七年级数学有理数的减法同步练习题及答案20

合集下载

有理数的加减法练习题及答案

有理数的加减法练习题及答案

有理数的加减法练习题及答案篇一:有理数加减法经典测七年级(上)有理数的加减法测验一.选择题(每题2分,共18分)1.相反数是它本身的数是()2、一个有理数的绝对值等于其本身,这个数是()A、正数B、非负数C、零D、负数3、以下说法不正确的选项()A、有理数的绝对值一定是正数B、数轴上的两个有理数,绝对值大的离原点远C、一个有理数的绝对值一定不是负数D、两个互为相反数的绝对值相等4、已经明白a为有理数,以下式子一定正确的选项()A.︱a︱=aB.︱a︱≥a C.︱a︱=-a D.a>05、以下各式中,等号成立的是()A、-?6=6B、?(?6)=-6 C、-2 11226、在数轴上表示的数8与-2这两个点之间的间隔是()A、6 B、10 C、-10D-67、在-5,-1,-3.5,-0.01,-2,-212各数中,最大的数是()101A -12B -C -0.01D -5108、比-7.1大,而比1小的整数的个数是()A 6B 7C 8D 9 9、?357,?,?的大小顺序是()。

468753735A ????? B ?????,864846573357C ????? D ?????684468二、填空题(每空1分,共22分)1. |-4|-|-2.5|+|-10|=__________;|-24|÷|-3|×|-2|=_________ 2. 最大的负整数是_____________;最小的正整数是____________3. 绝对值小于5的整数有______个;绝对值小于6的负整数有_______个4. 4,0得相反数是,-(-4)的相反数是。

5. 绝对值最小的数是36.1的绝对值是。

312133.14?π= 2-3。

7. 20、假设零件的长度比标准多0.1cm记作0.1cm,那么—0.05cm表示____________. 8. 21、大于?411且小于1的整数有。

249. 19、x=y,那么x和y的关系10. 把以下各数填在相应的大括号里:+1124,-6,0.54,7,0,3.14,200%,3万,-,3.4365,-,-2.543。

1.3.2有理数的减法 同步练习2021-2022学年人教版七年级数学上册

1.3.2有理数的减法 同步练习2021-2022学年人教版七年级数学上册

1.3.2有理数的减法一、单选题1.一只小虫在数轴上先向右爬行3个单位,再向左爬行7个单位,正好停在3-的位置,则小虫的起始位置所表示的数是( )A .1B .2C .3D .42.比4-小2的数是( )A .2B .2-C .6-D .63.在学习“有理数的加减法运算”时,我们做过如下观察:“小亮操控遥控车模沿东西方向做定向行驶练习,规定初始位置为0,向西行驶为正,向东行驶为负,先向西行驶3m ,在向东行驶1m ,这时遥控车的位置表示什么数?”用算式表示以上过程和结果的是( ) A .(3)(1)4--+=- B .(3)(1)2-++=- C .(3)(1)2++-=+ D .(3)(1)4+++=+ 4.下列说法正确的是( )A .两个有理数的和一定大于每一个加数B .两个有理数的差一定小于被减数C .若两数的和为0,则这两个数都为0D .若两个数的和为正数,则这两个数中至少有一个为正数5.某地9时温度为3-℃,到了晚上7时温度下降了6℃,则晚上7时温度是( ) A .3℃ B .3-℃ C .6-℃ D .9-℃6.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年,下列各式计算结果为负数的是( )A .4+(﹣3)B .2﹣(﹣2)C .4×(﹣2)D .(﹣4)÷(﹣2) 7.下列各式中,计算结果属于负数的是( )A .|7||1|-+-B .|7|(1)---C .|1||7|---D .|1|(7)--- 8.如图,数轴上的A B 、两点分别表示有理数a b 、,下列式子中正确的是( )A .0a b +>B .0a b ->C .()0a b -+<D .||||b a <9.有理数a 和b 在数轴上的位置如图,则-a b 是( )A .正数B .负数C .零D .非正数10.式子20357-+-+的正确读法是( )A .负20,加3,减5,加7的和B .负20加3减负5加正7C .负20,正3,负5,正7的和D .负20加正3减负5加正7二、填空题11.吐鲁番盆地低于海平面155米,记作155m -,宝石山高于海平面97米,则宝石山记作_____,宝石山比吐鲁番盆地高______米.12.已知数a 和数b 互为相反数,且在数轴上表示数,a b 的点,A B 之间的距离为2018个单位长度,若a b <,则a =________,b =________,点,A C 相距2009个单位长度,则点C 表示的数为_________.13.比3小6-的数是_____.14.规定图形表示运算x ﹣z ﹣y +w ,那么=_____(直接写出答案). 15.表示有理数a ,b ,c 的点在数轴上的位置如图所示,请化简:c b a a b +---=______.三、解答题16.计算:(1)﹣27+(﹣32)+(﹣8)+72;(2)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4).17.计算:已知14m n ==, (1)当0m <时,求m n +的值;(2)求-m n 的最大值;18.在2020年抗洪抢险中,解放军战士的冲锋舟加满汽油后沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+15,﹣8,+9,﹣6,+14,﹣5,+13,﹣10.(1)B地位于A地的什么方向?距离A地多少千米?(2)若冲锋舟每千米耗油0.6升,油箱容量为30升,求冲锋舟当天救灾过程中至少还需补充多少升油?(3)救灾过程中,冲锋舟离出发点A最远时,距A地多少千米?19.高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?参考答案1.A解:-3向右移动7个单位长度后是4,再向左移动3个单位长度是1,即小虫的起始位置所表示的数是1,故选:A.2.C解:-4-2=-6,℃比-4小2的数是-6.故选:C.3.C解:由题意可得:(+3)+(-1)=2.故选:C.4.D解:A、两个有理数的和一定大于每一个加数,错误,例如0+2=2,故不符合题意;B、两个有理数的差一定小于被减数,错误,例如-1-(-2)=1,故不符合题意;C、若两数的和为0,则这两个数都为0,错误,例如1和-1的和,故不符合题意;D、若两个数的和为正数,则这两个数中至少有一个为正数,正确,符合题意;故选D.5.D解:-3-6=-9(℃).即晚上7时温度是-9℃.故选:D.6.C解:4+(﹣3)=1,故选项A不符合题意;2﹣(﹣2)=2+2=4,故选项B不符合题意;4×(﹣2)=﹣8,故选项C符合题意;(﹣4)÷(﹣2)=2,故选项D不符合题意;故选:C.7.C-+-=7+1=8,不符合题意;解:A. |7||1|---=7+1=8,不符合题意;B. |7|(1)---=1-7=-6,符合题意;C. |1||7|---=1+7=8,不符合题意,D. |1|(7)故选C.8.D解:由数轴可得,a<0,b>0,|a|>|b|,℃a+b<0,故选项A错误、D正确;℃a<0,b>0,℃a-b<0,故选项B错误;℃-a>0,b>0,℃(-a)+b>0,故选项C错误;故选:D.9.B解:根据有理数在数轴上的位置可得a<0<b,℃a-b<0,即a-b是负数,故选:B.10.C解:式子-20+3-5+7正确读法是:负20,正3,负5,正7的和.故选:C.11.+97m 252m-,解:℃吐鲁番盆地低于海平面155米,记作155m℃宝石山高于海平面97米,记作+97m,97-(-155)=252m,故答案为:+97m,252m.12.-1009 1009 1000或-3018解:℃数a 与数b 互为相反数,℃a +b =0,℃a <b ,℃b -a =2018,℃b =1009,a =-1009;℃点A ,C 相距2009个单位长度,则-1009+2009=1000,或-1009-2009=-3018,℃点C 表示的数为1000或-3018,故答案为:-1009,1009,1000或-3018.13.9解:3-(-6)=3+6=9.故答案为:9.14.-4解:由题意可得,=4﹣6﹣7+5=﹣4,故答案为:﹣4.15.c解:根据图示,a <b <0<c ,且|a|>|c|>|b|则c+b -a >0,a -b <0=()=cc b a a bc b a a b +---+-+-故答案为:c16.(1)5;(2)2解:(1)﹣27+(﹣32)+(﹣8)+72=(﹣27﹣32﹣8)+72=﹣67+72=5;(2)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4)=(+4.3﹣2.3)+(4﹣4)=2+0=2.17.(1)3或-5;(2)5解:℃|m|=1,|n|=4,℃m=±1,n=±4;(1)℃m<0,℃m=-1,n=-4或m=-1,n=4,℃m+n=3或-5;(2)当m=1,n=4时,m-n=-3;当m=-1,n=-4时,m-n=3;当m=1,n=-4时,m-n=5;当m=-1,n=4时,m-n=-5;℃m-n的最大值是5.18.(1)B地在A地的东边22千米;(2)还需补充18升汽油;(3)距A地32千米解:(1)℃15﹣8+9﹣6+14﹣5+13﹣10=22,℃B地在A地的东边22千米;(2)这一天走的总路程为:15+|﹣8|+9+|﹣6|+14+|﹣5|+13|+|﹣10|=80千米,应耗油80×0.6=48(升),故还需补充的油量为:48﹣30=18(升),答:冲锋舟当天救灾过程中至少还需补充18升油;(3)℃路程记录中各点离出发点的距离分别为:15千米;15﹣8=7千米;7+9=16千米;16﹣6=10千米;10+14=24千米;24﹣5=19千米;19+13=32千米;32﹣10=22千米.℃冲锋舟离出发点A最远时,距A地32千米.19.(1)最后到达的地方在出发点的东边,距出发点15千米;(2)这次养护共耗油19.4升.解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16,=17+7+11+5+16-(9+15+3+6+8),=15.答:最后到达的地方在出发点的东边,距出发点15千米;++-+++-+-+++-+-++++⨯,(2)(17971531168516)0.2=97×02,=19.4(升).答:这次养护共耗油19.4升.。

人教版七年级上册数学 1.3 有理数的加减法 同步练习(含答案)

人教版七年级上册数学 1.3 有理数的加减法 同步练习(含答案)

1.3 有理数的加减法 同步练习一、单选题1.比﹣1小2的数是( )A .3B .1C .﹣2D .﹣3 2.计算1﹣3+5﹣7+9=(1+5+9)+(﹣3﹣7)是应用了( )A .加法交换律B .加法结合律C .分配律D .加法交换律与结合律3.0减去任何一个数,一定是( )A .这个数本身B .这个数的相反数C .这个数的绝对值D .0 4.计算1122--的结果是( ) A .0 B .1 C .﹣1 D .145.已知一个数的绝对值是5,另一个数的绝对值是3,若两数之和的绝对值等于两数之和,则两数之差不可能为( )A .2B .8C .-2D .0 6.计算5372688⎛⎫-+- ⎪⎝⎭的值为( ) A .23- B .5212- C .1324- D .111424- 7.把(+3)﹣(+5)﹣(﹣1)+(﹣7)写成省略括号的和的形式是( ). A .﹣3﹣5+1﹣7 B .3﹣5﹣1﹣7 C .3﹣5+1﹣7 D .3+5+1﹣7 8.已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( ) A .a b a b a 1a 1+<-<-<+B .a 1a b a b a 1+>+>->-C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>- 9.下列算式:①6-(-6)=0;②(-2)-(+2)=0;③(-7)-|-7|=0;④0- (-12)=12.其中正确的有( )A .1个B .2个C .3个D .4个 10.下列结论不正确的是( )A .若a >0,b >0,则a +b >0B .若a <0,b <0,则a +b <0C.若a>0,b<0,且|a|>|b|,则a+b>0 D.若a<0,b>0,且|a|>|b|,则a+b>0 二、填空题11.-212与-3的和与-5.5的差是____.12.世界上最高的山峰是珠穆朗玛峰,其海拔高度是8844米,吐鲁番盆地的海拔高度大约是-155米.珠穆朗玛峰与吐鲁番盆地两处高度相差________________米.13.计算:(-0.25)-134⎛⎫-⎪⎝⎭+2.75-172⎛⎫+⎪⎝⎭=___.14.某工厂在2018年第一季度的效益如下:一月份获利润150万元,二月份比一月份少获利润70万元,三月份亏损5万元.则:(1)一月份比三月份多获利润____万元;(2)第一季度该工厂共获利润____万元.15.电子青蛙落在数轴上的某一点0P,第一步从0P向左跳1个单位到1P,第二步由1P向右跳2个单位到2P,第三步由2P向左跳3个单位到3P,第四步由3P向右跳4个单位到4P,……,按以上规律跳了2014步时,电子青蛙落在数轴上的点是19.5,则电子青蛙的初始位置0P点所表示的数是________.三、解答题16.一辆货车从超市出发,向东走了3 km到达小彬家,继续向东走了1.5 km到达小颖家,然后向西走了9.5 km到达小明家,最后回到超市.(1)请你以超市为原点,以向东的方向为正方向,用一个单位长度表示1 km,在数轴上表示出小彬家、小颖家、小明家的位置;(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?17.计算:(1)0-(-12);(2)52-(-2.5);(3)34⎛⎫-⎪⎝⎭-12⎛⎫+⎪⎝⎭;(4)218-312;(5)7.2-(-2.8)+(-5).18.10袋小麦以每袋150千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:-6、-3、-1、-2、+7、+3、+4、-3、-2、+1与标准质量相比较,这10袋小麦总计超过或不足多少千克?10袋小麦总质量是多少千克?每袋小麦的平均质量是多少千克?参考答案1.D2.D3.B4.A5.D6.B7.C8.C9.A10.D11.012.8999.13.-1.7514.155 22515.-987.516.(1)略;(2)小明家距小彬家8km;(3)货车一共行驶了19千米.17.(1)12;(2)5;(3)114-;(4)318-;(5)518.不足标准2千克;总质量1498千克;平均质量149.8千克;。

人教版七年级上册第一章 有理数 1.3 有理数的加减法 同步练习(含答案)

人教版七年级上册第一章 有理数 1.3 有理数的加减法 同步练习(含答案)

有理数的加减法同步练习一.选择题1.下列说法正确的是()A.两个数的和一定比这两个数的差大B.零减去一个数,仍得这个数C.两个数的差小于被减数D.正数减去负数,结果是正数2.下列各式中正确的是()A.+5-(-6)=11B.-7-|-7|=0C.-5+(+3)=2 D.(-2)+(-5)=7 3.已知月球表面的最高温度是127℃,最低温度是-183℃,则月球表面的温差是()A.56℃B.65℃C.300℃D.310℃4.已知A地的海拔高度为-53米,而B地比A地低30米,则B地的海拔高度为()A.-83米B.-23米C.30米D.23米5.某地一天早晨的气温是-7℃,中午上升了11℃,午夜又下降了9℃,则午夜的气温是()A.5℃B.-5℃C.-3℃D.-9℃6.若|x|=7,|y|=3,且x>y,则y-x等于()A.-4B.-10C.4或10D.-4或-107.已知a>b且a+b=0,则()A.a<0B.b>0C.b≤0D.a>08.计算:1+(-2)+(+3)+(-4)+(+5)+(-6)+…+(+99)+(-100)+(+101)的结果是()A.0B.-1C.-50D.519.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,a,b,c三个数的和为()A.-1B.0C.1D.不存在10.已知,判断下列叙述何者正确?()A.a=c,b=c B.a=c,b≠c C.a≠c,b=c D.a≠c,b≠c11.如图,现有3×3的方格,每个小方格内均有不同的数字,要求方格内每一行、每一列以及每一条对角线上的三个数字之和均相等,图中给出了部分数字,则P处对应的数字是()A.7B.5C.4D.112.小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将-1、2、-3、4、-5、6、-7、8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b的值为()A.-6或-3B.-8或1C.-1或-4D.1或-1二.填空题13.计算:(-7)-(+5)+(+13)= .14.元旦后大雪纷飞而至,某日安徽有三个城市的最高气温分别是-10℃,1℃,-7℃,计算任意两城市的最高温度之差,其中最大温差(绝对值)是℃.15.若a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d是到原点的距离等于2的负数,e是最大的负整数,则a+b+c+d+e= .16.已知|a|=1,|b|=2,如果a>b,那么a+b= .17.如图,在3×3的方阵图中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若处于每一横行、每一竖列,以及两条斜对角线上的3个数之和都相等,则这个方阵图中x的值为.三.解答题18.计算:(1)(-21)-(-9)+(-8)-(-12)(2)19.已知|a|=4,|b|=6,若|a+b|=-(a+b),求a-b的值.20.若a<b<0<c<-b,化简:|a-b|+|c+b|21.小虫从某点A出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为:(单位:厘米)+5,-3,+10,-8,-6,+12,-10.(1)小虫最后是否回到出发点A?(2)小虫离开原点最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫一共得到多少粒芝麻?22.王先生到市行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作-1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,-3,+10,-8,+12,-7,-10.(1)请你通过计算说明王先生最后是否回到出发点1楼.(2)该中心大楼每层高3m,电梯每向上或下1m需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?23.淘宝网是购物综合网站,淘宝网的金币可以抵扣购物、抽奖活动、玩游戏等.获得金币的其中一个途径就是到淘金币网页去签到,规则如下:首日签到领5个金币,连续签到每日再递增5个,每日可领取的金币数量最高为30个,若中断,则下次签到作首日签到,金币个数从5个重新开始领取.(1)按淘金币规则,第1天签到领取5个,连续签到,则第2天领取10个,第3天领取15个,第6天领取个,第7天领取个;连续签到6天,一共领取金币个.(2)从1月1日开始签到,以后连续签到不中断,结果一共领取了255个,问连续签到了几天?(3)张阿姨从1月1日开始坚持每天签到,达到可以每天领取30个金币,后来因故有2天(不定连续)忘记签到,到1月16日签到完成时,发现自己一共领取了215个金币,请直接写出她没有签到日期的所有可能结果.参考答案1-5:DADAB 6-10:DDDAB 11-12:CA13、114、1115、-216、-1或-317、-518、(1)-8;(2)619、:∵|a|=4,|b|=6,|a+b|=-(a+b),∴a=4,b=-6或a=-4,b=-6,当a=4,b=-6时,a-b=4-(-6)=4+6=10,当a=-4,b=-6时,a-b=(-4)-(-6)=(-4)+6=2.20、:∵a<b<0<c<-b,∴a-b<0,c+b<0,|a-b|+|c+b|=-(a-b)-(c+b)=-a+b-c-b=-a-c21、:(1)+5-3+10-8-6+12-10=27-27=0,所以小虫最后回到出发点A;(2)第一次爬行距离原点是5cm,第二次爬行距离原点是5-3=2(cm),第三次爬行距离原点是2+10=12(cm),第四次爬行距离原点是12-8=4(cm),第五次爬行距离原点是|4-6|=2(cm),第六次爬行距离原点是-2+12=10(cm),第七次爬行距离原点是10-10=0(cm),从上面可以看出小虫离开原点最远是12cm;(3)小虫爬行的总路程为:|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm).54×1=54(粒)所以小虫一共得到54粒芝麻.22、:(1)(+6)+(-3)+(+10)+(-8)+(+12)+(-7)+(-10),=6-3+10-8+12-7-10,=28-28,=0,∴王先生最后能回到出发点1楼;(2)王先生走过的路程是3(|+6|+|-3|+|+10|+|-8|+|+12|+|-7|+|-10|),=3(6+3+10+8+12+7+10),=3×56,=168(m),∴他办事时电梯需要耗电168×0.2=33.6(度).23、:(1)∵第1天签到领取5个,连续签到,则第2天领取10个,第3天领取15个,第4天领取20个,第5天领取25个,∴第6天领取30个;∵每日可领取的金币数量最高为30个,∴第7天领取30个;连续签到6天,一共领取金币5+10+15+20+25+30=105(个);故答案为:30,30,105;(2)根据题意得:(255-105)÷30=5,5+6=11(天),答:连续签到了11天;(3)根据题意可得,所有可能结果是8号与12号,8号与13号未签。

人教版 七年级数学上册 第1章 有理数的减法 同步测试

人教版 七年级数学上册 第1章 有理数的减法 同步测试

1.3.2有理数的减法 同步测试一、选择题1.如图所示的是南昌市去年一月份某一天的天气预报,则该天最高气温比最低气温高( ).A .3-℃B .7℃C .3℃D .7-℃2.算式8763-+-的正确读法是( )A .8,7,6,3的和B .8减7加6减3的和C .8减7加正6,减负3D .正8,负7,正6,负3的和3.在一家水果店,小明买了1斤苹果,4斤西瓜,2斤橙子,1斤葡萄,共付27.6元;小惠买了2斤苹果,6斤西瓜,2斤橙子,2斤葡萄,共付32.2元.则买1斤西瓜和1斤橙子需付( )A .16元B .14.8元C .11.5元D .10.7元4.数轴上A ,B 两点所表示的数分别是﹣2,3,则表示AB 之间距离的算式是( )A .3(2)--B .3(2)+-C .23--D .2(3)---5.把()()()()57236---+--+写成省略括号的和的形式正确的是( )A .57236++-B .()57236-+--C .57236-+--D .57236-++-6.若数a 与3在数轴上表示的两个点关于原点对称,数b 在数轴上的点到原点的距离等于4,且在原点右侧,则-a b 的值是( )A .-1B .7-C .-1或7D .1或-77.若a 为负数,则a 和它相反数的差的绝对值是( )A .2aB .0C .-2aD .a8.|x |=8,|y |=4,x <y ,则x-y 的值是( )A .-12B .-4C .4或12D .-4或 -129.有10袋小麦称后记录如图所示(单位:kg ),如果每袋小麦以90kg 为标准,10袋小麦总计是超过(记作正数)或不足(记作负数)多少千克,其中正确答案是( )A .5.3kgB .5.4kgC .-5.3kgD .-5.4kg10.一组连续整数991001011022020⋯,,,,,前分别添加“+”和“”-,并运算,则所得最小非负整数是( ) A .1B .0C .199D .99二、填空题11.计算:(﹣7)﹣(+5)+(+13)=_____.12.如果240x y -++=,那么代数式y -x 的值是____________.13.若a 是最小的非负数,b 是最大的负整数,则a -b =___________14.一只蚂蚁由数轴上表示2-的点先向右爬3个单位长度,再向左爬5个单位长度,则此蚂蚁所在的位置表示的数是________.15.一家电脑公司仓库原有电脑100台,一个星期调入、调出的电脑记录是:调入38台,调出42台,调入27台,调出33台,调出40台,则这个仓库现有电脑_________台.16.规定图形表示运算a ﹣b+c ,图形表示运算x+z ﹣y ﹣w .则=_______(直接写出答案).17.若11a =,212a =⨯,…,12n a =⨯⨯…⨯n .则1234a a a a ++…20182020a a +=________.三、解答题18.计算:(1)16﹣17 (2)﹣4.3﹣(﹣5.7)(3)15171616⎛⎫-- ⎪⎝⎭ (4)254+177--- (5)﹣|﹣6﹣14|﹣(﹣20)19.计算:(1)|﹣3.2|+|0.5|﹣|1+215| (2)0﹣(+2)﹣(﹣1)+(+4)﹣(﹣5)(3)(﹣479)﹣(﹣316)﹣(+229)+(﹣616) (4)(﹣3.125)+(+4.75)+(﹣978)+(+514)+(﹣423)20.一名足球守门员练习折返跑,从球门线出发,向前记为正数,返回记为负数,他的记录如下(单位:米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10(1)守门员最后是否回到了球门线的位置?(2)守门员全部练习结束后,共跑了多少米?(3)在练习过程中,守门员离开球门线的最远距离是多少米?21.某巡警车在一条南北大道上巡逻,某天巡警车从岗亭A 处出发,规定向北方向为正,当天行驶纪录如下(单位:千米):10+,9-,7+,15-,6+,5-,4+,2-(1)最终巡警车是否回到岗亭A 处?若没有,在岗亭何方,距岗亭多远?(2)巡警车行驶1千米耗油0.2升,油箱有油10升,够不够?若不够,途中还需补充多少升油?22.已知a 为4-的相反数与12-的绝对值的差,b 是比6-大5的数.(1)求-a b 的值;(2)求b a -的值;(3)从(1)和(2)的计算结果,你能知道-a b 与b a -之间有什么关系吗?参考答案1.B【分析】用最高气温减去最低气温,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【详解】解:5-(-2)=5+2=7(℃).故选:B .【点睛】本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键. 2.D【分析】根据有理数的加减混合运算实际上是各数的加法运算即可求解.【详解】解:算式8763-+-的正确读法为正8,负7,正6,负3的和.故选:D .【点睛】本题考查了有理数的加减混合运算,有理数的加减混合运算实际上是各数的加法运算. 3.C【分析】先用小惠买水果的钱减去小明买水果的钱得到1斤苹果,2斤西瓜,1斤葡萄的钱,再用小明买水果的钱减去1斤苹果,2斤西瓜,1斤葡萄的钱得到2斤西瓜和2斤橙子的钱,最后除以2即可得出答案.【详解】由题意可得:()27.632.227.62⎡⎤÷⎣⎦﹣﹣()27.64.62=÷﹣232=÷11.5=(元).故买1斤西瓜和1斤橙子需付11.5元.故选:C .【点睛】本题考查了有理数的加减,解题的关键是求出1斤苹果,2斤西瓜,1斤葡萄的钱.4.A【分析】在数轴上两点之间的距离可以用较大的数减去较小的数来进行计算.【详解】根据距离的表示方法可得AB 的距离为:3-(-2),故选:A .【点睛】本题主要考查的是数轴上两点之间的距离的计算,属于基础题型.在数轴上,如果不知道两个数的大小时,我们可以用两点所表示的数的差的绝对值来计算.5.C【分析】根据有理数的加减混合运算的运算方法,判断出算式()()()()57236---+--+写成省略括号的形式,正确的是哪个即可.【详解】解:()()()()57236---+--+=-5+7-23-6,故选C .【点睛】此题主要考查了有理数的加减混合运算,要熟练掌握,在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.6.B【分析】由数a 与3在数轴上表示的两个点关于原点对称,求解,a 再利用数b 在数轴上的点到原点的距离等于4,且在原点右侧,求解b ,从而可得答案.【详解】 解: 数a 与3在数轴上表示的两个点关于原点对称,3,a ∴=-数b 在数轴上的点到原点的距离等于4,且在原点右侧,4,b ∴=347.a b ∴-=--=-故选:.B【点睛】本题考查的是数轴上点对应的数的特点,数轴上的点与原点的距离,关于原点对称的两个点对应的数之间的关系,有理数的减法运算,掌握以上知识是解题的关键.7.C【分析】列式表示出a 和它的相反数a -的差的绝对值是2a ,再根据a 是负数去化简绝对值.【详解】解:a 的相反数是a -,∵a 是负数, ∴()22a a a a --==-.故选:C .【点睛】本题考查绝对值和相反数的定义,以及有理数的减法,解题的关键是掌握绝对值和相反数的性质. 8.D【分析】根据绝对值的性质求出x 与y 的值,根据x <y 得到x=-8,y=±4,再计算求值即可.【详解】∵|x |=8,|y |=4,∴x=±8,y=±4,∵x <y ,∴x=-8,y=±4,∴当x=-8,y=4时,x-y=-8-4=-12,当x=-8,y=-4时,x-y=-8+4=-4,故选:D.【点睛】此题考查绝对值的性质,有理数的大小比较,有理数的加减计算法则.【分析】计算各袋超过或不足的千克数,得到这10袋小麦总计超过或不足多少千克数.【详解】解:91,91,91.5,89,91.2,91.3,88.7,88.8,91.8,91.1重新记录如下:1、1、1.5、-1、1.2、1.3、-1.3、-1.2、1.8、1.1,1+1+1.5-1+1.2+1.3-1.3-1.2+1.8+1.1=5.4(千克),即10袋小麦总计是超过5.4千克,故选:B.【点睛】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确超出部分为正数,不足部分为负数.10.A【分析】给每个数前面添加一个正负号,然后要想最后的结果是最小非负整数,基本上就是正负相间,然后再根据结果适当调整某个数的符号即可.【详解】-+-++--+-+-+ 991001011021057105810591060106120192020=++--++++--+-+(992020)(1002019)(10571062)(10581061)(10591060)=+-++-+++-+2119(2119)2119(2119)2019(2119)11=故选:A.【点睛】本题主要考查有理数的运算,掌握有理数的运算法则是解题的关键.11.1【分析】根据有理数的加减法法则从左往右计算即可求解.【详解】解:(﹣7)﹣(+5)+(+13)=﹣7﹣5+13=﹣12+13故答案为:1.【点睛】考查了有理数的加减混合运算,方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式. ②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.12.-6.【分析】根据非负数的性质求出x 、y 的值,再代入求值即可.【详解】解:∵240x y -++=∴20x -=,40y +=,∴2x =,4y =-,426y x -=--=-,故答案为:-6.【点睛】本题考查了绝对值的非负性和有理数的减法,解题关键是熟练运用非负数的性质求出未知数的值,准确计算.13.1【分析】根据有理数的定义及其分类得出a=0、b=-1,代入计算可得.【详解】解:∵a 是最小的非负数,∴a=0,∵b 是最大的负整数,∴b=-1,∴a -b =0-(-1)=1;故答案为:1.【点睛】本题考查了有理数的混合运算,解题的关键是掌握有理数的定义及其分类、有理数的混合运算顺序和运算法则.14.-4【分析】数轴上点的移动规律是“左减右加”,所以此蚂蚁所在的位置表示的数是-2+3-5=-4.【详解】解:蚂蚁所在的位置为:-2+3-5=-4.故答案为:-4.【点睛】主要考查了数轴,要注意数轴上点的移动规律是“左减右加”.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.15.50【解析】将调入的电脑数量记为“”,调出的电脑数量记为“”,由题意,得,所以这个仓库现有电脑台. 16.-2【分析】利用题中的新定义计算即可得到结果.【详解】解:根据题意得:=4+6-7-5=10-12=-2,故答案为-2.【点睛】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.17.10092020 【分析】 先根据新定义的运算法则进行,然后利用()11111n n n n =-++即可求解. 【详解】解:由题意可知:原式=1121220181231234122020⨯⨯⨯⨯+++⨯⨯⨯⨯⨯⨯⨯⨯ 111233420192020=+++⨯⨯⨯ 111111233420192020=-+-++- 1122020=- 1009=2020故答案为:10092020. 【点睛】 此题主要考查新定义的运算法则,熟练掌握()11111n n n n =-++是解题关键. 18.(1)-1;(2)1.4;(3)8;(4)-6;(5)12【详解】【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用减法法则变形,计算即可得到结果;(3)原式利用减法法则变形,计算即可得到结果;(4)根据绝对值的定义和减法法则变形,计算即可得到结果;(5)根据绝对值的定义和减法法则变形,计算即可得到结果.(1)原式=﹣1; (2)原式=﹣4.3+5.7=1.4;(3)原式15171616=+=8; (4)原式=﹣425177--=6; (5)原式=﹣8+20=12.19.(1)0.5;(2)8;(3)-10;(4)273- 【详解】【分析】(1)根据绝对值的定义以及有理数的加减法法则计算即可;(2)(3)(4)根据有理数的加减法法则计算即可.(1)原式=3.2+0.5﹣1﹣2.2=(3.2﹣2.2)﹣1+0.5=1﹣1+0.5=0.5;(2)原式=0﹣2+1+4+5=8;(3)原式721142369966--=(+)+()=﹣7﹣3=﹣10;(4)原式7123.12594.7554843--=(+)+(+)=﹣13+10243-273-=.20.(1)守门员最后回到了球门线的位置;(2)守门员全部练习结束后,他共跑了54米;(3)在练习过程中,守门员离开球门线的最远距离是12米【详解】【分析】(1)将所有记录数据相加,即可求出守门员离球门线的位置;(2)将所有记录数据取绝对值,再相加即可;(3)通过列式计算可得守门员离开球门线最远距离.(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=(5+10+12)﹣(3+8+6+10)=27﹣27=0,答:守门员最后回到了球门线的位置;(2)|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|=5+3+10+8+6+12+10=54;答:守门员全部练习结束后,他共跑了54米;(3)第1次守门员离开球门线5米;第2次守门员离开球门线:5﹣3=2(米);第3次守门员离开球门线:2+10=12(米);第4次守门员离开球门线:12﹣8=4(米);第5次守门员离开球门线:|4﹣6|=2(米);第6次守门员离开球门线:|﹣2+12|=8(米);第7次守门员离开球门线:|8﹣10|=2(米);所以在练习过程中,守门员离开球门线的最远距离是12米.21.(1)没有回到岗亭A 处,距离岗亭南面4千米;(2)不够,至少还需1.6升油.【分析】(1)计算出八次行车里程的和,看其结果正负情况即可判断位置;(2)求出所记录的八次行车里程的绝对值的和,再计算油耗,经过比较即可得出答案.【详解】解(1) 10971565424-+-+-+-=-(千米)所以最终巡逻车没有回到A 处,距离岗亭A 处南面4千米.(2)行驶路程|10||9||7||15||6||5||4||2|+-++-++-++-1097156542=+++++++,58=(千米),∴需要油量:580.211.6⨯=(升),∵11.610>,故油不够,需要补充11.6-10=1.6升.【点睛】本题考查用正负数表示的相反意义的量的应用题,关键理解基准量,和正负数表示的意义,会计算相反意义的量和,会解释结果正负表示的意义,理解相反意义的量的绝对值是解题关键.22.(1)-7;(2)7;(3)互为相反数【分析】由题意得a 表示的数为8-,b 表示的数为1-,然后分别代入(1)(2)求解,然后由(1)(2)可求解(3).【详解】解:由题意得:4128,651a b =--=-=-+=-,∴a 表示的数为8-,b 表示的数为1-,∴(1)()81817a b -=---=-+=-,(2)187b a -=-+=,(3)-a b 与b a -互为相反数.。

中考数学七年级数学有理数加减法同步练习和答案北师大版

中考数学七年级数学有理数加减法同步练习和答案北师大版

七年级数学有理数加减法同步练习题1.某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是 ℃。

2.直接写出答案(1)(-2.8)+(+1.9)= ,(2)10.75(3)4--= ,(3)0(12.19)--= ,(4)3(2)---=3. 已知两个数556和283-,这两个数的相反数的和是 。

4. 将()()()6372-+--+-中的减法改成加法并写成省略加号的代数和的形式应是 。

5. 已知m 是6的相反数,n 比m 的相反数小2,则m n -等于 。

6.在-13与23之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的和是 。

7. 小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是 .二.选择:8.下列交换加数的位置的变形中,正确的是( ) A 、14541445-+-=-+- B 、1311131134644436-+--=+-- C 、12342143-+-=-+- D 、4.5 1.7 2.5 1.8 4.5 2.5 1.8 1.7--+=-+-9. 下列计算结果中等于3的是( )A. 74-++B. ()()74-++C. 74++-D. ()()74+-- 10. 下列说法正确的是( )A. 两个数之差一定小于被减数B. 减去一个负数,差一定大于被减数C. 减去一个正数,差一定大于被减数D. 0减去任何数,差都是负数11.校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在 A. 在家 B. 在学校 C. 在书店 D. 不在上述地方12、火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京,根据以上规定,杭州开往北京的某一直快列车的车次号可能是( )(A) 20 (B) 119 (C) 120 (D) 319 13. 计算: ①-57+(+101) ②90-(-3)③-0.5-(-341)+2.75-(+721) ④712143269696⎛⎫⎛⎫⎛⎫⎛⎫----++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⑤ ()34187.5213772⎛⎫⎛⎫⎛⎫-+-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⑥ ()232321 1.75343⎛⎫⎛⎫⎛⎫------+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭14. 某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自O 地出发到收工时所走路线(单位:千米)为:+10、-3、+4、+2、-8、+13、-2、+12、+8、+5 (1)问收工时距O 地多远?(2)若每千米耗油0.2升,从O 地出发到收工时共耗油多少升?15、某商场老板对今年上半年每月的利润作了如下记录:1、2、5、6月盈利分别是13万元、12万元、12.5万元、10万元,3、4月亏损分别是0.7万元和0.8万元。

人教新版 七年级(上)数学 1.3.2 有理数的减法 同步练习卷 (Word版 含解析)

人教新版 七年级(上)数学 1.3.2 有理数的减法 同步练习卷 (Word版 含解析)

1.3.2 有理数的减法同步练习卷一、选择题(共11小题).1.下列计算结果中等于3的数是()A.|﹣7|+|+4|B.|(﹣7)+(+4)|C.|+7|+|﹣4|D.|(﹣7)﹣(﹣3)|2.与(﹣a)﹣(﹣b)相等的式子是()A.(+a)+(﹣b)B.(﹣a)+(﹣b)C.(﹣a)+(+b)D.(+a)+(﹣b)3.当a<0时,2,2+a,2﹣a,a中最大的是()A.2B.2+a C.2﹣a D.a4.下列计算正确的是()A.﹣6+(﹣3)+(﹣2)=﹣1B.7+(﹣0.5)+2﹣3=5.5C.﹣3﹣3=0D.5+(﹣0.5)+7﹣3=5.55.下列算式正确的是()A.(﹣14)﹣5=﹣9B.0﹣(﹣3)=3C.(﹣3)﹣(﹣3)=﹣6D.|5﹣3|=﹣(5﹣3)6.计算(﹣2)﹣5的结果等于()A.﹣7B.﹣3C.3D.77.下列说法正确的是()A.两个数的差一定小于被减数B.减去一个正数,差一定大于被减数C.0减去任何数,差都是负数D.减去一个负数,差一定大于被减数8.把8﹣(+4)+(﹣6)﹣(﹣5)写成省略加号的和的形式是()A.8﹣4﹣6+5B.8﹣4﹣6﹣5C.8+(﹣4)+(﹣6)+5D.8+4﹣6﹣59.有理数a、b在数轴上的位置如图所示,则a﹣b的值()A.大于0B.小于0C.等于0D.大于a10.下列算式中:①2﹣(﹣2)=0;②(﹣3)﹣(+3)=0;③(﹣3)﹣|﹣3|=0;④0﹣(﹣1)=1.其中正确的有()A.1个B.2个C.3个D.4个11.某地一天早晨的气温是﹣5℃,中午上升了10℃,午夜又下降了8℃,则午夜的气温是()A.﹣3℃B.﹣5℃C.5℃D.﹣9℃二、填空题12.两个有理数的差是7,被减数是﹣2,减数为.13.气温由﹣4℃下降5℃后的温度,列式表示为,结果为℃.14.式子﹣6﹣8+10﹣5读作或读作.15.计算:0﹣10=.16.比﹣3小8的数是.17.计算:3﹣(﹣5)+7=;计算﹣2﹣|﹣6|的结果是.18.某小河的水在汛期变化无常,第一天测得水位上升了3米,第二天测得水位回落了1.5米,第三天测得水位回落了2.5米,则此时的水位比刚开始的水位米.三、解答题19.计算:16+(﹣25)+24﹣15.20.把几个数用大括号围起来,中间用逗号断开,如:{1,2,﹣3}、,我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当有理数a是集合的元素时,有理数5﹣a也必是这个集合的元素,这样的集合我们称为好的集合.例如集合{5,0}就是一个好集合.(1)请你判断集合{1,2},{﹣2,1,2.5,4,7}是不是好的集合?(2)请你再写出两个好的集合(不得与上面出现过的集合重复).(3)写出所有好的集合中,元素个数最少的集合.21.下表列出了国外几个城市与首都北京的时差(带正号的表示同一时刻比北京时间早的时数),如北京时间的上午10:00时,东京时间的10点已过去了1小时,现在已是10+1=11:00.城市时差/时纽约﹣13巴黎﹣7东京+1芝加哥﹣14(1)如果现在是北京时间8:00,那么现在的纽约时间是多少;(2)此时(北京时间8:00)小明想给远在巴黎姑妈打电话,你认为合适吗?为什么?(3)如果现在是芝加哥时间上午6:00,那么现在北京时间是多少?22.河里水位第一天上升8cm,第二天下降7cm,第三天又下降了9cm,第四天又上升了3cm,经测量此时的水位为62.6cm,试求河里水位初始值.参考答案一、选择题1.下列计算结果中等于3的数是()A.|﹣7|+|+4|B.|(﹣7)+(+4)|C.|+7|+|﹣4|D.|(﹣7)﹣(﹣3)|解:A、结果是11,故本选项错误;B、结果是﹣3,故本选项正确;C、结果是11,故本选项错误;D、结果是﹣4,故本选项错误;故选:B.2.与(﹣a)﹣(﹣b)相等的式子是()A.(+a)+(﹣b)B.(﹣a)+(﹣b)C.(﹣a)+(+b)D.(+a)+(﹣b)解:(﹣a)﹣(﹣b)=﹣a+b,A、(+a)+(﹣b)=a﹣b,故本选项错误;B、(﹣a)+(﹣b)=﹣a﹣b,故本选项错误;C、(﹣a)+(+b)=﹣a+b,故本选项正确;D、(+a)+(﹣b)=a﹣b,故本选项错误.故选:C.3.当a<0时,2,2+a,2﹣a,a中最大的是()A.2B.2+a C.2﹣a D.a解:∵a<0,∴2﹣a>2>2+a>a.故选:C.4.下列计算正确的是()A.﹣6+(﹣3)+(﹣2)=﹣1B.7+(﹣0.5)+2﹣3=5.5C.﹣3﹣3=0D.5+(﹣0.5)+7﹣3=5.5解:A、﹣6+(﹣3)+(﹣2)=﹣11,故此选项错误;B、7+(﹣0.5)+2﹣3=5.5,正确;C、﹣3﹣3=﹣6,故此选项错误;D、5+(﹣0.5)+7﹣3=8.5,故此选项错误;故选:B.5.下列算式正确的是()A.(﹣14)﹣5=﹣9B.0﹣(﹣3)=3C.(﹣3)﹣(﹣3)=﹣6D.|5﹣3|=﹣(5﹣3)解:A、(﹣14)﹣5=﹣19,故本选项错误;B、0﹣(﹣3)=0+3=3,故本选项正确;C、(﹣3)﹣(﹣3)=﹣3+3=0,故本选项错误;D、|5﹣3|=2,﹣(5﹣3)=﹣2,故本选项错误.故选:B.6.计算(﹣2)﹣5的结果等于()A.﹣7B.﹣3C.3D.7解:(﹣2)﹣5=(﹣2)+(﹣5)=﹣(2+5)=﹣7,故选:A.7.下列说法正确的是()A.两个数的差一定小于被减数B.减去一个正数,差一定大于被减数C.0减去任何数,差都是负数D.减去一个负数,差一定大于被减数解:A、两个数的差不一定小于被减数,如3﹣(﹣1)=4>3,故本选项错误;B、减去一个正数,差一定小于被减数,如6﹣3=3<6,故本选项错误;C、0减去负数,差是正数,如0﹣(﹣1)=1,故本选项错误;D、减去一个负数,差一定大于被减数,3﹣(﹣1)=4>3,正确.故选:D.8.把8﹣(+4)+(﹣6)﹣(﹣5)写成省略加号的和的形式是()A.8﹣4﹣6+5B.8﹣4﹣6﹣5C.8+(﹣4)+(﹣6)+5D.8+4﹣6﹣5解:8﹣(+4)+(﹣6)﹣(﹣5)=8﹣4﹣6+5.故选:A.9.有理数a、b在数轴上的位置如图所示,则a﹣b的值()A.大于0B.小于0C.等于0D.大于a【解答】解;由图可知,a<0,b>0,∴a﹣b=a+(﹣b)<0.故选:B.10.下列算式中:①2﹣(﹣2)=0;②(﹣3)﹣(+3)=0;③(﹣3)﹣|﹣3|=0;④0﹣(﹣1)=1.其中正确的有()A.1个B.2个C.3个D.4个解:①2﹣(﹣2)=2+2=4,故本小题错误;②(﹣3)﹣(+3)=﹣3﹣3=﹣6,故本小题错误;③(﹣3)﹣|﹣3|=﹣3﹣3=﹣6,故本小题错误;④0﹣(﹣1)=0+1=1,故本小题正确;综上所述,正确的有④共1个.故选:A.11.某地一天早晨的气温是﹣5℃,中午上升了10℃,午夜又下降了8℃,则午夜的气温是()A.﹣3℃B.﹣5℃C.5℃D.﹣9℃解:(﹣5)+10﹣8=5﹣8=﹣3(℃)答:午夜的气温是﹣3℃.故选:A.二、填空题12.两个有理数的差是7,被减数是﹣2,减数为﹣9.解:﹣2﹣7=﹣9,故答案为:﹣9.13.气温由﹣4℃下降5℃后的温度,列式表示为﹣4﹣5,结果为﹣9℃.解:﹣4﹣5=﹣9℃.故答案为:﹣4﹣5;﹣9.14.式子﹣6﹣8+10﹣5读作负6、负8、正10、负5的和或读作﹣6减8加10减5.解:式子﹣6﹣8+10﹣5读作负6、负8、正10、负5的和或读作﹣6减8加10减5,故答案为:负6、负8、正10、负5的和,﹣6减8加10减5.15.计算:0﹣10=﹣10.解:0﹣10=0+(﹣10)=﹣10,故答案为:﹣10.16.比﹣3小8的数是﹣11.解:由题意得:﹣3﹣8=﹣3+(﹣8)=﹣(3+8)=﹣11.故答案为:﹣11.17.计算:3﹣(﹣5)+7=15;计算﹣2﹣|﹣6|的结果是﹣8.解:3﹣(﹣5)+7=8+7=15﹣2﹣|﹣6|=﹣2﹣6=﹣8故答案为:15、﹣8.18.某小河的水在汛期变化无常,第一天测得水位上升了3米,第二天测得水位回落了1.5米,第三天测得水位回落了2.5米,则此时的水位比刚开始的水位低1米.解:3﹣1.5﹣2.5=﹣1(m).答:此时的水位比刚开始的水位低1m.故答案为:低1.三、解答题19.计算:16+(﹣25)+24﹣15.解:16+(﹣25)+24﹣15=16+24+[(﹣25)+(﹣15)]=40+(﹣40)=0.20.把几个数用大括号围起来,中间用逗号断开,如:{1,2,﹣3}、,我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当有理数a是集合的元素时,有理数5﹣a也必是这个集合的元素,这样的集合我们称为好的集合.例如集合{5,0}就是一个好集合.(1)请你判断集合{1,2},{﹣2,1,2.5,4,7}是不是好的集合?(2)请你再写出两个好的集合(不得与上面出现过的集合重复).(3)写出所有好的集合中,元素个数最少的集合.解:(1)∵5﹣1=4∴{1,2}不是好的集合,∵5﹣4=1,5﹣(﹣2)=7,5﹣2.5=2.5,∴{﹣2,1,2.5,4,7}是好的集合;(2){8,﹣3};(3)由题意得:a=5﹣a,解得:a=2.5,故元素个数最少的好集合{2.5}.21.下表列出了国外几个城市与首都北京的时差(带正号的表示同一时刻比北京时间早的时数),如北京时间的上午10:00时,东京时间的10点已过去了1小时,现在已是10+1=11:00.城市时差/时纽约﹣13巴黎﹣7东京+1芝加哥﹣14(1)如果现在是北京时间8:00,那么现在的纽约时间是多少;(2)此时(北京时间8:00)小明想给远在巴黎姑妈打电话,你认为合适吗?为什么?(3)如果现在是芝加哥时间上午6:00,那么现在北京时间是多少?解:(1)8+(﹣13)=8﹣13=﹣5,∵一天有24小时,∴24+(﹣5)=19.答:现在的纽约时间是前一天晚上7点(或前一天19点);(2)8+(﹣7)=8﹣7=1答:不合适,因为巴黎现在当地时间是凌晨1点;(3)设北京时间为x则x+(﹣14)=6解得x=6﹣(﹣14)x=20.答:现在北京时间是当天20点.22.河里水位第一天上升8cm,第二天下降7cm,第三天又下降了9cm,第四天又上升了3cm,经测量此时的水位为62.6cm,试求河里水位初始值.解:设河里水位初始值为xcm.由题意x+8﹣7﹣9+3=62.6,解得x=67.6cm.答:河里水位初始值为67.6cm.。

七年级数学有理数加减法同步基础练习题

七年级数学有理数加减法同步基础练习题

数学有理数加减法同步练习题1.某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是 ℃。

2.直接写出答案(1)(-2.8)+(+1.9)= ,(2)10.75(3)4--= , (3)0(12.19)--= ,(4)3(2)---= 3. 已知两个数556和283-,这两个数的相反数的和是 。

4. 将()()()6372-+--+-中的减法改成加法并写成省略加号的代数和的形式应是 。

5. 已知m 是6的相反数,n 比m 的相反数小2,则m n -等于 。

6.在-13与23之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的和是 。

二.选择:7.下列交换加数的位置的变形中,正确的是( )A 、14541445-+-=-+-B 、1311131134644436-+--=+-- C 、 12342143-+-=-+- D 、4.5 1.7 2.5 1.8 4.5 2.5 1.8 1.7--+=-+-8. 下列计算结果中等于3的是( )A. 74-++B. ()()74-++C. 74++-D. ()()74+--9. 下列说法正确的是( )A. 两个数之差一定小于被减数B. 减去一个负数,差一定大于被减数C. 减去一个正数,差一定大于被减数D. 0减去任何数,差都是负数10.校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在A. 在家B. 在学校C. 在书店D. 不在上述地方11. 计算: ①-57+(+101) ②90-(-3) ③-0.5-(-341)+2.75-(+721) ④712143269696⎛⎫⎛⎫⎛⎫⎛⎫----++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⑤ ()34187.5213772⎛⎫⎛⎫⎛⎫-+-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⑥ ()232321 1.75343⎛⎫⎛⎫⎛⎫------+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1.3.2有理数的减法同步练习1.温度上升5℃,又下降7℃,后来又下降3℃,三次共上升 ℃.2.绝对值小于5的所有正整数的和为 .3.比-8的相反数多2的数是 .4.在数轴上表示-4和3的两点的距离是 .5,若a -(-b )=0,则a 与b 的关系是 .6.如b 为正数,则用“<”号连接a,a -b,a+b,为 .7.已知两数差是25,减数比7的相反数小5,则被减数是 .8.当x=-1, y=-12时,x - y = . 9.若X 与-1的差是-1,则X= .10.绝对值小于100的所有整数的和是 .11.已知M 是6的相反数,N 比M 的相反数小2,则m - n 等于( )A 4B 8C -10D 212.不改变原式的值,将6-(+3)-(-7)+(-2)中的减法改成加法并写成省略加号和的形式是 ( )A -6-3+7-2B 6-3-7-2C 6-3+7-2 D 6+3-7-213. 1x - + 3y + = 0, 则y -x -12的值是 ( ) A -412 B -212 C -112 D 112 14. 计算:(―12)―(―18) 6.25 ―(―734)(―112)―(+13) (―2.24)―(+4.76)运用与提高:19.一个数是8,另一个数比8的相反数小3,求两个数的和。

七年级数学有理数的减法专题卷(附答案)

七年级数学有理数的减法专题卷(附答案)

七年级数学有理数的减法专题卷(附答案)一、单选题(共5题;共10分)1.我县10月27日至31日天气预报的最高气温与最低气温如图所示,其中温差最大的一天是()A. 10月28日B. 10月29日C. 10月30日D. 10月31日2.某地一周前四天每天的最高气温与最低气温如右表,则这四天中温差最大的是()A. 星期一B. 星期二C. 星期三D. 星期四3.已知,且,那么的值为()A. 5B.C. 1或D. 或54.若,,且,则等于()A. 1或-1B. 5或-5C. 1或5D. -1或-55.如图,数轴上点A、B、C表示的有理数分别为a、b、c,下列结论成立的是()A. a+b<0B. c﹣b>0C. abc<0D. >0二、填空题(共4题;共4分)6.今年,我县冬天某天的气温是﹣1℃~4℃,这一天的温差是________.7.计算- =________ 8.计算:________.9.把算式3-(+5)+(-7)-(-8)写成省略加号的和式是________。

三、综合题10.已知数轴上有A,B,C,D,E,F六个点,点C在原点位置,点B表示的数为-4,下表中A-B,B-C,D-C,E-D,F-E的含义为前一个点所表示的数与后一个点所表示的数的差,比如B-C为-4-0=-4.(1)在数轴上表示出A,D两点(2)当点A与点F的距离为3时,求x的值(3)当点M以每秒1个单位长度的速度从点B出发向左运动时,同时点N从点A出以每秒3个单位长度的速度向点C运动,到达点C后立即以同样的速度反方向运动,么出发________秒钟时,点D到点M,点N的距离相等(直接写出答案)答案一、单选题1. D2. C3. D4. B5. D二、填空题6. 5℃7.8. -109. 3-5-7+8三、综合题10. (1)解:如图,点B表示的数是-4,点C在原点,∴点A:6,点D:-1.2(2)解:当点F在点A的左侧时,点F表示的数是6-3=3,点E表示的数是3-2=1,∴x=1-(-1)=2;当点F在点A的右侧时,点F表示的数是6+3=9,点E表示的数是:9-2=7,∴x=7-(-1)=8;(3)1或4。

北师大版(2024)七年级上册《2.2_有理数的加减运算2》2024年同步练习卷+答案解析

北师大版(2024)七年级上册《2.2_有理数的加减运算2》2024年同步练习卷+答案解析

北师大版(2024)七年级上册《2.2有理数的加减运算2》2024年同步练习卷一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.计算的结果等于()A.12B.C.6D.2.下列算式正确的是()A. B.C. D.3.下列算式正确的是()A. B.C. D.4.把统一为加法运算,正确的是()A. B.C. D.5.若,则括号内的数是()A.13B.3C.D.6.甲、乙两人用简便方法进行计算的过程如下所示,下列判断正确的是()甲:乙:A.甲、乙都正确B.甲、乙都不正确C.只有甲正确D.只有乙正确7.能与相加得0的数是()A. B. C. D.8.某同学在计算时,误将看成了,从而算得的结果是5,则正确结果是()A.13B.C.9D.二、填空题:本题共4小题,每小题3分,共12分。

9.已知甲地的海拔高度是300m ,乙地的海拔高度是,那么甲地比乙地高______.10.若a 的相反数是,b 的绝对值是4,则______.11.若a 是绝对值最小的数,b 是最大的负整数,则______.12.如图所示,某勘探小组测得E点的海拔为20m,F点的海拔为以海平面为基准,则E点比F点高______三、计算题:本大题共1小题,共6分。

13.计算;四、解答题:本题共10小题,共80分。

解答应写出文字说明,证明过程或演算步骤。

14.本小题8分计算:;;15.本小题8分计算:;;;;;16.本小题8分计算:;;;以地面为基准,A处高,B处高,C处高处比B处高多少米?处和C处哪个地方高?高多少米?处和C处哪个地方低?低多少米?18.本小题8分列式计算:减的差与的和;与的和减的差.19.本小题8分计算.;20.本小题8分计算:;;;;;;;;21.本小题8分某商店去年四个季度盈亏情况如下盈利为正数,亏损为负数:68万元,万元,万元,145万元.问:盈利最多的季度与最少的季度相差多少?全年盈亏情况如何?用简便方法计算:;23.本小题8分已知,若,,求的值;若,求的值.答案和解析1.【答案】C【解析】【分析】根据减去一个数等于加上这个数相反数,可得答案.本题考查了有理数的加法,先转化成加法,再进行加法运算.【解答】解:原式故选2.【答案】B【解析】解:,故选项A错误;B.,故选项B正确;C.,故选项C错误;D.,故选项D错误.故选:根据有理数的减法运算法则解答即可.本题考查了有理数的减法运算,熟练掌握有理数的减法运算法则是解题的关键.3.【答案】D【解析】解:,此选项的计算错误,故此选项不符合题意;B.,此选项的计算错误,故此选项不符合题意;C.,此选项的计算错误,故此选项不符合题意;D.,,,此选项的计算正确,故此选项符合题意;故选:各个选项均根据有理数的加减法则和绝对值是性质,进行计算,然后根据计算结果进行判断即可.本题主要考查了有理数的减法,解题关键是熟练掌握有理数的加减法则.4.【答案】B【解析】解:原式,故选:根据有理数的减法法则即可求得答案.本题考查有理数的减法,熟练掌握相关运算法则是解题的关键.5.【答案】A【解析】解:;故选:根据有理数的加法即可算出答案.本题考查的有理数的加法运算,解题关键是掌握有理数的加法法则.6.【答案】D【解析】解:甲的计算错误,正确过程如下:;乙的计算过程正确:原式,故选:分别根据甲乙两人的计算过程,结合加法的运算律,根据有理数的加减混合运算的法则进行判断即可.本题考查了有理数的加减混合运算,运用运算律简化运算,掌握加法运算律是解题的关键.7.【答案】B【解析】解:一个数能与相加得0,这个数是的相反数,即故选:根据相反数的定义列式求解即可.本题主要考查了相反数的应用,理解和为零的两个数互为相反数是解答本题的本题的关键.8.【答案】B【解析】解:由题意,得,,故选:根据题意,得出,求出N的值,然后再计算出正确结果即可.本题考查了有理数的加法运算和减法运算,熟练掌握有理数的加法运算法则和减法运算法则是解题的关键.9.【答案】360m【解析】解:根据题意,得,故答案为:根据甲地比乙地高列式计算.本题主要考查了有理数的加法,掌握有理数的加法运算法则,符号的确定是解题关键.10.【答案】7或【解析】解:的相反数是,的绝对值是4,当,时,则,当,时,故答案为:7或先根据相反数和绝对值的定义求得a、b的值,最后相加即可.本题主要考查的是求代数式的值,求得a、b的值是解题的关键.11.【答案】1【解析】解:若a是绝对值最小的数,b是最大的负整数,则,,故答案为:根据绝对值都是非负数,可得绝对值最小的数,根据相反数,可得一个负数的相反数.本题考查了绝对值,根据定义解题是解题关键.12.【答案】40【解析】解:,答:E点比F点高故答案为:根据题意,列出,再根据有理数的减法运算法则计算即可.本题考查了有理数的减法运算,正负数,熟练掌握有理数的减法运算法则是解题的关键.13.【答案】解:;【解析】根据有理数加减运算法则、去绝对值法则计算出结果即可.本题考查了有理数加减运算、去绝对值,做题关键是要掌握有理数加减运算法则、去绝对值法则.14.【答案】解:;;【解析】先把式子省略括号和加号,再加减;先把式子省略括号和加号,再把分数化为小数,最后利用加法的交换律和结合律;先把部分分数化为小数,再利用加法的交换律和结合律.本题考查了有理数的加减运算,掌握有理数的加减法法则、加法的交换律和结合律是解决本题的关键.15.【答案】解:;;;;;【解析】根据有理数减法法则:减去一个数,等于加上这个数的相反数.即:,依此计算即可求解.考查了有理数减法.①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号减号变加号;二是减数的性质符号减数变相反数16.【答案】;;;【解析】利用有理数的减法法则计算;利用有理数的减法法则计算;利用有理数的减法法则计算;利用有理数的减法法则计算.本题考查了有理数的减法运算,解题的关键是掌握有理数的减法法则.17.【答案】解:答:A处比B处高19m;,处比C处高,答:B处比C处高15m;,处比A处低,答:C处比A处低【解析】分别列式,再根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.本题考查了正负数的意义,大小比较,有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.18.【答案】解:;【解析】根据题意列出式子再进行计算即可;根据题意列出式子再进行计算即可.本题考查有理式的加减法,掌握运算法则是解题的关键.19.【答案】解:;【解析】先把式子化为省略加号和括号的形式,再把正数、负数分别相加;先把式子化为省略加号和括号的形式,再把分母相同的分数分别相加.本题考查了有理数的加减运算,掌握有理数的加减法法则、加法的交换律和结合律是解决本题的关键.20.【答案】解:原式;原式;原式;原式;原式;原式;原式;原式;原式【解析】直接利用有理数的加减运算法则计算得出答案.此题主要考查了有理数的减法,正确掌握相关运算法则是解题关键.21.【答案】解:由题意知,盈利最多的季度盈利了145万元,最少的季度盈利了万元,万元;由题意,,,万元答:盈利最多的季度与最少的季度相差285万元;全年亏损22万元.【解析】由题意知,盈利最多的季度为145万元,盈利最少的季度为万元,盈利最多的季度钱数-盈利最少的季度钱数,即为所求;四个季度的盈利额相加,结果为正则盈利,结果为负则亏损.本题主要考查了正数和负数,掌握正负数表示一对相反意义的量,用正数表示其中一种意义的量,另一种量用负数表示.22.【答案】解:;【解析】先把分数化为小数,再利用加法的交换律和结合律;先把减法转化为加法,再利用加法的交换律和结合律.本题考查了有理数的加减运算,掌握有理数的加减法法则、加法的交换律和结合律是解决本题的关键.23.【答案】解:,,,,,,,;,,,,或,,当,时,,当,时,,的值为或【解析】先根据已知条件,求出x,y值,再根据,,求出;由中求出的x,y值,根据,取值进行计算即可.本题主要考查了有理数的加减法,解题关键是熟练掌握有理数的加减法则.。

初一上册数学有理数的加减法练习题(有解析)

初一上册数学有理数的加减法练习题(有解析)

初一上册数学有理数的加减法练习题(有解析)想要学好数学,一定要多做同步练习,以下所介绍的七年级上册数学有理数的加减法练习题(有答案)同步练习,要紧是针对每一单元学过的知识来巩固自己所学过的内容,期望对大伙儿有所关心!一、填空题(每小题3分,共24分)1、+8与-12的和取___号,+4与-3的和取___号。

2、小华记录了一天的温度是:早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的温度是____℃。

3、3与-2的和的倒数是____,-1与-7差的绝对值是____。

4、小明存折中原有450元,取出260元,又存入150元,现在存折中还有____元。

5、-0.25比-0.52大____,比- 小2的数是____。

6、若一定是____(填正数或负数)7、已知,则式子_____。

8、把下列算式写成省略括号的形式:=____。

二、选择题(每小题3分,共24分)1、已知胜利企业第一季度盈利26000元,第二季度亏本3000元,该企业上半年盈利(或亏本)可用算式表示为( )A、B、C、D、2、下面是小华做的数学作业,其中算式中正确的是( )A、①②B、①③C、①④D、②④3、小明今年在银行中办理了7笔储蓄业务:取出9.5元,存进5元,取出8元,存进12无,存进25元,取出1.25元,取出2元,这时银行现款增加了( )A、12.25元B、-12.25元C、12元D、-12元4、-2与的和的相反数加上等于( )A、-B、C、D、5、一个数加上-12得-5,那么那个数为( )A、17B、7C、-17D、-76、甲、乙、丙三地的海拔高度分别为20米,-15米和-10米,那么最高的地点比最低的地点高( )A、10米B、15米C、35米D、5米7、运算:所得结果正确的是( )A、B、C、D、8、若,则的值为( )A、B、C、D、三、解答题(共52分)1、列式并运算:(1)什么数与的和等于?(2)-1减去的和,所得的差是多少?2、运算下列各式:(1)(2)(3)3、下列是我校七年级5名学生的体重情形,(1)试完成下表:姓名小颖小明小刚小京小宁体重(千克) 34 45体重与平均体重的差-7 +3 -4 0(2)谁最重?谁最轻?(3)最重的与最轻的相差多少?4、小红和小明在游戏中规定:长方形表示加,圆形表示减,结果小者获。

最新浙教版七年级数学上册《有理数的减法》同步训练及答案解析(精品试题).docx

最新浙教版七年级数学上册《有理数的减法》同步训练及答案解析(精品试题).docx

2.2 有理数的减法同步训练一.选择题(共8小题)1.计算(﹣2)﹣5的结果等于()A.﹣7 B.﹣3 C.3 D.72.某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是()A.10℃ B.﹣10℃C.6℃D.﹣6℃3.把﹣2+(+3)﹣(﹣5)+(﹣4)﹣(+3)写成省略括号和的形式,正确的是()A.﹣2+3﹣5﹣4﹣3 B.﹣2+3+5﹣4+3 C.﹣2+3+5+4﹣3 D.﹣2+3+5﹣4﹣34.若一个有理数与它的相反数的差是一个负数,则()A.这个有理数一定是负数B.这个有理数一定是正数C.这个有理数可以为正数、负数D.这个有理数为零5.设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a﹣b+c的值为()A.2 B.﹣2 C.2或﹣2 D.以上都不对6.“这三个数﹣7,12,﹣2的代数和”与“它们的绝对值的和”的差为()A.﹣18 B.﹣6 C.6 D.187.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>08.计算1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是()A.﹣1005 B.﹣2010 C.0 D.﹣1二.填空题(共8小题)9.把(﹣6)+(+3)﹣(﹣1)+(﹣2)写成省略加号和的形式是.10.若x=4,则|x﹣5|= .11.﹣1与﹣7差的绝对值是.12.甲、乙、丙三地的海拔高度分别是20m、﹣15m、﹣5m,那么最高的地方比最低的地方高m.13.点A在数轴上距原点3个单位长度,且位于原点右侧,若将A点向左移动4个单位长度,再向右移动1个单位长度,此时点A所表示的数是.14.若|x+1|+|y﹣2|=0,则x﹣y= .15.已知|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b﹣c= .16.已知有理数﹣1,﹣8,+11,﹣2,请通过有理数加减混合运算,使运算结果最大,则列式为.三.解答题(共2小题)17.(1)0﹣11 (2)(﹣13)+(﹣8)(3)(﹣2)﹣(﹣9)(4)(﹣4)﹣5(5)23+(﹣17)+6+(﹣22)(6)(﹣)+(﹣)++(﹣)(7)0﹣(﹣6)+2﹣(﹣13)﹣(+8)(8)﹣4.2+5.7﹣8.4+10.18.淮海中学图书馆上周借书记录如下:(超过100册记为正,少于100册记为负).星期一星期二星期三星期四星期五+23 0 ﹣17 +6 ﹣12(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?2.2 有理数的减法同步训练参考答案与试题解析一.选择题(共8小题)1.计算(﹣2)﹣5的结果等于()A.﹣7 B.﹣3 C.3 D.7【分析】根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:(﹣2)﹣5=(﹣2)+(﹣5)=﹣(2+5)=﹣7,故选:A.【点评】本题考查了有理数的减法,减去一个数等于加上这个数的相反数是解题关键.2.某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是()A.10℃ B.﹣10℃C.6℃D.﹣6℃【分析】根据题意算式,计算即可得到结果.【解答】解:根据题意得:8﹣(﹣2)=8+2=10,则该地这天的温差是10℃,故选A 【点评】此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.3.把﹣2+(+3)﹣(﹣5)+(﹣4)﹣(+3)写成省略括号和的形式,正确的是()A.﹣2+3﹣5﹣4﹣3 B.﹣2+3+5﹣4+3 C.﹣2+3+5+4﹣3 D.﹣2+3+5﹣4﹣3【分析】直接利用去括号法则去括号得出答案.【解答】解:﹣2+(+3)﹣(﹣5)+(﹣4)﹣(+3)=﹣2+3+5﹣4﹣3.故选:D.【点评】此题主要考查了有理数的加减混合运算,正确掌握去括号法则是解题关键.4.若一个有理数与它的相反数的差是一个负数,则()A.这个有理数一定是负数B.这个有理数一定是正数C.这个有理数可以为正数、负数D.这个有理数为零【分析】根据减去一个数等于加上这个数的相反数,负数减正数等于负数加负数.【解答】解:若一个有理数与它的相反数的差是一个负数,这个有理数一定是负数,故选:A.【点评】本题考查了有理数的减法,减去一个数等于加上这个数的相反数,注意负数减正数等于负数加负数.【解答】解:由a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,可得a=1,b=﹣1,c=0,所以a﹣b+c=1﹣(﹣1)+0=1+1+0=2,故选:A.【点评】本题主要考查有理数的概念的理解,能正确判断有关有理数的概念是解题的关键.6.“这三个数﹣7,12,﹣2的代数和”与“它们的绝对值的和”的差为()A.﹣18 B.﹣6 C.6 D.18【分析】根据题意列出算式,根据绝对值的性质和有理数的加减混合运算法则计算即可.【解答】解:(﹣7)+12+(﹣2)﹣(|﹣7|+|+12|+|﹣2|)=3﹣21=﹣18,故选:A.【点评】本题考查的是有理数的加减混合运算,掌握绝对值的性质以及有理数的加减混合运算法则是解题的关键.7.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>0【分析】先根据数轴判断出a、b的正负情况,以及绝对值的大小,然后对各选项分析后利用排除法求解.8.计算1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是()A.﹣1005 B.﹣2010 C.0 D.﹣1【分析】由题意,这从1到2010一共可分为1005组,每组的结果都是1.【解答】解:这从1到2010一共2010个数,相邻两个数之差都为﹣1,所以1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是﹣1005.故选A.【点评】此题主要考查有理数的加减混合运算,认真审题,找出规律,是解决此类问题的关键所在.二.填空题(共8小题)9.把(﹣6)+(+3)﹣(﹣1)+(﹣2)写成省略加号和的形式是﹣6+3+1﹣2 .【分析】根据有理数的减法法则把原式变形,根据去括号法则解答即可.【解答】解:(﹣6)+(+3)﹣(﹣1)+(﹣2)=(﹣6)+(+3)+(+1)+(﹣2)=﹣6+3+1﹣2.故答案为:﹣6+3+1﹣2.【点评】本题考查了有理数的混合运算,掌握减去一个数等于加上这个数的相反数是解题的关键.10.若x=4,则|x﹣5|= 1 .【分析】若x=4,则x﹣5=﹣1<0,由绝对值的定义:一个负数的绝对值是它的相反数,可得|x﹣5|的值.【解答】解:∵x=4,∴x﹣5=﹣1<0,故|x﹣5|=|﹣1|=1.【点评】本题考查绝对值的定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0;互为相反数的绝对值相等.11.﹣1与﹣7差的绝对值是 6 .【分析】先根据有理数的减法法则计算﹣1与﹣7的差,再根据绝对值的性质求出答案.【解答】解:|﹣1﹣(﹣7)|=6,故答案为:6.【点评】本题考查的是有理数的减法和绝对值的性质,掌握有理数的减法法则和一个正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数是解题的关键.12.甲、乙、丙三地的海拔高度分别是20m、﹣15m、﹣5m,那么最高的地方比最低的地方高35 m.【分析】求最高的地方比最低的地方高多少,把实际问题转化成减法,就是求最大数20与最小数﹣15的差.【解答】解:“正”和“负”相对,所以正数表示高出海平面的高度,负数表示低于海平面的高度,那么最高的地方比最低的地方高20﹣(﹣15)=35米.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.13.点A在数轴上距原点3个单位长度,且位于原点右侧,若将A点向左移动4个单位长度,再向右移动1个单位长度,此时点A所表示的数是0 .【分析】根据题意先确定A点表示的数,再根据点在数轴上移动的规律,左加右减,列出算式.【解答】解:因为点A在数轴上距原点3个单位长度,且位于原点右侧,所以,点A表示的数为3,移动后点A所表示的数是:3﹣4+1=0.【点评】实际问题中,正负数可以表示具有相反意义的量,本题向左、向右移动具有相反意义,可用正负数列式计算.14.若|x+1|+|y﹣2|=0,则x﹣y= ﹣3 .【分析】根据非负数的和为零,可得每个非负数同时为零,根据减去一个数等于加上这个数的相反数,可得答案.15.已知|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b﹣c= 2或0 .【分析】先利用绝对值的代数意义求出a,b及c的值,再根据a>b>c,判断得到各自的值,代入所求式子中计算即可得到结果.【点评】此题考查了有理数的加减混合运算,以及绝对值,确定出a,b及c的值是解本题的关键.16.已知有理数﹣1,﹣8,+11,﹣2,请通过有理数加减混合运算,使运算结果最大,则列式为+11﹣(﹣1﹣8﹣2).【分析】根据题意列出算式,使运算结果最大即可.【解答】解:根据题意得:+11﹣(﹣1﹣8﹣2),故答案为:+11﹣(﹣1﹣8﹣2).【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.三.解答题(共2小题)17.(1)0﹣11(2)(﹣13)+(﹣8)(3)(﹣2)﹣(﹣9)(4)(﹣4)﹣5(5)23+(﹣17)+6+(﹣22)(6)(﹣)+(﹣)++(﹣)(7)0﹣(﹣6)+2﹣(﹣13)﹣(+8)(8)﹣4.2+5.7﹣8.4+10.【分析】(1)将减法转化为加法,然后按照加法法则计算即可;(2)利用有理数的加法法则计算即可;(3)将减法转化为加法,然后按照加法法则计算即可;(4)将减法转化为加法,然后按照加法法则计算即可;(5)先将正数和正数相加,负数和负数相加,最后按照加法法则计算;(6)先将互为相反数的两数相加,然后再按照加法法则计算即可;(7)先将算式统一为加法运算,然后再按照加法法则计算即可;(8)先将正数和正数相加,负数和负数相加,最后按照加法法则计算.【解答】解:(1)0﹣11=0+(﹣11)=﹣11;(2)(﹣13)+(﹣8)=﹣(13+8)=﹣21;(3)(﹣2)﹣(﹣9)=﹣2+9=7;(5)23+(﹣17)+6+(﹣22)=23+6+[(﹣17)+(﹣22)] =29+(﹣39)=﹣10;(7)0﹣(﹣6)+2﹣(﹣13)﹣(+8)=0+6+2+13﹣8=13;(8)﹣4.2+5.7﹣8.4+10=﹣4.2﹣8.4+5.7+10=﹣12.6+15.7=3.1.【点评】本题主要考查的是有理数的加减混合运算,掌握有理数的加减运算法则是解题的关键.18.淮海中学图书馆上周借书记录如下:(超过100册记为正,少于100册记为负).星期一星期二星期三星期四星期五+23 0 ﹣17 +6 ﹣12(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?【分析】(1)根据题意得出算式100+(﹣12),求出即可(2)求出(+6)﹣(﹣17)的值即可;(3)求出+23、0、﹣17、+6、﹣12的平均数,再加上100即可.【解答】解:(1)100+(﹣12)=88(册),答:上星期五借出88册书;。

人教版七年级数学上册 第一章 有理数 第三节 有理数的加减法 同步测试

人教版七年级数学上册 第一章 有理数 第三节 有理数的加减法 同步测试

人教版七年级数学上册第一章有理数第三节有理数的加减法同步测试一.选择题(共10小题,每小题3分,共30分)1.荆州某日夜晚最低温度比白天最高温度下降了10℃.若这一天白天最高温度为8℃,则夜晚最低温度为()A.2℃B.﹣2℃C.0℃D.18℃2.遵义市2019年6月1日的最高气温是25℃,最低气温是15℃,遵义市这一天的最高气温比最低气温高()A.25℃B.15℃C.10℃D.﹣10℃3.计算﹣2+(﹣6)的结果是()A.12 B.C.﹣8 D.﹣44.比﹣3的相反数小1的数是()A.2 B.﹣2 C.D.5.计算﹣19+20等于()A.﹣39 B.﹣1 C.1 D.396.计算(﹣5)+(﹣7)的值是()A.﹣12 B.﹣2 C.2 D.127.我市春季里某一天的气温为﹣3℃~13℃,则这一天的温差是()A.3℃B.10℃C.13℃D.16℃8.已知|a|=1,b是2的相反数,则a+b的值为()A.﹣3 B.﹣1 C.﹣1或﹣3 D.1或﹣39.计算﹣8+1的结果为()A.﹣5 B.5 C.﹣7 D.710.在下列气温的变化中,能够反映温度上升5℃的是()A.气温由﹣5℃到5℃B.气温由﹣1℃到﹣6℃C.气温由5℃到0℃D.气温由﹣2℃到3℃二.填空题(共8小题,每小题3分,共24分)11.计算:﹣=.12.计算:﹣20﹣19=.13.某年一月份,哈尔滨市的平均气温约为﹣20℃,绥化市的平均气温约为﹣23℃,则两地的温差为℃.14.2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为和.15.某地某天早晨的气温是﹣2℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是℃.16.比﹣4大3的数是.17.扬州2月份某日的最高气温是6℃,最低气温是﹣3℃,则该日扬州的温差(最高气温﹣最低气温)是℃.18.若|a|=3,|b|=5且a>0,则a﹣b=.三.解答题(共7小题,共66分)19.若|a|=3,|b|=5,求a+b的值.20.一个数减去﹣5与2的和,所得的差是6,求该数的相反数.21.计算:﹣5+(+2)+(﹣1)﹣(﹣)22.列式并计算(1)求+1.2的相反数与﹣1.3的绝对值的和.(2)4与2的和的相反数.(3)巴黎和北京的时差是﹣7个小时,李伯伯于北京时间9月29号早上8:00搭乘飞往巴黎,飞行时间约11个小时,则李伯伯到达巴黎的时间是.(填月日时)23.某同学在计算时﹣3﹣N,误将﹣N看成了+N,从而算得结果是5,请你帮助算出正确结果.24.用A、B、C、D分别表示有理数a、b、c,0为原点如图所示.化简|a﹣c|+|b﹣a|+|c﹣a|25.下表记录的是今年长江某一周内的水位变化情况,这一周的上周末的水位已达到警戒水位33米(正号表示水位比前一天上升,负号表示水位比前一天下降).星期一二三四五六水位变化(米)+0.2 +0.8 ﹣0.4 +0.2 +0.3 ﹣0.2(1)本周哪一天长江的水位最高?位于警戒水位之上还是之下?(2)与上周周末相比,本周周末长江的水位是上升了还是下降了?并通过计算说明理由.参考答案一、选择题1.【解答】解:8℃﹣10℃=﹣2℃,夜晚最低温度为﹣2℃.故选:B.2.【解答】解:25﹣15=10℃.故选:C.3.【解答】解:﹣2+(﹣6)=﹣(2+6)=﹣8所以计算﹣2+(﹣6)的结果是﹣8.故选:C.4.【解答】解:﹣3的相反数为3,故比﹣3的相反数小1的数是2.故选:A.5.【解答】解:﹣19+20=1.故选:C.6.【解答】解:(﹣5)+(﹣7)=﹣(5+7)=﹣12,故选:A.7.【解答】解:13﹣(﹣3)=13+3=16.∴这一天的温差是16°C.故选:D.8.【解答】解:∵|a|=1,b是2的相反数,∴a=1或a=﹣1,b=﹣2,当a=1时,a+b=1﹣2=﹣1;当a=﹣1时,a+b=﹣1﹣2=﹣3;综上,a+b的值为﹣1或﹣3,故选:C.9.【解答】解:﹣8+1=﹣7.故选:C.10.【解答】解:A.气温由﹣5℃到5℃,上升了5﹣(﹣5)=10(℃),不符合题意;B.气温由﹣1℃到﹣6℃,上升了﹣6﹣(﹣1)=﹣5(℃),不符合题意;C.气温由5℃到0℃,上升了0﹣5=﹣5(℃),不符合题意;D.气温由﹣2℃到3℃,上升了3﹣(﹣2)=5(℃),符合题意;故选:D.二、填空题11.【解答】解:﹣+=﹣+=.故答案:.12.【解答】解:﹣20﹣19=﹣(20+9)=﹣39,所以计算﹣20﹣19的结果是﹣39.故答案:﹣39.13.【解答】解:﹣20﹣(﹣23)=﹣20+23=3(℃).故答案为3.14.【解答】解:设图中两空白圆圈内应填写的数字从左到右依次为a,b ∵外圆两直径上的四个数字之和相等∴4+6+7+8=a+3+b+11①∵内、外两个圆周上的四个数字之和相等∴3+6+b+7=a+4+11+8②联立①②解得:a=2,b=9∴图中两空白圆圈内应填写的数字从左到右依次为2,9故答案为:2;9.15.【解答】解:﹣2+6﹣7=﹣3,故答案为:﹣316.【解答】解:﹣4+3=﹣1.故答案为:﹣1.17.【解答】解:6﹣(﹣3)=9(℃)∴该日扬州的温差(最高气温﹣最低气温)是9℃.故答案为:9.18.【解答】解:∵|a|=3,|b|=5,a>0,∴a=3,b=±5,当a=3,b=5时,a﹣b=3﹣5=﹣2;当a=3,b=﹣5时,a﹣b=3﹣(﹣5)=8;综上,a﹣b的值为﹣2或8,故答案为:﹣2或8.三、解答题19.【解答】解:∵|a|=3,|b|=5,∴a=±3,b=±5,则a=3,b=5时,a+b=8.a=3,b=﹣5时,a+b=﹣2,a=﹣3,b=5时,a+b=2,a=﹣3,b=﹣5时,a+b=﹣8,综上,a+b的值为±2或±8.20.【解答】解:根据题意知这个数为6+(﹣5+2)=6+(﹣3)=3,所以这个数的相反数为﹣3.21.【解答】解:﹣5+(+2)+(﹣1)﹣(﹣)=(﹣5﹣1)+(2+)=﹣7+3=﹣4.22.【解答】解:(1)﹣(+1.2)+|﹣1.3|=﹣1.2+1.3=0.1;(2)﹣(4+2)=﹣7;(3)根据题意得:8+11﹣7=12,则到达巴黎得时间是12:00,故答案为:9月29日12:00.23.【解答】解:根据题意得:N=5﹣(﹣3)=5+3=9,则正确的算式为﹣3﹣9=﹣13.24.【解答】解:由图可知:a﹣c<0,b﹣a>0,c﹣a>0,所以|a﹣c|+|b﹣a|+|c﹣a|=﹣(a﹣c)+(b﹣a)+(c﹣a)=﹣a+c+b﹣a+c﹣a=﹣3a+b+2c.25.【解答】解:(1)正号表示水位比前一天上升,负号表示水位比前一天下降,由此计算出每天的实际水位即可求值.本周水位最高的为周五,周一:+0.2,周二:+0.2+0.8=+1,周三:+1﹣0.4=+0.6,周四:+0.6+0.2=+0.8,周五:+0.8+0.3=1.1m,故本周五水位最高高于警戒水位1.1m;(2)通过表格可得+0.2+0.8﹣0.4+0.2+0.3﹣0.2=0.9m,故与上周周末相比,本周周末长江的水位是上升了0.9m.。

人教版七年级上《1.3.2有理数的减法》同步练习含答案解析

人教版七年级上《1.3.2有理数的减法》同步练习含答案解析

《1.3.2 有理数的减法》一、选择题1.计算(﹣8)﹣2的结果是( )A.﹣6 B.6 C.10 D.﹣102.如图,数轴上A点表示的数减去B点表示的数,结果是( )A.8 B.﹣8 C.2 D.﹣23.下列说法正确的是( )A.两个数之差一定小于被减数B.减去一个负数,差一定大于被减数C.减去一个正数,差不一定小于被减数D.0减去任何数,差都是负数4.当a<0时,2,2+a,2﹣a,a中最大的是( )A.2 B.2+a C.2﹣a D.a5.0减去一个数等于( )A.这个数B.0C.这个数的相反数D.负数6.在(﹣4)﹣( )=﹣9中的括号里应填( )A.﹣5 B.5 C.13 D.﹣137.已知a,b在数轴上的位置如图所示,则a﹣b的结果的符号为( )A.正B.负C.0 D.无法确定二、填空题8.求﹣5℃下降3℃后的温度.列式表示为,结果为℃.9.在下列括号内填上适当的数.(1)(﹣7)﹣(﹣3)=(﹣7)+(2)(﹣5)﹣4=(﹣5)+ ;(3)0﹣(﹣2.5)=0+ ;(4)8﹣(+2 013)=8+ .10.两个有理数的差是7,被减数是﹣2,减数为.11.甲地的海拔是150m,乙地的海拔是130m,丙地的海拔是﹣105m,地的海拔最高,地的海拔最低,最高的地方比最低的地方高米,丙地比乙地低米.12.武汉地区2月5日早上6时的气温为﹣1℃,中午12时为3℃,晚上11时为﹣4℃,中午12时比早上6时高℃,晚上11时比早上低℃.三、解答题13.计算:(1)(﹣6)﹣9;(2)(﹣3)﹣(﹣11);(3)1.8﹣(﹣2.6);(4)(﹣2)﹣4.14.世界最高峰是珠穆朗玛峰,海拔高度是8848m,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是﹣392m,则两处高度差为米.15.列式计算:(1)已知甲、乙两数之和为﹣2020,其中甲数是﹣7,求乙数;(2)已知x是5的相反数,y比x小﹣7,求x与﹣y的差.16.已知a=﹣1,|﹣b|=|﹣|,c=|﹣8|﹣|﹣|,求﹣a﹣b﹣c的值.《1.3.2 有理数的减法》参考答案与试题解析一、选择题1.计算(﹣8)﹣2的结果是( )A.﹣6 B.6 C.10 D.﹣10【考点】有理数的减法.【专题】计算题;实数.【分析】原式利用减法法则变形,计算即可得到结果.【解答】解:原式=﹣(8+2)=﹣10,故选D【点评】此题考查了有理数的减法,熟练掌握减法法则计算是解本题的关键.2.如图,数轴上A点表示的数减去B点表示的数,结果是( )A.8 B.﹣8 C.2 D.﹣2【考点】数轴;有理数的减法.【分析】首先由数轴,得出A点表示的数是﹣3,B点表示的数是5,然后根据减法的意义,求出结果.【解答】解:﹣3﹣5=﹣8.故选B.【点评】知道数轴上的点和实数是一一对应的,会熟练计算有理数的减法.3.下列说法正确的是( )A.两个数之差一定小于被减数B.减去一个负数,差一定大于被减数C.减去一个正数,差不一定小于被减数D.0减去任何数,差都是负数【考点】有理数的减法.【分析】本题是对有理数减法的差的考查.【解答】解:如果减数是负数,那么差就大于被减数,所以第一个不对;减去一个负数等于加上它的相反数,即加上一个正数,差一定大于被减数;减去一个正数,差一定小于被减数,所以第三个不对;0减去负数,差是正数,所以最后一个不对.故选B.【点评】减去一个数等于加上这个数的相反数,所以差与被减数的关系要由减数决定.4.当a<0时,2,2+a,2﹣a,a中最大的是( )A.2 B.2+a C.2﹣a D.a【考点】有理数大小比较.【分析】根据有理数的减法,可得两正数相加,根据两正数的和大于任何一个正数,正数大于异号两数的和,正数大于负数,可得答案.【解答】解:∵a<0,∴2﹣a>2>2+a>a.故选:C.【点评】本题考查了有理数的大小比较,利用了两正数的和大于任何一个正数,正数大于异号两数的和,正数大于负数.5.0减去一个数等于( )A.这个数B.0C.这个数的相反数D.负数【考点】相反数.【分析】根据有理数减法法则:减去一个数,等于加上这个数的相反数作答.【解答】解:0减去一个数等于这个数的相反数.故选:C.【点评】本题考查了有理数减法.注意:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律.减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算.6.在(﹣4)﹣( )=﹣9中的括号里应填( )A.﹣5 B.5 C.13 D.﹣13【考点】有理数的减法.【分析】根据减数=被减数﹣减数列式,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:﹣4﹣(﹣9)=﹣4+9=5.故选B.【点评】本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.7.已知a,b在数轴上的位置如图所示,则a﹣b的结果的符号为( )A.正B.负C.0 D.无法确定【考点】数轴.【分析】先比较出a的b大小,然后在进行移项可得到问题的答案.【解答】解:∵a在b的左边,∴a<b.∴a﹣b<0.故选:B.【点评】本题主要考查的是数轴的认识,能够利用数轴比较两个数的大小是解题的关键.二、填空题8.求﹣5℃下降3℃后的温度.列式表示为﹣5﹣3 ,结果为﹣8 ℃.【考点】有理数的减法.【分析】用﹣5℃减去下降的温度列出算式即可,再根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣5﹣3=﹣8℃.故答案为:﹣5﹣3;﹣8.【点评】本题考查了有理数的减法,读懂题目信息并熟记运算法则是解题的关键.9.在下列括号内填上适当的数.(1)(﹣7)﹣(﹣3)=(﹣7)+ 3(2)(﹣5)﹣4=(﹣5)+ (﹣4) ;(3)0﹣(﹣2.5)=0+ 2.5 ;(4)8﹣(+2 013)=8+ (﹣2020) .【考点】有理数的减法.【分析】有理数减法法则:减去一个数,等于加上这个数的相反数.依此即可求解.【解答】解:(1)(﹣7)﹣(﹣3)=(﹣7)+3(2)(﹣5)﹣4=(﹣5)+(﹣4);(3)0﹣(﹣2.5)=0+2.5;(4)8﹣(+2 013)=8+(﹣2020).故答案为:3;(﹣4);2.5;(﹣2020).【点评】考查了有理数的减法,方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).10.两个有理数的差是7,被减数是﹣2,减数为﹣9 .【考点】有理数的减法.【分析】根据有理数的减法,即可解答.【解答】解:﹣2﹣7=﹣9,故答案为:﹣9.【点评】本题考查了有理数的减法,解决本题的关键是熟记有理数的减法.11.甲地的海拔是150m,乙地的海拔是130m,丙地的海拔是﹣105m,甲地的海拔最高,丙地的海拔最低,最高的地方比最低的地方高255 米,丙地比乙地低235 米.【考点】有理数的减法.【分析】先比较大小,得到海拔最高和海拔最低的地方,再根据有理数的减法运算,可得最大数减最小数,可得最高的地方比最低的地方高多少米,再用丙地比乙地的距离差.【解答】解:∵150m>130m>﹣105m,∴甲地的海拔最高,丙地的海拔最低,150﹣(﹣105)=255(m),130﹣(﹣105)=235(m).故最高的地方比最低的地方高255米,丙地比乙地低235米.故答案为:甲,丙,255,235.【点评】本题考查了有理数的减法,减一个数等于加这个数的相反数.12.武汉地区2月5日早上6时的气温为﹣1℃,中午12时为3℃,晚上11时为﹣4℃,中午12时比早上6时高 4 ℃,晚上11时比早上低 3 ℃.【考点】有理数的减法;有理数的加法.【分析】用中午的温度减去早上的温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解;用早上的温度减去晚上的温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:3﹣(﹣1),=3+1,=4℃;﹣1﹣(﹣4),=﹣1+4,=3℃.故答案为:4;3.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.三、解答题13.计算:(1)(﹣6)﹣9;(2)(﹣3)﹣(﹣11);(3)1.8﹣(﹣2.6);(4)(﹣2)﹣4.【考点】有理数的减法.【分析】(1)根据有理数的减法运算法则进行计算即可得解;(2)(3)根据减去一个数等于加上这个数的相反数进行计算即可得解;(4)根据有理数的减法运算法则进行计算即可得解.【解答】解:(1)(﹣6)﹣9=﹣15;(2)(﹣3)﹣(﹣11),=﹣3+11,=8;(3)1.8﹣(﹣2.6),=1.8+2.6,=4.4;(4)(﹣2)﹣4,=﹣2﹣4,=﹣7.【点评】本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.14.世界最高峰是珠穆朗玛峰,海拔高度是8848m,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是﹣392m,则两处高度差为9240 米.【考点】有理数的减法;正数和负数.【专题】应用题.【分析】求海拔高度差用“作差法”,即:珠穆朗玛峰海拔高度﹣死海湖面海拔高度,列式计算.【解答】解:8848﹣(﹣392)=8848+392=9240m.故答案为:9240m【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.15.列式计算:(1)已知甲、乙两数之和为﹣2020,其中甲数是﹣7,求乙数;(2)已知x是5的相反数,y比x小﹣7,求x与﹣y的差.【考点】有理数的加减混合运算;相反数.【专题】计算题.【分析】(1)用甲、乙两个数的和减去甲数,求出乙数是多少即可.(2)首先根据x是5的相反数,可得x=﹣5;然后根据y比x小﹣7,求出y的值,即可求出x与﹣y 的差是多少.【解答】解:(1)﹣2020﹣(﹣7)=﹣2020,答:乙数是﹣2020.(2)∵x是5的相反数,∴x=﹣5,∵y比x小﹣7,∴y=﹣5﹣7=﹣12,∴x﹣(﹣y)=﹣5﹣12=﹣17答:x与﹣y的差是﹣17.【点评】此题主要考查了有理数的加减混合运算,要熟练掌握,解答此题的关键是要明确:有理数加减法统一成加法.16.已知a=﹣1,|﹣b|=|﹣|,c=|﹣8|﹣|﹣|,求﹣a﹣b﹣c的值.【考点】绝对值.【分析】根据绝对值的性质求出b、c的值,计算即可.【解答】解:∵|﹣b|=|﹣|,∴b=,c=7,当a=﹣1,b=,c=7时,﹣a﹣b﹣c=﹣6,当a=﹣1,b=﹣,c=7时,﹣a﹣b﹣c=﹣5.【点评】本题考查的是绝对值的性质、有理数的加减混合运算,掌握绝对值的性质、有理数的加减混合运算法则是解题的关键.第1页(共3页)。

七年级有理数加减法练习题(有答案)

七年级有理数加减法练习题(有答案)

七年级有理数加减法练习题(有答案)七年级有理数加减法练习题1一、填空题1、若,,且,则 =2、已知 =3, =2,且ab0,则a-b= 。

3、若互为相反数,互为倒数,则4、下面是一个简单的数值运算程序,当输入的值为2时,输出的数值是 .5、在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如右图所示,则图中阴影部分的面积是。

6、符号“”表示一种运算,它对一些数的运算结果如下:(1) ,,,,…(2) ,,,,…利用以上规律计算: .二、选择题7、将6-(+3)-(-7)+(-2)写成省略加号的和的形式为 ( )A.-6-3+7-2B.6-3-7-2C.6-3+7-2D.6+3-7-28、若b0,则 a-b、a、a+b的大小关系是( )A.a-baa+b p="" b.aa-ba+b=""C.a+ba-ba p="" d.a+baa-b=""9、两个数相加,如果和为负数,则这两个数( )A.必定都为负B.总是一正一负C.可以都为正D.至少有一个负数10、已知、互为相反数,且,则的值为( )A.2B.2或3C.4D.2或411、如果表示有理数,那么的值……………………………………………( )A、可能是负数B、必定是正数C、不可能是负数D、可能是负数也可能是正数12、利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是( )A.73cmB.74cmC.75cmD.76cm13、若a0bc,a+b+c=1,M= ,N= ,P= ,则M、N、P之间的大小关系是()A、MNPB、NPMC、PMND、MPN14、一张纸片,第一次将其撕成2小片,以后每次将其中的一小片撕成更小的2片,则15次后共有纸片( )A.30张B.15张C.16张D.以上答案都不对15、如图,数轴上的两个点A、B所表示的数分别是,在中,是正数的有( )A.1个B.2个C.3个D.4个16、某乡镇有甲、乙两家液化气站,他们的每罐液化气的价格、质和量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年购买8罐液化气,则购买液化气最省钱的'方法是()A. 买甲站的B. 买乙站的C. 买两站的都可以D. 先买甲站的1罐,以后再买乙站的三、简答题四、17、月日,中国汽车协会发布最新汽车产销数据显示:上半年汽车销售量万辆.某汽车厂计划一周生产汽车辆,平均每天生产辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况 (超产记为正、减产记为负):星期一二三四五六日增减(1) 根据记录的数据可知该厂星期五生产汽车辆;(2) 产量最多的一天比产量最少的一天多生产汽车辆;(3) 根据记录的数据可知该厂本周实际生产汽车辆,该厂实行每周计件工资制,每生产一辆车可得元,那么该厂工人这一周的实际工资总额是元.18、对于有理数ab6,定义运算“”,a ~b=ab-a-b-2.(1)计算(-2) 3的值;(2)填空:4 (-2)_______(-2) 4(填“”“=”或“”);(3)我们知道:有理数的加法运算和乘法运算满足交换律.那么,由(2)计算的结果,你认为这种运算“”是否满足交换律?请说明理由.19、探索性问题数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础。

千山区一中七年级数学上册 有理数的加减法同步练习含解析新人教版

千山区一中七年级数学上册 有理数的加减法同步练习含解析新人教版

【答案】C
【解析】根据题意用最高气温 12℃减去最低气温-2℃,根据减去一个数等于加上这个数的相反数即可得到
答案.
【详解】12-(-2)=14(℃).故选:C.
【点睛】本题考查了有理数的减法运算,关键在于理解题意的列式计算.
3.在 2、﹣4、0、﹣3 四个数中,最大的数比最小的数大
A.﹣6 B.﹣2 C. D.
②被减数一定大于减数;错误,例如 2-3=-1;
③0 是最小的有理数;错误,例如-2 是有理数,-2 ;
④一个数的倒数一定小于它本身;错误,例如:1 的倒数是 1 等于它本身;
故选:A.
【点睛】本题考查了有理数的加法、减法,倒数的定义,以及有理数大小的比较,熟练掌握相关知识点是
解题的关键。
二、填空题 11.如果|a|=5,|b|=4,且 a+b<0,则 a-b 的值是________. 【答案】-1 或 -9 【解析】根据题意,利用绝对值的代数意义求出 a 与 b 的值,即可确定出 ab 的值. 【详解】∵|a|=5,|b|=4,且 a+b<0, ∴a=−5,b=−4;a=−5,b=4, 则 a−b=-1 或−9. 故答案为:-1 或−9.
【详解】算式 8-7+3-6 正确的读法是正 8、负 7、正 3、负 6 的和. 故答案为:正 8、负 7、正 3、负 6 的和. 【点睛】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键. 三、解答题 16.小虫从某点 A 出发在一条直线上来回爬行,规定向右爬行的路程记为正数,向左爬行的路程记为负 数.爬行的各段路程依次记为(单位:cm):﹣11、+8、+10、﹣3、﹣6、+12、﹣10 (1)小虫最后是否回到出发点,请判断并且说明理由 (2)在爬行的过程中,如果每爬行一个单位长度奖励一粒芝麻,则整个运动过程中小虫一共得到多少粒 芝麻? 【答案】(1)小虫最后回到出发点(2)一共得到 60 粒芝麻 【解析】(1)把记录数据相加,结果为 1,说明小虫最后回到距离点 O 右侧 1cm 的地方; (2)小虫一共得到的芝麻数,与它爬行的方向无关,只与爬行的距离有关,所以应把绝对值相加,再求 得到的芝麻粒数. 【详解】解:(1)﹣11+8+10﹣3﹣6+12﹣10=0. 所以小虫最后回到出发点; (2)|﹣11|+|+8|+|+10|+|﹣3|+|﹣6|+|+12|+|﹣10| =11+8+10+3+6+12+10 =60(cm), 60×1=60(粒). 所以整个运动过程中小虫一共得到 60 粒芝麻. 【点睛】此题考查了有理数的加减混合运算,以及正数与负数,弄清题意是解本题的关键. 17. 【答案】-15 【解析】根据有理数的加减混合运算法则计算即可. 【详解】原式=16-29-11+9, =25-40, =-15. 故答案为:-15. 【点睛】本题考查了有理数的加减混合运算,解题的关键是熟练的掌握有理数的加减混合运算法则.

七年级数学上册有理数的减法随堂练习题

七年级数学上册有理数的减法随堂练习题

七年级数学上册有理数的减法随堂练习题
一、单选题
1. 计算:−3−5的结果是( )
A. −2
B. 2
C. −8
D. 8
2. 遵义市2019年6月1日的最高气温是25∘C,最低气温是15∘C,遵义市这一天的
最高气温比最低气温高( )
A. 25∘C
B. 15∘C
C. 10∘C
D. −10∘C
3. 计算1−3的结果是( )
A. 2
B. −2
C. −4
D. 4
4. 计算8−(−8)的结果等于( )
A. −16
B. 0
C. 4
D. 16
5. 计算4-(-1)的结果等于( )
A. 4
B. -4
C. 3
D. 5
6. 若一个有理数与它的相反数的差为一个负数,则( )
A. 这个有理数一定是负数
B. 这个有理数一定是正数
C. 这个有理数可为正数,也可为负数
D. 这个有理数一定是零
7. 下列说法中,正确的是( )
A. 减去一个负数等于加上这个数的相反数
B. 两个负数的差,一定是负数
C. 零减去一个数,仍得这个数
D. 两个正数的差,一定是一个正数
8. 下列说法正确的是( )
A. 两个数之差一定小于被减数
B. 两个负数之差一定是负数
C. 一个正数减去一个负数,差一定是正数
D. 0减去任何数,差都是负数
二、解答题
9. 计算:(−31
2)−(+51
4
).
10. 计算:
(1)2−(−3);
(2)0−(−3.72)−(+2.72)−(−4);
(3)(+4
7)−31
3
.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.6有理数的减法
一、填空题
1. 1-0=_______, 0-1=_______, 0-(-
2)=_______. 2. a -_______=0, -b -_______=0.
3. ( )-(-10)=20,-8-( )=-15.
4. 比-6小-3的数是_______.
5. -172比17
1小_______. 二、选择题
1.
若x -y =0,则 [ ]
A .x =0
B .y =0
C .x =y
D .x =-y
2.
若|x |-|y |=0,则
[ ]
A .x =y
B .x =-y
C .x =y =0
D . x =y 或x =-y
3.
-(-21-31)的相反数是
[ ]
A .-21-31
B .-21+31
C .21-31
D . 21+3
1 三、判断题
1. 1-a 一定小于1.
( )
2. 若对于有理数a,b,有a+b=0,则a=0,b=0. ( )
3. 两个数的和一定大于每一个加数.
( )
4. a>0,b<0,则a-b>a+b. ( )
5. 若|x|=|y|,则x-y=0. ( )
四、解答题
1,则另一
1.两个加数的和是-10,其中一个加数是-10
2
个加数是多少?
2.某地去年最高气温曾达到36.5℃,而冬季
最低气温为-20.5℃,该地去年最高气温比最低
气温高多少度?
3.已知a =-83,b =-41,c =4
1,求代数式a -b -c 的值.
4.一个数的相反数的绝对值等于这个数的绝对值的相反数,问这个数是多少?
*自我陶醉
编写一道自己感兴趣并与本节内容相关的题,解答出来.
测验评价结果:_______________;对自己想说的一句话是:_______________________.
参考答案
一、1.1 -1 2 2.a (-b ) 3.10 7 4.-3 5.2
7
3 二、1.C 2.D 3.A
三、1.× 2.× 3.× 4.√ 5.×
四、1.21 2.57℃ 3.-83 4.0。

相关文档
最新文档