高考一轮复习必备—圆锥曲线讲义
高三数学一轮复习必备:圆锥曲线方程及性质
~高三数学(人教版A 版)第一轮复习资料第33讲 圆锥曲线方程及性质一.【课标要求】1.了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用;2.经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质;3.了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质二.【命题走向】本讲内容是圆锥曲线的基础内容,也是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,从近十年高考试题看主要考察圆锥曲线的概念和性质。
圆锥曲线在高考试题中占有稳定的较大的比例,且选择题、填空题和解答题都涉及到,客观题主要考察圆锥曲线的基本概念、标准方程及几何性质等基础知识和处理有关问题的基本技能、基本方法对于本讲内容来讲,预测:(1)1至2道考察圆锥曲线概念和性质客观题,主要是求值问题;(2)可能会考察圆锥曲线在实际问题里面的应用,结合三种形式的圆锥曲线的定义。
三.【要点精讲】1.椭圆(1)椭圆概念平面内与两个定点1F 、2F 的距离的和等于常数(大于21||F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫椭圆的焦距。
若M 为椭圆上任意一点,则有21||||2MF MF a +=椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或12222=+bx a y (0a b >>)(焦点在y 轴上)。
注:①以上方程中,a b 的大小0a b >>,其中222c a b =-; ②在22221x y a b +=和22221y x a b+=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2x 和2y 的分母的大小。
例如椭圆221x y m n+=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆(2)椭圆的性质①范围:由标准方程22221x y a b+=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里;②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。
高中数学圆锥曲线重要结论讲义
圆锥曲线重要结论椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b+=.6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b+=.7. 椭圆22221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8.椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB-=。
双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b-=.6. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。
第三章 圆锥曲线复习讲义(精心整理、好用、经典)
圆锥曲线复习讲义-学生版【基础知识】 一.椭圆与双曲线椭 圆双 曲 线定义 1212||||2(2||)PF PF a a F F +=>1212||||||2(2||)PF PF a a F F -=<方程22221x y a b += 22221x y b a+= 22221x y a b -= 22221y x a b -= 图形焦点 (,0)F c ± (0,)F c ±(,0)F c ± (0,)F c ±焦距 C F F 221=对称轴关于x .y 轴对称,关于原点成中心对称顶点长轴:(-a ,0),(a ,0) 短轴:(0,-b ),(0,b )长轴:(-b ,0),(b ,0) 短轴:(0,-a ),(0,a )实轴:(-a ,0),(a ,0) 虚轴:(0,-b ),(0,b )实轴:(-b ,0),(b ,0)虚轴:(0,-a ),(0,a )轴 长轴长2a ,短轴长2b实轴长2a ,虚轴长2b离心率 22222221(01)c c a b b e e a a a a-====-<< 22222221(1)c c a b be e a a a a+====+>渐进线无xab y ±= x ba y ±= a ,b ,c 2220c b a b a +=>>,2220b a c a c +=>>,M MPK K 1A A 2F F O yx二.抛物线的性质标准方程22(0)y px p => 22(0)y px p =->22(0)x py p => 22(0)x py p =-> 图形焦点坐标 (,0)2p(,0)2p-(0,)2p (0,)2p -准线方程 2p x =-2p x = 2p y =-2p y =范围 0x ≥ 0x ≤0y ≥ 0y ≤离心率1e = 1e = 1e = 1e = 三、弦长公式: ||14)(1||1||2212212212A k x x x x k x x k AB ∆⋅+=-+⋅+=-+= 其中,∆,A 分别是联立直线方程和圆锥曲线方程,消去 y 后所得关于x 的一元二次方程 的判别式和2x 的系数求弦长步骤:(1)求出或设出直线与圆锥曲线方程;(2)联立两方程,消去y,得关于x 的一元二次方程,02=++C Bx Ax 设),(11y x A ,),(22y x B ,由韦达定理求出AB x x -=+21,ACx x =21;(3)代入弦长公式计算。
高考一轮复习必备—圆锥曲线讲义
直线与圆锥曲 线一、直线l 与圆锥曲线C 的位置关系的判断判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax By C 0 (A, B 不同时为0)代入圆 锥曲线C 的方程F (x, v) =0,消去y (也可以消去x)得到关丁一个变量的一元二次方程,即联立三、中点弦所在直线的斜率.22222-2 ;若椭圆方程为土号1(a b 0)时,相应结论为k —^-°(y 0 0),即kgk °p土 ;aab' by °b'2222若双曲线方程为七,1时,相应结论为k %~°(y 0 0),即kck op 旦^;a bb y ° bI 复习提问Ax By C 0 F (x, y) 0消去y 后得ax 2bx c 0(1) 当a 0时,即得到一个一元一次方程,贝U l 与C 相交,有且只有一个交点,此时,若 C 为双曲线,则直线l 与双曲线的渐近线平■行;若 C 为抛物线,则直线l 抛物线的对称轴平■行(2)当a 0时, 0,直线l 与曲线C 有两个不同的交点;公共点(切点); 0,直线l 与曲线C 相离。
二、圆锥曲线的弦长公式0,直线l 与曲线C 相切,即有唯相交弦AB 的弦长2 2(1)若椭圆方程为 1 土 1(a a b b 0)时,以P(x °,y °)为中点的弦所在直线斜率kb 2x。
a 2y(y 。
即 k*°p(2) P2(x 0,y 0)是双曲线 —2~ a 2yb 21部一点,以 P 为中点的弦所在直线斜率k 孕(y °a V 。
k*°pABk 2^ 7(x i x^74x 1x 21j I y i y 2(3)) P (x °,y 。
)是抛物线y 2 2px 部一点,以P 为中点的弦所在直线斜率n题型与方法一、直线与圆锥曲线的位置关系 (1)直线与圆锥曲线有两个不同的公共点的判断:通法为直线代入曲线判断0;另一方法就是数形结合,如直 线与双曲线有两个不同的公共点,可通过判定直线的斜率与双曲线渐近线的斜率大小得到。
高考数学第一轮复习考纲《圆锥曲线与方程》课件25 文
(2)若斜率为12的直线 l 与椭圆 M 交于 C、D 两点,点 P1,32 为椭圆 M 上一点,记直线 PC 的斜率为 k1,直线 PD 的斜率为 k2,试问:k1+k2 是否为定值?请证明你的结论.
解析:(1)平面区域 Ω:||xy||≤≤2 3 是一个矩形区域, 如图 12-1-2(1).
2.椭圆的方程与几何性质
1.若椭圆x22+ym2=1 的离心率为12,则实数__m__=__32_或__83__. 2.已知椭圆的长轴长是 8,离心率是34,则此椭圆的标准方 程是__1x_62_+__y7_2_=__1_或__x7_2_+__1y_62_=__1_.
3.已知椭圆一个焦点到长轴1两个顶点间的距离分别是 3 3, 3,则椭圆的离心率是__2__.
2
考点 1 椭圆定义及标准方程
例 1:根据下列条件求椭圆的标准方程: (1)已知 P 点在以坐标轴为对称轴的椭圆上,点 P 到两焦点
的距离分别为43 的一个焦点;
5和23
5,过 P 作长轴的垂线恰好过椭圆
(2)经过两点 A(0,2)和 B12,
3.
解题思路:(1)设出标准方程,结合第一定义,求出长轴长, 依题意结合图形求出短轴长.(2)设椭圆方程直接带入 A、B 两 点求出待定系数.
【互动探究】 3.如图 12-1-1,在平面直角坐标系中,椭圆ax22+by22=1(a>b>0)
的焦距为 2c,以 O 为圆心,a 为半径的圆作圆 M,若过点 Pac2,0, 2
所作圆 M 的两切线互相垂直,则该椭圆的离心率为__2___.
图 12-1-1
例 4:(2010 年深圳调研)已知椭圆 M:ax22+by22=1(a>0,b>0) 的面积为 πab,且 M 包含于平面区域 Ω:||xy||≤ ≤2 3 内,向 Ω 内 随机投一点 Q,点 Q 落在椭圆 M 内的概率为π4.
圆锥曲线之中点问题及应用+讲义——2024届高三数学一轮复习
第2讲圆锥曲线论之中点问题及应用一、知识点1.中点弦所在直线方程2.有心圆锥垂径定理3.有心圆锥曲线第三定义4.对称问题二、典型例题【题型1 中点弦所在的直线的方程】例1.(1)已知直线l与圆x2+y2=9交于A,B两点,且AB的中点为P(1,1),求直线l的方程(2)已知直线l与椭圆x 24+y23=1交于A,B两点,且AB的中点为P(1,1),求直线l的方程(3)已知直线l与双曲线x2−y22=1交于A,B两点,且AB的中点为P(2,1),求直线l的方程(4)已知直线l与抛物线y2=4x交于A,B两点,且AB的中点为P(1,1),求直线l的方程【题型2有心圆锥曲线垂径定理】例2、(1)已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为√22,点(2,√2)在C上,直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB中点为M,直线OM的斜率与直线l的斜率的乘积为定值。
(2)已知椭圆C:9x2+y2=m2(m>0), 直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB中点为M,证明:直线OM的斜率与直线l的斜率的乘积为定值。
(3)已知A,B,C是椭圆W:x 24+y2=1上的三个点,O是坐标原点,当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由。
(4)已知椭圆E:x 2a2+y2b2=1(a>b>0)的离心率为√32,且过点(√72,34),点P在第一象限,A为左顶点,B为下顶点,PA交y轴于点C,PB交x轴于点D,若CD∥AB,求点P的坐标。
(5)双曲线C:x 2a2−y2b2=1(a>0,b>0),直线y=kx+m交双曲线C于A,B两点,交双曲线C的渐近线于C,D,求证:|AC|=|BD|(6)已知斜率为k的直线l与椭圆C:x 24+y23=1交于A,B两点,且AB的中点为M(1,m)(m>0),证明:k<−12(7)已知双曲线x2−y22=1,过点P(1,1)能否作直线l,使l与所给双曲线交于Q1,Q2两点,且点P是弦Q1Q2的中点?直线l如果存在,求出它的方程;如果不存在,说明理由。
2023届高三数学一轮复习专题 直线与圆锥曲线的综合运用 讲义 (解析版)
直线与圆锥曲线的综合运用一、知识梳理1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0①直线与圆锥曲线相交;①Δ=0①直线与圆锥曲线相切;①Δ<0①直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点.①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;①若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则AB=1+k2|x2-x1|=1+1k2|y2-y1|.3.过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线; 过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线.二、课前预习1.若直线y =kx +1与椭圆x 25+y 2m =1总有公共点,则m 的取值范围是____.2.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为____.3.直线mx +ny =4与①O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是____个.4.已知A 1,A 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右顶点,P 是椭圆C 上异于A 1,A 2的任意一点,若直线P A 1,P A 2的斜率的乘积为-49,则椭圆C 的离心率为____.5.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点)23,1(P ,离心率为12.(1) 求椭圆C 的方程. (2) 若斜率为32的直线l 与椭圆C 交于A ,B 两点,试探究OA 2+OB 2是否为定值?若为定值,求出此定值;若不是定值,请说明理由.三、典型例题题型一. 直线与圆锥曲线的位置关系例1已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.变式 在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上. (1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.例2 如图,在平面直角坐标系xOy 中,已知焦点在x 轴上,离心率为12的椭圆E 的左顶点为A ,点A 到右准线的距离为6. (1)求椭圆E 的标准方程; (2)过点A 且斜率为32的直线与椭圆E 交于点B ,过点B 与右焦点F 的直线交椭圆E 于M 点,求M 点的坐标.题型二 弦长问题例3 如图,在平面直角坐标系xOy中,已知椭圆x 2a 2+y 2b 2=1(a >b >0) 的离心率e =22,右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线交椭圆于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.变式 如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,AB =4. (1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.BAOxy lP C题型三 定点问题例4 如图,在平面直角坐标系xOy中,离心率为2的椭圆:C 22221(0)x y a b a b+=>>的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于,P Q 两点,直线,PA QA 分别与y 轴交于,M N 两点.若直线PQ斜率为2时,PQ = (1)求椭圆C 的标准方程;(2)试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.例5 已知椭圆C :x 2a 2+y 2=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M :x 2+y 2-6x -2y +7=0相切.(1)求椭圆C 的方程;(2)若不过点A 的动直线l 与椭圆C 相交于P 、Q 两点,且AP →·AQ →=0,求证:直线l 过定点,并求出该定点N 的坐标.变式1 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点1P (1,1),2P (0,1),)23,1(3 P ,)23,1(4P 中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.变式2 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆上动点P 到一个焦点的距离的最小值为3(2-1).(1) 求椭圆C 的标准方程;(2) 已知过点M (0,-1)的动直线l 与椭圆C 交于A ,B 两点,试判断以线段AB 为直径的圆是否恒过定点,并说明理由.题型四 定值问题例6 已知椭圆)(:012222>>=+b a by a x C 的离心率为23,且过点),(12-P .(1)求椭圆C 的方程;(2)设点Q 在椭圆C 上,且PQ 与x 轴平行,过P 点作两条直线分别交椭圆C 于),(11y x A),(22y x B 两点,若直线PQ 平分APB ∠,求证:直线AB 的斜率是定值,并求出这个定值.变式 在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b+=>>的焦距为2,离心率为22,椭圆的右顶点为A . (1)求该椭圆的方程;(2)过点(2,2)D -作直线PQ 交椭圆于两个不同点,P Q ,求证:直线,AP AQ 的斜 率之和为定值.例7 如图,在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(0)a b >>,焦点到相应准线的距离为1. (1)求椭圆的标准方程;(2)若P 为椭圆上的一点,过点O 作OP 的垂线交直线y =于点Q ,求2211OP OQ +的值.变式在平面直角坐标系xOy 中,已知圆222:O x y b +=经过椭圆222:14x y E b +=(02)b <<的焦点.(1)求椭圆E 的标准方程;(2)设直线:l y kx m =+交椭圆E 于,P Q 两点,T 为弦PQ 的中点,(1,0),(1,0)M N -,记直线,TM TN 的斜率分别为12,k k ,当22221m k -=时,求12k k ⋅的值.题型五 最值、范围问题例8 已知椭圆C :22221(0)x y a b a b+=>>的左焦点为F (-1,0),左准线方程为x =-2.(1) 求椭圆C 的标准方程;(2) 若椭圆C 上有A ,B 两点,满足OA ①OB (O 为坐标原点),求①AOB 面积的取值范围.例9 如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的左顶点为A ,点B 是椭圆C 上异于左、右顶点的任一点,P 是AB 的中点,过点B 且与AB 垂直的直线与直线OP 交于点Q ,已知椭圆C 的离心率为12,点A 到右准线的距离为6。
高考数学第一轮复习讲义(小结)圆锥曲线
高考数学第一轮复习讲义(小结)圆锥曲线一.课前预习:1.设抛物线22y x =,线段AB 的两个端点在抛物线上,且||3AB =,那么线段AB 的中点M 到y 轴的最短距离是 ( B ) ()A 32 ()B 1 ()C 12()D 2 2.椭圆22221x y a b+=(0)a b >>与x 轴正半轴、y 轴正半轴分别交于,A B 两点,在劣弧AB 上取一点C ,则四边形OACB 的最大面积为 ( B )()A 12ab ()B 2ab ()C ()D ab 3.ABC ∆中,A 为动点,1(,0)2B -,1(,0)2C ,且满足1sin sin sin 2C B A -=,则动点A 的轨迹方程是 (D )()A 2216161(0)3x y y -=≠ ()B 2216161(0)3y x x -=≠ ()C 22161161()34x y x -=<- ()D 22161161()34x y x -=> 4.已知直线1y x =+与椭圆221mx ny +=(0)m n >>相交于,A B 两点,若弦AB 中点的横坐标为13-,则双曲线22221x y m n -=的两条渐近线夹角的正切值是43. 5.已知,,A B C 为抛物线21y x =-上三点,且(1,0)A -,AB BC ⊥,当B 点在抛物线上移动时,点C 的横坐标的取值范围是(,3][1,)-∞-+∞U . 二.例题分析:例1.已知双曲线C :22221x y a b-=(0,0)a b >>,B 是右顶点,F 是右焦点,点A 在x 轴正半轴上,且满足||,||,||OA OB OF 成等比数列,过点F 作双曲线在第一、三象限内的渐近线的垂线l ,垂足为P , (1)求证:PA OP PA FB ⋅=⋅u u u r u u u r u u u r u u u r ;(2)若l 与双曲线C 的左、右两支分别交于点,D E ,求双曲线C 的离心率e 的取值范围.(1)证明:设l :()a y x c b=--,由方程组()a y x c b b y x a ⎧=--⎪⎪⎨⎪=⎪⎩得2(,)a ab P c c , ∵||,||,||OA OB OF 成等比数列,∴2(,0)a A c , ∴(0,)ab PA c =-u u u r ,2(,)a ab OP c c =u u u r ,2(,)b ab FP c c =-u u u r , ∴222a b PA OP c ⋅=-u u u r u u u r ,222a b PA FP c⋅=-u u u r u u u r ,∴PA OP PA FB ⋅=⋅u u u r u u u r u u u r u u u r . (2)设1122(,),(,)D x y E x y , 由2222()1a y x c b x y a b ⎧=--⎪⎪⎨⎪-=⎪⎩得444222222222()()0a a c a c b x x a b b b b -+-+=, ∵120x x ⋅<,∴42222422()0a b a b c a b b-+<-,∴22b a >,即222c a >,∴e >所以,离心率的取值范围为)+∞.例2.如图,过抛物线24x y =的对称轴上任一点(0,)P m (0)m >作直线与抛物线交于,A B 两点,点Q 是点P 关于原点的对称点, (1)设点P 分有向线段AB u u u r 所成的比为λ,证明:()QP QA QB λ⊥-u u u r u u u r u u u r ;(2)设直线AB 的方程是2120x y -+=,过,A B 两点的圆C 与抛物线在点A 处有共同的切线,求圆C 的方程.解:(1)设直线AB 的方程为y kx m =+,代入抛物线方程24x y =得2440x kx m --=设1122(,),(,)A x y B x y ,则124x x m =-,∵点P 分有向线段AB u u u r 所成的比为λ,得1201x x λ+=+,∴12x x λ=-, 又∵点Q 是点P 关于原点的对称点,∴(0,)Q m ,∴QP =u u u r ∴1212(,(1))QA QB x x y y m λλλλ-=--+-u u u r u u u r ∴12()2[(1)]QP QA QB m y y m λλλ⋅-=-+-u u u r u u u r u u u r 221121222[(1)]44x x x x m m x x =+⋅++ 121212224442()2()44x x m m m m x x m x x x x +-+=+⋅=+⋅=∴()QP QA QB λ⊥-u u u r u u u r u u u r .(2)由221204x y x y-+=⎧⎨=⎩得点(6,9),(4,4)A B -, 由24x y =得214y x =,∴12y x '=,∴抛物线在点A 处切线的斜率为6|3x y ='=, 设圆C 的方程是222()()x a y b r -+-=, 则22229163(6)(9)(4)(4)b a a b a b -⎧=-⎪-⎨⎪-+-=++-⎩, 解得2323125,,222a b r =-==, ∴圆C 的方程是22323125()()222x y ++-=,即22323720x y x y ++-+=.三.课后作业: 班级 学号 姓名1.直线143x y +=与抛物线221169x y +=相交于,A B 两点,该椭圆上的点P 使ABP ∆的面积等于6,这样的点P 共有 ( )()A 1个 ()B 2个 ()C 3个 ()D 4个2.设动点P 在直线1x =上,O 为坐标原点,以OP 为直角边,点O 为直角顶点作等腰Rt OPQ ∆,则动点Q 的轨迹是( ) ()A 圆 ()B 两条平行线 ()C 抛物线 ()D 双曲线3.设P 是直线4y x =+上一点,过点P 的椭圆的焦点为1(2,0)F ,2(2,0)F -,则当椭圆长轴最短时,椭圆的方程为 .4.椭圆221123x y +=的焦点为12,F F ,点P 在椭圆上,如果线段1PF 的中点在y 轴上,那么1||PF 是2||PF 的 倍.5.已知双曲线22221x y a b-=(0,0)a b >>的左、右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为 .6.直线l :1y kx =+与双曲线C :2221x y -=的右支交于不同的两点,A B ,(1)求实数k 的取值范围;(2)是否存在实数k ,使得线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.7.8.如图,P 是抛物线C :212y x =上一点,直线l 过点P 并与抛物线C 在点P 的切线垂直,l 与抛物线C 相交于另一点Q ,(1)当点P 的横坐标为2时,求直线l 的方程;(2)当点P 在抛物线C 上移动时,求线段PQ 中点M 的轨迹方程,并求点M 到x 轴的最短距离.。
名师手拉手高三一轮复习(62)圆锥曲线定义的应用讲义
高三第一轮复习数学---圆锥曲线定义的应用一、教学目标:圆锥曲线定义的应用二、教学重点:重点、难点:培养运用定义解题的意识 三、教学过程:(一)主要知识: 1、 知识精讲:涉及圆锥曲线上的点与两个焦点构成的三角形,常用第一定义结合正余弦定理; 涉及焦点、准线、圆锥曲线上的点,常用统一的定义。
椭圆的定义:点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|}; 双曲线的定义:点集M={P|︱|PF 1|-|PF 2|︱=2a , |)|2(21F F a < }的点的轨迹。
抛物线的定义:到一个定点F的距离与到一条得直线L的距离相等的点的轨迹.统一定义:M={P|e dPF=,}0<e <1为椭圆,e>1为双曲线,e =1为抛物线 2、 思维方式:等价转换思想,数形结合 特别注意:圆锥曲线各自定义的区别与联系(二)例题分析:例1 、 已知两个定圆O 1和O 2,它们的半径分别为1和2,且|O 1O 2|=4,动圆M 与圆O 1内切,又与圆O 2外切,建立适当的坐标系,求动圆心M 的轨迹方程,并说明轨迹是何种曲线。
解:以O 1O 2的中点O 为原点,O 1O 2所在直线为轴建立平面直角坐标系。
由|O 1O 2|=4有O 1(-2,0),O 2(2,0)。
设动圆的半径为r 。
由动圆M 与圆O 1内切有|MO 1|=r-1. 由动圆M 与圆O 2内切有|MO 2|=r+2。
∴|MO 1|-|MO 2|=-3,∵|O 1O 2|=4∴|MO 1|-|MO 2|= -3∴M 的轨迹是以O 1、O 2为焦点,长轴为3的双曲线的左支。
所以M 的轨迹方程为1749422=-y x (x<0) [思维点拔]利用圆锥曲线定义求轨迹是一种常用的方法变式练习:F 1、F 2是椭圆12222=+by a x (a>b>0)的两焦点,P 是椭圆上任一点, 从任一焦点引∠F 1PF 2的外角平分线的垂线,垂足为Q 的轨迹为( )A .圆B .椭圆C .双曲线D .抛物线延长垂线F 1Q 交F 2P 的延长线于点A等腰三角形APF 1中,a PF PF PF AP AF AP PF 221221=+=+==∴从而 a AF OQ ==∴221选A例2:已知双曲线12222=-by a x (a >0,b >0),P为双曲线上任一点,∠F 1PF 2=θ, 求ΔF 1PF 2的面积.解:在ΔF 1PF 2中,由三角形面积公式和余弦定理得SΔF1PF2=21|PF1|·|PF2|sin θ ①(2c)2=|PF1|2+|PF2|2-2|PF1|·|PF2|cos θ ②由双曲线的定义可得|PF1|-|PF2|=2a, 即|PF1|2+|PF2|2-2|PF1|·|PF2|=4a 2 ③由②③得|PF1|·|PF2|=θcos 122-b ④ 将④①代入得SΔF1PF2=b 2θθcos 1sin -=b 2cot 2θ,所以双曲线的焦点三角形的面积为b 2cot2θ. [思维点拔]焦点三角形中,通常用定义和正余弦定理例3:已知A(211,3)为一定点,F为双曲线127922=-y x 的右焦点,M在双曲线右支上移动,当|AM|+21|MF|最小时,求M点的坐标. 解:∵过M作MP准线于点P,则21|MF|=|MP|,∴|AM|+21|MF|=|AM|+|MP|≤|AP|.当且公当A、M、P三点共线时,|AM|+21|MF|最小。
一轮复习圆锥曲线
高考一轮复习圆锥曲线1.圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 A .421=+PF PF B .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C );(2)方程8=表示的曲线是_____(答:双曲线的左支) (2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。
圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。
如已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____(答:2) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+by a x (0a b >>)⇔{cos sin x a y b ϕϕ==(参数方程,其中ϕ为参数),焦点在y 轴上时2222bx a y +=1(0a b >>)。
方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。
2023年高考数学(文科)一轮复习讲义——圆锥曲线的综合问题 第一课时 定点问题
第一课时 定点问题题型一 直线过定点问题例1 (2020·全国Ⅰ卷)已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a >1)的左、右顶点,G 为E 的上顶点,AG →·GB →=8,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.(1)解 由题设得A (-a ,0),B (a ,0),G (0,1). 则AG→=(a ,1),GB →=(a ,-1). 由AG →·GB →=8,得a 2-1=8, 解得a =3或a =-3(舍去). 所以椭圆E 的方程为x 29+y 2=1.(2)证明 设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知-3<n <3. 易知直线P A 的方程为y =t9(x +3), 所以y 1=t9(x 1+3).易知直线PB 的方程为y =t3(x -3), 所以y 2=t3(x 2-3).可得3y 1(x 2-3)=y 2(x 1+3).① 由于x 229+y 22=1, 故y 22=-(x 2+3)(x 2-3)9,②由①②可得27y 1y 2=-(x 1+3)(x 2+3), 结合x =my +n ,得(27+m 2)y 1y 2+m (n +3)(y 1+y 2)+(n +3)2=0.③ 将x =my +n 代入x 29+y 2=1, 得(m 2+9)y 2+2mny +n 2-9=0. 所以y 1+y 2=-2mnm 2+9,y 1y 2=n 2-9m 2+9.代入③式,得(27+m 2)(n 2-9)-2m (n +3)mn +(n +3)2(m 2+9)=0. 解得n =-3(舍去)或n =32. 故直线CD 的方程为x =my +32, 即直线CD 过定点⎝ ⎛⎭⎪⎫32,0.若t =0,则直线CD 的方程为y =0,过点⎝ ⎛⎭⎪⎫32,0.综上,直线CD 过定点⎝ ⎛⎭⎪⎫32,0.感悟提升 圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.训练1 已知点P ⎝ ⎛⎭⎪⎫-1,32是椭圆C :x 2a 2+y 2b 2=1(a >b >0)上一点,F 1,F 2分别是椭圆的左、右焦点,|PF 1|+|PF 2|=4. (1)求椭圆C 的标准方程;(2)设直线l 不经过P 点且与椭圆C 相交于A ,B 两点.若直线P A 与直线PB 的斜率之和为1,问:直线l 是否过定点?证明你的结论. 解 (1)由|PF 1|+|PF 2|=4,得a =2, 又P ⎝ ⎛⎭⎪⎫-1,32在椭圆上,代入椭圆方程有1a 2+94b 2=1,解得b =3,所以椭圆C 的标准方程为x 24+y 23=1. (2)当直线l 的斜率不存在时, 设A (x 1,y 1),B (x 1,-y 1),k 1+k 2=y 1-32-y 1-32x 1+1=1,解得x 1=-4,与椭圆无交点,不符合题意;当直线l 的斜率存在时,设直线l 的方程y =kx +m ,A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2-12=0,整理得(3+4k 2)x 2+8kmx +4m 2-12=0, x 1+x 2=-8km3+4k 2,x 1x 2=4m 2-123+4k 2, Δ=48(4k 2-m 2+3)>0. 由k 1+k 2=1,整理得(2k -1)x 1x 2+⎝ ⎛⎭⎪⎫k +m -52(x 1+x 2)+2m -4=0,即(m -4k )(2m -2k -3)=0.当m =k +32时,此时,直线l 过P 点,不符合题意;当m =4k 时,Δ=4k 2-m 2+3>0有解,此时直线l :y =k (x +4)过定点(-4,0).题型二 圆过定点问题例2 (2021·湖南三湘名校联考)已知椭圆C :y 2a 2+x 2b 2=1(a >b ≥1)的离心率为22,它的上焦点到直线bx +2ay -2=0的距离为23. (1)求椭圆C 的方程;(2)过点P ⎝ ⎛⎭⎪⎫13,0的直线l 交椭圆C 于A ,B 两点,试探究以线段AB 为直径的圆是否过定点.若过,求出定点坐标;若不过,请说明理由. 解 (1)由题意得,e =c a =22. 又a 2=b 2+c 2, 所以a =2b ,c =b . 又|2ac -2|4a 2+b 2=23,a >b ≥1,所以b 2=1,a 2=2, 故椭圆C 的方程为y 22+x 2=1.(2)当AB ⊥x 轴时,以线段AB 为直径的圆的方程为⎝ ⎛⎭⎪⎫x -132+y 2=169.当AB ⊥y 轴时,以线段AB 为直径的圆的方程为x 2+y 2=1. 可得两圆交点为Q (-1,0).由此可知,若以线段AB 为直径的圆过定点,则该定点为Q (-1,0). 下证Q (-1,0)符合题意. 设直线l 的斜率存在,且不为0, 其方程设为y =k ⎝ ⎛⎭⎪⎫x -13,代入y 22+x 2=1,并整理得(k 2+2)x 2-23k 2x +19k 2-2=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 23(k 2+2),x 1x 2=k 2-189(k 2+2), 所以QA →·QB →=(x 1+1)(x 2+1)+y 1y 2=x 1x 2+x 1+x 2+1+k 2⎝ ⎛⎭⎪⎫x 1-13⎝ ⎛⎭⎪⎫x 2-13 =(1+k 2)x 1x 2+⎝ ⎛⎭⎪⎫1-13k 2(x 1+x 2)+1+19k 2=(1+k 2)·k 2-189(k 2+2)+⎝⎛⎭⎪⎫1-13k 2·2k 23(k 2+2)+1+19k 2 =0.故QA→⊥QB →,即Q (-1,0)在以线段AB 为直径的圆上.综上,以线段AB 为直径的圆恒过定点(-1,0).感悟提升 1.定点问题,先猜后证,可先考虑运动图形是否有对称性及特殊(或极端)位置猜想,如直线的水平位置、竖直位置,即k =0或k 不存在时.2.圆过定点问题,一般从圆的直径所对的圆心角为直角入手,利用垂直关系找到突破口,从而解决问题.训练2 (2022·江西红色七校联考)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率为22,且椭圆上一点到两个焦点的距离之和为2 2. (1)求椭圆C 的标准方程;(2)过点S ⎝ ⎛⎭⎪⎫-13,0的动直线l 交椭圆C 于A ,B 两点,试问:在x 轴上是否存在一个定点T ,使得无论直线l 如何转动,以AB 为直径的圆恒过点T ?若存在,求出点T 的坐标;若不存在,请说明理由. 解 (1)由椭圆的定义可得2a =22, 则a =2,∵椭圆C 的离心率e =c a =22, ∴c =1,则b =a 2-c 2=1,∴椭圆C 的标准方程为y 22+x 2=1.(2)当直线l 不与x 轴重合时,设直线l 的方程为x =my -13,A (x 1,y 1),B (x 2,y 2),T (t ,0),由⎩⎪⎨⎪⎧x =my -13,y 22+x 2=1消去x 并整理,得(18m 2+9)y 2-12my -16=0,Δ=144m 2+64(18m 2+9)=144(9m 2+4)>0恒成立, 则y 1+y 2=12m 18m 2+9=4m 6m 2+3,y 1y 2=-1618m 2+9. 由于以AB 为直径的圆恒过点T , 则TA ⊥TB ,TA →=⎝ ⎛⎭⎪⎫my 1-t -13,y 1,TB →=⎝ ⎛⎭⎪⎫my 2-t -13,y 2,则TA →·TB →=⎝ ⎛⎭⎪⎫my 1-t -13⎝ ⎛⎭⎪⎫my 2-t -13+y 1y 2 =(m 2+1)y 1y 2-m ⎝ ⎛⎭⎪⎫t +13(y 1+y 2)+⎝ ⎛⎭⎪⎫t +132=-16(m 2+1)-m ⎝ ⎛⎭⎪⎫t +13×12m18m 2+9+⎝ ⎛⎭⎪⎫t +132 =⎝ ⎛⎭⎪⎫t +132-(12t +20)m 2+1618m 2+9=0, ∵点T 为定点,∴t 为定值,与m 无关, ∴12t +2018=169,解得t =1,此时TA →·TB→=⎝ ⎛⎭⎪⎫432-169=0,符合题意. 当直线l 与x 轴重合时,AB 为椭圆C 的短轴,易知以AB 为直径的圆过点(1,0). 综上所述,存在定点T (1,0),使得无论直线l 如何转动,以AB 为直径的圆恒过定点T .圆锥曲线中的“伴侣点”问题在圆锥曲线的很多性质中,常常出现一对活跃的点A (m ,0)和B ⎝ ⎛⎭⎪⎫a 2m ,0,这一对点总是同时出现在圆锥曲线的对称轴上,形影不离,相伴而行,我们把这对特殊的点形象地称作圆锥曲线的“伴侣点”.圆锥曲线的“伴侣点”在我们研究圆锥曲线的性质中具有重要的地位,蕴涵着圆锥曲线许多有趣的性质. 例 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0),设A (m ,0)和B ⎝ ⎛⎭⎪⎫a 2m ,0(0<m <a )是x 轴上的两点,过点A 作斜率不为0的直线l ,使得l 交双曲线于C ,D 两点,作直线BC 交双曲线于另一点E .证明:直线DE 垂直于x 轴. 证明 设点C (x 1,y 1),D (x 2,y 2),E (x 3,y 3), 则直线l 的方程为y =y 1x 1-m(x -m ). 把直线l 的方程代入双曲线方程,整理得(b 2x 21-a 2y 21-2b 2mx 1+b 2m 2)x 2+2a 2my 21x -a 2y 21m 2-a 2b 2(x 1-m )2=0, 由b 2x 21-a 2y 21=a 2b 2(点C 在双曲线上),上面方程可化简为(a 2b 2-2b 2mx 1+b 2m 2)x 2+2a 2my 21x -a 2[(y 21+b 2)m 2+b 2x 21-2b 2mx 1]=0, 又因为b 2x 21-a 2y 21=a 2b 2, 所以a 2(y 21+b 2)=b 2x 21,代入上式,方程又可化简为(a 2b 2-2b 2mx 1+b 2m 2)x 2+2a 2my 21x -b 2x 21m 2-a 2b 2x 21+2a 2b 2mx 1=0,由已知,显然a 2b 2-2b 2mx 1+b 2m 2≠0,于是x 1x 2=-x 21m 2+a 2x 21-2a 2mx 1a 2-2mx 1+m 2,因为x 1≠0,得x 2=-x 1m 2+a 2x 1-2a 2ma 2-2mx 1+m 2(*) 同理,直线BC 的方程为y =y 1x 1-a 2m ⎝ ⎛⎭⎪⎫x -a 2m , 所以只要把(*)中m 换成a 2m,就可以得到x 3=-x 1⎝ ⎛⎭⎪⎫a 2m 2+a 2x 1-2a 2a 2m a 2-2a 2m x 1+⎝ ⎛⎭⎪⎫a 2m 2=-x 1m 2+a 2x 1-2a 2m a 2-2mx 1+m 2, 所以x 2=x 3,故直线DE 垂直于x 轴.1.已知抛物线C 的顶点在原点,焦点在坐标轴上,点A (1,2)为抛物线C 上一点. (1)求抛物线C 的方程;(2)若点B (1,-2)在抛物线C 上,过点B 作抛物线C 的两条弦BP 与BQ ,如k BP ·k BQ =-2,求证:直线PQ 过定点.(1)解 若抛物线的焦点在x 轴上,设抛物线方程为y 2=ax ,代入点A (1,2),可得a =4,所以抛物线方程为y 2=4x .若抛物线的焦点在y 轴上,设抛物线方程为x 2=my ,代入点A (1,2),可得m =12,所以抛物线方程为x 2=12y .综上所述,抛物线C 的方程是y 2=4x 或x 2=12y .(2)证明 因为点B (1,-2)在抛物线C 上,所以由(1)可得抛物线C 的方程是y 2=4x .易知直线BP ,BQ 的斜率均存在,设直线BP 的方程为y +2=k (x -1),将直线BP 的方程代入y 2=4x ,消去y ,得 k 2x 2-(2k 2+4k +4)x +(k +2)2=0.设P (x 1,y 1),则x 1=(k +2)2k 2,所以P ⎝⎛⎭⎪⎫(k +2)2k 2,2k +4k . 用-2k 替换点P 坐标中的k ,可得Q ((k -1)2,2-2k ),从而直线PQ 的斜率为2k +4k -2+2k(k +2)2k 2-(k -1)2=2k 3+4k-k 4+2k 3+4k +4=2k-k 2+2k +2,故直线PQ 的方程是 y -2+2k =2k -k 2+2k +2·[x -(k -1)2]. 在上述方程中,令x =3,解得y =2, 所以直线PQ 恒过定点(3,2).2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-3,0),F 2(3,0),且经过点A ⎝ ⎛⎭⎪⎫3,12.(1)求椭圆C 的标准方程;(2)过点B (4,0)作一条斜率不为0的直线l 与椭圆C 相交于P ,Q 两点,记点P 关于x 轴对称的点为P ′.证明:直线P ′Q 经过x 轴上一定点D ,并求出定点D 的坐标.(1)解 由椭圆的定义,可知 2a =|AF 1|+|AF 2|=(23)2+⎝ ⎛⎭⎪⎫122+12=4.解得a =2.又b 2=a 2-(3)2=1.∴椭圆C 的标准方程为x 24+y 2=1. (2)证明 由题意,设直线l 的方程为 x =my +4(m ≠0).设P (x 1,y 1),Q (x 2,y 2),则P ′(x 1,-y 1).由⎩⎨⎧x =my +4,x 24+y 2=1,消去x ,可得(m 2+4)y 2+8my +12=0. ∵Δ=16(m 2-12)>0,∴m 2>12. ∴y 1+y 2=-8mm 2+4,y 1y 2=12m 2+4.∵k P ′Q =y 2+y 1x 2-x 1=y 2+y 1m (y 2-y 1).∴直线P ′Q 的方程为 y +y 1=y 2+y 1m (y 2-y 1)(x -x 1).令y =0,可得x =m (y 2-y 1)y 1y 1+y 2+my 1+4.∴x =2my 1y 2y 1+y 2+4=2m ·12m 2+4-8m m 2+4+4=24m-8m+4=1.∴D (1,0).∴直线P ′Q 经过x 轴上定点D ,其坐标为(1,0).3.如图,已知直线l :y =kx +1(k >0)关于直线y =x +1对称的直线为l 1,直线l ,l 1与椭圆E :x 24+y 2=1分别交于点A ,M 和A ,N ,记直线l 1的斜率为k 1.(1)求kk 1的值;(2)当k 变化时,求证:直线MN 恒过定点,并求出该定点的坐标.(1)解 设直线l 上任意一点P (x ,y )关于直线y =x +1对称的点为P 0(x 0,y 0), 直线l 与直线l 1的交点为(0,1),所以l :y =kx +1,l 1:y =k 1x +1,k =y -1x ,k 1=y 0-1x 0, 由y +y 02=x +x 02+1,得y +y 0=x +x 0+2,①由y -y 0x -x 0=-1,得y -y 0=x 0-x ,②由①②得⎩⎪⎨⎪⎧y =x 0+1,y 0=x +1,所以kk 1=yy 0-(y +y 0)+1xx 0=(x +1)(x 0+1)-(x +x 0+2)+1xx 0=1. (2)证明 由⎩⎨⎧y =kx +1,x 24+y 2=1,得 (4k 2+1)x 2+8kx =0,设M (x M ,y M ),N (x N ,y N ),所以x M =-8k 4k 2+1,所以y M =1-4k 24k 2+1.同理可得x N =-8k 14k 21+1=-8k4+k 2,y N =1-4k 214k 21+1=k 2-44+k 2. k MN =y M -y N x M -x N =1-4k 24k 2+1-k 2-44+k 2-8k 4k 2+1--8k4+k 2 =8-8k 48k (3k 2-3)=-k 2+13k , 直线MN :y -y M =k MN (x -x M ),即y -1-4k 24k 2+1=-k 2+13k ⎝ ⎛⎭⎪⎪⎫x --8k 4k 2+1, 即y =-k 2+13k x -8(k 2+1)3(4k 2+1)+1-4k 24k 2+1=-k 2+13k x -53.所以当k 变化时,直线MN 过定点⎝ ⎛⎭⎪⎫0,-53. 4.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别是双曲线C 2:x 2m 2-y 2=1的左、右焦点,且C 1与C 2相交于点⎝ ⎛⎭⎪⎫233,33. (1)求椭圆C 1的标准方程;(2)设直线l :y =kx -13与椭圆C 1交于A ,B 两点,以线段AB 为直径的圆是否恒过定点?若恒过定点,求出该定点;若不恒过定点,请说明理由.解 (1)将⎝ ⎛⎭⎪⎫233,33代入x 2m 2-y 2=1,解得m 2=1, ∴a 2=m 2+1=2,将⎝ ⎛⎭⎪⎫233,33代入x 22+y 2b 2=1,解得b 2=1,∴椭圆C 1的标准方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -13,x 22+y 2=1,整理得(9+18k 2)x 2-12kx -16=0, ∴x 1+x 2=12k 9+18k 2,x 1x 2=-169+18k 2, Δ=144k 2+64(9+18k 2)>0.由对称性可知,以AB 为直径的圆若恒过定点,则定点必在y 轴上. 设定点为M (0,y 0),则MA →=(x 1,y 1-y 0),MB →=(x 2,y 2-y 0) MA →·MB →=x 1x 2+(y 1-y 0)(y 2-y 0) =x 1x 2+y 1y 2-y 0(y 1+y 2)+y 20=x 1x 2+k 2x 1x 2-k 3(x 1+x 2)-y 0⎣⎢⎡⎦⎥⎤k (x 1+x 2)-23+19+y 20 =(1+k 2)x 1x 2-k ⎝ ⎛⎭⎪⎫13+y 0(x 1+x 2)+y 20+23y 0+19 =18(y 20-1)k 2+9y 20+6y 0-159+18k 2=0,∴⎩⎪⎨⎪⎧y 20-1=0,9y 20+6y 0-15=0,解得y 0=1, ∴M (0,1),∴以线段AB 为直径的圆恒过定点(0,1).。
高考一轮复习必备—圆锥曲线讲义全
高考一轮复习必备—圆锥曲线讲义全-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIANⅠ复习提问一、直线l 与圆锥曲线C 的位置关系的判断判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By C ++=(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到关于一个变量的一元二次方程,即联立(,)0Ax By C F x y ++=⎧⎨=⎩消去y 后得20ax bx c ++= (1)当0a =时,即得到一个一元一次方程,则l 与C 相交,有且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线平行;若C 为抛物线,则直线l 抛物线的对称轴平行。
(2)当0a ≠时,0∆>,直线l 与曲线C 有两个不同的交点;0∆=,直线l 与曲线C 相切,即有唯一公共点(切点);0∆<,直线l 与曲线C 相离。
二、圆锥曲线的弦长公式相交弦AB的弦长1212AB AB AB x y y ⎧⎪=⎪⎪⎪=⎨⎪⎪=-==-⎪⎪⎩三、中点弦所在直线的斜率(1)若椭圆方程为22221(0)x y a b a b +=>>时,以P 00(x ,y )为中点的弦所在直线斜率202(0)b k y a =-≠00x y ,即22op b k k a =-;若椭圆方程为22221(0)y x a b a b +=>>时,相应结论为202(0)a k y b =-≠0x y ,即22op a k k b =-;(2)P 00(x ,y )是双曲线22221x y a b -=内部一点,以P 为中点的弦所在直线斜率202(0)b k y a =≠0x y ,即22op b k k a =; 若双曲线方程为22221y x a b -=时,相应结论为202(0)a k y b =≠0x y ,即22op a k k b =;(3))P 00(x ,y )是抛物线22y px =内部一点,以P 为中点的弦所在直线斜率0(0)pk y =≠0y ;若方程为22x py =时,相应结论为k p=0x 。
圆锥曲线方程讲义
④经过定点 A(0,b)的直线都可以用方程 y=kx+b 表示其中真命题的个数是 A.0 B.1 C.2 D.3 4.(2006 北京 11)若三点 A(2, 2), B(a,0), C (0, b)(ab 0) 共线,则
1 1 的值等于______. a b
5.过点 A(2,1),且在 x,y 轴上截距相等的直线方程是 6. 已知直线 l1: x-2y+3=0, 那么直线 l1 的方向向量 a1 为____________ (注: 只需写出一个正确答案即可) ; l2 过点(1,1) ,l2 的方向向量 a2,且 a1²a2=0,则 l2 的方程为____________. 7.直线 x-2y+2k=0 与两坐标轴所围成的三角形面积不大于 1,那么 k 的范围是 A.k≥-1 B.k≤1 C.-1≤k≤1 且 k≠0 D.k≤-1 或 k≥1
题型 2 斜率公式及应用
x y 2 0 y 例 3. (05 年江西高考)设实数 x,y 满足 x 2 y 4 0 ,则 的最大值是_________。 x 2 y 3 0
1 cos2 x 8 sin 2 x 例 4. (05 年全国高考)当 0 x 时,函数 f ( x) 的最小值是( ) 2 sin 2 x
第六十八讲
一.知识点精讲
直线的方程
1.倾斜角:一条直线 L 向上的方向与 X 轴的正方向所成的最小正角,叫做直线的倾斜角,范围为 0, 。 2.斜率: 当直线的倾斜角不是 900 时,则称其正切值为该直线的斜率,即 k=tan ; 当直线的倾斜角等于 900 时,直线的斜率不存在。 3.过两点 p1(x1,y1),p2(x2,y2)(x1≠x2)的直线的斜率公式:k=tan
2025年新人教版高考数学一轮复习讲义 第八章 §8.13 圆锥曲线中定点与定值问题
2025年新人教版高考数学一轮复习讲义第八章§8.13 圆锥曲线中定点与定值问题题型一 定点问题(1)求C的方程;(2)过点(-2,3)的直线交C于P,Q两点,直线AP,AQ与y轴的交点分别为M,N,证明:线段MN的中点为定点.由题意可知,直线PQ的斜率存在,如图,设B(-2,3),直线PQ:y=k(x+2)+3,P(x1,y1),Q(x2,y2),消去y得(4k2+9)x2+8k(2k+3)x+16(k2+3k)=0,则Δ=64k2(2k+3)2-64(4k2+9)(k2+3k)=-1 728k>0,解得k<0,所以线段MN的中点是定点(0,3).思维升华求解直线或曲线过定点问题的基本思路(1)把直线或曲线方程中的变量x,y当作常数看待,把方程一端化为零,既然是过定点,那么这个方程就要对任意参数都成立,这时参数的系数就要全部等于零,这样就得到一个关于x,y的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点.(2)由直线方程确定其过定点时,若得到了直线方程的点斜式y-y0=k(x-x0),则直线必过定点(x0,y0);若得到了直线方程的斜截式y=kx+m,则直线必过定点(0,m).跟踪训练1 (2024·郑州质检)已知椭圆C:=1(a>b>0)的上顶点和两焦点构成的三角形为等腰直角三角形,且面积为2,点M为椭圆C的右顶点.(1)求椭圆C的方程;又a2=b2+c2,则a=2,(2)若经过点P(t,0)的直线l与椭圆C交于A,B两点,实数t取何值时以AB 为直径的圆恒过点M ?由(1)知M(2,0),若直线l的斜率不存在,则直线l的方程为x=t(-2<t<2),若直线l的斜率存在,不妨设直线l:y=k(x-t),A(x1,y1),B(x2,y2),得(1+2k2)x2-4k2tx+2k2t2-4=0.易得(1+k2)x1x2-(2+k2t)(x1+x2)+4+k2t2=0,即(1+k2)(2k2t2-4)-(2+k2t)·4k2t+(4+k2t2)(1+2k2)=0,整理得k2(3t2-8t+4)=0,因为k不恒为0,题型二 定值问题例2 在平面直角坐标系Oxy中,已知△ABC的两个顶点坐标为B(-2,0),C(2,0),直线AB,AC的斜率乘积为(1)求顶点A的轨迹Γ的方程;依题意,过点P(1,0)与曲线Γ交于点M,N的直线斜率存在且不为零,设直线MN的方程为x=my+1(m≠0),即有2my1y2=3(y1+y2),又(x1y2+x2y1)+2(y2-y1)=(my1+1)y2+(my2+1)y1+2(y2-y1)=2my1y2+3y2-y1=3(y1+y2)+3y2-y1=2(y1+3y2),(x1y2-x2y1)+2(y2+y1)=(my1+1)y2-(my2+1)y1+2(y2+y1)=y1+3y2,思维升华圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题设条件,得出与代数式参数有关的等式,代入代数式,化简即可得出定值.(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得.(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.如图所示,过点F作F A⊥MN,垂足为A,MN交x轴于点E,因为|MF|=|MN|,所以△MNF是等边三角形,因为O是FB的中点,所以|DF|=|DN|,MD⊥DF,所以|MN|=8,|AN|=4,(2)若斜率不为0的直线l1与抛物线C相切,切点为G,平行于l1的直线交抛物线C于P,Q两点,且∠PGQ=,证明:点F到直线PQ与到直线l1的距离之比为定值.由(1)可知抛物线C的方程是x2=8y,由题意知直线PQ斜率存在,设直线PQ的方程为y=kx+m(k≠0),即(x1+x0)(x2+x0)=-64,得x2-8kx-8m=0,其中Δ=64k2+32m>0,则x1+x2=8k,x1x2=-8m,所以-8m+32k2+16k2=-64,所以m=6k2+8.设点F到直线PQ和直线l1的距离分别为d1,d2,所以点F到直线PQ与到直线l的距离之比是定值,定值为3.知识过关(1)求实数k的取值范围;化简整理得(1-4k2)x2-24kx-52=0,Δ=(-24k)2+4×(1-4k2)×52=208-256k2,要使直线与双曲线的右支有两个不同的交点A和B,(2)证明:当k变化时,点D的纵坐标为定值.设A(x1,y1),B(x2,y2),D(x0,y0),(1)求双曲线C的方程;(2)若直线l与双曲线C在第一象限交于A,B两点,直线x=3交线段AB于点Q,且S△F AQ∶S△FBQ=|F A|∶|FB|,证明:直线l过定点.由已知得,双曲线C的右焦点为F(3,0),直线x=3过双曲线C的右焦点.所以sin∠AFQ=sin∠BFQ,所以直线AF与直线BF的倾斜角互补,k AF+k BF=0.显然直线l的斜率存在且不为0,所以(kx1+m)(x2-3)+(kx2+m)(x1-3)=0,整理得2kx1x2+(m-3k)(x1+x2)-6m=0.化简得k+m=0,即m=-k,所以直线l的方程为y=kx-k=k(x-1),恒过点(1,0),所以直线l过定点.能力拓展3.(2023·深圳模拟)已知抛物线C:y2=2px(p>0)的焦点为F(2,0).(1)求抛物线C的标准方程;∵抛物线C:y2=2px(p>0)的焦点为F(2,0),故抛物线C的标准方程为y2=8x.(2)抛物线C在x轴上方一点A的横坐标为2,过点A作两条倾斜角互补的直线,与曲线C的另一个交点分别为B,C,求证:直线BC的斜率为定值.∵点A的横坐标为2,即y2=8×2,解得y=±4,故A点的坐标为(2,4),设B(x1,y1),C(x2,y2),由已知设AB:m(y-4)=x-2,即x=my-4m+2,代入抛物线C的方程得y2=8(my-4m+2),即y2-8my+32m-16=0,则y1+4=8m,故y1=8m-4,∴x1=my1-4m+2=m(8m-4)-4m+2=8m2-8m+2,即B(8m2-8m+2,8m-4),设AC:-m(y-4)=x-2,即x=-my+4m+2,同理可得y2=-8m-4,则x2=-my2+4m+2=-m(-8m-4)+4m+2=8m2+8m+2,即C(8m2+8m+2,-8m-4),∴直线BC的斜率为定值.(1)证明:k BF·k BG为定值;因为BG∥P A,(2)证明:直线GF过定点,并求出该定点;当直线GF的斜率存在时,设GF的方程为y=k(x-t)(k≠0),则Δ=64k4t2-16(4k2+3)(k2t2-3)=48(4k2+3-k2t2)>0,设G(x1,y1),F(x2,y2),约去k2并化简得t2-3t+2=0,解得t=1(t=2不符合题意,舍去),此时直线GF过定点(1,0);当直线GF的斜率不存在时,设GF的方程为x=m,其中m≠2,。
2025年新人教版高考数学一轮复习讲义 第八章 §8.11 圆锥曲线中求值与证明问题
(2)记C的左、右顶点分别为A1,A2,过点(-4,0)的直线与C的左支交于M, N两点,M在第二象限,直线MA1与NA2交于点P.证明:点P在定直线上.
由(1)可得A1(-2,0),A2(2,0), 设M(x1,y1),N(x2,y2), 显然直线MN的斜率不为0, 设直线 MN 的方程为 x=my-4,且-12<m<12, 与x42-1y62 =1 联立可得(4m2-1)y2-32my+48=0,
a=2,
⇒b=1, c= 3,
∴椭圆 C 的方程为y42+x2=1.
(2)若点P为椭圆C上的动点,且在第一象限运动,直线AP的斜率为k,
且与y轴交于点M,过点M与AP垂直的直线交x轴于点N,若直线PN的 斜率为-25k ,求k值.
由题意知A(-1,0),kAP=k,
则直线lAP:y=k(x+1),∴M(0,k),
1234
若以AB为直径的圆经过坐标原点, 则O→A·O→B=0,即 xAxB+yAyB=1-3-2 a2=0, 所以a=±1,满足要求.
1234
2.(2023·宁德模拟)若
A-1,-
22,B1,
22,C(0,1),D
23,21四点中
恰有三点在椭圆 T:ax22+by22=1(a>b>0)上.
(1)求椭圆T的方程;
1234
由于
A-1,-
22,B1,
22两点关于原点对称,必在椭圆上,
则a12+21b2=1,且43a2+41b2<1,
∴C(0,1)必在椭圆上,
即有b12=1,则 b=1,a2=2, ∴椭圆 T 的方程为x22+y2=1.
1234
(2)动直线y=
2 2x
2023届高考数学一轮复习圆锥曲线角度关系证明 讲义
圆锥曲线角度问题方法提示角度的证明往往转为斜率问题或者坐标问题,其中角相等问题优先考虑转为斜率之和为零处理,或者考虑用向量进行计算。
典例例1、如图,已知椭圆C :22x a +22y b =1(a >b >0)的离心率为13,左、右焦点分别为F 1,F 2,A 为椭圆C 上一点,AF 1与y 轴相交于点B ,|AB |=|F 2B |,|OB |=43.(1)求椭圆C 的标准方程;(2)设椭圆C 的左、右顶点分别为A 1,A 2,过A 1,A 2分别作x 轴的垂线l 1,l 2,椭圆C 的一条切线l :y =kx +m (k ≠0)与l 1,l 2分别交于M ,N 两点,求证:∠MF 1N =∠MF 2N .例2、已知椭圆()2222:10x y C a b a b +=>>2F ,以原点O 为圆心,椭圆C 的短半轴长为半径的圆与直线20x y -=相切. (1)求椭圆C 的方程;(2)如图,过定点0(2)P ,的直线l 交椭圆C 于A ,B 两点,连接AF 并延长交C 于M ,求证:PFM PFB ∠=∠.例3、在平面直角坐标系xOy 中,已知点E (0,2),以OE 为直径的圆与抛物线C ∶x 2=2py (p >0)交于点M ,N (异于原点O ),MN 恰为该圆的直径,过点E 作直线交抛物线与A ,B 两点,过A ,B 两点分别做拋物线C 的切线交于点P . (1)求证∶点P 的纵坐标为定值;(2)若F 是抛物线C 的焦点,证明∶∠PF A =∠PFB .综合练习1、已知动圆Q 经过定点()0,F a ,且与定直线:l y a =-相切(其中a 为常数,且0a >).记动圆圆心Q 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线?(2)设点P 的坐标为()0,a -,过点P 作曲线C 的切线,切点为A ,若过点P 的直线m 与曲线C 交于M ,N 两点,证明:AFM AFN ∠=∠.2、椭圆E :()222210x y a b a b +=>>,经过点()0,1A -2(1)求椭圆E 的方程;(2)过椭圆右焦点的直线与椭圆E 交于,PQ 两点,点()2,0M ,O 为坐标原点,证明:OMP OMQ ∠=∠.3、已知椭圆2222:1(0)x yC a ba b+=>>5,1(,0)F c-,2(,0)F c分别为椭圆的左、右焦点,点4(,)3c在椭圆上.(1)求C的方程;(2)若直线(1)y k x=-与椭圆C相交于A,B两点,试问:在x轴上是否在点D,当k变化时,总有ODA ODB∠=∠?若存在求出点D的坐标,若不存在,请说明理由.4、已知椭圆C中心为原点,离心率12,焦点()1,0F.(1)求椭圆C的标准方程;(2)过定点()0,1且斜率为k的直线l与椭圆C交于A,B两点,在y轴上是否存在点Q,使得当k变动时,总有OQA OQB∠=∠?说明理由.5、在直角坐标系xOy中,曲线2:4C x y=与直线(0)y kx a a=+>交与M,N两点.(1)当0k=时,分别求C在点M和N处的切线方程;(2)y轴上是否存在点P,使得当k变动时,总有OPM OPN∠=∠?说明理由.6、已知椭圆C 的中心为原点,离心率12,焦点(1,0)F ,斜率为k 的直线l 与C 交于,A B 两点.(1)若线段AB 的中点为(1,),M m P 为C 上一点,且,FA FP FB ,成等差数列,求点P 的坐标;(2)若l 过点(0,)(03),n n y <轴上是否存在点Q ,使得当k 变动时,总有OQA OQB ∠=∠说明理由.7、如图,已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:GF 为∠AGB 的平分线.8、设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,直线l 不与x 轴重合,求OMAOMB∠∠的值.9、已知椭圆()2222:10x y E a b a b +=>>的短轴长是222.(1)求椭圆E 的方程;(2)已知()0,1C ,若直线1:3l y kx =-与椭圆E 相交于A ,B 两点,线段AB 的中点为M ,是否存在常数λ,使AMC ABC λ=⋅∠∠恒成立,并说明理由.圆锥曲线角度问题解析方法提示角度的证明往往转为斜率问题或者坐标问题,其中角相等问题优先考虑转为斜率之和为零处理,或者考虑用向量进行计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ⅰ复习提问一、直线l 与圆锥曲线C 的位置关系的判断判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By C ++=(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到关于一个变量的一元二次方程,即联立(,)0Ax By C F x y ++=⎧⎨=⎩消去y 后得20ax bx c ++= (1)当0a =时,即得到一个一元一次方程,则l 与C 相交,有且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线平行;若C 为抛物线,则直线l 抛物线的对称轴平行。
(2)当0a ≠时,0∆>,直线l 与曲线C 有两个不同的交点;0∆=,直线l 与曲线C 相切,即有唯一公共点(切点);0∆<,直线l 与曲线C 相离。
二、圆锥曲线的弦长公式相交弦AB的弦长1212AB AB AB x y y ⎧⎪=⎪⎪⎪=⎨⎪⎪=-==-⎪⎪⎩三、中点弦所在直线的斜率(1)若椭圆方程为22221(0)x y a b a b +=>>时,以P 00(x ,y )为中点的弦所在直线斜率202(0)b k y a =-≠00x y ,即22op b k k a =-;若椭圆方程为22221(0)y x a b a b +=>>时,相应结论为202(0)a k y b =-≠0x y ,即22op a k k b =-;(2)P 00(x ,y )是双曲线22221x y a b -=内部一点,以P 为中点的弦所在直线斜率202(0)b k y a =≠0x y ,即22op b k k a =; 若双曲线方程为22221y x a b -=时,相应结论为202(0)a k y b =≠0x y ,即22op a k k b =;(3))P 00(x ,y )是抛物线22y px =内部一点,以P 为中点的弦所在直线斜率0(0)pk y =≠0y ; 若方程为22x py =时,相应结论为k p=0x 。
Ⅱ 题型与方法一、直线与圆锥曲线的位置关系(1)直线与圆锥曲线有两个不同的公共点的判断:通法为直线代入曲线判断0∆>;另一方法就是数形结合,如直线与双曲线有两个不同的公共点,可通过判定直线的斜率与双曲线渐近线的斜率大小得到。
(2)直线与圆锥曲线只有一个公共点则直线与双曲线的一条渐近线平行,或直线与抛物线的对称轴平行,或直线与圆锥曲线相切。
例1.已知两点5(1,)4M ,5(4,)4N --,给出下列曲线方程:①4210x y +-=②22+y =3x ③2212x y += ④2212x y -=在曲线上存在点P ,满足PM PN =的所有曲线方程是 (填序号)。
练1:对于抛物线C :24y x =,我们称满足2004y x <的点M (00,x y )在抛物线的内部,若点M (00,x y )在抛物线的内部,则直线l :002()y y x x =+与抛物线C 的位置关系是 。
练2:设抛物线28y x =的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有共点点,则直线l 的斜率的取值范围是例2.如图所示,在平面直角坐标系xoy 中,过y 轴正方向上一点C (0,c )(c>0)任作一条直线,与抛物线2y x = 相交于A ,B 两点,一条垂直于x 轴的直线分别与线段AB 和直线l :y=-c 交于P ,Q 两点。
(1)若2OA OB =,求c 的值;(2)若p 为线段AB 的中点,求证:QA 为此抛物线的切线。
练1:(12安徽理)如图所示,1(,0)F c -,2(,0)F c 分别是椭圆C :22221(0)x y a b a b+=>>的左右焦点,过1F 作直线x 轴的垂线交椭圆C 的上半部分于点P ,过2F 作直线2PF 的垂线交直线2a x c=于点Q ,求证:直线PQ 与椭圆C 只有一个公共点。
练2:(14湖北理)在平面直角坐标系xoy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1,记点M 的轨迹为C ,(1)求点M 的轨迹方程;(2)设斜率为k 的直线l 过定点P (-2,1)分别求直线l 与轨迹C 恰好有一个公共点,两个公共点,三个公共点时k 的相应取值范围。
二、中点弦问题例1:已知过点M (12,12)的直线l 与椭圆2212x y +=交于A ,B 两点,且1()2OM OA OB =+(O 为坐标原点),求直线l 的方程。
练1:(14江西理)过点M(1,1)作斜率为12-的直线与椭圆C:22221(0)x ya ba b+=>>相交于A,B两点,若M是线段AB中点,则椭圆C的离心率等于。
练2:已知椭圆方程2212xy+=。
(1)求斜率为2的平行弦的中点的轨迹方程;(2)过点P(2,1)的直线l与椭圆相交,求被l截得的弦的中点的轨迹方程。
例2:如图所示,在平面直角坐标系xoy中,已知椭圆22142x y+=,过坐标原点的直线交椭圆于P,A 两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k,求证:对任意k>0,都有P A⊥PB。
练1:已知曲线C:2221(0,1)yx m mm+=>≠,过原点斜率为k的直线交曲线C于P,Q两点,其中P在第一象限,且它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意带你k>0,都有P Q⊥PH?若存在,求m的值,不存在,说明理由。
例3已知椭圆C :22143x y +=,试确定m 的范围,使得对于直线l :y=4x+m ,椭圆C 上有两个不同的点关于这条直线对称。
练1:如图所示,已知椭圆E 经过点A (2,3),对称轴为坐标轴,焦点1F ,2F 在x 轴上,离心率12e =,(1)求椭圆E 的方程;(2)求12F AF ∠的角平分线所在直线l 的方程;(3)在椭圆E 上是否存在关于直线l 对称的相异两点?若存在,请找出,不存在,说明理由。
练2:已知A ,B ,C 是椭圆W :2214x y +=上的三点,O 是坐标原点。
(1)当点B 是W 的右顶点,且四边形OABC为菱形时,求此菱形面积;(2)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,说明理由。
3.已知椭圆C :22221(0)x y a b a b +=>>的离心率为12,右焦点为F ,右顶点A 在圆F :222(1)(0)x y r r -+=>上。
(1)求椭圆C 和圆F 的方程。
(2)已知过点A 的直线l 与椭圆C 交于另一点B ,与圆F 交于另一点P ,请判断是否存在斜率不为0的直线l ,使点P 恰好为线段AB 的中点,若存在,求出直线l 的方程,若不存在,说明理由。
二、弦长与面积问题。
在弦长有关的问题中,一般有三类问题: (1)弦长公式(2)与焦点相关的弦长计算,利用定义 (3)涉及面积的计算问题例1.过抛物线22(0)y px p =>的焦点F 作倾斜角为045的直线交抛物线于点A ,B 两点,若线段AB 的长为8,则P为多少?练1:已知椭圆C :2212x y +=,过椭圆C 的左焦点F 且倾斜角为6π的直线l 与椭圆C 交于A ,B ,求弦长AB 。
练2:已知圆M :227(3x y +=,若椭圆C :22221(0)x y a b a b +=>>的右顶点为圆M 。
(1)求椭圆C 的方程;(2)已知直线l :y kx =,若直线l 与椭圆C 分别交于A ,B 两点,与圆M 分别交于G ,H 两点(其中点G 在线段AB 上),且AG BH =,求k 的值。
例2:已知椭圆C :2214x y +=,过点(m ,0)作圆221x y +=的切线l 交椭圆G 于A ,B 两点。
(1)求椭圆G 的焦点坐标和离心率。
(2)将AB 表示为m 的函数,并求AB 的最大值。
练1已知椭圆C :22221(0)x y a b a b +=>>经过点3(1,)2M ,其离心率为12(1)求椭圆C 的方程。
(2)设直线l :y=kx+m 1()2k ≤与椭圆C 相交于A ,B 两点,以线段OA ,OB 为邻边作平形四边形OAPB ,其中顶点P 在椭圆C 上,O 为坐标原点,求OP 的取值范围。
2.已知椭圆C :22221(0)x y a b a b+=>>的右顶点A (2,0O 为坐标原点。
(1)(1)求椭圆C 的方程。
(2)已知P 是(异于点A )为椭圆C 上一个动点,过O 作线段AP 垂线l 交椭圆C 于点E ,D 。
如图所示,求DE AP的取值范围。
例3:已知12,F F 是椭圆22143x y +=的左右焦点,AB 是过点1F 的一条动弦,求△AB 2F 的面积最大值。
练1:(14新课标理)已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆E 的右焦点,直线AF ,O 为坐标原点。
(1)求E 的方程;(2)设过点A 的直线l 与E 相交于P,Q两点,当 △OPQ面积最大时,求l 的方程。
例4:已知抛物线24y x =的焦点为F,过点F的直线交抛物线于A,B两点。
(1)若2AF FB =,求直线AB的斜率;(2)设点M在线段AB上运动,原点O关于点M的对称点C,求四边形OACB面积的最小值。
练1:(12北京)在平面直角坐标系xoy中,椭圆G的中点为坐标原点,左焦点为1F (-1,0),P为椭圆G上顶点,且145oPFO ∠=。
(1)求椭圆G的标准方程(2)已知直线1l :1y kx m =+与椭圆G交于A,B两点,直线2l :2y kx m =+(12m m ≠)与椭圆G交于C,D两点,且AB CD =,如图所示,(1)求证:120m m +=(2)求四边形ABCD的面积S的最大值。
2.(14年湖南理21)如图所示,O 为坐标原点,椭圆1C :22221(0)x y a b a b +=>>的左右焦点分别为12,F F ,离心率为1e ;双曲线2C :22221x y a b-=的左右焦点分别为34,F F ,离心率为2e ,已知122e e =,且241F F =。
(1)求1C ,2C 的方程 (2)过1F 作1C 的不垂直于y 轴的弦AB ,M 为AB 的中点,当直线OM 与2C 交于P ,Q 两点时,求四边形APBQ 面积的最小值。
3.已知抛物线24x y =的焦点为F ,A,B 是抛物线上的两动点,且(0)AF FB λλ=>。
过A ,B 两点分别作抛物线的切线,设其交点为M 。