器与其 中一个多径分量强相关,而与其他多径分 量弱相关,各个相关器的输出经过加权后 同相相加,总的输出信号为
· 这组中间信号作为各级乘法器的输入, 用以计算并更新滤波系数。
· 格型结构的每一级由下列递归方程表示
(6-20) (6-21) (6-22)
· 得到滤波器的输出为
N
dˆk cn (k)bn (k) n1
(6-23)
6.3.3 非线性均衡
· 目前已经开发出多种有效的非线性均衡 算法。
· 本节对判决反馈均衡(DFE)进行介绍。
· FBF由检测器的输出驱动,其系数可动 态调整以消除先前符号对当前符号的干扰。
· 均衡器的前馈滤波器有N1+N2+1阶, 反馈滤波器有N3阶,其输出为
· 假设带宽受限的通信信号s(t),其频率
范围满足 f ≤W / 2 ,利用抽样定理可得
该信号为
s(t) ∞ s(i /W ) sin[W (t i /W )] (6-12)
i ∞
W (t i /W )
· 其Fourier变换形式为
S (
f
)
1
∞
s(i /W )e j2fi /W,